US20170027460A1 - Intraluminal microneurography probe - Google Patents
Intraluminal microneurography probe Download PDFInfo
- Publication number
- US20170027460A1 US20170027460A1 US15/204,349 US201615204349A US2017027460A1 US 20170027460 A1 US20170027460 A1 US 20170027460A1 US 201615204349 A US201615204349 A US 201615204349A US 2017027460 A1 US2017027460 A1 US 2017027460A1
- Authority
- US
- United States
- Prior art keywords
- probe
- electrode
- expandable
- intraluminal
- microneurography
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000523 sample Substances 0.000 title claims abstract description 149
- 210000005036 nerve Anatomy 0.000 claims abstract description 71
- 230000000638 stimulation Effects 0.000 claims abstract description 57
- 210000001367 artery Anatomy 0.000 claims abstract description 55
- 230000008035 nerve activity Effects 0.000 claims abstract description 49
- 210000000056 organ Anatomy 0.000 claims abstract description 38
- 238000002679 ablation Methods 0.000 claims abstract description 37
- 230000002889 sympathetic effect Effects 0.000 claims abstract description 28
- 230000033001 locomotion Effects 0.000 claims abstract description 6
- 239000008280 blood Substances 0.000 claims abstract description 5
- 210000004369 blood Anatomy 0.000 claims abstract description 5
- 230000005284 excitation Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 13
- 230000017531 blood circulation Effects 0.000 claims description 9
- 230000001537 neural effect Effects 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 18
- 210000003734 kidney Anatomy 0.000 description 21
- 210000002254 renal artery Anatomy 0.000 description 19
- 230000006870 function Effects 0.000 description 13
- 206010020772 Hypertension Diseases 0.000 description 12
- 210000000653 nervous system Anatomy 0.000 description 12
- 230000002269 spontaneous effect Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 6
- 210000002216 heart Anatomy 0.000 description 5
- 230000036982 action potential Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 210000004126 nerve fiber Anatomy 0.000 description 4
- 210000000944 nerve tissue Anatomy 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000003403 autonomic nervous system Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000000763 evoking effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003907 kidney function Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 208000028389 Nerve injury Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000002638 denervation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 230000008764 nerve damage Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000002747 voluntary effect Effects 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 206010051482 Prostatomegaly Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000002767 hepatic artery Anatomy 0.000 description 1
- 230000002102 hyperpolarization Effects 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004249 mesenteric artery inferior Anatomy 0.000 description 1
- 210000001363 mesenteric artery superior Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 210000000118 neural pathway Anatomy 0.000 description 1
- 230000010004 neural pathway Effects 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- A61B5/04001—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/20—Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
- A61B5/201—Assessing renal or kidney functions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4029—Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
- A61B5/4035—Evaluating the autonomic nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6876—Blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00404—Blood vessels other than those in or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00434—Neural system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00505—Urinary tract
- A61B2018/00511—Kidney
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00839—Bioelectrical parameters, e.g. ECG, EEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1407—Loop
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1467—Probes or electrodes therefor using more than two electrodes on a single probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/16—Indifferent or passive electrodes for grounding
- A61B2018/162—Indifferent or passive electrodes for grounding located on the probe body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1861—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0209—Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/028—Microscale sensors, e.g. electromechanical sensors [MEMS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
- A61B2562/043—Arrangements of multiple sensors of the same type in a linear array
Definitions
- the invention relates generally to neural measurement, and more specifically to an intraluminal microneurography probe.
- the human body's nervous system includes both the somatic nervous system that provides sense of the environment (vision, skin sensation, etc.) and regulation of the skeletal muscles, and is largely under voluntary control, and the autonomic nervous system, which serves mainly to regulate the activity of the internal organs and adapt them to the body's current needs, and which is largely not under voluntary control.
- the autonomic nervous system involves both afferent or sensory nerve fibers that can mechanically and chemically sense the state of an organ, and efferent fibers that convey the central nervous system's response (sometimes called a reflex arc) to the sensed state information.
- the somatic nervous system is also influenced, such as to cause vomiting or coughing in response to a sensed condition.
- Regulation of the human body's organs can therefore be somewhat characterized and controlled by monitoring and affecting the nerve reflex arc that causes organ activity.
- the renal nerves leading to the kindey can often cause a greater reflexive reaction than desired, contributing significantly to hypertension.
- Measurement of the nerve activity near the kidney, and subsequent ablation of some (but not all) of the nerve can therefore be used to control the nervous system's overstimulation of the kindey, improving operation of the kidney and the body as a whole.
- One example embodiment of the invention comprises an intraluminal microneurography probe, having a probe body that is substantially cylindrical and that is configured to be introduced into an artery near an organ of a body without preventing the flow of blood through the artery.
- An expandable sense electrode is fixed to the probe body at one end of the sense electrode and is movable relative to the probe body at a second end of the sense electrode such that movement of the movable end toward the fixed end causes the sense electrode to expand from the probe body toward a wall of the artery
- an expandable stimulation electrode is fixed to the probe body at one end of the stimulation electrode and movable relative to the probe body at a second end of the stimulation electrode such that movement of the movable end toward the fixed end causes the sense electrode to expand from the probe body toward a wall of the artery.
- a ground electrode configured to couple to the body, and a plurality of electrical connections are operable to electrically couple at least the expandable sense electrode, expandable stimulation electrode, and ground electrode to electrical circuitry.
- the sense electrode wire is equal to or smaller than 10 thousandths of an inch in a direction of nerve propagation
- at least one of the expandable sense electrode and the expandable stimulation electrode comprises an expandable mesh or an expandable wire helix.
- the diameter of the probe body is 2 mm or less, such that blood flow is not blocked by introduction of the probe into the artery.
- nerve activity associated with a body organ is characterized by introduction of a probe into artery to a location proximate to the body organ, and expansion of an expandable sense electrode and an expandable stimulation electrode comprising a part of the probe to contact the artery wall while permitting blood flow around the expanded sense and stimulation electrodes.
- An electricity source coupled to the stimulation electrode is used to excite the stimulation electrode, and the expanded sense electrode is used to measure sympathetic nerve activity as a result of exciting the stimulation electrode.
- ablation of nerves in the vicinity of the location proximate to the body organ is performed such as via an ablation element comprising a part of the probe, and re-excitation of the stimulation electrode using an electricity source coupled to the stimulation electrode, and re-measurement of sympathetic nerve activity as a result of exciting the stimulation electrode using the expanded sense electrode are performed to confirm the effects of the ablation
- FIG. 1 illustrates an intraluminal microneurography probe having expandable helical wire electrodes, consistent with an example.
- FIG. 2 illustrates an intraluminal microneurography probe having expandable wire mesh electrodes, consistent with an example.
- FIG. 3 shows introduction of an intraluminal microneurography probe into an artery in a location near a kidney, consistent with an example.
- FIG. 4 shows an intraluminal microneurography probe and sheath assembly coupled to associated instrumentation, consistent with an example.
- FIG. 5 shows spontaneous nerve activity, measured from the wall of the renal artery of an explanted kidney, consistent with an example.
- FIG. 6 shows spontaneous nerve activity in the wall of the renal artery of an explanted kidney using an intraluminal microneurography probe, consistent with an example.
- FIG. 7 shows a stimulus signal and the resulting measured RSNA action potential, consistent with an example.
- FIG. 8 shows destruction of the renal sympathetic nerves and the resulting effects on RSNA signals measured as a result of an applied stimulus signal, consistent with an example.
- FIG. 9 is a flowchart illustrating a method of using an intraluminal microneurography probe to treat a medical condition, consistent with an example.
- Regulating operation of the nervous system to characterize and improve organ function includes in some examples introduction of a probe such as a needle, catheter, wire, or the like into the body to a specified anatomical location, and partially destroying or ablating nerves using the probe to destroy nerve tissue in the region near the probe. By reducing nerve function in the selected location, an abnormally functioning physiological process can often be regulated back into a normal range.
- renal nerve ablation to relieve hypertension.
- Various studies have confirmed that improper renal sympathetic nerve function has been associated with hypertension, and that ablation of the nerve can improve renal function and reduce hypertension.
- a catheter is introduced into a hypertensive patient's arterial vascular system and advanced into the renal artery. Renal nerves located in the arterial wall and in regions adjacent to the artery are ablated by destructive means such as radio frequency waves, ultrasound, laser or chemical agents to limit the renal sympathetic nerve activity, thereby reducing hypertension in the patient.
- renal nerve ablation procedures are often ineffective, such as due to either insufficiently ablating the nerve or destroying more nerve tissue than is desired.
- Clinicians often estimate based on provided guideline estimates or past experience the degree to which application of a particular ablative method will reduce nerve activity, and it can take a significant period of recovery time (3-12 months) before the effects of the ablation procedure are fully known.
- Prior methods such as inserting electrodes into the arteries of a patient's heart and analyzing received electrical signals are not readily adaptable to renal procedures, as arteries in the heart are generally large and more readily accommodate probes for performing such measurements. Further, the cardiac electrical signals emitted from the heart are generally large and slow-moving relative to electrical signals near the renal arteries, which tend to be smaller in size and produce smaller signals that propagate more quickly through the nerves. As such, intravascular techniques used in heart measurements are readily adaptable to similar renal processes.
- the probe includes a sense electrode and a stimulation electrode that are expandable from a body of the probe, which can be introduced via a sheath.
- the sheath in a further embodiment comprises one or more electrodes, such as one or more sense electrode reference or ground electrodes.
- FIG. 1 illustrates an example of such a probe.
- a probe assembly is shown generally at 100 , including probe body 102 , and first and second helical electrodes 104 and 106 .
- Each of the helical electrodes is attached to the probe body at one end, shown here as an attachment point 108 , such as an epoxy bead or other suitable attachment mechanism.
- the opposite end of each of the helical electrodes is constrained in the example shown, such as by emerging through a hole in the probe as shown by helical electrode 106 , and extends from the left end of the probe assembly to connect to electronic instrumentation to perform various functions.
- the configuration of the helical electrode wires is such that the wires will expand about the axis of the probe body 102 when the wire of each helical electrode is forced toward the attachment points 108 , causing the wire to form a circular shape having a diameter substantially larger than the helical electrode wires in the collapsed position, as shown at 100 .
- the probe assembly is shown again at 110 , here with the helical electrode wires 104 and 106 forced toward the attachment points 108 , causing the wire to expand away from the probe body 102 .
- This helical expansion allows the helical electrodes to expand in an environment such as an artery such as to contact the artery walls while allowing blood to flow around the probe body 102 and past the helical electrodes 104 and 106 .
- FIG. 2 Another example of a probe configured to characterize nerve activity near an organ such as a kidney while permitting blood flow around the probe is shown in FIG. 2 .
- a probe body is shown at 202 , having mesh electrodes 204 and 206 affixed thereto at attachment points 208 .
- the mesh electrodes are substantially similar to the helical wire electrodes of FIG. 1 , except that several such electrodes are interwoven to form a mesh that is closely wrapped around the probe body 202 .
- each mesh electrode also has a sliding collar element 209 located at the end of the mesh electrode opposite attachment point 208 .
- This sliding collar 209 when moved toward the attachment point 208 causes the mesh to expand around the probe body 202 , as shown generally at 210 .
- the expanded mesh electrodes 204 and 206 are configured to provide electrical contact, such as with an artery wall, in a diameter significantly larger than the diameter of the probe body 202 . This enables insertion of the probe body into an artery, and expansion of the electrodes 204 and 206 to contact the artery walls, without blocking blood flow through the artery.
- FIGS. 1 and 2 show two probe configurations that can achieve such functions, probe configurations other than those shown here may also be configured to achieve these or similar functions.
- FIG. 3 illustrates one example of use of such a probe, in which a probe 302 such as that shown in FIG. 1 or FIG. 2 is introduced into a blood vessel, such as an artery 304 , in a location near a body organ such as kidney 306 .
- the probe is introduced via a sheath in some examples, such as where a sheath is advanced to the intended probe location in the artery, and then withdrawn sufficiently to expose the probe 302 to the artery 304 .
- the probe 302 here comprises a stimulation electrode such as electrodes 104 and 204 of FIGS. 1 and 2 , and a sense electrode such as electrodes 106 and 206 of the same Figures.
- the electrodes When deployed, the electrodes are expanded as shown at 308 , such that they are near or touch the walls of the artery 304 .
- the electrodes are thereby located nearer the nerve bundle 310 connecting the kidney to the central nervous system, as the nerve bundle tends to approximately follow the artery leading to most body organs.
- the nerve bundle tends to follow the artery more closely at the end of the artery closer to the kidney, while spreading somewhat as the artery expands away from the kidney.
- the probe is small enough to introduce relatively near the kidney or other organ, as nerve proximity to the artery is likely to be higher nearer the organ.
- an ablation element 308 is configured to ablate nerve tissue, such as by using radio frequency, ultrasound, or other energy, such that the probe can actively stimulate the nerve and sense resulting neural signals in between applications of energy via the ablation element 308 , enabling more accurate control of the degree and effects of nerve ablation.
- a probe 302 lacking an ablation element can be remove via the sheath, and an ablation probe inserted, with the ablation probe removed and the probe 302 reinserted to verify and characterize the effects of the ablation probe.
- FIG. 4 shows an intraluminal microneurography probe and sheath assembly coupled to associated instrumentation, consistent with an example.
- a probe body 402 has an expandable sense electrode 404 and an expandable stimulation electrode 406 , couple via wires to instrumentation.
- a sheath 408 is used to introduce the probe into an artery or other biological lumen or suitable location, and to carry instrumentation wires and mechanical connections used to manipulate the expandable electrodes.
- the electrodes are not shown here running through the sheath, but are instead shown as schematic links between the electrodes and various instrumentation circuitry for clarity.
- the expandable sense electrode 404 is coupled to a sense circuit, such as a differential amplifier as shown at 410 , with the other input to the sense amplifier circuit coupled to a ground electrode such as local ground electrode 412 coupled to the sheath 408 .
- a ground electrode such as local ground electrode 412 coupled to the sheath 408 .
- local ground electrode is located elsewhere, such as on the probe body 404 .
- the expandable stimulation electrode 406 is similarly coupled to a stimulation circuit 414 that is operable to provide a stimulation voltage or current signal of a desired pulse shape, intensity, and duration to the expandable stimulation electrode 406 , with reference to body ground.
- Body ground is established in this example by a body ground electrode 416 , which is here also shown as coupled to the sheath 408 , but which in other embodiments will take other forms such as an electrode coupled to the body's skin.
- the body ground electrode 416 is further coupled to the local ground electrode 412 by use of a low-pass filter, having a frequency response or time constant selected such that the local ground electrode does not drift significantly from the body ground level but retains the ability to accurately detect and characterize local nerve impulses.
- the electrodes in this example comprise electrical wires that are significantly smaller than are used in other applications such as cardiac probes, in part because the pulse duration in the nerve bundle leading to most body organs is typically much shorter than a cardiac muscle excitation signal.
- the sense electrode 404 therefore comprises a wire or mesh of wires having a diameter of 8-10 thousandths of an inch, while in other examples the wire diameter is 5-10 thousandths, 5-15 thousandths, or any size under 15, 10, 8, or 5 thousandths of an inch.
- the sense electrode is thereby configured to accurately detect a typical nerve action potential of 2 milliseconds traveling at a meter per second without smearing or distorting the measured pulse due to an overly large electrode.
- the stimulation electrode in various examples comprises a wire or mesh of wires having any of the above sizes, but in another example, it is desired that the stimulation electrode 406 be substantially larger than the sense electrode 404 to avoid hyperpolarization of the nerve in the region of the electrode during stimulation.
- Wire size of electrodes such as the sense electrode 404 is selected in further examples based on a typical nerve conduction velocity range of 0.4-2 meters/second, with nerve impulses ranging from 1-3 milliseconds. Also, the sense electrode 404 and stimulation electrode 406 are desirably placed a sufficient distance apart, such as 3 centimeters, to accurately detect a typical nerve action potential of 2 milliseconds without interference from the stimulation electrode.
- the size of organ arteries such as the renal artery are typically in the range of 5 millimeters in diameter, it is desired to have a probe body that is a fraction of this size, such as having a diameter of 2.5 mm, 2 mm, 1 mm, or similar. This enables introduction of the probe without interfering with blood flow through the artery, such that the expandable electrodes can still expand to the artery walls without further significantly impeding blood flow.
- An intraluminal microneurographic probe such as those shown in FIGS. 1-4 can therefore be introduced into an artery via a sheath, and used to monitor nerve activity during normal operation of an organ. This enables characterization of nerve activity in the organ, such as to diagnose or treat a variety of conditions.
- a probe is used for characterization of overactive nerves reaching the kidney in patients suffering from hypertension, and to monitor ablation of the nerves to a point where nerve activity is in the desired range as measured using the probe.
- the probe may be used while other actions are performed, such as to monitor nerve activity to a patient's prostate while surgery or other methods remove material to treat prostate cancer or enlarged prostate problems. Because it is desirable that significant nerve connection to the prostate be preserved during such procedures, a probe such as those presented here can be used to minimize the chances of nerve damage that may affect normal function of the prostate.
- a probe such as those shown here can also be used to diagnose various organ dysfunctions, such as where an organ overreacts to nerve impulses or overstimulates the nerve in response to organ activity.
- the probe is here described in some examples as an intraluminal probe, meaning the probe may be introduced into various lumina or pathways in the body, such as arteries, veins, the gastrointestinal tract, pathways of bronchii in the lungs, pathways of the genitourinary tract, and other such pathways.
- the probe is neurographic in the sense that it enables characterization, such as measurement, recording, and visualization of neurologic activity in the vicinity of the probe. Because the autonomic nervous system regulates a wide variety of functions within the body, including circulation, digestion, metabolism, respiration, reproduction, etc.
- an intraluminal neurographic probe such as those described here can be used to measure or characterize the regulation of many of these functions by introducing the probe into the blood vessels near the organ of interest.
- FIG. 3 illustrates ablation of nerves near the kidney to regulate kidney function in treating hypertension
- nerves regulating liver function accompany the hepatic artery and the portal vein
- nerves regulating the stomach accompany the gastroduodenal arteries
- nerves from the superior mesenteric plexus accompany the superior mesenteric artery and branch to the pancreas
- small intestine and large intestine and nerves of the inferior mesenteric plexus accompany the inferior mesenteric artery and branch to the large intestine, colon and rectum.
- These examples illustrate other organs that can be characterized and regulated using probes and techniques such as those described herein.
- renal sympathetic nerves have been identified as a major contributor to the complex pathophysiology of hypertension. Patients with hypertension generally have increased sympathetic drive to the kidneys, as evidenced by elevated rates of the renal norepinephrine “spillover.” It is therefore believed that ablating renal sympathetic nerve function with sufficient energy will cause a reduction in both systolic and diastolic blood pressure, relieving hypertension in the patient.
- a clinician can measure nerve activity such as renal sympathetic nerve activity (RSNA) by emitting an electrical pulse through stimulation electrodes in the probe, and recording propagation along renal sympathetic nerve fibers using the sense electrode or electrodes on the probe. The clinician can then compare RSNA pre- and post-denervation to determine the degree of nerve ablation incurred, thereby more accurately achieving the desired degree of nerve ablation during treatment of the patient. More specifically, a clinician can apply an electrical stimulus to a site in the proximal renal artery, and then monitor or record the nerve activity between the stimulus site and the kidney, thereby measuring the resultant downstream action potential in the nerve. Nerve ablation is then performed, and the stimulus and measurement of the nerve is repeated to verify a reduced or eliminated evoked potential detected in the nerve as a result of stimulation via the probe's electrodes.
- RSNA renal sympathetic nerve activity
- the probe system described in the examples here can therefore provide real-time feedback on functionality of renal sympathetic nerves, providing integrated evaluation of all nerve fibers surrounding a renal artery, at the artery proximal, distal, and renal branch locations.
- the probe is easily deployed via catheter-based delivery, and can be used as a standalone product or integrated with an ablation element.
- the probe system's low hardware and software costs and easy learning curve for clinical users make the probe system well-adapted for widespread adoption for treatment of nerve conditions such as those described herein.
- probes such as those described herein were used to verify renal nerve health by measuring spontaneous renal sympathetic nerve activity (RSNA) using intraluminal microneurography, demonstrating that such probes cause effective stimulation and recording of RSNA.
- RSNA spontaneous renal sympathetic nerve activity
- stimulus-elicited response established a baseline recording of RSNA, and the circumferential section of renal nerve fibers were damaged using a scalpel. Remeasuring the stimulus-elicited response and comparing the response to the established baseline recording of RSNA confirmed that spontaneous sympathetic renal nerve activity had been reduced.
- FIG. 5 shows spontaneous nerve activity, measured from the wall of the renal artery of an explanted kidney.
- the measurements are taken using needles placed in the wall of the renal artery, using relatively invasive microneurography techniques.
- FIG. 6 shows spontaneous nerve activity in the wall of the renal artery of an explanted kidney, using an intraluminal microneurography probe.
- the peak signal levels are somewhat reduced relative to the method of FIG. 5 , but accurate detection, measurement, and recording of spontaneous RSNA signals is shown to be achieved.
- a stimulus signal (top) and the resulting measured RSNA action potential are shown.
- the renal nerve RSNA action potential is measured using needles in the artery wall, using a stimulus time of approximately 1.3 milliseconds, configured to avoid overlapping the stimulus and response signals based on the expected conduction velocity and the selected stimulus and sense electrode spacing.
- FIG. 8 Destruction of the renal sympathetic nerves, and the resulting effects on RSNA signals measured as a result of an applied stimulus signal, are shown in FIG. 8 .
- ten sets of data are overlaid to generate a graph representative of typical levels and distribution of RSNA response to a stimulus signal as varying degrees of arterial transection.
- the evoked RSNA baseline measurements taken prior to cutting across the artery are taken as a reference.
- the artery is 50% transected, resulting in significant reduction in observed RSNA response, and at 806 , the artery is 100% transected, and little to no RSNA response is observed.
- transection of the renal arteries was used to destroy renal neural pathways because rat renal arteries are too small for effective radio frequency ablation.
- FIG. 9 is a flowchart illustrating a method of using an intraluminal microneurography probe to treat a medical condition, consistent with an example.
- a method of treating a medical condition involves using probe to excite and measure nerve activity near an organ, and selectively ablating nerve tissue near the probe until the desired nerve activity in response to the excitation is observed.
- a sheath carrying the probe into the artery is inserted at 902 , and is advanced to a location in the artery near a body organ that is the subject of the medical condition and treatment, such as treating a kidney's neural sympathetic response to treat hypertension.
- the sheath is withdrawn slightly at 904 , exposing at least part of the probe including an expandable sense electrode and an expandable stimulation electrode to the artery.
- the expandable stimulation and sense electrodes are expanded, such that the electrodes contact the arterial wall while permitting blood flow around the probe and the electrodes. At this point, the probe is properly deployed and ready to perform measurement.
- the expandable stimulation electrode is excited at 908 , inducing an electrical signal into the nerves adjacent to the arterial wall.
- the nerves propagate the signal from the stimulation electrode, which can be observed at 910 as sympathetic nerve activity as a result of exciting the stimulation electrode.
- the observed sympathetic nerve activity can then be measured, characterized, stored, viewed, etc., to determine whether the sympathetic nerve activity exceeds a desired level at 912 . If a desired level of sympathetic nerve activity is exceeded, nerves proximate the probe are ablated at 914 , such as using an ablation element comprising a part of the probe located between the sense electrode and the stimulation electrode. Steps 908 - 912 are then repeated, until the sympathetic nerve activity is determined not to exceed the desired level at 912 . At that point, the measurement and nerve ablation is complete, and the probe and sheath can be withdrawn at 916 .
- probe system such as those illustrated here can also be used to monitor organ activity, pain, or other nervous system indicia. For example, pain can be monitored during surgery in some applications, or nerve activity can be measured while externally stimulating an organ.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Otolaryngology (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Plasma & Fusion (AREA)
- Urology & Nephrology (AREA)
- Electromagnetism (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Radiology & Medical Imaging (AREA)
- Neurosurgery (AREA)
- Vascular Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Surgical Instruments (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 62/192,340 filed Jul. 14, 2015, the contents of which are herein incorporated by reference.
- The invention relates generally to neural measurement, and more specifically to an intraluminal microneurography probe.
- The human body's nervous system includes both the somatic nervous system that provides sense of the environment (vision, skin sensation, etc.) and regulation of the skeletal muscles, and is largely under voluntary control, and the autonomic nervous system, which serves mainly to regulate the activity of the internal organs and adapt them to the body's current needs, and which is largely not under voluntary control. The autonomic nervous system involves both afferent or sensory nerve fibers that can mechanically and chemically sense the state of an organ, and efferent fibers that convey the central nervous system's response (sometimes called a reflex arc) to the sensed state information. In some cases, the somatic nervous system is also influenced, such as to cause vomiting or coughing in response to a sensed condition.
- Regulation of the human body's organs can therefore be somewhat characterized and controlled by monitoring and affecting the nerve reflex arc that causes organ activity. For example, the renal nerves leading to the kindey can often cause a greater reflexive reaction than desired, contributing significantly to hypertension. Measurement of the nerve activity near the kidney, and subsequent ablation of some (but not all) of the nerve can therefore be used to control the nervous system's overstimulation of the kindey, improving operation of the kidney and the body as a whole.
- Because proper operation of the nervous system is therefore an important part of proper organ function, it is desired to be able to monitor and change nervous system function in the human body to characterize and correct nervous system regulation of internal human organs.
- One example embodiment of the invention comprises an intraluminal microneurography probe, having a probe body that is substantially cylindrical and that is configured to be introduced into an artery near an organ of a body without preventing the flow of blood through the artery. An expandable sense electrode is fixed to the probe body at one end of the sense electrode and is movable relative to the probe body at a second end of the sense electrode such that movement of the movable end toward the fixed end causes the sense electrode to expand from the probe body toward a wall of the artery, and an expandable stimulation electrode is fixed to the probe body at one end of the stimulation electrode and movable relative to the probe body at a second end of the stimulation electrode such that movement of the movable end toward the fixed end causes the sense electrode to expand from the probe body toward a wall of the artery. A ground electrode configured to couple to the body, and a plurality of electrical connections are operable to electrically couple at least the expandable sense electrode, expandable stimulation electrode, and ground electrode to electrical circuitry.
- In further examples, the sense electrode wire is equal to or smaller than 10 thousandths of an inch in a direction of nerve propagation, and at least one of the expandable sense electrode and the expandable stimulation electrode comprises an expandable mesh or an expandable wire helix. In another example, the diameter of the probe body is 2 mm or less, such that blood flow is not blocked by introduction of the probe into the artery.
- In another example nerve activity associated with a body organ is characterized by introduction of a probe into artery to a location proximate to the body organ, and expansion of an expandable sense electrode and an expandable stimulation electrode comprising a part of the probe to contact the artery wall while permitting blood flow around the expanded sense and stimulation electrodes. An electricity source coupled to the stimulation electrode is used to excite the stimulation electrode, and the expanded sense electrode is used to measure sympathetic nerve activity as a result of exciting the stimulation electrode.
- In a further example, ablation of nerves in the vicinity of the location proximate to the body organ is performed such as via an ablation element comprising a part of the probe, and re-excitation of the stimulation electrode using an electricity source coupled to the stimulation electrode, and re-measurement of sympathetic nerve activity as a result of exciting the stimulation electrode using the expanded sense electrode are performed to confirm the effects of the ablation
- The details of one or more examples of the invention are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.
-
FIG. 1 illustrates an intraluminal microneurography probe having expandable helical wire electrodes, consistent with an example. -
FIG. 2 illustrates an intraluminal microneurography probe having expandable wire mesh electrodes, consistent with an example. -
FIG. 3 shows introduction of an intraluminal microneurography probe into an artery in a location near a kidney, consistent with an example. -
FIG. 4 shows an intraluminal microneurography probe and sheath assembly coupled to associated instrumentation, consistent with an example. -
FIG. 5 shows spontaneous nerve activity, measured from the wall of the renal artery of an explanted kidney, consistent with an example. -
FIG. 6 shows spontaneous nerve activity in the wall of the renal artery of an explanted kidney using an intraluminal microneurography probe, consistent with an example. -
FIG. 7 , shows a stimulus signal and the resulting measured RSNA action potential, consistent with an example. -
FIG. 8 shows destruction of the renal sympathetic nerves and the resulting effects on RSNA signals measured as a result of an applied stimulus signal, consistent with an example. -
FIG. 9 is a flowchart illustrating a method of using an intraluminal microneurography probe to treat a medical condition, consistent with an example. - In the following detailed description of example embodiments, reference is made to specific example embodiments by way of drawings and illustrations. These examples are described in sufficient detail to enable those skilled in the art to practice what is described, and serve to illustrate how elements of these examples may be applied to various purposes or embodiments. Other embodiments exist, and logical, mechanical, electrical, and other changes may be made. Features or limitations of various embodiments described herein, however important to the example embodiments in which they are incorporated, do not limit other embodiments, and any reference to the elements, operation, and application of the examples serve only to define these example embodiments. Features or elements shown in various examples described herein can be combined in ways other than shown in the examples, and any such combination is explicitly contemplated to be within the scope of the examples presented here. The following detailed description does not, therefore, limit the scope of what is claimed.
- Regulating operation of the nervous system to characterize and improve organ function includes in some examples introduction of a probe such as a needle, catheter, wire, or the like into the body to a specified anatomical location, and partially destroying or ablating nerves using the probe to destroy nerve tissue in the region near the probe. By reducing nerve function in the selected location, an abnormally functioning physiological process can often be regulated back into a normal range.
- Unfortunately, it is typically very difficult to estimate the degree to which nerve activity has been reduced, which makes it difficult to perform a procedure where it is desired to ablate some, but not all, nerves to bring the nervous system response back into a desired range without destroying the nervous system response entirely.
- One such example is renal nerve ablation to relieve hypertension. Various studies have confirmed that improper renal sympathetic nerve function has been associated with hypertension, and that ablation of the nerve can improve renal function and reduce hypertension. In a typical procedure, a catheter is introduced into a hypertensive patient's arterial vascular system and advanced into the renal artery. Renal nerves located in the arterial wall and in regions adjacent to the artery are ablated by destructive means such as radio frequency waves, ultrasound, laser or chemical agents to limit the renal sympathetic nerve activity, thereby reducing hypertension in the patient.
- Unfortunately, renal nerve ablation procedures are often ineffective, such as due to either insufficiently ablating the nerve or destroying more nerve tissue than is desired. Clinicians often estimate based on provided guideline estimates or past experience the degree to which application of a particular ablative method will reduce nerve activity, and it can take a significant period of recovery time (3-12 months) before the effects of the ablation procedure are fully known.
- Some attempt has been made to monitor nerve activity in such procedures by inserting very small electrodes into or adjacent to the nerve body, which are then used to electrically monitor the nerve activity. Such microneurography practices are not practical in the case of renal ablation because the renal artery and nerves are located within the abdomen and cannot be readily accessed, making monitoring and characterization of nerve activity in a renal nerve ablation procedure a challenge.
- Prior methods such as inserting electrodes into the arteries of a patient's heart and analyzing received electrical signals are not readily adaptable to renal procedures, as arteries in the heart are generally large and more readily accommodate probes for performing such measurements. Further, the cardiac electrical signals emitted from the heart are generally large and slow-moving relative to electrical signals near the renal arteries, which tend to be smaller in size and produce smaller signals that propagate more quickly through the nerves. As such, intravascular techniques used in heart measurements are readily adaptable to similar renal processes.
- Because nerve activity during organ procedures such as renal nerve ablation cannot be readily measured, it is also difficult to ensure that an ablation probe is located at the most appropriate sites along the renal artery, or to measure the efficiency of the nerve ablation process in a particular patient.
- Some examples presented herein therefore provide an improved probe and method for characterizing nerve activity near an organ such as a kidney, including electrodes configured specifically to measure nerve activity in an environment different from the heart while permitting blood flow around the probe. In a more detailed example, the probe includes a sense electrode and a stimulation electrode that are expandable from a body of the probe, which can be introduced via a sheath. The sheath in a further embodiment comprises one or more electrodes, such as one or more sense electrode reference or ground electrodes.
-
FIG. 1 illustrates an example of such a probe. Here, a probe assembly is shown generally at 100, includingprobe body 102, and first and second 104 and 106. Each of the helical electrodes is attached to the probe body at one end, shown here as anhelical electrodes attachment point 108, such as an epoxy bead or other suitable attachment mechanism. The opposite end of each of the helical electrodes is constrained in the example shown, such as by emerging through a hole in the probe as shown byhelical electrode 106, and extends from the left end of the probe assembly to connect to electronic instrumentation to perform various functions. The configuration of the helical electrode wires is such that the wires will expand about the axis of theprobe body 102 when the wire of each helical electrode is forced toward theattachment points 108, causing the wire to form a circular shape having a diameter substantially larger than the helical electrode wires in the collapsed position, as shown at 100. - The probe assembly is shown again at 110, here with the
104 and 106 forced toward thehelical electrode wires attachment points 108, causing the wire to expand away from theprobe body 102. This helical expansion allows the helical electrodes to expand in an environment such as an artery such as to contact the artery walls while allowing blood to flow around theprobe body 102 and past the 104 and 106.helical electrodes - Another example of a probe configured to characterize nerve activity near an organ such as a kidney while permitting blood flow around the probe is shown in
FIG. 2 . Here, a probe body is shown at 202, having 204 and 206 affixed thereto at attachment points 208. The mesh electrodes are substantially similar to the helical wire electrodes ofmesh electrodes FIG. 1 , except that several such electrodes are interwoven to form a mesh that is closely wrapped around theprobe body 202. In this example, each mesh electrode also has a slidingcollar element 209 located at the end of the mesh electrodeopposite attachment point 208. - This sliding
collar 209 when moved toward theattachment point 208 causes the mesh to expand around theprobe body 202, as shown generally at 210. Here, the expanded 204 and 206 are configured to provide electrical contact, such as with an artery wall, in a diameter significantly larger than the diameter of themesh electrodes probe body 202. This enables insertion of the probe body into an artery, and expansion of the 204 and 206 to contact the artery walls, without blocking blood flow through the artery. Although the examples ofelectrodes FIGS. 1 and 2 show two probe configurations that can achieve such functions, probe configurations other than those shown here may also be configured to achieve these or similar functions. -
FIG. 3 illustrates one example of use of such a probe, in which aprobe 302 such as that shown inFIG. 1 orFIG. 2 is introduced into a blood vessel, such as anartery 304, in a location near a body organ such askidney 306. The probe is introduced via a sheath in some examples, such as where a sheath is advanced to the intended probe location in the artery, and then withdrawn sufficiently to expose theprobe 302 to theartery 304. Theprobe 302 here comprises a stimulation electrode such as 104 and 204 ofelectrodes FIGS. 1 and 2 , and a sense electrode such as 106 and 206 of the same Figures.electrodes - When deployed, the electrodes are expanded as shown at 308, such that they are near or touch the walls of the
artery 304. The electrodes are thereby located nearer thenerve bundle 310 connecting the kidney to the central nervous system, as the nerve bundle tends to approximately follow the artery leading to most body organs. As shown at 310, the nerve bundle tends to follow the artery more closely at the end of the artery closer to the kidney, while spreading somewhat as the artery expands away from the kidney. As a result, it is desired in some examples that the probe is small enough to introduce relatively near the kidney or other organ, as nerve proximity to the artery is likely to be higher nearer the organ. - When in place, a practitioner can use instrumentation coupled to the sense electrode and stimulation electrode to stimulate the nerve, and monitor for nerve response signals used to characterize the nervous system response to certain stimulus. In a further example, an
ablation element 308 is configured to ablate nerve tissue, such as by using radio frequency, ultrasound, or other energy, such that the probe can actively stimulate the nerve and sense resulting neural signals in between applications of energy via theablation element 308, enabling more accurate control of the degree and effects of nerve ablation. In other examples, aprobe 302 lacking an ablation element can be remove via the sheath, and an ablation probe inserted, with the ablation probe removed and theprobe 302 reinserted to verify and characterize the effects of the ablation probe. -
FIG. 4 shows an intraluminal microneurography probe and sheath assembly coupled to associated instrumentation, consistent with an example. Here, aprobe body 402 has anexpandable sense electrode 404 and anexpandable stimulation electrode 406, couple via wires to instrumentation. Asheath 408 is used to introduce the probe into an artery or other biological lumen or suitable location, and to carry instrumentation wires and mechanical connections used to manipulate the expandable electrodes. The electrodes are not shown here running through the sheath, but are instead shown as schematic links between the electrodes and various instrumentation circuitry for clarity. - In this example, the
expandable sense electrode 404 is coupled to a sense circuit, such as a differential amplifier as shown at 410, with the other input to the sense amplifier circuit coupled to a ground electrode such aslocal ground electrode 412 coupled to thesheath 408. In another example, local ground electrode is located elsewhere, such as on theprobe body 404. Theexpandable stimulation electrode 406 is similarly coupled to astimulation circuit 414 that is operable to provide a stimulation voltage or current signal of a desired pulse shape, intensity, and duration to theexpandable stimulation electrode 406, with reference to body ground. Body ground is established in this example by abody ground electrode 416, which is here also shown as coupled to thesheath 408, but which in other embodiments will take other forms such as an electrode coupled to the body's skin. Here, thebody ground electrode 416 is further coupled to thelocal ground electrode 412 by use of a low-pass filter, having a frequency response or time constant selected such that the local ground electrode does not drift significantly from the body ground level but retains the ability to accurately detect and characterize local nerve impulses. - The electrodes in this example comprise electrical wires that are significantly smaller than are used in other applications such as cardiac probes, in part because the pulse duration in the nerve bundle leading to most body organs is typically much shorter than a cardiac muscle excitation signal. In one embodiment, the
sense electrode 404 therefore comprises a wire or mesh of wires having a diameter of 8-10 thousandths of an inch, while in other examples the wire diameter is 5-10 thousandths, 5-15 thousandths, or any size under 15, 10, 8, or 5 thousandths of an inch. The sense electrode is thereby configured to accurately detect a typical nerve action potential of 2 milliseconds traveling at a meter per second without smearing or distorting the measured pulse due to an overly large electrode. - The stimulation electrode in various examples comprises a wire or mesh of wires having any of the above sizes, but in another example, it is desired that the
stimulation electrode 406 be substantially larger than thesense electrode 404 to avoid hyperpolarization of the nerve in the region of the electrode during stimulation. - Wire size of electrodes such as the
sense electrode 404 is selected in further examples based on a typical nerve conduction velocity range of 0.4-2 meters/second, with nerve impulses ranging from 1-3 milliseconds. Also, thesense electrode 404 andstimulation electrode 406 are desirably placed a sufficient distance apart, such as 3 centimeters, to accurately detect a typical nerve action potential of 2 milliseconds without interference from the stimulation electrode. - Because the size of organ arteries such as the renal artery are typically in the range of 5 millimeters in diameter, it is desired to have a probe body that is a fraction of this size, such as having a diameter of 2.5 mm, 2 mm, 1 mm, or similar. This enables introduction of the probe without interfering with blood flow through the artery, such that the expandable electrodes can still expand to the artery walls without further significantly impeding blood flow.
- An intraluminal microneurographic probe such as those shown in
FIGS. 1-4 can therefore be introduced into an artery via a sheath, and used to monitor nerve activity during normal operation of an organ. This enables characterization of nerve activity in the organ, such as to diagnose or treat a variety of conditions. In one such example, a probe is used for characterization of overactive nerves reaching the kidney in patients suffering from hypertension, and to monitor ablation of the nerves to a point where nerve activity is in the desired range as measured using the probe. In other examples, the probe may be used while other actions are performed, such as to monitor nerve activity to a patient's prostate while surgery or other methods remove material to treat prostate cancer or enlarged prostate problems. Because it is desirable that significant nerve connection to the prostate be preserved during such procedures, a probe such as those presented here can be used to minimize the chances of nerve damage that may affect normal function of the prostate. - A probe such as those shown here can also be used to diagnose various organ dysfunctions, such as where an organ overreacts to nerve impulses or overstimulates the nerve in response to organ activity. The probe is here described in some examples as an intraluminal probe, meaning the probe may be introduced into various lumina or pathways in the body, such as arteries, veins, the gastrointestinal tract, pathways of bronchii in the lungs, pathways of the genitourinary tract, and other such pathways. The probe is neurographic in the sense that it enables characterization, such as measurement, recording, and visualization of neurologic activity in the vicinity of the probe. Because the autonomic nervous system regulates a wide variety of functions within the body, including circulation, digestion, metabolism, respiration, reproduction, etc. by a network of parasympathetic and sympathetic nerves that typically accompany the blood vessels supplying blood to the organs they regulate, an intraluminal neurographic probe such as those described here can be used to measure or characterize the regulation of many of these functions by introducing the probe into the blood vessels near the organ of interest.
- Although the example of
FIG. 3 illustrates ablation of nerves near the kidney to regulate kidney function in treating hypertension, nerves regulating liver function accompany the hepatic artery and the portal vein, nerves regulating the stomach accompany the gastroduodenal arteries, nerves from the superior mesenteric plexus accompany the superior mesenteric artery and branch to the pancreas, small intestine and large intestine, and nerves of the inferior mesenteric plexus accompany the inferior mesenteric artery and branch to the large intestine, colon and rectum. These examples illustrate other organs that can be characterized and regulated using probes and techniques such as those described herein. - In treating kidney function, it is significant that renal sympathetic nerves have been identified as a major contributor to the complex pathophysiology of hypertension. Patients with hypertension generally have increased sympathetic drive to the kidneys, as evidenced by elevated rates of the renal norepinephrine “spillover.” It is therefore believed that ablating renal sympathetic nerve function with sufficient energy will cause a reduction in both systolic and diastolic blood pressure, relieving hypertension in the patient.
- Studies have shown that most nerves surrounding the renal arteries are within two millimeters of the renal artery, with nerves clustered more closely around the artery near the kidney, making measurement and treatment of the nerves from the renal artery practical. But, as complete destruction or ablation of the nerves is likely not desirable, monitoring nerve activity during or between nerve ablations, such as via the probes described herein, is an important tool in characterizing and regulating the degree to which nerve activity has been reduced. Before introduction of probes such as those described here, clinicians were unable to readily determine extent of renal sympathetic nerve modification during a procedure in a clinically relevant timeframe, and could not measure durability of nerve damage during follow-up period after denervation. Now, with probes such as those described herein available, a clinician can take such measurements, and can to assess health of renal sympathetic nerves pre-procedurally to select or screen patients for denervation.
- In operation, a clinician can measure nerve activity such as renal sympathetic nerve activity (RSNA) by emitting an electrical pulse through stimulation electrodes in the probe, and recording propagation along renal sympathetic nerve fibers using the sense electrode or electrodes on the probe. The clinician can then compare RSNA pre- and post-denervation to determine the degree of nerve ablation incurred, thereby more accurately achieving the desired degree of nerve ablation during treatment of the patient. More specifically, a clinician can apply an electrical stimulus to a site in the proximal renal artery, and then monitor or record the nerve activity between the stimulus site and the kidney, thereby measuring the resultant downstream action potential in the nerve. Nerve ablation is then performed, and the stimulus and measurement of the nerve is repeated to verify a reduced or eliminated evoked potential detected in the nerve as a result of stimulation via the probe's electrodes.
- The probe system described in the examples here can therefore provide real-time feedback on functionality of renal sympathetic nerves, providing integrated evaluation of all nerve fibers surrounding a renal artery, at the artery proximal, distal, and renal branch locations. The probe is easily deployed via catheter-based delivery, and can be used as a standalone product or integrated with an ablation element. The probe system's low hardware and software costs and easy learning curve for clinical users make the probe system well-adapted for widespread adoption for treatment of nerve conditions such as those described herein.
- A variety of experiments have been conducted to verify operation of probes such as those described herein, including using an isolated canine/porcine kidney and the associated vasculature to conduct certain tests. In one such test, probes such as those of
FIGS. 1-4 were used to verify renal nerve health by measuring spontaneous renal sympathetic nerve activity (RSNA) using intraluminal microneurography, demonstrating that such probes cause effective stimulation and recording of RSNA. In the tests, stimulus-elicited response established a baseline recording of RSNA, and the circumferential section of renal nerve fibers were damaged using a scalpel. Remeasuring the stimulus-elicited response and comparing the response to the established baseline recording of RSNA confirmed that spontaneous sympathetic renal nerve activity had been reduced. -
FIG. 5 shows spontaneous nerve activity, measured from the wall of the renal artery of an explanted kidney. Here, the measurements are taken using needles placed in the wall of the renal artery, using relatively invasive microneurography techniques. -
FIG. 6 shows spontaneous nerve activity in the wall of the renal artery of an explanted kidney, using an intraluminal microneurography probe. Here, the peak signal levels are somewhat reduced relative to the method ofFIG. 5 , but accurate detection, measurement, and recording of spontaneous RSNA signals is shown to be achieved. - In
FIG. 7 , a stimulus signal (top) and the resulting measured RSNA action potential are shown. Here, the renal nerve RSNA action potential is measured using needles in the artery wall, using a stimulus time of approximately 1.3 milliseconds, configured to avoid overlapping the stimulus and response signals based on the expected conduction velocity and the selected stimulus and sense electrode spacing. - Subsequent testing on live animals also proved successful, with a series of experiments conducted in a live rat model to confirm detection of renal sympathetic nerve activity (RSNA) in a living animal with competing signals from cardiac electrical activity and respiratory movement. Excellent results were achieve using probes having configurations such as those described herein, based on an experimental procedure in which an evoked RSNA baseline was determined in the intact renal artery, and RSNA was measured as the renal artery was transected.
- Destruction of the renal sympathetic nerves, and the resulting effects on RSNA signals measured as a result of an applied stimulus signal, are shown in
FIG. 8 . Here, ten sets of data are overlaid to generate a graph representative of typical levels and distribution of RSNA response to a stimulus signal as varying degrees of arterial transection. At 802, the evoked RSNA baseline measurements taken prior to cutting across the artery are taken as a reference. At 804, the artery is 50% transected, resulting in significant reduction in observed RSNA response, and at 806, the artery is 100% transected, and little to no RSNA response is observed. In this example, transection of the renal arteries was used to destroy renal neural pathways because rat renal arteries are too small for effective radio frequency ablation. -
FIG. 9 is a flowchart illustrating a method of using an intraluminal microneurography probe to treat a medical condition, consistent with an example. As shown generally at 900, a method of treating a medical condition involves using probe to excite and measure nerve activity near an organ, and selectively ablating nerve tissue near the probe until the desired nerve activity in response to the excitation is observed. - A sheath carrying the probe into the artery is inserted at 902, and is advanced to a location in the artery near a body organ that is the subject of the medical condition and treatment, such as treating a kidney's neural sympathetic response to treat hypertension. The sheath is withdrawn slightly at 904, exposing at least part of the probe including an expandable sense electrode and an expandable stimulation electrode to the artery. At 906, the expandable stimulation and sense electrodes are expanded, such that the electrodes contact the arterial wall while permitting blood flow around the probe and the electrodes. At this point, the probe is properly deployed and ready to perform measurement.
- The expandable stimulation electrode is excited at 908, inducing an electrical signal into the nerves adjacent to the arterial wall. The nerves propagate the signal from the stimulation electrode, which can be observed at 910 as sympathetic nerve activity as a result of exciting the stimulation electrode. The observed sympathetic nerve activity can then be measured, characterized, stored, viewed, etc., to determine whether the sympathetic nerve activity exceeds a desired level at 912. If a desired level of sympathetic nerve activity is exceeded, nerves proximate the probe are ablated at 914, such as using an ablation element comprising a part of the probe located between the sense electrode and the stimulation electrode. Steps 908-912 are then repeated, until the sympathetic nerve activity is determined not to exceed the desired level at 912. At that point, the measurement and nerve ablation is complete, and the probe and sheath can be withdrawn at 916.
- Although the examples presented here primarily illustrate measurement of sympathetic nerve activity using the probe systems described, probe system such as those illustrated here can also be used to monitor organ activity, pain, or other nervous system indicia. For example, pain can be monitored during surgery in some applications, or nerve activity can be measured while externally stimulating an organ.
- Although specific embodiments have been illustrated and described herein, any arrangement that achieve the same purpose, structure, or function may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the example embodiments of the invention described herein. These and other embodiments are within the scope of the following claims and their equivalents.
Claims (20)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/204,349 US20170027460A1 (en) | 2015-07-29 | 2016-07-07 | Intraluminal microneurography probe |
| US15/299,694 US20170035310A1 (en) | 2015-07-29 | 2016-10-21 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US16/517,180 US11642061B2 (en) | 2015-07-29 | 2019-07-19 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US17/453,636 US12350050B2 (en) | 2014-04-14 | 2021-11-04 | Intraluminal microneurography probes and related systems and methods |
| US18/180,636 US12161470B2 (en) | 2015-07-29 | 2023-03-08 | Intraluminal microneurography denervation probe with radio frequency ablation |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562198382P | 2015-07-29 | 2015-07-29 | |
| US15/204,349 US20170027460A1 (en) | 2015-07-29 | 2016-07-07 | Intraluminal microneurography probe |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/943,354 Continuation-In-Part US11510731B2 (en) | 2014-04-14 | 2018-04-02 | Nerve probe |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/299,694 Continuation US20170035310A1 (en) | 2014-04-14 | 2016-10-21 | Intraluminal microneurography denervation probe with radio frequency ablation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170027460A1 true US20170027460A1 (en) | 2017-02-02 |
Family
ID=57886741
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/204,349 Abandoned US20170027460A1 (en) | 2014-04-14 | 2016-07-07 | Intraluminal microneurography probe |
| US15/299,694 Abandoned US20170035310A1 (en) | 2014-04-14 | 2016-10-21 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US16/517,180 Active 2038-08-13 US11642061B2 (en) | 2014-04-14 | 2019-07-19 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US18/180,636 Active US12161470B2 (en) | 2015-07-29 | 2023-03-08 | Intraluminal microneurography denervation probe with radio frequency ablation |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/299,694 Abandoned US20170035310A1 (en) | 2014-04-14 | 2016-10-21 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US16/517,180 Active 2038-08-13 US11642061B2 (en) | 2014-04-14 | 2019-07-19 | Intraluminal microneurography denervation probe with radio frequency ablation |
| US18/180,636 Active US12161470B2 (en) | 2015-07-29 | 2023-03-08 | Intraluminal microneurography denervation probe with radio frequency ablation |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US20170027460A1 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
| US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
| US11197716B2 (en) | 2014-04-14 | 2021-12-14 | Recor Medical, Inc. | Monitoring nerve activity |
| US11622713B2 (en) | 2016-11-16 | 2023-04-11 | Navix International Limited | Estimators for ablation effectiveness |
| US11642061B2 (en) | 2015-07-29 | 2023-05-09 | Recor Medical, Inc. | Intraluminal microneurography denervation probe with radio frequency ablation |
| US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
| US11998266B2 (en) | 2009-10-12 | 2024-06-04 | Otsuka Medical Devices Co., Ltd | Intravascular energy delivery |
| US12023091B2 (en) | 2015-05-12 | 2024-07-02 | Navix International Limited | Lesion assessment by dielectric property analysis |
| US12076033B2 (en) | 2006-05-19 | 2024-09-03 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
| US12102845B2 (en) | 2013-03-14 | 2024-10-01 | Recor Medical, Inc. | Ultrasound-based neuromodulation system |
| US12133765B2 (en) | 2014-11-05 | 2024-11-05 | Otsuka Medical Devices Co., Ltd. | Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery |
| US12274833B2 (en) | 2009-10-30 | 2025-04-15 | Recor Medical, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
| US12350050B2 (en) * | 2014-04-14 | 2025-07-08 | Recor Medical, Inc. | Intraluminal microneurography probes and related systems and methods |
| US12419662B2 (en) | 2021-02-19 | 2025-09-23 | Otsuka Medical Devices Co., Ltd. | Selectively insulated ultrasound transducers |
| US12440165B2 (en) | 2022-07-28 | 2025-10-14 | Otsuka Medical Devices Co., Ltd. | Catheter for neural measurements and treatment and related systems and methods |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230026504A1 (en) | 2021-07-19 | 2023-01-26 | Otsuka Medical Devices Co., Ltd. | Methods and systems for determining body lumen size |
| US20230021354A1 (en) | 2021-07-19 | 2023-01-26 | Otsuka Medical Devices Co., Ltd. | Transmitting acoustic and electromagnetic signals from a catheter balloon |
| WO2023002352A1 (en) | 2021-07-19 | 2023-01-26 | Otsuka Medical Devices Co., Ltd. | Transmitting acoustic and electromagnetic signals from a catheter balloon |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4709698A (en) * | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
| US20010023365A1 (en) * | 1998-05-07 | 2001-09-20 | Medhkour Adel M. | Apparatus for RF intraluminal reduction and occlusion |
| US20030074039A1 (en) * | 1999-06-25 | 2003-04-17 | Puskas John D. | Devices and methods for vagus nerve stimulation |
| US20050159738A1 (en) * | 2004-01-21 | 2005-07-21 | Naheed Visram | Surgical perforation device with electrocardiogram (ECG) monitoring ability and method of using ECG to position a surgical perforation device |
| US20060023528A1 (en) * | 2003-06-11 | 2006-02-02 | Pax George E | Memory module and method having improved signal routing topology |
| US20120265198A1 (en) * | 2010-11-19 | 2012-10-18 | Crow Loren M | Renal nerve detection and ablation apparatus and method |
| US20130096550A1 (en) * | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Ablative catheter with electrode cooling and related methods of use |
| US20130289369A1 (en) * | 2012-04-27 | 2013-10-31 | Volcano Corporation | Methods and Apparatus for Renal Neuromodulation |
Family Cites Families (170)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5542915A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
| US4643186A (en) * | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
| US4650466A (en) | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
| US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
| US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
| JPH01227766A (en) | 1988-03-04 | 1989-09-11 | Yuichi Furukawa | Catheter for angiography |
| US4955377A (en) | 1988-10-28 | 1990-09-11 | Lennox Charles D | Device and method for heating tissue in a patient's body |
| US5114423A (en) | 1989-05-15 | 1992-05-19 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
| CA2106410C (en) | 1991-11-08 | 2004-07-06 | Stuart D. Edwards | Ablation electrode with insulated temperature sensing elements |
| US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
| US5391197A (en) | 1992-11-13 | 1995-02-21 | Dornier Medical Systems, Inc. | Ultrasound thermotherapy probe |
| US6537306B1 (en) | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
| US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
| US5657755A (en) | 1993-03-11 | 1997-08-19 | Desai; Jawahar M. | Apparatus and method for cardiac ablation |
| US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
| US5575788A (en) | 1994-06-24 | 1996-11-19 | Stuart D. Edwards | Thin layer ablation apparatus |
| US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
| US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
| US6719755B2 (en) | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
| US5972026A (en) | 1997-04-07 | 1999-10-26 | Broncus Technologies, Inc. | Bronchial stenter having diametrically adjustable electrodes |
| US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
| US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
| ATE433306T1 (en) | 1997-07-08 | 2009-06-15 | Univ California | DEVICE FOR CIRCUMFERENTIAL ABLATION |
| US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
| US6652515B1 (en) | 1997-07-08 | 2003-11-25 | Atrionix, Inc. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
| US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
| WO1999065561A1 (en) | 1998-06-19 | 1999-12-23 | Cordis Webster, Inc. | Method and apparatus for transvascular treatment of tachycardia and fibrillation |
| US7686763B2 (en) | 1998-09-18 | 2010-03-30 | University Of Washington | Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy |
| US6425867B1 (en) | 1998-09-18 | 2002-07-30 | University Of Washington | Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy |
| US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
| CN1338909A (en) | 1999-02-02 | 2002-03-06 | 外科器械股份有限公司 | Intrabody HIFU applicator |
| US6097985A (en) | 1999-02-09 | 2000-08-01 | Kai Technologies, Inc. | Microwave systems for medical hyperthermia, thermotherapy and diagnosis |
| JP4169854B2 (en) * | 1999-02-12 | 2008-10-22 | スピードファム株式会社 | Wafer planarization method |
| US6692490B1 (en) | 1999-05-18 | 2004-02-17 | Novasys Medical, Inc. | Treatment of urinary incontinence and other disorders by application of energy and drugs |
| US6669655B1 (en) | 1999-10-20 | 2003-12-30 | Transurgical, Inc. | Sonic element and catheter incorporating same |
| JP2003513691A (en) | 1999-10-25 | 2003-04-15 | シーラス、コーポレイション | Use of focused ultrasound to seal blood vessels |
| US20040215235A1 (en) | 1999-11-16 | 2004-10-28 | Barrx, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
| US6529756B1 (en) * | 1999-11-22 | 2003-03-04 | Scimed Life Systems, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
| AU2001249874A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
| WO2001082814A2 (en) * | 2000-05-03 | 2001-11-08 | C.R. Bard, Inc. | Apparatus and methods for mapping and ablation in electrophysiology procedures |
| WO2001087174A1 (en) | 2000-05-16 | 2001-11-22 | Atrionx, Inc. | Deflectable tip catheter with guidewire tracking mechanism |
| ES2240470T3 (en) | 2000-06-13 | 2005-10-16 | Atrionix, Inc. | SURGICAL ABLATION PROBE THAT ALLOWS TO PERFORM A CIRCULAR INJURY. |
| CN1241658C (en) | 2000-07-13 | 2006-02-15 | 普罗里森姆股份有限公司 | A device for applying energy within the body of a living subject |
| EP2430997A3 (en) | 2000-07-13 | 2014-05-07 | ReCor Medical, Inc. | Ultrasonic emitter with reflective interface |
| SE518764C2 (en) | 2000-07-17 | 2002-11-19 | Ultrazonix Dnt Ab | Device for mini-invasive ultrasound treatment of disk disease |
| PT1227766E (en) | 2000-09-08 | 2005-07-29 | Atrionix Inc | MEDICAL DEVICE WHICH HAS A SENSOR COOPERATING WITH AN EXPANSIVE COMPONENT |
| GB0107152D0 (en) * | 2001-03-22 | 2001-05-09 | Johnson Electric Sa | Improvements in or relating to a brush assembly |
| US6648883B2 (en) | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
| US6585660B2 (en) | 2001-05-18 | 2003-07-01 | Jomed Inc. | Signal conditioning device for interfacing intravascular sensors having varying operational characteristics to a physiology monitor |
| US6735461B2 (en) | 2001-06-19 | 2004-05-11 | Insightec-Txsonics Ltd | Focused ultrasound system with MRI synchronization |
| US6763722B2 (en) | 2001-07-13 | 2004-07-20 | Transurgical, Inc. | Ultrasonic transducers |
| US7052695B2 (en) | 2001-10-25 | 2006-05-30 | Regeneron Pharmaceuticals, Inc. | Angiopoietins and methods of treating hypertension |
| US6746465B2 (en) | 2001-12-14 | 2004-06-08 | The Regents Of The University Of California | Catheter based balloon for therapy modification and positioning of tissue |
| EP1465701A4 (en) | 2002-01-15 | 2008-08-13 | Univ California | SYSTEM AND METHOD FOR DIRECTIONAL ULTRASONIC THERAPY OF SKELETAL JOINTS |
| US7048756B2 (en) | 2002-01-18 | 2006-05-23 | Apasara Medical Corporation | System, method and apparatus for evaluating tissue temperature |
| US7819826B2 (en) | 2002-01-23 | 2010-10-26 | The Regents Of The University Of California | Implantable thermal treatment method and apparatus |
| IL148299A (en) | 2002-02-21 | 2014-04-30 | Technion Res & Dev Foundation | Ultrasound cardiac stimulator |
| US6736835B2 (en) | 2002-03-21 | 2004-05-18 | Depuy Acromed, Inc. | Early intervention spinal treatment methods and devices for use therein |
| US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
| US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
| US7653438B2 (en) * | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
| US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
| US20040082859A1 (en) | 2002-07-01 | 2004-04-29 | Alan Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
| US6866662B2 (en) | 2002-07-23 | 2005-03-15 | Biosense Webster, Inc. | Ablation catheter having stabilizing array |
| US7039450B2 (en) | 2002-11-15 | 2006-05-02 | Biosense Webster, Inc. | Telescoping catheter |
| US7156816B2 (en) | 2002-11-26 | 2007-01-02 | Biosense, Inc. | Ultrasound pulmonary vein isolation |
| US7684865B2 (en) | 2003-03-14 | 2010-03-23 | Endovx, Inc. | Methods and apparatus for treatment of obesity |
| US7783358B2 (en) | 2003-03-14 | 2010-08-24 | Endovx, Inc. | Methods and apparatus for treatment of obesity with an ultrasound device movable in two or three axes |
| US7377900B2 (en) | 2003-06-02 | 2008-05-27 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
| US7311701B2 (en) | 2003-06-10 | 2007-12-25 | Cierra, Inc. | Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound |
| US7326195B2 (en) | 2003-11-18 | 2008-02-05 | Boston Scientific Scimed, Inc. | Targeted cooling of tissue within a body |
| US8024050B2 (en) | 2003-12-24 | 2011-09-20 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
| US7371231B2 (en) | 2004-02-02 | 2008-05-13 | Boston Scientific Scimed, Inc. | System and method for performing ablation using a balloon |
| US7854733B2 (en) | 2004-03-24 | 2010-12-21 | Biosense Webster, Inc. | Phased-array for tissue treatment |
| US20050261672A1 (en) | 2004-05-18 | 2005-11-24 | Mark Deem | Systems and methods for selective denervation of heart dysrhythmias |
| US20050283148A1 (en) | 2004-06-17 | 2005-12-22 | Janssen William M | Ablation apparatus and system to limit nerve conduction |
| WO2006060053A2 (en) | 2004-09-13 | 2006-06-08 | Biosense Webster, Inc. | Ablation device with phased array ultrasound transducer |
| JP4792467B2 (en) | 2004-10-14 | 2011-10-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Ablation apparatus and method with ultrasound imaging |
| US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
| US20060118127A1 (en) | 2004-12-06 | 2006-06-08 | Chinn Douglas O | Tissue protective system and method for thermoablative therapies |
| US7553284B2 (en) | 2005-02-02 | 2009-06-30 | Vaitekunas Jeffrey J | Focused ultrasound for pain reduction |
| US7660628B2 (en) | 2005-03-23 | 2010-02-09 | Cardiac Pacemakers, Inc. | System to provide myocardial and neural stimulation |
| EP2438877B1 (en) | 2005-03-28 | 2016-02-17 | Vessix Vascular, Inc. | Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues |
| US7612147B2 (en) * | 2005-07-07 | 2009-11-03 | The Goodyear Tire & Rubber Company | Dendrimers of rubbery polymers |
| EP1906923B1 (en) | 2005-07-22 | 2018-01-24 | The Foundry, LLC | Systems and methods for delivery of a therapeutic agent |
| US7621873B2 (en) | 2005-08-17 | 2009-11-24 | University Of Washington | Method and system to synchronize acoustic therapy with ultrasound imaging |
| US7452308B2 (en) | 2005-09-08 | 2008-11-18 | Robideau Robert G | Cross-crawl chair |
| EP2012673A4 (en) | 2006-04-20 | 2011-05-18 | Univ California | THERMAL TREATMENT METHOD FOR MYOLYSIS AND DESTRUCTION OF BENIGN UTERINE TUMORS |
| EP2540246B8 (en) | 2006-05-12 | 2020-10-07 | Vytronus, Inc. | Device for ablating body tissue |
| US10499937B2 (en) | 2006-05-19 | 2019-12-10 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
| US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
| CN103222894B (en) | 2006-06-28 | 2015-07-01 | 美敦力Af卢森堡公司 | Methods and systems for thermally-induced renal neuromodulation |
| BRPI0806361B8 (en) | 2007-02-09 | 2021-06-22 | B & D Medical Dev Llc | device for controlling genecological and obstetric bleeding in a patient's body cavity, and kit |
| US7711905B2 (en) * | 2007-07-16 | 2010-05-04 | International Business Machines Corporation | Method and system for using upper cache history information to improve lower cache data replacement |
| JP5153892B2 (en) | 2008-02-07 | 2013-02-27 | カーディアック ペースメイカーズ, インコーポレイテッド | Wireless tissue electrical stimulation |
| US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
| US9949794B2 (en) | 2008-03-27 | 2018-04-24 | Covidien Lp | Microwave ablation devices including expandable antennas and methods of use |
| JP5646492B2 (en) | 2008-10-07 | 2014-12-24 | エムシー10 インコーポレイテッドMc10,Inc. | Stretchable integrated circuit and device with sensor array |
| US8414508B2 (en) | 2008-10-30 | 2013-04-09 | Vytronus, Inc. | System and method for delivery of energy to tissue while compensating for collateral tissue |
| US8447414B2 (en) | 2008-12-17 | 2013-05-21 | Greatbatch Ltd. | Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields |
| US20130023897A1 (en) | 2009-10-06 | 2013-01-24 | Michael P Wallace | Devices and Methods for Endovascular Therapies |
| WO2011056684A2 (en) | 2009-10-27 | 2011-05-12 | Innovative Pulmonary Solutions, Inc. | Delivery devices with coolable energy emitting assemblies |
| KR101673574B1 (en) | 2009-10-30 | 2016-11-07 | 레코 메디컬, 인코포레이티드 | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
| US8551083B2 (en) | 2009-11-17 | 2013-10-08 | Bsd Medical Corporation | Microwave coagulation applicator and system |
| US20110125206A1 (en) | 2009-11-24 | 2011-05-26 | Pacesetter, Inc. | Single chamber implantable medical device for confirming arrhythmia through retrospective cardiac signals |
| US9743980B2 (en) | 2010-02-24 | 2017-08-29 | Safepass Vascular Ltd | Method and system for assisting a wire guide to cross occluded ducts |
| US8556891B2 (en) | 2010-03-03 | 2013-10-15 | Medtronic Ablation Frontiers Llc | Variable-output radiofrequency ablation power supply |
| JP5803344B2 (en) * | 2010-08-02 | 2015-11-04 | 株式会社リコー | Image processing apparatus, image processing method, and program |
| US20130150749A1 (en) | 2010-08-20 | 2013-06-13 | Linda B. McLean | Probe for diagnosis and treatment of muscle contraction dysfunction |
| WO2012061150A1 (en) | 2010-10-25 | 2012-05-10 | Medtronic Ardian Luxembourg S.a.r.I. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
| TWI513451B (en) | 2010-10-25 | 2015-12-21 | Medtronic Ardian Luxembourg | Devices, systems and methods for evaluation and feedback of neuromodulation treatment |
| US10016233B2 (en) | 2010-12-06 | 2018-07-10 | Biosense Webster (Israel) Ltd. | Treatment of atrial fibrillation using high-frequency pacing and ablation of renal nerves |
| WO2012117275A2 (en) * | 2011-03-01 | 2012-09-07 | Sendyne Corp. | Current sensor |
| CN103764225B (en) | 2011-03-04 | 2017-06-09 | 彩虹医疗公司 | By applying the instrument that energy is treated and monitored to tissue |
| EP2699153B1 (en) | 2011-04-22 | 2015-12-16 | Topera, Inc. | Flexible electrode assembly for insertion into body lumen or organ |
| US20120296232A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Method and apparatus of assessing transvascular denervation |
| US8909316B2 (en) | 2011-05-18 | 2014-12-09 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method of assessing transvascular denervation |
| US20190110704A1 (en) | 2017-10-06 | 2019-04-18 | Symap Medical (Suzhou), Limited | System and method for mapping the functional nerves innervating the wall of arteries, 3-d mapping and catheters for same |
| US9022948B2 (en) | 2011-08-26 | 2015-05-05 | Symap Holding Limited | System and method for locating and identifying the functional nerves innervating the wall of arteries |
| US8702619B2 (en) | 2011-08-26 | 2014-04-22 | Symap Holding Limited | Mapping sympathetic nerve distribution for renal ablation and catheters for same |
| US9820811B2 (en) | 2011-08-26 | 2017-11-21 | Symap Medical (Suzhou), Ltd | System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same |
| US9427579B2 (en) | 2011-09-29 | 2016-08-30 | Pacesetter, Inc. | System and method for performing renal denervation verification |
| WO2013052501A1 (en) | 2011-10-05 | 2013-04-11 | Innovative Pulmonary Solutions, Inc. | Apparatus for injuring nerve tissue |
| US20130116737A1 (en) | 2011-11-07 | 2013-05-09 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for Assessing Renal Neuromodulation Treatment and Associated Systems and Methods |
| EP2775899B1 (en) | 2011-11-07 | 2017-08-23 | Medtronic Ardian Luxembourg S.à.r.l. | Endovascular nerve monitoring devices and associated systems |
| WO2013074683A1 (en) | 2011-11-14 | 2013-05-23 | Boston Scientific Scimed, Inc. | Ablation catheter with cryothermal balloon |
| US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
| EP2797534A1 (en) | 2011-12-28 | 2014-11-05 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
| CA2862862C (en) | 2012-01-26 | 2022-06-14 | Robert Schwartz | Controlled sympathectomy and micro-ablation systems and methods |
| US9649064B2 (en) | 2012-01-26 | 2017-05-16 | Autonomix Medical, Inc. | Controlled sympathectomy and micro-ablation systems and methods |
| US9439598B2 (en) | 2012-04-12 | 2016-09-13 | NeuroMedic, Inc. | Mapping and ablation of nerves within arteries and tissues |
| US10258791B2 (en) | 2012-04-27 | 2019-04-16 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods |
| SG11201407873RA (en) | 2012-05-29 | 2014-12-30 | Autonomix Medical Inc | Endoscopic sympathectomy systems and methods |
| US9186501B2 (en) | 2012-06-13 | 2015-11-17 | Mainstay Medical Limited | Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator |
| CN104755010A (en) | 2012-07-04 | 2015-07-01 | 西比姆公司 | Devices and systems for carotid body ablation |
| US9333035B2 (en) | 2012-09-19 | 2016-05-10 | Denervx LLC | Cooled microwave denervation |
| CN104902836B (en) | 2012-11-05 | 2017-08-08 | 毕达哥拉斯医疗有限公司 | controlled tissue ablation |
| CA2889674C (en) | 2012-11-05 | 2023-02-28 | Autonomix Medical, Inc. | Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall |
| US9770593B2 (en) | 2012-11-05 | 2017-09-26 | Pythagoras Medical Ltd. | Patient selection using a transluminally-applied electric current |
| US10363359B2 (en) | 2012-12-09 | 2019-07-30 | Autonomix Medical, Inc. | Systems and methods for regulating organ and/or tumor growth rates, function, and/or development |
| US20140303617A1 (en) * | 2013-03-05 | 2014-10-09 | Neuro Ablation, Inc. | Intravascular nerve ablation devices & methods |
| WO2014159276A1 (en) | 2013-03-14 | 2014-10-02 | Recor Medical, Inc. | Ultrasound-based neuromodulation system |
| US8876813B2 (en) | 2013-03-14 | 2014-11-04 | St. Jude Medical, Inc. | Methods, systems, and apparatus for neural signal detection |
| US9186212B2 (en) | 2013-03-15 | 2015-11-17 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods utilizing two or more sites along denervation catheter |
| US20140274614A1 (en) | 2013-03-15 | 2014-09-18 | David R. Newman | Deformable grip pad with bistable spring bands and methods of use |
| US9610444B2 (en) | 2013-03-15 | 2017-04-04 | Pacesetter, Inc. | Erythropoeitin production by electrical stimulation |
| EP2968919B1 (en) | 2013-03-15 | 2021-08-25 | Medtronic Ardian Luxembourg S.à.r.l. | Controlled neuromodulation systems |
| SG11201507936UA (en) | 2013-03-27 | 2015-10-29 | Autonomix Medical Inc | Neurological traffic and receptor evaluation and modification: systems and methods |
| WO2014162660A1 (en) | 2013-04-01 | 2014-10-09 | テルモ株式会社 | Monitoring device and monitoring device kit |
| CN105392519A (en) | 2013-05-02 | 2016-03-09 | 道格拉斯·C·哈灵顿 | Devices and methods for detection and treatment of aortorenal ganglion |
| US9326816B2 (en) | 2013-08-30 | 2016-05-03 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods |
| US9339332B2 (en) | 2013-08-30 | 2016-05-17 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with nerve monitoring features for transmitting digital neural signals and associated systems and methods |
| WO2015057696A1 (en) | 2013-10-15 | 2015-04-23 | Autonomix Medical, Inc. | Systems and methods for treating cancer and/or augmenting organ function |
| US10136944B2 (en) | 2013-10-15 | 2018-11-27 | Autonomix Medical, Inc. | Systems and methods for treating cancer and/or augmenting organ function |
| WO2015090511A1 (en) | 2013-12-19 | 2015-06-25 | Merck Patent Gmbh | Light modulation element |
| US20170027460A1 (en) | 2015-07-29 | 2017-02-02 | NeuroMedic, Inc. | Intraluminal microneurography probe |
| US9999463B2 (en) | 2014-04-14 | 2018-06-19 | NeuroMedic, Inc. | Monitoring nerve activity |
| US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
| US20160045121A1 (en) | 2014-08-12 | 2016-02-18 | Indiana University Research And Technology Corporation | System and Method for Monitoring Renal Sympathetic Nerve Activity |
| WO2016054379A1 (en) | 2014-10-01 | 2016-04-07 | Medtronic Ardian Luxembourg S.A.R.L. | Systems and methods for evaluating neuromodulation therapy via hemodynamic responses |
| US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
| CN107405099B (en) * | 2015-05-11 | 2021-02-09 | 圣犹达医疗用品心脏病学部门有限公司 | High density mapping and ablation catheter |
| EP3304565B1 (en) | 2015-06-01 | 2025-03-26 | Autonomix Medical, Inc. | Elongated conductors and methods of making and using the same |
| EP4385350A3 (en) | 2016-04-29 | 2024-08-07 | LifeLens Technologies, Inc. | Monitoring and management of physiologic parameters of a subject |
| JP6859043B2 (en) | 2016-07-22 | 2021-04-14 | キヤノン株式会社 | Liquid discharge head |
| US20180250054A1 (en) | 2017-03-06 | 2018-09-06 | Pythagoras Medical Ltd. | Ultrasound transucer with electrode feelers |
-
2016
- 2016-07-07 US US15/204,349 patent/US20170027460A1/en not_active Abandoned
- 2016-10-21 US US15/299,694 patent/US20170035310A1/en not_active Abandoned
-
2019
- 2019-07-19 US US16/517,180 patent/US11642061B2/en active Active
-
2023
- 2023-03-08 US US18/180,636 patent/US12161470B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4709698A (en) * | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
| US20010023365A1 (en) * | 1998-05-07 | 2001-09-20 | Medhkour Adel M. | Apparatus for RF intraluminal reduction and occlusion |
| US20030074039A1 (en) * | 1999-06-25 | 2003-04-17 | Puskas John D. | Devices and methods for vagus nerve stimulation |
| US20060023528A1 (en) * | 2003-06-11 | 2006-02-02 | Pax George E | Memory module and method having improved signal routing topology |
| US20050159738A1 (en) * | 2004-01-21 | 2005-07-21 | Naheed Visram | Surgical perforation device with electrocardiogram (ECG) monitoring ability and method of using ECG to position a surgical perforation device |
| US20120265198A1 (en) * | 2010-11-19 | 2012-10-18 | Crow Loren M | Renal nerve detection and ablation apparatus and method |
| US20130096550A1 (en) * | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Ablative catheter with electrode cooling and related methods of use |
| US20130289369A1 (en) * | 2012-04-27 | 2013-10-31 | Volcano Corporation | Methods and Apparatus for Renal Neuromodulation |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12349928B2 (en) | 2006-05-19 | 2025-07-08 | Recor Medical, Inc. | Ablation device and method of using the same |
| US12076033B2 (en) | 2006-05-19 | 2024-09-03 | Recor Medical, Inc. | Ablation device with optimized input power profile and method of using the same |
| US11998266B2 (en) | 2009-10-12 | 2024-06-04 | Otsuka Medical Devices Co., Ltd | Intravascular energy delivery |
| US12274833B2 (en) | 2009-10-30 | 2025-04-15 | Recor Medical, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
| US12102845B2 (en) | 2013-03-14 | 2024-10-01 | Recor Medical, Inc. | Ultrasound-based neuromodulation system |
| US12336753B2 (en) | 2014-04-14 | 2025-06-24 | Recor Medical, Inc. | Nerve probe |
| US11510731B2 (en) | 2014-04-14 | 2022-11-29 | Recor Medical, Inc. | Nerve probe |
| US12350050B2 (en) * | 2014-04-14 | 2025-07-08 | Recor Medical, Inc. | Intraluminal microneurography probes and related systems and methods |
| US11197716B2 (en) | 2014-04-14 | 2021-12-14 | Recor Medical, Inc. | Monitoring nerve activity |
| US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
| US12133765B2 (en) | 2014-11-05 | 2024-11-05 | Otsuka Medical Devices Co., Ltd. | Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery |
| US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
| US12023091B2 (en) | 2015-05-12 | 2024-07-02 | Navix International Limited | Lesion assessment by dielectric property analysis |
| US12161470B2 (en) | 2015-07-29 | 2024-12-10 | Recor Medical, Inc. | Intraluminal microneurography denervation probe with radio frequency ablation |
| US11642061B2 (en) | 2015-07-29 | 2023-05-09 | Recor Medical, Inc. | Intraluminal microneurography denervation probe with radio frequency ablation |
| US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
| US11622713B2 (en) | 2016-11-16 | 2023-04-11 | Navix International Limited | Estimators for ablation effectiveness |
| US11744515B2 (en) * | 2016-11-16 | 2023-09-05 | Navix International Limited | Estimation of effectiveness of ablation adjacency |
| US12419662B2 (en) | 2021-02-19 | 2025-09-23 | Otsuka Medical Devices Co., Ltd. | Selectively insulated ultrasound transducers |
| US12440165B2 (en) | 2022-07-28 | 2025-10-14 | Otsuka Medical Devices Co., Ltd. | Catheter for neural measurements and treatment and related systems and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| US12161470B2 (en) | 2024-12-10 |
| US20230218216A1 (en) | 2023-07-13 |
| US20170035310A1 (en) | 2017-02-09 |
| US11642061B2 (en) | 2023-05-09 |
| US20200077907A1 (en) | 2020-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20170027460A1 (en) | Intraluminal microneurography probe | |
| US12336753B2 (en) | Nerve probe | |
| US12257071B2 (en) | Controlled sympathectomy and micro-ablation systems and methods | |
| US20230066858A1 (en) | Systems and methods for regulating organ and/or tumor growth rates, function, and/or development | |
| US10010364B2 (en) | Devices and methods for detection and treatment of the aorticorenal ganglion | |
| US20210393320A9 (en) | System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same | |
| US20170367756A1 (en) | Catheter system and electrode assembly for intraprocedural evaluation of renal denervation | |
| US12350050B2 (en) | Intraluminal microneurography probes and related systems and methods | |
| AU2016235142B2 (en) | Methods and devices for identifying treatment sites | |
| US20170252101A1 (en) | Systems and methods for intraprocedural evaluation of renal denervation | |
| EP3226792B1 (en) | Systems for regulating organ and/or tumor growth rates, function, and/or development | |
| JP2021516093A (en) | Response monitoring | |
| US20230414160A1 (en) | Methods and systems for measuring renal neural electrical activity by electrically stimulating in abdominal aorta and sensing evoked neural electrical resonse in renal artery | |
| US20230389852A1 (en) | Methods, devices and systems that use one or more transducers to heat nerves to evoke neural response without denervating nerves, as well as to denervate nerves | |
| US12440165B2 (en) | Catheter for neural measurements and treatment and related systems and methods | |
| US20230040877A1 (en) | Catheter for neural measurements and treatment and related systems and methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NEUROMEDIC, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMADA, JIN;PURYEAR, HARRY A.;BRUCKER, GREGORY G.;SIGNING DATES FROM 20160728 TO 20160811;REEL/FRAME:039430/0794 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: RECOR MEDICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEUROMEDIC, INC.;REEL/FRAME:054056/0155 Effective date: 20201008 |