US20170022338A1 - Periodic structured organic films - Google Patents
Periodic structured organic films Download PDFInfo
- Publication number
- US20170022338A1 US20170022338A1 US15/288,301 US201615288301A US2017022338A1 US 20170022338 A1 US20170022338 A1 US 20170022338A1 US 201615288301 A US201615288301 A US 201615288301A US 2017022338 A1 US2017022338 A1 US 2017022338A1
- Authority
- US
- United States
- Prior art keywords
- sof
- action
- reaction mixture
- building blocks
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000737 periodic effect Effects 0.000 title claims description 8
- 239000013310 covalent-organic framework Substances 0.000 claims abstract description 35
- 239000011541 reaction mixture Substances 0.000 claims description 167
- 239000000758 substrate Substances 0.000 claims description 146
- 239000007788 liquid Substances 0.000 claims description 87
- 238000000034 method Methods 0.000 claims description 81
- 239000002904 solvent Substances 0.000 claims description 70
- 230000008569 process Effects 0.000 claims description 54
- 239000003054 catalyst Substances 0.000 claims description 36
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 238000000151 deposition Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000001737 promoting effect Effects 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000004826 seaming Methods 0.000 claims description 5
- 238000000333 X-ray scattering Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 2
- 230000009471 action Effects 0.000 description 237
- 239000010410 layer Substances 0.000 description 148
- 239000000243 solution Substances 0.000 description 123
- 239000000203 mixture Substances 0.000 description 79
- 125000000524 functional group Chemical group 0.000 description 63
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 60
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 58
- 239000012528 membrane Substances 0.000 description 45
- 239000004810 polytetrafluoroethylene Substances 0.000 description 45
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 45
- 229910008651 TiZr Inorganic materials 0.000 description 40
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 32
- 239000000463 material Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 27
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 26
- 238000001816 cooling Methods 0.000 description 26
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 25
- 239000000126 substance Substances 0.000 description 25
- 239000003377 acid catalyst Substances 0.000 description 24
- 125000005647 linker group Chemical group 0.000 description 24
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 23
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 22
- 238000009835 boiling Methods 0.000 description 21
- 238000000059 patterning Methods 0.000 description 21
- 108091008695 photoreceptors Proteins 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 18
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 17
- OFXSXYCSPVKZPF-UHFFFAOYSA-N methoxyperoxymethane Chemical compound COOOC OFXSXYCSPVKZPF-UHFFFAOYSA-N 0.000 description 17
- 239000000654 additive Substances 0.000 description 16
- 125000004429 atom Chemical group 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 239000002585 base Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- 238000011068 loading method Methods 0.000 description 15
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 14
- 230000002209 hydrophobic effect Effects 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 11
- 125000003118 aryl group Chemical group 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 11
- 230000008021 deposition Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- -1 4,4′-(cyclohexane-1,1-diyl)diphenyl Chemical group 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 0 *C(=C(C)C)N(C)C.CC(C)=NN(C)C.CN(C)CN(C)C Chemical compound *C(=C(C)C)N(C)C.CC(C)=NN(C)C.CN(C)CN(C)C 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 150000001299 aldehydes Chemical class 0.000 description 8
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000005525 hole transport Effects 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 description 6
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000003517 fume Substances 0.000 description 6
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- SNLFYGIUTYKKOE-UHFFFAOYSA-N 4-n,4-n-bis(4-aminophenyl)benzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1N(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 SNLFYGIUTYKKOE-UHFFFAOYSA-N 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 5
- 230000005670 electromagnetic radiation Effects 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 150000007857 hydrazones Chemical class 0.000 description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- YXYUIABODWXVIK-UHFFFAOYSA-N 4-methyl-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 YXYUIABODWXVIK-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- QMKYBPDZANOJGF-UHFFFAOYSA-K benzene-1,3,5-tricarboxylate(3-) Chemical compound [O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-K 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- FSDSKERRNURGGO-UHFFFAOYSA-N cyclohexane-1,3,5-triol Chemical compound OC1CC(O)CC(O)C1 FSDSKERRNURGGO-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000003075 superhydrophobic effect Effects 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000006267 biphenyl group Chemical group 0.000 description 3
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 150000002081 enamines Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- 125000005259 triarylamine group Chemical group 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- AFZZYIJIWUTJFO-UHFFFAOYSA-N 1,3-diethylbenzene Chemical compound CCC1=CC=CC(CC)=C1 AFZZYIJIWUTJFO-UHFFFAOYSA-N 0.000 description 2
- DSNHSQKRULAAEI-UHFFFAOYSA-N 1,4-Diethylbenzene Chemical compound CCC1=CC=C(CC)C=C1 DSNHSQKRULAAEI-UHFFFAOYSA-N 0.000 description 2
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- YOXHQRNDWBRUOL-UHFFFAOYSA-N 4-(4-formyl-n-(4-formylphenyl)anilino)benzaldehyde Chemical compound C1=CC(C=O)=CC=C1N(C=1C=CC(C=O)=CC=1)C1=CC=C(C=O)C=C1 YOXHQRNDWBRUOL-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- JKRZOJADNVOXPM-UHFFFAOYSA-N Oxalic acid dibutyl ester Chemical compound CCCCOC(=O)C(=O)OCCCC JKRZOJADNVOXPM-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- XMUZQOKACOLCSS-UHFFFAOYSA-N [2-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC=C1CO XMUZQOKACOLCSS-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 229940043279 diisopropylamine Drugs 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229940015043 glyoxal Drugs 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 description 2
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 2
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000012306 spectroscopic technique Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 2
- 150000003577 thiophenes Chemical class 0.000 description 2
- 238000002366 time-of-flight method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- LUWZGNOSOQUFAE-UHFFFAOYSA-N 1,4-diisocyanatohexane Chemical compound O=C=NC(CC)CCCN=C=O LUWZGNOSOQUFAE-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- PYKYYOSVJRAVGQ-UHFFFAOYSA-N 2,2,3,3,4,4,5,5-octafluorohexanedioic acid;hydrate Chemical compound O.OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(O)=O PYKYYOSVJRAVGQ-UHFFFAOYSA-N 0.000 description 1
- ZSDAMBJDFDRLSS-UHFFFAOYSA-N 2,3,5,6-tetrafluorobenzene-1,4-diol Chemical compound OC1=C(F)C(F)=C(O)C(F)=C1F ZSDAMBJDFDRLSS-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- 239000001431 2-methylbenzaldehyde Substances 0.000 description 1
- FGFOZLCWAHRUAJ-UHFFFAOYSA-N 2-nitrofluoren-1-one Chemical class C1=CC=C2C3=CC=C([N+](=O)[O-])C(=O)C3=CC2=C1 FGFOZLCWAHRUAJ-UHFFFAOYSA-N 0.000 description 1
- GSOFREOFMHUMMZ-UHFFFAOYSA-N 3,4-dicarbamoylnaphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=N)C(C(=N)O)=C(C(O)=O)C(C(O)=O)=C21 GSOFREOFMHUMMZ-UHFFFAOYSA-N 0.000 description 1
- QNBIHCZTXZVLPQ-UHFFFAOYSA-N 3-(n-[4-[4-(n-(3-hydroxyphenyl)anilino)-2-phenylphenyl]phenyl]anilino)phenol Chemical compound OC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C(=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(O)C=CC=2)C=2C=CC=CC=2)=C1 QNBIHCZTXZVLPQ-UHFFFAOYSA-N 0.000 description 1
- IJMQLOPGNQFHAR-UHFFFAOYSA-N 3-(n-[4-[4-(n-(3-hydroxyphenyl)anilino)phenyl]phenyl]anilino)phenol Chemical compound OC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(O)C=CC=2)=C1 IJMQLOPGNQFHAR-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- WWYFPDXEIFBNKE-UHFFFAOYSA-N 4-(hydroxymethyl)benzoic acid Chemical compound OCC1=CC=C(C(O)=O)C=C1 WWYFPDXEIFBNKE-UHFFFAOYSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- MYDABUDHMBGZBZ-UHFFFAOYSA-N 4-butyl-n-[4-[4-[4-(n-(4-butylphenyl)anilino)phenyl]phenyl]phenyl]-n-phenylaniline Chemical compound C1=CC(CCCC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(CCCC)=CC=1)C1=CC=CC=C1 MYDABUDHMBGZBZ-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- QHHKLPCQTTWFSS-UHFFFAOYSA-N 5-[2-(1,3-dioxo-2-benzofuran-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)(C(F)(F)F)C(F)(F)F)=C1 QHHKLPCQTTWFSS-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 244000020998 Acacia farnesiana Species 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- HNJDJIGAOHOQSA-UHFFFAOYSA-N C1=CC2=C(C=C1)SC(=C1SC3=C(C=CC=C3)S1)S2.C1=CC2=C(C=C1)SC(=C1SC3=C(C=CC=C3)S1)S2.C1=CSC(=C2SC=CS2)S1.C1=CSC(=C2SC=CS2)S1.C1=CSC(=C2SC=CS2)S1.C1CSC(=C2SCCS2)S1.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=C(CC)SC(=C2SC(CC)=C(CC)S2)S1.CCC1SC(=C2SC(CC)C(CC)S2)SC1CC.[Ar].[Ar].[Ar].[Ar] Chemical compound C1=CC2=C(C=C1)SC(=C1SC3=C(C=CC=C3)S1)S2.C1=CC2=C(C=C1)SC(=C1SC3=C(C=CC=C3)S1)S2.C1=CSC(=C2SC=CS2)S1.C1=CSC(=C2SC=CS2)S1.C1=CSC(=C2SC=CS2)S1.C1CSC(=C2SCCS2)S1.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=C(CC)SC(=C2SC(CC)=C(CC)S2)S1.CCC1SC(=C2SC(CC)C(CC)S2)SC1CC.[Ar].[Ar].[Ar].[Ar] HNJDJIGAOHOQSA-UHFFFAOYSA-N 0.000 description 1
- RRRCTVUEHCSDBP-UHFFFAOYSA-N CC1=NN=C([Ar])O1 Chemical compound CC1=NN=C([Ar])O1 RRRCTVUEHCSDBP-UHFFFAOYSA-N 0.000 description 1
- YIBUXHSYHNABFF-UHFFFAOYSA-N CCC.CCC.CCC.CCC.CCC.CCC.CCN1C(=O)C2=C3C4=C(/C=C\2)C(=O)N(CC)C(=O)/C4=C/C=C\3C1=O.C[N+](=O)[O-].C[N+](=O)[O-].O=C1C2=C(C=CC=C2)C2=C1/C=C\C=C/2.O=C1C=CC(=C2C=CC(=O)C=C2)C=C1.[C-]#[N+]/C(C#N)=C1/C2=C(C=CC=C2)C2=C1/C=C\C=C/2 Chemical compound CCC.CCC.CCC.CCC.CCC.CCC.CCN1C(=O)C2=C3C4=C(/C=C\2)C(=O)N(CC)C(=O)/C4=C/C=C\3C1=O.C[N+](=O)[O-].C[N+](=O)[O-].O=C1C2=C(C=CC=C2)C2=C1/C=C\C=C/2.O=C1C=CC(=C2C=CC(=O)C=C2)C=C1.[C-]#[N+]/C(C#N)=C1/C2=C(C=CC=C2)C2=C1/C=C\C=C/2 YIBUXHSYHNABFF-UHFFFAOYSA-N 0.000 description 1
- NWIFOOIAWVLONG-UHFFFAOYSA-N CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C)N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C2=CC=CC=C2)N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C2=CC=CC=C2)N(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C(C2=CC=CC=C2)=C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C)N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C2=CC=CC=C2)N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C2=CC=CC=C2)N(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C(C2=CC=CC=C2)=C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 NWIFOOIAWVLONG-UHFFFAOYSA-N 0.000 description 1
- OKTZEUPQAYKOQO-UHFFFAOYSA-N CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C)N(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C(C)=C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.[H]C(=C(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1.[H]C(=C(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1.[H]C(=C(C1=CC=CC=C1)C1=CC=CC=C1)N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1 Chemical compound CCC1=CC=C(C(C2=CC=C(CC)C=C2)=C(C)N(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C(C)=C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.[H]C(=C(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1.[H]C(=C(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1.[H]C(=C(C1=CC=CC=C1)C1=CC=CC=C1)N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1 OKTZEUPQAYKOQO-UHFFFAOYSA-N 0.000 description 1
- UDGSAGFHHLBEFK-GEQVRVAYSA-N CCC1=CC=C(C2=NN=C(C3=CC=C(CC)C=C3)O2)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C Chemical compound CCC1=CC=C(C2=NN=C(C3=CC=C(CC)C=C3)O2)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C UDGSAGFHHLBEFK-GEQVRVAYSA-N 0.000 description 1
- IQPVXQHBZFLIBO-WZCHDNHFSA-N CCC1=CC=C(N(/N=C(\C)C2=CC=C(C)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(N(/N=C(\C)C2=CC=CC=C2)C2=CC=C(CC)C=C2)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=C2C=CC=CC2=C(CC)C=C1)C1=CC=C(C)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=C(C)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=CC=C1 Chemical compound CCC1=CC=C(N(/N=C(\C)C2=CC=C(C)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(N(/N=C(\C)C2=CC=CC=C2)C2=CC=C(CC)C=C2)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=C2C=CC=CC2=C(CC)C=C1)C1=CC=C(C)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=C(C)C=C1.[H]/C(=N\N(C1=CC=C(CC)C=C1)C1=CC=C(CC)C=C1)C1=CC=CC=C1 IQPVXQHBZFLIBO-WZCHDNHFSA-N 0.000 description 1
- PCYUCOYWMBXROL-UHFFFAOYSA-N CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=C3C=C4C=CC=CC4=CC3=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=C3C=CC=CC3=CC3=C2C=CC=C3)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(C)C(C)=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(C3=CC=CC=C3)C=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.CCC1=CC=C(N(C2=CC=CC=C2)C2=CC=C(CC)C=C2)C=C1 Chemical compound CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=C3C=C4C=CC=CC4=CC3=CC=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=C3C=CC=CC3=CC3=C2C=CC=C3)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(C)C(C)=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(C3=CC=CC=C3)C=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=C(CC)C=C2)C=C1.CCC1=CC=C(N(C2=CC=C(CC)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.CCC1=CC=C(N(C2=CC=CC=C2)C2=CC=C(CC)C=C2)C=C1 PCYUCOYWMBXROL-UHFFFAOYSA-N 0.000 description 1
- YXTLDRLCHYKUBN-UHFFFAOYSA-N CCN1C(=O)C2=C3C4=C(C=C2)C2=C5C6=C(C=C2)C(=O)N(CC)C(=O)/C6=C/C=C5/C4=C/C=C\3C1=O Chemical compound CCN1C(=O)C2=C3C4=C(C=C2)C2=C5C6=C(C=C2)C(=O)N(CC)C(=O)/C6=C/C=C5/C4=C/C=C\3C1=O YXTLDRLCHYKUBN-UHFFFAOYSA-N 0.000 description 1
- VGIVLIHKENZQHQ-UHFFFAOYSA-N CN(C)CN(C)C Chemical compound CN(C)CN(C)C VGIVLIHKENZQHQ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910003803 Gold(III) chloride Inorganic materials 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SQAMZFDWYRVIMG-UHFFFAOYSA-N [3,5-bis(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC(CO)=CC(CO)=C1 SQAMZFDWYRVIMG-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- AEKQNAANFVOBCU-UHFFFAOYSA-N benzene-1,3,5-tricarbaldehyde Chemical compound O=CC1=CC(C=O)=CC(C=O)=C1 AEKQNAANFVOBCU-UHFFFAOYSA-N 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229960000411 camphor oil Drugs 0.000 description 1
- 239000010624 camphor oil Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- NNBZCPXTIHJBJL-AOOOYVTPSA-N cis-decalin Chemical compound C1CCC[C@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-AOOOYVTPSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011263 electroactive material Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 239000008206 lipophilic material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- 229930193351 phorone Natural products 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- NNBZCPXTIHJBJL-MGCOHNPYSA-N trans-decalin Chemical compound C1CCC[C@@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
- B05D3/061—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
- B05D3/065—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3271—Hydroxyamines
- C08G18/3278—Hydroxyamines containing at least three hydroxy groups
- C08G18/3281—Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3271—Hydroxyamines
- C08G18/329—Hydroxyamines containing aromatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7614—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D169/00—Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
- C09D177/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2377/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/02—Polyamines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24777—Edge feature
Definitions
- Materials whose chemical structures are comprised of molecules linked by covalent bonds into extended structures may be placed into two classes: (1) polymers and cross-linked polymers, and (2) covalent organic frameworks (also known as covalently linked organic networks).
- the first class, polymers and cross-linked polymers is typically embodied by polymerization of molecular monomers to form long linear chains of covalently-bonded molecules.
- Polymer chemistry processes can allow for polymerized chains to, in turn, or concomitantly, become ‘cross-linked.’
- the nature of polymer chemistry offers poor control over the molecular-level structure of the formed material, i.e. the organization of polymer chains and the patterning of molecular monomers between chains is mostly random. Nearly all polymers are amorphous, save for some linear polymers that efficiently pack as ordered rods.
- Some polymer materials, notably block co-polymers can possess regions of order within their bulk. In the two preceding cases the patterning of polymer chains is not by design, any ordering at the molecular-level is a consequence of the natural intermolecular packing tendencies.
- COFs covalent organic frameworks
- first class polymers/cross-linked polymers
- COFs are intended to be highly patterned.
- molecular building blocks rather than monomers.
- molecular building blocks react to form two- or three-dimensional networks. Consequently, molecular building blocks are patterned throughout COF materials and molecular building blocks are linked to each other through strong covalent bonds.
- COFs developed thus far are typically powders with high porosity and are materials with exceptionally low density. COFs can store near-record amounts of argon and nitrogen. While these conventional COFs are useful, there is a need, addressed by embodiments of the present invention, for new materials that offer advantages over conventional COFs in terms of enhanced characteristics.
- an ordered (periodic) structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein at a macroscopic level the covalent organic framework is a film.
- FIG. 1 is a graphic representation that compares the Fourier transform infrared spectral of the products of control experiments mixtures, wherein only N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine is added to the liquid reaction mixture (top), wherein only benzene-1,4-dimethanol is added to the liquid reaction mixture (middle), and wherein the necessary components needed to form a patterned Type 2 SOF are included into the liquid reaction mixture (bottom).
- FIG. 2 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, p-xylyl segments, and ether linkers.
- FIG. 3 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, n-hexyl segments, and ether linkers.
- FIG. 4 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, 4,4′-(cyclohexane-1,1-diyl)diphenyl, and ether linkers.
- FIG. 5 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising of triphenylamine segments and ether linkers.
- FIG. 6 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising triphenylamine segments, benzene segments, and imine linkers.
- FIG. 7 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising triphenylamine segments, and imine linkers.
- FIG. 8 is a graphic representation of two-dimensional X-ray scattering data for the SOFs produced in Examples 26 and 54.
- SOF Structured organic film
- COF covalent organic framework
- macroscopic level refers, for example, to the naked eye view of the present SOFs.
- COFs are a network at the “microscopic level” or “molecular level” (requiring use of powerful magnifying equipment or as assessed using scattering methods)
- the present SOF is fundamentally different at the “macroscopic level” because the film is for instance orders of magnitude larger in coverage than a microscopic level COF network.
- COFs described herein have macroscopic morphologies much different than typical COFs previously synthesized.
- COFs previously synthesized were typically obtained as polycrystalline or particulate powders wherein the powder is a collection of at least thousands of particles (crystals) where each particle (crystal) can have dimensions ranging from nanometers to millimeters.
- the shape of the particles can range from plates, spheres, cubes, blocks, prisms, etc.
- the composition of each particle (crystal) is the same throughout the entire particle while at the edges, or surfaces of the particle, is where the segments of the covalently-linked framework terminate.
- the SOFs described herein are not collections of particles.
- the SOFs of the present disclosure are at the macroscopic level substantially defect-free SOFs or defect-free SOFs having continuous covalent organic frameworks that can extend over larger length scales such as for instance much greater than a millimeter to lengths such as a meter and, in theory, as much as hundreds of meters. It will also be appreciated that SOFs tend to have large aspect ratios where typically two dimensions of a SOF will be much larger than the third. SOFs have markedly fewer macroscopic edges and disconnected external surfaces than a collection of COF particles.
- a “substantially defect-free SOF” or “defect-free SOF” may be formed from a reaction mixture deposited on the surface of an underlying substrate.
- the term “substantially defect-free SOF” refers, for example, to an SOF that may or may not be removed from the underlying substrate on which it was formed and contains substantially no pinholes, pores or gaps greater than the distance between the cores of two adjacent segments per square cm; such as, for example, less than 10 pinholes, pores or gaps greater than about 250 nanometers in diameter per cm 2 , or less than 5 pinholes, pores or gaps greater than about 100 nanometers in diameter per cm 2 .
- defect-free SOF refers, for example, to an SOF that may or may not be removed from the underlying substrate on which it was formed and contains no pinholes, pores or gaps greater than the distance between the cores of two adjacent segments per micron, such as no pinholes, pores or gaps greater than about 100 Angstroms in diameter per micron 2 , or no pinholes, pores or gaps greater than about 50 Angstroms in diameter per micron 2 , or no pinholes, pores or gaps greater than about 20 Angstroms in diameter per micron 2 .
- the SOF comprises at least one atom of an element that is not carbon, such at least one atom selected from the group consisting of hydrogen, oxygen, nitrogen, silicon, phosphorous, selenium, fluorine, boron, and sulfur.
- the SOF is a boroxine-, borazine-, borosilicate-, and boronate ester-free SOF.
- the SOFs of the present disclosure comprise molecular building blocks having a segment (S) and functional groups (Fg).
- Molecular building blocks require at least two functional groups (x ⁇ 2) and may comprise a single type or two or more types of functional groups.
- Functional groups are the reactive chemical moieties of molecular building blocks that participate in a chemical reaction to link together segments during the SOF forming process.
- a segment is the portion of the molecular building block that supports functional groups and comprises all atoms that are not associated with functional groups. Further, the composition of a molecular building block segment remains unchanged after SOF formation.
- Functional groups are the reactive chemical moieties of molecular building blocks that participate in a chemical reaction to link together segments during the SOF forming process.
- Functional groups may be composed of a single atom, or functional groups may be composed of more than one atom.
- the atomic compositions of functional groups are those compositions normally associated with reactive moieties in chemical compounds.
- Non-limiting examples of functional groups include halogens, alcohols, ethers, ketones, carboxylic acids, esters, carbonates, amines, amides, imines, ureas, aldehydes, isocyanates, tosylates, alkenes, alkynes and the like.
- Molecular building blocks contain a plurality of chemical moieties, but only a subset of these chemical moieties are intended to be functional groups during the SOF forming process. Whether or not a chemical moiety is considered a functional group depends on the reaction conditions selected for the SOF forming process.
- Functional groups (Fg) denote a chemical moiety that is a reactive moiety, that is, a functional group during the SOF forming process.
- the composition of a functional group will be altered through the loss of atoms, the gain of atoms, or both the loss and the gain of atoms; or, the functional group may be lost altogether.
- atoms previously associated with functional groups become associated with linker groups, which are the chemical moieties that join together segments.
- Functional groups have characteristic chemistries and those of ordinary skill in the art can generally recognize in the present molecular building blocks the atom(s) that constitute functional group(s). It should be noted that an atom or grouping of atoms that are identified as part of the molecular building block functional group may be preserved in the linker group of the SOF. Linker groups are described below.
- a segment is the portion of the molecular building block that supports functional groups and comprises all atoms that are not associated with functional groups. Further, the composition of a molecular building block segment remains unchanged after SOF formation.
- the SOF may contain a first segment having a structure the same as or different from a second segment.
- the structures of the first and/or second segments may be the same as or different from a third segment, forth segment, fifth segment, etc.
- a segment is also the portion of the molecular building block that can provide an inclined property. Inclined properties are described later in the embodiments.
- the segment of the SOF comprises at least one atom of an element that is not carbon, such at least one atom selected from the group consisting of hydrogen, oxygen, nitrogen, silicon, phosphorous, selenium, fluorine, boron, and sulfur.
- SOFs have any suitable aspect ratio.
- SOFs have aspect ratios for instance greater than about 30:1 or greater than about 50:1, or greater than about 70:1, or greater than about 100:1, such as about 1000:1.
- the aspect ratio of a SOF is defined as the ratio of its average width or diameter (that is, the dimension next largest to its thickness) to its average thickness (that is, its shortest dimension).
- the term ‘aspect ratio,’ as used here, is not bound by theory. The longest dimension of a SOF is its length and it is not considered in the calculation of SOF aspect ratio.
- SOFs have widths and lengths, or diameters greater than about 500 micrometers, such as about 10 mm, or 30 mm.
- the SOFs have the following illustrative thicknesses: about 10 Angstroms to about 250 Angstroms, such as about 20 Angstroms to about 200 Angstroms, for a mono-segment thick layer and about 20 nm to about 5 mm, about 50 nm to about 10 mm for a multi-segment thick layer.
- SOF dimensions may be measured using a variety of tools and methods. For a dimension about 1 micrometer or less, scanning electron microscopy is the preferred method. For a dimension about 1 micrometer or greater, a micrometer (or ruler) is the preferred method.
- a SOF may comprise a single layer or a plurality of layers (that is, two, three or more layers). SOFs that are comprised of a plurality of layers may be physically joined (e.g., dipole and hydrogen bond) or chemically joined. Physically attached layers are characterized by weaker interlayer interactions or adhesion; therefore physically attached layers may be susceptible to delamination from each other. Chemically attached layers are expected to have chemical bonds (e.g., covalent or ionic bonds) or have numerous physical or intermolecular (supramolecular) entanglements that strongly link adjacent layers.
- Chemical attachments between layers may be detected using spectroscopic methods such as focusing infrared or Raman spectroscopy, or with other methods having spatial resolution that can detect chemical species precisely at interfaces.
- spectroscopic methods such as focusing infrared or Raman spectroscopy
- other methods having spatial resolution that can detect chemical species precisely at interfaces.
- sensitive bulk analyses such as solid-state nuclear magnetic resonance spectroscopy or by using other bulk analytical methods.
- the SOF may be a single layer (mono-segment thick or multi-segment thick) or multiple layers (each layer being mono-segment thick or multi-segment thick).
- Thiickness refers, for example, to the smallest dimension of the film.
- segments are molecular units that are covalently bonded through linkers to generate the molecular framework of the film.
- the thickness of the film may also be defined in terms of the number of segments that is counted along that axis of the film when viewing the cross-section of the film.
- a “monolayer” SOF is the simplest case and refers, for example, to where a film is one segment thick.
- a SOF where two or more segments exist along this axis is referred to as a “multi-segment” thick SOF.
- An exemplary method for preparing physically attached multilayer SOFs includes: (1) forming a base SOF layer that may be cured by a first curing cycle, and (2) forming upon the base layer a second reactive wet layer followed by a second curing cycle and, if desired, repeating the second step to form a third layer, a forth layer and so on.
- the physically stacked multilayer SOFs may have thicknesses greater than about 20 Angstroms such as, for example, the following illustrative thicknesses: about 20 Angstroms to about 10 cm, such as about 1 nm to about 10 mm, or about 0.1 mm Angstroms to about 5 mm. In principle there is no limit with this process to the number of layers that may be physically stacked.
- a multilayer SOF is formed by a method for preparing chemically attached multilayer SOFs by: (1) forming a base SOF layer having functional groups present on the surface (or dangling functional groups) from a first reactive wet layer, and (2) forming upon the base layer a second SOF layer from a second reactive wet layer that comprises molecular building blocks with functional groups capable of reacting with the dangling functional groups on the surface of the base SOF layer.
- a capped SOF may serve as the base layer in which the functional groups present that were not suitable or complementary to participate in the specific chemical reaction to link together segments during the base layer SOF forming process may be available for reacting with the molecular building blocks of the second layer to from an chemically bonded multilayer SOF.
- the formulation used to form the second SOF layer should comprise molecular building blocks with functional groups capable of reacting with the functional groups from the base layer as well as additional functional groups that will allow for a third layer to be chemically attached to the second layer.
- the chemically stacked multilayer SOFs may have thicknesses greater than about 20 Angstroms such as, for example, the following illustrative thicknesses: about 20 Angstroms to about 10 cm, such as about 1 nm to about 10 mm, or about 0.1 mm Angstroms to about 5 mm. In principle there is no limit with this process to the number of layers that may be chemically stacked.
- the method for preparing chemically attached multilayer SOFs comprises promoting chemical attachment of a second SOF onto an existing SOF (base layer) by using a small excess of one molecular building block (when more than one molecular building block is present) during the process used to form the SOF (base layer) whereby the functional groups present on this molecular building block will be present on the base layer surface.
- the surface of base layer may be treated with an agent to enhance the reactivity of the functional groups or to create an increased number of functional groups.
- the dangling functional groups or chemical moieties present on the surface of an SOF or capped SOF may be altered to increase the propensity for covalent attachment (or, alternatively, to disfavor covalent attachment) of particular classes of molecules or individual molecules, such as SOFs, to a base layer or any additional substrate or SOF layer.
- a base layer such as an SOF layer, which may contain reactive dangling functional groups
- the surface of a base layer such as an SOF layer, which may contain reactive dangling functional groups, may be rendered pacified through surface treatment with a capping chemical group.
- a SOF layer having dangling hydroxyl alcohol groups may be pacified by treatment with trimethylsiylchloride thereby capping hydroxyl groups as stable trimethylsilylethers.
- the surface of base layer may be treated with a non-chemically bonding agent, such as a wax, to block reaction with dangling functional groups from subsequent layers.
- Molecular building block symmetry relates to the positioning of functional groups (Fgs) around the periphery of the molecular building block segments.
- Fgs functional groups
- a symmetric molecular building block is one where positioning of Fgs may be associated with the ends of a rod, vertexes of a regular geometric shape, or the vertexes of a distorted rod or distorted geometric shape.
- the most symmetric option for molecular building blocks containing four Fgs are those whose Fgs overlay with the corners of a square or the apexes of a tetrahedron.
- symmetrical building blocks is practiced in embodiments of the present disclosure for two reasons: (1) the patterning of molecular building blocks may be better anticipated because the linking of regular shapes is a better understood process in reticular chemistry, and (2) the complete reaction between molecular building blocks is facilitated because for less symmetric building blocks errant conformations/orientations may be adopted which can possibly initiate numerous linking defects within SOFs.
- a Type 1 SOF contains segments, which are not located at the edges of the SOF, that are connected by linkers to at least three other segments.
- the SOF comprises at least one symmetrical building block selected from the group consisting of ideal triangular building blocks, distorted triangular building blocks, ideal tetrahedral building blocks, distorted tetrahedral building blocks, ideal square building blocks, and distorted square building blocks.
- Type 2 and 3 SOF contains at least one segment type, which are not located at the edges of the SOF, that are connected by linkers to at least three other segments.
- the SOF comprises at least one symmetrical building block selected from the group consisting of ideal triangular building blocks, distorted triangular building blocks, ideal tetrahedral building blocks, distorted tetrahedral building blocks, ideal square building blocks, and distorted square building blocks.
- linking chemistry may occur wherein the reaction between functional groups produces a volatile byproduct that may be largely evaporated or expunged from the SOF during or after the film forming process or wherein no byproduct is formed.
- Linking chemistry may be selected to achieve a SOF for applications where the presence of linking chemistry byproducts is not desired.
- Linking chemistry reactions may include, for example, condensation, addition/elimination, and addition reactions, such as, for example, those that produce esters, imines, ethers, carbonates, urethanes, amides, acetals, and silyl ethers.
- linking chemistry via a reaction between function groups producing a non-volatile byproduct that largely remains incorporated within the SOF after the film forming process.
- Linking chemistry in embodiments may be selected to achieve a SOF for applications where the presence of linking chemistry byproducts does not impact the properties or for applications where the presence of linking chemistry byproducts may alter the properties of a SOF (such as, for example, the electroactive, hydrophobic or hydrophilic nature of the SOF).
- Linking chemistry reactions may include, for example, substitution, metathesis, and metal catalyzed coupling reactions, such as those that produce carbon-carbon bonds.
- Reasons for controlling the rate and extent of reaction may include adapting the film forming process for different coating methods and tuning the microscopic arrangement of building blocks to achieve a periodic SOF, as defined in earlier embodiments.
- COFs have innate properties such as high thermal stability (typically higher than 400° C. under atmospheric conditions); poor solubility in organic solvents (chemical stability), and porosity (capable of reversible guest uptake).
- SOFs may also possess these innate properties.
- Added functionality denotes a property that is not inherent to conventional COFs and may occur by the selection of molecular building blocks wherein the molecular compositions provide the added functionality in the resultant SOF.
- Added functionality may arise upon assembly of molecular building blocks having an “inclined property” for that added functionality.
- Added functionality may also arise upon assembly of molecular building blocks having no “inclined property” for that added functionality but the resulting SOF has the added functionality as a consequence of linking segments (S) and linkers into a SOF.
- emergence of added functionality may arise from the combined effect of using molecular building blocks bearing an “inclined property” for that added functionality whose inclined property is modified or enhanced upon linking together the segments and linkers into a SOF.
- inclined property of a molecular building block refers, for example, to a property known to exist for certain molecular compositions or a property that is reasonably identifiable by a person skilled in art upon inspection of the molecular composition of a segment.
- inclined property and added functionality refer to the same general property (e.g., hydrophobic, electroactive, etc.) but “inclined property” is used in the context of the molecular building block and “added functionality” is used in the context of the SOF.
- hydrophobic (superhydrophobic), hydrophilic, lipophobic (superlipophobic), lipophilic, photochromic and/or electroactive (conductor, semiconductor, charge transport material) nature of an SOF are some examples of the properties that may represent an “added functionality” of an SOF. These and other added functionalities may arise from the inclined properties of the molecular building blocks or may arise from building blocks that do not have the respective added functionality that is observed in the SOF.
- hydrophobic refers, for example, to the property of repelling water, or other polar species such as methanol, it also means an inability to absorb water and/or to swell as a result. Furthermore, hydrophobic implies an inability to form strong hydrogen bonds to water or other hydrogen bonding species. Hydrophobic materials are typically characterized by having water contact angles greater than 90° and superhydrophobic materials have water contact angles greater than 150° as measured using a contact angle goniometer or related device.
- hydrophilic refers, for example, to the property of attracting, adsorbing, or absorbing water or other polar species, or a surface that is easily wetted by such species.
- Hydrophilic materials are typically characterized by having less than 20° water contact angle as measured using a contact angle goniometer or related device.
- Hydrophilicity may also be characterized by swelling of a material by water or other polar species, or a material that can diffuse or transport water, or other polar species, through itself. Hydrophilicity, is further characterized by being able to form strong or numerous hydrogen bonds to water or other hydrogen bonding species.
- lipophobic refers, for example, to the property of repelling oil or other non-polar species such as alkanes, fats, and waxes. Lipophobic materials are typically characterized by having oil contact angles greater than 90° as measured using a contact angle goniometer or related device.
- lipophilic refers, for example, to the property attracting oil or other non-polar species such as alkanes, fats, and waxes or a surface that is easily wetted by such species.
- Lipophilic materials are typically characterized by having a low to nil oil contact angle as measured using, for example, a contact angle goniometer. Lipophilicity can also be characterized by swelling of a material by hexane or other non-polar liquids.
- photochromic refers, for example, to the ability to demonstrate reversible color changes when exposed to electromagnetic radiation.
- SOF compositions containing photochromic molecules may be prepared and demonstrate reversible color changes when exposed to electromagnetic radiation. These SOFs may have the added functionality of photochromism.
- the robustness of photochromic SOFs may enable their use in many applications, such as photochromic SOFs for erasable paper, and light responsive films for window tinting/shading and eye wear.
- SOF compositions may contain any suitable photochromic molecule, such as a difunctional photochromic molecules as SOF molecular building blocks (chemically bound into SOF structure), a monofunctional photochromic molecules as SOF capping units (chemically bound into SOF structure, or unfunctionalized photochromic molecules in an SOF composite (not chemically bound into SOF structure).
- Photochromic SOFs may change color upon exposure to selected wavelengths of light and the color change may be reversible.
- SOF compositions containing photochromic molecules that chemically bond to the SOF structure are exceptionally chemically and mechanically robust photochromic materials.
- Such photochromic SOF materials demonstrate many superior properties, such as high number of reversible color change processes, to available polymeric alternatives.
- Electroactive refers, for example, to the property to transport electrical charge (electrons and/or holes).
- Electroactive materials include conductors, semiconductors, and charge transport materials. Conductors are defined as materials that readily transport electrical charge in the presence of a potential difference. Semiconductors are defined as materials do not inherently conduct charge but may become conductive in the presence of a potential difference and an applied stimuli, such as, for example, an electric field, electromagnetic radiation, heat, and the like.
- Charge transport materials are defined as materials that can transport charge when charge is injected from another material such as, for example, a dye, pigment, or metal in the presence of a potential difference.
- Conductors may be further defined as materials that give a signal using a potentiometer from about 0.1 to about 10 7 S/cm.
- Semiconductors may be further defined as materials that give a signal using a potentiometer from about 10 ⁇ 6 to about 10 4 S/cm in the presence of applied stimuli such as, for example an electric field, electromagnetic radiation, heat, and the like.
- semiconductors may be defined as materials having electron and/or hole mobility measured using time-of-flight techniques in the range of 10 ⁇ 10 to about 10 6 cm 2 V ⁇ 1 s ⁇ 1 when exposed to applied stimuli such as, for example an electric field, electromagnetic radiation, heat, and the like.
- Charge transport materials may be further defined as materials that have electron and/or hole mobility measured using time-of-flight techniques in the range of 10 ⁇ 10 to about 10 6 cm 2 V ⁇ 1 s ⁇ 1 . It should be noted that under some circumstances charge transport materials may be also classified as semiconductors.
- SOFs with hydrophobic added functionality may be prepared by using molecular building blocks with inclined hydrophobic properties and/or have a rough, textured, or porous surface on the sub-micron to micron scale.
- a paper describing materials having a rough, textured, or porous surface on the sub-micron to micron scale being hydrophobic was authored by Cassie and Baxter (Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc., 1944, 40, 546).
- Molecular building blocks comprising or bearing highly-fluorinated segments have inclined hydrophobic properties and may lead to SOFs with hydrophobic added functionality.
- Highly-fluorinated segments are defined as the number of fluorine atoms present on the segment(s) divided by the number of hydrogen atoms present on the segment(s) being greater than one. Fluorinated segments, which are not highly-fluorinated segments may also lead to SOFs with hydrophobic added functionality.
- the above-mentioned fluorinated segments may include, for example, tetrafluorohydroquinone, perfluoroadipic acid hydrate, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-(hexafluoroisopropylidene)diphenol, and the like.
- SOFs having a rough, textured, or porous surface on the sub-micron to micron scale may also be hydrophobic.
- the rough, textured, or porous SOF surface can result from dangling functional groups present on the film surface or from the structure of the SOF.
- the type of pattern and degree of patterning depends on the geometry of the molecular building blocks and the linking chemistry efficiency.
- the feature size that leads to surface roughness or texture is from about 100 nm to about 10 ⁇ m, such as from about 500 nm to about 5 ⁇ m.
- SOFs with hydrophilic added functionality may be prepared by using molecular building blocks with inclined hydrophilic properties and/or comprising polar linking groups.
- polar substituents refers, for example, to substituents that can form hydrogen bonds with water and include, for example, hydroxyl, amino, ammonium, and carbonyl (such as ketone, carboxylic acid, ester, amide, carbonate, urea).
- SOFs with electroactive added functionality may be prepared by using molecular building blocks with inclined electroactive properties and/or be electroactive resulting from the assembly of conjugated segments and linkers.
- the following sections describe molecular building blocks with inclined hole transport properties, inclined electron transport properties, and inclined semiconductor properties.
- SOFs with hole transport added functionality may be obtained by selecting segment cores such as, for example, triarylamines, hydrazones (U.S. Pat. No. 7,202,002 B2 to Tokarski et al.), and enamines (U.S. Pat. No. 7,416,824 B2 to Kondoh et al.) with the following general structures:
- the segment core comprising a triarylamine being represented by the following general formula:
- Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 each independently represents a substituted or unsubstituted aryl group, or Ar 5 independently represents a substituted or unsubstituted arylene group, and k represents 0 or 1, wherein at least two of Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 comprises a Fg (previously defined).
- Ar 5 may be further defined as, for example, a substituted phenyl ring, substituted/unsubstituted phenylene, substituted/unsubstituted monovalently linked aromatic rings such as biphenyl, terphenyl, and the like, or substituted/unsubstituted fused aromatic rings such as naphthyl, anthranyl, phenanthryl, and the like.
- Segment cores comprising arylamines with hole transport added functionality include, for example, aryl amines such as triphenylamine, N,N,N′,N′-tetraphenyl-(1,1′-biphenyl)-4,4′-diamine, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, N,N′-bis(4-butylphenyl)-N,N′-diphenyl-[p-terphenyl]-4,4′′-diamine; hydrazones such as N-phenyl-N-methyl-3-(9-ethyl)carbazyl hydrazone and 4-diethyl amino benzaldehyde-1,2-diphenyl hydrazone; and oxadiazoles such as 2,5-bis(4-N,N-diethylaminophenyl)-1,
- Molecular building blocks comprising triarylamine core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- segment core comprising a hydrazone being represented by the following general formula:
- Ar 1 , Ar 2 , and Ar 3 each independently represents an aryl group optionally containing one or more substituents, and R represents a hydrogen atom, an aryl group, or an alkyl group optionally containing a substituent; wherein at least two of Ar 1 , Ar 2 , and Ar 3 comprises a Fg (previously defined); and a related oxadiazole being represented by the following general formula:
- Ar and Ar 1 each independently represent an aryl group that comprises a Fg (previously defined).
- Molecular building blocks comprising hydrazone and oxadiazole core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- the segment core comprising an enamine being represented by the following general formula:
- Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represents an aryl group that optionally contains one or more substituents or a heterocyclic group that optionally contains one or more substituents, and R represents a hydrogen atom, an aryl group, or an alkyl group optionally containing a substituent; wherein at least two of Ar 1 , Ar 2 , Ar 3 , and Ar 4 comprises a Fg (previously defined).
- Molecular building blocks comprising enamine core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- SOFs with electron transport added functionality may be obtained by selecting segment cores comprising, for example, nitrofluorenones, 9-fluorenylidene malonitriles, diphenoquinones, and naphthalenetetracarboxylic diimides with the following general structures:
- carbonyl groups of diphenylquinones could also act as Fgs in the SOF forming process.
- SOFs with semiconductor added functionality may be obtained by selecting segment cores such as, for example, acenes, thiophenes/oligothiophenes/fused thiophenes, perylene bisimides, or tetrathiofulvalenes, and derivatives thereof with the following general structures:
- the SOF may be a p-type semiconductor, n-type semiconductor or ambipolar semiconductor.
- the SOF semiconductor type depends on the nature of the molecular building blocks. Molecular building blocks that possess an electron donating property such as alkyl, alkoxy, aryl, and amino groups, when present in the SOF, may render the SOF a p-type semiconductor. Alternatively, molecular building blocks that are electron withdrawing such as cyano, nitro, fluoro, fluorinated alkyl, and fluorinated aryl groups may render the SOF into the n-type semiconductor.
- Molecular building blocks comprising acene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- Molecular building blocks comprising thiophene/oligothiophene/fused thiophene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- molecular building blocks comprising perylene bisimide core segments with inclined semiconductor properties may be derived from the chemical structure below:
- Molecular building blocks comprising tetrathiofulvalene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- Ar each independently represents an aryl group that optionally contains one or more substituents or a heterocyclic group that optionally contains one or more substituents.
- the electroactivity of SOFs prepared by these molecular building blocks will depend on the nature of the segments, nature of the linkers, and how the segments are orientated within the SOF. Linkers that favor preferred orientations of the segment moieties in the SOF are expected to lead to higher electroactivity.
- the process for making ordered SOFs typically comprises a number of activities or steps (set forth below) that may be performed in any suitable sequence or where two or more activities are performed simultaneously or in close proximity in time:
- a process for preparing a ordered (periodic) structured organic film comprising: (a) preparing a liquid-containing reaction mixture comprising a plurality of molecular building blocks each comprising a segment and a number of functional groups; (b) depositing the reaction mixture as a wet film; (c) promoting a change of the wet film including the molecular building blocks to a dry film comprising the SOF comprising a plurality of the segments and a plurality of linkers arranged as a covalent organic framework, wherein at a macroscopic level the covalent organic framework is a film; (d) optionally removing the SOF from the coating substrate to obtain a free-standing SOF; (e) optionally processing the free-standing SOF into a roll; (f) optionally cutting and seaming the SOF into a belt; and (g) optionally performing the above SOF formation process(es) upon an SOF (which was prepared by the above SOF formation process(es)) as a substrate for subsequent SOF formation process(
- the above activities or steps may be conducted at atmospheric, super atmospheric, or subatmospheric pressure.
- atmospheric pressure refers to a pressure of about 760 torr.
- super atmospheric refers to pressures greater than atmospheric pressure, but less than 20 atm.
- subatmospheric pressure refers to pressures less than atmospheric pressure.
- the activities or steps may be conducted at or near atmospheric pressure. Generally, pressures of from about 0.1 atm to about 2 atm, such as from about 0.5 atm to about 1.5 atm, or 0.8 atm to about 1.2 atm may be conveniently employed.
- the reaction mixture comprises a plurality of molecular building blocks that are dissolved, suspended, or mixed in a liquid.
- the plurality of molecular building blocks may be of one type or two or more types.
- an additional liquid is optional.
- Catalysts may optionally be added to the reaction mixture to enable SOF formation or modify the kinetics of SOF formation during Action C described above.
- Additives or secondary components may optionally be added to the reaction mixture to alter the physical properties of the resulting SOF.
- reaction mixture components are combined in a vessel.
- the order of addition of the reaction mixture components may vary; however, typically the catalyst is added last.
- the molecular building blocks are heated in the liquid in the absence of the catalyst to aid the dissolution of the molecular building blocks.
- the reaction mixture may also be mixed, stirred, milled, or the like, to ensure even distribution of the formulation components prior to depositing the reaction mixture as a wet film.
- the reaction mixture may be heated prior to being deposited as a wet film. This may aid the dissolution of one or more of the molecular building blocks and/or increase the viscosity of the reaction mixture by the partial reaction of the reaction mixture prior to depositing the wet layer. This approach may be used to increase the loading of the molecular building blocks in the reaction mixture.
- reaction mixture needs to have a viscosity that will support the deposited wet layer.
- Reaction mixture viscosities range from about 10 to about 50,000 cps, such as from about 25 to about 25,000 cps or from about 50 to about 1000 cps.
- the molecular building block loading or “loading” in the reaction mixture is defined as the total weight of the molecular building blocks and optionally the catalysts divided by the total weight of the reaction mixture. Building block loadings may range from about 3 to 100%, such as from about 5 to about 50%, or from about 15 to about 40%. In the case where a liquid molecular building block is used as the only liquid component of the reaction mixture (i.e. no additional liquid is used), the building block loading would be about 100%.
- the reaction mixture comprises a plurality of molecular building blocks that are dissolved, suspended, or mixed in a liquid.
- the plurality of molecular building blocks may be of one type or two or more types.
- the use of an additional liquid is optional.
- Catalysts may optionally be added to the reaction mixture to enable pre-SOF formation and/or modify the kinetics of SOF formation during Action C described above.
- pre-SOF may refer to, for example, at least two molecular building blocks that have reacted and have a molecular weight higher than the starting molecular building block and contain multiple functional groups capable of undergoing further reactions with functional groups of other building blocks or pre-SOFs to obtain a SOF, which may be a substantially defect-free or defect-free SOF, and/or the ‘activation’ of molecular building block functional groups that imparts enhanced or modified reactivity for the film forming process.
- Activation may include dissociation of a functional group moiety, pre-association with a catalyst, association with a solvent molecule, liquid, second solvent, second liquid, secondary component, or with any entity that modifies functional group reactivity.
- pre-SOF formation may include the reaction between molecular building blocks or the ‘activation’ of molecular building block functional groups, or a combination of the two.
- the formation of the “pre-SOF” may be achieved by in a number of ways, such as heating the reaction mixture, exposure of the reaction mixture to UV radiation, or any other means of partially reacting the molecular building blocks and/or activating functional groups in the reaction mixture prior to deposition of the wet layer on the substrate.
- Additives or secondary components may optionally be added to the reaction mixture to alter the physical properties of the resulting SOF.
- reaction mixture components are combined in a vessel.
- the order of addition of the reaction mixture components may vary; however, typically when a process for preparing a SOF includes a pre-SOF or formation of a pre-SOF, the catalyst, when present, may be added to the reaction mixture before depositing the reaction mixture as a wet film.
- the molecular building blocks may be reacted actinically, thermally, chemically or by any other means with or without the presence of a catalyst to obtain a pre-SOF.
- the pre-SOF and the molecular building blocks formed in the absence of catalyst may be may be heated in the liquid in the absence of the catalyst to aid the dissolution of the molecular building blocks and pre-SOFs.
- the pre-SOF and the molecular building blocks formed in the presence of catalyst may be may be heated at a temperature that does not cause significant further reaction of the molecular building blocks and/or the pre-SOFs to aid the dissolution of the molecular building blocks and pre-SOFs.
- the reaction mixture may also be mixed, stirred, milled, or the like, to ensure even distribution of the formulation components prior to depositing the reaction mixture as a wet film.
- the reaction mixture may be heated prior to being deposited as a wet film. This may aid the dissolution of one or more of the molecular building blocks and/or increase the viscosity of the reaction mixture by the partial reaction of the reaction mixture prior to depositing the wet layer to form pre-SOFs.
- the weight percent of molecular building blocks in the reaction mixture that are incorporated into pre-reacted molecular building blocks pre-SOFs may be less than 20%, such as about 15% to about 1%, or 10% to about 5%.
- the molecular weight of the 95% pre-SOF molecules is less than 5,000 daltons, such as 2,500 daltons, or 1,000 daltons.
- the preparation of pre-SOFs may be used to increase the loading of the molecular building blocks in the reaction mixture.
- the molar percentage of functional groups that are activated may be less than 50%, such as about 30% to about 10%, or about 10% to about 5%.
- pre-SOF formation by the reaction between molecular building blocks or pre-SOF formation by the ‘activation’ of molecular building block functional groups may occur in combination and the molecular building blocks incorporated into pre-SOF structures may contain activated functional groups.
- pre-SOF formation by the reaction between molecular building blocks and pre-SOF formation by the ‘activation’ of molecular building block functional groups may occur simultaneously.
- the duration of pre-SOF formation lasts about 10 seconds to about 48 hours, such as about 30 seconds to about 12 hours, or about 1 minute to 6 hours.
- reaction mixture needs to have a viscosity that will support the deposited wet layer.
- Reaction mixture viscosities range from about 10 to about 50,000 cps, such as from about 25 to about 25,000 cps or from about 50 to about 1000 cps.
- the molecular building block loading or “loading” in the reaction mixture is defined as the total weight of the molecular building blocks and optionally the catalysts divided by the total weight of the reaction mixture. Building block loadings may range from about 3 to 100%, such as from about 5 to about 50%, or from about 15 to about 40%. In the case where a liquid molecular building block is used as the only liquid component of the reaction mixture (i.e. no additional liquid is used), the building block loading would be about 100%.
- the pre-SOF may be made from building blocks with one or more of the added functionality selected from the group consisting of hydrophobic added functionality, superhydrophobic added functionality, hydrophilic added functionality, lipophobic added functionality, superlipophobic added functionality, lipophilic added functionality, photochromic added functionality, and electroactive added functionality.
- the inclined property of the molecular building blocks is the same as the added functionality of the pre-SOF.
- the added functionality of the SOF is not an inclined property of the molecular building blocks.
- Liquids used in the reaction mixture may be pure liquids, such as solvents, and/or solvent mixtures. Liquids are used to dissolve or suspend the molecular building blocks and catalyst/modifiers in the reaction mixture. Liquid selection is generally based on balancing the solubility/dispersion of the molecular building blocks and a particular building block loading, the viscosity of the reaction mixture, and the boiling point of the liquid, which impacts the promotion of the wet layer to the dry SOF. Suitable liquids may have boiling points from about 30 to about 300° C., such as from about 65° C. to about 250° C., or from about 100° C. to about 180° C.
- Liquids can include molecule classes such as alkanes (hexane, heptane, octane, nonane, decane, cyclohexane, cycloheptane, cyclooctane, decalin); mixed alkanes (hexanes, heptanes); branched alkanes (isooctane); aromatic compounds (toluene, o-, m-, p-xylene, mesitylene, nitrobenzene, benzonitrile, butylbenzene, aniline); ethers (benzyl ethyl ether, butyl ether, isoamyl ether, propyl ether); cyclic ethers (tetrahydrofuran, dioxane), esters (ethyl acetate, butyl acetate, butyl butyrate, ethoxyethyl acetate, ethyl prop
- Mixed liquids comprising a first solvent, second solvent, third solvent, and so forth may also be used in the reaction mixture.
- Two or more liquids may be used to aid the dissolution/dispersion of the molecular building blocks; and/or increase the molecular building block loading; and/or allow a stable wet film to be deposited by aiding the wetting of the substrate and deposition instrument; and/or modulate the promotion of the wet layer to the dry SOF.
- the second solvent is a solvent whose boiling point or vapor-pressure curve or affinity for the molecular building blocks differs from that of the first solvent.
- a first solvent has a boiling point higher than that of the second solvent.
- the second solvent has a boiling point equal to or less than about 130° C., such as a boiling point equal to or less than about 100° C., for example in the range of from about 30° C. to about 100° C., or in the range of from about 40° C. to about 90° C., or about 50° C. to about 80° C.
- the first solvent, or higher boiling point solvent has a boiling point equal to or greater than about 65° C., such as in the range of from about 80° C. to about 300° C., or in the range of from about 100° C. to about 250° C., or about 100° C. to about 180° C.
- the higher boiling point solvent may include, for example, the following (the value in parentheses is the boiling point of the compound): hydrocarbon solvents such as amylbenzene (202° C.), isopropylbenzene (152° C.), 1,2-diethylbenzene (183° C.), 1,3-diethylbenzene (181° C.), 1,4-diethylbenzene (184° C.), cyclohexylbenzene (239° C.), dipentene (177° C.), 2,6-dimethylnaphthalene (262° C.), p-cymene (177° C.), camphor oil (160-185° C.), solvent naphtha (110-200° C.), cis-decalin (196° C.), trans-decalin (187° C.), decane (174° C.), tetralin (207° C.), turpentine oil (153-175° C.), kerosene (200-245
- the ratio of the mixed liquids may be established by one skilled in the art.
- the ratio of liquids a binary mixed liquid may be from about 1:1 to about 99:1, such as from about 1:10 to about 10:1, or about 1:5 to about 5:1, by volume.
- n liquids are used, with n ranging from about 3 to about 6, the amount of each liquid ranges from about 1% to about 95% such that the sum of each liquid contribution equals 100%.
- the mixed liquid comprises at least a first and a second solvent with different boiling points.
- the difference in boiling point between the first and the second solvent may be from about nil to about 150° C., such as from nil to about 50° C.
- the boiling point of the first solvent may exceed the boiling point of the second solvent by about 1° C. to about 100° C., such as by about 5° C. to about 100° C., or by about 10° C. to about 50° C.
- the mixed liquid may comprise at least a first and a second solvent with different vapor pressures, such as combinations of high vapor pressure solvents and/or low vapor pressure solvents.
- high vapor pressure solvent refers to, for example, a solvent having a vapor pressure of at least about 1 kPa, such as about 2 kPa, or about 5 kPa.
- low vapor pressure solvent refers to, for example, a solvent having a vapor pressure of less than about 1 kPa, such as about 0.9 kPa, or about 0.5 kPa.
- the first solvent may be a low vapor pressure solvent such as, for example, terpineol, diethylene glycol, ethylene glycol, hexylene glycol, N-methyl-2-pyrrolidone, and tri(ethylene glycol) dimethyl ether.
- a high vapor pressure solvent allows rapid removal of the solvent by drying and/or evaporation at temperatures below the boiling point.
- High vapor pressure solvents may include, for example, acetone, tetrahydrofuran, toluene, xylene, ethanol, methanol, 2-butanone and water.
- promoting the change of the wet film and forming the dry SOF may comprise, for example, heating the wet film to a temperature above the boiling point of the reaction mixture to form the dry SOF film; or heating the wet film to a temperature above the boiling point of the second solvent (below the temperature of the boiling point of the first solvent) in order to remove the second solvent while substantially leaving the first solvent and then after substantially removing the second solvent, removing the first solvent by heating the resulting composition at a temperature either above or below the boiling point of the first solvent to form the dry SOF film; or heating the wet film below the boiling point of the second solvent in order to remove the second solvent (which is a high vapor pressure solvent) while substantially leaving the first solvent and, after removing the second solvent, removing the first solvent by heating the resulting composition at a temperature either above or below the boiling point of the first solvent to form the dry SOF film.
- substantially removing refers to, for example, the removal of at least 90% of the respective solvent, such as about 95% of the respective solvent.
- substantially leaving refers to, for example, the removal of no more than 2% of the respective solvent, such as removal of no more than 1% of the respective solvent.
- These mixed liquids may be used to slow or speed up the rate of conversion of the wet layer to the SOF in order to manipulate the characteristics of the SOFs.
- liquids such as water, 1°, 2°, or 3° alcohols (such as methanol, ethanol, propanol, isopropanol, butanol, 1-methoxy-2-propanol, tert-butanol) may be used.
- Catalysts may be homogeneous (dissolved) or heterogeneous (undissolved or partially dissolved) and include Brönsted acids (HCl(aq), acetic acid, p-toluenesulfonic acid, amine-protected p-toluenesulfonic acid such as pyrridium p-toluenesulfonate, trifluoroacetic acid); Lewis acids (boron trifluoroetherate, aluminum trichloride); Brönsted bases (metal hydroxides such as sodium hydroxide, lithium hydroxide, potassium hydroxide; 1°, 2°, or 3° amines such as butylamine, diisopropylamine, triethylamine, diisoproylethylamine); Lewis bases (N,N-dimethyl
- additives or secondary components may be present in the reaction mixture and wet layer. Such additives or secondary components may also be integrated into a dry SOF. Additives or secondary components can be homogeneous or heterogeneous in the reaction mixture and wet layer or in a dry SOF.
- additive or “secondary component,” refer, for example, to atoms or molecules that are not covalently bound in the SOF, but are randomly distributed in the composition.
- Additives may be used to alter the physical properties of the SOF such as electrical properties (conductivity, semiconductivity, electron transport, hole transport), surface energy (hydrophobicity, hydrophilicity), tensile strength, thermal conductivity, impact modifiers, reinforcing fibers, antiblocking agents, lubricants, antistatic agents, coupling agents, wetting agents, antifogging agents, flame retardants, ultraviolet stabilizers, antioxidants, biocides, dyes, pigments, odorants, deodorants, nucleating agents and the like.
- Process Action B Depositing the Reaction Mixture as a Wet Film
- the reaction mixture may be applied as a wet film to a variety of substrates using a number of liquid deposition techniques.
- the thickness of the SOF is dependant on the thickness of the wet film and the molecular building block loading in the reaction mixture.
- the thickness of the wet film is dependent on the viscosity of the reaction mixture and the method used to deposit the reaction mixture as a wet film.
- Substrates include, for example, polymers, papers, metals and metal alloys, doped and undoped forms of elements from Groups III-VI of the periodic table, metal oxides, metal chalcogenides, and previously prepared SOF films.
- polymer film substrates include polyesters, polyolefins, polycarbonates, polystyrenes, polyvinylchloride, block and random copolymers thereof, and the like.
- metallic surfaces include metallized polymers, metal foils, metal plates; mixed material substrates such as metals patterned or deposited on polymer, semiconductor, metal oxide, or glass substrates.
- Examples of substrates comprised of doped and undoped elements from Groups III-VI of the periodic table include, aluminum, silicon, silicon n-doped with phosphorous, silicon p-doped with boron, tin, gallium arsenide, lead, gallium indium phosphide, and indium.
- Examples of metal oxides include silicon dioxide, titanium dioxide, indium tin oxide, tin dioxide, selenium dioxide, and alumina.
- Examples of metal chalcogenides include cadmium sulfide, cadmium telluride, and zinc selenide. Additionally, it is appreciated that chemically treated or mechanically modified forms of the above substrates remain within the scope of surfaces which may be coated with the reaction mixture.
- the substrate may be composed of, for example, silicon, glass plate, plastic film or sheet.
- a plastic substrate such as polyester, polycarbonate, polyimide sheets and the like may be used.
- the thickness of the substrate may be from around 10 micrometers to over 10 millimeters with an exemplary thickness being from about 50 to about 100 micrometers, especially for a flexible plastic substrate, and from about 1 to about 10 millimeters for a rigid substrate such as glass or silicon.
- the reaction mixture may be applied to the substrate using a number of liquid deposition techniques including, for example, spin coating, blade coating, web coating, dip coating, cup coating, rod coating, screen printing, ink jet printing, spray coating, stamping and the like.
- the method used to deposit the wet layer depends on the nature, size, and shape of the substrate and the desired wet layer thickness.
- the thickness of the wet layer can range from about 10 nm to about 5 mm, such as from about 100 nm to about 1 mm, or from about 1 ⁇ m to about 500 ⁇ m.
- Process Action C Promoting the Change of Wet Film to the Dry SOF
- promoting refers, for example, to any suitable technique to facilitate a reaction of the molecular building blocks.
- promoting also refers to removal of the liquid. Reaction of the molecular building blocks and removal of the liquid can occur sequentially or concurrently.
- the term “promoting” may also refer, for example, to any suitable technique to facilitate a reaction of the molecular building blocks and/or pre-SOFs, such as a chemical reaction of the functional groups of the building blocks and/or pre-SOFs. Reaction of the molecular building blocks and/or pre-SOFs and removal of the liquid can occur sequentially or concurrently.
- the liquid is also one of the molecular building blocks and is incorporated into the SOF.
- dry SOF refers, for example, to substantially dry films such as, for example, a substantially dry SOF may have a liquid content less than about 5% by weight of the SOF, or a liquid content less than about 2% by weight of the SOF.
- Promoting the wet layer to form a dry SOF may be accomplished by any suitable technique. Promoting the wet layer to form a dry SOF typically involves thermal treatment including, for example, oven drying, infrared radiation (IR), and the like with temperatures ranging from 40 to 350° C. and from 60 to 200° C. and from 85 to 160° C. The total heating time can range from about four seconds to about 24 hours, such as from one minute to 120 minutes, or from three minutes to 60 minutes.
- thermal treatment including, for example, oven drying, infrared radiation (IR), and the like with temperatures ranging from 40 to 350° C. and from 60 to 200° C. and from 85 to 160° C.
- the total heating time can range from about four seconds to about 24 hours, such as from one minute to 120 minutes, or from three minutes to 60 minutes.
- IR promotion of the wet layer to the COF film may be achieved using an IR heater module mounted over a belt transport system.
- Various types of IR emitters may be used, such as carbon IR emitters or short wave IR emitters (available from Heraerus). Additional exemplary information regarding carbon IR emitters or short wave IR emitters is summarized in the following Table.
- Process Action D Optionally Removing the SOF from the Coating Substrate to Obtain a Free-Standing SOF
- a free-standing SOF is desired.
- Free-standing SOFs may be obtained when an appropriate low adhesion substrate is used to support the deposition of the wet layer.
- Appropriate substrates that have low adhesion to the SOF may include, for example, metal foils, metalized polymer substrates, release papers and SOFs, such as SOFs prepared with a surface that has been altered to have a low adhesion or a decreased propensity for adhesion or attachment.
- Removal of the SOF from the supporting substrate may be achieved in a number of ways by someone skilled in the art. For example, removal of the SOF from the substrate may occur by starting from a corner or edge of the film and optionally assisted by passing the substrate and SOF over a curved surface.
- Process Action E Optionally Processing the Free-Standing SOF into a Roll
- a free-standing SOF or a SOF supported by a flexible substrate may be processed into a roll.
- the SOF may be processed into a roll for storage, handling, and a variety of other purposes.
- the starting curvature of the roll is selected such that the SOF is not distorted or cracked during the rolling process.
- Process Action F Optionally Cutting and Seaming the SOF into a Shape, Such as a Belt
- An SOF belt may be fabricated from a single SOF, a multi layer SOF or an SOF sheet cut from a web. Such sheets may be rectangular in shape or any particular shape as desired. All sides of the SOF(s) may be of the same length, or one pair of parallel sides may be longer than the other pair of parallel sides.
- the SOF(s) may be fabricated into shapes, such as a belt by overlap joining the opposite marginal end regions of the SOF sheet. A seam is typically produced in the overlapping marginal end regions at the point of joining. Joining may be affected by any suitable means.
- Typical joining techniques include, for example, welding (including ultrasonic), gluing, taping, pressure heat fusing and the like.
- Methods, such as ultrasonic welding are desirable general methods of joining flexible sheets because of their speed, cleanliness (no solvents) and production of a thin and narrow seam.
- Process Action G Optionally Using a SOF as a Substrate for Subsequent SOF Formation Processes
- a SOF may be used as a substrate in the SOF forming process to afford a multi-layered structured organic film.
- the layers of a multi-layered SOF may be chemically bound in or in physical contact. Chemically bound, multi-layered SOFs are formed when functional groups present on the substrate SOF surface can react with the molecular building blocks present in the deposited wet layer used to form the second structured organic film layer. Multi-layered SOFs in physical contact may not chemically bound to one another.
- a SOF substrate may optionally be chemically treated prior to the deposition of the wet layer to enable or promote chemical attachment of a second SOF layer to form a multi-layered structured organic film.
- a SOF substrate may optionally be chemically treated prior to the deposition of the wet layer to disable chemical attachment of a second SOF layer (surface pacification) to form a physical contact multi-layered SOF.
- a number of examples of the process used to make SOFs are set forth herein and are illustrative of the different compositions, conditions, techniques that may be utilized. Identified within each example are the nominal actions associated with this activity. The sequence and number of actions along with operational parameters, such as temperature, time, coating method, and the like, are not limited by the following examples. All proportions are by weight unless otherwise indicated.
- the term “rt” refers, for example, to temperatures ranging from about 20° C. to about 25° C.
- Mechanical measurements were measured on a TA Instruments DMA Q800 dynamic mechanical analyzer using methods standard in the art. Differential scanning calorimetery was measured on a TA Instruments DSC 2910 differential scanning calorimeter using methods standard in the art.
- Thermal gravimetric analysis was measured on a TA Instruments TGA 2950 thermal gravimetric analyzer using methods standard in the art.
- FT-IR spectra was measured on a Nicolet Magna 550 spectrometer using methods standard in the art.
- Thickness measurements ⁇ 1 micron were measured on a Dektak 6m Surface Profiler.
- Surface energies were measured on a Fibro DAT 1100 (Sweden) contact angle instrument using methods standard in the art.
- the SOFs produced in the following examples were either defect-free SOFs or substantially defect-free SOFs.
- the SOFs coated onto Mylar were delaminated by immersion in a room temperature water bath. After soaking for 10 minutes the SOF film generally detached from Mylar substrate. This process is most efficient with a SOF coated onto substrates known to have high surface energy (polar), such as glass, mica, salt, and the like.
- compositions prepared by the methods of the present disclosure may be practiced with many types of components and may have many different uses in accordance with the disclosure above and as pointed out hereinafter.
- An embodiment of the disclosure is to attain a SOF wherein the microscopic arrangement of segments is patterned.
- patterning refers, for example, to the sequence in which segments are linked together.
- a patterned SOF would therefore embody a composition wherein, for example, segment A is only connected to segment B, and conversely, segment B is only connected to segment A.
- a system wherein only one segment exists, say segment A, is employed is will be patterned because A is intended to only react with A.
- a patterned SOF may be achieved using any number of segment types.
- the patterning of segments may be controlled by using molecular building blocks whose functional group reactivity is intended to compliment a partner molecular building block and wherein the likelihood of a molecular building block to react with itself is minimized.
- the aforementioned strategy to segment patterning is non-limiting. Instances where a specific strategy to control patterning has not been deliberately implemented are also embodied herein.
- a patterned film may be detected using spectroscopic techniques that are capable of assessing the successful formation of linking groups in a SOF.
- spectroscopies include, for example, Fourier-transfer infrared spectroscopy, Raman spectroscopy, and solid-state nuclear magnetic resonance spectroscopy.
- Different degrees of patterning are also embodied. Full patterning of a SOF will be detected by the complete absence of spectroscopic signals from building block functional groups. Also embodied are SOFs having lowered degrees of patterning wherein domains of patterning exist within the SOF. SOFs with domains of patterning, when measured spectroscopically, will produce signals from building block functional groups which remain unmodified at the periphery of a patterned domain.
- the degree of necessary patterning to form a SOF is variable and can depend on the chosen building blocks and desired linking groups.
- the minimum degree of patterning required is that required to form a film using the process described herein, and may be quantified as formation of about 20% or more of the intended linking groups, such as about 40% or more of the intended linking groups or about 50% or more of the intended linking groups; the nominal degree of patterning embodied by the present disclosure is formation of about 60% of the intended linking group, such as formation of about 100% of the intended linking groups. Formation of linking groups may be detected spectroscopically as described earlier in the embodiments.
- EXAMPLE 1 describes the synthesis of a Type 2 SOF wherein components are combined such that etherification linking chemistry is promoted between two building blocks. The presence of an acid catalyst and a heating action yield a SOF with the method described in EXAMPLE 1.
- the mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- the metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 3-6 microns, which may be delaminated from the substrate as a single free-standing SOF. The color of the SOF was green. The Fourier-transform infrared spectrum of a portion of this SOF is provided in FIG. 1 .
- the mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- the metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building block was deposited onto the substrate.
- the mixture was shaken and heated to 60° C. until a homogenous solution resulted.
- the solution was filtered through a 0.45 micron PTFE membrane.
- an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- the metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building block was deposited onto the substrate.
- reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- the metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building blocks was deposited onto the substrate.
- each of the three control reaction mixtures were subjected to Action B and Action C as outlined in EXAMPLE 1.
- a SOF did not form; the building blocks simply precipitated on the substrate. It is concluded from these results that building blocks cannot react with themselves under the stated processing conditions nor can the building blocks react in the absence of a promoter (p-toluenesulfonic acid). Therefore, the activity described in EXAMPLE 1 is one wherein building blocks (benzene-1,4-dimethanol and N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine) can only react with each other when promoted to do so.
- a patterned SOF results when the segments p-xylyl and N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine connect only with each other.
- the Fourier-transform infrared spectrum compared to that of the products of the control experiments ( FIG. 2 ) of the SOF shows absence of functional groups (notably the absence of the hydroxyl band from the benzene-1,4-dimethanol) from the starting materials and further supports that the connectivity between segments has proceed as described above. Also, the complete absence of the hydroxyl band in the spectrum for the SOF indicates that the patterning is to a very high degree.
- A is the preparation of the liquid containing reaction mixture
- Action B is the deposition of reaction mixture as a wet film
- Action C is the promotion of the change of the wet film to a dry SOF.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.16 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 20 mil gap.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.16 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 20 mil gap.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- A Same as EXAMPLE 7.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- A Same as EXAMPLE 10.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- A Same as EXAMPLE 13.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- A Same as EXAMPLE 7.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- A Same as EXAMPLE 10.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- A Same as EXAMPLE 13.
- Action B The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns and could not be delaminated.
- A Same as EXAMPLE 7.
- Action B The reaction mixture was applied to a layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- Action C The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap.
- (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- an acid catalyst delivered as 0.15 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 15 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 6-15 microns that could be delaminated from substrate as a single free-standing film.
- the color of the SOF was green.
- the Fourier-transform infrared spectrum of this film is provided in FIG. 5 .
- Two-dimensional X-ray scattering data is provided in FIG. 8 . As seen in FIG. 8 , no signal above the background is present, indicating the absence of molecular order having any detectable periodicity.
- reaction mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.2 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- A Same as EXAMPLE 24.
- Action B The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The supported wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness of about 5 microns.
- an acid catalyst delivered as 0.045 g of a 10 wt % solution of p-toluenesulfonic acid in 1-tetrahydrofuran to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange. The Fourier-transform infrared spectrum of this film is provided in FIG. 6 .
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red. The Fourier-transform infrared spectrum of this film is provided in FIG. 7 .
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange.
- A Same as EXAMPLE 28.
- Action B The reaction mixture was dropped from a glass pipette onto a glass slide.
- Action C The glass slide was heated to 80° C. on a heating stage yielding a deep red SOF having a thickness of about 200 microns which could be delaminated from the glass slide.
- Action B The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min.
- Action C The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6.9 microns.
- Action B The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min.
- Action C The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and heated for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- the mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- the mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane.
- Action B The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- Action B The reaction mixture is to be applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 8 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 120 min.
- Action B The reaction mixture is to be applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 8 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 120 min.
- reaction B Deposition of reaction mixture as a wet film.
- the reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min.
- Action C Promotion of the change of the wet film to a dry film.
- the photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions did not provide a uniform film. There were some regions where a non-uniform film formed that contained particles and other regions where no film was formed at all.
- an acid catalyst delivered as 0.15 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLARTM substrate using a constant velocity draw down coater outfitted with a bird bar having a 15 mil gap.
- Action C The metalized MYLARTM substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 4-10 microns that could be delaminated from substrate as a single free-standing film.
- the color of the SOF was green.
- Two-dimensional X-ray scattering data is provided in FIG. 8 . As seen in FIG. 8 , 2 ⁇ is about 17.8 and d is about 4.97 angstroms, indicating that the SOF possesses molecular order having a periodicity of about 0.5 nm.
- reaction mixture is shaken and heated to 55° C. until a homogenous solution is obtained. Upon cooling to rt, the solution is filtered through a 0.45 micron PTFE membrane. To the filtered solution is added an acid catalyst delivered as 0.01 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the aluminum substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The aluminum substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min.
- reaction mixture is shaken and heated to 55° C. until a homogenous solution is obtained. Upon cooling to rt, the solution is filtered through a 0.45 micron PTFE membrane. To the filtered solution is added an acid catalyst delivered as 0.01 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied to the aluminum substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap.
- Action C The aluminum substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min.
- an acid catalyst delivered as 0.02 g of a 2.5 wt % solution of p-toluenesulfonic acid in NMP to yield the liquid containing reaction mixture.
- Action B The reaction mixture was applied quartz plate affixed to the rotating unit of a variable velocity spin coater rotating at 1000 RPM for 30 seconds.
- Action C The quartz plate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 180° C. and left to heat for 120 min. These actions provide a yellow film having a thickness of 400 nm that can be delaminated from substrate upon immersion in water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyethers (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
An ordered structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein the structured organic film may be a multi-segment thick structured organic film.
Description
- This application is a divisional application of U.S. patent application Ser. No. 12/815,688, the disclosure of which is totally incorporated herein by reference in its entirety.
- Commonly assigned U.S. patent application Ser. Nos. 12/716,524; 12/716,449; 12/716,706; 12/716,324; 12/716,686; and Ser. No. 12/716,571, entitled “Structured Organic Films,” “Structured Organic Films Having an Added Functionality,” “Mixed Solvent Process for Preparing Structured Organic Films,” “Composite Structured Organic Films,” “Process For Preparing Structured Organic Films (SOFs) Via a Pre-SOF,” “Electronic Devices Comprising Structured Organic Films,” respectively, the disclosures of which are totally incorporated herein by reference in their entireties, describe structured organic films, methods for preparing structured organic films and applications of structured organic films.
- Materials whose chemical structures are comprised of molecules linked by covalent bonds into extended structures may be placed into two classes: (1) polymers and cross-linked polymers, and (2) covalent organic frameworks (also known as covalently linked organic networks).
- The first class, polymers and cross-linked polymers, is typically embodied by polymerization of molecular monomers to form long linear chains of covalently-bonded molecules. Polymer chemistry processes can allow for polymerized chains to, in turn, or concomitantly, become ‘cross-linked.’ The nature of polymer chemistry offers poor control over the molecular-level structure of the formed material, i.e. the organization of polymer chains and the patterning of molecular monomers between chains is mostly random. Nearly all polymers are amorphous, save for some linear polymers that efficiently pack as ordered rods. Some polymer materials, notably block co-polymers, can possess regions of order within their bulk. In the two preceding cases the patterning of polymer chains is not by design, any ordering at the molecular-level is a consequence of the natural intermolecular packing tendencies.
- The second class, covalent organic frameworks (COFs), differ from the first class (polymers/cross-linked polymers) in that COFs are intended to be highly patterned. In COF chemistry molecular components are called molecular building blocks rather than monomers. During COF synthesis molecular building blocks react to form two- or three-dimensional networks. Consequently, molecular building blocks are patterned throughout COF materials and molecular building blocks are linked to each other through strong covalent bonds.
- COFs developed thus far are typically powders with high porosity and are materials with exceptionally low density. COFs can store near-record amounts of argon and nitrogen. While these conventional COFs are useful, there is a need, addressed by embodiments of the present invention, for new materials that offer advantages over conventional COFs in terms of enhanced characteristics.
- There is provided in embodiments an ordered (periodic) structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein at a macroscopic level the covalent organic framework is a film.
- Other aspects of the present disclosure will become apparent as the following description proceeds and upon reference to the following figures which represent illustrative embodiments:
-
FIG. 1 is a graphic representation that compares the Fourier transform infrared spectral of the products of control experiments mixtures, wherein only N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine is added to the liquid reaction mixture (top), wherein only benzene-1,4-dimethanol is added to the liquid reaction mixture (middle), and wherein the necessary components needed to form a patternedType 2 SOF are included into the liquid reaction mixture (bottom). -
FIG. 2 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, p-xylyl segments, and ether linkers. -
FIG. 3 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, n-hexyl segments, and ether linkers. -
FIG. 4 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine segments, 4,4′-(cyclohexane-1,1-diyl)diphenyl, and ether linkers. -
FIG. 5 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising of triphenylamine segments and ether linkers. -
FIG. 6 is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising triphenylamine segments, benzene segments, and imine linkers. -
FIG. 7 . is a graphic representation of a Fourier transform infrared spectrum of a free standing SOF comprising triphenylamine segments, and imine linkers. -
FIG. 8 is a graphic representation of two-dimensional X-ray scattering data for the SOFs produced in Examples 26 and 54. - “Structured organic film” (SOF) is a new term introduced by the present disclosure to refer to a COF that is a film at a macroscopic level. The term “SOF” refers to a covalent organic framework (COF) that is a film at a macroscopic level. The phrase “macroscopic level” refers, for example, to the naked eye view of the present SOFs. Although COFs are a network at the “microscopic level” or “molecular level” (requiring use of powerful magnifying equipment or as assessed using scattering methods), the present SOF is fundamentally different at the “macroscopic level” because the film is for instance orders of magnitude larger in coverage than a microscopic level COF network. SOFs described herein have macroscopic morphologies much different than typical COFs previously synthesized. COFs previously synthesized were typically obtained as polycrystalline or particulate powders wherein the powder is a collection of at least thousands of particles (crystals) where each particle (crystal) can have dimensions ranging from nanometers to millimeters. The shape of the particles can range from plates, spheres, cubes, blocks, prisms, etc. The composition of each particle (crystal) is the same throughout the entire particle while at the edges, or surfaces of the particle, is where the segments of the covalently-linked framework terminate. The SOFs described herein are not collections of particles. Instead, the SOFs of the present disclosure are at the macroscopic level substantially defect-free SOFs or defect-free SOFs having continuous covalent organic frameworks that can extend over larger length scales such as for instance much greater than a millimeter to lengths such as a meter and, in theory, as much as hundreds of meters. It will also be appreciated that SOFs tend to have large aspect ratios where typically two dimensions of a SOF will be much larger than the third. SOFs have markedly fewer macroscopic edges and disconnected external surfaces than a collection of COF particles.
- In embodiments, a “substantially defect-free SOF” or “defect-free SOF” may be formed from a reaction mixture deposited on the surface of an underlying substrate. The term “substantially defect-free SOF” refers, for example, to an SOF that may or may not be removed from the underlying substrate on which it was formed and contains substantially no pinholes, pores or gaps greater than the distance between the cores of two adjacent segments per square cm; such as, for example, less than 10 pinholes, pores or gaps greater than about 250 nanometers in diameter per cm2, or less than 5 pinholes, pores or gaps greater than about 100 nanometers in diameter per cm2. The term “defect-free SOF” refers, for example, to an SOF that may or may not be removed from the underlying substrate on which it was formed and contains no pinholes, pores or gaps greater than the distance between the cores of two adjacent segments per micron, such as no pinholes, pores or gaps greater than about 100 Angstroms in diameter per micron2, or no pinholes, pores or gaps greater than about 50 Angstroms in diameter per micron2, or no pinholes, pores or gaps greater than about 20 Angstroms in diameter per micron2.
- In embodiments, the SOF comprises at least one atom of an element that is not carbon, such at least one atom selected from the group consisting of hydrogen, oxygen, nitrogen, silicon, phosphorous, selenium, fluorine, boron, and sulfur. In further embodiments, the SOF is a boroxine-, borazine-, borosilicate-, and boronate ester-free SOF.
- Molecular Building Block
- The SOFs of the present disclosure comprise molecular building blocks having a segment (S) and functional groups (Fg). Molecular building blocks require at least two functional groups (x≧2) and may comprise a single type or two or more types of functional groups. Functional groups are the reactive chemical moieties of molecular building blocks that participate in a chemical reaction to link together segments during the SOF forming process. A segment is the portion of the molecular building block that supports functional groups and comprises all atoms that are not associated with functional groups. Further, the composition of a molecular building block segment remains unchanged after SOF formation.
- Functional Group
- Functional groups are the reactive chemical moieties of molecular building blocks that participate in a chemical reaction to link together segments during the SOF forming process. Functional groups may be composed of a single atom, or functional groups may be composed of more than one atom. The atomic compositions of functional groups are those compositions normally associated with reactive moieties in chemical compounds. Non-limiting examples of functional groups include halogens, alcohols, ethers, ketones, carboxylic acids, esters, carbonates, amines, amides, imines, ureas, aldehydes, isocyanates, tosylates, alkenes, alkynes and the like.
- Molecular building blocks contain a plurality of chemical moieties, but only a subset of these chemical moieties are intended to be functional groups during the SOF forming process. Whether or not a chemical moiety is considered a functional group depends on the reaction conditions selected for the SOF forming process. Functional groups (Fg) denote a chemical moiety that is a reactive moiety, that is, a functional group during the SOF forming process.
- In the SOF forming process the composition of a functional group will be altered through the loss of atoms, the gain of atoms, or both the loss and the gain of atoms; or, the functional group may be lost altogether. In the SOF, atoms previously associated with functional groups become associated with linker groups, which are the chemical moieties that join together segments. Functional groups have characteristic chemistries and those of ordinary skill in the art can generally recognize in the present molecular building blocks the atom(s) that constitute functional group(s). It should be noted that an atom or grouping of atoms that are identified as part of the molecular building block functional group may be preserved in the linker group of the SOF. Linker groups are described below.
- Segment
- A segment is the portion of the molecular building block that supports functional groups and comprises all atoms that are not associated with functional groups. Further, the composition of a molecular building block segment remains unchanged after SOF formation. In embodiments, the SOF may contain a first segment having a structure the same as or different from a second segment. In other embodiments, the structures of the first and/or second segments may be the same as or different from a third segment, forth segment, fifth segment, etc. A segment is also the portion of the molecular building block that can provide an inclined property. Inclined properties are described later in the embodiments.
- In specific embodiments, the segment of the SOF comprises at least one atom of an element that is not carbon, such at least one atom selected from the group consisting of hydrogen, oxygen, nitrogen, silicon, phosphorous, selenium, fluorine, boron, and sulfur.
- A description of various exemplary molecular building blocks, linkers, SOF types, strategies to synthesize a specific SOF type with exemplary chemical structures, building blocks whose symmetrical elements are outlined, and classes of exemplary molecular entities and examples of members of each class that may serve as molecular building blocks for SOFs are detailed in U.S. patent application Ser. Nos. 12/716,524; 12/716,449; 12/716,706; 12/716,324; 12/716,686; and 12/716,571, entitled “Structured Organic Films,” “Structured Organic Films Having an Added Functionality,” “Mixed Solvent Process for Preparing Structured Organic Films,” “Composite Structured Organic Films,” “Process For Preparing Structured Organic Films (SOFs) Via a Pre-SOF,” “Electronic Devices Comprising Structured Organic Films,” the disclosures of which are totally incorporated herein by reference in their entireties.
- Metrical Parameters of SOFs
- SOFs have any suitable aspect ratio. In embodiments, SOFs have aspect ratios for instance greater than about 30:1 or greater than about 50:1, or greater than about 70:1, or greater than about 100:1, such as about 1000:1. The aspect ratio of a SOF is defined as the ratio of its average width or diameter (that is, the dimension next largest to its thickness) to its average thickness (that is, its shortest dimension). The term ‘aspect ratio,’ as used here, is not bound by theory. The longest dimension of a SOF is its length and it is not considered in the calculation of SOF aspect ratio.
- Generally, SOFs have widths and lengths, or diameters greater than about 500 micrometers, such as about 10 mm, or 30 mm. The SOFs have the following illustrative thicknesses: about 10 Angstroms to about 250 Angstroms, such as about 20 Angstroms to about 200 Angstroms, for a mono-segment thick layer and about 20 nm to about 5 mm, about 50 nm to about 10 mm for a multi-segment thick layer.
- SOF dimensions may be measured using a variety of tools and methods. For a dimension about 1 micrometer or less, scanning electron microscopy is the preferred method. For a dimension about 1 micrometer or greater, a micrometer (or ruler) is the preferred method.
- Multilayer SOFs
- A SOF may comprise a single layer or a plurality of layers (that is, two, three or more layers). SOFs that are comprised of a plurality of layers may be physically joined (e.g., dipole and hydrogen bond) or chemically joined. Physically attached layers are characterized by weaker interlayer interactions or adhesion; therefore physically attached layers may be susceptible to delamination from each other. Chemically attached layers are expected to have chemical bonds (e.g., covalent or ionic bonds) or have numerous physical or intermolecular (supramolecular) entanglements that strongly link adjacent layers.
- Therefore, delamination of chemically attached layers is much more difficult. Chemical attachments between layers may be detected using spectroscopic methods such as focusing infrared or Raman spectroscopy, or with other methods having spatial resolution that can detect chemical species precisely at interfaces. In cases where chemical attachments between layers are different chemical species than those within the layers themselves it is possible to detect these attachments with sensitive bulk analyses such as solid-state nuclear magnetic resonance spectroscopy or by using other bulk analytical methods.
- In the embodiments, the SOF may be a single layer (mono-segment thick or multi-segment thick) or multiple layers (each layer being mono-segment thick or multi-segment thick). “Thickness” refers, for example, to the smallest dimension of the film. As discussed above, in a SOF, segments are molecular units that are covalently bonded through linkers to generate the molecular framework of the film. The thickness of the film may also be defined in terms of the number of segments that is counted along that axis of the film when viewing the cross-section of the film. A “monolayer” SOF is the simplest case and refers, for example, to where a film is one segment thick. A SOF where two or more segments exist along this axis is referred to as a “multi-segment” thick SOF.
- An exemplary method for preparing physically attached multilayer SOFs includes: (1) forming a base SOF layer that may be cured by a first curing cycle, and (2) forming upon the base layer a second reactive wet layer followed by a second curing cycle and, if desired, repeating the second step to form a third layer, a forth layer and so on. The physically stacked multilayer SOFs may have thicknesses greater than about 20 Angstroms such as, for example, the following illustrative thicknesses: about 20 Angstroms to about 10 cm, such as about 1 nm to about 10 mm, or about 0.1 mm Angstroms to about 5 mm. In principle there is no limit with this process to the number of layers that may be physically stacked.
- In embodiments, a multilayer SOF is formed by a method for preparing chemically attached multilayer SOFs by: (1) forming a base SOF layer having functional groups present on the surface (or dangling functional groups) from a first reactive wet layer, and (2) forming upon the base layer a second SOF layer from a second reactive wet layer that comprises molecular building blocks with functional groups capable of reacting with the dangling functional groups on the surface of the base SOF layer. In further embodiments, a capped SOF may serve as the base layer in which the functional groups present that were not suitable or complementary to participate in the specific chemical reaction to link together segments during the base layer SOF forming process may be available for reacting with the molecular building blocks of the second layer to from an chemically bonded multilayer SOF. If desired, the formulation used to form the second SOF layer should comprise molecular building blocks with functional groups capable of reacting with the functional groups from the base layer as well as additional functional groups that will allow for a third layer to be chemically attached to the second layer. The chemically stacked multilayer SOFs may have thicknesses greater than about 20 Angstroms such as, for example, the following illustrative thicknesses: about 20 Angstroms to about 10 cm, such as about 1 nm to about 10 mm, or about 0.1 mm Angstroms to about 5 mm. In principle there is no limit with this process to the number of layers that may be chemically stacked.
- In embodiments, the method for preparing chemically attached multilayer SOFs comprises promoting chemical attachment of a second SOF onto an existing SOF (base layer) by using a small excess of one molecular building block (when more than one molecular building block is present) during the process used to form the SOF (base layer) whereby the functional groups present on this molecular building block will be present on the base layer surface. The surface of base layer may be treated with an agent to enhance the reactivity of the functional groups or to create an increased number of functional groups.
- In an embodiment the dangling functional groups or chemical moieties present on the surface of an SOF or capped SOF may be altered to increase the propensity for covalent attachment (or, alternatively, to disfavor covalent attachment) of particular classes of molecules or individual molecules, such as SOFs, to a base layer or any additional substrate or SOF layer. For example, the surface of a base layer, such as an SOF layer, which may contain reactive dangling functional groups, may be rendered pacified through surface treatment with a capping chemical group. For example, a SOF layer having dangling hydroxyl alcohol groups may be pacified by treatment with trimethylsiylchloride thereby capping hydroxyl groups as stable trimethylsilylethers. Alternatively, the surface of base layer may be treated with a non-chemically bonding agent, such as a wax, to block reaction with dangling functional groups from subsequent layers.
- Molecular Building Block Symmetry
- Molecular building block symmetry relates to the positioning of functional groups (Fgs) around the periphery of the molecular building block segments. Without being bound by chemical or mathematical theory, a symmetric molecular building block is one where positioning of Fgs may be associated with the ends of a rod, vertexes of a regular geometric shape, or the vertexes of a distorted rod or distorted geometric shape. For example, the most symmetric option for molecular building blocks containing four Fgs are those whose Fgs overlay with the corners of a square or the apexes of a tetrahedron.
- Use of symmetrical building blocks is practiced in embodiments of the present disclosure for two reasons: (1) the patterning of molecular building blocks may be better anticipated because the linking of regular shapes is a better understood process in reticular chemistry, and (2) the complete reaction between molecular building blocks is facilitated because for less symmetric building blocks errant conformations/orientations may be adopted which can possibly initiate numerous linking defects within SOFs.
- In embodiments, a
Type 1 SOF contains segments, which are not located at the edges of the SOF, that are connected by linkers to at least three other segments. For example, in embodiments the SOF comprises at least one symmetrical building block selected from the group consisting of ideal triangular building blocks, distorted triangular building blocks, ideal tetrahedral building blocks, distorted tetrahedral building blocks, ideal square building blocks, and distorted square building blocks. In embodiments, 2 and 3 SOF contains at least one segment type, which are not located at the edges of the SOF, that are connected by linkers to at least three other segments. For example, in embodiments the SOF comprises at least one symmetrical building block selected from the group consisting of ideal triangular building blocks, distorted triangular building blocks, ideal tetrahedral building blocks, distorted tetrahedral building blocks, ideal square building blocks, and distorted square building blocks.Type - Practice of Linking Chemistry
- In embodiments linking chemistry may occur wherein the reaction between functional groups produces a volatile byproduct that may be largely evaporated or expunged from the SOF during or after the film forming process or wherein no byproduct is formed. Linking chemistry may be selected to achieve a SOF for applications where the presence of linking chemistry byproducts is not desired. Linking chemistry reactions may include, for example, condensation, addition/elimination, and addition reactions, such as, for example, those that produce esters, imines, ethers, carbonates, urethanes, amides, acetals, and silyl ethers.
- In embodiments the linking chemistry via a reaction between function groups producing a non-volatile byproduct that largely remains incorporated within the SOF after the film forming process. Linking chemistry in embodiments may be selected to achieve a SOF for applications where the presence of linking chemistry byproducts does not impact the properties or for applications where the presence of linking chemistry byproducts may alter the properties of a SOF (such as, for example, the electroactive, hydrophobic or hydrophilic nature of the SOF). Linking chemistry reactions may include, for example, substitution, metathesis, and metal catalyzed coupling reactions, such as those that produce carbon-carbon bonds.
- For all linking chemistry the ability to control the rate and extent of reaction between building blocks via the chemistry between building block functional groups is an important aspect of the present disclosure. Reasons for controlling the rate and extent of reaction may include adapting the film forming process for different coating methods and tuning the microscopic arrangement of building blocks to achieve a periodic SOF, as defined in earlier embodiments.
- Innate Properties of COFs
- COFs have innate properties such as high thermal stability (typically higher than 400° C. under atmospheric conditions); poor solubility in organic solvents (chemical stability), and porosity (capable of reversible guest uptake). In embodiments, SOFs may also possess these innate properties.
- Added Functionality of SOFs
- Added functionality denotes a property that is not inherent to conventional COFs and may occur by the selection of molecular building blocks wherein the molecular compositions provide the added functionality in the resultant SOF. Added functionality may arise upon assembly of molecular building blocks having an “inclined property” for that added functionality. Added functionality may also arise upon assembly of molecular building blocks having no “inclined property” for that added functionality but the resulting SOF has the added functionality as a consequence of linking segments (S) and linkers into a SOF. Furthermore, emergence of added functionality may arise from the combined effect of using molecular building blocks bearing an “inclined property” for that added functionality whose inclined property is modified or enhanced upon linking together the segments and linkers into a SOF.
- An Inclined Property of a Molecular Building Block
- The term “inclined property” of a molecular building block refers, for example, to a property known to exist for certain molecular compositions or a property that is reasonably identifiable by a person skilled in art upon inspection of the molecular composition of a segment. As used herein, the terms “inclined property” and “added functionality” refer to the same general property (e.g., hydrophobic, electroactive, etc.) but “inclined property” is used in the context of the molecular building block and “added functionality” is used in the context of the SOF.
- The hydrophobic (superhydrophobic), hydrophilic, lipophobic (superlipophobic), lipophilic, photochromic and/or electroactive (conductor, semiconductor, charge transport material) nature of an SOF are some examples of the properties that may represent an “added functionality” of an SOF. These and other added functionalities may arise from the inclined properties of the molecular building blocks or may arise from building blocks that do not have the respective added functionality that is observed in the SOF.
- The term hydrophobic (superhydrophobic) refers, for example, to the property of repelling water, or other polar species such as methanol, it also means an inability to absorb water and/or to swell as a result. Furthermore, hydrophobic implies an inability to form strong hydrogen bonds to water or other hydrogen bonding species. Hydrophobic materials are typically characterized by having water contact angles greater than 90° and superhydrophobic materials have water contact angles greater than 150° as measured using a contact angle goniometer or related device.
- The term hydrophilic refers, for example, to the property of attracting, adsorbing, or absorbing water or other polar species, or a surface that is easily wetted by such species. Hydrophilic materials are typically characterized by having less than 20° water contact angle as measured using a contact angle goniometer or related device. Hydrophilicity may also be characterized by swelling of a material by water or other polar species, or a material that can diffuse or transport water, or other polar species, through itself. Hydrophilicity, is further characterized by being able to form strong or numerous hydrogen bonds to water or other hydrogen bonding species.
- The term lipophobic (oleophobic) refers, for example, to the property of repelling oil or other non-polar species such as alkanes, fats, and waxes. Lipophobic materials are typically characterized by having oil contact angles greater than 90° as measured using a contact angle goniometer or related device.
- The term lipophilic (oleophilic) refers, for example, to the property attracting oil or other non-polar species such as alkanes, fats, and waxes or a surface that is easily wetted by such species. Lipophilic materials are typically characterized by having a low to nil oil contact angle as measured using, for example, a contact angle goniometer. Lipophilicity can also be characterized by swelling of a material by hexane or other non-polar liquids.
- The term photochromic refers, for example, to the ability to demonstrate reversible color changes when exposed to electromagnetic radiation. SOF compositions containing photochromic molecules may be prepared and demonstrate reversible color changes when exposed to electromagnetic radiation. These SOFs may have the added functionality of photochromism. The robustness of photochromic SOFs may enable their use in many applications, such as photochromic SOFs for erasable paper, and light responsive films for window tinting/shading and eye wear. SOF compositions may contain any suitable photochromic molecule, such as a difunctional photochromic molecules as SOF molecular building blocks (chemically bound into SOF structure), a monofunctional photochromic molecules as SOF capping units (chemically bound into SOF structure, or unfunctionalized photochromic molecules in an SOF composite (not chemically bound into SOF structure). Photochromic SOFs may change color upon exposure to selected wavelengths of light and the color change may be reversible.
- SOF compositions containing photochromic molecules that chemically bond to the SOF structure are exceptionally chemically and mechanically robust photochromic materials. Such photochromic SOF materials demonstrate many superior properties, such as high number of reversible color change processes, to available polymeric alternatives.
- The term electroactive refers, for example, to the property to transport electrical charge (electrons and/or holes). Electroactive materials include conductors, semiconductors, and charge transport materials. Conductors are defined as materials that readily transport electrical charge in the presence of a potential difference. Semiconductors are defined as materials do not inherently conduct charge but may become conductive in the presence of a potential difference and an applied stimuli, such as, for example, an electric field, electromagnetic radiation, heat, and the like. Charge transport materials are defined as materials that can transport charge when charge is injected from another material such as, for example, a dye, pigment, or metal in the presence of a potential difference.
- Conductors may be further defined as materials that give a signal using a potentiometer from about 0.1 to about 107 S/cm.
- Semiconductors may be further defined as materials that give a signal using a potentiometer from about 10−6 to about 104 S/cm in the presence of applied stimuli such as, for example an electric field, electromagnetic radiation, heat, and the like. Alternatively, semiconductors may be defined as materials having electron and/or hole mobility measured using time-of-flight techniques in the range of 10−10 to about 106 cm2V−1s−1 when exposed to applied stimuli such as, for example an electric field, electromagnetic radiation, heat, and the like.
- Charge transport materials may be further defined as materials that have electron and/or hole mobility measured using time-of-flight techniques in the range of 10−10 to about 106 cm2V−1s−1. It should be noted that under some circumstances charge transport materials may be also classified as semiconductors.
- SOFs with hydrophobic added functionality may be prepared by using molecular building blocks with inclined hydrophobic properties and/or have a rough, textured, or porous surface on the sub-micron to micron scale. A paper describing materials having a rough, textured, or porous surface on the sub-micron to micron scale being hydrophobic was authored by Cassie and Baxter (Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc., 1944, 40, 546).
- Molecular building blocks comprising or bearing highly-fluorinated segments have inclined hydrophobic properties and may lead to SOFs with hydrophobic added functionality. Highly-fluorinated segments are defined as the number of fluorine atoms present on the segment(s) divided by the number of hydrogen atoms present on the segment(s) being greater than one. Fluorinated segments, which are not highly-fluorinated segments may also lead to SOFs with hydrophobic added functionality.
- The above-mentioned fluorinated segments may include, for example, tetrafluorohydroquinone, perfluoroadipic acid hydrate, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-(hexafluoroisopropylidene)diphenol, and the like.
- SOFs having a rough, textured, or porous surface on the sub-micron to micron scale may also be hydrophobic. The rough, textured, or porous SOF surface can result from dangling functional groups present on the film surface or from the structure of the SOF. The type of pattern and degree of patterning depends on the geometry of the molecular building blocks and the linking chemistry efficiency. The feature size that leads to surface roughness or texture is from about 100 nm to about 10 μm, such as from about 500 nm to about 5 μm.
- SOFs with hydrophilic added functionality may be prepared by using molecular building blocks with inclined hydrophilic properties and/or comprising polar linking groups.
- Molecular building blocks comprising segments bearing polar substituents have inclined hydrophilic properties and may lead to SOFs with hydrophilic added functionality. The term polar substituents refers, for example, to substituents that can form hydrogen bonds with water and include, for example, hydroxyl, amino, ammonium, and carbonyl (such as ketone, carboxylic acid, ester, amide, carbonate, urea).
- SOFs with electroactive added functionality may be prepared by using molecular building blocks with inclined electroactive properties and/or be electroactive resulting from the assembly of conjugated segments and linkers. The following sections describe molecular building blocks with inclined hole transport properties, inclined electron transport properties, and inclined semiconductor properties.
- SOFs with hole transport added functionality may be obtained by selecting segment cores such as, for example, triarylamines, hydrazones (U.S. Pat. No. 7,202,002 B2 to Tokarski et al.), and enamines (U.S. Pat. No. 7,416,824 B2 to Kondoh et al.) with the following general structures:
- The segment core comprising a triarylamine being represented by the following general formula:
- wherein Ar1, Ar2, Ar3, Ar4 and Ar5 each independently represents a substituted or unsubstituted aryl group, or Ar5 independently represents a substituted or unsubstituted arylene group, and k represents 0 or 1, wherein at least two of Ar1, Ar2, Ar3, Ar4 and Ar5 comprises a Fg (previously defined). Ar5 may be further defined as, for example, a substituted phenyl ring, substituted/unsubstituted phenylene, substituted/unsubstituted monovalently linked aromatic rings such as biphenyl, terphenyl, and the like, or substituted/unsubstituted fused aromatic rings such as naphthyl, anthranyl, phenanthryl, and the like.
- Segment cores comprising arylamines with hole transport added functionality include, for example, aryl amines such as triphenylamine, N,N,N′,N′-tetraphenyl-(1,1′-biphenyl)-4,4′-diamine, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, N,N′-bis(4-butylphenyl)-N,N′-diphenyl-[p-terphenyl]-4,4″-diamine; hydrazones such as N-phenyl-N-methyl-3-(9-ethyl)carbazyl hydrazone and 4-diethyl amino benzaldehyde-1,2-diphenyl hydrazone; and oxadiazoles such as 2,5-bis(4-N,N-diethylaminophenyl)-1,2,4-oxadiazole, stilbenes, and the like.
- Molecular building blocks comprising triarylamine core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- The segment core comprising a hydrazone being represented by the following general formula:
- wherein Ar1, Ar2, and Ar3 each independently represents an aryl group optionally containing one or more substituents, and R represents a hydrogen atom, an aryl group, or an alkyl group optionally containing a substituent; wherein at least two of Ar1, Ar2, and Ar3 comprises a Fg (previously defined); and a related oxadiazole being represented by the following general formula:
- wherein Ar and Ar1 each independently represent an aryl group that comprises a Fg (previously defined).
- Molecular building blocks comprising hydrazone and oxadiazole core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- The segment core comprising an enamine being represented by the following general formula:
- wherein Ar1, Ar2, Ar3, and Ar4 each independently represents an aryl group that optionally contains one or more substituents or a heterocyclic group that optionally contains one or more substituents, and R represents a hydrogen atom, an aryl group, or an alkyl group optionally containing a substituent; wherein at least two of Ar1, Ar2, Ar3, and Ar4 comprises a Fg (previously defined).
- Molecular building blocks comprising enamine core segments with inclined hole transport properties may be derived from the list of chemical structures including, for example, those listed below:
- SOFs with electron transport added functionality may be obtained by selecting segment cores comprising, for example, nitrofluorenones, 9-fluorenylidene malonitriles, diphenoquinones, and naphthalenetetracarboxylic diimides with the following general structures:
- It should be noted that the carbonyl groups of diphenylquinones could also act as Fgs in the SOF forming process.
- SOFs with semiconductor added functionality may be obtained by selecting segment cores such as, for example, acenes, thiophenes/oligothiophenes/fused thiophenes, perylene bisimides, or tetrathiofulvalenes, and derivatives thereof with the following general structures:
- The SOF may be a p-type semiconductor, n-type semiconductor or ambipolar semiconductor. The SOF semiconductor type depends on the nature of the molecular building blocks. Molecular building blocks that possess an electron donating property such as alkyl, alkoxy, aryl, and amino groups, when present in the SOF, may render the SOF a p-type semiconductor. Alternatively, molecular building blocks that are electron withdrawing such as cyano, nitro, fluoro, fluorinated alkyl, and fluorinated aryl groups may render the SOF into the n-type semiconductor.
- Molecular building blocks comprising acene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- Molecular building blocks comprising thiophene/oligothiophene/fused thiophene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- Examples of molecular building blocks comprising perylene bisimide core segments with inclined semiconductor properties may be derived from the chemical structure below:
- Molecular building blocks comprising tetrathiofulvalene core segments with inclined semiconductor properties may be derived from the list of chemical structures including, for example, those listed below:
- wherein Ar each independently represents an aryl group that optionally contains one or more substituents or a heterocyclic group that optionally contains one or more substituents.
- Similarly, the electroactivity of SOFs prepared by these molecular building blocks will depend on the nature of the segments, nature of the linkers, and how the segments are orientated within the SOF. Linkers that favor preferred orientations of the segment moieties in the SOF are expected to lead to higher electroactivity.
- Process for Preparing an Ordered Structured Organic Film
- The process for making ordered SOFs typically comprises a number of activities or steps (set forth below) that may be performed in any suitable sequence or where two or more activities are performed simultaneously or in close proximity in time:
- A process for preparing a ordered (periodic) structured organic film comprising:
(a) preparing a liquid-containing reaction mixture comprising a plurality of molecular building blocks each comprising a segment and a number of functional groups;
(b) depositing the reaction mixture as a wet film;
(c) promoting a change of the wet film including the molecular building blocks to a dry film comprising the SOF comprising a plurality of the segments and a plurality of linkers arranged as a covalent organic framework, wherein at a macroscopic level the covalent organic framework is a film;
(d) optionally removing the SOF from the coating substrate to obtain a free-standing SOF;
(e) optionally processing the free-standing SOF into a roll;
(f) optionally cutting and seaming the SOF into a belt; and
(g) optionally performing the above SOF formation process(es) upon an SOF (which was prepared by the above SOF formation process(es)) as a substrate for subsequent SOF formation process(es). - The above activities or steps may be conducted at atmospheric, super atmospheric, or subatmospheric pressure. The term “atmospheric pressure” as used herein refers to a pressure of about 760 torr. The term “super atmospheric” refers to pressures greater than atmospheric pressure, but less than 20 atm. The term “subatmospheric pressure” refers to pressures less than atmospheric pressure. In an embodiment, the activities or steps may be conducted at or near atmospheric pressure. Generally, pressures of from about 0.1 atm to about 2 atm, such as from about 0.5 atm to about 1.5 atm, or 0.8 atm to about 1.2 atm may be conveniently employed.
- Process Action A: Preparation of the Liquid-Containing Reaction Mixture
- The reaction mixture comprises a plurality of molecular building blocks that are dissolved, suspended, or mixed in a liquid. The plurality of molecular building blocks may be of one type or two or more types. When one or more of the molecular building blocks is a liquid, the use of an additional liquid is optional. Catalysts may optionally be added to the reaction mixture to enable SOF formation or modify the kinetics of SOF formation during Action C described above. Additives or secondary components may optionally be added to the reaction mixture to alter the physical properties of the resulting SOF.
- The reaction mixture components (molecular building blocks, optionally a liquid, optionally catalysts, and optionally additives) are combined in a vessel. The order of addition of the reaction mixture components may vary; however, typically the catalyst is added last. In particular embodiments, the molecular building blocks are heated in the liquid in the absence of the catalyst to aid the dissolution of the molecular building blocks. The reaction mixture may also be mixed, stirred, milled, or the like, to ensure even distribution of the formulation components prior to depositing the reaction mixture as a wet film.
- In embodiments, the reaction mixture may be heated prior to being deposited as a wet film. This may aid the dissolution of one or more of the molecular building blocks and/or increase the viscosity of the reaction mixture by the partial reaction of the reaction mixture prior to depositing the wet layer. This approach may be used to increase the loading of the molecular building blocks in the reaction mixture.
- In particular embodiments, the reaction mixture needs to have a viscosity that will support the deposited wet layer. Reaction mixture viscosities range from about 10 to about 50,000 cps, such as from about 25 to about 25,000 cps or from about 50 to about 1000 cps.
- The molecular building block loading or “loading” in the reaction mixture is defined as the total weight of the molecular building blocks and optionally the catalysts divided by the total weight of the reaction mixture. Building block loadings may range from about 3 to 100%, such as from about 5 to about 50%, or from about 15 to about 40%. In the case where a liquid molecular building block is used as the only liquid component of the reaction mixture (i.e. no additional liquid is used), the building block loading would be about 100%.
- In embodiments, the reaction mixture comprises a plurality of molecular building blocks that are dissolved, suspended, or mixed in a liquid. The plurality of molecular building blocks may be of one type or two or more types. When one or more of the molecular building blocks is a liquid, the use of an additional liquid is optional.
- Catalysts may optionally be added to the reaction mixture to enable pre-SOF formation and/or modify the kinetics of SOF formation during Action C described above. The term “pre-SOF” may refer to, for example, at least two molecular building blocks that have reacted and have a molecular weight higher than the starting molecular building block and contain multiple functional groups capable of undergoing further reactions with functional groups of other building blocks or pre-SOFs to obtain a SOF, which may be a substantially defect-free or defect-free SOF, and/or the ‘activation’ of molecular building block functional groups that imparts enhanced or modified reactivity for the film forming process. Activation may include dissociation of a functional group moiety, pre-association with a catalyst, association with a solvent molecule, liquid, second solvent, second liquid, secondary component, or with any entity that modifies functional group reactivity. In embodiments, pre-SOF formation may include the reaction between molecular building blocks or the ‘activation’ of molecular building block functional groups, or a combination of the two. The formation of the “pre-SOF” may be achieved by in a number of ways, such as heating the reaction mixture, exposure of the reaction mixture to UV radiation, or any other means of partially reacting the molecular building blocks and/or activating functional groups in the reaction mixture prior to deposition of the wet layer on the substrate. Additives or secondary components may optionally be added to the reaction mixture to alter the physical properties of the resulting SOF.
- The reaction mixture components (molecular building blocks, optionally a liquid, optionally catalysts, and optionally additives) are combined in a vessel. The order of addition of the reaction mixture components may vary; however, typically when a process for preparing a SOF includes a pre-SOF or formation of a pre-SOF, the catalyst, when present, may be added to the reaction mixture before depositing the reaction mixture as a wet film. In embodiments, the molecular building blocks may be reacted actinically, thermally, chemically or by any other means with or without the presence of a catalyst to obtain a pre-SOF. The pre-SOF and the molecular building blocks formed in the absence of catalyst may be may be heated in the liquid in the absence of the catalyst to aid the dissolution of the molecular building blocks and pre-SOFs. In embodiments, the pre-SOF and the molecular building blocks formed in the presence of catalyst may be may be heated at a temperature that does not cause significant further reaction of the molecular building blocks and/or the pre-SOFs to aid the dissolution of the molecular building blocks and pre-SOFs. The reaction mixture may also be mixed, stirred, milled, or the like, to ensure even distribution of the formulation components prior to depositing the reaction mixture as a wet film.
- In embodiments, the reaction mixture may be heated prior to being deposited as a wet film. This may aid the dissolution of one or more of the molecular building blocks and/or increase the viscosity of the reaction mixture by the partial reaction of the reaction mixture prior to depositing the wet layer to form pre-SOFs. For example, the weight percent of molecular building blocks in the reaction mixture that are incorporated into pre-reacted molecular building blocks pre-SOFs may be less than 20%, such as about 15% to about 1%, or 10% to about 5%. In embodiments, the molecular weight of the 95% pre-SOF molecules is less than 5,000 daltons, such as 2,500 daltons, or 1,000 daltons. The preparation of pre-SOFs may be used to increase the loading of the molecular building blocks in the reaction mixture.
- In the case of pre-SOF formation via functional group activation, the molar percentage of functional groups that are activated may be less than 50%, such as about 30% to about 10%, or about 10% to about 5%.
- In embodiments, the two methods of pre-SOF formation (pre-SOF formation by the reaction between molecular building blocks or pre-SOF formation by the ‘activation’ of molecular building block functional groups) may occur in combination and the molecular building blocks incorporated into pre-SOF structures may contain activated functional groups. In embodiments, pre-SOF formation by the reaction between molecular building blocks and pre-SOF formation by the ‘activation’ of molecular building block functional groups may occur simultaneously.
- In embodiments, the duration of pre-SOF formation lasts about 10 seconds to about 48 hours, such as about 30 seconds to about 12 hours, or about 1 minute to 6 hours.
- In particular embodiments, the reaction mixture needs to have a viscosity that will support the deposited wet layer. Reaction mixture viscosities range from about 10 to about 50,000 cps, such as from about 25 to about 25,000 cps or from about 50 to about 1000 cps.
- The molecular building block loading or “loading” in the reaction mixture is defined as the total weight of the molecular building blocks and optionally the catalysts divided by the total weight of the reaction mixture. Building block loadings may range from about 3 to 100%, such as from about 5 to about 50%, or from about 15 to about 40%. In the case where a liquid molecular building block is used as the only liquid component of the reaction mixture (i.e. no additional liquid is used), the building block loading would be about 100%.
- In embodiments, the pre-SOF may be made from building blocks with one or more of the added functionality selected from the group consisting of hydrophobic added functionality, superhydrophobic added functionality, hydrophilic added functionality, lipophobic added functionality, superlipophobic added functionality, lipophilic added functionality, photochromic added functionality, and electroactive added functionality. In embodiments, the inclined property of the molecular building blocks is the same as the added functionality of the pre-SOF. In embodiments, the added functionality of the SOF is not an inclined property of the molecular building blocks.
- Liquids used in the reaction mixture may be pure liquids, such as solvents, and/or solvent mixtures. Liquids are used to dissolve or suspend the molecular building blocks and catalyst/modifiers in the reaction mixture. Liquid selection is generally based on balancing the solubility/dispersion of the molecular building blocks and a particular building block loading, the viscosity of the reaction mixture, and the boiling point of the liquid, which impacts the promotion of the wet layer to the dry SOF. Suitable liquids may have boiling points from about 30 to about 300° C., such as from about 65° C. to about 250° C., or from about 100° C. to about 180° C.
- Liquids can include molecule classes such as alkanes (hexane, heptane, octane, nonane, decane, cyclohexane, cycloheptane, cyclooctane, decalin); mixed alkanes (hexanes, heptanes); branched alkanes (isooctane); aromatic compounds (toluene, o-, m-, p-xylene, mesitylene, nitrobenzene, benzonitrile, butylbenzene, aniline); ethers (benzyl ethyl ether, butyl ether, isoamyl ether, propyl ether); cyclic ethers (tetrahydrofuran, dioxane), esters (ethyl acetate, butyl acetate, butyl butyrate, ethoxyethyl acetate, ethyl propionate, phenyl acetate, methyl benzoate); ketones (acetone, methyl ethyl ketone, methyl isobutylketone, diethyl ketone, chloroacetone, 2-heptanone), cyclic ketones (cyclopentanone, cyclohexanone), amines (1°, 2°, or 3° amines such as butylamine, diisopropylamine, triethylamine, diisoproylethylamine; pyridine); amides (dimethylformamide, N-methylpyrolidinone, N,N-dimethylformamide); alcohols (methanol, ethanol, n-, i-propanol, n-, t-butanol, 1-methoxy-2-propanol, hexanol, cyclohexanol, 3-pentanol, benzyl alcohol); nitriles (acetonitrile, benzonitrile, butyronitrile), halogenated aromatics (chlorobenzene, dichlorobenzene, hexafluorobenzene), halogenated alkanes (dichloromethane, chloroform, dichloroethylene, tetrachloroethane); and water.
- Mixed liquids comprising a first solvent, second solvent, third solvent, and so forth may also be used in the reaction mixture. Two or more liquids may be used to aid the dissolution/dispersion of the molecular building blocks; and/or increase the molecular building block loading; and/or allow a stable wet film to be deposited by aiding the wetting of the substrate and deposition instrument; and/or modulate the promotion of the wet layer to the dry SOF. In embodiments, the second solvent is a solvent whose boiling point or vapor-pressure curve or affinity for the molecular building blocks differs from that of the first solvent. In embodiments, a first solvent has a boiling point higher than that of the second solvent. In embodiments, the second solvent has a boiling point equal to or less than about 130° C., such as a boiling point equal to or less than about 100° C., for example in the range of from about 30° C. to about 100° C., or in the range of from about 40° C. to about 90° C., or about 50° C. to about 80° C.
- In embodiments, the first solvent, or higher boiling point solvent, has a boiling point equal to or greater than about 65° C., such as in the range of from about 80° C. to about 300° C., or in the range of from about 100° C. to about 250° C., or about 100° C. to about 180° C. The higher boiling point solvent may include, for example, the following (the value in parentheses is the boiling point of the compound): hydrocarbon solvents such as amylbenzene (202° C.), isopropylbenzene (152° C.), 1,2-diethylbenzene (183° C.), 1,3-diethylbenzene (181° C.), 1,4-diethylbenzene (184° C.), cyclohexylbenzene (239° C.), dipentene (177° C.), 2,6-dimethylnaphthalene (262° C.), p-cymene (177° C.), camphor oil (160-185° C.), solvent naphtha (110-200° C.), cis-decalin (196° C.), trans-decalin (187° C.), decane (174° C.), tetralin (207° C.), turpentine oil (153-175° C.), kerosene (200-245° C.), dodecane (216° C.), dodecylbenzene (branched), and so forth; ketone and aldehyde solvents such as acetophenone (201.7° C.), isophorone (215.3° C.), phorone (198-199° C.), methylcyclohexanone (169.0-170.5° C.), methyl n-heptyl ketone (195.3° C.), and so forth; ester solvents such as diethyl phthalate (296.1° C.), benzyl acetate (215.5° C.), γ-butyrolactone (204° C.), dibutyl oxalate (240° C.), 2-ethylhexyl acetate (198.6° C.), ethyl benzoate (213.2° C.), benzyl formate (203° C.), and so forth; diethyl sulfate (208° C.), sulfolane (285° C.), and halohydrocarbon solvents; etherified hydrocarbon solvents; alcohol solvents; ether/acetal solvents; polyhydric alcohol solvents; carboxylic anhydride solvents; phenolic solvents; water; and silicone solvents.
- The ratio of the mixed liquids may be established by one skilled in the art. The ratio of liquids a binary mixed liquid may be from about 1:1 to about 99:1, such as from about 1:10 to about 10:1, or about 1:5 to about 5:1, by volume. When n liquids are used, with n ranging from about 3 to about 6, the amount of each liquid ranges from about 1% to about 95% such that the sum of each liquid contribution equals 100%.
- In embodiments, the mixed liquid comprises at least a first and a second solvent with different boiling points. In further embodiments, the difference in boiling point between the first and the second solvent may be from about nil to about 150° C., such as from nil to about 50° C. For example, the boiling point of the first solvent may exceed the boiling point of the second solvent by about 1° C. to about 100° C., such as by about 5° C. to about 100° C., or by about 10° C. to about 50° C. The mixed liquid may comprise at least a first and a second solvent with different vapor pressures, such as combinations of high vapor pressure solvents and/or low vapor pressure solvents. The term “high vapor pressure solvent” refers to, for example, a solvent having a vapor pressure of at least about 1 kPa, such as about 2 kPa, or about 5 kPa. The term “low vapor pressure solvent” refers to, for example, a solvent having a vapor pressure of less than about 1 kPa, such as about 0.9 kPa, or about 0.5 kPa. In embodiments, the first solvent may be a low vapor pressure solvent such as, for example, terpineol, diethylene glycol, ethylene glycol, hexylene glycol, N-methyl-2-pyrrolidone, and tri(ethylene glycol) dimethyl ether. A high vapor pressure solvent allows rapid removal of the solvent by drying and/or evaporation at temperatures below the boiling point. High vapor pressure solvents may include, for example, acetone, tetrahydrofuran, toluene, xylene, ethanol, methanol, 2-butanone and water.
- In embodiments where mixed liquids comprising a first solvent, second solvent, third solvent, and so forth are used in the reaction mixture, promoting the change of the wet film and forming the dry SOF may comprise, for example, heating the wet film to a temperature above the boiling point of the reaction mixture to form the dry SOF film; or heating the wet film to a temperature above the boiling point of the second solvent (below the temperature of the boiling point of the first solvent) in order to remove the second solvent while substantially leaving the first solvent and then after substantially removing the second solvent, removing the first solvent by heating the resulting composition at a temperature either above or below the boiling point of the first solvent to form the dry SOF film; or heating the wet film below the boiling point of the second solvent in order to remove the second solvent (which is a high vapor pressure solvent) while substantially leaving the first solvent and, after removing the second solvent, removing the first solvent by heating the resulting composition at a temperature either above or below the boiling point of the first solvent to form the dry SOF film.
- The term “substantially removing” refers to, for example, the removal of at least 90% of the respective solvent, such as about 95% of the respective solvent. The term “substantially leaving” refers to, for example, the removal of no more than 2% of the respective solvent, such as removal of no more than 1% of the respective solvent.
- These mixed liquids may be used to slow or speed up the rate of conversion of the wet layer to the SOF in order to manipulate the characteristics of the SOFs. For example, in condensation and addition/elimination linking chemistries, liquids such as water, 1°, 2°, or 3° alcohols (such as methanol, ethanol, propanol, isopropanol, butanol, 1-methoxy-2-propanol, tert-butanol) may be used.
- Optionally a catalyst may be present in the reaction mixture to assist the promotion of the wet layer to the dry SOF. Selection and use of the optional catalyst depends on the functional groups on the molecular building blocks. Catalysts may be homogeneous (dissolved) or heterogeneous (undissolved or partially dissolved) and include Brönsted acids (HCl(aq), acetic acid, p-toluenesulfonic acid, amine-protected p-toluenesulfonic acid such as pyrridium p-toluenesulfonate, trifluoroacetic acid); Lewis acids (boron trifluoroetherate, aluminum trichloride); Brönsted bases (metal hydroxides such as sodium hydroxide, lithium hydroxide, potassium hydroxide; 1°, 2°, or 3° amines such as butylamine, diisopropylamine, triethylamine, diisoproylethylamine); Lewis bases (N,N-dimethyl-4-aminopyridine); metals (Cu bronze); metal salts (FeCl3, AuCl3); and metal complexes (ligated palladium complexes, ligated ruthenium catalysts). Typical catalyst loading ranges from about 0.01% to about 25%, such as from about 0.1% to about 5% of the molecular building block loading in the reaction mixture. The catalyst may or may not be present in the final SOF composition.
- Optionally additives or secondary components may be present in the reaction mixture and wet layer. Such additives or secondary components may also be integrated into a dry SOF. Additives or secondary components can be homogeneous or heterogeneous in the reaction mixture and wet layer or in a dry SOF. The terms “additive” or “secondary component,” refer, for example, to atoms or molecules that are not covalently bound in the SOF, but are randomly distributed in the composition. Additives may be used to alter the physical properties of the SOF such as electrical properties (conductivity, semiconductivity, electron transport, hole transport), surface energy (hydrophobicity, hydrophilicity), tensile strength, thermal conductivity, impact modifiers, reinforcing fibers, antiblocking agents, lubricants, antistatic agents, coupling agents, wetting agents, antifogging agents, flame retardants, ultraviolet stabilizers, antioxidants, biocides, dyes, pigments, odorants, deodorants, nucleating agents and the like.
- Process Action B: Depositing the Reaction Mixture as a Wet Film
- The reaction mixture may be applied as a wet film to a variety of substrates using a number of liquid deposition techniques. The thickness of the SOF is dependant on the thickness of the wet film and the molecular building block loading in the reaction mixture. The thickness of the wet film is dependent on the viscosity of the reaction mixture and the method used to deposit the reaction mixture as a wet film.
- Substrates include, for example, polymers, papers, metals and metal alloys, doped and undoped forms of elements from Groups III-VI of the periodic table, metal oxides, metal chalcogenides, and previously prepared SOF films. Examples of polymer film substrates include polyesters, polyolefins, polycarbonates, polystyrenes, polyvinylchloride, block and random copolymers thereof, and the like. Examples of metallic surfaces include metallized polymers, metal foils, metal plates; mixed material substrates such as metals patterned or deposited on polymer, semiconductor, metal oxide, or glass substrates. Examples of substrates comprised of doped and undoped elements from Groups III-VI of the periodic table include, aluminum, silicon, silicon n-doped with phosphorous, silicon p-doped with boron, tin, gallium arsenide, lead, gallium indium phosphide, and indium. Examples of metal oxides include silicon dioxide, titanium dioxide, indium tin oxide, tin dioxide, selenium dioxide, and alumina. Examples of metal chalcogenides include cadmium sulfide, cadmium telluride, and zinc selenide. Additionally, it is appreciated that chemically treated or mechanically modified forms of the above substrates remain within the scope of surfaces which may be coated with the reaction mixture.
- In embodiments, the substrate may be composed of, for example, silicon, glass plate, plastic film or sheet. For structurally flexible devices, a plastic substrate such as polyester, polycarbonate, polyimide sheets and the like may be used. The thickness of the substrate may be from around 10 micrometers to over 10 millimeters with an exemplary thickness being from about 50 to about 100 micrometers, especially for a flexible plastic substrate, and from about 1 to about 10 millimeters for a rigid substrate such as glass or silicon.
- The reaction mixture may be applied to the substrate using a number of liquid deposition techniques including, for example, spin coating, blade coating, web coating, dip coating, cup coating, rod coating, screen printing, ink jet printing, spray coating, stamping and the like. The method used to deposit the wet layer depends on the nature, size, and shape of the substrate and the desired wet layer thickness. The thickness of the wet layer can range from about 10 nm to about 5 mm, such as from about 100 nm to about 1 mm, or from about 1 μm to about 500 μm.
- Process Action C: Promoting the Change of Wet Film to the Dry SOF
- The term “promoting” refers, for example, to any suitable technique to facilitate a reaction of the molecular building blocks. In the case where a liquid needs to be removed to form the dry film, “promoting” also refers to removal of the liquid. Reaction of the molecular building blocks and removal of the liquid can occur sequentially or concurrently.
- In embodiments, the term “promoting” may also refer, for example, to any suitable technique to facilitate a reaction of the molecular building blocks and/or pre-SOFs, such as a chemical reaction of the functional groups of the building blocks and/or pre-SOFs. Reaction of the molecular building blocks and/or pre-SOFs and removal of the liquid can occur sequentially or concurrently.
- In certain embodiments, the liquid is also one of the molecular building blocks and is incorporated into the SOF. The term “dry SOF” refers, for example, to substantially dry films such as, for example, a substantially dry SOF may have a liquid content less than about 5% by weight of the SOF, or a liquid content less than about 2% by weight of the SOF.
- Promoting the wet layer to form a dry SOF may be accomplished by any suitable technique. Promoting the wet layer to form a dry SOF typically involves thermal treatment including, for example, oven drying, infrared radiation (IR), and the like with temperatures ranging from 40 to 350° C. and from 60 to 200° C. and from 85 to 160° C. The total heating time can range from about four seconds to about 24 hours, such as from one minute to 120 minutes, or from three minutes to 60 minutes.
- IR promotion of the wet layer to the COF film may be achieved using an IR heater module mounted over a belt transport system. Various types of IR emitters may be used, such as carbon IR emitters or short wave IR emitters (available from Heraerus). Additional exemplary information regarding carbon IR emitters or short wave IR emitters is summarized in the following Table.
-
Number of Module Power IR lamp Peak Wavelength lamps (kW) Carbon 2.0 micron 2 - twin tube 4.6 Short wave 1.2-1.4 micron 3 - twin tube 4.5 - Process Action D: Optionally Removing the SOF from the Coating Substrate to Obtain a Free-Standing SOF
- In embodiments, a free-standing SOF is desired. Free-standing SOFs may be obtained when an appropriate low adhesion substrate is used to support the deposition of the wet layer. Appropriate substrates that have low adhesion to the SOF may include, for example, metal foils, metalized polymer substrates, release papers and SOFs, such as SOFs prepared with a surface that has been altered to have a low adhesion or a decreased propensity for adhesion or attachment. Removal of the SOF from the supporting substrate may be achieved in a number of ways by someone skilled in the art. For example, removal of the SOF from the substrate may occur by starting from a corner or edge of the film and optionally assisted by passing the substrate and SOF over a curved surface.
- Process Action E: Optionally Processing the Free-Standing SOF into a Roll
- Optionally, a free-standing SOF or a SOF supported by a flexible substrate may be processed into a roll. The SOF may be processed into a roll for storage, handling, and a variety of other purposes. The starting curvature of the roll is selected such that the SOF is not distorted or cracked during the rolling process.
- Process Action F: Optionally Cutting and Seaming the SOF into a Shape, Such as a Belt
- The method for cutting and seaming the SOF is similar to that described in U.S. Pat. No. 5,455,136 issued on Oct. 3, 1995 (for polymer films), the disclosure of which is herein totally incorporated by reference. An SOF belt may be fabricated from a single SOF, a multi layer SOF or an SOF sheet cut from a web. Such sheets may be rectangular in shape or any particular shape as desired. All sides of the SOF(s) may be of the same length, or one pair of parallel sides may be longer than the other pair of parallel sides. The SOF(s) may be fabricated into shapes, such as a belt by overlap joining the opposite marginal end regions of the SOF sheet. A seam is typically produced in the overlapping marginal end regions at the point of joining. Joining may be affected by any suitable means. Typical joining techniques include, for example, welding (including ultrasonic), gluing, taping, pressure heat fusing and the like. Methods, such as ultrasonic welding, are desirable general methods of joining flexible sheets because of their speed, cleanliness (no solvents) and production of a thin and narrow seam.
- Process Action G: Optionally Using a SOF as a Substrate for Subsequent SOF Formation Processes
- A SOF may be used as a substrate in the SOF forming process to afford a multi-layered structured organic film. The layers of a multi-layered SOF may be chemically bound in or in physical contact. Chemically bound, multi-layered SOFs are formed when functional groups present on the substrate SOF surface can react with the molecular building blocks present in the deposited wet layer used to form the second structured organic film layer. Multi-layered SOFs in physical contact may not chemically bound to one another.
- A SOF substrate may optionally be chemically treated prior to the deposition of the wet layer to enable or promote chemical attachment of a second SOF layer to form a multi-layered structured organic film.
- Alternatively, a SOF substrate may optionally be chemically treated prior to the deposition of the wet layer to disable chemical attachment of a second SOF layer (surface pacification) to form a physical contact multi-layered SOF.
- Other methods, such as lamination of two or more SOFs, may also be used to prepare physically contacted multi-layered SOFs.
- A number of examples of the process used to make SOFs are set forth herein and are illustrative of the different compositions, conditions, techniques that may be utilized. Identified within each example are the nominal actions associated with this activity. The sequence and number of actions along with operational parameters, such as temperature, time, coating method, and the like, are not limited by the following examples. All proportions are by weight unless otherwise indicated. The term “rt” refers, for example, to temperatures ranging from about 20° C. to about 25° C. Mechanical measurements were measured on a TA Instruments DMA Q800 dynamic mechanical analyzer using methods standard in the art. Differential scanning calorimetery was measured on a TA Instruments DSC 2910 differential scanning calorimeter using methods standard in the art. Thermal gravimetric analysis was measured on a TA Instruments TGA 2950 thermal gravimetric analyzer using methods standard in the art. FT-IR spectra was measured on a Nicolet Magna 550 spectrometer using methods standard in the art. Thickness measurements <1 micron were measured on a Dektak 6m Surface Profiler. Surface energies were measured on a Fibro DAT 1100 (Sweden) contact angle instrument using methods standard in the art. Unless otherwise noted, the SOFs produced in the following examples were either defect-free SOFs or substantially defect-free SOFs.
- The SOFs coated onto Mylar were delaminated by immersion in a room temperature water bath. After soaking for 10 minutes the SOF film generally detached from Mylar substrate. This process is most efficient with a SOF coated onto substrates known to have high surface energy (polar), such as glass, mica, salt, and the like.
- Given the examples below it will be apparent, that the compositions prepared by the methods of the present disclosure may be practiced with many types of components and may have many different uses in accordance with the disclosure above and as pointed out hereinafter.
- Embodiment of a Patterned SOF Composition
- An embodiment of the disclosure is to attain a SOF wherein the microscopic arrangement of segments is patterned. The term “patterning” refers, for example, to the sequence in which segments are linked together. A patterned SOF would therefore embody a composition wherein, for example, segment A is only connected to segment B, and conversely, segment B is only connected to segment A. Further, a system wherein only one segment exists, say segment A, is employed is will be patterned because A is intended to only react with A. In principle a patterned SOF may be achieved using any number of segment types. The patterning of segments may be controlled by using molecular building blocks whose functional group reactivity is intended to compliment a partner molecular building block and wherein the likelihood of a molecular building block to react with itself is minimized. The aforementioned strategy to segment patterning is non-limiting. Instances where a specific strategy to control patterning has not been deliberately implemented are also embodied herein.
- A patterned film may be detected using spectroscopic techniques that are capable of assessing the successful formation of linking groups in a SOF. Such spectroscopies include, for example, Fourier-transfer infrared spectroscopy, Raman spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Upon acquiring a data by a spectroscopic technique from a sample, the absence of signals from functional groups on building blocks and the emergence of signals from linking groups indicate the reaction between building blocks and the concomitant patterning and formation of an SOF.
- Different degrees of patterning are also embodied. Full patterning of a SOF will be detected by the complete absence of spectroscopic signals from building block functional groups. Also embodied are SOFs having lowered degrees of patterning wherein domains of patterning exist within the SOF. SOFs with domains of patterning, when measured spectroscopically, will produce signals from building block functional groups which remain unmodified at the periphery of a patterned domain.
- It is appreciated that a very low degree of patterning is associated with inefficient reaction between building blocks and the inability to form a film. Therefore, successful implementation of the process of the present disclosure requires appreciable patterning between building blocks within the SOF. The degree of necessary patterning to form a SOF is variable and can depend on the chosen building blocks and desired linking groups. The minimum degree of patterning required is that required to form a film using the process described herein, and may be quantified as formation of about 20% or more of the intended linking groups, such as about 40% or more of the intended linking groups or about 50% or more of the intended linking groups; the nominal degree of patterning embodied by the present disclosure is formation of about 60% of the intended linking group, such as formation of about 100% of the intended linking groups. Formation of linking groups may be detected spectroscopically as described earlier in the embodiments.
- Production of a Patterned SOF
- The following experiments demonstrate the development of a patterned SOF. The activity described below is non-limiting as it will be apparent that many types of approaches may be used to generate patterning in a SOF.
- EXAMPLE 1 describes the synthesis of a
Type 2 SOF wherein components are combined such that etherification linking chemistry is promoted between two building blocks. The presence of an acid catalyst and a heating action yield a SOF with the method described in EXAMPLE 1. - (Action A) Preparation of the Liquid Containing Reaction Mixture.
- The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.47 g, 3.4 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.12 g, 1.7 mmol)], and 17.9 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- (Action B) Deposition of Reaction Mixture as a Wet Film.
- The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- (Action C) Promotion of the Change of the Wet Film to a Dry SOF.
- The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 3-6 microns, which may be delaminated from the substrate as a single free-standing SOF. The color of the SOF was green. The Fourier-transform infrared spectrum of a portion of this SOF is provided in
FIG. 1 . - To demonstrate that the SOF prepared in EXAMPLE 1 comprises segments from the employed molecular building blocks that are patterned within the SOF, three control experiments were conducted. Namely, three liquid reaction mixtures were prepared using the same procedure as set forth in Action A in EXAMPLE 1; however, each of these three formulations were modified as follows:
-
- (
Control reaction mixture 1; Example 2) the building block benzene-1,4-dimethanol was not included. - (
Control reaction mixture 2; Example 3) the building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine was not included. - (
Control reaction mixture 3; Example 4) the catalyst p-toluenesulfonic acid was not included
- (
- The full descriptions of the SOF forming process for the above described control experiments are detailed in EXAMPLES 2-4 below.
- (Action A) Preparation of the Liquid Containing Reaction Mixture.
- The following were combined: the building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.12 g, 1.7 mmol)], and 17.9 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- (Action B) Deposition of Reaction Mixture as a Wet Film.
- The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- (Action C) Attempted Promotion of the Change of the Wet Film to a Dry SOF.
- The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building block was deposited onto the substrate.
- (Action A) Preparation of the Liquid Containing Reaction Mixture.
- The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.47 g, 3.4 mmol)] and 17.9 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.31 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture.
- (Action B) Deposition of Reaction Mixture as a Wet Film.
- The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- (Action C) Attempted Promotion of the Change of the Wet Film to a Dry SOF.
- The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building block was deposited onto the substrate.
- (Action A) Preparation of the liquid containing reaction mixture. The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.47 g, 3.4 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.12 g, 1.7 mmol)], and 17.9 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane to yield the liquid containing reaction mixture.
- (Action B) Deposition of Reaction Mixture as a Wet Film.
- The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap.
- (Action C) Attempted Promotion of the Change of the Wet Film to a Dry SOF.
- The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions did not provide a film. Instead, a precipitated powder of the building blocks was deposited onto the substrate.
- As described in EXAMPLES 2-4, each of the three control reaction mixtures were subjected to Action B and Action C as outlined in EXAMPLE 1. However, in all cases a SOF did not form; the building blocks simply precipitated on the substrate. It is concluded from these results that building blocks cannot react with themselves under the stated processing conditions nor can the building blocks react in the absence of a promoter (p-toluenesulfonic acid). Therefore, the activity described in EXAMPLE 1 is one wherein building blocks (benzene-1,4-dimethanol and N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine) can only react with each other when promoted to do so. A patterned SOF results when the segments p-xylyl and N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine connect only with each other. The Fourier-transform infrared spectrum, compared to that of the products of the control experiments (
FIG. 2 ) of the SOF shows absence of functional groups (notably the absence of the hydroxyl band from the benzene-1,4-dimethanol) from the starting materials and further supports that the connectivity between segments has proceed as described above. Also, the complete absence of the hydroxyl band in the spectrum for the SOF indicates that the patterning is to a very high degree. - Described below are further Examples of defect-free SOFs and/or substantially defect-free SOFs prepared in accordance with the present disclosure. In the following examples (Action A) is the preparation of the liquid containing reaction mixture; (Action B) is the deposition of reaction mixture as a wet film; and (Action C) is the promotion of the change of the wet film to a dry SOF.
- (Action A) The following were combined: the building block benzene-1,3,5-trimethanol [segment=benzene-1,3,5-trimethyl; Fg=hydroxyl (—OH); (0.2 g, 1.2 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.59 g, 0.8 mmol)], and 8.95 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.16 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 20 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 2-4 microns that could be delaminated from the substrate as a single free-standing SOF. The color of the SOF was green.
- (Action A) The following were combined: the
building block 1,6-n-hexanediol [segment=n-hexyl; Fg=hydroxyl (—OH); (0.21 g, 1.8 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.58 g, 0.87 mmol)], and 8.95 g of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.16 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 20 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 4-5 microns that could be delaminated from the substrate as a single free standing SOF. The color of the SOF was green. The Fourier-transform infrared spectrum of a portion of this SOF is provided inFIG. 3 . - (Action A) The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.64 g, 4.6 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.54 g, 2.3 mmol)], and 7.51 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted, which was then filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.28 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 4 min. These actions provided a SOF having a thickness ranging from about 8-12 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green.
- (Action A) The following were combined: the
building block 1,6-n-hexanediol [segment=n-hexyl; Fg=hydroxyl (—OH); (0.57 g, 4.8 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.61 g, 2.42 mmol)], and 7.51 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 12-20 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green. - (Action A) The following were combined: the
4,4′-(cyclohexane-1,1-diyl)diphenol [segment=4,4′-(cyclohexane-1,1-diyl)diphenyl; Fg=hydroxyl (—OH); (0.97 g, 6 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.21 g, 1.8 mmol)], and 7.51 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 12-20 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green. The Fourier-transform infrared spectrum of SOF is provided inbuilding block FIG. 4 . - (Action A) The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.52 g, 3.8 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.26 g, 1.9 mmol)], and 6.3 g of 1,4-dioxane and 1.57 g of n-butyl acetate. The mixture was shaken and heated to 60° C. until a homogenous solution resulted, which was then filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.28 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 4 min. These actions provided a SOF having a thickness of 7-10 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green.
- (Action A) Same as EXAMPLE 7. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) The following were combined: the building block benzene-1,4-dimethanol [segment=p-xylyl; Fg=hydroxyl (—OH); (0.52 g, 3.8 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.26 g, 1.9 mmol)], and 6.3 g of 1,4-dioxane and 1.57 g of methyl isobutyl ketone. The mixture was shaken and heated to 60° C. until a homogenous solution resulted, which was then filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.28 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 4 min. These actions provided a SOF having a thickness ranging from about 7-10 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green.
- (Action A) The following were combined: the
building block 1,6-n-hexanediol [segment=n-hexyl; Fg=hydroxyl (—OH); (0.47 g, 4.0 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.31 g, 2.0 mmol)], 6.3 g of 1,4-dioxane, and 1.57 g of n-butyl acetate. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 8-12 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green. - (Action A) Same as EXAMPLE 10. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) The following were combined: the
building block 1,6-n-hexanediol [segment=n-hexyl; Fg=hydroxyl (—OH); (0.47 g, 4.0 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (1.31 g, 2.0 mmol)], 6.3 g of 1,4-dioxane, and 1.57 g of methyl isobutyl ketone. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 8-12 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green. - (Action A) The following were combined: the
4,4′-(cyclohexane-1,1-diyl)diphenol [segment=4,4′-(cyclohexane-1,1-diyl)diphenyl; Fg=hydroxyl (—OH); (0.8 g)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.8 g, 1.5 mmol)], 1,4-dioxane, and 1.57 g of n-butyl acetate. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to rt, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness of about 12 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green.building block - (Action A) Same as EXAMPLE 13. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 20 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) The following were combined: the
4,4′-(cyclohexane-1,1-diyl)diphenol [segment=4,4′-(cyclohexane-1,1-diyl)diphenyl; Fg=hydroxyl (—OH); (0.8 g, 3.0 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.8 g, 1.5 mmol)], 1,4-dioxane, and 1.57 g of methyl isobutyl ketone. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.22 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness of about 12 microns that could be delaminated from the substrate as a single free-standing film. The color of the SOF was green.building block - (Action A) Same as EXAMPLE 7. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) Same as EXAMPLE 10. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) Same as EXAMPLE 13. (Action B) The reaction mixture was applied to a photoconductive layer, containing a pigment and polymeric binder, supported on metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns and could not be delaminated.
- (Action A) Same as EXAMPLE 7. (Action B) The reaction mixture was applied to a layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) Same as EXAMPLE 10. (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) Same as EXAMPLE 13. (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The supported wet layer was allowed to dry at ambient temperature in an actively vented fume hood for 5 min and was then transferred to an actively vented oven preheated to 120° C. and left to heat for 15 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness ranging from about 9-10 microns.
- (Action A) The following were combined: the building block (4,4′,4″,4′″-(biphenyl-4,4′-diylbis(azanetriyl))tetrakis(benzene-4,1-diyl))tetramethanol [segment=(4,4′,4″,4′″-(biphenyl-4,4′-diylbis(azanetriyl))tetrakis(benzene-4,1-diyl); Fg=alcohol (—OH); (1.48 g, 2.4 mmol)], and 8.3 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.15 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 25 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 8-24 microns. The color of the SOF was green.
- (Action A) The following were combined: the
4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethanol [segment=(4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethyl); Fg=alcohol (—OH); (1.48 g, 4.4 mmol)], and 8.3 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.15 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 15 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 6-15 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green. The Fourier-transform infrared spectrum of this film is provided inbuilding FIG. 5 . Two-dimensional X-ray scattering data is provided inFIG. 8 . As seen inFIG. 8 , no signal above the background is present, indicating the absence of molecular order having any detectable periodicity. - (Action A) The following were combined: the building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.26 g, 0.40 mmol)] and a
3,3′-(4,4′-(biphenyl-4-ylazanediyl)bis(4,1-phenylene))dipropan-1-ol [segment=3,3′-(4,4′-(biphenyl-4-ylazanediyl)bis(4,1-phenylene))dipropyl; Fg=hydroxy (—OH); (0.34 g, 0.78 mmol)], and 1.29 mL of 1-methoxy-2-propanol. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.2 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 8 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 150° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 15-20 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green.second building block - (Action A) Same as EXAMPLE 24. (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The supported wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness of about 5 microns.
- (Action A) Same as EXAMPLE 24. (Action B) The reaction mixture was applied to layered photosensitive member comprising a generator layer and a transport layer containing a diamine type molecule dispersed in a polymeric binder affixed to a spin coating device rotating at 750 rpm. The liquid reaction mixture was dropped at the centre rotating substrate to deposit the wet layer. (Action C) The supported wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a uniformly coated multilayer device wherein the SOF had a thickness of about 0.2 microns.
- (Action A) The following were combined: the building block terephthalaldehyde [segment=benzene; Fg=aldehyde (—CHO); (0.18 g, 1.3 mmol)] and a second building block tris(4-aminophenyl)amine [segment=triphenylamine; Fg=amine (—NH2); (0.26 g, 0.89 mmol)], and 2.5 g of tetrahydrofuran. The mixture was shaken until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.045 g of a 10 wt % solution of p-toluenesulfonic acid in 1-tetrahydrofuran to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange. The Fourier-transform infrared spectrum of this film is provided in
FIG. 6 . - (Action A) The following were combined: the
4,4′,4″-nitrilotribenzaldehyde [segment=triphenylamine; Fg=aldehyde (—CHO); (0.16 g, 0.4 mmol)] and a second building block tris(4-aminophenyl)amine[segment=triphenylamine; Fg=amine (—NH2); (0.14 g, 0.4 mmol)], and 1.9 g of tetrahydrofuran. The mixture was stirred until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red. The Fourier-transform infrared spectrum of this film is provided inbuilding block FIG. 7 . - (Action A) The following were combined: the building block glyoxal [segment=single covalent bond; Fg=aldehyde (—CHO); (0.31 g, 5.8 mmol—added as 40 wt % solution in water i.e. 0.77 g aqueous glyoxal)] and a second building block tris(4-aminophenyl)amine [segment=triphenylamine; Fg=amine (—NH2); (1.14 g, (3.9 mmol)], and 8.27 g of tetrahydrofuran. The mixture was shaken until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 10 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging from about 6-12 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red.
- (Action A) The following were combined: the building block terephthalaldehyde [segment=benzene; Fg=aldehyde (—CHO); (0.18 g, 1.3 mmol)] and a second building block tris(4-aminophenyl)amine [segment=triphenylamine; Fg=amine (—NH2); (0.26 g, 0.89 mmol)], 2.5 g of tetrahydrofuran, and 0.4 g water. The mixture was shaken until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness ranging 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange.
- (Action A) The following were combined: the
4,4′,4″-nitrilotribenzaldehyde [segment=triphenylamine; Fg=aldehyde (—CHO); (0.16 g, 0.4 mmol)] and a second building block tris(4-aminophenyl)amine [segment=triphenylamine; Fg=amine (—NH2); (0.14 g, 0.4 mmol)], 1.9 g of tetrahydrofuran, and 0.4 g water. The mixture was stirred until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having an 5 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 120° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was red-orange.building block - (Action A) Same as EXAMPLE 28. (Action B) The reaction mixture was dropped from a glass pipette onto a glass slide. (Action C) The glass slide was heated to 80° C. on a heating stage yielding a deep red SOF having a thickness of about 200 microns which could be delaminated from the glass slide.
- (Action A) The following were combined: the building block tris-[(4-hydroxymethyl)-phenyl]-amine [segment=tri-(p-tolyl)-amine; Fg=hydroxy (—OH); 5.12 g]; the additives Cymel303 (55 mg) and Silclean 3700 (210 mg), and the catalyst Nacure XP-357 (267 mg) and 1-methoxy-2-propanol (13.27 g). The mixture was mixed on a rolling wave rotator for 10 min and then heated at 55° C. for 65 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min. (Action C) The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a SOF having a thickness of about 6.9 microns.
- (Action A) The following were combined: the building block tris-[(4-hydroxymethyl)-phenyl]-amine [segment=tri-(p-tolyl)-amine; Fg=hydroxy (—OH); 4.65 g]; the additives Cymel303 (49 mg) and Silclean 3700 (205 mg), and the catalyst Nacure XP-357 (254 mg) and 1-methoxy-2-propanol (12.25 g). The mixture was mixed on a rolling wave rotator for 10 min and then heated at 55° C. for 65 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. A polyethylene wax dispersion (average particle size=5.5 microns, 40% solids in i-propyl alcohol, 613 mg) was added to the reaction mixture which was sonicated for 10 min and mixed on the rotator for 30 min. (Action B) The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min. (Action C) The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a film having a thickness of 6.9 microns with even incorporation of the wax particles in the SOF.
- (Action A) The following were combined: the building block N,N,N′,N′-tetrakis-[(4-hydroxymethyl)phenyl]-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetra-(p-tolyl)biphenyl-4,4′-diamine; Fg=hydroxy (—OH); 3.36 g] and the building block N,N′-diphenyl-N,N′-bis-(3-hydroxyphenyl)-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetraphenyl-biphenyl-4,4′-diamine; Fg—hydroxyl (—OH); 5.56 g]; the additives Cymel303 (480 mg) and Silclean 3700 (383 mg), and the catalyst Nacure XP-357 (480 mg) and 1-methoxy-2-propanol (33.24 g). The mixture was mixed on a rolling wave rotator for 10 min and then heated at 55° C. for 65 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 485 mm/min. (Action C) The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a film having a thickness ranging from 6.0 to 6.2 microns.
- (Action A) The following can be combined: the building block dipropylcarbonate [segment=carbonyl [—C(═O)—]; Fg=propoxy (CH3CH2CH2O—); 4.38 g, 30 mmol] and the
1,3,5-trihydroxycyclohexane [segment=cyclohexane; Fg—hydroxyl (—OH); 3.24 g, 20 mmol] and catalyst sodium methoxide (38 mg) and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and heated for 40 min.building block - (Action A) The following can be combined: the building block dipropylcarbonate [segment=carbonyl [—C(═O)—]; Fg=propoxy (CH3CH2CH2O—); 4.38 g, 30 mmol] and the
1,3,5-trihydroxycyclohexane [segment=cyclohexane; Fg—hydroxyl (—OH); 3.24 g, 20 mmol]; phosphoric acid (2 M aq, 100 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.building block - (Action A) The following can be combined: the
1,1′-carbonyldiimidazole [segment=carbonyl [—C(═O)—]; Fg=imidazole; 4.86 g, 30 mmol] and thebuilding block 1,3,5-trihydroxycyclohexane [segment=cyclohexane; Fg—hydroxyl (—OH); 3.24 g, 20 mmol] and catalyst sodium methoxide (38 mg) and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.building block - (Action A) The following can be combined: the building block carbonyldiimidazole [segment=carbonyl [—C(═O)—]; Fg=imidazole; 4.86 g, 30 mmol] and the
1,3,5-trihydroxycyclohexane [segment=cyclohexane; Fg—hydroxyl (—OH); 3.24 g, 20 mmol]; phosphoric acid (2 M aq, 100 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.building block - (Action A) The following can be combined: the building block trimesic acid [segment=1,3,5-benzenetricarboxylate; Fg=H; 4.20 g, 20 mmol] and the
building block 1,6-hexanediol [segment=hexane; Fg—hydroxyl (—OH); 3.55 g, 30 mmol]; phosphoric acid (2 M aq, 100 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min. - (Action A) The following can be combined: the building block trimesic acid [segment=1,3,5-benzenetricarboxylate; Fg=H; 4.20 g, 20 mmol] and the
building block 1,6-hexanediol [segment=hexane; Fg—hydroxyl (—OH); 3.55 g, 30 mmol]; N,N-dimethyl-4-aminopyridine (50 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min. - (Action A) The following can be combined: the building block trimesic acid [segment=1,3,5-benzenetricarboxylate; Fg=H; 4.20 g, 20 mmol] and the building block hexamethylenediamine [segment=hexane; Fg—amine (—NH2); 3.49 g, 30 mmol]; phosphoric acid (2 M aq, 100 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- (Action A) The following can be combined: the building block trimesic acid [segment=1,3,5-benzenetricarboxylate; Fg=H; 4.20 g, 20 mmol] and the building block hexamethylenediamine [segment=hexane; Fg—amine (—NH2); 3.49 g, 30 mmol]; N,N-dimethyl-4-aminopyridine (50 mg); and N-methyl-2-pyrrolidinone (25.5 g). The mixture is mixed on a rolling wave rotator for 10 min and filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture is applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 200° C. and left to heat for 40 min.
- (Action A) Preparation of liquid containing reaction mixture. The following can be combined: the
building block 1,4-diisocyanatobenzene [segment=phenyl; Fg=isocyanate (—N═C═O); (0.5 g, 3.1 mmol)] and a 4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethanol [segment=(4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethyl); (0.69, 2.1 mmol)] 10.1 g of dimethylformamide, and 1.0 g of triethylamine. The mixture is stirred until a homogenous solution is obtained. Upon cooling to room temperature, the solution is filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture is to be applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 8 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 120 min.second building block - (Action A) Preparation of liquid containing reaction mixture. The following can be combined: the
building block 1,4-diisocyanatohexane [segment=hexyl; Fg=isocyanate (—N═C═O); (0.38 g, 3.6 mmol)] and a second building block triethanolamine [segment=triethylamine; (0.81, 5.6 mmol)] 10.1 g of dimethylformamide, and 1.0 g of triethylamine. The mixture is stirred until a homogenous solution is obtained. Upon cooling to room temperature, the solution is filtered through a 0.45 micron PTFE membrane. (Action B) The reaction mixture is to be applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 8 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 120 min. - (Action A) The following were combined: the building block N,N,N′,N′-tetrakis-[(4-hydroxymethyl)phenyl]-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetra-(p-tolyl)biphenyl-4,4′-diamine; Fg=hydroxy (—OH); 4.24 g] and the building block N,N′-diphenyl-N,N′-bis-(3-hydroxyphenyl)-terphenyl-4,4′-diamine [segment=N,N,N′,N′-tetraphenyl-terphenyl-4,4′-diamine; Fg—hydroxyl (—OH); 5.62 g]; the additives Cymel303 (530 mg) and Silclean 3700 (420 mg), and the catalyst Nacure XP-357 (530 mg) and 1-methoxy-2-propanol (41.62 g). The mixture was mixed on a rolling wave rotator for 10 min and then heated at 55° C. for 65 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 485 mm/min. (Action C) The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a SOF having a thickness of 6.2 microns.
- (Action A) Attempted preparation of the liquid containing reaction mixture. The following were combined: the building block tris-[(4-hydroxymethyl)-phenyl]-amine [segment=tri-(p-tolyl)-amine; Fg=hydroxy (—OH); 5.12 g]; the additives Cymel303 (55 mg), Silclean 3700 (210 mg), and 1-methoxy-2-propanol (13.27 g). The mixture was heated to 55° C. for 65 min in an attempt to fully dissolve the molecular building block. However it did not fully dissolve. A catalyst Nacure XP-357 (267 mg) was added and the heterogeneous mixture was further mixed on a rolling wave rotator for 10 min. In this Example, the catalyst was added after the heating step. The solution was not filtered prior to coating due to the amount of undissolved molecular building block. (Action B) Deposition of reaction mixture as a wet film. The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min. (Action C) Promotion of the change of the wet film to a dry film. The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions did not provide a uniform film. There were some regions where a non-uniform film formed that contained particles and other regions where no film was formed at all.
- (Action A) The following were combined: the building block tris-[(4-hydroxymethyl)-phenyl]-amine [segment=tri-(p-tolyl)-amine; Fg=hydroxy (—OH); 5.12 g]; the additives Cymel303 (55 mg) and Silclean 3700 (210 mg), and the catalyst Nacure XP-357 (267 mg) and 1-methoxy-2-propanol (13.27 g). The mixture was mixed on a rolling wave rotator for 10 min and then heated at 55° C. for 65 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. It was noted that the viscosity of the reaction mixture increased after the heating step (although the viscosity of the solution before and after heating was not measured). (Action B) The reaction mixture was applied to a commercially available, 30 mm drum photoreceptor using a cup coater (Tsukiage coating) at a pull-rate of 240 mm/min. (Action C) The photoreceptor drum supporting the wet layer was rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min. These actions provided a SOF having a thickness of 6.9 microns.
- (Action A) The following were combined: the building block N,N,N′,N′-tetrakis-[(4-hydroxymethyl)phenyl]-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetra-(p-tolyl)biphenyl-4,4′-diamine; Fg=hydroxy (—OH); 1.84 g] and the
3,3′-(4,4′-(biphenyl-4-ylazanediyl)bis(4,1-phenylene))dipropan-1-ol [segment=3,3′-(4,4′-(biphenyl-4-ylazanediyl)bis(4,1-phenylene))dipropyl; Fg=hydroxy (—OH); (2.41 g] and a catalyst p-toluenesulphonic acid (10 wt % solution in dowanol, 460 mg) and 1-methoxy-2-propanol (16.9 g—containing 50 ppm DC510). The mixture was mixed on a rolling wave rotator for 5 min and then heated at 70° C. for 30 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a production-coated web photoreceptor with a Hirano web coater. Syringe pump speed: 4.5 mL/min. (Action C) The photoreceptor supporting the wet layer was fed at a rate of 1.5 m/min into an actively vented oven preheated to 130° C. for 2 min. These actions provided a SOF overcoat layer having a thickness of 2.1 microns on a photoreceptor.building block - (Action A) The following were combined: the building block N,N,N′,N′-tetrakis-[(4-hydroxymethyl)phenyl]-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetra-(p-tolyl)biphenyl-4,4′-diamine; Fg=hydroxy (—OH); 5.0 g] and the building block benzenedimethanol [segment=p-xylyl; Fg—hydroxyl (—OH); 2.32 g] and a catalyst p-toluenesulphonic acid (10 wt % solution in dowanol, 720 mg) and 1-methoxy-2-propanol (22.5 g—containing 50 ppm DC510). The mixture was mixed on a rolling wave rotator for 5 min and then heated at 40° C. for 5 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a production-coated, production web photoreceptor a Hirano web coater. Syringe pump speed: 5 mL/min. (Action C) The photoreceptor supporting the wet layer was fed at a rate of 1.5 m/min into an actively vented oven preheated to 130° C. for 2 min. These actions provided a SOF overcoat layer having a thickness of 2.2 microns on a photoreceptor.
- (Action A) The following were combined: the building block N,N,N′,N′-tetrakis-[(4-hydroxymethyl)phenyl]-biphenyl-4,4′-diamine [segment=N,N,N′,N′-tetra-(p-tolyl)biphenyl-4,4′-diamine; Fg=hydroxy (—OH); 5.0 g] and the building block benzenedimethanol [segment=p-xylyl; Fg—hydroxyl (—OH); 2.32 g] and a catalyst p-toluenesulphonic acid (10 wt % solution in dowanol, 720 mg) and 1-methoxy-2-propanol (22.5 g—containing 50 ppm DC510). The mixture was mixed on a rolling wave rotator for 5 min and then heated at 40° C. for 5 min until a homogenous solution resulted. The mixture was placed on the rotator and cooled to room temperature. The solution was filtered through a 1 micron PTFE membrane. (Action B) The reaction mixture was applied to a production-coated, production web photoreceptor with a Hirano web coater. Syringe pump speed: 10 mL/min. (Action C) The photoreceptor supporting the wet layer was fed at a rate of 1.5 m/min into an actively vented oven preheated to 130° C. for 2 min. These actions provided a SOF overcoat layer having a thickness of 4.3 microns on a photoreceptor.
- (Action A) The following were combined: the
4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethanol [segment=(4,4′,4″-nitrilotris(benzene-4,1-diyl)trimethyl); Fg=alcohol (—OH); (1.48 g, 4.4 mmol)], 0.5 g water and 7.8 g of 1,4-dioxane. The mixture was shaken and heated to 60° C. until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.15 g of a 10 wt % solution of p-toluenesulfonic acid in 1,4-dioxane to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the reflective side of a metalized (TiZr) MYLAR™ substrate using a constant velocity draw down coater outfitted with a bird bar having a 15 mil gap. (Action C) The metalized MYLAR™ substrate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 130° C. and left to heat for 40 min. These actions provided SOF having a thickness ranging from about 4-10 microns that could be delaminated from substrate as a single free-standing film. The color of the SOF was green. Two-dimensional X-ray scattering data is provided inbuilding FIG. 8 . As seen inFIG. 8 , 2θ is about 17.8 and d is about 4.97 angstroms, indicating that the SOF possesses molecular order having a periodicity of about 0.5 nm. - (Action A) The following can be combined: the building block 4-hydroxybenzyl alcohol [segment=toluene; Fg=hydroxyl (—OH); (0.0272 g, 0.22 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.0728 g, 0.11 mmol)], and 0.88 g of 1-methoxy-2-propanol and 0.01 g of a 10 wt % solution of silclean in 1-methoxy-2-propanol. The mixture is shaken and heated to 55° C. until a homogenous solution is obtained. Upon cooling to rt, the solution is filtered through a 0.45 micron PTFE membrane. To the filtered solution is added an acid catalyst delivered as 0.01 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the aluminum substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The aluminum substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min.
- (Action A) The following can be combined: the building block 4-(hydroxymethyl)benzoic acid [segment=4-methylbenzaldehyde; Fg=hydroxyl (—OH); (0.0314 g, 0.206 mmol)] and a second building block N4,N4,N4′,N4′-tetrakis(4-(methoxymethyl)phenyl)biphenyl-4,4′-diamine [segment=N4,N4,N4′,N4′-tetra-p-tolylbiphenyl-4,4′-diamine; Fg=methoxy ether (—OCH3); (0.0686 g, 0.103 mmol)], and 0.88 g of 1-methoxy-2-propanol and 0.01 g of a 10 wt % solution of silclean in 1-methoxy-2-propanol. The mixture is shaken and heated to 55° C. until a homogenous solution is obtained. Upon cooling to rt, the solution is filtered through a 0.45 micron PTFE membrane. To the filtered solution is added an acid catalyst delivered as 0.01 g of a 10 wt % solution of p-toluenesulfonic acid in 1-methoxy-2-propanol to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied to the aluminum substrate using a constant velocity draw down coater outfitted with a bird bar having a 5 mil gap. (Action C) The aluminum substrate supporting the wet layer is rapidly transferred to an actively vented oven preheated to 140° C. and left to heat for 40 min.
- (Action A) The following were combined: the
1,4 diaminobenzene [segment=benzene; Fg=amine (—NH2); (0.14 g, 1.3 mmol)] and abuilding block 1,3,5-triformylbenzene [segment=benzene; Fg=aldehyde (—CHO); (0.144 g, 0.89 mmol)], and 2.8 g of NMP. The mixture was shaken until a homogenous solution resulted. Upon cooling to room temperature, the solution was filtered through a 0.45 micron PTFE membrane. To the filtered solution was added an acid catalyst delivered as 0.02 g of a 2.5 wt % solution of p-toluenesulfonic acid in NMP to yield the liquid containing reaction mixture. (Action B) The reaction mixture was applied quartz plate affixed to the rotating unit of a variable velocity spin coater rotating at 1000 RPM for 30 seconds. (Action C) The quartz plate supporting the wet layer was rapidly transferred to an actively vented oven preheated to 180° C. and left to heat for 120 min. These actions provide a yellow film having a thickness of 400 nm that can be delaminated from substrate upon immersion in water.second building block - It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Claims (20)
1. A process for preparing a structured organic film (SOF) comprising:
(a) preparing a liquid-containing reaction mixture comprising:
a first solvent,
a second solvent, and
a plurality of molecular building blocks each of the plurality of molecular building blocks being either a segment or linker;
(b) forming a pre-SOF from the plurality of molecular building blocks;
(c) depositing the formed pre-SOF as a wet film on a substrate; and
(d) promoting a change of the wet film to a dry film comprising the SOF as a covalent organic framework (COF), wherein at a macroscopic level the covalent organic framework is a film;
wherein the SOF is periodic as determined by two-dimensional X-ray scattering.
2. The process of claim 1 , wherein the at least one of the molecular building blocks comprises at least one atom that is not carbon.
3. The process of claim 1 , wherein forming the pre-SOF comprises heating.
4. The process of claim 1 , wherein forming the pre-SOF comprises irradiating with UV radiation.
5. The process of claim 1 , further comprising removing the SOF from the substrate to obtain a free-standing SOF.
6. The process of claim 5 , further comprising processing the free-standing SOF into a roll.
7. The process of claim 1 , further comprising cutting and seaming the SOF into a belt.
8. The process of claim 1 , comprising repeating the steps in SOF formation one or more times, wherein the substrate at each iteration is a prior fabricated SOF.
9. The process of claim 1 , wherein promoting a change of the wet film to a dry film comprising the SOF comprises heating to remove the first solvent, the second solvent, or both.
10. The process of claim 1 , wherein a catalyst is used in forming the pre-SOF.
11. The process of claim 1 , wherein the wet film has a viscosity of about 50 cps to about 1000 cps.
12. A process for preparing a structured organic film (SOF) comprising:
(a) preparing a liquid-containing reaction mixture comprising:
a first solvent,
a second solvent, and
a plurality of molecular building blocks each of the plurality of molecular building blocks being either a segment or linker;
(b) forming a pre-SOF from the plurality of molecular building blocks;
(c) depositing the formed pre-SOF as a wet film on a substrate,
wherein the substrate is a prior fabricated SOF; and
(d) promoting a change of the wet film to a dry film comprising the SOF as a covalent organic framework (COF), wherein at a macroscopic level the covalent organic framework is a film;
wherein the SOF is periodic as determined by two-dimensional X-ray
13. The process of claim 12 , wherein the at least one of the molecular building blocks comprises at least one atom that is not carbon.
14. The process of claim 12 , wherein forming the pre-SOF comprises heating.
15. The process of claim 12 , wherein forming the pre-SOF comprises irradiating with UV radiation.
16. The process of claim 12 , further comprising removing the SOF from the substrate to obtain a free-standing SOF.
17. The process of claim 16 , further comprising processing the free-standing SOF into a roll.
18. The process of claim 12 , further comprising cutting and seaming the SOF into a belt.
19. The process of claim 12 , wherein promoting a change of the wet film to a dry film comprising the SOF comprises heating to remove the first solvent, the second solvent, or both.
20. The process of claim 12 , wherein a catalyst is used in forming the pre-SOF.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/288,301 US20170022338A1 (en) | 2010-06-15 | 2016-10-07 | Periodic structured organic films |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/815,688 US9567425B2 (en) | 2010-06-15 | 2010-06-15 | Periodic structured organic films |
| US15/288,301 US20170022338A1 (en) | 2010-06-15 | 2016-10-07 | Periodic structured organic films |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/815,688 Division US9567425B2 (en) | 2010-06-15 | 2010-06-15 | Periodic structured organic films |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170022338A1 true US20170022338A1 (en) | 2017-01-26 |
Family
ID=45096432
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/815,688 Expired - Fee Related US9567425B2 (en) | 2010-06-15 | 2010-06-15 | Periodic structured organic films |
| US15/288,301 Abandoned US20170022338A1 (en) | 2010-06-15 | 2016-10-07 | Periodic structured organic films |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/815,688 Expired - Fee Related US9567425B2 (en) | 2010-06-15 | 2010-06-15 | Periodic structured organic films |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US9567425B2 (en) |
| JP (1) | JP5763973B2 (en) |
| KR (1) | KR20110136744A (en) |
| CA (1) | CA2742524C (en) |
| DE (1) | DE102011076958A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108034322A (en) * | 2018-01-11 | 2018-05-15 | 长春顺风新材料有限公司 | A kind of fireproof coating and preparation method thereof |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8318892B2 (en) | 2010-07-28 | 2012-11-27 | Xerox Corporation | Capped structured organic film compositions |
| US8377999B2 (en) | 2011-07-13 | 2013-02-19 | Xerox Corporation | Porous structured organic film compositions |
| US8410016B2 (en) | 2011-07-13 | 2013-04-02 | Xerox Corporation | Application of porous structured organic films for gas storage |
| US8313560B1 (en) * | 2011-07-13 | 2012-11-20 | Xerox Corporation | Application of porous structured organic films for gas separation |
| US9523928B2 (en) | 2014-09-26 | 2016-12-20 | Xerox Corporation | Fluorinated structured organic film photoreceptor layers |
| CN110563907A (en) * | 2019-09-09 | 2019-12-13 | 济南大学 | Preparation method of covalent organic framework material |
| CN113461889B (en) * | 2021-06-11 | 2022-06-07 | 西安交通大学 | A kind of organic porous material with mixed ion skeleton structure, membrane material and preparation method |
| CN114957591B (en) * | 2022-03-24 | 2024-04-09 | 万华化学集团股份有限公司 | Preparation method of COF-based polyurethane porous membrane for drug slow release |
Family Cites Families (129)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2324550A (en) | 1939-03-08 | 1943-07-20 | American Can Co | Lithographic printing ink and the method of making the same |
| US3430418A (en) | 1967-08-09 | 1969-03-04 | Union Carbide Corp | Selective adsorption process |
| US3801315A (en) | 1971-12-27 | 1974-04-02 | Xerox Corp | Gravure imaging system |
| US4078927A (en) | 1973-12-13 | 1978-03-14 | Xerox Corporation | Photoconductive printing master |
| SE7410542L (en) * | 1974-01-29 | 1976-01-12 | Givaudan & Cie Sa | CONDENSATION PRODUCTS. |
| CA1098755A (en) | 1976-04-02 | 1981-04-07 | Milan Stolka | Imaging member with n,n'-diphenyl-n,n'-bis (phenylmethyl)-¬1,1'-biphenyl|-4,4'-diamine in the charge transport layer |
| US4081274A (en) | 1976-11-01 | 1978-03-28 | Xerox Corporation | Composite layered photoreceptor |
| US4265990A (en) | 1977-05-04 | 1981-05-05 | Xerox Corporation | Imaging system with a diamine charge transport material in a polycarbonate resin |
| US4304829A (en) | 1977-09-22 | 1981-12-08 | Xerox Corporation | Imaging system with amino substituted phenyl methane charge transport layer |
| US4306008A (en) | 1978-12-04 | 1981-12-15 | Xerox Corporation | Imaging system with a diamine charge transport material in a polycarbonate resin |
| US4299897A (en) | 1978-12-15 | 1981-11-10 | Xerox Corporation | Aromatic amino charge transport layer in electrophotography |
| US4257699A (en) | 1979-04-04 | 1981-03-24 | Xerox Corporation | Metal filled, multi-layered elastomer fuser member |
| US4233384A (en) | 1979-04-30 | 1980-11-11 | Xerox Corporation | Imaging system using novel charge transport layer |
| US4291110A (en) | 1979-06-11 | 1981-09-22 | Xerox Corporation | Siloxane hole trapping layer for overcoated photoreceptors |
| CA1158706A (en) | 1979-12-07 | 1983-12-13 | Carl H. Hertz | Method and apparatus for controlling the electric charge on droplets and ink jet recorder incorporating the same |
| US4387980A (en) | 1979-12-25 | 1983-06-14 | Tokyo Shibaura Denki Kabushiki Kaisha | Charging device for electronic copier |
| US4286033A (en) | 1980-03-05 | 1981-08-25 | Xerox Corporation | Trapping layer overcoated inorganic photoresponsive device |
| US4338387A (en) | 1981-03-02 | 1982-07-06 | Xerox Corporation | Overcoated photoreceptor containing inorganic electron trapping and hole trapping layers |
| EP0091780B1 (en) | 1982-04-06 | 1987-02-04 | Nec Corporation | Development apparatus of latent electrostatic images |
| US4489593A (en) | 1982-09-09 | 1984-12-25 | Omicron Technology Corporation | Method and apparatus for determining the amount of gas adsorbed or desorbed from a solid |
| US4464450A (en) | 1982-09-21 | 1984-08-07 | Xerox Corporation | Multi-layer photoreceptor containing siloxane on a metal oxide layer |
| US4457994A (en) | 1982-11-10 | 1984-07-03 | Xerox Corporation | Photoresponsive device containing arylmethanes |
| US5165909A (en) | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
| US6375917B1 (en) | 1984-12-06 | 2002-04-23 | Hyperion Catalysis International, Inc. | Apparatus for the production of carbon fibrils by catalysis and methods thereof |
| US5707916A (en) | 1984-12-06 | 1998-01-13 | Hyperion Catalysis International, Inc. | Carbon fibrils |
| US4664995A (en) | 1985-10-24 | 1987-05-12 | Xerox Corporation | Electrostatographic imaging members |
| US4871634A (en) | 1987-06-10 | 1989-10-03 | Xerox Corporation | Electrophotographic elements using hydroxy functionalized arylamine compounds |
| US4855203A (en) | 1987-08-31 | 1989-08-08 | Xerox Corporation | Imaging members with photogenerating compositions obtained by solution processes |
| EP0312376A3 (en) | 1987-10-14 | 1990-01-31 | Exxon Research And Engineering Company | Polyurea membrane and its use for aromatics/non-aromatics separations |
| US4917711A (en) | 1987-12-01 | 1990-04-17 | Peking University | Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases |
| JP2666314B2 (en) | 1988-01-07 | 1997-10-22 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor |
| US5017432A (en) | 1988-03-10 | 1991-05-21 | Xerox Corporation | Fuser member |
| US4921769A (en) | 1988-10-03 | 1990-05-01 | Xerox Corporation | Photoresponsive imaging members with polyurethane blocking layers |
| JPH0299529A (en) * | 1988-10-07 | 1990-04-11 | Asahi Chem Ind Co Ltd | Manufacturing method of regular network polyester |
| US4921773A (en) | 1988-12-30 | 1990-05-01 | Xerox Corporation | Process for preparing an electrophotographic imaging member |
| US5231162A (en) | 1989-09-21 | 1993-07-27 | Toho Rayon Co. Ltd. | Polyamic acid having three-dimensional network molecular structure, polyimide obtained therefrom and process for the preparation thereof |
| ZA907803B (en) | 1989-09-28 | 1991-07-31 | Hyperion Catalysis Int | Electrochemical cells and preparing carbon fibrils |
| US5110693A (en) | 1989-09-28 | 1992-05-05 | Hyperion Catalysis International | Electrochemical cell |
| WO1991015813A1 (en) | 1990-04-04 | 1991-10-17 | Sri International | Electrographic gravure printing system |
| US5061965A (en) | 1990-04-30 | 1991-10-29 | Xerox Corporation | Fusing assembly with release agent donor member |
| US5126310A (en) | 1990-08-23 | 1992-06-30 | Air Products And Chemicals, Inc. | Highly dispersed cuprous compositions |
| US5166031A (en) | 1990-12-21 | 1992-11-24 | Xerox Corporation | Material package for fabrication of fusing components |
| US5139910A (en) | 1990-12-21 | 1992-08-18 | Xerox Corporation | Photoconductive imaging members with bisazo compositions |
| US5141788A (en) | 1990-12-21 | 1992-08-25 | Xerox Corporation | Fuser member |
| US5569635A (en) | 1994-05-22 | 1996-10-29 | Hyperion Catalysts, Int'l., Inc. | Catalyst supports, supported catalysts and methods of making and using the same |
| JPH06340081A (en) | 1993-04-19 | 1994-12-13 | Xerox Corp | Printing head maintenance device for full-width ink jet printer |
| US5455136A (en) | 1993-05-03 | 1995-10-03 | Xerox Corporation | Flexible belt with a skewed seam configuration |
| US5370931A (en) | 1993-05-27 | 1994-12-06 | Xerox Corporation | Fuser member overcoated with a fluoroelastomer, polyorganosiloxane and copper oxide composition |
| US5366772A (en) | 1993-07-28 | 1994-11-22 | Xerox Corporation | Fuser member |
| US5368913A (en) | 1993-10-12 | 1994-11-29 | Fiberweb North America, Inc. | Antistatic spunbonded nonwoven fabrics |
| US5368967A (en) | 1993-12-21 | 1994-11-29 | Xerox Corporation | Layered photoreceptor with overcoat containing hydrogen bonded materials |
| JP2827937B2 (en) | 1994-11-22 | 1998-11-25 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member having undercoat layer and electrophotographic apparatus |
| JPH0987849A (en) | 1995-09-29 | 1997-03-31 | Fujitsu Ltd | Method for producing conjugated organic polymer film and conjugated organic polymer film |
| US6939625B2 (en) | 1996-06-25 | 2005-09-06 | Nôrthwestern University | Organic light-emitting diodes and methods for assembly and enhanced charge injection |
| US6046348A (en) | 1996-07-17 | 2000-04-04 | Fuji Xerox Co., Ltd. | Silane compound, method for making the same, and electrophotographic photoreceptor |
| US5702854A (en) | 1996-09-27 | 1997-12-30 | Xerox Corporation | Compositions and photoreceptor overcoatings containing a dihydroxy arylamine and a crosslinked polyamide |
| US6020426A (en) | 1996-11-01 | 2000-02-01 | Fuji Xerox Co., Ltd. | Charge-transporting copolymer, method of forming charge-transporting copolymer, electrophotographic photosensitive body, and electrophotographic device |
| JPH10137564A (en) * | 1996-11-08 | 1998-05-26 | Nitto Denko Corp | High permeability composite reverse osmosis membrane |
| US6107117A (en) | 1996-12-20 | 2000-08-22 | Lucent Technologies Inc. | Method of making an organic thin film transistor |
| FR2758739B1 (en) | 1997-01-24 | 1999-02-26 | Ceca Sa | IMPROVEMENT IN PSA HYDROGEN PURIFICATION PROCESSES |
| US5853906A (en) | 1997-10-14 | 1998-12-29 | Xerox Corporation | Conductive polymer compositions and processes thereof |
| US6783849B2 (en) | 1998-03-27 | 2004-08-31 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Molecular layer epitaxy method and compositions |
| JP3899733B2 (en) | 1998-07-03 | 2007-03-28 | 株式会社豊田中央研究所 | Porous material and method for producing porous material |
| US5976744A (en) | 1998-10-29 | 1999-11-02 | Xerox Corporation | Photoreceptor overcoatings containing hydroxy functionalized aromatic diamine, hydroxy functionalized triarylamine and crosslinked acrylated polyamide |
| US6002907A (en) | 1998-12-14 | 1999-12-14 | Xerox Corporation | Liquid immersion development machine having a reliable non-sliding transfusing assembly |
| US6107439A (en) | 1998-12-22 | 2000-08-22 | Xerox Corporation | Cross linked conducting compositions |
| US6340382B1 (en) | 1999-08-13 | 2002-01-22 | Mohamed Safdar Allie Baksh | Pressure swing adsorption process for the production of hydrogen |
| FR2811241B1 (en) | 2000-07-07 | 2002-12-13 | Ceca Sa | PROCESS FOR THE PURIFICATION OF HYDROGEN-BASED GASEOUS MIXTURES USING CALCIUM ZEOLITE X |
| GB0026121D0 (en) | 2000-10-25 | 2000-12-13 | Lsi Logic Europ Ltd | Apparatus and method for detecting a predetermined pattern of bits in a bitstream |
| US6505921B2 (en) | 2000-12-28 | 2003-01-14 | Eastman Kodak Company | Ink jet apparatus having amplified asymmetric heating drop deflection |
| US6819244B2 (en) | 2001-03-28 | 2004-11-16 | Inksure Rf, Inc. | Chipless RF tags |
| KR100544378B1 (en) | 2001-04-17 | 2006-01-23 | 마쯔시다덴기산교 가부시키가이샤 | Electroconductive organic thin film and its manufacturing method, the electrode and electric cable using the same |
| DE60213579T2 (en) | 2001-04-30 | 2007-08-09 | The Regents Of The University Of Michigan, Ann Arbor | ISORETICULAR ORGANOMETALLIC BASIC STRUCTURES, METHODS FOR THEIR EDUCATION AND SYSTEMATIC DEVELOPMENT OF THEIR PORE SIZE AND FUNCTIONALITY, WITH THE USE OF THE GAS STORAGE |
| US6713643B2 (en) | 2001-05-24 | 2004-03-30 | Board Of Trustees Of Michigan State University | Ultrastable organofunctional microporous to mesoporous silica compositions |
| FR2832141B1 (en) | 2001-11-14 | 2004-10-01 | Ceca Sa | SYNTHESIS GAS PURIFICATION PROCESS |
| DE10155935A1 (en) | 2001-11-14 | 2003-05-28 | Infineon Technologies Ag | Smart label |
| US7018678B2 (en) | 2002-06-03 | 2006-03-28 | Shipley Company, L.L.C. | Electronic device manufacture |
| JP4185341B2 (en) | 2002-09-25 | 2008-11-26 | パイオニア株式会社 | Multilayer barrier film structure, organic electroluminescence display panel, and manufacturing method |
| KR100503076B1 (en) | 2002-11-28 | 2005-07-21 | 삼성전자주식회사 | Overcoat layer composition and organic photoconductor using the same |
| JP3580426B1 (en) | 2003-05-12 | 2004-10-20 | シャープ株式会社 | Organic photoconductive material, electrophotographic photoreceptor and image forming apparatus using the same |
| JP4461215B2 (en) | 2003-09-08 | 2010-05-12 | 独立行政法人産業技術総合研究所 | Low dielectric constant insulating material and semiconductor device using the same |
| US7202002B2 (en) | 2004-04-30 | 2007-04-10 | Samsung Electronics Co., Ltd. | Hydrazone-based charge transport materials |
| US7179324B2 (en) | 2004-05-19 | 2007-02-20 | Praxair Technology, Inc. | Continuous feed three-bed pressure swing adsorption system |
| US7177572B2 (en) | 2004-06-25 | 2007-02-13 | Xerox Corporation | Biased charge roller with embedded electrodes with post-nip breakdown to enable improved charge uniformity |
| US20060182993A1 (en) | 2004-08-10 | 2006-08-17 | Mitsubishi Chemical Corporation | Compositions for organic electroluminescent device and organic electroluminescent device |
| DE102004039101A1 (en) * | 2004-08-11 | 2006-02-23 | Basf Ag | Process for the preparation of hyperbranched polyamides |
| JP4642447B2 (en) | 2004-08-27 | 2011-03-02 | 株式会社リコー | Aromatic polyester resin and electrophotographic photoreceptor using the same |
| CN101189244A (en) | 2004-10-22 | 2008-05-28 | 密歇根大学董事会 | Covalently linked organic frameworks and polyhedra |
| JP2006169276A (en) | 2004-12-13 | 2006-06-29 | Seiko Epson Corp | Conductive material, composition for conductive material, conductive layer, electronic device and electronic apparatus |
| US20060135737A1 (en) | 2004-12-22 | 2006-06-22 | Davis Gary C | Polycarbonates with fluoroalkylene carbonate end groups |
| US7404846B2 (en) | 2005-04-26 | 2008-07-29 | Air Products And Chemicals, Inc. | Adsorbents for rapid cycle pressure swing adsorption processes |
| KR101250108B1 (en) | 2005-06-24 | 2013-04-03 | 아사히 가라스 가부시키가이샤 | Crosslinkable fluorine-containing aromatic prepolymer and use thereof |
| US7560205B2 (en) | 2005-08-31 | 2009-07-14 | Xerox Corporation | Photoconductive imaging members |
| US7384717B2 (en) | 2005-09-26 | 2008-06-10 | Xerox Corporation | Photoreceptor with improved overcoat layer |
| US7714040B2 (en) | 2005-11-30 | 2010-05-11 | Xerox Corporation | Phase change inks containing curable amide gellant compounds |
| US8883384B2 (en) | 2005-12-13 | 2014-11-11 | Xerox Corporation | Binderless overcoat layer |
| EP1984378B1 (en) | 2006-02-10 | 2010-07-28 | Basf Se | Process for preparing porous organic framework materials |
| WO2007098263A2 (en) | 2006-02-24 | 2007-08-30 | University Of South Carolina | Synthesis of a highly crystalline, covalently linked porous network |
| WO2007119690A1 (en) | 2006-04-12 | 2007-10-25 | Panasonic Corporation | Method of forming organic molecular film structure and organic molecular film structure |
| KR101304697B1 (en) | 2006-06-07 | 2013-09-06 | 삼성전자주식회사 | Organic semiconductor materials using stacking-inducing compounds, composition comprising the materials, organic semiconductor thin film using the composition and organic electronic device employing the thin film |
| US7645548B2 (en) * | 2006-11-06 | 2010-01-12 | Xerox Corporation | Photoreceptor overcoat layer masking agent |
| JP5559545B2 (en) | 2007-01-24 | 2014-07-23 | ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア | Crystalline 3D- and 2D-covalent organic frameworks |
| US7999160B2 (en) | 2007-03-23 | 2011-08-16 | International Business Machines Corporation | Orienting, positioning, and forming nanoscale structures |
| US8367152B2 (en) | 2007-04-27 | 2013-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of light-emitting device |
| US8065904B1 (en) | 2007-06-18 | 2011-11-29 | Sandia Corporation | Method and apparatus for detecting an analyte |
| US7628466B2 (en) | 2007-06-20 | 2009-12-08 | Xerox Corporation | Method for increasing printhead reliability |
| ES2401744T3 (en) | 2007-06-27 | 2013-04-24 | Georgia Tech Research Corporation | Hollow sorbent fiber and procedure to adsorb a component of a medium |
| JP2009030024A (en) * | 2007-06-29 | 2009-02-12 | Toray Ind Inc | Method for producing composite semipermeable membrane |
| US7591535B2 (en) | 2007-08-13 | 2009-09-22 | Xerox Corporation | Maintainable coplanar front face for silicon die array printhead |
| GB2451865A (en) | 2007-08-15 | 2009-02-18 | Univ Liverpool | Microporous polymers from alkynyl monomers |
| US8309285B2 (en) * | 2007-11-07 | 2012-11-13 | Xerox Corporation | Protective overcoat layer and photoreceptor including same |
| KR100832309B1 (en) | 2007-11-21 | 2008-05-26 | 한국과학기술원 | Organic substance skeletal structure material derivative for hydrogen storage doped with metal cation and method of using the same |
| US20090149565A1 (en) | 2007-12-11 | 2009-06-11 | Chunqing Liu | Method for Making High Performance Mixed Matrix Membranes |
| US7776499B2 (en) | 2008-02-19 | 2010-08-17 | Xerox Corporation | Overcoat containing fluorinated poly(oxetane) photoconductors |
| DE102008011840B4 (en) | 2008-02-20 | 2011-07-21 | Technische Universität Dresden, 01069 | Microporous hydrophobic polyorganosilane, method of preparation and use |
| DE102008011189A1 (en) | 2008-02-26 | 2009-08-27 | Merck Patent Gmbh | Polycondensation networks for gas storage |
| US7799495B2 (en) | 2008-03-31 | 2010-09-21 | Xerox Corporation | Metal oxide overcoated photoconductors |
| WO2009127896A1 (en) | 2008-04-18 | 2009-10-22 | Universite D'aix-Marseille I | Synthesis of an ordered covalent monolayer network onto a surface |
| US7881647B2 (en) | 2008-04-30 | 2011-02-01 | Xerox Corporation | Xerographic imaging modules, xerographic apparatuses, and methods of making xerographic imaging modules |
| JP5487583B2 (en) | 2008-09-16 | 2014-05-07 | 株式会社リコー | Electrophotographic photoreceptor, electrophotographic method using the same, electrophotographic apparatus, process cartridge for electrophotographic apparatus |
| US8709134B2 (en) | 2009-02-02 | 2014-04-29 | The Regents Of The University Of California | Reversible ethylene oxide capture in porous frameworks |
| CN102414215A (en) | 2009-03-04 | 2012-04-11 | 施乐公司 | Structured organic films having an added functionality |
| US8241400B2 (en) | 2009-07-15 | 2012-08-14 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit |
| US7939230B2 (en) | 2009-09-03 | 2011-05-10 | Xerox Corporation | Overcoat layer comprising core-shell fluorinated particles |
| JP2011070023A (en) | 2009-09-25 | 2011-04-07 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and image forming apparatus |
| US8318892B2 (en) | 2010-07-28 | 2012-11-27 | Xerox Corporation | Capped structured organic film compositions |
| US8119315B1 (en) | 2010-08-12 | 2012-02-21 | Xerox Corporation | Imaging members for ink-based digital printing comprising structured organic films |
| US8119314B1 (en) | 2010-08-12 | 2012-02-21 | Xerox Corporation | Imaging devices comprising structured organic films |
| US8313560B1 (en) | 2011-07-13 | 2012-11-20 | Xerox Corporation | Application of porous structured organic films for gas separation |
-
2010
- 2010-06-15 US US12/815,688 patent/US9567425B2/en not_active Expired - Fee Related
-
2011
- 2011-06-02 JP JP2011124679A patent/JP5763973B2/en not_active Expired - Fee Related
- 2011-06-06 DE DE102011076958A patent/DE102011076958A1/en not_active Ceased
- 2011-06-08 CA CA2742524A patent/CA2742524C/en not_active Expired - Fee Related
- 2011-06-14 KR KR1020110057434A patent/KR20110136744A/en not_active Abandoned
-
2016
- 2016-10-07 US US15/288,301 patent/US20170022338A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108034322A (en) * | 2018-01-11 | 2018-05-15 | 长春顺风新材料有限公司 | A kind of fireproof coating and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102011076958A1 (en) | 2012-02-23 |
| JP5763973B2 (en) | 2015-08-12 |
| KR20110136744A (en) | 2011-12-21 |
| CA2742524C (en) | 2014-08-05 |
| US20110305876A1 (en) | 2011-12-15 |
| CA2742524A1 (en) | 2011-12-15 |
| JP2012001539A (en) | 2012-01-05 |
| US9567425B2 (en) | 2017-02-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2403655B1 (en) | Mixed solvent process for preparing structured organic films | |
| US20170022338A1 (en) | Periodic structured organic films | |
| US8318892B2 (en) | Capped structured organic film compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COTE, ADRIEN P.;HEUFT, MATTHEW A.;REEL/FRAME:039966/0616 Effective date: 20160927 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |















