US20160367880A1 - Swage and flare joints - Google Patents

Swage and flare joints Download PDF

Info

Publication number
US20160367880A1
US20160367880A1 US15/253,043 US201615253043A US2016367880A1 US 20160367880 A1 US20160367880 A1 US 20160367880A1 US 201615253043 A US201615253043 A US 201615253043A US 2016367880 A1 US2016367880 A1 US 2016367880A1
Authority
US
United States
Prior art keywords
walls
swaged
swaged portion
recited
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/253,043
Inventor
Daniel G. Maisey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lifetime Products Inc
Original Assignee
Lifetime Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lifetime Products Inc filed Critical Lifetime Products Inc
Priority to US15/253,043 priority Critical patent/US20160367880A1/en
Assigned to LIFETIME PRODUCTS, INC. reassignment LIFETIME PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAISEY, DANIEL G.
Publication of US20160367880A1 publication Critical patent/US20160367880A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B63/00Targets or goals for ball games
    • A63B63/08Targets or goals for ball games with substantially horizontal opening for ball, e.g. for basketball
    • A63B63/083Targets or goals for ball games with substantially horizontal opening for ball, e.g. for basketball for basketball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • A63B2071/025Supports, e.g. poles on rollers or wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions
    • A63B2225/093Height

Definitions

  • Swage and flare joints enable two tubes having about the same overall perimeter size to be fitted together, one inside the other.
  • this involves flaring a first tube so as to increase the inside perimeter of the first tube, and swaging the second tube so as to decrease the outside perimeter of the second tube. In this way, the second tube can be received within the first tube.
  • the joint thus produced may prove problematic insofar as there may be very limited contact between the swaged tube and the flared tube. This result can occur when the walls of a square swaged tube are deformed along their a substantial portion of their length such that the only contact between the swaged tube and a mating flared tube occurs at the four corners of the swaged tube. Such point contact may permit movement between the swaged tube and the flared tube. As well, point contact between the swaged tube and the flared tube, may contribute to instability of the assembled joint that could result in wobbling of a structure supported by the joint, and/or may result in a relatively weaker joint that could fail in some loading situations.
  • the present disclosure is generally concerned with joints that may be used to releasably, or permanently, connect a pair of mating elements, where the mating elements are configured such that one mating element can be partly received within the other mating element. More specifically, embodiments of the invention include swage and flare joints, as well as joints that include a swaged portion that mates with an unflared portion.
  • Embodiments within the scope of this disclosure may include any one or more of the following elements, and features of elements, in any combination: a mating element having a swaged portion and/or a flared portion; a tubular, or substantially solid, mating element having a swaged portion and/or a flared portion; a mating element having a swaged end and/or a flared end; a tubular, or substantially solid, mating element having a swaged end and/or a flared end; a swaged portion with substantially straight walls; a swaged portion with substantially straight walls, one or more of which includes a deformation; a swaged portion having one or more walls configured for substantial contact with a mating flared portion; a swaged portion whose walls are configured for substantial contact with a mating flared portion; a swaged portion configured to be received, permanently or removably, within a flared portion; a swaged portion configured to contact a
  • a first mating element has a swaged portion whose outer surface is configured to make substantial contact with the inner surface of a flared second mating element.
  • a first mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a flared second mating element.
  • a first tubular mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion.
  • a first tubular mating element has a swaged portion with a plurality of substantially straight walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion.
  • a first tubular mating element has a swaged portion with a plurality of walls, each of which has an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion.
  • a first tubular mating element has a swaged portion with four walls that collectively define a generally square or rectangular cross section shape of the first tubular mating element, each of the four walls having an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion.
  • a first mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a flared second mating element, and one or more of the walls of the first mating element includes a local deformation.
  • a first tubular mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the swaged portion includes a local deformation.
  • a first tubular mating element has a swaged portion with a plurality of substantially straight walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • a first tubular mating element has a swaged portion with a plurality of walls, each of which has an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • a first tubular mating element has a swaged portion with four walls that collectively define a generally square or rectangular cross section shape of the first tubular mating element, each of the four walls having an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • a basketball system includes a support pole, and/or other structure(s), that incorporates any of the preceding embodiments.
  • this disclosure embraces the embodiments disclosed herein both in respective assembled forms, and in respective kit forms.
  • the embodiment When in the form of a kit, the embodiment may be partly or completely disassembled.
  • an element including a swaged portion and an element including a mating flared portion may be separate pieces in such a kit.
  • FIG. 1 is a perspective view of an example of an embodiment of a structure having a swaged portion
  • FIG. 2 is a top view of the example of FIG. 1 ;
  • FIG. 3 is a perspective view of an embodiment of a structure including a flared portion suitable for mating with the structures of FIGS. 1 and 2 ;
  • FIG. 4 is a perspective view of an embodiment of an alternative structure having a swaged portion
  • FIG. 5 is a perspective view of an embodiment of a structure including a flared portion suitable for mating with the structure of FIG. 4 ;
  • FIG. 6 is a top cross-sectional view of the example structures of FIGS. 4 and 5 in a mated arrangement
  • FIGS. 7 a and 7 b are views of an example basketball system with a joint that includes a flared portion and a swaged portion;
  • FIGS. 8 a and 8 b disclose various example embodiments of a swaged portion that may be employed in forming a joint
  • FIG. 9 discloses various example embodiments of dies that may be employed to form swaged portions such as those disclosed herein;
  • FIG. 10 discloses a method for producing a swaged portion.
  • inventions of the present disclosure are generally concerned with joints that may be used to releasably, or permanently, connect a pair of mating elements, where embodiments of the mating elements are configured such that one mating element can be partly received within the other mating element. More specifically, embodiments of the invention include joints that including a swaged portion and a flared portion that are configured to mate, either releasably or permanently, with each other. The swaged portion may include one or more local deformities in one or more surfaces that interface with the flared portion. Embodiments of the invention also include a die, or dies, configured to enable production of the swaged portions and flared portions disclosed herein.
  • Embodiments of the invention can be employed in a wide variety of applications and, accordingly, the scope of the invention is not limited to the example applications and structures disclosed herein. Rather, such applications, which include outdoor equipment such as playground equipment and basketball systems, are discussed herein for the purpose of illustration, and not by way of limitation. In general, embodiments of the invention can be employed in any application or environment where it is desired to permanently, or releasably, attach a pair of elements together.
  • elements of outdoor equipment such as playground equipment and basketball systems
  • elements of outdoor equipment may be constructed with a variety of components and materials including, but not limited to, plastic (including injection-molded, blow-molded, roto-molded, and twin sheet plastic structures and elements) including polycarbonates, composites, metals, and combinations of any of the foregoing.
  • plastic including injection-molded, blow-molded, roto-molded, and twin sheet plastic structures and elements
  • polycarbonates including polycarbonates, composites, metals, and combinations of any of the foregoing.
  • Suitable metals may include steel, aluminum, and aluminum alloys, although the skilled person will understand that a variety of other metals, and combinations of metals, may be employed as well and the scope of the invention is not limited to the foregoing examples.
  • the metal elements may take one or more forms including, but not limited to, square tube, rectangular tube, oval tube, polygonal tube, triangular tube, round tube, pipe, and solid, rather than tubular, forms of any of the foregoing. Any of these tubes, pipes or solid pieces may include radiused corners where walls intersect with each other, so as to reduce or eliminate stress concentrations.
  • Metal is but one example of a plastically deformable material that can be used in the constructions of at least some embodiments of the invention.
  • a variety of methods and components may be used to connect, releasably or permanently, various elements of the outdoor equipment.
  • the various metal elements of outdoor equipment or components within the scope of this disclosure may be attached to each other by any one or more of processes such as welding or brazing, mechanically by way of fasteners such as bolts, screws, pins, and rivets, for example, by clamps, by mechanical structures such as swages and flares, and by any combination of one or more of the foregoing.
  • Some, none, or all portions of one or more of the outdoor equipment and its components may be coated with paint or other materials. Surface treatments and textures may also be applied to portions of the outdoor equipment. At least some of such materials may serve to help prevent, or reduce, rust and corrosion.
  • FIGS. 1-3 Details are provided concerning some structures that are set forth herein for the purposes of comparison with the example embodiments of FIGS. 4-6 .
  • a swaged portion 100 in the form of a square tube that has a generally square cross-sectional shape.
  • the swaged portion 100 includes four walls 102 that intersect so as to define four corners 104 .
  • the swaged portion 100 has been swaged so that the effective length of the perimeter at the terminal end, defined as the sum of the lengths of the four segments “L,” is relatively shorter than the actual length of the perimeter, defined as the sum of the lengths of the deformed walls.
  • the effective length of the perimeter at the terminal end is shorter than the overall length of the perimeter at a location “P” where no swaging has been performed.
  • each wall 102 deflects inwardly toward the interior of the swaged portion 100 .
  • the overall length of the perimeter of the terminal end of the swaged portion 100 is relatively shorter than it would be if the walls 102 were not so deflected, although the basic overall shape of the cross-section of the swaged portion 100 is generally retained.
  • the deflection extends over substantially the entire length of each wall 102 , that is, the entire wall 102 is deflected between successive corners 104 .
  • the wall 102 takes on a curved, rather than straight, configuration.
  • the configuration of the swaged portion 100 is adequate to ensure that the swaged portion 100 can mate with the flared portion 200 illustrated in FIG. 3 , that configuration may not be well suited for some applications.
  • the deflected portions may not contact the corresponding walls 202 of the flared portion 200 .
  • the primary, or only, contact between the swaged portion 100 and the flared portion 200 occurs where the corners 104 of the swaged portion 100 contact the corners 204 of the flared portion 200 .
  • Such minimal contact between the swaged portion 100 and the flared portion 200 may be problematic insofar as it may permit movement between the swaged portion 100 and flared portion 200 , may contribute to instability of the assembled joint that could result in wobbling of a structure supported by the joint, and/or may result in a relatively weaker joint that could fail in some loading situations. Concerns such as these could result in a need for supplemental support of the joint such as by way of fasteners (not shown) positioned in holes 206 . However, the use of fasteners can complicate the assembly of the joint, and may make the joint harder to break down, should there be a need to do so.
  • FIGS. 4-6 disclose aspects of embodiments of a swage and flare joint that include a swaged portion 300 and a flared portion 400 .
  • swaging and swaging processes include forging processes in which one or more dimensions of an item are altered. Swaging can be performed as a cold working process where an item is forced into a confining die to reduce one or more dimensions of the item, such as the length of the perimeter of the item for example.
  • Swaging an item with one or more dies can also be performed as a hot working process.
  • the use of one or more dies in this way is sometimes referred to as tube swaging.
  • Another type of swaging process sometimes referred to as rotary swaging or radial forging, involves the use of multiple dies to hammer a workpiece into a desired shape, and reducing one or more dimensions of the workpiece in the process.
  • Rotary swaging may be particularly useful for shaping solid workpieces.
  • any die or group of dies configured to enable the formation of swaged portions such as are disclosed herein are considered to be within the scope of the invention.
  • the swaged portion 300 may comprise a tubular form as shown, or may be a solid structure, either of which may be configured to be received in a corresponding tapered portion of a joint.
  • the swaged portion 300 is in the form of tube having a cross-section whose shape is substantially square, although tubes or solid structures of other shapes can alternatively be employed.
  • a single piece of material may include multiple swaged portions, which may, or may not, be the same size and/or shape as each other.
  • a piece of tube or solid stock may have a first swaged portion at one end, and a second swaged portion at the other end.
  • the swaged portion 300 has been swaged so that the overall length of the perimeter at the terminal end 300 A is relatively smaller than the overall length of the perimeter at a point 301 located some distance away from the terminal end 300 A.
  • the swaged portion 300 in this example tapers from point 301 to the terminal end 300 A of the swaged portion 300 , so that the cross-section area of the swaged portion at point 301 is relatively greater than the cross-section area of the swaged portion at the terminal end 300 A.
  • This configuration can be achieved by swaging processes and swaging dies such as those disclosed herein.
  • the perimeter and configuration of the swaged portion 300 is such that when the swaged portion 300 is fully received in a corresponding flared portion, such as flared portion 400 for example, one or more of the walls 302 are in substantial contact with corresponding walls of the flared portion.
  • the walls 302 of the swaged portion 300 are substantially straight and connect with each other at a plurality of corners 304 .
  • the walls 302 differ from the walls 202 indicated in FIGS. 1-3 , at least in that the walls 302 have only a local deformation 306 and are not deformed along all, or a substantial part of, their length, as is the case with the walls 202 .
  • the local deformation(s) may be such that, notwithstanding their presence, the overall shape of the cross-section of the swaged portion 300 is generally retained.
  • the local deformations 306 each have a curved cross-section shape which could be generally circular, generally elliptical, or any other curved shape, or a portion of any of the foregoing.
  • the local deformations 306 need not be curved however and may alternatively be pointed, or have any other suitable configuration. However, local deformations with curved cross-section shapes may help to reduce, or eliminate, stress concentrations that may otherwise occur with the use of straight or pointed shapes.
  • any one or more attributes of a local deformation 306 may vary along a portion of the length of the swaged portion.
  • both the width and the depth of the local deformation 306 varies along the swaged portion such that the local deformation 306 is relatively wider and deeper at the terminal end of the swaged portion than at a location distal from the terminal end.
  • one or more attributes of the local deformation 306 may be substantially consistent over all of, or a substantial portion of, the length of the local deformation 306 .
  • the local deformations 306 each have substantially the same width and depth as each other, although that is not required. More particularly, and with continued reference to the example of FIG. 4 , the example local deformations 306 each taper from a maximum width and depth at the terminal end of the swaged portion 300 to a location where the taper in both width and depth disappears, or at least substantially disappears.
  • any local deformation(s) that enable a substantial portion of one or more walls of a swaged portion including one or more such local deformations to make contact with a corresponding wall of a tapered portion can be employed.
  • such walls may be substantially undeformed except for their inclusion of one or more local deformations.
  • local deformations can be employed in walls that are not straight, or not substantially straight.
  • one or more local deformations could be employed in a swaged portion, such as a substantially circular swaged portion for example, that included one or more curved walls.
  • a circular swaged portion includes one, or two, pairs of opposing local deformations.
  • a swaged portion that include multiple walls
  • fewer than all of the walls, such as only one, two, or three, walls may include a local deformation.
  • those local deformations may all have substantially the same configuration.
  • at least one local deformation has a configuration that is substantially different from the configuration of another local deformation.
  • any one or more of attributes such as the size, number, shape, location, and orientation of the local deformations can be varied.
  • Two or more local deformations in a single swaged portion can be substantially the same as, or differ from, each other in any grouping of one or more of the aforementioned attributes.
  • one or more walls of a swaged portion include multiple local deformations.
  • the multiple local deformations in such examples may be substantially the same as each other in one or more of those attributes, or may be different from each other in one or more of those attributes.
  • such configurations can be formed using a die.
  • the die is substantially hollow and has an interior configuration that is generally a mirror image of the exterior configuration of the swaged portion 300 .
  • a square tube can then be forced into the die to produce the configuration shown in the example of FIG. 4 .
  • the flared portion 400 like some embodiments of the swaged portion 300 may comprise tube.
  • the flared portion 400 is configured with a plurality of walls 402 that define an interior 404 whose shape is the same general shape as the exterior of the swaged portion 300 , with the exception of the local deformations 306 , and a slightly larger size than the swaged portion 300 .
  • the slightly larger size of the interior 404 enables the swaged portion 300 to be securely, but removably, received within the flared portion 400 .
  • the swaged portion 300 may be permanently connected to the flared portion 400 once received therein.
  • Suitable processes for permanently connecting the flared portion 400 and swaged portion 300 are disclosed elsewhere herein, and include welding, soldering, brazing, or the use of fasteners. Combinations of these processes may also be employed.
  • FIG. 6 a joint 500 configuration is indicated where the swaged portion 300 is received within the flared portion 400 .
  • there is substantial contact between the swaged portion 300 and the flared portion 400 except at the locations of the local deformations 306 .
  • Such substantial contact may contribute to stability of the assembled joint 500 that could reduce or prevent wobbling of a structure supported by the joint 500 , and/or may result in a relatively stronger joint 500 that is better able to handle a variety of loading situations.
  • the joint 500 could be employed in a wide variety of different applications, one example of which is a support pole for a basketball system.
  • the flared portion 400 and swaged portion 300 would each comprise an element of a respective piece of a support pole.
  • the flared portion 400 could be implemented in either the upper or lower piece of such support pole, and the swaged portion 300 could likewise be implemented in either the upper or lower piece of such a support pole.
  • FIGS. 7 a and 7 b disclose one example application for a joint such as is disclosed herein.
  • a basketball system denoted at 600 is provided.
  • the basketball system 600 can be a portable basketball system, although that is note required and the basketball system 600 could, instead, be permanently anchored in the ground, or in pavement, concrete and/or other material(s).
  • the basketball system 600 includes a backboard assembly 602 which supports a goal 604 .
  • the backboard 602 is connected to a support pole 606 either directly, or indirectly by way of one or more intervening structures such as but not limited to, clamps, brackets, arms.
  • the support pole 606 is connected to a base 608 that may include one or more wheels or other mechanisms to enable the portability of the basketball system 600 .
  • the basketball system 600 includes a connecting structure 610 that includes, in this example, a pair of upper arms 610 a and a pair of lower arms 610 b , all of which are rotatably connected to the support pole 606 and to a frame of the backboard assembly 602 .
  • a height adjustment mechanism 612 connected to the arms 610 a enables a user to raise and lower the backboard 602 to a desired height.
  • the height adjustment mechanism 612 takes the form of a screw mechanism that can be rotated by the user to change the height of the backboard 602 .
  • the support pole 606 includes two or more pieces that fit together, such as segments 606 a and 606 b for example.
  • the segments 606 a and 606 b of the support pole 606 thus collectively define a joint 650 .
  • the joint 650 can take the form of any of the joint embodiments disclosed herein, and the basketball system 600 may have one, or multiple, joints 650 .
  • the segments 606 a and 606 b can take any of the forms of tubing or solid portions disclosed herein. In one particular embodiment, the segments 606 a and 606 b each take the form of square tube, although that particular form is not required.
  • the joint 650 is configured such that the segment 606 a is a flared portion, and the segment 606 b is a swaged portion, although the opposite arrangement could alternatively be employed, that is, an arrangement where segment 606 a is a swaged portion, and segment 606 b is a flared portion.
  • the user can simply insert the segment 606 b into the segment 606 a and move the segments 606 a and 606 b together until the segment 606 b is fully received in the segment 606 a .
  • the segments 606 a and 606 b may also include fasteners (not shown) such as bolts or screws to hold the assembled joint 650 together, although that is not required.
  • the segment 606 b can include an indicator 606 c that provides a visual cue to the user that the joint 650 is fully assembled, that is, the swaged portion of the segment 606 b is fully received in the flared portion of the segment 606 a .
  • the indicator 606 c may take, for example, the form of an inscribed and/or painted line or other marking which, when positioned near the bottom of segment 606 a after the segment 606 b has been inserted into segment 606 a , indicates that the swaged portion of the segment 606 b is fully received in the flared portion of the segment 606 a.
  • FIGS. 8 a and 8 b details are provided concerning some example swaged portions that may be employed in the formation of one or more joints. It should be noted that where multiple joints are employed in a particular application, the configuration of two or more of those joints may be substantially the same, or one of the joints may have a configuration that is different from a configuration of another of the joints. For example, two or more of the various different swaged portions disclosed in FIGS. 8 a and 8 b may be employed in a single application. It should also be understood that while FIGS. 8 a and 8 b disclose only swaged portions, the scope of the invention also embraces the respective flared portions that, while not specifically illustrated, correspond to the illustrated swaged portions of FIGS. 8 a and 8 b.
  • embodiments of the invention include swaged portions that have a single substantially continuous wall, such as wall 702 a for example, rather than a set of walls that intersect with each other.
  • the example swaged portions 700 a are generally circular in their cross-section shape and, as shown, can be tubular or solid, and also include one or more local deformations 704 a .
  • the local deformations 704 a where more than one are present, can be evenly, or randomly, distributed about the circumference of the swaged portions 700 a.
  • the swaged portions 700 b include swaged portions that include fewer than four walls.
  • the swaged portions 700 b which can be in tubular or solid form, have a cross-section shape that is generally triangular and includes three walls 702 b , any one or more of which can include one or more local deformations, such as local deformations 704 b .
  • the generally triangular cross-section shape can be any triangular shape, and is not limited to an equilateral triangle shape.
  • embodiments of the invention also include swaged portions that are not symmetric in one or more of their dimensions.
  • the swaged portions 700 c which can be in solid or tubular form, have a cross-section shape that is oval, or elliptical. Similar to the example of swaged portions 700 a , the wall 702 c of the swaged portions 700 c may be substantially continuous and uninterrupted by corners or other discontinuities, except for one or more local deformations 704 c .
  • local deformation 704 c can be located on the major, or minor, axis of the cross-section shape, although that local deformation 704 c can be provided in any other location as well. In other embodiments, local deformations 704 c can be provided on both the major and minor axes of the cross-section shape.
  • embodiments of the invention also include swaged portions that include more than four walls.
  • the swaged portions 700 d which can be in tubular or solid form, have a cross-section shape that is generally polygonal and includes five walls 702 d , any one or more of which can include one or more local deformations, such as local deformations 704 d.
  • swaged portions 700 e include a plurality of local deformations 702 e , at least two of which have different respective sizes.
  • local deformations of different shapes, as well as sizes can likewise be combined in a single embodiment.
  • swaged portions such as swaged portions 700 f for example, may be configured to include one or more walls 702 f that include a plurality of local deformities 704 f in a single wall.
  • the swaged portion 700 f may additionally, or alternatively, be configured with one or more walls that 706 f include no local deformities.
  • At least some embodiments of the invention are directed to swaged portions, such as swaged portions 700 g , that include one or more walls 702 g having local deformities 704 g of different shapes.
  • Local deformities 704 g of different respective shapes can be combined in a single wall 702 g , or walls 702 g .
  • two or more walls 702 g may each have a respective local deformity 704 g that has a different shape than a local deformity 704 g present in one or more of the other walls 702 g.
  • a swaged portion such as swaged portion 700 h for example, may include two or more discrete elements 702 h that can be employed together as a single swaged portion 700 h .
  • the two or more discrete elements 702 h may, or may not, be joined, permanently or releasably, together.
  • the discrete elements 702 h may be releasably joined together by fasteners or respective mating structures included in each of the discrete elements 702 h , or permanently joined together, such as by brazing or welding for example.
  • the discrete element 702 h each include respective local deformations 704 h and/or cooperate to define still other local deformations 706 h.
  • the example dies 800 include a circular die 802 , rectangular/square die 804 , triangular die 806 , and oval/elliptical die 806 .
  • each of the dies 800 is substantially hollow and includes one or more protrusions 802 a , 804 a , 806 a and 808 a, respectively, that is configured and arranged to form a corresponding local deformity in an unswaged portion processed by the die.
  • the size, shape, configuration and orientation of the protrusion(s) mirror the size, shape, configuration and orientation of the local deformity (ies) desired to be produced.
  • dies may also be used to produce one or more of the flared portions disclosed herein.
  • a die in the shape of die 804 may be forced into a square tube to produce a flared portion in the square tube.
  • a pair of dies may be used to produce configurations such as those disclosed in FIGS. 4, 6, 8 a and 8 b .
  • FIG. 9 aspects of one example arrangement of dies are disclosed.
  • a workpiece 803 shown in an undeformed state, is provided that is at least partly disposed within the die 804 .
  • a second die 805 is positioned in the interior of the workpiece 803 and the second die 805 helps to ensure that the form or draw of the workpiece 803 is to the desired shape when the die 804 is forced onto the work piece 803 .
  • This multiple die process can also be used in any of the other embodiments disclosed herein.
  • the die 805 can be omitted and the workpiece 803 can be shaped using only the die 804 .
  • This single die process can also be used in any of the other embodiments disclosed herein.
  • an example method 900 for producing a swaged portion that includes one or more local deformities begins at 902 where one or more dies are applied to a workpiece, such as a piece of tubing or solid stock. Where multiple dies are employed, they may be applied sequentially, simultaneously, or in any other suitable manner.
  • one or more local deformities are formed in one or more walls of the workpiece as a result of application of the die, or dies. Such local deformities may include any of the example deformities disclosed herein.
  • the method 900 then advances to 906 where the workpiece is swaged. In at least some embodiments, the swaging 906 reduces an effective perimeter size of the workpiece. It should be noted that 904 and 906 can be performed sequentially, or substantially simultaneously with each other.
  • the workpiece can be removed 908 from engagement or contact with the die, or dies.
  • some or all of the method 900 may be performed more than once on the workpiece.
  • one or more embodiments of the invention may be advantageous in various regards.
  • one or more embodiments may enable more substantial contact between a swaged portion and mating flared portion through the use of one or more local deformities in one or more walls of the swaged portion.
  • This substantial contact may enable a more stable and stronger joint than would be obtained in configurations where such substantial contact is not achieved.
  • Such stability can be particularly desirable in systems, such as basketball systems for example, that are subjected to repeated dynamic loading, and/or to static loading.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

In one example, an elongate member includes an unswaged portion of metal, and a swaged portion of metal and attached to the unswaged portion. The swaged portion includes four walls that cooperate to define a perimeter of the swaged portion, each of the walls being substantially straight and two of the walls terminating together at a common point such that an angle between the two walls of about 90 degrees is defined. A respective local deformation is defined in each of the four walls, and an attribute of one of the local deformations varies along a portion of a length of the swaged portion.

Description

    RELATED APPLICATIONS
  • This application is a divisional of, and hereby claims priority to, U.S. patent application Ser. No. 14/469,216, entitled SWAGE AND FLARE JOINTS, and filed on Aug. 26, 2014 (the “'216 Application”). The '216 Application claims priority to U.S. Provisional Patent Application, Ser. No. 61/917,237, entitled SWAGE AND FLARE JOINTS, and filed on Dec. 17, 2013. All of the aforementioned applications are incorporated herein in their respective entireties by this reference.
  • BACKGROUND
  • Swage and flare joints enable two tubes having about the same overall perimeter size to be fitted together, one inside the other. In general, this involves flaring a first tube so as to increase the inside perimeter of the first tube, and swaging the second tube so as to decrease the outside perimeter of the second tube. In this way, the second tube can be received within the first tube.
  • The joint thus produced however may prove problematic insofar as there may be very limited contact between the swaged tube and the flared tube. This result can occur when the walls of a square swaged tube are deformed along their a substantial portion of their length such that the only contact between the swaged tube and a mating flared tube occurs at the four corners of the swaged tube. Such point contact may permit movement between the swaged tube and the flared tube. As well, point contact between the swaged tube and the flared tube, may contribute to instability of the assembled joint that could result in wobbling of a structure supported by the joint, and/or may result in a relatively weaker joint that could fail in some loading situations.
  • In view of the foregoing, it would be useful to provide swage and flare joints that implement substantial contact between the swaged portion and the flared portion of the joint.
  • BRIEF SUMMARY OF SOME ASPECTS OF THE DISCLOSURE
  • It should be noted that the embodiments disclosed herein do not constitute an exhaustive summary of all possible embodiments, nor does this brief summary constitute an exhaustive list of all aspects of any particular embodiment(s). Rather, this brief summary simply presents selected aspects of some example embodiments. It should be noted that nothing herein should be construed as constituting an essential or indispensable element of any invention or embodiment. Rather, various aspects of the disclosed embodiments may be combined in a variety of ways so as to define yet further embodiments. Such further embodiments are considered as being within the scope of this disclosure.
  • As well, none of the embodiments embraced within the scope of this disclosure should be construed as resolving, or being limited to the resolution of, any particular problem(s). Nor should such embodiments be construed to implement, or be limited to implementation of, any particular technical effect(s) or solution(s).
  • The present disclosure is generally concerned with joints that may be used to releasably, or permanently, connect a pair of mating elements, where the mating elements are configured such that one mating element can be partly received within the other mating element. More specifically, embodiments of the invention include swage and flare joints, as well as joints that include a swaged portion that mates with an unflared portion.
  • Embodiments within the scope of this disclosure may include any one or more of the following elements, and features of elements, in any combination: a mating element having a swaged portion and/or a flared portion; a tubular, or substantially solid, mating element having a swaged portion and/or a flared portion; a mating element having a swaged end and/or a flared end; a tubular, or substantially solid, mating element having a swaged end and/or a flared end; a swaged portion with substantially straight walls; a swaged portion with substantially straight walls, one or more of which includes a deformation; a swaged portion having one or more walls configured for substantial contact with a mating flared portion; a swaged portion whose walls are configured for substantial contact with a mating flared portion; a swaged portion configured to be received, permanently or removably, within a flared portion; a swaged portion configured to contact a mating flared portion at the corners of a perimeter of the swaged portion and at one or more other locations of the perimeter of the swaged portion; a swaged portion with a substantially square or rectangular cross-section; a swaged portion with a cross-section whose shape is other than substantially square; a swaged portion with a substantially circular cross-section; a swaged portion having three or more walls; a flared portion whose walls are configured for substantial contact with a mating swaged portion; a flare configured to mate, either permanently or releasably, with any of the aforementioned swages such that substantial contact between the flare and swage is achieved; any of the aforementioned swaged portions including one or more walls or surfaces that include a respective local deformity; any combination of any one or more of the aforementioned swages and flares; and, a basketball system including any combination of any one or more of the aforementioned swages and flares.
  • Following is a non-exclusive list of embodiments within the scope of the invention. It should be understood that aspects of the various embodiments may be combined in other ways to define still further embodiments.
  • In a first example embodiment, a first mating element has a swaged portion whose outer surface is configured to make substantial contact with the inner surface of a flared second mating element.
  • In a second example embodiment, a first mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a flared second mating element.
  • In a third example embodiment, a first tubular mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion.
  • In a fourth example embodiment, a first tubular mating element has a swaged portion with a plurality of substantially straight walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion.
  • In a fifth example embodiment, a first tubular mating element has a swaged portion with a plurality of walls, each of which has an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion.
  • In a sixth example embodiment, a first tubular mating element has a swaged portion with four walls that collectively define a generally square or rectangular cross section shape of the first tubular mating element, each of the four walls having an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion.
  • In a seventh example embodiment, a first mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a flared second mating element, and one or more of the walls of the first mating element includes a local deformation.
  • In an eighth example embodiment, a first tubular mating element has a swaged portion with a plurality of walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the swaged portion includes a local deformation.
  • In a ninth example embodiment, a first tubular mating element has a swaged portion with a plurality of substantially straight walls, each of which is configured to make substantial contact with a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • In a tenth example embodiment, a first tubular mating element has a swaged portion with a plurality of walls, each of which has an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • In an eleventh example embodiment, a first tubular mating element has a swaged portion with four walls that collectively define a generally square or rectangular cross section shape of the first tubular mating element, each of the four walls having an outer surface configured to make substantial contact with an inner surface of a corresponding wall of a second tubular mating element having a flared portion, and one or more of the walls of the first tubular mating element includes a local deformation.
  • In variations of a twelfth example embodiment, a basketball system includes a support pole, and/or other structure(s), that incorporates any of the preceding embodiments.
  • As well, this disclosure embraces the embodiments disclosed herein both in respective assembled forms, and in respective kit forms. When in the form of a kit, the embodiment may be partly or completely disassembled. For example, an element including a swaged portion and an element including a mating flared portion may be separate pieces in such a kit.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The appended drawings contain figures of some example embodiments to further clarify various aspects of the present disclosure. It will be appreciated that these drawings depict only some embodiments of the disclosure and are not intended to limit its scope in any way. The disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1 is a perspective view of an example of an embodiment of a structure having a swaged portion;
  • FIG. 2 is a top view of the example of FIG. 1;
  • FIG. 3 is a perspective view of an embodiment of a structure including a flared portion suitable for mating with the structures of FIGS. 1 and 2;
  • FIG. 4 is a perspective view of an embodiment of an alternative structure having a swaged portion;
  • FIG. 5 is a perspective view of an embodiment of a structure including a flared portion suitable for mating with the structure of FIG. 4;
  • FIG. 6 is a top cross-sectional view of the example structures of FIGS. 4 and 5 in a mated arrangement;
  • FIGS. 7a and 7b are views of an example basketball system with a joint that includes a flared portion and a swaged portion;
  • FIGS. 8a and 8b disclose various example embodiments of a swaged portion that may be employed in forming a joint;
  • FIG. 9 discloses various example embodiments of dies that may be employed to form swaged portions such as those disclosed herein; and
  • FIG. 10 discloses a method for producing a swaged portion.
  • DETAILED DESCRIPTION OF SOME EXAMPLE EMBODIMENTS
  • The present disclosure is generally concerned with joints that may be used to releasably, or permanently, connect a pair of mating elements, where embodiments of the mating elements are configured such that one mating element can be partly received within the other mating element. More specifically, embodiments of the invention include joints that including a swaged portion and a flared portion that are configured to mate, either releasably or permanently, with each other. The swaged portion may include one or more local deformities in one or more surfaces that interface with the flared portion. Embodiments of the invention also include a die, or dies, configured to enable production of the swaged portions and flared portions disclosed herein.
  • A. General Aspects of Some Example Embodiments
  • Embodiments of the invention can be employed in a wide variety of applications and, accordingly, the scope of the invention is not limited to the example applications and structures disclosed herein. Rather, such applications, which include outdoor equipment such as playground equipment and basketball systems, are discussed herein for the purpose of illustration, and not by way of limitation. In general, embodiments of the invention can be employed in any application or environment where it is desired to permanently, or releasably, attach a pair of elements together.
  • With reference to one of the examples noted above, elements of outdoor equipment, such as playground equipment and basketball systems, may be constructed with a variety of components and materials including, but not limited to, plastic (including injection-molded, blow-molded, roto-molded, and twin sheet plastic structures and elements) including polycarbonates, composites, metals, and combinations of any of the foregoing.
  • Suitable metals may include steel, aluminum, and aluminum alloys, although the skilled person will understand that a variety of other metals, and combinations of metals, may be employed as well and the scope of the invention is not limited to the foregoing examples. Where metal is employed in the construction of a component, the metal elements may take one or more forms including, but not limited to, square tube, rectangular tube, oval tube, polygonal tube, triangular tube, round tube, pipe, and solid, rather than tubular, forms of any of the foregoing. Any of these tubes, pipes or solid pieces may include radiused corners where walls intersect with each other, so as to reduce or eliminate stress concentrations. Metal is but one example of a plastically deformable material that can be used in the constructions of at least some embodiments of the invention.
  • Depending upon the material(s) employed in the construction of outdoor equipment, a variety of methods and components may be used to connect, releasably or permanently, various elements of the outdoor equipment. For example, the various metal elements of outdoor equipment or components within the scope of this disclosure may be attached to each other by any one or more of processes such as welding or brazing, mechanically by way of fasteners such as bolts, screws, pins, and rivets, for example, by clamps, by mechanical structures such as swages and flares, and by any combination of one or more of the foregoing.
  • Some, none, or all portions of one or more of the outdoor equipment and its components may be coated with paint or other materials. Surface treatments and textures may also be applied to portions of the outdoor equipment. At least some of such materials may serve to help prevent, or reduce, rust and corrosion.
  • B. Structural Aspects of a Comparative Example
  • Directing attention first to FIGS. 1-3, details are provided concerning some structures that are set forth herein for the purposes of comparison with the example embodiments of FIGS. 4-6.
  • As indicated in FIGS. 1-2, a swaged portion 100 in the form of a square tube is disclosed that has a generally square cross-sectional shape. The swaged portion 100 includes four walls 102 that intersect so as to define four corners 104. The swaged portion 100 has been swaged so that the effective length of the perimeter at the terminal end, defined as the sum of the lengths of the four segments “L,” is relatively shorter than the actual length of the perimeter, defined as the sum of the lengths of the deformed walls. As well, the effective length of the perimeter at the terminal end is shorter than the overall length of the perimeter at a location “P” where no swaging has been performed.
  • This configuration has been achieved by a swaging process that causes a deformation of each of the walls 102. In particular, each wall 102 deflects inwardly toward the interior of the swaged portion 100. As a result of the deflection of each of the walls 102, the overall length of the perimeter of the terminal end of the swaged portion 100 is relatively shorter than it would be if the walls 102 were not so deflected, although the basic overall shape of the cross-section of the swaged portion 100 is generally retained. As can be seen in FIGS. 1 and 2, the deflection extends over substantially the entire length of each wall 102, that is, the entire wall 102 is deflected between successive corners 104. Thus deflected, the wall 102 takes on a curved, rather than straight, configuration.
  • While the configuration of the swaged portion 100 is adequate to ensure that the swaged portion 100 can mate with the flared portion 200 illustrated in FIG. 3, that configuration may not be well suited for some applications. For example, because the walls 102 are each deflected inwardly, the deflected portions may not contact the corresponding walls 202 of the flared portion 200. As a result, the primary, or only, contact between the swaged portion 100 and the flared portion 200 occurs where the corners 104 of the swaged portion 100 contact the corners 204 of the flared portion 200.
  • Such minimal contact between the swaged portion 100 and the flared portion 200 may be problematic insofar as it may permit movement between the swaged portion 100 and flared portion 200, may contribute to instability of the assembled joint that could result in wobbling of a structure supported by the joint, and/or may result in a relatively weaker joint that could fail in some loading situations. Concerns such as these could result in a need for supplemental support of the joint such as by way of fasteners (not shown) positioned in holes 206. However, the use of fasteners can complicate the assembly of the joint, and may make the joint harder to break down, should there be a need to do so.
  • C. Structural Aspects of Some Example Embodiments
  • In light of considerations such as those noted above, it would be useful, in at least some instances, to construct a swage and flare joint that provides for relatively more substantial contact between the swaged portion and the flared portion of the joint. Accordingly, attention is directed now to FIGS. 4-6 which disclose aspects of embodiments of a swage and flare joint that include a swaged portion 300 and a flared portion 400.
  • As used herein, swaging and swaging processes include forging processes in which one or more dimensions of an item are altered. Swaging can be performed as a cold working process where an item is forced into a confining die to reduce one or more dimensions of the item, such as the length of the perimeter of the item for example.
  • Swaging an item with one or more dies can also be performed as a hot working process. The use of one or more dies in this way is sometimes referred to as tube swaging. Another type of swaging process, sometimes referred to as rotary swaging or radial forging, involves the use of multiple dies to hammer a workpiece into a desired shape, and reducing one or more dimensions of the workpiece in the process. Rotary swaging may be particularly useful for shaping solid workpieces.
  • It should be noted that any die or group of dies configured to enable the formation of swaged portions such as are disclosed herein are considered to be within the scope of the invention.
  • D. Example Swaged Portions
  • With particular reference to FIG. 4, the swaged portion 300 may comprise a tubular form as shown, or may be a solid structure, either of which may be configured to be received in a corresponding tapered portion of a joint. In the illustrated example, the swaged portion 300 is in the form of tube having a cross-section whose shape is substantially square, although tubes or solid structures of other shapes can alternatively be employed. In at least some embodiments, a single piece of material may include multiple swaged portions, which may, or may not, be the same size and/or shape as each other. For example, a piece of tube or solid stock may have a first swaged portion at one end, and a second swaged portion at the other end.
  • In the example of FIG. 4, the swaged portion 300 has been swaged so that the overall length of the perimeter at the terminal end 300A is relatively smaller than the overall length of the perimeter at a point 301 located some distance away from the terminal end 300A. Thus, the swaged portion 300 in this example tapers from point 301 to the terminal end 300A of the swaged portion 300, so that the cross-section area of the swaged portion at point 301 is relatively greater than the cross-section area of the swaged portion at the terminal end 300A. This configuration can be achieved by swaging processes and swaging dies such as those disclosed herein. In general, the perimeter and configuration of the swaged portion 300 is such that when the swaged portion 300 is fully received in a corresponding flared portion, such as flared portion 400 for example, one or more of the walls 302 are in substantial contact with corresponding walls of the flared portion.
  • As indicated in FIG. 4, the walls 302 of the swaged portion 300 are substantially straight and connect with each other at a plurality of corners 304. In some instances, it may be useful to introduce one or more local deformations 306 into one, two, three, or all, of the walls 302 so as to enable the desired shortening of the effective lengths of one or more of the walls 302, while generally maintaining the relatively straight, or otherwise undeformed, configuration of the walls 302.
  • Thus, the walls 302 differ from the walls 202 indicated in FIGS. 1-3, at least in that the walls 302 have only a local deformation 306 and are not deformed along all, or a substantial part of, their length, as is the case with the walls 202. The local deformation(s) may be such that, notwithstanding their presence, the overall shape of the cross-section of the swaged portion 300 is generally retained.
  • In the example of FIG. 4, the local deformations 306 each have a curved cross-section shape which could be generally circular, generally elliptical, or any other curved shape, or a portion of any of the foregoing. The local deformations 306 need not be curved however and may alternatively be pointed, or have any other suitable configuration. However, local deformations with curved cross-section shapes may help to reduce, or eliminate, stress concentrations that may otherwise occur with the use of straight or pointed shapes.
  • As well, and apparent from FIG. 4 for example, any one or more attributes of a local deformation 306, such as the width and/or depth, may vary along a portion of the length of the swaged portion. In the particular example of FIG. 4, both the width and the depth of the local deformation 306 varies along the swaged portion such that the local deformation 306 is relatively wider and deeper at the terminal end of the swaged portion than at a location distal from the terminal end. In other embodiments, one or more attributes of the local deformation 306, such as the width and/or depth for example, may be substantially consistent over all of, or a substantial portion of, the length of the local deformation 306.
  • As well, the local deformations 306 each have substantially the same width and depth as each other, although that is not required. More particularly, and with continued reference to the example of FIG. 4, the example local deformations 306 each taper from a maximum width and depth at the terminal end of the swaged portion 300 to a location where the taper in both width and depth disappears, or at least substantially disappears.
  • It will be appreciated that the configuration of the local deformations 306 set forth in FIG. 4 is presented solely by way of example, and is not intended to limit the scope of the invention in any way. In general, any local deformation(s) that enable a substantial portion of one or more walls of a swaged portion including one or more such local deformations to make contact with a corresponding wall of a tapered portion can be employed. Thus, such walls may be substantially undeformed except for their inclusion of one or more local deformations.
  • It should be noted that local deformations can be employed in walls that are not straight, or not substantially straight. For example, one or more local deformations could be employed in a swaged portion, such as a substantially circular swaged portion for example, that included one or more curved walls. One example of a circular swaged portion includes one, or two, pairs of opposing local deformations.
  • Moreover, in some embodiments of a swaged portion that include multiple walls, fewer than all of the walls, such as only one, two, or three, walls may include a local deformation. Further, where multiple local deformations are employed in an embodiment, those local deformations may all have substantially the same configuration. In one or more alternative embodiments, at least one local deformation has a configuration that is substantially different from the configuration of another local deformation.
  • As well, any one or more of attributes such as the size, number, shape, location, and orientation of the local deformations can be varied. Two or more local deformations in a single swaged portion can be substantially the same as, or differ from, each other in any grouping of one or more of the aforementioned attributes.
  • In some example embodiments, one or more walls of a swaged portion include multiple local deformations. With regard to the aforementioned attributes, the multiple local deformations in such examples may be substantially the same as each other in one or more of those attributes, or may be different from each other in one or more of those attributes.
  • With regard to the example configuration of FIGS. 4-6, such configurations can be formed using a die. In one example embodiment, the die is substantially hollow and has an interior configuration that is generally a mirror image of the exterior configuration of the swaged portion 300. A square tube can then be forced into the die to produce the configuration shown in the example of FIG. 4.
  • E. Example Flared Portions
  • With reference now to FIG. 5, and continued reference to FIG. 4, a flared portion, one example of which is denoted at 400, is disclosed. The flared portion 400, like some embodiments of the swaged portion 300 may comprise tube. The flared portion 400 is configured with a plurality of walls 402 that define an interior 404 whose shape is the same general shape as the exterior of the swaged portion 300, with the exception of the local deformations 306, and a slightly larger size than the swaged portion 300. The slightly larger size of the interior 404 enables the swaged portion 300 to be securely, but removably, received within the flared portion 400.
  • In some embodiments, the swaged portion 300 may be permanently connected to the flared portion 400 once received therein. Suitable processes for permanently connecting the flared portion 400 and swaged portion 300 are disclosed elsewhere herein, and include welding, soldering, brazing, or the use of fasteners. Combinations of these processes may also be employed.
  • F. Example Joints and Applications
  • Turning now to FIG. 6, a joint 500 configuration is indicated where the swaged portion 300 is received within the flared portion 400. As evident from FIG. 6, there is substantial contact between the swaged portion 300 and the flared portion 400, except at the locations of the local deformations 306. Such substantial contact may contribute to stability of the assembled joint 500 that could reduce or prevent wobbling of a structure supported by the joint 500, and/or may result in a relatively stronger joint 500 that is better able to handle a variety of loading situations.
  • As noted elsewhere herein, the joint 500 could be employed in a wide variety of different applications, one example of which is a support pole for a basketball system. In one example of such an embodiment, the flared portion 400 and swaged portion 300 would each comprise an element of a respective piece of a support pole. The flared portion 400 could be implemented in either the upper or lower piece of such support pole, and the swaged portion 300 could likewise be implemented in either the upper or lower piece of such a support pole.
  • With the foregoing in view, attention is directed now to FIGS. 7a and 7b which disclose one example application for a joint such as is disclosed herein. In the particular illustrative example of FIGS. 7a and 7b , a basketball system denoted at 600 is provided. The basketball system 600 can be a portable basketball system, although that is note required and the basketball system 600 could, instead, be permanently anchored in the ground, or in pavement, concrete and/or other material(s).
  • The basketball system 600 includes a backboard assembly 602 which supports a goal 604. The backboard 602, in turn, is connected to a support pole 606 either directly, or indirectly by way of one or more intervening structures such as but not limited to, clamps, brackets, arms. The support pole 606 is connected to a base 608 that may include one or more wheels or other mechanisms to enable the portability of the basketball system 600. As well, the basketball system 600 includes a connecting structure 610 that includes, in this example, a pair of upper arms 610 a and a pair of lower arms 610 b, all of which are rotatably connected to the support pole 606 and to a frame of the backboard assembly 602. A height adjustment mechanism 612 connected to the arms 610 a enables a user to raise and lower the backboard 602 to a desired height. In the illustrated example, the height adjustment mechanism 612 takes the form of a screw mechanism that can be rotated by the user to change the height of the backboard 602.
  • The support pole 606 includes two or more pieces that fit together, such as segments 606 a and 606 b for example. The segments 606 a and 606 b of the support pole 606 thus collectively define a joint 650. The joint 650 can take the form of any of the joint embodiments disclosed herein, and the basketball system 600 may have one, or multiple, joints 650. As well, the segments 606 a and 606 b can take any of the forms of tubing or solid portions disclosed herein. In one particular embodiment, the segments 606 a and 606 b each take the form of square tube, although that particular form is not required.
  • In the example of FIGS. 7a and 7b , the joint 650 is configured such that the segment 606 a is a flared portion, and the segment 606 b is a swaged portion, although the opposite arrangement could alternatively be employed, that is, an arrangement where segment 606 a is a swaged portion, and segment 606 b is a flared portion. To assemble the joint 650, the user can simply insert the segment 606 b into the segment 606 a and move the segments 606 a and 606 b together until the segment 606 b is fully received in the segment 606 a. The segments 606 a and 606 b may also include fasteners (not shown) such as bolts or screws to hold the assembled joint 650 together, although that is not required.
  • As well, the segment 606 b can include an indicator 606 c that provides a visual cue to the user that the joint 650 is fully assembled, that is, the swaged portion of the segment 606 b is fully received in the flared portion of the segment 606 a. The indicator 606 c may take, for example, the form of an inscribed and/or painted line or other marking which, when positioned near the bottom of segment 606 a after the segment 606 b has been inserted into segment 606 a, indicates that the swaged portion of the segment 606 b is fully received in the flared portion of the segment 606 a.
  • F. Additional Example Embodiments
  • Turning now to FIGS. 8a and 8b , details are provided concerning some example swaged portions that may be employed in the formation of one or more joints. It should be noted that where multiple joints are employed in a particular application, the configuration of two or more of those joints may be substantially the same, or one of the joints may have a configuration that is different from a configuration of another of the joints. For example, two or more of the various different swaged portions disclosed in FIGS. 8a and 8b may be employed in a single application. It should also be understood that while FIGS. 8a and 8b disclose only swaged portions, the scope of the invention also embraces the respective flared portions that, while not specifically illustrated, correspond to the illustrated swaged portions of FIGS. 8a and 8 b.
  • A variety of concepts will be apparent from the example swaged portions 700 a-700 g set forth in FIGS. 8a and 8 b. The concepts disclosed in those Figures can be used together, in any combination, to define still further embodiments within the scope of the invention.
  • For example, and with reference first to swaged portions 700 a, embodiments of the invention include swaged portions that have a single substantially continuous wall, such as wall 702 a for example, rather than a set of walls that intersect with each other. Thus, the example swaged portions 700 a are generally circular in their cross-section shape and, as shown, can be tubular or solid, and also include one or more local deformations 704 a. The local deformations 704 a, where more than one are present, can be evenly, or randomly, distributed about the circumference of the swaged portions 700 a.
  • It should be noted that, in some circumstances at least, the use of one or more local deformations in embodiments that include a single substantially continuous wall may not provide as great an effect, in terms of contact between the swaged and flared portions, as the effect provided when one or more local deformities are employed in embodiments that include a plurality of discrete walls that intersect with each other. Nonetheless, embodiments of swaged portions that include a single substantially continuous wall with one or more local deformities may be beneficial in some applications.
  • As indicated by the swaged portions 700 b, embodiments of the invention include swaged portions that include fewer than four walls. In the particular illustrated example, the swaged portions 700 b, which can be in tubular or solid form, have a cross-section shape that is generally triangular and includes three walls 702 b, any one or more of which can include one or more local deformations, such as local deformations 704 b. The generally triangular cross-section shape can be any triangular shape, and is not limited to an equilateral triangle shape.
  • With continued reference to FIG. 8a , embodiments of the invention also include swaged portions that are not symmetric in one or more of their dimensions. In the particular illustrated example, the swaged portions 700 c, which can be in solid or tubular form, have a cross-section shape that is oval, or elliptical. Similar to the example of swaged portions 700 a, the wall 702 c of the swaged portions 700 c may be substantially continuous and uninterrupted by corners or other discontinuities, except for one or more local deformations 704 c. Where a single local deformation 704 c is provided, it can be located on the major, or minor, axis of the cross-section shape, although that local deformation 704 c can be provided in any other location as well. In other embodiments, local deformations 704 c can be provided on both the major and minor axes of the cross-section shape.
  • As indicated by the swaged portions 700 d of FIG. 8a , embodiments of the invention also include swaged portions that include more than four walls. In the particular illustrated example, the swaged portions 700 d, which can be in tubular or solid form, have a cross-section shape that is generally polygonal and includes five walls 702 d, any one or more of which can include one or more local deformations, such as local deformations 704 d.
  • Turning now to FIG. 8b , yet other concepts concerning swaged and flared portions are disclosed. As illustrated, swaged portions 700 e include a plurality of local deformations 702 e, at least two of which have different respective sizes. Of course, local deformations of different shapes, as well as sizes, can likewise be combined in a single embodiment.
  • As further indicated in FIG. 8b , swaged portions, such as swaged portions 700 f for example, may be configured to include one or more walls 702 f that include a plurality of local deformities 704 f in a single wall. The swaged portion 700 f may additionally, or alternatively, be configured with one or more walls that 706 f include no local deformities.
  • At least some embodiments of the invention are directed to swaged portions, such as swaged portions 700 g, that include one or more walls 702 g having local deformities 704 g of different shapes. Local deformities 704 g of different respective shapes can be combined in a single wall 702 g, or walls 702 g. Additionally, or alternatively, and as indicated in FIG. 8b , two or more walls 702 g may each have a respective local deformity 704 g that has a different shape than a local deformity 704 g present in one or more of the other walls 702 g.
  • In still other embodiments of the invention, a swaged portion, such as swaged portion 700 h for example, may include two or more discrete elements 702 h that can be employed together as a single swaged portion 700 h. The two or more discrete elements 702 h may, or may not, be joined, permanently or releasably, together. For example, the discrete elements 702 h may be releasably joined together by fasteners or respective mating structures included in each of the discrete elements 702 h, or permanently joined together, such as by brazing or welding for example. In the illustrated example, the discrete element 702 h each include respective local deformations 704 h and/or cooperate to define still other local deformations 706 h.
  • G. Example Embodiments of Dies
  • With attention now to FIG. 9, details are provided concerning some example dies 800 that may be used in the production of one or more of the swaged portions disclosed herein. The example dies 800 include a circular die 802, rectangular/square die 804, triangular die 806, and oval/elliptical die 806. In general, each of the dies 800 is substantially hollow and includes one or more protrusions 802 a, 804 a, 806 a and 808 a, respectively, that is configured and arranged to form a corresponding local deformity in an unswaged portion processed by the die. In general, the size, shape, configuration and orientation of the protrusion(s) mirror the size, shape, configuration and orientation of the local deformity (ies) desired to be produced.
  • While not specifically illustrated, dies may also be used to produce one or more of the flared portions disclosed herein. For example, a die in the shape of die 804 may be forced into a square tube to produce a flared portion in the square tube.
  • As disclosed herein, in at least some instances, a pair of dies, rather than just a single die, may be used to produce configurations such as those disclosed in FIGS. 4, 6, 8 a and 8 b. With continued attention to FIG. 9, aspects of one example arrangement of dies are disclosed. In particular, a workpiece 803, shown in an undeformed state, is provided that is at least partly disposed within the die 804. A second die 805 is positioned in the interior of the workpiece 803 and the second die 805 helps to ensure that the form or draw of the workpiece 803 is to the desired shape when the die 804 is forced onto the work piece 803. This multiple die process can also be used in any of the other embodiments disclosed herein.
  • In some instances, the die 805 can be omitted and the workpiece 803 can be shaped using only the die 804. This single die process can also be used in any of the other embodiments disclosed herein.
  • H. Example Production Methods
  • Directing attention finally to FIG. 10, details are provided concerning an example method 900 for producing a swaged portion that includes one or more local deformities. This example method begins at 902 where one or more dies are applied to a workpiece, such as a piece of tubing or solid stock. Where multiple dies are employed, they may be applied sequentially, simultaneously, or in any other suitable manner.
  • At 904, one or more local deformities are formed in one or more walls of the workpiece as a result of application of the die, or dies. Such local deformities may include any of the example deformities disclosed herein. The method 900 then advances to 906 where the workpiece is swaged. In at least some embodiments, the swaging 906 reduces an effective perimeter size of the workpiece. It should be noted that 904 and 906 can be performed sequentially, or substantially simultaneously with each other.
  • After the workpiece has been swaged, and the desired local deformity, or deformities, formed in the workpiece, the workpiece can be removed 908 from engagement or contact with the die, or dies. Depending upon the dies used, and the configuration of the workpiece, some or all of the method 900 may be performed more than once on the workpiece.
  • I. Possible Advantages of One or More Embodiments
  • As will be apparent from the present disclosure, one or more embodiments of the invention may be advantageous in various regards. By way of illustration, one or more embodiments may enable more substantial contact between a swaged portion and mating flared portion through the use of one or more local deformities in one or more walls of the swaged portion. This substantial contact, in turn, may enable a more stable and stronger joint than would be obtained in configurations where such substantial contact is not achieved. Such stability can be particularly desirable in systems, such as basketball systems for example, that are subjected to repeated dynamic loading, and/or to static loading.
  • Although this disclosure has been described in terms of certain embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this disclosure. Accordingly, the scope of the disclosure is intended to be defined only by the claims which follow.

Claims (20)

What is claimed is:
1. An elongate member, comprising:
an unswaged portion comprising metal; and
a swaged portion comprising metal and attached to the unswaged portion, the swaged portion comprising:
four walls that cooperate to define a perimeter of the swaged portion, each of the walls being substantially straight and two of the walls terminating together at a common point such that an angle between the two walls of about 90 degrees is defined; and
a respective local deformation defined in each of the four walls, wherein an attribute of one of the local deformations varies along a portion of a length of the swaged portion.
2. The elongate member as recited in claim 1, wherein the swaged portion is configured to be received in a corresponding flared portion of another member such othat substantial portions of the two walls proximate their common point of termination are in contact with corresponding walls of the flared portion.
3. The elongate member as recited in claim 1, wherein the swaged portion is substantially hollow, or substantially solid.
4. The elongate member as recited in claim 1, wherein except for the presence of the local deformation, each of the walls that includes a local deformation is substantially undeformed.
5. The elongate member as recited in claim 1, wherein a portion of one of the local deformations has a curved cross-sectional shape.
6. The elongate member as recited in claim 1, wherein the swaged portion has a cross-sectional shape that is substantially square, or substantially rectangular.
7. The elongate member as recited in claim 1, wherein the local deformations all have substantially the same size and configuration.
8. An apparatus, comprising:
a first member, comprising:
an unswaged portion comprising metal; and
a swaged portion comprising metal and attached to the unswaged portion, the swaged portion comprising:
four walls that cooperate to define a perimeter of the swaged portion, each of the walls being substantially straight and two of the walls terminating together at a common point such that an angle between the two walls of about 90 degrees is defined; and
a respective local deformation defined in each of the four walls; and
a second member configured to receive the swaged portion of the first member, wherein when the swaged portion is fully received in the second member, respective portions of the two walls extending between the common point of termination and nearest local deformation are in contact with corresponding walls of the second member.
9. The apparatus as recited in claim 8, wherein one or more of the local deformations includes a curved portion.
10. The apparatus as recited in claim 8, wherein the second member includes a flared portion configured to receive the swaged portion of the first member such that the swaged portion contacts the flared portion when the swaged portion is received in the flared portion.
11. The apparatus as recited in claim 8, wherein the local deformations all have substantially the same size and configuration.
12. The apparatus as recited in claim 8, wherein the swaged portion has a cross-sectional shape that is substantially square, or substantially rectangular.
13. The apparatus as recited in claim 8, wherein each wall has two straight portions, one straight portion adjoining either side of the local deformation in that wall, and each straight portion adjoining another straight portion of another of the walls.
14. The apparatus as recited in claim 8, wherein one of the local deformations protrudes inwardly from an exterior surface of the swaged portion.
15. A structure, comprising:
a swaged portion substantially made of metal, and comprising:
four walls, the walls being substantially straight and connected together at their respective ends so as to form a generally square or rectangular cross-section shape of the swaged portion; and
a respective local deformation defined in each of the four walls, wherein a perimeter of the swaged portion is defined entirely by the four walls and the four local deformations.
16. The structure as recited in claim 15, wherein each wall has two straight portions, one straight portion adjoining either side of the local deformation in that wall, and each straight portion adjoining another straight portion of another of the walls.
17. The structure as recited in claim 15, wherein one of the local deformations protrudes inwardly from an exterior surface of the swaged portion.
18. The structure as recited in claim 15, wherein the swaged portion is substantially hollow, or substantially solid.
19. The structure as recited in claim 15, wherein when the swaged portion is fully received in a corresponding flared portion of another structure, the entire perimeter of the swaged portion, except for the four local deformations, is in contact with corresponding walls of the flared portion.
20. The structure as recited in claim 15, wherein the swaged portion includes a first end and a second end, and a perimeter of the first end is relatively smaller than a perimeter of the second end.
US15/253,043 2013-12-17 2016-08-31 Swage and flare joints Abandoned US20160367880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/253,043 US20160367880A1 (en) 2013-12-17 2016-08-31 Swage and flare joints

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361917237P 2013-12-17 2013-12-17
US14/469,216 US9468834B2 (en) 2013-12-17 2014-08-26 Swage and flare joints
US15/253,043 US20160367880A1 (en) 2013-12-17 2016-08-31 Swage and flare joints

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/469,216 Division US9468834B2 (en) 2013-12-17 2014-08-26 Swage and flare joints

Publications (1)

Publication Number Publication Date
US20160367880A1 true US20160367880A1 (en) 2016-12-22

Family

ID=53367203

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/469,216 Active 2034-11-15 US9468834B2 (en) 2013-12-17 2014-08-26 Swage and flare joints
US15/253,043 Abandoned US20160367880A1 (en) 2013-12-17 2016-08-31 Swage and flare joints

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/469,216 Active 2034-11-15 US9468834B2 (en) 2013-12-17 2014-08-26 Swage and flare joints

Country Status (2)

Country Link
US (2) US9468834B2 (en)
WO (1) WO2015094431A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468834B2 (en) * 2013-12-17 2016-10-18 Lifetime Products, Inc. Swage and flare joints
US20180279955A1 (en) 2015-05-07 2018-10-04 Ecom Medical, Inc. Systems and methods for internal ecg acquisition
USD879892S1 (en) * 2018-11-19 2020-03-31 Indian Industries, Inc. Basketball backboard support arm
USD881303S1 (en) * 2018-11-19 2020-04-14 Indian Industries, Inc. Basketball backboard support arm
USD1004017S1 (en) * 2020-01-08 2023-11-07 P&P Imports LLC Basketball hoop base
USD992665S1 (en) * 2020-01-08 2023-07-18 P&P Imports LLC Basketball hoop support

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500720A (en) * 1947-03-12 1950-03-14 Heem Jan Van Der Pipe connection
US3310623A (en) * 1965-06-30 1967-03-21 Marion E Vaughan Extension cord storage means
US3945742A (en) * 1973-12-19 1976-03-23 Georges Julien Condevaux Device for assembling sectional for instance metallic bars
US4069638A (en) * 1974-06-05 1978-01-24 Scanovator Ab Structure of lightweight bars and connector means therefore
US5116087A (en) * 1989-08-30 1992-05-26 Rehau Ag & Co. Pipe which is configured for coupling to another pipe
US5243874A (en) * 1992-02-24 1993-09-14 Pittsburgh Tubular Shafting, Inc. Method and apparatus for telescopically assembling a pair of elongated members
US5380048A (en) * 1992-08-18 1995-01-10 Russell A Division Of Ardco, Inc. Tube joint
US5632480A (en) * 1994-11-14 1997-05-27 Huffy Corporation Basketball goal support having removable ballast and continuously adjustable pole
US5672130A (en) * 1996-08-15 1997-09-30 Fisher-Price, Inc. Basketball goal
US5842939A (en) * 1997-05-27 1998-12-01 Act Labs Ltd. Portable sporting goal framework and net
US6041559A (en) * 1994-09-27 2000-03-28 Huffy Corporation Mounting structure for supporting a basketball pole
US6276111B1 (en) * 1999-01-28 2001-08-21 Max Joseph Pittman, Sr. Structural joint assembly and method therefor
US6347592B1 (en) * 1998-01-13 2002-02-19 Roy E. Gessert Modular workbench and kit therefor
US20020050112A1 (en) * 2000-11-02 2002-05-02 Okin Gesselschaft Fur Antriebstechnik Mbh & Co. Kg Telescopic column
US20050090336A1 (en) * 2003-09-09 2005-04-28 Nye S. C. Poolside goal system
US20060130713A1 (en) * 2004-12-17 2006-06-22 Steelcase Development Corporation Load compensator for height adjustable table
US20070287560A1 (en) * 2006-06-10 2007-12-13 Stanford Carl R Sports system
US20100012795A1 (en) * 2008-07-21 2010-01-21 Don Spencer Playground equipment
US20100056291A1 (en) * 2006-06-30 2010-03-04 Kim Chol Adjustable length and torque resistant golf shaft
US8632646B2 (en) * 2009-03-11 2014-01-21 Olympus Corporation Method for joining pipes and junction structure for joining pipes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265109A (en) * 1939-08-23 1941-12-02 Kroydon Co Inc Joint
US3072988A (en) * 1960-08-25 1963-01-15 Mccalls Macalloy Ltd Wedge anchors for gripping prestressing tendons
US3176987A (en) * 1962-09-27 1965-04-06 Frank L Johnston Golf club including means for aligning the shaft, hosel and striking face
JPS4860435A (en) * 1971-11-30 1973-08-24
US3936206A (en) * 1975-02-18 1976-02-03 Bruce-Lake Company Tubular pole slip joint construction
CA1067538A (en) * 1975-05-27 1979-12-04 Major G. Butler Taper pipe joint
US5839714A (en) 1991-06-26 1998-11-24 Huffy Corporation Basketball backboard support assembly
US5522101A (en) * 1994-10-19 1996-06-04 Yeh; Michael Bedrail and bedpost connection
US9468834B2 (en) * 2013-12-17 2016-10-18 Lifetime Products, Inc. Swage and flare joints

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500720A (en) * 1947-03-12 1950-03-14 Heem Jan Van Der Pipe connection
US3310623A (en) * 1965-06-30 1967-03-21 Marion E Vaughan Extension cord storage means
US3945742A (en) * 1973-12-19 1976-03-23 Georges Julien Condevaux Device for assembling sectional for instance metallic bars
US4069638A (en) * 1974-06-05 1978-01-24 Scanovator Ab Structure of lightweight bars and connector means therefore
US5116087A (en) * 1989-08-30 1992-05-26 Rehau Ag & Co. Pipe which is configured for coupling to another pipe
US5243874A (en) * 1992-02-24 1993-09-14 Pittsburgh Tubular Shafting, Inc. Method and apparatus for telescopically assembling a pair of elongated members
US5380048A (en) * 1992-08-18 1995-01-10 Russell A Division Of Ardco, Inc. Tube joint
US6041559A (en) * 1994-09-27 2000-03-28 Huffy Corporation Mounting structure for supporting a basketball pole
US5632480A (en) * 1994-11-14 1997-05-27 Huffy Corporation Basketball goal support having removable ballast and continuously adjustable pole
US5672130A (en) * 1996-08-15 1997-09-30 Fisher-Price, Inc. Basketball goal
US5842939A (en) * 1997-05-27 1998-12-01 Act Labs Ltd. Portable sporting goal framework and net
US6347592B1 (en) * 1998-01-13 2002-02-19 Roy E. Gessert Modular workbench and kit therefor
US6276111B1 (en) * 1999-01-28 2001-08-21 Max Joseph Pittman, Sr. Structural joint assembly and method therefor
US20020050112A1 (en) * 2000-11-02 2002-05-02 Okin Gesselschaft Fur Antriebstechnik Mbh & Co. Kg Telescopic column
US20050090336A1 (en) * 2003-09-09 2005-04-28 Nye S. C. Poolside goal system
US20060130713A1 (en) * 2004-12-17 2006-06-22 Steelcase Development Corporation Load compensator for height adjustable table
US20070287560A1 (en) * 2006-06-10 2007-12-13 Stanford Carl R Sports system
US20100056291A1 (en) * 2006-06-30 2010-03-04 Kim Chol Adjustable length and torque resistant golf shaft
US20100012795A1 (en) * 2008-07-21 2010-01-21 Don Spencer Playground equipment
US8632646B2 (en) * 2009-03-11 2014-01-21 Olympus Corporation Method for joining pipes and junction structure for joining pipes

Also Published As

Publication number Publication date
US9468834B2 (en) 2016-10-18
WO2015094431A1 (en) 2015-06-25
US20150165301A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US20160367880A1 (en) Swage and flare joints
US10731776B2 (en) Mechanical coupling for mechanical and structural tubing
US5090837A (en) Permanent fastener-free pole joint
KR20150021103A (en) Node Structures For Lattice Frames
JP4995665B2 (en) Method of joining a pipe and a plurality of members to be joined
AU2008200084A1 (en) Pipe-bending machine mandrel
US11802401B2 (en) Structural support member with swaged female interface
KR101283016B1 (en) A method for the manufacture of stands
CN106703397B (en) Outer surrounding connection type scaffold fastener and connection structure thereof
US3662583A (en) Transition members
CN213017131U (en) Steel pipe butt joint reducer
JP2004243400A (en) Roll and method for forming special shaped tube
CN104652919B (en) Cold-bending forming buckling-type seam joint pipe
JP3219552B2 (en) Manufacturing method of pole material
JP2002532255A (en) Method, tool and application for connecting two coaxial tubular parts
CN216520312U (en) Support arrangement suitable for major diameter pipe is in charge of and is adjusted
CN218093771U (en) Pipe fitting connecting structure
CN210388026U (en) All-terrain vehicle and pipe fitting joint structure thereof
CN213477227U (en) Steel construction plate convenient to dismantle
CN114658099B (en) Taper pipe welding ball joint
CN211736472U (en) Face limit and protect pole setting universal connector
JP2022094985A (en) Manufacturing method of joining member
US9403268B1 (en) Retaining mechanism for telescopic shaft
JP2017177151A (en) Production method of metal pipe material and metal pipe material
RU53861U1 (en) METAL SHAPED PROFILE

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIFETIME PRODUCTS, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAISEY, DANIEL G.;REEL/FRAME:039604/0498

Effective date: 20140825

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION