US20170028114A1 - Connecting element for mounting a blood pump or a cannula on a heart - Google Patents
Connecting element for mounting a blood pump or a cannula on a heart Download PDFInfo
- Publication number
- US20170028114A1 US20170028114A1 US15/291,824 US201615291824A US2017028114A1 US 20170028114 A1 US20170028114 A1 US 20170028114A1 US 201615291824 A US201615291824 A US 201615291824A US 2017028114 A1 US2017028114 A1 US 2017028114A1
- Authority
- US
- United States
- Prior art keywords
- connecting element
- heart
- sealing element
- film layers
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A61M1/1008—
-
- A61M1/1098—
-
- A61M1/122—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/857—Implantable blood tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/89—Valves
- A61M60/894—Passive valves, i.e. valves actuated by the blood
- A61M60/896—Passive valves, i.e. valves actuated by the blood having flexible or resilient parts, e.g. flap valves
Definitions
- the invention relates to a connecting element for mounting a blood pump or a cannula on a heart, and a system for mounting such a connecting element on the heart.
- inlet cannula or the inlet connecting piece of an implantable blood pump into the heart through a previously formed opening is problematic. If the implantation will be performed without the use of a heart-lung machine, the heart continues to beat during these manipulations, and therefore blood can freely flow out during the period after the opening is formed and before the cannula/pump is inserted if makeshift sealing measures are not implemented (sealing using thumb pressure is common). The makeshift sealing measures must be carried out very quickly, however. The blood loss cannot be perfectly prevented and increases in the period between formation of the opening and insertion of the cannula.
- the problem is therefore that of closing the opening in the heart after it is formed and until the cannula/pump is inserted, thereby ensuring that problems do not occur due to a relatively long time period between formation of the opening and insertion.
- a connecting element for an implantable blood pump or a cannula which can be attached on the heart, contains a sealing element, which can be opened via axial insertion of a cylindrical object, for example, but which otherwise tightly closes an opening in the cardiac wall formed under the connecting element.
- an opening formed in the cardiac wall is reliably sealed for the time period between formation of the opening and attachment of the blood pump or cannula.
- blood loss is reliably reduced independently of the working speed of the operating surgeon.
- the connecting element can comprise a suture ring, which can be sutured with the cardiac wall. After the blood pump or cannula is attached, the suture ring can seal the connection between the blood pump or cannula and the heart and hold the cannula or the blood pump against the heart.
- the connecting element can also be embodied as an anchoring element having any other type of design.
- the suture ring can be made, on the inner curvature thereof, of a soft sealing material such as velour or a velour-silicone combination, for example.
- the radially outward part of the suture ring can be made of a material that is highly resistant to mechanical deformation, such as titanium or surgical steel, in order to prevent or limit deformability of the suture ring during operation and therefore support of the sealing properties of the inner soft curvature against the blood pump and the cannula as described above.
- a connector ring can be provided, which is used to connect the sealing element to the suture ring.
- the connector ring can be made of a rigid material in order to obtain the most reliable connection possible to the sealing element.
- the connector ring can be designed to be connected to the suture ring via bonding or suturing.
- the connector ring and/or the sealing element can comprise at least one detent element, by way of which the sealing element can be locked with the connector ring.
- other connections such as positive, non-positive or bonded connections, can be provided between the connector ring and the sealing element.
- the connector ring can be bonded with the sealing element.
- the sealing element can also be integral with the connector ring.
- the sealing element comprises a plurality of freely openable subregions (also referred to as sectors), which have a convex side and a concave side and can be flexible.
- the freely openable subregions can be designed, in particular, such that they are pressure-stable with respect to pressure on the convex side, while they can be pressed open from the concave side.
- the related sealing mechanism can be designed to be handled with one hand in order to simplify implantation using minimally invasive, sternum-sparing surgical techniques. This can be solved in a design-related manner using a spring element, for example, which holds a sealing element in the closed home position and can be moved into the opened position by the user, preferably using one hand. If the sealing element is released after the cutting tool has been positioned and the punch opening has been created in the cardiac wall, the sealing mechanism automatically returns to the closed home position by way of the restoring forces of the spring element. The surgeon therefore has his hands free to install the pump, and the surgical site is blood-free.
- the sealing mechanism comprising the spring element can be actively opened simply by inserting the punching tool and/or the pump inflow cannula.
- sealing element it is not necessary for the sealing element to be handled directly by a user using one hand; instead, it is also possible (in the case of deeper surgical sites) for the user to work outside the body using a further auxiliary element for extension if the spatial conditions prevent work from being performed entirely by the human hand.
- the sealing element comprises a plurality of film layers.
- Each of the film layers can comprise two films, which are in contact with one another along one edge. The edges of adjacent film layers can extend at an angle relative to one another, and therefore blood emerging from the heart along one edge of a first film layer is held back by the next film layer.
- the number of film layers can be freely selected. A larger number of film layers results in an improved sealing effect, although this makes it difficult to subsequently open the sealing element via insertion of a cannula or a connector of a blood pump.
- the use of two film layers has proven to be a particularly suitable compromise between sealing effect and flexibility.
- the film layers can be incorporated or incorporable in the connector ring, for example.
- the invention in addition to the connecting element, relates to a system for attaching a connecting element on a heart.
- the system comprises a connecting element of the previously described type and a tool for punching an opening in the heart.
- the tool comprises a first component and a blade.
- the first component and the blade are displaceable in the longitudinal direction of the tool relative to one another and relative to the rest of the tool.
- the sealing element and the tool are designed such that the sealing element can be disposed in a front region of the tool.
- the sealing element can be slid upward via displacement of the first component, which can be embodied as a blade guard, for example. Next, the blade can be slid through the sealing element without damaging it.
- the tool can also comprise a sliding element.
- This can be a contact surface for the sealing element.
- the sliding element can be displaceable in the longitudinal direction of the tool, thereby permitting the sealing element to be pushed into the connector ring using the sliding element. This is particularly advantageous when the sealing element and/or the connector ring comprise a detent element and can be locked to one another.
- FIG. 1 shows a sectional view of a suture ring attached to a cardiac wall, comprising a connector ring mounted thereon,
- FIG. 2 shows a perspective view of a tool for forming openings in hearts, at an angle from the front
- FIG. 3 shows the tool depicted in FIG. 2 with the blade slid forward
- FIG. 4 shows a sectional view and a perspective view of an embodiment of a sealing element
- FIG. 5 shows the tool depicted in FIG. 3 having the sealing element depicted in FIG. 4 mounted thereon
- FIG. 6 shows the tool depicted in FIG. 3 having the sealing element depicted in FIG. 4 mounted thereon, in a sectional view before the opening is formed in the cardiac wall
- FIG. 7 shows the tool depicted in FIG. 3 having the sealing element depicted in FIG. 4 mounted thereon, in a sectional view while the opening is being formed in the cardiac wall
- FIG. 8 shows the tool depicted in FIG. 3 having the sealing element depicted in FIG. 4 mounted thereon, in a sectional view after the opening is formed in the cardiac wall and before the sealing element becomes locked
- FIG. 9 shows the tool depicted in FIG. 3 having the sealing element depicted in FIG. 4 mounted thereon, in a sectional view after the opening is formed in the cardiac wall and after the sealing element is locked,
- FIG. 10 shows a sectional view of the locked sealing element depicted in FIG. 4 .
- FIG. 11 shows a sectional view of the locked sealing element depicted in FIG. 4 as a pump or cannula is inserted
- FIG. 12 shows a back view, a sectional view and a front view of an alternative embodiment of a sealing element.
- a suture ring 5 a which is made of a soft sealing material such as velour or a velour-silicone combination, for example, is sutured to the heart H using thread F before the opening is formed.
- the purpose of the suture ring is to hold the cannula/pump against the heart and seal the heart and the pump with respect to one another.
- the suture ring is fixedly connected to a rigid connector ring 5 , wherein the connection can be in the form of an adhesive connection and/or a seam.
- a special tool which is shown in FIG. 2 , is used to form an opening in the heart.
- This comprises a blade guard 2 , the blade 4 and a sliding element 3 .
- the parts can move axially (i.e. in the direction a) relative to one another.
- the blade guard has a central opening for the routing therethrough of a thread, for example, or any other type of aid for captively holding the slug produced when the opening is formed.
- the blade can be slid forward past the blade guard, as shown in FIG. 3 , thereby cutting an opening in the heart by way of the blade edge 4 a.
- a valve ring 1 made of soft elastic material (silicone, in particular) can be placed onto this tool. This comprises, for example, at least three freely openable and deformable sectors 1 a , which are formed via slits in the ring.
- the valve ring 1 is shown having four sectors 1 a , although only three sectors or more than four sectors could be provided.
- the valve ring is further equipped with the collar 1 b and the collar 1 c and a sealing lip 1 d .
- the sectors are not folded open and are undeformed, they form a dome, which is pressure-stable and impenetrable (in accordance with the requirements) on the convex side.
- tricuspid flaps which are used in artificial heart valves.
- the sectors of the valve ring can be pressed open and deformed by way of the blade guard (with the blade retracted), as shown in FIG. 5 .
- the tool with the valve ring fully folded open, is inserted into the connector ring (which is connected to the not-shown suture ring).
- a thread F which was previously sewn through the heart, is routed through the bore 2 a of the blade guard, as shown in FIG. 6 .
- FIG. 7 shows the tool comprising the sealing element at this point of use.
- the blade, the slug (with thread) and the blade guard can be retracted, wherein a brief (acceptable) leak forms through the gap between the valve ring sectors and the connector ring.
- the tool comprising the sealing element is shown in FIG. 8 at this point of retraction.
- the valve ring 1 can be slid into the connector ring 5 using the sliding element 3 , wherein the collars 1 b and 1 c fix the position.
- the sectors of the valve ring close and seal the opening in the heart.
- the seal integrity with respect to the tool is maintained since the slug rests against the blade. This situation is depicted in FIG. 9 .
- the closed sealing element is shown in FIG. 10 .
- the tool can now be removed.
- the pump/cannula 6 When the pump/cannula 6 is inserted, the sectors of the valve ring are opened once more.
- the pump is connected to the connector ring via means, which are not shown.
- the pump is sealed with respect to the connector ring at the sealing lip 1 d of the valve ring.
- the sealing element, with pump/cannula inserted, is shown in FIG. 11 .
- the connector ring can be designed to be higher, thereby enabling the sectors to fold open within the connector ring.
- FIG. 12 Another way to implement a suture ring valve is to equip the connector ring with, for example, four tensioned films ( 8 a , 8 b , 9 a , 9 b ) made of thin elastic material (e.g. silicone), the adjoining edges BK of which extend radially, wherein two edges are offset by 90° in each case.
- a sealing element is shown in FIG. 12 .
- the films are fastened to the connector ring using a clamping ring 7 .
- a rounded cylindrical object the aforementioned tool or pump/cannula
- the films are stretched, and therefore the adjoining edges thereof deform, expand and lie closely against the cylindrical surface of the object inserted through the slits.
- a connecting element for an implantable blood pump or a cannula which is attached at the heart (as usual), contains a sealing element, which can be opened via axial insertion of a cylindrical object, but which otherwise tightly closes an opening in the cardiac wall formed under the connecting element.
- the sealing element shown in FIG. 12 therefore comprises a passage channel and self-closing closing elements in the form of the tensioned films 8 a , 8 b , 9 a and 9 b .
- the sealing element shown there can be opened by inserting an object (e.g. the pump/cannula 6 ) into the passage channel completely or at least partially, thereby establishing a fluid connection between opposite ends of the passage channel.
- FIG. 11 further shows that the opposite ends of the passage channel formed by the sealing element are aligned in the opened state of the sealing element.
- the sealing element in FIG. 4 also comprises a passage channel and closing elements for the repeated opening and closing of the passage channel, wherein the closing elements can be formed by the sectors 1 a , which are fixedly connected to the valve ring 1 .
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- External Artificial Organs (AREA)
- Prostheses (AREA)
Abstract
A connecting element for connecting a blood pump or a cannula to a heart, the connecting element including a sealing element, which is designed to at least temporarily close an opening formed in the cardiac wall and to be opened via insertion of a preferably cylindrical object in the direction of an axis of the opening.
Description
- This application is a continuation application of, and claims priority under 35 USC §120 to, U.S. patent application Ser. No. 14/354,922, “CONNECTING ELEMENT FOR MOUNTING A BLOOD PUMP OR A CANNULA ON A HEART,” filed Apr. 28, 2014, the entire contents of which are incorporated by reference, which is a 371 nationalization of PCT/EP2012/071543, entitled “CONNECTING ELEMENT FOR MOUNTING A BLOOD PUMP OR A CANNULA ON A HEART,” having an international filing date of Oct. 31, 2012, the entire contents of which are hereby incorporated by reference, which in turn claims priority to German patent application 102011117892.2 filed on Oct. 31, 2011, entitled “VERBINDUNGSELEMENT ZUM MONTIEREN EINER BLUTPUMPE ODER EINER KANÜLE AN EINEM HERZEN,” the entire contents of which are hereby incorporated by reference.
- The invention relates to a connecting element for mounting a blood pump or a cannula on a heart, and a system for mounting such a connecting element on the heart.
- In the implantation of heart assist systems in particular, inserting a so-called inlet cannula or the inlet connecting piece of an implantable blood pump into the heart through a previously formed opening is problematic. If the implantation will be performed without the use of a heart-lung machine, the heart continues to beat during these manipulations, and therefore blood can freely flow out during the period after the opening is formed and before the cannula/pump is inserted if makeshift sealing measures are not implemented (sealing using thumb pressure is common). The makeshift sealing measures must be carried out very quickly, however. The blood loss cannot be perfectly prevented and increases in the period between formation of the opening and insertion of the cannula.
- The problem is therefore that of closing the opening in the heart after it is formed and until the cannula/pump is inserted, thereby ensuring that problems do not occur due to a relatively long time period between formation of the opening and insertion.
- According to the invention, a connecting element for an implantable blood pump or a cannula, which can be attached on the heart, contains a sealing element, which can be opened via axial insertion of a cylindrical object, for example, but which otherwise tightly closes an opening in the cardiac wall formed under the connecting element.
- By way of such a preferably valve-like sealing element, an opening formed in the cardiac wall is reliably sealed for the time period between formation of the opening and attachment of the blood pump or cannula. As a result, blood loss is reliably reduced independently of the working speed of the operating surgeon.
- The connecting element can comprise a suture ring, which can be sutured with the cardiac wall. After the blood pump or cannula is attached, the suture ring can seal the connection between the blood pump or cannula and the heart and hold the cannula or the blood pump against the heart. The connecting element can also be embodied as an anchoring element having any other type of design.
- In order to obtain the best possible sealing effect between the suture ring and the pump connector, the suture ring can be made, on the inner curvature thereof, of a soft sealing material such as velour or a velour-silicone combination, for example.
- The radially outward part of the suture ring can be made of a material that is highly resistant to mechanical deformation, such as titanium or surgical steel, in order to prevent or limit deformability of the suture ring during operation and therefore support of the sealing properties of the inner soft curvature against the blood pump and the cannula as described above.
- In addition, a connector ring can be provided, which is used to connect the sealing element to the suture ring. The connector ring can be made of a rigid material in order to obtain the most reliable connection possible to the sealing element. The connector ring can be designed to be connected to the suture ring via bonding or suturing.
- The connector ring and/or the sealing element can comprise at least one detent element, by way of which the sealing element can be locked with the connector ring. Alternatively or additionally, other connections, such as positive, non-positive or bonded connections, can be provided between the connector ring and the sealing element. For example, the connector ring can be bonded with the sealing element. The sealing element can also be integral with the connector ring.
- In one exemplary embodiment, the sealing element comprises a plurality of freely openable subregions (also referred to as sectors), which have a convex side and a concave side and can be flexible. The freely openable subregions can be designed, in particular, such that they are pressure-stable with respect to pressure on the convex side, while they can be pressed open from the concave side. As a result, the blood pressure that prevails in the beating heart does not cause the sealing element to leak and even induces the sealing element to close more tightly, while the sealing element can be easily opened from the concave side, for example via insertion of a connector and/or inflow cannula of a blood pump.
- The related sealing mechanism can be designed to be handled with one hand in order to simplify implantation using minimally invasive, sternum-sparing surgical techniques. This can be solved in a design-related manner using a spring element, for example, which holds a sealing element in the closed home position and can be moved into the opened position by the user, preferably using one hand. If the sealing element is released after the cutting tool has been positioned and the punch opening has been created in the cardiac wall, the sealing mechanism automatically returns to the closed home position by way of the restoring forces of the spring element. The surgeon therefore has his hands free to install the pump, and the surgical site is blood-free.
- Alternatively, the sealing mechanism comprising the spring element can be actively opened simply by inserting the punching tool and/or the pump inflow cannula.
- It should also be noted that it is not necessary for the sealing element to be handled directly by a user using one hand; instead, it is also possible (in the case of deeper surgical sites) for the user to work outside the body using a further auxiliary element for extension if the spatial conditions prevent work from being performed entirely by the human hand.
- In one embodiment, the sealing element comprises a plurality of film layers. Each of the film layers can comprise two films, which are in contact with one another along one edge. The edges of adjacent film layers can extend at an angle relative to one another, and therefore blood emerging from the heart along one edge of a first film layer is held back by the next film layer. Basically, the number of film layers can be freely selected. A larger number of film layers results in an improved sealing effect, although this makes it difficult to subsequently open the sealing element via insertion of a cannula or a connector of a blood pump. The use of two film layers has proven to be a particularly suitable compromise between sealing effect and flexibility. The film layers can be incorporated or incorporable in the connector ring, for example.
- In addition to the connecting element, the invention relates to a system for attaching a connecting element on a heart. The system comprises a connecting element of the previously described type and a tool for punching an opening in the heart. The tool comprises a first component and a blade. The first component and the blade are displaceable in the longitudinal direction of the tool relative to one another and relative to the rest of the tool. The sealing element and the tool are designed such that the sealing element can be disposed in a front region of the tool. The sealing element can be slid upward via displacement of the first component, which can be embodied as a blade guard, for example. Next, the blade can be slid through the sealing element without damaging it.
- In addition to the first component and the blade, the tool can also comprise a sliding element. This can be a contact surface for the sealing element. The sliding element can be displaceable in the longitudinal direction of the tool, thereby permitting the sealing element to be pushed into the connector ring using the sliding element. This is particularly advantageous when the sealing element and/or the connector ring comprise a detent element and can be locked to one another.
- Exemplary embodiments of the connecting element and the system are explained in greater detail with reference to the figures and are described in terms of functionality. Shown are:
-
FIG. 1 shows a sectional view of a suture ring attached to a cardiac wall, comprising a connector ring mounted thereon, -
FIG. 2 shows a perspective view of a tool for forming openings in hearts, at an angle from the front, -
FIG. 3 shows the tool depicted inFIG. 2 with the blade slid forward, -
FIG. 4 shows a sectional view and a perspective view of an embodiment of a sealing element, -
FIG. 5 shows the tool depicted inFIG. 3 having the sealing element depicted inFIG. 4 mounted thereon, -
FIG. 6 shows the tool depicted inFIG. 3 having the sealing element depicted inFIG. 4 mounted thereon, in a sectional view before the opening is formed in the cardiac wall, -
FIG. 7 shows the tool depicted inFIG. 3 having the sealing element depicted inFIG. 4 mounted thereon, in a sectional view while the opening is being formed in the cardiac wall, -
FIG. 8 shows the tool depicted inFIG. 3 having the sealing element depicted inFIG. 4 mounted thereon, in a sectional view after the opening is formed in the cardiac wall and before the sealing element becomes locked, -
FIG. 9 shows the tool depicted inFIG. 3 having the sealing element depicted inFIG. 4 mounted thereon, in a sectional view after the opening is formed in the cardiac wall and after the sealing element is locked, -
FIG. 10 shows a sectional view of the locked sealing element depicted inFIG. 4 , -
FIG. 11 shows a sectional view of the locked sealing element depicted inFIG. 4 as a pump or cannula is inserted, -
FIG. 12 shows a back view, a sectional view and a front view of an alternative embodiment of a sealing element. - As shown in
FIG. 1 , a suture ring 5 a, which is made of a soft sealing material such as velour or a velour-silicone combination, for example, is sutured to the heart H using thread F before the opening is formed. The purpose of the suture ring is to hold the cannula/pump against the heart and seal the heart and the pump with respect to one another. - The suture ring is fixedly connected to a
rigid connector ring 5, wherein the connection can be in the form of an adhesive connection and/or a seam. - To ensure clarity, the illustrations that follow only show the connector ring and not the suture ring.
- A special tool, which is shown in
FIG. 2 , is used to form an opening in the heart. This comprises ablade guard 2, theblade 4 and a slidingelement 3. The parts can move axially (i.e. in the direction a) relative to one another. The blade guard has a central opening for the routing therethrough of a thread, for example, or any other type of aid for captively holding the slug produced when the opening is formed. In particular, the blade can be slid forward past the blade guard, as shown inFIG. 3 , thereby cutting an opening in the heart by way of theblade edge 4 a. - A
valve ring 1 made of soft elastic material (silicone, in particular) can be placed onto this tool. This comprises, for example, at least three freely openable and deformable sectors 1 a, which are formed via slits in the ring. InFIG. 4 , thevalve ring 1 is shown having four sectors 1 a, although only three sectors or more than four sectors could be provided. The valve ring is further equipped with thecollar 1 b and the collar 1 c and a sealinglip 1 d. When the sectors are not folded open and are undeformed, they form a dome, which is pressure-stable and impenetrable (in accordance with the requirements) on the convex side. Instead of a dome, it is also possible to use so-called tricuspid flaps, which are used in artificial heart valves. - The sectors of the valve ring can be pressed open and deformed by way of the blade guard (with the blade retracted), as shown in
FIG. 5 . - The tool, with the valve ring fully folded open, is inserted into the connector ring (which is connected to the not-shown suture ring). A thread F, which was previously sewn through the heart, is routed through the bore 2 a of the blade guard, as shown in
FIG. 6 . - When the blade is slid forward, the slug HB is cut out of the cardiac wall, wherein the slug is held steady by pulling on the thread.
FIG. 7 shows the tool comprising the sealing element at this point of use. - The blade, the slug (with thread) and the blade guard can be retracted, wherein a brief (acceptable) leak forms through the gap between the valve ring sectors and the connector ring. The tool comprising the sealing element is shown in
FIG. 8 at this point of retraction. - The
valve ring 1 can be slid into theconnector ring 5 using the slidingelement 3, wherein thecollars 1 b and 1 c fix the position. The sectors of the valve ring close and seal the opening in the heart. The seal integrity with respect to the tool is maintained since the slug rests against the blade. This situation is depicted inFIG. 9 . The closed sealing element is shown inFIG. 10 . The tool can now be removed. - When the pump/
cannula 6 is inserted, the sectors of the valve ring are opened once more. The pump is connected to the connector ring via means, which are not shown. The pump is sealed with respect to the connector ring at the sealinglip 1 d of the valve ring. The sealing element, with pump/cannula inserted, is shown inFIG. 11 . - To prevent the sectors of the valve ring from lying against the walls of the opening in the heart, the connector ring can be designed to be higher, thereby enabling the sectors to fold open within the connector ring.
- Another way to implement a suture ring valve is to equip the connector ring with, for example, four tensioned films (8 a, 8 b, 9 a, 9 b) made of thin elastic material (e.g. silicone), the adjoining edges BK of which extend radially, wherein two edges are offset by 90° in each case. Such an exemplary embodiment of a sealing element is shown in
FIG. 12 . - The films are fastened to the connector ring using a clamping ring 7. When a rounded cylindrical object (the aforementioned tool or pump/cannula) is inserted axially, the films are stretched, and therefore the adjoining edges thereof deform, expand and lie closely against the cylindrical surface of the object inserted through the slits.
- According to a further aspect of the invention, a connecting element for an implantable blood pump or a cannula, which is attached at the heart (as usual), contains a sealing element, which can be opened via axial insertion of a cylindrical object, but which otherwise tightly closes an opening in the cardiac wall formed under the connecting element.
- The sealing element shown in
FIG. 12 therefore comprises a passage channel and self-closing closing elements in the form of the tensionedfilms 8 a, 8 b, 9 a and 9 b. The sealing element shown there can be opened by inserting an object (e.g. the pump/cannula 6) into the passage channel completely or at least partially, thereby establishing a fluid connection between opposite ends of the passage channel.FIG. 11 further shows that the opposite ends of the passage channel formed by the sealing element are aligned in the opened state of the sealing element. - The sealing element in
FIG. 4 also comprises a passage channel and closing elements for the repeated opening and closing of the passage channel, wherein the closing elements can be formed by the sectors 1 a, which are fixedly connected to thevalve ring 1. In the arrangement of the sealing element shown inFIG. 10 , a pressure difference of approximately 100 mbar, for example, exists between the ventricle (at the top inFIG. 10 ) and the outer side of the heart where the sealing element is attached on the cardiac muscle, thereby forcing the sectors 1 a into a closed position and closing the passage channel.
Claims (23)
1. A connecting element for connecting a blood pump or a cannula to a heart, comprising:
a sealing element designed to at least temporarily close an opening formed in a cardiac wall of the heart and to be opened via insertion of a preferably cylindrical object in the direction of an axis of the opening, and comprising an anchoring element for permanent attachment of the connecting element on a cardiac muscle of the heart, wherein the sealing element comprises a plurality of film layers, each of which has two films, which adjoin one another along edges.
2. The connecting element of claim 1 further comprising a suture ring to be sutured with the heart.
3. The connecting element of claim 1 further comprising a connector ring for connection to the suture ring and/or the heart.
4. The connecting element of claim 3 , wherein the sealing element and/or the connector ring comprise at least one detent element, wherein the sealing element can be locked with the connector ring by way of the detent element.
5. The connecting element of claim 1 , wherein the sealing element comprises a passage channel and at least one self-closing closing element for the repeated opening and closing of the passage channel, wherein the closing element is designed to be opened via insertion of an object into the passage channel.
6. The connecting element of claim 1 , wherein the sealing element comprises a passage channel and at least one closing element for the repeated opening and closing of the passage channel, wherein the at least one closing element is designed to close the passage channel when a pressure difference exists along a specified direction of the passage channel.
7. The connecting element of claim 5 or 6 , wherein the at least one closing element is formed by the plurality of film layers.
8. The connecting element of claim 1 , wherein the sealing element comprises a plurality of freely openable subregions, which have a convex side and a concave side such that the sealing element remains closed when pressure is applied from the direction of the convex side and opens when pressure is applied from the direction of the concave side.
9. The connecting element of claim 1 , wherein the edges of various film layers extend at an angle relative to one another.
10. The connecting element of claim 1 , wherein the edges of various film layers extend at a right angle relative to one another.
11. The connecting element of claim 1 , wherein the edges of various film layers extend radially.
12. The connecting element of claim 1 , wherein the sealing element comprises exactly two of said film layers.
13. The connecting element of claim 1 , wherein the sealing element comprises more than two of said film layers.
14. The connecting element of claim 3 , wherein the film layers are incorporated in the connector ring.
15. The connecting element of claim 14 , wherein the films are fastened to the connector ring using a clamping ring.
16. The connecting element of claim 1 , wherein the films of the film layers are tensioned.
17. The connecting element of claim 1 , wherein the film layers are self-closing.
18. The connecting element of claim 1 , wherein each one of the film layers is self-closing.
19. The connecting element of claim 1 , wherein the films of the film layers are made of thin elastic material.
20. The connecting element of claim 1 , wherein the films of the film layers are made of silicone.
21. A system comprising:
a connecting element comprising a sealing element configured to at least temporarily close an opening formed in a cardiac wall of a heart, the sealing element further configured to be opened via insertion of a cylindrical object in a direction of an axis of the opening, the connecting element further comprising an anchoring element for attachment of the connecting element to a cardiac muscle of the heart, wherein the sealing element comprises a plurality of film layers, each of which has two films, which adjoin one another along edges; and
a tool for forming the opening in the heart, wherein the tool for forming the opening in the heart comprises a first component and at least one blade, which are displaceable in a longitudinal direction of the tool relative to one another and relative to the rest of the tool, and wherein at least the sealing element of the connecting element is disposable in a front region of the tool for forming an opening in the heart, in such a way that the sealing element of the connecting element is opened when pressed by the first component of the tool and, subsequently, permits the blade of the tool for forming the opening in the heart to pass through the sealing element.
22. The system of claim 21 , wherein the first component is designed as a blade guard.
23. The system of claim 21 , wherein the tool for forming an opening in the heart comprises a sliding element, which forms a contact surface for the sealing element and is displaceable in the longitudinal direction of the tool in order to push the sealing element into the connector ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/291,824 US20170028114A1 (en) | 2011-10-31 | 2016-10-12 | Connecting element for mounting a blood pump or a cannula on a heart |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011117892A DE102011117892A1 (en) | 2011-10-31 | 2011-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
DE102011117892.2 | 2011-10-31 | ||
PCT/EP2012/071543 WO2013064529A1 (en) | 2011-10-31 | 2012-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
US201414354922A | 2014-04-28 | 2014-04-28 | |
US15/291,824 US20170028114A1 (en) | 2011-10-31 | 2016-10-12 | Connecting element for mounting a blood pump or a cannula on a heart |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/354,922 Continuation US9486565B2 (en) | 2011-10-31 | 2012-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
PCT/EP2012/071543 Continuation WO2013064529A1 (en) | 2011-10-31 | 2012-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170028114A1 true US20170028114A1 (en) | 2017-02-02 |
Family
ID=47216220
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/354,922 Active US9486565B2 (en) | 2011-10-31 | 2012-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
US15/291,824 Abandoned US20170028114A1 (en) | 2011-10-31 | 2016-10-12 | Connecting element for mounting a blood pump or a cannula on a heart |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/354,922 Active US9486565B2 (en) | 2011-10-31 | 2012-10-31 | Connecting element for mounting a blood pump or a cannula on a heart |
Country Status (5)
Country | Link |
---|---|
US (2) | US9486565B2 (en) |
EP (1) | EP2773394B1 (en) |
CN (1) | CN103945876B (en) |
DE (1) | DE102011117892A1 (en) |
WO (1) | WO2013064529A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US12121713B2 (en) | 2020-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9138228B2 (en) | 2004-08-11 | 2015-09-22 | Emory University | Vascular conduit device and system for implanting |
US7846123B2 (en) | 2007-04-24 | 2010-12-07 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US9682180B2 (en) | 2009-11-15 | 2017-06-20 | Thoratec Corporation | Attachment system, device and method |
JP6130302B2 (en) | 2011-01-28 | 2017-05-17 | アピカ カーディオヴァスキュラー リミテッド | System for sealing tissue wall stings |
WO2012106422A2 (en) | 2011-02-01 | 2012-08-09 | Georgia Tech Research Corporation | Systems for implanting and using a conduit within a tissue wall |
CA2827870A1 (en) | 2011-02-25 | 2012-08-30 | Thoratec Corporation | Coupling system, applicator tool, attachment ring and method for connecting a conduit to biological tissue |
WO2012158919A2 (en) | 2011-05-18 | 2012-11-22 | Thoratec Corporation | Coring knife |
US9199019B2 (en) | 2012-08-31 | 2015-12-01 | Thoratec Corporation | Ventricular cuff |
US9981076B2 (en) | 2012-03-02 | 2018-05-29 | Tc1 Llc | Ventricular cuff |
WO2013162741A1 (en) | 2012-04-23 | 2013-10-31 | Thoratec Corporation | Engagement device and method for deployment of anastomotic clips |
EP2948104B1 (en) | 2013-01-25 | 2019-07-24 | Apica Cardiovascular Limited | Systems for percutaneous access, stabilization and closure of organs |
EP2968717A4 (en) | 2013-03-15 | 2017-02-22 | Apk Advanced Medical Technologies, Inc. | Devices, systems, and methods for implanting and using a connnector in a tissue wall |
WO2015134944A1 (en) * | 2014-03-06 | 2015-09-11 | Thoratec Corporation | Ventricular cuff |
WO2016070025A1 (en) | 2014-10-31 | 2016-05-06 | Thoratec Corporation | Apical connectors and instruments for use in a heart wall |
EP3173107A1 (en) * | 2015-11-25 | 2017-05-31 | Berlin Heart GmbH | Attachment device |
US10894116B2 (en) | 2016-08-22 | 2021-01-19 | Tc1 Llc | Heart pump cuff |
US11235137B2 (en) | 2017-02-24 | 2022-02-01 | Tc1 Llc | Minimally invasive methods and devices for ventricular assist device implantation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070043431A1 (en) * | 2005-08-19 | 2007-02-22 | Cook Incorporated | Prosthetic valve |
US20090093809A1 (en) * | 2007-10-05 | 2009-04-09 | Anderson Evan R | Devices and methods for minimally-invasive surgical procedures |
US20110118766A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment System, Device and Method |
US20110182453A1 (en) * | 2010-01-25 | 2011-07-28 | Sonion Nederland Bv | Receiver module for inflating a membrane in an ear device |
US8961599B2 (en) * | 2011-04-01 | 2015-02-24 | W. L. Gore & Associates, Inc. | Durable high strength polymer composite suitable for implant and articles produced therefrom |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3218242C2 (en) * | 1982-05-14 | 1987-01-15 | Heinrich 7716 Geisingen Pajunk | Double cannula for epidural anesthesia |
US4767289A (en) | 1986-12-31 | 1988-08-30 | Minnesota Mining And Manufacturing Company | Peristaltic pump header |
US6726648B2 (en) * | 2000-08-14 | 2004-04-27 | The University Of Miami | Valved apical conduit with trocar for beating-heart ventricular assist device placement |
US6942672B2 (en) * | 2001-10-23 | 2005-09-13 | Vascor, Inc. | Method and apparatus for attaching a conduit to the heart or a blood vessel |
WO2006041505A1 (en) * | 2004-10-02 | 2006-04-20 | Huber Christoph Hans | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
WO2008094691A2 (en) * | 2007-02-01 | 2008-08-07 | Cook Incorporated | Closure device and method for occluding a bodily passageway |
US8734483B2 (en) * | 2007-08-27 | 2014-05-27 | Cook Medical Technologies Llc | Spider PFO closure device |
US9566146B2 (en) * | 2008-12-19 | 2017-02-14 | St. Jude Medical, Inc. | Cardiovascular valve and valve housing apparatuses and systems |
-
2011
- 2011-10-31 DE DE102011117892A patent/DE102011117892A1/en not_active Withdrawn
-
2012
- 2012-10-31 WO PCT/EP2012/071543 patent/WO2013064529A1/en active Application Filing
- 2012-10-31 EP EP12788473.2A patent/EP2773394B1/en not_active Not-in-force
- 2012-10-31 CN CN201280053012.XA patent/CN103945876B/en not_active Expired - Fee Related
- 2012-10-31 US US14/354,922 patent/US9486565B2/en active Active
-
2016
- 2016-10-12 US US15/291,824 patent/US20170028114A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070043431A1 (en) * | 2005-08-19 | 2007-02-22 | Cook Incorporated | Prosthetic valve |
US20090093809A1 (en) * | 2007-10-05 | 2009-04-09 | Anderson Evan R | Devices and methods for minimally-invasive surgical procedures |
US20110118766A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment System, Device and Method |
US20110182453A1 (en) * | 2010-01-25 | 2011-07-28 | Sonion Nederland Bv | Receiver module for inflating a membrane in an ear device |
US8961599B2 (en) * | 2011-04-01 | 2015-02-24 | W. L. Gore & Associates, Inc. | Durable high strength polymer composite suitable for implant and articles produced therefrom |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11717670B2 (en) | 2017-06-07 | 2023-08-08 | Shifamed Holdings, LLP | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11229784B2 (en) | 2018-02-01 | 2022-01-25 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US12076545B2 (en) | 2018-02-01 | 2024-09-03 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US12121713B2 (en) | 2020-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
Also Published As
Publication number | Publication date |
---|---|
CN103945876A (en) | 2014-07-23 |
DE102011117892A1 (en) | 2013-05-02 |
WO2013064529A1 (en) | 2013-05-10 |
EP2773394A1 (en) | 2014-09-10 |
US20140288355A1 (en) | 2014-09-25 |
EP2773394B1 (en) | 2016-12-07 |
US9486565B2 (en) | 2016-11-08 |
CN103945876B (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9486565B2 (en) | Connecting element for mounting a blood pump or a cannula on a heart | |
JP5629576B2 (en) | Cannula for implantation in the atrium, and related system and method | |
JP6761096B2 (en) | Cardiac treatment system and method | |
US10123872B2 (en) | Expandable annuloplasty ring and associated ring holder | |
EP3010431B1 (en) | Transapical introducer | |
CN105555231B (en) | External membrane of heart anchor and method | |
US8500802B2 (en) | Two-piece prosthetic valves with snap-in connection and methods for use | |
JP5755656B2 (en) | Mounting system, apparatus and method | |
EP1335683B1 (en) | Percutaneous aortic valve | |
US6974476B2 (en) | Percutaneous aortic valve | |
EP2788044B1 (en) | Cannula ring and related systems | |
EP2641570A1 (en) | Replacement heart valve | |
JP2024124411A (en) | Prosthetic heart valve having commissure support elements - Patents.com | |
AU2002225718A1 (en) | Percutaneous aortic valve | |
EP4413955A2 (en) | Cardiac valve leaflet enhancer devices | |
US11974748B2 (en) | System and method for attaching a fluid conduit to an anatomical structure | |
US12017059B2 (en) | Implantable heart pump systems including an improved apical connector and/or graft connector | |
CN111295157B (en) | Suture guard for prosthetic valve | |
US20240293662A1 (en) | Implantable heart pump systems including an improved apical connector and/or graft connector | |
AU2015258284B2 (en) | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BERLIN HEART GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOELLNER, MANFRED;NUESSER, PETER;ARNDT, ANDREAS;AND OTHERS;SIGNING DATES FROM 20140623 TO 20140703;REEL/FRAME:040207/0546 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |