US20160369697A1 - Cooled cooling air system for a turbofan engine - Google Patents

Cooled cooling air system for a turbofan engine Download PDF

Info

Publication number
US20160369697A1
US20160369697A1 US14/740,368 US201514740368A US2016369697A1 US 20160369697 A1 US20160369697 A1 US 20160369697A1 US 201514740368 A US201514740368 A US 201514740368A US 2016369697 A1 US2016369697 A1 US 2016369697A1
Authority
US
United States
Prior art keywords
air
engine
heat exchanger
gas turbine
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/740,368
Other languages
English (en)
Inventor
Frederick M. Schwarz
Paul W. Duesler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56235597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160369697(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US14/740,368 priority Critical patent/US20160369697A1/en
Assigned to UNITED TECHNOLOGIES CORPORATION reassignment UNITED TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUESLER, PAUL W., SCHWARZ, FREDERICK M.
Priority to EP16174862.9A priority patent/EP3106646B1/fr
Publication of US20160369697A1 publication Critical patent/US20160369697A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/12Filtering, cooling, or silencing cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/105Heating the by-pass flow
    • F02K3/115Heating the by-pass flow by means of indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/231Preventing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present disclosure relates generally to turbofan engines, and more specifically to a cooled cooling air system for utilization within a turbofan engine.
  • Gas turbine engines such as those utilized on commercial aircraft, typically include a compressor section that draws in and compresses air, a combustor section where the compressed air is mixed with a fuel and ignited, and a turbine section across which the combustion gasses from the ignition are expanded. Expansion of the combustion gasses across the turbine section drives rotation of the turbine section, which in turn drives rotation of the compressor section.
  • Each of the compressor section, the combustor section, and the turbine section are contained within an engine core, and are connected by a primary flowpath that flows through each of the sections.
  • the fan Fore of the compressor section is a fan that drives air through a fan bypass duct surrounding the engine core.
  • the fan is connected to the turbine section via a drive shaft.
  • the fan is connected through a gear system, and the engine is referred to as a geared turbofan engine.
  • the fan is connected directly to a turbine in the turbine section via a drive shaft and the engine is referred to as a direct drive engine.
  • cooling air is provided from a cooling air system directly to the cooled components.
  • the cooling air in some examples is actively cooled.
  • a system for actively cooling the cooling air is referred to as a cooled cooling air system.
  • a gas turbine engine in one exemplary embodiment, includes an engine core defining a primary flowpath, and a nacelle radially surrounding the engine core.
  • the nacelle includes at least one bifurcation, and a cooled cooling air system including a heat exchanger.
  • the heat exchanger is disposed at least partially in the bifurcation.
  • the bifurcation is a lower bifurcation.
  • the heat exchanger is structurally mounted to the engine core via at least one bracket.
  • the heat exchanger is an air-air heat exchanger, and a cooling air stream originates in a fan bypass duct.
  • the cooling air stream exhausts into one of an aft portion of the fan bypass duct and an ambient atmosphere downstream of the fan bypass duct.
  • a spent cooling air exhaust nozzle is a thrust producing nozzle.
  • the heat exchanger is an orthoganol heat exchanger.
  • Another exemplary embodiment of any of the above described gas turbine engines further includes a fan fore of the engine core, and wherein the fan is connected to the engine core via a gearing system.
  • the cooled cooling air system includes a second heat exchanger, and wherein the second heat exchanger is at least partially disposed in the bifurcation.
  • the cooled cooling air system further includes a cooling air inlet door, the cooling air inlet door including a flow regulation feature.
  • the flow regulation feature is an articulating door controllably coupled to an engine controller such that the engine controller is operable to control a flow of air through the cooling air inlet.
  • the cooled cooling air system further includes a cooling air outlet door, the cooling air outlet door including a flow regulation feature.
  • the flow regulation feature is an articulating door, and the articulating door is controllably coupled to an engine controller such that the engine controller is operable to control a flow of air through the cooling air outlet.
  • An exemplary method for generating cooled cooling air in a gas turbine engine includes withdrawing fan bypass duct air from a fan bypass duct and withdrawing bleed air from a primary flowpath in an engine core, providing the fan bypass air and the bleed air to a heat exchanger in an engine bifurcation via ducting, transferring heat from the bleed air to the fan bypass air in the heat exchanger, and providing the cooled bleed air to at least one gas turbine engine component as cooled cooling air.
  • a further example of the above exemplary method includes withdrawing fan bypass duct air from a fan bypass duct including modifying a position of at least one articulating door at one of an inlet of the ducting and an outlet of the ducting.
  • a further example of any of the above exemplary methods further includes exhausting heated fan bypass duct air from the heat exchanger into one of an aft portion of the fan bypass duct and an ambient atmosphere downstream of the fan bypass duct.
  • exhausting the heated fan bypass duct air includes passing the heated fan bypass air through an exhaust nozzle, thereby generating thrust.
  • any of the above exemplary methods includes transferring heat from the bleed air to the fan bypass air in the heat exchanger comprises passing the bleed air through a plurality of pipes in the heat exchanger, and passing the fan bypass air across the pipes in the heat exchanger.
  • any of the above exemplary methods includes providing the fan bypass air and the bleed air to a heat exchanger in an engine bifurcation via ducting further comprises providing the fan bypass air and the bleed air to at least two heat exchangers in the engine bifurcation.
  • FIG. 1 schematically illustrates an exemplary gas turbine engine.
  • FIG. 2 schematically illustrates a front view of a gas turbine engine.
  • FIG. 3 schematically illustrates a cross section view of a fan nacelle at a bifurcation.
  • FIG. 4 schematically illustrates a cross sectional view of an alternate fan nacelle at a bifurcation.
  • FIG. 1 schematically illustrates a gas turbine engine 20 .
  • the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
  • Alternative engines might include an augmentor section (not shown) among other systems or features.
  • the fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15
  • the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28 .
  • the exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38 . It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
  • the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42 , a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46 .
  • the inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30 .
  • the high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54 .
  • a combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54 .
  • a mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46 .
  • the mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28 .
  • the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
  • the core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52 , mixed and burned with fuel in the combustor 56 , then expanded over the high pressure turbine 54 and low pressure turbine 46 .
  • the mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C.
  • the turbines 46 , 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28
  • fan section 22 may be positioned forward or aft of the location of gear system 48 .
  • the engine 20 in one example is a high-bypass geared aircraft engine.
  • the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10)
  • the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five.
  • the engine 20 bypass ratio is greater than about ten (10:1)
  • the fan diameter is significantly larger than that of the low pressure compressor 44
  • the low pressure turbine 46 has a pressure ratio that is greater than about five (5:1).
  • Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.
  • the geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • the fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet (1066.8 meters).
  • TSFC Thrust Specific Fuel Consumption
  • Low fan pressure ratio is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system.
  • the low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)] ⁇ 0.5.
  • the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second (350.5 m/s).
  • FIG. 2 schematically illustrates a front view of the gas turbine engine 20 .
  • the engine core 130 is contained within a fan nacelle 120 , and a fan bypass duct is defined between the fan nacelle 120 and the engine core 130 .
  • the fan nacelle 120 includes a pylon mount 110 for mounting the engine 20 to a wing of an aircraft.
  • the fan nacelle 120 includes a bifurcation 112 .
  • the bifurcation 112 is approximately 180 degrees offset from the pylon mount 110 and is referred to as a lower bifurcation.
  • Alternative engines can include additional bifurcations, or position the bifurcation at a different location.
  • some engines can include a bifurcation at position 114 .
  • the alternative engines can include the bifurcation in any other suitable position.
  • the cooled cooling air is provided to one or more components in the engine 20 and actively cools the component.
  • a cooled cooling air system 140 is included in the engine 20 .
  • the cooled cooling air system 140 uses one or more heat exchangers 142 to cool bleed air from the primary flowpath through the engine core 130 , and provides the cooled bleed air (referred to as cooled cooling air) to components in need of cooling within the gas turbine engine 20 .
  • the cooled cooling air is used to cool the engine components according to known cooling principles.
  • the cooled cooling air system 140 uses air drawn from the fan bypass duct as a heat sink for the cooled cooling air in the heat exchanger 142 .
  • the heat exchanger 142 in the illustrated example of FIG. 2 is disposed completely within the lower bifurcation 112 .
  • the heat exchanger can be partially disposed in a bifurcation 112 , 140 , with a remainder being housed within the fan nacelle 120 .
  • the heat exchanger 142 is structurally mounted to the engine core 130 via a mechanical bracket 170 , or other mechanical bracketing system.
  • FIG. 3 schematically illustrates a cross section of a bifurcation including a cooled cooling air system, such as the cooled cooling air system 140 of FIG. 2 .
  • the cross sectional view 200 illustrates a leading edge 202 of the fan nacelle 220 through to a trailing edge 204 of the fan nacelle 220 .
  • a heat exchanger 240 which is part of the cooled cooling air system 140 is included within the bifurcation.
  • Upstream of the heat exchanger 240 is an inlet 250 that allows an air stream 206 into the heat sink portion of the heat exchanger 240 .
  • the air stream 206 is a portion of the air that enters the bypass fan duct.
  • cooling air drawn from a bleed within the engine core passes through multiple pipes 242 within the heat exchanger 240 , and heat is transferred from the bleed air into the air stream 206 .
  • the heated air within the air stream 206 is referred to as spent air, and is exhausted from the heat exchanger 240 , and the cooled cooling air system, via a spent air outlet 260 .
  • the spent air outlet 260 is downstream of a fan duct nozzle into ambient atmosphere.
  • the spent air outlet can be upstream of the fan duct nozzle and is added back to the air in the fan duct prior to the fan duct air passing through the nozzle.
  • Each of the inlet 250 and the outlet 260 can include a flow regulation feature, such as articulating doors 252 , 262 .
  • the flow regulation feature is able to control the flow of air through the inlet 252 or outlet 260 , and therefore control the flow of heat sink air in the air stream 206 and through the heat exchanger 240 .
  • each of the articulating doors 252 , 262 is controllably coupled to an engine controller 270 , and the engine controller 270 controls the articulation of the doors 252 , 262 .
  • the articulating doors 252 , 262 can be controlled by actuators 254 , 264 that are in turn controlled by the engine controller 270 .
  • any other means of opening and closing the doors 252 , 262 can be utilized in place of the illustrated actuators 254 , 264 .
  • the outlet 260 can be shaped and constricted to function as a nozzle 280 and generate thrust, such an outlet is referred to as a thrust producing nozzle.
  • the thrust generated by the nozzle 280 reclaims a portion of the thrust lost when air is removed from the fan bypass duct to enter the air stream 206 .
  • the doors 252 , 262 can be included at only the inlet 250 or the outlet 260 .
  • FIG. 4 schematically illustrates cross sectional view 300 of an alternate fan nacelle at a bifurcation.
  • the fan nacelle of FIG. 4 is similar in construction to the fan nacelle of FIG. 3 , with a leading edge 302 , a trailing edge 304 , and a cooled cooling air system including a heat exchanger 340 positioned in the bifurcation.
  • the example of FIG. 4 includes multiple heat exchangers 340 , each of which includes multiple pipes 342 carrying bleed air.
  • Each of the heat exchangers 340 includes a corresponding inlet 350 that allows air from the fan bypass duct to enter the heat exchanger as the air stream 306 and operate as the heat sink for the bleed air passing through the pipes 342 . As the air stream 306 exits each of the heat exchangers 340 , the airstreams are merged into a single airstream that is then passed out of an outlet 360 .
  • each of the inlets 350 , and the outlet 360 include airflow regulation features, such as articulating doors 352 , 362 , that are capable of restricting or regulating the flow of air from the fan bypass duct into or out of the heat exchangers 340 .
  • the illustrated articulating doors 353 , 363 are controlled by an engine controller 370 .
  • each of the articulating doors at the inlets 350 can be controlled simultaneously as a single unit.
  • the controller 370 can control the articulating doors 352 independently of each other, allowing airflow through each of the heat exchangers 340 to be controlled independently of the airflow through the other heat exchangers 340 .
  • the articulating door 362 at the outlet can be arranged to form a nozzle 380 , and reclaim thrust in the same manner as the articulating door 262 illustrated in FIG. 2 , and described above.
  • the heat exchangers 240 , 340 are described and illustrated as orthogonal heat exchangers.
  • One of skill in the art, having the benefit of this disclosure will further understand that alternative air-air heat exchangers could be utilized in place of the illustrated and described orthogonal heat exchangers 240 , 340 , without significant modification to the above described features.
  • cooled cooling air systems can be included within a single engine, with a heat exchanger of each cooled cooling air system being included within one of the bifurcations 112 , 114 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US14/740,368 2015-06-16 2015-06-16 Cooled cooling air system for a turbofan engine Abandoned US20160369697A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/740,368 US20160369697A1 (en) 2015-06-16 2015-06-16 Cooled cooling air system for a turbofan engine
EP16174862.9A EP3106646B1 (fr) 2015-06-16 2016-06-16 Moteur à double flux avec un système d'air de refroidissement et procédé correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/740,368 US20160369697A1 (en) 2015-06-16 2015-06-16 Cooled cooling air system for a turbofan engine

Publications (1)

Publication Number Publication Date
US20160369697A1 true US20160369697A1 (en) 2016-12-22

Family

ID=56235597

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/740,368 Abandoned US20160369697A1 (en) 2015-06-16 2015-06-16 Cooled cooling air system for a turbofan engine

Country Status (2)

Country Link
US (1) US20160369697A1 (fr)
EP (1) EP3106646B1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180017342A1 (en) * 2016-07-14 2018-01-18 General Electric Company Entrainment heat exchanger
US20180038243A1 (en) * 2016-08-05 2018-02-08 General Electric Company Oil cooling systems for a gas turbine engine
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
EP3643884A1 (fr) 2018-10-22 2020-04-29 Rolls-Royce plc Moteur de turbine à gaz
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10677166B2 (en) 2015-08-12 2020-06-09 Rolls-Royce North American Technologies Inc. Heat exchanger for a gas turbine engine propulsion system
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
CN111727302A (zh) * 2018-02-23 2020-09-29 赛峰飞机发动机公司 包括次级路径中的热交换器的涡轮发动机
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
CN112173131A (zh) * 2019-07-01 2021-01-05 空中客车西班牙运营有限责任公司 供应加压空气的安装件和方法、涡轮风扇发动机及飞行器
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
EP3851652A1 (fr) * 2020-01-17 2021-07-21 Raytheon Technologies Corporation Cycle de co2 supercritique pour moteurs à turbine à gaz utilisant un flux d'échappement à noyau partiel
US11078842B2 (en) * 2019-03-26 2021-08-03 Raytheon Technologies Corporation Exhaust distribution manifold
US11130580B2 (en) 2016-12-09 2021-09-28 Raytheon Technologies Corporation Electro-pneumatic environmental control system air circuit
US11174816B2 (en) 2019-02-25 2021-11-16 Rolls-Royce Corporation Bypass duct conformal heat exchanger array
US11174790B2 (en) 2017-11-14 2021-11-16 Rolls-Royce Plc Gas turbine engine having an air-oil heat exchanger
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
US11378009B2 (en) * 2019-05-15 2022-07-05 Raytheon Technologies Corporation Multi-mode heat rejection system for a gas turbine engine
US11384649B1 (en) 2021-02-11 2022-07-12 General Electric Company Heat exchanger and flow modulation system
US11788469B2 (en) 2020-11-16 2023-10-17 General Electric Company Thermal management system for a gas turbine engine
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201807267D0 (en) 2018-05-03 2018-06-20 Rolls Royce Plc Louvre offtake arrangement
FR3095639B1 (fr) * 2019-04-30 2021-04-02 Airbus Helicopters Giravion équipé d’un dispositif aérodynamique comportant carénage présentant une entrée d’air
EP3851659B1 (fr) * 2020-01-15 2022-08-17 Airbus Operations (S.A.S.) Soupape de régulation à froid pour un système d'échangeur de chaleur d'un système de propulsion d'aéronef
US11913387B2 (en) * 2022-03-24 2024-02-27 General Electric Company Method and apparatus for cooling turbine blades

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827712A (en) * 1986-12-23 1989-05-09 Rolls-Royce Plc Turbofan gas turbine engine
US20070245738A1 (en) * 2006-04-20 2007-10-25 Stretton Richard G Heat exchanger arrangement
US20090188234A1 (en) * 2008-01-25 2009-07-30 Suciu Gabriel L Shared flow thermal management system
US7765788B2 (en) * 2006-07-06 2010-08-03 United Technologies Corporation Cooling exchanger duct
US20120102915A1 (en) * 2009-03-17 2012-05-03 Constantine Baltas Gas turbine engine bifurcation located fan variable area nozzle
US20120272658A1 (en) * 2011-04-28 2012-11-01 Murphy Michael J Thermal management system for gas turbine engine
US20170204787A1 (en) * 2016-01-19 2017-07-20 United Technologies Corporation Heat exchanger array

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123242A (en) * 1990-07-30 1992-06-23 General Electric Company Precooling heat exchange arrangement integral with mounting structure fairing of gas turbine engine
US20080028763A1 (en) 2006-08-03 2008-02-07 United Technologies Corporation Thermal management system with thrust recovery for a gas turbine engine fan nacelle assembly
US8438835B2 (en) 2007-07-30 2013-05-14 General Electric Company Methods and apparatus for mixing fluid in turbine engines
EP2128023B1 (fr) * 2008-05-29 2012-05-23 Pratt & Whitney Canada Corp. Un moteur à turbine à gaz comprenant un ensemble refroidisseur
US8266888B2 (en) 2010-06-24 2012-09-18 Pratt & Whitney Canada Corp. Cooler in nacelle with radial coolant
US9410482B2 (en) * 2010-12-24 2016-08-09 Rolls-Royce North American Technologies, Inc. Gas turbine engine heat exchanger
US9200570B2 (en) 2012-02-24 2015-12-01 Pratt & Whitney Canada Corp. Air-cooled oil cooler for turbofan engine
WO2014151356A1 (fr) 2013-03-15 2014-09-25 United Technologies Corporation Système et méthode de gestion thermique de moteur à turbine à architecture à engrenages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827712A (en) * 1986-12-23 1989-05-09 Rolls-Royce Plc Turbofan gas turbine engine
US20070245738A1 (en) * 2006-04-20 2007-10-25 Stretton Richard G Heat exchanger arrangement
US7765788B2 (en) * 2006-07-06 2010-08-03 United Technologies Corporation Cooling exchanger duct
US7810311B2 (en) * 2006-07-06 2010-10-12 United Technologies Corporation Cooling exchanger ducts
US20090188234A1 (en) * 2008-01-25 2009-07-30 Suciu Gabriel L Shared flow thermal management system
US20120102915A1 (en) * 2009-03-17 2012-05-03 Constantine Baltas Gas turbine engine bifurcation located fan variable area nozzle
US20120272658A1 (en) * 2011-04-28 2012-11-01 Murphy Michael J Thermal management system for gas turbine engine
US20170204787A1 (en) * 2016-01-19 2017-07-20 United Technologies Corporation Heat exchanger array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Caretto "Heat Exchangers" 2007 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10830149B2 (en) 2015-02-12 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US11215197B2 (en) 2015-04-24 2022-01-04 Raytheon Technologies Corporation Intercooled cooling air tapped from plural locations
US10914235B2 (en) 2015-05-18 2021-02-09 Raytheon Technologies Corporation Cooled cooling air system for a gas turbine engine
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10677166B2 (en) 2015-08-12 2020-06-09 Rolls-Royce North American Technologies Inc. Heat exchanger for a gas turbine engine propulsion system
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US11002195B2 (en) 2015-12-14 2021-05-11 Raytheon Technologies Corporation Intercooled cooling air with auxiliary compressor control
US11512651B2 (en) 2015-12-14 2022-11-29 Raytheon Technologies Corporation Intercooled cooling air with auxiliary compressor control
US11168951B2 (en) * 2016-07-14 2021-11-09 General Electric Company Entrainment heat exchanger
US20180017342A1 (en) * 2016-07-14 2018-01-18 General Electric Company Entrainment heat exchanger
US10494949B2 (en) * 2016-08-05 2019-12-03 General Electric Company Oil cooling systems for a gas turbine engine
US20180038243A1 (en) * 2016-08-05 2018-02-08 General Electric Company Oil cooling systems for a gas turbine engine
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US11236675B2 (en) 2016-09-19 2022-02-01 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US11130580B2 (en) 2016-12-09 2021-09-28 Raytheon Technologies Corporation Electro-pneumatic environmental control system air circuit
US11518525B2 (en) 2016-12-09 2022-12-06 Raytheon Technologies Corporation Electro-pneumatic environmental control system air circuit
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US11846237B2 (en) 2017-01-19 2023-12-19 Rtx Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US11773742B2 (en) 2017-03-31 2023-10-03 Rtx Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US11174790B2 (en) 2017-11-14 2021-11-16 Rolls-Royce Plc Gas turbine engine having an air-oil heat exchanger
CN111727302A (zh) * 2018-02-23 2020-09-29 赛峰飞机发动机公司 包括次级路径中的热交换器的涡轮发动机
US11686249B2 (en) * 2018-02-23 2023-06-27 Safran Aircraft Engines Turbine engine comprising a heat exchanger in the secondary path
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
US11773780B2 (en) 2018-07-31 2023-10-03 Rtx Corporation Intercooled cooling air with selective pressure dump
US11162423B2 (en) 2018-10-22 2021-11-02 Rolls-Royce Plc Gas turbine engine
EP3643884A1 (fr) 2018-10-22 2020-04-29 Rolls-Royce plc Moteur de turbine à gaz
US11174816B2 (en) 2019-02-25 2021-11-16 Rolls-Royce Corporation Bypass duct conformal heat exchanger array
US11078842B2 (en) * 2019-03-26 2021-08-03 Raytheon Technologies Corporation Exhaust distribution manifold
US11378009B2 (en) * 2019-05-15 2022-07-05 Raytheon Technologies Corporation Multi-mode heat rejection system for a gas turbine engine
CN112173131A (zh) * 2019-07-01 2021-01-05 空中客车西班牙运营有限责任公司 供应加压空气的安装件和方法、涡轮风扇发动机及飞行器
US11480103B2 (en) 2020-01-17 2022-10-25 Raytheon Technologies Corporation Supercritical CO2 cycle for gas turbine engines using partial core exhaust flow
EP3851652A1 (fr) * 2020-01-17 2021-07-21 Raytheon Technologies Corporation Cycle de co2 supercritique pour moteurs à turbine à gaz utilisant un flux d'échappement à noyau partiel
US11788469B2 (en) 2020-11-16 2023-10-17 General Electric Company Thermal management system for a gas turbine engine
US11384649B1 (en) 2021-02-11 2022-07-12 General Electric Company Heat exchanger and flow modulation system

Also Published As

Publication number Publication date
EP3106646A1 (fr) 2016-12-21
EP3106646B1 (fr) 2020-12-16

Similar Documents

Publication Publication Date Title
EP3106646B1 (fr) Moteur à double flux avec un système d'air de refroidissement et procédé correspondant
US10794288B2 (en) Cooled cooling air system for a turbofan engine
US10808933B2 (en) Turbine stage cooling
US10731563B2 (en) Compressed air bleed supply for buffer system
US20150354465A1 (en) Turbine stage cooling
US10794291B2 (en) Geared turbofan architecture for regional jet aircraft
EP2957746B1 (fr) Refroidissement de turbine haute pression
US10677161B2 (en) Gas turbine engine diffuser cooling and mixing arrangement
US10323524B2 (en) Axial skin core cooling passage for a turbine engine component
US20160326885A1 (en) Turbine engine component including an axially aligned skin core passage interrupted by a pedestal
US20190017405A1 (en) Active clearance control for gas turbine engine
US20150252731A1 (en) Gas turbine engine including bleed system coupled to upstream and downstream locations of compressor
US20170074112A1 (en) Active clearance control for gas turbine engine
US10487748B2 (en) Cooling air for gas turbine engine with supercharged low pressure compressor
US11149643B2 (en) Heat exchanger mounted at rear of gas turbine engine for challenging temperature applications
EP3232032B1 (fr) Architecture d'air de refroidissement pour améliorer la taille compacte et les performances
US10982595B2 (en) Heat exchanger for gas turbine engine mounted in intermediate case
US20170167384A1 (en) Compressor core inner diameter cooling
US10458332B2 (en) Cooled gas turbine engine cooling air with cold air dump
US20210172335A1 (en) Gas turbine engine flowpath component including vectored cooling flow holes

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWARZ, FREDERICK M.;DUESLER, PAUL W.;SIGNING DATES FROM 20150609 TO 20150611;REEL/FRAME:035842/0980

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: TC RETURN OF APPEAL

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403