US20170015672A1 - Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors - Google Patents
Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors Download PDFInfo
- Publication number
- US20170015672A1 US20170015672A1 US15/280,724 US201615280724A US2017015672A1 US 20170015672 A1 US20170015672 A1 US 20170015672A1 US 201615280724 A US201615280724 A US 201615280724A US 2017015672 A1 US2017015672 A1 US 2017015672A1
- Authority
- US
- United States
- Prior art keywords
- group
- hydrogen
- bond
- lower alkyl
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000004881 tumor cell Anatomy 0.000 title abstract description 28
- 150000004943 pyrrolo[2,3-d]pyrimidines Chemical class 0.000 title abstract description 11
- 230000008685 targeting Effects 0.000 title description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 52
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 44
- 201000011510 cancer Diseases 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 34
- 125000000217 alkyl group Chemical group 0.000 claims description 33
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 32
- 125000004432 carbon atom Chemical group C* 0.000 claims description 24
- 239000001257 hydrogen Substances 0.000 claims description 21
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 20
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 claims description 8
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000001072 heteroaryl group Chemical group 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 4
- VBZWSGALLODQNC-UHFFFAOYSA-N hexafluoroacetone Chemical compound FC(F)(F)C(=O)C(F)(F)F VBZWSGALLODQNC-UHFFFAOYSA-N 0.000 claims description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 4
- 229930192474 thiophene Natural products 0.000 claims description 4
- 210000000988 bone and bone Anatomy 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- 102000006815 folate receptor Human genes 0.000 abstract description 20
- 108020005243 folate receptor Proteins 0.000 abstract description 20
- 230000006820 DNA synthesis Effects 0.000 abstract description 10
- 230000006825 purine synthesis Effects 0.000 abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 51
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 36
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 30
- 102000010451 Folate receptor alpha Human genes 0.000 description 24
- 108050001931 Folate receptor alpha Proteins 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 19
- -1 cyclic pyrimidines Chemical class 0.000 description 19
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 18
- 125000004122 cyclic group Chemical group 0.000 description 16
- 238000005160 1H NMR spectroscopy Methods 0.000 description 15
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 15
- 229940127089 cytotoxic agent Drugs 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 14
- 102000010449 Folate receptor beta Human genes 0.000 description 13
- 108050001930 Folate receptor beta Proteins 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 13
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 11
- 102000002114 Reduced Folate Carrier Human genes 0.000 description 10
- 108050009454 Reduced Folate Carrier Proteins 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 239000000741 silica gel Substances 0.000 description 10
- 229910002027 silica gel Inorganic materials 0.000 description 10
- 239000011724 folic acid Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000002254 cytotoxic agent Substances 0.000 description 7
- 235000019152 folic acid Nutrition 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229960000304 folic acid Drugs 0.000 description 6
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 0 CC[Y]CC[Ar]C(=O)N[C@@H](CCC(=O)O)C(=O)O.[2*]C1=NC2=C(bc*2)C(=O)[1*]1N Chemical compound CC[Y]CC[Ar]C(=O)N[C@@H](CCC(=O)O)C(=O)O.[2*]C1=NC2=C(bc*2)C(=O)[1*]1N 0.000 description 5
- 231100000599 cytotoxic agent Toxicity 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 4
- RSCPGUPBZHUEKJ-UHFFFAOYSA-N N-methyl-1-(7H-pyrrolo[2,3-d]pyrimidin-6-yl)methanamine Chemical compound CNCC1=CC=2C(NC=NC=2)=N1 RSCPGUPBZHUEKJ-UHFFFAOYSA-N 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 3
- GPIQOFWTZXXOOV-UHFFFAOYSA-N 2-chloro-4,6-dimethoxy-1,3,5-triazine Chemical compound COC1=NC(Cl)=NC(OC)=N1 GPIQOFWTZXXOOV-UHFFFAOYSA-N 0.000 description 3
- JOAQINSXLLMRCV-UHFFFAOYSA-N 4-{[(2-amino-4-hydroxypteridin-6-yl)methyl]amino}benzoic acid Chemical compound C1=NC2=NC(N)=NC(O)=C2N=C1CNC1=CC=C(C(O)=O)C=C1 JOAQINSXLLMRCV-UHFFFAOYSA-N 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- QVSJXRDFOYTXBP-LNEUYKFSSA-N CN(CC1=CC2=C(N=C(N)NC2=O)N1)C(=O)C1=CC=C(C(=O)N[C@@H](CCC(=O)O)OC=O)C=C1.CN(CC1=CC2=C(N=C(N)NC2=O)N1)C(=O)C1=CC=CC(C(=O)N[C@@H](CCC(=O)O)C(=O)O)=C1.CN(CC1=CC2=C(N=C(N)NC2=O)N1)S(=O)(=O)C1=CC=C(C(=O)N[C@@H](CCC(=O)O)C(=O)O)C=C1.NC1=NC2=C(C=C(S(=O)(=O)NCC3=CC=C(C(=O)N[C@@H](CCC(=O)O)C(=O)O)C=C3)N2)C(=O)N1 Chemical compound CN(CC1=CC2=C(N=C(N)NC2=O)N1)C(=O)C1=CC=C(C(=O)N[C@@H](CCC(=O)O)OC=O)C=C1.CN(CC1=CC2=C(N=C(N)NC2=O)N1)C(=O)C1=CC=CC(C(=O)N[C@@H](CCC(=O)O)C(=O)O)=C1.CN(CC1=CC2=C(N=C(N)NC2=O)N1)S(=O)(=O)C1=CC=C(C(=O)N[C@@H](CCC(=O)O)C(=O)O)C=C1.NC1=NC2=C(C=C(S(=O)(=O)NCC3=CC=C(C(=O)N[C@@H](CCC(=O)O)C(=O)O)C=C3)N2)C(=O)N1 QVSJXRDFOYTXBP-LNEUYKFSSA-N 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- MFUPLHQOVIUESQ-JEDNCBNOSA-N [(2s)-1,5-dimethoxy-1,5-dioxopentan-2-yl]azanium;chloride Chemical compound Cl.COC(=O)CC[C@H](N)C(=O)OC MFUPLHQOVIUESQ-JEDNCBNOSA-N 0.000 description 3
- 239000012829 chemotherapy agent Substances 0.000 description 3
- 229940125898 compound 5 Drugs 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229940014144 folate Drugs 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- HBENZIXOGRCSQN-VQWWACLZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-[(2S)-2-hydroxy-3,3-dimethylpentan-2-yl]-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol Chemical compound N1([C@@H]2CC=3C4=C(C(=CC=3)O)O[C@H]3[C@@]5(OC)CC[C@@]2([C@@]43CC1)C[C@@H]5[C@](C)(O)C(C)(C)CC)CC1CC1 HBENZIXOGRCSQN-VQWWACLZSA-N 0.000 description 2
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- PHDIJLFSKNMCMI-ITGJKDDRSA-N (3R,4S,5R,6R)-6-(hydroxymethyl)-4-(8-quinolin-6-yloxyoctoxy)oxane-2,3,5-triol Chemical compound OC[C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)OCCCCCCCCOC=1C=C2C=CC=NC2=CC=1)O PHDIJLFSKNMCMI-ITGJKDDRSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- 108010093223 Folylpolyglutamate synthetase Proteins 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 230000003432 anti-folate effect Effects 0.000 description 2
- 229940127074 antifolate Drugs 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940125758 compound 15 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000004052 folic acid antagonist Substances 0.000 description 2
- 125000003929 folic acid group Chemical group 0.000 description 2
- 102000030722 folylpolyglutamate synthetase Human genes 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- GVOISEJVFFIGQE-YCZSINBZSA-N n-[(1r,2s,5r)-5-[methyl(propan-2-yl)amino]-2-[(3s)-2-oxo-3-[[6-(trifluoromethyl)quinazolin-4-yl]amino]pyrrolidin-1-yl]cyclohexyl]acetamide Chemical compound CC(=O)N[C@@H]1C[C@H](N(C)C(C)C)CC[C@@H]1N1C(=O)[C@@H](NC=2C3=CC(=CC=C3N=CN=2)C(F)(F)F)CC1 GVOISEJVFFIGQE-YCZSINBZSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- LEGZZSRPJRCXSF-UHFFFAOYSA-N 2,2-dimethyl-n-(4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-2-yl)propanamide Chemical compound N1C(NC(=O)C(C)(C)C)=NC(O)=C2C=CN=C21 LEGZZSRPJRCXSF-UHFFFAOYSA-N 0.000 description 1
- PGZVFRAEAAXREB-UHFFFAOYSA-N 2,2-dimethylpropanoyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC(=O)C(C)(C)C PGZVFRAEAAXREB-UHFFFAOYSA-N 0.000 description 1
- SWELIMKTDYHAOY-UHFFFAOYSA-N 2,4-diamino-6-hydroxypyrimidine Chemical compound NC1=CC(=O)N=C(N)N1 SWELIMKTDYHAOY-UHFFFAOYSA-N 0.000 description 1
- CWECFWSBLFXSPE-UHFFFAOYSA-N 2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidine-6-carboxylic acid Chemical compound N1C(N)=NC(=O)C2=C1NC(C(O)=O)=C2 CWECFWSBLFXSPE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101001116987 Homo sapiens Proton-coupled folate transporter Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100024267 Proton-coupled folate transporter Human genes 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229940045688 antineoplastic antimetabolites pyrimidine analogues Drugs 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229940097042 glucuronate Drugs 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- CVXXHXPNTZBZEL-UHFFFAOYSA-N methyl 4-carbonochloridoylbenzoate Chemical compound COC(=O)C1=CC=C(C(Cl)=O)C=C1 CVXXHXPNTZBZEL-UHFFFAOYSA-N 0.000 description 1
- MOFQDKOKODUZPK-UHFFFAOYSA-N methyl 4-chlorosulfonylbenzoate Chemical compound COC(=O)C1=CC=C(S(Cl)(=O)=O)C=C1 MOFQDKOKODUZPK-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001884 polyglutamylation Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to compounds that are selective chemotherapeutic agents which selectively target folate receptors (FR) of cancerous tumor cells and inhibit purine synthesis and hence, DNA synthesis.
- the present invention relates to fused cyclic pyrimidines, having unique bridge region variations of pyrrolo[2,3-d]pyrimidines that include three and four atom amide and urea and carbamate linkages, which selectively target folate receptors (“FR”), particularly, FR-alpha and FR-beta of cancerous tumor cells. Methods of preparing and using these compounds are also provided.
- Cancer chemotherapy agents as taught, for example in U.S. Pat. No. 5,939,420 to Gangjee, do not specifically selectively target cancer tumor cells.
- chemotherapy agents have targeted both normal and tumor cells. This lack of selectivity for tumor cells results in cytotoxicity to the normal cells and is also one of the major causes of chemotherapeutic failure in the treatment of cancer.
- advanced stage and platinum resistant tumors may be difficult to treat with traditional chemotherapeutic agents such as, but not limited to, carboplatin or paclitaxel (docitaxel).
- Other documents in this area include J. Med. Chem. 48 (16), 5329-5336, web release date Jul.
- FR-alpha and FR-beta are overexpressed on a substantial amount of certain surfaces of a number of cancerous tumors including, but not limited to, ovarian, endometrial, kidney, lung, mesothelioma, breast, and brain tumors.
- folic acid is not taken up by normal cells by way of a reduced folate carrier system (RFC).
- RFC reduced folate carrier system
- conjugates of folic acid have been used in the prior art to selectively deliver toxins, liposomes, imaging and cytotoxic agents to FR-alpha expressing tumors.
- cytotoxic-folic acid conjugates this requires cleavage from the folic acid moiety to release the cytotoxic drug. Even more importantly, premature release of the cytotoxic agent during the transport before reaching the tumor destroys selectivity and thereby leads to undesired toxicity in normal cells. This is a very serious detriment scientifically and commercially.
- the folic acid moiety of the cytotoxic-folic acid conjugate is difficult to cleave, then the anti-tumor activity is hindered as a result of the inability or reduced ability to release the cytotoxic agent. Accordingly, treatment of the tumor cells with the cytotoxic agent is either hindered or rendered nil as a result of the difficulty in cleaving the cytotoxic agent moiety from the folic acid-based conjugate.
- An object of this invention is to provide compositions for selectively targeting FR, in particular, FR-alpha and FR-beta, of tumor cells with a cancer-treating agent that inhibits purine synthesis and hence, DNA synthesis.
- the compound does not contain conjugated compositions and does not need cleavage to release a cytotoxic drug.
- the compound will allow penetration into the cancerous cells expressing FR, that is, FR-alpha and/or FR-beta, but not into a cell using the reduced folate carrier system (RFC).
- RRC reduced folate carrier system
- Another object of this invention is to provide a non-toxic FR targeting compound to the cancerous tumor in the process of treating a patient.
- Another object of this invention is to efficiently target a cancerous tumor.
- Another object of this invention is to utilize an essentially noncompound useful in treating a cancerous tumor.
- the present invention has filled the above described need and satisfied the above objects by providing a narrow range of compounds that selectively target the FR of tumor cells.
- FR used herein includes receptors selected from the group consisting of FR-alpha, FR-beta and mixtures thereof.
- the compositions selectively target FR-alpha and beta of cancerous tumor cells.
- the cancer-treating compound is not significantly taken up by a cell or tissue using the RFC system.
- the cancer-treating agent is a fused cyclic pyrimidine and is used to selectively target FR of tumors, advanced stage cancerous tumors that express FR receptors and drug-resistant tumors such as, but not limited to, those resistant to carboplatin, paclitaxel, and/or docitaxel.
- the receptors are preferably FR-alpha and -beta types.
- the invention relates to a compound that is useful in inhibiting purine synthesis and hence, DNA synthesis in a cancerous tumor of a patient consisting essentially of a fused cyclic pyrimidine, where there are unique bridge region variations between the major ring groups; wherein the compound is effective to selectively target a FR cancerous tumor, where the fused cyclic pyrimidine targets primarily cancerous tumors which contain FR to inhibit purine synthesis and hence, DNA synthesis within the tumors.
- An aspect of the present invention is to provide pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the formula 1:
- R 1 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH 3 ) and NHR wherein R is selected from the group consisting of H, lower alkyl, and a tautomer of the hydroxyl or the NHR
- R 2 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH 3 ) and NHR wherein R is selected from the group consisting of H and lower alkyl;
- A is selected from the group consisting of sulfur (S), oxygen (O), CR′R′′ and NR′, wherein R′ and R′′ are the same or different and each is selected from the group consisting of H and lower alkyl;
- B is selected from the group consisting of sulfur (S), oxygen (O), CR′R′′ and NR′, wherein R′ and R′′ are the same or different and each is selected from the group consisting of H and lower alkyl;
- a and B are the same or different
- the chemical bond between positions 5 and 6 is selected from the group consisting of a single bond and a double bond;
- the position of the side chain on the five-membered ring is selected from the group consisting of position 5, 6 and 7;
- A is selected from the group consisting of CR′ and N, and optionally, carbon atoms at positions 5 and 6, independently, have attached thereto a substituent selected from the group consisting of two hydrogen atoms when the bond between the carbon atoms 5 and 6 is a single bond and a hydrogen atom when the bond between the carbon atoms 5 and 6 is a double bond, and a lower alkyl group and a hydrogen atom when the bond between the carbon atoms at positions 5 and 6 is a single bond or a lower alkyl when the bond between the carbon atoms 5 and 6 is a double bond;
- each of X, Y, Z and Q is selected from the group consisting of carbonyl, sulfonyl, oxygen, (CR′R′′) n and NR′, wherein n is 0 to 6, R′ and R′′ are the same or different, and each of R′ and R′′ is selected from the group consisting of hydrogen, straight or branched lower alkyl, partially to fully fluoro substituted alkyl, benzyl, formyl, methylketone, trifluoromethyl ketone;
- X, Y, Z and Q are different or two of X, Y, Z and Q are the same;
- Ar is selected from the group consisting of phenyl, thiophene, pyridine, naphthyl, indole, benzothiophene, substituted and unsubstituted aromatic, substituted and unsubstituted heteroaromatic and, partially and completely reduced aromatic and heteroaromatic;
- the formula 1 provides pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the formulas 1a, 1b, 1c and 1d:
- the invention provides methods of using the compounds and pharmaceutically acceptable salts thereof for therapeutic purposes as antitumor agents or to otherwise destroy cancer cells in cancer patients, described herein.
- FIG. 1 a shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of the chemical formula 1a, in accordance with certain embodiments of the invention
- FIG. 1 b shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of the chemical formula 1b, in accordance with certain embodiments of the invention.
- FIG. 1 c shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of the chemical formula 1c, in accordance with certain embodiments of the invention.
- the present invention relates to substituted pyrrolo[2,3-d]pyrimidines for targeting tumor cells with FR-alpha and -beta receptors.
- These compounds have unique bridge region variations that include three and four atom amide and urea and carbamate linkages that target folate receptor alpha and beta of tumors selectively over the reduced folate carrier (RFC) used by normal cells.
- RFC reduced folate carrier
- these compounds are FR-alpha and PCFT transport agents without RFC transport activity.
- the selectivity provides for antitumor activity without toxicity to normal cells and hence, without dose-limiting toxicity (which is associated with other known antitumor agents).
- These compounds are potent inhibitors of purine synthesis and hence, of DNA synthesis.
- tumor refers to an abnormal growth of cells or tissues of the malignant type, unless otherwise specifically indicated and does not include a benign type tissue.
- the “tumor” may comprise of at least one cell and/or tissue.
- inhibitors or inhibiting means reducing growth/replication.
- cancer refers to any type of cancer, including ovarian cancer, leukemia, lung cancer, colon cancer, CNS cancer, melanoma, renal cancer, prostate cancer, breast cancer, and the like.
- patient refers to members of the animal kingdom including but not limited to human beings.
- the term “pharmaceutically acceptable salts” includes, but is not limited to, acetate, formate, glucuronate, ethanate, sulfonate, or other salts known to those skilled in the art.
- the term “C 1 -C 6 alkyl” refers to an alkyl group having between 1 and 6 carbons.
- fused cyclic pyrimidine compounds and pharmaceutically acceptable salts thereof, and method of preparing and using the compounds of this invention provide for the therapeutic treatment of tumors or other cancer cells in cancer patients.
- the compounds disclosed in the present invention all can be generally described as antifolates.
- the fused cyclic pyrimidine of the invention has six unique properties: 1) inhibition of FR-alpha and beta cancerous tumors, 2) a lack of appreciable uptake by the RFC; 3) ability to act itself as a cancer treating agent; 4) ability to penetrate cancerous tumors having folate receptors; 5) ability to function as a substrate of folylpolyglutamate synthetase (FPGS) thereby being trapped in tumor cells; and 6) inhibition of purine synthesis and hence, DNA synthesis.
- the fused cyclic pyrimidine of this invention targets cancers with certain receptors, and is practically non-toxic. These fused cyclic pyrimidines are taken into the tumor cells.
- FR-alpha is the most widely expressed receptor isoform in adult tissue. FR-alpha occurs at the apical (i.e., luminal) surface of epithelial cells where it is not supplied by folate in the circulation and does not take it up into the cell.
- pyrrolo[2,3-d]pyrimidine compounds, and pharmaceutically acceptable salts thereof, of the present invention have the general formula 1:
- R 1 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH 3 ) and NHR wherein R is selected from the group consisting of H, lower alkyl, and a tautomer of the hydroxyl or the NHR;
- R 2 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH 3 ) and NHR wherein R is selected from the group consisting of H and lower alkyl;
- A is selected from the group consisting of sulfur (S), oxygen (O), CR′R′′ and NR′, wherein R′ and R′′ are the same or different and each is selected from the group consisting of H and lower alkyl;
- B is selected from the group consisting of sulfur (S), oxygen (O), CR′R′′ and NR′, wherein R′ and R′′ are the same or different and each is selected from the group consisting of H and lower alkyl;
- a and B are the same or different
- the chemical bond between positions 5 and 6 is selected from the group consisting of a single bond and a double bond;
- the position of the side chain on the five-membered ring is selected from the group consisting of position 5, 6 and 7;
- A is selected from the group consisting of CR′ and N, and optionally, carbon atoms at positions 5 and 6, independently, have attached thereto a substituent selected from the group consisting of two hydrogen atoms when the bond between the carbon atoms 5 and 6 is a single bond and a hydrogen atom when the bond between the carbon atoms 5 and 6 is a double bone, and a lower alkyl group and a hydrogen atom when the bond between the carbon atoms at positions 5 and 6 is a single bond or a lower alkyl when the bond between the carbon atoms 5 and 6 is a double bond;
- each of X, Y, Z and Q is selected from the group consisting of carbonyl, sulfonyl, oxygen, (CR′R′′) n and NR′, wherein n is 0 to 6, R′ and R′′ are the same or different, and each or R′ and R′′ is selected from the group consisting of hydrogen, straight or branched lower alkyl, partially to fully fluoro substituted alkyl, benzyl, formyl, methylketone, trifluoromethyl ketone;
- X, Y, Z and Q are different or two of X, Y, Z and Q are the same;
- Ar is selected from the group consisting of phenyl, thiophene, pyridine, naphthyl, indole, benzothiophene, substituted and unsubstituted aromatic, substituted and unsubstituted heteroaromatic and, partially and completely reduced aromatic and heteroaromatic;
- the formula 1 provides pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the formulas 1a, 1b, 1c and 1d:
- lower alkyl group refers to those lower alkyl groups having one to about six carbon atoms, such as for example methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclohexyl, cyclopropylmethyl, or cyclobutylmethyl groups.
- Alkyl groups sharing one to about six carbon atoms are preferred.
- These lower alkyl groups may be straight chain, branched chain, or cyclic (alicyclic hydrocarbon) arrangements. The carbon atoms of these straight chain, branched chain, or cyclic arranged alkyl groups may have one or more substituents for the hydrogens attached to the carbon atoms.
- FIGS. 1 a , 1 b and 1 c show reaction schemes for synthesis of the pyrrolo[2,3-d]pyrimidine compounds of the chemical formula 1a, 1b and 1c, in accordance with certain embodiments of the invention.
- the present invention further relates to methods of using the above-described compounds, and pharmaceutically acceptable salts thereof, in treating patients with cancer.
- a method of therapeutically treating a patient for cancer includes the steps of:
- terapéuticaally effective carrier refers to any pharmaceutical carrier known in the art to solubilize the present compounds and will not give rise to compatibility problems with the compounds of formula 1, and includes any and all solvents, dispersion media and the like.
- Preferred carriers include physiologic saline and 5% dextrose.
- a therapeutically effective amount of said compound can be administered to a patient by any means known in the art, including but not limited to, injection, parenterally and orally.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the patients being treated, each unit containing a predetermined quantity or effective amount of pyrrolo[2,3-d]pyrimidine compound to produce the desired effect in association with the therapeutically effective carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the particular compound and the particular effect to be achieved. It is also within the skill of one practicing in the art to select the most appropriate method of administering the compounds based upon the needs of each patient.
- the fused cyclic pyrimidine has a particular affinity for the receptors such as FR or FR-alpha or FR-beta which are mainly present on the surface of cancerous tumor cells and are not present on other types of folate transport systems that are more predominant on the surface of normal cells.
- the fused cyclic pyrimidine of this invention preferably is not taken up to an appreciable degree by the reduce folate carrier (RFC) system.
- FR-alpha and beta receptors are generally not expressed in normal cells.
- the fused cyclic pyrimidine stays inside of the cancerous tumor cell for an adequate amount of time to kill the tumor cell.
- the fused cyclic pyrimidine also disrupts the replication process of the cancerous tumor cell, thereby inhibiting the growth of FR-alpha expressing cancerous tumor cells.
- the foregoing embodiments are enabled by way of purine synthesis inhibition, which is essential to DNA synthesis of normal and cancerous tumor cells.
- the fused cyclic pyrimidine itself has a high affinity for the FR-alpha and FR-beta receptors which are overexpressed on the surface of cancerous tumor cells.
- the fused cyclic pyrimidine passing into the cancerous tumor cells inhibits purine synthesis and hence, inhibits DNA synthesis. Accordingly, the targeted tumor cells which overexpress FR-alpha and FR-beta are prevented from replicating and are killed.
- the fused cyclic pyrimidine has a significantly greater affinity for FR-alpha and FR-beta expressing cells (i.e., certain cancerous tumor cells as described in more detail above) compared with cells that do not express FR-alpha or FR-beta.
- compositions are unique with regard to other purine inhibiting or FR-alpha and FR-beta targeting agents, including any known agent in clinical or investigational use.
- Compounds that are covered under formula 1 may also be administered with one or more additional treatment agents, e.g., a chemotherapeutic agent.
- additional chemotherapeutic agent include but are not limited to paclitaxel, docetaxel, vinca alkaloids, colchicine, colcemid, cisplatin, and nocadazol.
- the present of the pyrrolo[2,3-d]pyrimidine compounds will enhance the effectiveness of the chemotherapeutic agent.
- compounds having formula (1) may be combined with the additional chemotherapeutic agents and administered together, either in the same pharmaceutical carrier, or in different carriers but at generally the same time.
- compounds having formula (1) may be administered prior to and separately from the additional chemotherapeutic agents, giving the pyrrolo[2,3-d]pyrimidine compound.
- the administration of a compound having formula (1) along with an additional chemotherapeutic agent may result in a synergistic effect. Synergism occurs when two compounds used together have a great effect than when the two compounds are used separately. When synergism occurs, it is possible to use less of each compound.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a divisional of, and claims the benefit of priority to, U.S. patent application Ser. No. 14/617,332 entitled “SUBSTITUTED PYRROLO[2,3-D]PYRIMIDINES FOR SELECTIVELY TARGETING TUMOR CELLS WITH FR-ALPHA AND FR-BETA TYPE RECEPTORS” filed in the United States Patent and Trademark Office on Feb. 9, 2015.
- This invention was made with government support under Grant Nos. 1R01 CA166711 and 1R01 CA 152316 awarded by the National Cancer Institute of the National Institutes of Health of the U.S. Department of Health and Human Services. The government has certain rights in the invention.
- 1. Field of the Invention
- The present invention relates to compounds that are selective chemotherapeutic agents which selectively target folate receptors (FR) of cancerous tumor cells and inhibit purine synthesis and hence, DNA synthesis. Specifically, the present invention relates to fused cyclic pyrimidines, having unique bridge region variations of pyrrolo[2,3-d]pyrimidines that include three and four atom amide and urea and carbamate linkages, which selectively target folate receptors (“FR”), particularly, FR-alpha and FR-beta of cancerous tumor cells. Methods of preparing and using these compounds are also provided.
- 2. Description of the Prior Art
- Cancer chemotherapy agents as taught, for example in U.S. Pat. No. 5,939,420 to Gangjee, do not specifically selectively target cancer tumor cells. However, chemotherapy agents have targeted both normal and tumor cells. This lack of selectivity for tumor cells results in cytotoxicity to the normal cells and is also one of the major causes of chemotherapeutic failure in the treatment of cancer. Further, advanced stage and platinum resistant tumors may be difficult to treat with traditional chemotherapeutic agents such as, but not limited to, carboplatin or paclitaxel (docitaxel). Other documents in this area include J. Med. Chem. 48 (16), 5329-5336, web release date Jul. 9, 2005 “Synthesis of Classical Four-Carbon Bridged 5-Substituted Furo-[2-3-d]-Pyrimidine and 6-Substituted Pyrrolo-[2,3-d]-Pyrimidine Analogues as Antifolates” by A. Gangjee et al.
- As is known in the prior art, a type of folate receptors FR, particularly, FR-alpha and FR-beta, is overexpressed on a substantial amount of certain surfaces of a number of cancerous tumors including, but not limited to, ovarian, endometrial, kidney, lung, mesothelioma, breast, and brain tumors.
- In most normal tissues, the FR-alpha and FR-beta are not present. In most normal tissues, folic acid is not taken up by normal cells by way of a reduced folate carrier system (RFC). In light of the specificity of the folic acid, conjugates of folic acid have been used in the prior art to selectively deliver toxins, liposomes, imaging and cytotoxic agents to FR-alpha expressing tumors.
- However, one of the major limitations of the foregoing, such as cytotoxic-folic acid conjugates, is that this requires cleavage from the folic acid moiety to release the cytotoxic drug. Even more importantly, premature release of the cytotoxic agent during the transport before reaching the tumor destroys selectivity and thereby leads to undesired toxicity in normal cells. This is a very serious detriment scientifically and commercially.
- Further, if the folic acid moiety of the cytotoxic-folic acid conjugate is difficult to cleave, then the anti-tumor activity is hindered as a result of the inability or reduced ability to release the cytotoxic agent. Accordingly, treatment of the tumor cells with the cytotoxic agent is either hindered or rendered nil as a result of the difficulty in cleaving the cytotoxic agent moiety from the folic acid-based conjugate.
- In spite of the foregoing prior art, however, there remains a very real need for compositions that selectivity target the FR of tumor cells.
- An object of this invention is to provide compositions for selectively targeting FR, in particular, FR-alpha and FR-beta, of tumor cells with a cancer-treating agent that inhibits purine synthesis and hence, DNA synthesis.
- In a related object, the compound does not contain conjugated compositions and does not need cleavage to release a cytotoxic drug.
- In yet another related object, the compound will allow penetration into the cancerous cells expressing FR, that is, FR-alpha and/or FR-beta, but not into a cell using the reduced folate carrier system (RFC).
- Another object of this invention is to provide a non-toxic FR targeting compound to the cancerous tumor in the process of treating a patient.
- Another object of this invention is to efficiently target a cancerous tumor.
- Another object of this invention is to utilize an essentially noncompound useful in treating a cancerous tumor.
- The present invention has filled the above described need and satisfied the above objects by providing a narrow range of compounds that selectively target the FR of tumor cells. The term “FR” used herein includes receptors selected from the group consisting of FR-alpha, FR-beta and mixtures thereof. In a preferred embodiment, the compositions selectively target FR-alpha and beta of cancerous tumor cells.
- Very significantly, the cancer-treating compound is not significantly taken up by a cell or tissue using the RFC system.
- The cancer-treating agent is a fused cyclic pyrimidine and is used to selectively target FR of tumors, advanced stage cancerous tumors that express FR receptors and drug-resistant tumors such as, but not limited to, those resistant to carboplatin, paclitaxel, and/or docitaxel. The receptors are preferably FR-alpha and -beta types.
- More specifically, the invention relates to a compound that is useful in inhibiting purine synthesis and hence, DNA synthesis in a cancerous tumor of a patient consisting essentially of a fused cyclic pyrimidine, where there are unique bridge region variations between the major ring groups; wherein the compound is effective to selectively target a FR cancerous tumor, where the fused cyclic pyrimidine targets primarily cancerous tumors which contain FR to inhibit purine synthesis and hence, DNA synthesis within the tumors.
- An aspect of the present invention is to provide pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the formula 1:
- wherein,
- R1 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH3) and NHR wherein R is selected from the group consisting of H, lower alkyl, and a tautomer of the hydroxyl or the NHR
- R2 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH3) and NHR wherein R is selected from the group consisting of H and lower alkyl;
- A is selected from the group consisting of sulfur (S), oxygen (O), CR′R″ and NR′, wherein R′ and R″ are the same or different and each is selected from the group consisting of H and lower alkyl;
- B is selected from the group consisting of sulfur (S), oxygen (O), CR′R″ and NR′, wherein R′ and R″ are the same or different and each is selected from the group consisting of H and lower alkyl;
- A and B are the same or different;
- the chemical bond between
positions - the position of the side chain on the five-membered ring is selected from the group consisting of
position - when the side chain is at
position 7, A is selected from the group consisting of CR′ and N, and optionally, carbon atoms atpositions carbon atoms carbon atoms positions carbon atoms - each of X, Y, Z and Q is selected from the group consisting of carbonyl, sulfonyl, oxygen, (CR′R″)n and NR′, wherein n is 0 to 6, R′ and R″ are the same or different, and each of R′ and R″ is selected from the group consisting of hydrogen, straight or branched lower alkyl, partially to fully fluoro substituted alkyl, benzyl, formyl, methylketone, trifluoromethyl ketone;
- X, Y, Z and Q are different or two of X, Y, Z and Q are the same;
- Ar is selected from the group consisting of phenyl, thiophene, pyridine, naphthyl, indole, benzothiophene, substituted and unsubstituted aromatic, substituted and unsubstituted heteroaromatic and, partially and completely reduced aromatic and heteroaromatic;
- when Ar is a six-membered ring and one of X, Y and Z is carbonyl, the Q and carbonyl substituents are meta or para; and
- when Ar is a five-membered ring and one of X, Y and Z is carbonyl, the Q and carbonyl substituents are in positions selected from the group consisting of 2,4 and 2,5 and 3,5.
- In certain embodiments, the formula 1 provides pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the
formulas - In another aspect, the invention provides methods of using the compounds and pharmaceutically acceptable salts thereof for therapeutic purposes as antitumor agents or to otherwise destroy cancer cells in cancer patients, described herein.
- It is an object of this invention to provide pyrimidine derivative compounds, and pharmaceutically acceptable salts thereof, for substantially inhibiting purine synthesis and hence, DNA synthesis.
- It is another object of this invention to provide pyrimidine derivative compounds, and pharmaceutically acceptable salts thereof, having effective activity against tumors and other cancerous cells, such as those caused by cancer including, but not limited to, ovarian, lung and breast cancers.
- It is a further object of this invention to provide methods of administering to a patient a therapeutically effective amount of pyrimidine derivative compounds, or pharmaceutically acceptable salts thereof.
- The invention will be more fully understood by review of the drawings in view of the following detailed description of the invention, and the claims appended thereto.
-
FIG. 1a shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of thechemical formula 1a, in accordance with certain embodiments of the invention; -
FIG. 1b shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of thechemical formula 1b, in accordance with certain embodiments of the invention; and -
FIG. 1c shows a reaction scheme for synthesis of the pyrrolo[2,3-d]pyrimidine compound of thechemical formula 1c, in accordance with certain embodiments of the invention. - The present invention relates to substituted pyrrolo[2,3-d]pyrimidines for targeting tumor cells with FR-alpha and -beta receptors. These compounds have unique bridge region variations that include three and four atom amide and urea and carbamate linkages that target folate receptor alpha and beta of tumors selectively over the reduced folate carrier (RFC) used by normal cells. Thus, these compounds are FR-alpha and PCFT transport agents without RFC transport activity. The selectivity provides for antitumor activity without toxicity to normal cells and hence, without dose-limiting toxicity (which is associated with other known antitumor agents). These compounds are potent inhibitors of purine synthesis and hence, of DNA synthesis. It has been found that these compounds have antitumor activity against FR-alpha expressing KB tumor cells at IC50 0.29 nM and the pteroic acid precursor has IC50 equal to 22.22 μM against KB tumors. These are unexpected findings for these compounds. Without being bound by any particular theory, it is believed that the unexpected results relate to the unique bridge region variations and use of pteroic acid. The pteroic acid analog has excellent antitumor activity.
- As used herein, “tumor” refers to an abnormal growth of cells or tissues of the malignant type, unless otherwise specifically indicated and does not include a benign type tissue. The “tumor” may comprise of at least one cell and/or tissue. The term “inhibits or inhibiting” as used herein means reducing growth/replication. As used herein, the term “cancer” refers to any type of cancer, including ovarian cancer, leukemia, lung cancer, colon cancer, CNS cancer, melanoma, renal cancer, prostate cancer, breast cancer, and the like. As used herein, the term “patient” refers to members of the animal kingdom including but not limited to human beings.
- As used herein, the term “pharmaceutically acceptable salts” includes, but is not limited to, acetate, formate, glucuronate, ethanate, sulfonate, or other salts known to those skilled in the art. As used herein, the term “C1-C6 alkyl” refers to an alkyl group having between 1 and 6 carbons.
- The fused cyclic pyrimidine compounds and pharmaceutically acceptable salts thereof, and method of preparing and using the compounds of this invention, provide for the therapeutic treatment of tumors or other cancer cells in cancer patients.
- The compounds disclosed in the present invention all can be generally described as antifolates.
- The fused cyclic pyrimidine of the invention has six unique properties: 1) inhibition of FR-alpha and beta cancerous tumors, 2) a lack of appreciable uptake by the RFC; 3) ability to act itself as a cancer treating agent; 4) ability to penetrate cancerous tumors having folate receptors; 5) ability to function as a substrate of folylpolyglutamate synthetase (FPGS) thereby being trapped in tumor cells; and 6) inhibition of purine synthesis and hence, DNA synthesis. The fused cyclic pyrimidine of this invention targets cancers with certain receptors, and is practically non-toxic. These fused cyclic pyrimidines are taken into the tumor cells.
- Selectivity of the fused cyclic pyrimidine is made possible since most normal cells do not have FRs. FR-alpha is the most widely expressed receptor isoform in adult tissue. FR-alpha occurs at the apical (i.e., luminal) surface of epithelial cells where it is not supplied by folate in the circulation and does not take it up into the cell.
- The pyrrolo[2,3-d]pyrimidine compounds, and pharmaceutically acceptable salts thereof, of the present invention have the general formula 1:
- wherein,
- R1 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH3) and NHR wherein R is selected from the group consisting of H, lower alkyl, and a tautomer of the hydroxyl or the NHR;
- R2 is selected from the group consisting of hydrogen (H), hydroxyl (OH), methyl (CH3) and NHR wherein R is selected from the group consisting of H and lower alkyl;
- A is selected from the group consisting of sulfur (S), oxygen (O), CR′R″ and NR′, wherein R′ and R″ are the same or different and each is selected from the group consisting of H and lower alkyl;
- B is selected from the group consisting of sulfur (S), oxygen (O), CR′R″ and NR′, wherein R′ and R″ are the same or different and each is selected from the group consisting of H and lower alkyl;
- A and B are the same or different;
- the chemical bond between
positions - the position of the side chain on the five-membered ring is selected from the group consisting of
position - when the side chain is at
position 7, A is selected from the group consisting of CR′ and N, and optionally, carbon atoms atpositions carbon atoms carbon atoms positions carbon atoms - each of X, Y, Z and Q is selected from the group consisting of carbonyl, sulfonyl, oxygen, (CR′R″)n and NR′, wherein n is 0 to 6, R′ and R″ are the same or different, and each or R′ and R″ is selected from the group consisting of hydrogen, straight or branched lower alkyl, partially to fully fluoro substituted alkyl, benzyl, formyl, methylketone, trifluoromethyl ketone;
- X, Y, Z and Q are different or two of X, Y, Z and Q are the same;
- Ar is selected from the group consisting of phenyl, thiophene, pyridine, naphthyl, indole, benzothiophene, substituted and unsubstituted aromatic, substituted and unsubstituted heteroaromatic and, partially and completely reduced aromatic and heteroaromatic;
- when Ar is a six-membered ring and one of X, Y and Z is carbonyl, the Q and carbonyl substituents are meta or para; and
- when Ar is a five-membered ring and one of X, Y and Z is carbonyl, the Q and carbonyl substituents are in a position selected from the group consisting of 2,4 and 2,5 and 3,5.
- In certain embodiments, the formula 1 provides pyrrolo[2,3-d]pyrimidine compounds and pharmaceutically acceptable salts thereof, having the formulas 1a, 1b, 1c and 1d:
- As used herein, the term “lower alkyl” group refers to those lower alkyl groups having one to about six carbon atoms, such as for example methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclohexyl, cyclopropylmethyl, or cyclobutylmethyl groups. Alkyl groups sharing one to about six carbon atoms are preferred. These lower alkyl groups may be straight chain, branched chain, or cyclic (alicyclic hydrocarbon) arrangements. The carbon atoms of these straight chain, branched chain, or cyclic arranged alkyl groups may have one or more substituents for the hydrogens attached to the carbon atoms.
-
FIGS. 1a, 1b and 1c show reaction schemes for synthesis of the pyrrolo[2,3-d]pyrimidine compounds of thechemical formula - The present invention further relates to methods of using the above-described compounds, and pharmaceutically acceptable salts thereof, in treating patients with cancer. A method of therapeutically treating a patient for cancer includes the steps of:
- a) employing a compound, or pharmaceutically acceptable salts thereof, having the above general formula 1;
- b) incorporating said compound in a suitable pharmaceutical carrier; and
- c) administering a therapeutically effective amount of said compound incorporated in said carrier to a patient.
- As used herein, the term “therapeutically effective carrier” refers to any pharmaceutical carrier known in the art to solubilize the present compounds and will not give rise to compatibility problems with the compounds of formula 1, and includes any and all solvents, dispersion media and the like. Preferred carriers include physiologic saline and 5% dextrose.
- As will be understood by one skilled in the art, a therapeutically effective amount of said compound can be administered to a patient by any means known in the art, including but not limited to, injection, parenterally and orally.
- It is well within the skill of one practicing in the art to determine what dosage, and the frequency of this dosage, which will constitute a therapeutically effective amount for each individual patient, depending on the severity or progression of cancer or cancer cells and/or the type of cancer. It is especially advantageous to formulate compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the patients being treated, each unit containing a predetermined quantity or effective amount of pyrrolo[2,3-d]pyrimidine compound to produce the desired effect in association with the therapeutically effective carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the particular compound and the particular effect to be achieved. It is also within the skill of one practicing in the art to select the most appropriate method of administering the compounds based upon the needs of each patient.
- The fused cyclic pyrimidine has a particular affinity for the receptors such as FR or FR-alpha or FR-beta which are mainly present on the surface of cancerous tumor cells and are not present on other types of folate transport systems that are more predominant on the surface of normal cells. In other words, the fused cyclic pyrimidine of this invention, preferably is not taken up to an appreciable degree by the reduce folate carrier (RFC) system. FR-alpha and beta receptors are generally not expressed in normal cells. The fused cyclic pyrimidine stays inside of the cancerous tumor cell for an adequate amount of time to kill the tumor cell. This occurs by way of polyglutamylation and the multi-ionic form of the fused cyclic pyrimidine itself inside of the tumor cell. The fused cyclic pyrimidine also disrupts the replication process of the cancerous tumor cell, thereby inhibiting the growth of FR-alpha expressing cancerous tumor cells.
- The foregoing embodiments are enabled by way of purine synthesis inhibition, which is essential to DNA synthesis of normal and cancerous tumor cells.
- The fused cyclic pyrimidine itself has a high affinity for the FR-alpha and FR-beta receptors which are overexpressed on the surface of cancerous tumor cells. The fused cyclic pyrimidine passing into the cancerous tumor cells inhibits purine synthesis and hence, inhibits DNA synthesis. Accordingly, the targeted tumor cells which overexpress FR-alpha and FR-beta are prevented from replicating and are killed.
- In a preferred embodiment, the fused cyclic pyrimidine has a significantly greater affinity for FR-alpha and FR-beta expressing cells (i.e., certain cancerous tumor cells as described in more detail above) compared with cells that do not express FR-alpha or FR-beta.
- At present, there appears to be no other agents known with the above-described six attributes in a single chemotherapy agent and therefore the presently invented compositions are unique with regard to other purine inhibiting or FR-alpha and FR-beta targeting agents, including any known agent in clinical or investigational use.
- Compounds that are covered under formula 1 may also be administered with one or more additional treatment agents, e.g., a chemotherapeutic agent. Suitable candidates for the additional chemotherapeutic agent include but are not limited to paclitaxel, docetaxel, vinca alkaloids, colchicine, colcemid, cisplatin, and nocadazol. The present of the pyrrolo[2,3-d]pyrimidine compounds will enhance the effectiveness of the chemotherapeutic agent. In certain embodiments, compounds having formula (1) may be combined with the additional chemotherapeutic agents and administered together, either in the same pharmaceutical carrier, or in different carriers but at generally the same time. In another embodiment, compounds having formula (1) may be administered prior to and separately from the additional chemotherapeutic agents, giving the pyrrolo[2,3-d]pyrimidine compound. The administration of a compound having formula (1) along with an additional chemotherapeutic agent may result in a synergistic effect. Synergism occurs when two compounds used together have a great effect than when the two compounds are used separately. When synergism occurs, it is possible to use less of each compound.
- Moreover, other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification be considered as exemplary only. Furthermore, the following examples are meant to be illustrative of certain embodiments of the invention and are not intended to be limiting as to the scope of the invention.
- 2-Amino-4-hydroxy-pyrrolol[2,3-d]pyrimidine (compound 2) (15 g, 100 mmol) and pivalic anhydride 50 mL were combined and stirred at 120° C. for 4 hours. The solvent in the reaction mixture was removed under high vacuum to give a dark solid. The resultant residue was washed with 500 mL dry acetone and filtered to give a pale power 42.1 g (90% yield), Rf0.60 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ 1.25 (s, 9H) 6.02 (d, 1H), 6.98 (d, 1H), 8.93 (br, 1H-ex), 10.60 (br, 1H), 11.22 (br, 1H).
- Methyl amine (0.34 g, 11 mmol) and paraformaldehyde (0.33 g, 1.1 mmol) in 5 mL AcOH were combined and stirred at 50° C. for 3 hours. After all the paraformaldehyde was completely dissolved, compound 3 (2.34 g, 10 mmol) was added to the above solution and stirred at room temperature for another 12 hours. The solvent was removed, and silica gel plaque was made. Column separation offered a purified light yellow solid 2.16
g compound 4 in 78% yields. Rf0.10 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ 1.24 (s, 9H) 2.62 (s, 3H), 3.90 (d, 2H), 6.04 (d, 1H), 8.82 (br, 1H), 10.63 (br, 1H), 11.21 (br, 1H). - Compound 4 (2.77 g, 10 mmol) and methyl-4-chlorosulfonylbenzenecarboxylate (2.46 g, 10.5 mmol) were dissolved in 30 mL DMF. TEA (3.03 g, 3 eq) was added and the solution was stirred for 12 hours at room temperature. The solvent was removed and silica gel plaque was made. Column separation offered a purified
white powder compound 5 in 80% yields, Rf0.25 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ 1.26 (s, 9H), 2.60 (2, 3H), 4.21 (s, 2H, 6.25 (s, 1H), 7.94 (d, 2H), 8.06 (d, 2H), 10.91 (br, 1H), 11.63 (br, 1H), 11.91 (br, 1H). - Compound 5 (0.475 g, 1 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. The solvent was removed, 10 mL water was added and the pH was neutralized to 3˜4 by 1N HCl. The solution was filtered and dried to give a white powder. 0.35 g in 95% yields, Rf0.10 (CHCl3/CH3OH/AcOH, 10/1/0.5); 1H NMR (DMSO-d6) δ 2.55 (s, 3H) 4.02 (s, 2H), 6.02 (s, 1H), 6.05 (s, 2H), 7.75 (d, 2H), 8.12 (d, 2H), 10.40 (br, 1H), 11.03 (br, 1H), 12.30 (br, 1H).
- To a 250 mL round-bottomed flask was added a mixture of compound 6 (0.301 g, 0.8 mmol), N-methylmorpholine (0.165 g, 1.6 mmol), 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.175 g, 1 mmol), and anhydrous DMF (6 mL). The mixture was stirred for 1.5 hours at room temperature. N-methylmorpholine (0.165, 1.6 mmol) and L-glutamic acid dimethyl ester hydrochloride (0.211 g, 1 mmol) were added to the flask, and the reaction mixture was then stirred at room temperature for 12 hours. After evaporation of solvent under reduced pressure, MeOH (20 mL) was added followed by silica gel (2.5 g). The resulting plug was loaded onto a silica gel column (2.5 cm×12 cm) and eluted with 100% MeOH in CHCl3. Fractions with the desired Rf0.41 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ1.90 (m, 2H), 2.32 (m, 2H), 2.64 (s, 3H), 3.78 (d, 6H), 4.24 (s, 2H), 4.61 (m, 1H), 5.89 (s, 2H), 6.14 (s, 1H), 7.89 (d, 2H), 8.03 (br, 1H), 8.22 (d, 2H), 9.90˜10.50 (br, 2H).
- Compound 7 (2.68 g, 0.5 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. The solvent was removed and 10 mL water was added, pH was neutralized to 3-4 by 1N HCl. The solution was filtered and dried to give a white powder 0.18 g in 75% yields. Rf(0.10 (CHCl3/CH3OH/AcOH, 10/1/0.5); 1H NMR (DMSO-d6) δ 1.92 (m, 1H), 2.08 (m, 1H), 2.40 (m, 2H), 2.55 (s, 3H), 409 (s, 2H), 4.44 (m, 1H), 6.11 (m, 3H), 7.90 (d, 2H), 8.12 (d, 2H), 8.90 (d, 1H), 10.30 (br, 1H), 11.12 (br, 1H), 12.15 (br, 1H), 12.67 (br, 1H). anal. (C20H22N6O8S. 0.29H2O.0.63AcOH) C HNS.
- Compound 4 (0.277 g, 1 mmol) and methyl 4-chlorocarbonylbenzencarboxylate (0.208 g, 1.05 mmol) were dissolved in 3 mL DMF. TEA (0.303 g, 3 eq.) was added and stirred for 12 hours at room temperature. All the solvent was removed and directly made silica gel plague. Column separation offered purified white powder 0.350
g compound 8 in 80% yields. Rf0.15 (CHCl3/CH3OH, 40/1); 1H NMR (DMSO-d6) δ1.26 (s, 9H), 2.95 (d, 2H), 3.95 (s, 3H), 4.42˜4.70 (d, 2H), 6.05˜6.09 (d, 1H), 7.60 (d, 2H), 8.03 (d, 2H), 10.60 (br, 1H), 11.63 (br, 1H), 11.95 (br, 1H). - Compound 8 (0.219, 0.5 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. All the solvent was removed, 10 mL of water was added, the pH was neutralized to 3-4 by 1N HCl. Filtered and dried to give white powder 0.162 g in 95% yield. Rf0.53 (CHCl3/CH3OH/AcOH, 10/1/0.5); 1H NMR (DMSO-d6) δ 2.80˜3.00 (d, 3H), 4.29˜4.58 (d, 2H), 6.00 (m, 3H), 7.57 (d, 2H), 7.98 (d, 2H), 10.24 (br, 1H), 11.03 (br, 1H), 13.14 (br, 1H). anal. (C16H15N5O4. 1.4H2O) CHN.
- To a 250 mL round-bottomed flask was added a mixture of compound 9 (0.102 g, 0.3 mmol), N-methylmorpholine (0.061 g, 0.6 mmol), 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.07 g, 0.4 mmol), and anhydrous DMF (2 mL). The mixture was stirred for 1.5 hours at room temperature. N-methylmorpholine (0.06 g, 0.6 mmol) and L-glutamic acid dimethyl ester hydrochloride (0.084 g, 0.4 mmol) were added to the flask, and the reaction mixture was then stirred at room temperature for 12 hours. After evaporation of solvent under reduced pressure, MeOH (20 mL) was added followed by silica gel (1 g). The resulting plug was loaded onto a silica gel column (2.5 cm×12 cm) and eluted with 10% MeOH in CHCl3. Fractions with the desired Rf (TLC) were pooled and evaporated to give white powder 0.155 g in 78% yield. Rf0.23 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ2.02 (m, 1H), 2.14 (m, 1H), 2.86 (d, 3H), 3.61 (d, 6H), 4.30 (d, 2H), 4.58 (m, 1H), 6.02 (m, 3H), 7.55 (d, 2H), 7.94 (d, 2H), 8.87 (d, 1H), 10.25 (br, 1H), 11.02 (br, 1H).
- Compound 10 (0.099 g, 0.2 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. All the solvent was removed, 10 mL or water was added, and the pH was neutralized to 3-4 by 1N HCl. Filtered and dried to give white powder 0.076 g in 81% yield. Rf0.08 (CHCl3/CH3OH/AcOH, 10/1/0.5); 1H NMR (DMSO-d6) δ1.94 (m, 1H), 2.09 (m, 1H), 2.35 (m, 1H), 2.80 (d, 3H), 4.31 (d, 2H), 4.57 (m, 1H), 6.02 (s, 2H), 6.03 (d, 1H), 7.55 (d, 2H), 7.98 (d, 2H), 8.70 (d, 1H), 10.23 (br, 1H), 11.01 (br, 1H), 12.35 (br, 2H). anal. (C21H22N6O7. 0.838H2O) CHN.
- 2,6-diamino-4-hydroxy pyrimidine (12.6 g, 100 mmol), ethyl bromopyrvate (20.4 g, 105 mmol), 100 mL DMF, stirred at room temperature for 3 hours. Filtered. The filtered cake was washed with 1000 mL water and dried for 24 hours to give pale powder. The resultant solid was hydrolyzed with 6N NaOH at 60° C. for 3 hours. The reaction mixture was neutralized to pH 1 with 1N HCl. Filtered and dried to afford white powder 17.23 g in 89% yield. Rf0.05 (CHCl3/CH3OH, 5/1); 1H NMR (DMSO-d6) δ 6.03 (br, 2H-ex), 8.0 (s, 1H), 10.6 (br, 1H, exchange), 11.2 (br, 1H).
- Compound 12 (1 mmol). 4-aminomethyl phenylcarboxylate methyl ester (0.173 g, 1.05 mmol) were dissolved in 3 mL DMF. CDI (0.486 g, 3 mmol) was added and stirred for 12 hours at room temperature. All the solvent was removed and directly made silica gel plague. Column separation offered purified white powder 0.265
g compound 13 in 780% yield. Rf0.45 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) 3.84 (d, 3H), 4.54 (d, 2H), 6.20 (s, 2H), 7.45 (m, 2H), 7.96 (m, 2H), 8.12 (s, 2H), 9.17 (t, 1H), 11.01 (br, 1H), 12.16 (br, 1H). anal. (C16H15N5O4. 3.46H2O) CHN. - Compound 13 (0.171 g, 0.5 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. All the solvent was removed, 10 mL of water was added and neutralized to a pH of 3-4 by 1N HCl. Filtered and dried to give white powder 0.157 g in 96% yield. Rf0.40 (CHCl3/CH3OH/AcOH, 10/1/1); 1H NMR (DMSO-d6) δ 4.50 (d, 2H), 6.02 (s, 2H), 7.48 (m, 2H), 7.95 (m, 2H), 8.06 (s, 1H), 9.16 (br, 1H), 12.4 (br, 3H). anal. (C15H13N5O4. 0.75H2O) CHN.
- To a 250 mL round-bottomed flask was added a mixture of compound 14 (0.131 g, 0.4 mmol), N-methylmorpholine (0.081 g, 0.8 mmol), 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.0875 g, 0.5 mmol), and anhydrous DMF (3 mL). The mixture was stirred for 1.5 hours at room temperature. N-methylmorpholine (0.081, 0.8 mmol) and L-glutamic acid dimethyl ester hydrochloride (0.105 g, 0.5 mmol) were added to the flask, and the reaction mixture was then stirred at room temperature for 12 hours. After evaporation of solvent under reduced pressure, MeOH (20 mL) was added followed by silica gel (1 g). The resulting plug was loaded onto a silica gel column (2.5 cm×12 cm) and eluted with 10% MeOH in CHCl3. Fractions with the desired Rf (TLC) were pooled and evaporated to give white powder 0.134 g in 69%; yield. Rf0.45 (CHCl3/CH3OH, 10/1); 1H NMR (DMSO-d6) δ1.96 (m, 1H), 2.03 (m, 1H), 2.45 (m, 2H), 3.58 (d, 6H), 4.54 (m, 1H), 4.53 (d, 2H), 6.20 (s, 2H), 7.38 (d, 2H), 7.86 (d, 2H), 8.12 (s, 1H), 8.72 (d, 1H), 9.16 (m, 1H), 11.18 (br, 2H).
- Compound 15 (0.097 g, 0.2 mmol) was dissolved in 10 mL MeOH and 10 mL 3N sodium carbonate, and stirred for 12 hours at room temperature. All the solvent was removed, 10 mL of water was added and neutralized the pH to 3-4 by 1N HCl. Filtered and dried to give white powder 0.072 g in 79% yield. Rf0.10 (CHCl3/CH3OH/AcOH, 10/1/1); 1H NMR (DMSO-d6) δ 1.92 (m, 1H), 2.07 (m, 1H), 2.36 (m, 2H), 4.37 (m, 1H), 4.53 (d, 2H), 6.24 (s, 2H), 7.41 (d, 2H), 7.85 (d, 2H), 8.12 (s, 1H), 8.59 (d, 1H), 9.18 (m, 1H), 12.5 (br, 2H). anal. (C20H20N6O7. 0.955H2O) CHN.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/280,724 US20170015672A1 (en) | 2015-02-09 | 2016-09-29 | Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/617,332 US9481678B2 (en) | 2015-02-09 | 2015-02-09 | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
US15/280,724 US20170015672A1 (en) | 2015-02-09 | 2016-09-29 | Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/617,332 Division US9481678B2 (en) | 2015-02-09 | 2015-02-09 | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170015672A1 true US20170015672A1 (en) | 2017-01-19 |
Family
ID=56565721
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/617,332 Expired - Fee Related US9481678B2 (en) | 2015-02-09 | 2015-02-09 | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
US15/280,724 Abandoned US20170015672A1 (en) | 2015-02-09 | 2016-09-29 | Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/617,332 Expired - Fee Related US9481678B2 (en) | 2015-02-09 | 2015-02-09 | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
Country Status (4)
Country | Link |
---|---|
US (2) | US9481678B2 (en) |
CA (1) | CA2976067A1 (en) |
GB (1) | GB2552269B (en) |
WO (1) | WO2016130271A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9481678B2 (en) * | 2015-02-09 | 2016-11-01 | Duquesne University Of The Holy Ghost | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
CN106905348B (en) * | 2017-02-13 | 2018-12-04 | 牡丹江医学院 | A kind of drug and its preparation method and application preventing and treating acute kidney injury |
CN110078735B (en) * | 2019-06-03 | 2022-02-18 | 河北医科大学 | Pyrrolopyrimidine compounds having antitumor activity and use thereof |
GB202011812D0 (en) * | 2020-07-29 | 2020-09-09 | Provost Fellows Found Scholars And The Other Members Of Board Of The College Of The Holy And Undivid | Compounds |
US20240083908A1 (en) * | 2020-12-24 | 2024-03-14 | Modulus Discovery, Inc. | Tetrahydrothienopyrimidinesulfonamide compounds |
CN116731021A (en) * | 2023-06-14 | 2023-09-12 | 河北医科大学 | Fluorescent probe compounds for tumor targeted imaging and their synthesis methods and applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5877178A (en) * | 1991-04-08 | 1999-03-02 | Duquesne University Of The Holy Ghost | Pyrimidine derivatives and methods of making and using these derivatives |
US9481678B2 (en) * | 2015-02-09 | 2016-11-01 | Duquesne University Of The Holy Ghost | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939420A (en) | 1991-04-08 | 1999-08-17 | Duquesne University Of The Holy Ghost | Pyrrolo 2,3d!derivatives |
JP2000516961A (en) * | 1996-08-30 | 2000-12-19 | イーライ・リリー・アンド・カンパニー | Nonclassical pyrrolo [2,3-D] pyrimidine antifolates |
EP2125828A4 (en) * | 2006-09-01 | 2010-02-24 | Univ Holy Ghost Duquesne | THIENO PYRIMIDINE COMPOUNDS |
ES3029483T3 (en) | 2008-09-17 | 2025-06-24 | Endocyte Inc | Folate receptor binding conjugates of antifolates |
US8252804B2 (en) | 2008-10-01 | 2012-08-28 | Duquesne University Of The Holy Spirit | Selective proton coupled folate transporter and folate receptor, and GARFTase inhibitor compounds and methods of using the same |
-
2015
- 2015-02-09 US US14/617,332 patent/US9481678B2/en not_active Expired - Fee Related
-
2016
- 2016-01-15 GB GB1712698.8A patent/GB2552269B/en not_active Expired - Fee Related
- 2016-01-15 CA CA2976067A patent/CA2976067A1/en active Pending
- 2016-01-15 WO PCT/US2016/013514 patent/WO2016130271A1/en active Application Filing
- 2016-09-29 US US15/280,724 patent/US20170015672A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5877178A (en) * | 1991-04-08 | 1999-03-02 | Duquesne University Of The Holy Ghost | Pyrimidine derivatives and methods of making and using these derivatives |
US9481678B2 (en) * | 2015-02-09 | 2016-11-01 | Duquesne University Of The Holy Ghost | Substituted pyrrolo[2,3-D]dipyrimidines for selectively targeting tumor cells with FR-alpha and FR-beta type receptors |
Also Published As
Publication number | Publication date |
---|---|
US9481678B2 (en) | 2016-11-01 |
CA2976067A1 (en) | 2016-08-18 |
GB201712698D0 (en) | 2017-09-20 |
GB2552269A (en) | 2018-01-17 |
US20160229857A1 (en) | 2016-08-11 |
GB2552269B (en) | 2020-12-09 |
WO2016130271A1 (en) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170015672A1 (en) | Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with fr-alpha and fr-beta type receptors | |
US10654858B2 (en) | Tricyclic compounds having cytostatic and/or cytotoxic activity and methods of use thereof | |
RU2135481C1 (en) | Quinazoline compounds or their pharmaceutically acceptable salts and pharmaceutical composition | |
TW200838540A (en) | Sulfamoyl-containing derivatives and uses thereof | |
JP2007533617A (en) | Pteridine derivatives for the treatment of septic shock and TNF-α-related diseases | |
RU2702904C1 (en) | New quinazolionic derivatives inhibiting pi3k, and pharmaceutical composition containing them | |
US10000498B2 (en) | Selective proton coupled folate transporter and folate receptor, and GARFTase inhibitor compounds and methods of using the same | |
US9738613B2 (en) | Substituted 1,2,3-triazoles as antitumor agents | |
JP7741987B2 (en) | Heterocyclic inhibitors of methionine adenosyltransferase 2A | |
US9446045B2 (en) | Methods of using selective chemotherapeutic agents for targeting tumor cells | |
TWI638825B (en) | Compounds for inhibiting cancer and virus | |
US20210380626A1 (en) | Novel small molecule drug conjugates of gemcitabine derivatives | |
CA3102434C (en) | Selective a2a receptor antagonist | |
WO2014106763A1 (en) | Pyridopyrazines as anticancer agents | |
WO2019152955A9 (en) | Small molecule drug conjugates of gemcitabine monophosphate | |
US20210220331A1 (en) | Inhibitors of ires-mediated protein synthesis | |
RU2765180C2 (en) | New 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives | |
Santos | An update on anticancer triazene compounds | |
CN120513251A (en) | Tumor redox-activated dimer compounds containing 6-thiopurine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WAYNE STATE UNIVERSITY, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GANGJEE, ALEEM;MATHERLY, LARRY H.;SIGNING DATES FROM 20150205 TO 20150206;REEL/FRAME:039903/0064 Owner name: DUQUESNE UNIVERSITY OF THE HOLY GHOST, PENNSYLVANI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GANGJEE, ALEEM;MATHERLY, LARRY H.;SIGNING DATES FROM 20150205 TO 20150206;REEL/FRAME:039903/0064 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DUQUESNE UNIVERSITY;REEL/FRAME:043338/0953 Effective date: 20170725 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |