US20160355553A1 - Influenza virus vaccines and uses thereof - Google Patents

Influenza virus vaccines and uses thereof Download PDF

Info

Publication number
US20160355553A1
US20160355553A1 US15/243,738 US201615243738A US2016355553A1 US 20160355553 A1 US20160355553 A1 US 20160355553A1 US 201615243738 A US201615243738 A US 201615243738A US 2016355553 A1 US2016355553 A1 US 2016355553A1
Authority
US
United States
Prior art keywords
seq
influenza
amino acid
polypeptides
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/243,738
Inventor
Jan Willem Meijberg
Antonietta Impagliazzo
Ronald Vogels
Robert H.E. Friesen
Philippe Alard
Stefan Loverix
Katarina Radosevic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Vaccines and Prevention BV
Original Assignee
Janssen Vaccines and Prevention BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Vaccines and Prevention BV filed Critical Janssen Vaccines and Prevention BV
Priority to US15/243,738 priority Critical patent/US20160355553A1/en
Assigned to CRUCELL HOLLAND B.V. reassignment CRUCELL HOLLAND B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALARD, Philippe, FRIESEN, ROBERT H.E., IMPAGLIAZZO, Antonietta, LOVERIX, STEFAN, MEIJBERG, JAN WILLEM, RADOSEVIC, KATARINA, VOGELS, RONALD
Assigned to JANSSEN VACCINES & PREVENTION B.V. reassignment JANSSEN VACCINES & PREVENTION B.V. MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CRUCELL HOLLAND B.V., JANSSEN VACCINES & PREVENTION B.V.
Publication of US20160355553A1 publication Critical patent/US20160355553A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1018Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16171Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present disclosure provides influenza hemagglutinin stem domain polypeptides comprising (a) an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment, and (b) an influenza hemagglutinin HA2 domain, wherein on or more amino acids in the HA2 domain have been mutated. Also provided are nucleic acids encoding the polypeptides, compositions comprising the polypeptides and/or nucleic acid molecules, as well as methods of their use, in particular in the detection, prevention and/or treatment of influenza.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 14/361,281, filed May 28, 2014, now U.S. Pat. No. ______, and published as US 2014/0357845 Al on Dec. 4, 2014, the contents of which are incorporated by reference herein, which is a national phase entry under 35 U.S.C. §371 of International Patent Application PCT/EP2012/073706, filed Nov. 27, 2012, designating the United States of America and published in English as International Patent Publication WO 2013/079473 A1 on Jun. 6, 2013, which claims the benefit under Article 8 of the Patent Cooperation Treaty and under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/720,281, filed Oct. 30, 2012, to European Patent Application Serial No. 12166268.8, filed May 1, 2012, to U.S. Provisional Patent Application Ser. No. 61/564,198, filed Nov. 28, 2011, to European Patent Application Serial No. 11191009.7, filed Nov. 28, 2011, to U.S. Provisional Patent Application Ser. No. 61/564,086, filed Nov. 28, 2011, and to European Patent Application Serial No. 11191003.0, filed Nov. 28, 2011, the contents of all of which are incorporated herein by reference.
  • STATEMENT ACCORDING TO 37 C.F.R. §1.821(c) or (e)—SEQUENCE LISTING SUBMITTED AS PDF FILE WITH A REQUEST TO TRANSFER CRF FROM PARENT APPLICATION
  • Pursuant to 37 C.F.R. §1.821(c) or (e), a file containing a PDF version of the Sequence Listing has been submitted concomitant with this application, the contents of which are hereby incorporated by reference. The transmittal documents of this application include a Request to Transfer CRF from the parent application.
  • TECHNICAL FIELD
  • This application relates to the field of medicine. Provided herein are influenza hemagglutin in stern domain polypeptides, methods for providing hemagglutin in stem domain polypeptides, compositions comprising the same, vaccines Comprising the same and methods of their use, in particular in the detection, prevention and/or treatment of influenza.
  • BACKGROUND
  • Influenza viruses are major human pathogens, causing a respiratory disease (commonly referred to as “influenza” or “the flu”) that ranges in severity from sub-clinical infection to primary viral pneumonia which can result in death. The clinical effects of infection vary with the virulence of the influenza strain and the exposure, history, age, and immune status of the host. Every year it is estimated that approximately 1 billion people worldwide undergo infection with influenza virus, leading to severe illness in 3-5 million cases and an estimated 300,000 to 500,000 of influenza related deaths. The bulk of these infections can be attributed to influenza A viruses carrying H1 or H3 hemagglutinin subtypes, with a smaller contribution from Influenza B viruses and, therefore, representatives of all three are included in the seasonal vaccine. The current immunization practice relies on early identification of circulating influenza viruses to allow for timely production of an effective seasonal influenza vaccine. Apart from the inherent difficulties in predicting the strains that will be dominant during the next season, antiviral resistance and immune escape also play a role in failure of current vaccines to prevent morbidity and mortality. In addition to this, the possibility of a pandemic caused by a highly virulent viral strain originating from animal reservoirs and reassorted to increase human to human spread, poses a significant and realistic threat to global health.
  • Influenza A viruses are widely distributed in nature and can infect a variety of birds and mammals. Influenza viruses are enveloped RNA viruses that belong to the family of Orthomyxoviridae. Their genomes consist of eight single-stranded RNA segments that code for 11 different proteins, one nucleoprotein (NP), three polymerase proteins (PA, PB1, and PB2), two matrix proteins (M1 and M2), three non-structural proteins (NS1, NS2, and PB1-F2), and two external glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The viruses are classified on the basis of differences in antigenic structure of the HA and NA proteins, with their different combinations representing unique virus subtypes that are further classified into specific influenza virus strains. Although all known subtypes can be found in birds, currently circulating human influenza A subtypes are H1N1 and H3N2. Phylogenetic analysis has demonstrated a subdivision of hemagglutinins into two main groups: inter alia the H1, H2, H5 and H9 subtypes in phylogenetic group 1 and inter alia the H3, H4 and H7 subtypes in phylogenetic group 2.
  • The influenza type B virus strains are strictly human. The antigenic variation in HA within the influenza type B virus strains is smaller than those observed within the type A strains. Two genetically and antigenically distinct lineages of influenza B virus are circulating in humans, as represented by the B/Yamagata/16/88 (also referred to as B/Yamagata) and B/Victoria/2/87 (B/Victoria) lineages (Ferguson et al., 2003). Although the spectrum of disease caused by influenza B viruses is generally milder than that caused by influenza A viruses, severe illness requiring hospitalization is still frequently observed with influenza B infection.
  • It is known that antibodies that neutralize the influenza virus are primarily directed against hemagglutinin (HA). Hemagglutinin or HA is a trimeric glycoprotein that is anchored to the viral coat and has a dual function: it is responsible for binding to the cell surface receptor sialic acid and, after uptake, it mediates the fusion of the viral and endosomal membrane leading to release of the viral RNA in the cytosol of the cell. HA comprises a large head domain and a smaller stem domain. Attachment to the viral membrane is mediated by a C-terminal anchoring sequence connected to the stem domain. The protein is post-translationally cleaved in a designated loop to yield two polypeptides, HA1 and HA2 (the full sequence is referred to as HA0). The membrane distal head region is mainly derived from HA1 and the membrane proximal stem region primarily from HA2 (FIG. 1).
  • The reason that the seasonal influenza vaccine must be updated every year is the large variability of the virus. In the hemagglutinin molecule this variation is particularly manifested in the head domain where antigenic drift and shift have resulted in a large number of different variants. Since this is also the area that is immunodominant, most neutralizing antibodies are directed against this domain and act by interfering with receptor binding. The combination of immunodominance and large variation of the head domain also explains why infection with a particular strain does not lead to immunity to other strains: the antibodies elicited by the first infection only recognize a limited number of strains closely related to the virus of the primary infection.
  • Recently, influenza hemagglutinin stem domain polypeptides, lacking all or substantially all of the influenza hemagglutinin globular head domain, have been described and used to generate an immune response to one or more conserved epitopes of the stem domain polypeptide. It is believed that epitopes of the stem domain polypeptide are less immunogenic than the highly immunogenic regions of a globular head domain, thus the absence of a globular head domain in the stem domain polypeptide might allow an immune response against one or more epitopes of the stem domain polypeptide to develop (Steel et al., 2010). Steel et al. thus have created a new molecule by deleting amino acid residue 53 to 276 of HA1 of the A/Puerto Rico/8/1934 (H1N1) and A/Hong Kong/1968 (H3N2) strains from the HA primary sequence, and replacing this by a short flexible linking sequence GGGG (SEQ ID NO: 194). Vaccination of mice with the H3 HK68 construct did not elicit antisera that were cross-reactive with group 1 HAs. In addition, as shown in the Examples below, the stem domain polypeptides were highly unstable and did not adopt the correct conformation as proven by the lack of binding of antibodies that were shown to bind to conserved epitopes in the stem region.
  • In addition, Bommakanti et al. (2010) described an HA2 based polypeptide comprising amino acid residues 1-172 of HA2, a 7-amino acid linker (GSAGSAG (SEQ ID NO: 188)), amino acid residues 7-46 of HA1, a 6-amino acid linker GSAGSA (SEQ ID NO: 189), followed by residues 290-321 of HA1 with the mutations V297T, I300E, Y302T and C305T in HA1. The design was based on the sequence of H3 HA (A/Hong Kong/1968). The polypeptide did only provide cross-protection against another influenza virus strain within the H3 subtype (A/Phil/2/82 but not against an H1 subtype (A/PR/8/34).
  • There thus still exists a need for a safe and effective universal vaccine that stimulates the production of a robust, broadly neutralizing antibody response and that offers protection against a broad set of current and future influenza virus strains (both seasonal and pandemic), in particular providing protection against one or more influenza A virus subtypes within phylogenetic group 1 and/or group 2, for effective prevention and therapy of influenza.
  • DISCLOSURE
  • Provided herein are influenza hemagglutinin stem domain polypeptides, methods for providing stem domain polypeptides, compositions comprising the same, vaccines comprising the same and methods of their use.
  • In a first aspect, provided are immunogenic polypeptides comprising an influenza hemagglutinin stem domain and lacking the globular head, referred to as influenza hemagglutinin (HA) stem domain polypeptides. The polypeptides are capable of inducing an immune response when administered to a subject, in particular a human subject. The polypeptides present conserved epitopes of the membrane proximal stem domain HA molecule to the immune system in the absence of dominant epitopes that are present in the membrane distal head domain. To this end, part of the primary sequence of the HA0 protein making up the head domain is removed and the remaining amino acid sequence is reconnected, either directly or, in some embodiments, by introducing a short flexible linking sequence (“linker”) to restore the continuity of the amino acid chain. The resulting sequence is further modified by introducing specific mutations that stabilize the native 3-dimensional structure of the remaining part of the HA0 molecule. The immunogenic polypeptides do not comprise the full-length HA1 and/or HA2 of an influenza virus.
  • The influenza hemagglutinin stem domain polypeptides are based on HA of influenza virus strains that are generally used for human influenza vaccine production. In particular, the polypeptides are based on HA of influenza A viruses of the H1, H5 and/or H3 subtype.
  • In certain embodiments, provided are influenza hemagglutinin stem domain polypeptides comprising (a) an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment, and (b) an influenza hemagglutinin HA2 domain, wherein the hemagglutinin stem domain polypeptides are resistant to protease cleavage at the junction between HA1 and HA2, and wherein one or more amino acids in the amino acid sequence connecting the A helix and the helix CD of HA2 have been mutated as compared to a wild-type influenza HA2 domain. Preferably, the HA1 and HA2 domain are derived from an influenza A virus selected from the group consisting of the H1, H5, and H3 subtype.
  • The polypeptides hereof comprise one or more mutations in the HA2 amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD, as indicated in FIG. 1. In certain embodiments, one or more hydrophobic amino acids in the HA2 amino acid sequence have been substituted by hydrophilic amino acids, such as polar and/or charged amino acids, or the flexible amino acid glycine (G).
  • In certain embodiments, the HA1 N-terminal stem segment comprises the amino acids 1-x of HA1 and the HA1 C-terminal stem segment comprises the amino acids y-end (i.e., C-terminal amino acid of HA1) of HA1. Thus, in certain embodiments, the deletion in the HA 1 segment comprises the amino acid sequence from the amino acid at position x+1 up to and including the amino acid at position y. In certain embodiments, the polypeptides do not comprise the signal sequence. Thus, in certain embodiments, the HA1 N-terminal segment comprises the amino acid p-x of HA1, wherein p is the first amino acid of the mature HA molecule (e.g., p=18 in case of SEQ ID NO: 1). The skilled person will be able to prepare the polypeptides described herein without the signal peptides (e.g., amino acids 1-17 of SEQ ID NO: 1). In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the polypeptides hereof do not comprise the intracellular sequences of HA and the transmembrane domain. In certain embodiments, the intracellular and transmembrane sequence, e.g., the amino acid sequence from position (or the equivalent of) 523, 524, 525, 526, 527, 526, 528, 529, or 530 of the HA2 domain to the C-terminus of the HA2 domain has been removed.
  • The polypeptides do not comprise the full-length HA1.
  • In certain embodiments, the polypeptides are glycosylated.
  • In certain embodiments, the immunogenic polypeptides are substantially smaller than HA0, preferably lacking all or substantially all of the globular head of HA. Preferably, the immunogenic polypeptides are no more than 360, preferably no more than 350, 340, 330, 320, 310, 305, 300, 295, 290, 285, 280, 275, or 270 amino acids in length. In certain embodiments, the immunogenic polypeptides are from about 250 to about 350, preferably from about 260 to about 340, preferably from about 270 to about 330, preferably from about 270 to about 330 amino acids in length.
  • In certain embodiments, the polypeptides further comprise one or more additional mutations in the HA1 and/or HA2 domain, as compared to the amino acid sequence of the HA on which the HA 1 and HA2 domains are based.
  • Also provided are methods for providing influenza hemagglutinin stem polypeptides, comprising the general steps of:
  • (a) Providing an influenza HA0 amino acid sequence;
  • (b) Removing the cleavage site between HA1 and HA2;
  • (c) Removing the amino acid sequence of the globular head domain from the HA0 sequence, in particular the amino acid sequence starting from position x+1 to y−1;
  • (d) Introducing one or more mutations in the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD; and
  • (e) Introducing one or more disulfide bridges in the HA stem domain polypeptide.
  • Polypeptides obtainable by such methods are also part hereof.
  • In certain embodiments, the polypeptides comprise the conserved stem domain epitopes of the group 1 cross-neutralizing antibody CR6261 (as disclosed in W02008/028946) and/or of the antibody CR9114 (as described below and in the co-pending application EP 11173953.8), an antibody capable of binding to and neutralizing both group 1 and group 2 influenza A viruses, as well as influenza B viruses. It is thus another aspect of the disclosure to provide HA stem domain polypeptides, wherein the polypeptides bind to the antibody CR6261 and/or the antibody CR9114. In an embodiment, the polypeptides do not bind to CR8057 (described in WO 2010/130636), a monoclonal antibody that binds to H3 influenza viruses only. In certain embodiments, the polypeptides bind to the antibody CR8020, CR8043 and/or CR9114. The influenza hemagglutinin stem domain polypeptides provided herein are suitable for use in immunogenic compositions (e.g., vaccines) capable of generating immune responses against a plurality of influenza virus A and/or B strains. In an embodiment, the influenza hemagglutinin stem domain polypeptides are capable of generating immune responses against influenza A virus strains of phylogenetic group 1 and/or group 2, in particular against influenza virus strains of both phylogenetic group 1 and group 2. In an embodiment, the polypeptides are capable of generating an immune response against homologous influenza virus strains. In an embodiment, the polypeptides are capable of generating an immune response against heterologous influenza virus strains of the same and/or different subtypes. In a further embodiment, the polypeptides are capable of generating an immune response to influenza virus strains of both phylogenetic group 1 and group 2 and influenza B virus strains.
  • The polypeptides may be used, e.g., in stand-alone therapy and/or prophylaxis and/or diagnosis of a disease or condition caused by an influenza virus, in particular a phylogenetic group 1 or 2 influenza A virus and/or an influenza B virus, or in combination with other prophylactic and/or therapeutic treatments, such as (existing or future) vaccines, antiviral agents and/or monoclonal antibodies.
  • In a further aspect, provided are nucleic acid molecules encoding the influenza HA stem domain polypeptides. In yet another aspect, provided are vectors comprising the nucleic acids encoding the immunogenic polypeptides.
  • In a further aspect, provided are methods for inducing an immune response in a subject, such a method comprising administering to the subject a polypeptide and/or nucleic acid molecule according to the disclosure.
  • In another aspect, provided are immunogenic compositions comprising a polypeptide and/or a nucleic acid molecule hereof. The immunogenic compositions provided herein can be in any form that allows for the compositions to be administered to a subject, e.g., mice, ferrets or humans. In a specific embodiment, the immunogenic compositions are suitable for human administration. The polypeptides, nucleic acid molecules and compositions may be used in methods of preventing and/or treating an influenza virus disease and/or for diagnostic purposes. The compositions may further comprise a pharmaceutically acceptable carrier or excipient. In certain embodiments, the compositions described herein comprise, or are administered in combination with, an adjuvant.
  • In another aspect, provided are polypeptides, nucleic acids and/or immunogenic compositions for use as a vaccine. The disclosure in particular relates to immunogenic polypeptides, nucleic acids, and/or immunogenic compositions for use as a vaccine in the prevention and/or treatment of a disease or condition caused by an influenza virus A subtype of phylogenetic group 1 and/or 2 and/or influenza B virus.
  • The various embodiments and uses of the polypeptides hereof will become clear from the following detailed description.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a model of the HA monomer in the pre-fusion state as present in the native trimer. HA 1 is shown in light grey, HA2 is shown in dark grey. Helix A (an important part of the epitope of CR6261) and helix CD (part of the trimer interface) are indicated, as is the loop connecting these secondary structure elements.
  • FIG. 2: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides according to the disclosure as analyzed by FACS. Panel A: Percentage of cells positive after staining. Panel B: mean fluorescence intensity. H1-Full-Length (SEQ ID NO: 1), miniHa-cl1 (SEQ ID NO: 3), miniHA-cl1+2 (SEQ ID NO: 4), miniHA-cl1+3 (SEQ ID NO: 5), miniHA-cl1+4 (SEQ ID NO: 6) miniHA-cl1+2+3 (SEQ ID NO: 7), miniHA-cl1+2+3+4 (SEQ ID NO: 8).
  • FIG. 3: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides as analyzed by FACS. Panel A: Percentage of cells positive after staining. Panel B: mean fluorescence intensity. H1-Full-Length (SEQ ID NO: 1), miniHA (SEQ ID NO: 2), miniHa-cl1 (SEQ ID NO: 3).
  • FIGS. 4A and 4B: Binding of serum antibodies to HEK293F expressed full-length HA and polypeptides of the disclosure. FIG. 4A: mean fluorescence intensity. FIG. 4B: Percentage of cells positive after staining. H1-FL (SEQ ID NO: 1), CL1 (SEQ ID NO: 3), CL1+2 (SEQ ID NO: 4) and CL1+4 (SEQ ID NO: 6). cM2 is a negative control.
  • FIG. 5: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides as analyzed by FACS. Top: Percentage of cells positive after staining. Bottom: mean fluorescence intensity. H1-Full-Length (SEQ ID NO: 1), miniHa-cl1 (SEQ ID NO: 3), H1-mini1-cl 11 (SEQ ID NO: 9), H1-mini2-cl11 (SEQ ID NO: 10), H1-mini3-cl11 (SEQ ID NO: 11), H1-mini4-cl11 (SEQ ID NO: 12), H1-mini1-cl11+5 (SEQ ID NO: 13), H1-mini2-cl11+5 (SEQ ID NO: 14), H1 mini3-cl11+5 (SEQ ID NO: 15), and H1-mini4-cl11+5 (SEQ ID NO: 16).
  • FIGS. 6A and 6B: Binding of serum antibodies to the ectodomain of full-length HA from A/Brisbane 59/2007 after i.m. immunization with DNA encoding HA A/Brisbane/59/2007 (SEQ ID NO: 1), miniHA-cluster1 (SEQ ID NO: 3), Mini2-cluster11 (SEQ ID NO: 10), Mini1-cluster11+5 (SEQ ID NO: 13), Mini2-cluster11+5 (SEQ ID NO: 14) and cM2 (consensus M2 sequence) or gene gun immunization of DNA encoding HA A/Brisbane/59/2007 (SEQ ID NO: 1), Mini2-cluster11+5 (SEQ ID NO: 14) and cM2 (consensus M2 sequence). FIG. 6A: 28 days after first immunization. FIG. 6B: after 49 days of immunization.
  • FIG. 7: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides as analyzed by FACS. Top panel: Percentage of cells positive after staining. Bottom panel: mean fluorescence intensity. H1-Full-Length (SEQ ID NO: 1), miniHA (SEQ ID NO: 2), H1-mini2-cl11+5 (SEQ ID NO: 14), H1-mini2-cl1+5 (SEQ ID NO: 48), H1-mini2-cl1+5+6 (SEQ ID NO: 46), H1-mini2-cl11+5+6 (SEQ ID NO: 47), H1-mini2-cl1+5+6-trim (SEQ ID NO: 44), H1-mini2-cl1+5+6-GCN4 (SEQ ID NO: 45).
  • FIGS. 8A and 8B: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides as analyzed by FACS. FIG. 8A: Percentage of cells positive after staining. FIG. 8B: mean fluorescence intensity.
  • FIGS. 9A and 9B: Binding of monoclonal antibodies to full-length HA and HA stem domain polypeptides as analyzed by FACS. FIG. 9A: Percentage of cells positive after staining. FIG. 9B: mean fluorescence intensity.
  • FIGS. 10A and 10B: Expression of Hong Kong/1/1968 based constructs on the cell surface.
  • FIGS. 11A-11F: SDS-PAGE (FIGS. 11A-11D) and Western Blot (FIGS. 11E-11F) analysis of the purification of several polypeptides of the disclosure. For the Western Blot an antibody directed against the his-tag was used for detection.
  • FIGS. 12A-12C: Binding of monoclonal antibody CR9114 (FIG. 12A), CR8020 (FIG. 12B) and polyclonal anti-H1 HA serum (FIG. 12C) to several polypeptides of the disclosure as detected by ELISA.
  • FIGS. 13A and 13B: SDS-PAGE (FIG. 13A) and Western Blot (FIG. 13B) analysis of the glycosylation of the polypeptides hereof. Upon deglycosylation, diffuse bands are focused at the expected molecular weight. For the Western Blot polyclonal serum directed against H1 HA was used for detection.
  • FIG. 14: SEC-MALS analysis of polypeptides of the disclosure. Traces are labeled with the SEQ ID NO.
  • FIGS. 15A and 15B: FIG. 15A: Western Blot analysis of the supernatant of cells expressing SEQ ID NO: 145. For the Western Blot an antibody directed against the his-tag was used for detection. FIG. 15B: Binding of monoclonal antibody CR9114 (squares), CR6261(circles), CR8020 (up triangles) and F16v3 (down triangles) to SEQ ID NO: 145 as detected by ELISA.
  • FIG. 16: Elution profile of the purification of SEQ ID NO: 145 from culture supernatant on a His trap column. The polypeptide of the disclosure elutes at 100 (peak A) and 200 mM (peak B) imidazole, respectively.
  • FIG. 17: Panels a and b: Elution profile of the purification of SEQ ID NO: 145 by size exclusion chromatography (Superdex 200). Both peaks A and B contain polypeptide of the disclosure. Panel c: Native PAGE analysis of fractions from the size exclusion chromatography. The majority of the purified protein runs at a molecular weight consistent with a monomeric form of the protein. Panel d: SDS PAGE analysis of fractions from the size exclusion chromatography.
  • FIG. 18: Time course of the IgG response towards the ectodomain of the homologous full-length protein as a result of the DNA immunization schedule described in this application.
  • FIGS. 19A and 19B: IgG responses at week 7 after initial immunization for individual mice against the ectodomain of the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 19A) and the heterologous strain H1N1 A/California/07/2009 (FIG. 19B). Open symbols correspond to values below the limit of detection of the assay.
  • FIGS. 20A-20D: IgG responses at week 7 after initial immunization for individual mice against the ectodomain of the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 20A), the heterologous strain H1N1 A/California/07/2009 (FIG. 20B) the heterosubtypic strain H5N1 A/Vietnam/1203/2004 (FIG. 20C) and the heterosubtypic strain H3N2 A/Hong Kong/1/1968 (FIG. 20D). Open symbols correspond to values below the limit of detection of the assay.
  • FIG. 21: FACS assay of stem domain polypeptides based on H3 HA. Mean fluorescence intensity (Panel A) and % positive cells (Panel B) are shown.
  • FIGS. 22A-22C: IgG responses at week 7 after initial immunization for individual mice against the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 22A), the heterologous strain H1N1 A/California/07/2009 (FIG. 22B) and the heterosubtypic strain H5N1 A/Vietnam/1203/2004 (FIG. 22C). Open symbols correspond to values below the limit of detection of the assay.
  • FIG. 23: FACS analysis of binding of mAbs CR6261, CR9114, CR8020 and CR9020, as well as polyclonal anti-H1 serum to full-length HA and corresponding polypeptides of the disclosure. Top: Mean Fluorescence Intensity. Bottom: percentage positive cells. Solid bars represent full-length proteins, striped bars represent polypeptides of the disclosure. Full-length HA and the corresponding polypeptide of the disclosure derived from that sequence have the same background color.
  • FIGS. 24A-24C: Kaplan-Meier survival curves (FIG. 24A), weight changes (FIG. 24B) and median clinical scores (FIG. 24C) for the influenza challenge experiment described in Example 21.
  • FIG. 25: Alignment of H1N1 sequences selected according to Example 22.
  • FIG. 26: FACS assay of stem domain polypeptides based on H1 HA selected according Example 22. Mean fluorescence intensity is shown.
  • FIG. 27: Kinetics of binding of full-length H1 HA (SEQ ID NO 149) in its trimeric and monomeric form and s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) to immobilized monoclonal antibody CR6261 (Panel A), CR9114 (Panel B) and CR8020 (Panel C) as determined by biolayer interferometry.
  • FIG. 28: Steady state titration of the binding of s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) to immobilized CR6261 (Panel A) and CR9114 (Panel B) followed by biolayer interferometry.
  • FIG. 29 IgG response against the ectodomain of HA from A/Hong Kong/1/1968 at day 49 as determined by ELISA. Details of the experiment are described in Example 24. Open symbols correspond to values below the limit of detection of the assay,
  • FIGS. 30A-30C: Kaplan-Meier survival curves (FIG. 30A), weight changes (FIG. 30B) and median clinical scores (FIG. 30C) for the influenza challenge experiment described in Example 24.
  • FIG. 31: FACS assay of stem domain polypeptides based on H1 HA selected according Example 25. Mean fluorescence intensity is shown.
  • FIGS. 32A-32C: IgG response after 49 days against the ectodomain of HA as determined by HA from A/Wisconsin/67/2005 (FIG. 32A), A/Hong Kong/1/1968 (FIG. 32B) and A/Perth/16/2009 (FIG. 32C). Details of the experiment are described in Example 26. Open symbols correspond to values below the limit of detection of the assay.
  • FIG. 33: IgG response after 49 days against the ectodomain of HA from A/Hong Kong/1/1968 as determined by ELISAs. Details of the experiment are described in Example 27. Open symbols correspond to values below the limit of detection of the assay.
  • FIG. 34: FACS assay of stem domain polypeptide based on H1 HA selected according Example 28. Mean fluorescence intensity is shown.
  • DETAILED DESCRIPTION Definitions
  • Definitions of terms as used herein are given below.
  • An amino acid hereof can be any of the twenty naturally occurring (or “standard” amino acids) or variants thereof, such as, e.g., D-proline (the D-enantiomer of proline), or any variants that are not naturally found in proteins, such as, e.g., norleucine. The standard amino acids can be divided into several groups based on their properties. Important factors are charge, hydrophilicity or hydrophobicity, size and functional groups. These properties are important for protein structure and protein-protein interactions. Some amino acids have special properties such as cysteine, that can form covalent disulfide bonds (or disulfide bridges) to other cysteine residues, proline that forms a cycle to the polypeptide backbone, and glycine that is more flexible than other amino acids. Table 5 shows the abbreviations and properties of the standard amino acids.
  • The term “amino acid sequence identity” refers to the degree of identity or similarity between a pair of aligned amino acid sequences, usually expressed as a percentage. Percent identity is the percentage of amino acid residues in a candidate sequence that are identical (i.e., the amino acid residues at a given position in the alignment are the same residue) or similar (i.e., the amino acid substitution at a given position in the alignment is a conservative substitution, as discussed below), to the corresponding amino acid residue in the peptide after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence homology. Sequence homology, including percentages of sequence identity and similarity, are determined using sequence alignment techniques well-known in the art, such as by visual inspection and mathematical calculation, or more preferably, the comparison is done by comparing sequence information using a computer program. An exemplary, preferred computer program is the Genetics Computer Group (GCG; Madison, Wis.) Wisconsin package version 10.0 program, “GAP” (Devereux et al. (1984)).
  • “Conservative substitution” refers to replacement of an amino acid of one class is with another amino acid of the same class. In particular embodiments, a conservative substitution does not alter the structure or function, or both, of a polypeptide. Classes of amino acids for the purposes of conservative substitution include hydrophobic (e.g., Met, Ala, Val, Leu), neutral hydrophilic (e.g., Cys, Ser, Thr), acidic (e.g., Asp, Glu), basic (e.g., Asn, Gln, His, Lys, Arg), conformation disrupters (e.g., Gly, Pro) and aromatic (e.g., Trp, Tyr, Phe).
  • As used herein, the terms “disease” and “disorder” are used interchangeably to refer to a condition in a subject. In some embodiments, the condition is a viral infection, in particular an influenza virus infection. In specific embodiments, a term “disease” refers to the pathological state resulting from the presence of the virus in a cell or a subject, or by the invasion of a cell or subject by the virus. In certain embodiments, the condition is a disease in a subject, the severity of which is decreased by inducing an immune response in the subject through the administration of an immunogenic composition.
  • As used herein, the term “effective amount” in the context of administering a therapy to a subject refers to the amount of a therapy which has a prophylactic and/or therapeutic effect(s). In certain embodiments, an “effective amount” in the context of administration of a therapy to a subject refers to the amount of a therapy which is sufficient to achieve a reduction or amelioration of the severity of an influenza virus infection, disease or symptom associated therewith, such as, but not limited to a reduction in the duration of an influenza virus infection, disease or symptom associated therewith, the prevention of the progression of an influenza virus infection, disease or symptom associated therewith, the prevention of the development or onset or recurrence of an influenza virus infection, disease or symptom associated therewith, the prevention or reduction of the spread of an influenza virus from one subject to another subject, the reduction of hospitalization of a subject and/or hospitalization length, an increase of the survival of a subject with an influenza virus infection or disease associated therewith, elimination of an influenza virus infection or disease associated therewith, inhibition or reduction of influenza virus replication, reduction of influenza virus titer; and/or enhancement and/or improvement of the prophylactic or therapeutic effect(s) of another therapy. In certain embodiments, the effective amount does not result in complete protection from an influenza virus disease, but results in a lower titer or reduced number of influenza viruses compared to an untreated subject. Benefits of a reduction in the titer, number or total burden of influenza virus include, but are not limited to, less severe symptoms of the infection, fewer symptoms of the infection and a reduction in the length of the disease associated with the infection.
  • The term “host,” as used herein, is intended to refer to an organism or a cell into which a vector such as a cloning vector or an expression vector has been introduced. The organism or cell can be prokaryotic or eukaryotic. Preferably, the host comprises isolated host cells, e.g., host cells in culture. The term “host cells” merely signifies that the cells are modified for the (over)-expression of the polypeptides hereof. It should be understood that the term host is intended to refer not only to the particular subject organism or cell but to the progeny of such an organism or cell as well. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent organism or cell, but are still included within the scope of the term “host” as used herein.
  • The term “included” or “including” as used herein is deemed to be followed by the words “without limitation.”
  • As used herein, the term “infection” means the invasion by, multiplication and/or presence of a virus in a cell or a subject. In one embodiment, an infection is an “active” infection, i.e., one in which the virus is replicating in a cell or a subject. Such an infection is characterized by the spread of the virus to other cells, tissues, and/or organs, from the cells, tissues, and/or organs initially infected by the virus. An infection may also be a latent infection, i.e., one in which the virus is not replicating. In certain embodiments, an infection refers to the pathological state resulting from the presence of the virus in a cell or a subject, or by the invasion of a cell or subject by the virus.
  • Influenza viruses are classified into influenza virus types: genus A, B and C. The term “influenza virus subtype” as used herein refers to influenza A virus variants that are characterized by combinations of the hemagglutinin (H) and neuramidase (N) viral surface proteins. According to the disclosure, influenza virus subtypes may be referred to by their H number, such as, for example, “influenza virus comprising HA of the H3 subtype,” “influenza virus of the H3 subtype” or “H3 influenza,” or by a combination of a H number and an N number, such as, for example, “influenza virus subtype H3N2” or “H3N2.” The term “subtype” specifically includes all individual “strains,” within each subtype, which usually result from mutations and show different pathogenic profiles, including natural isolates as well as man-made mutants or reassortants and the like. Such strains may also be referred to as various “isolates” of a viral subtype. Accordingly, as used herein, the terms “strains” and “isolates” may be used interchangeably. The current nomenclature for human influenza virus strains or isolates includes the type (genus) of virus, i.e., A, B or C, the geographical location of the first isolation, strain number and year of isolation, usually with the antigenic description of HA and NA given in brackets, e.g., A/Moscow/10/00 (H3N2). Non-human strains also include the host of origin in the nomenclature. The influenza A virus subtypes can further be classified by reference to their phylogenetic group. Phylogenetic analysis has demonstrated a subdivision of hemagglutinins into two main groups: inter alia the H1, H2, H5 and H9 subtypes in phylogenetic group 1 (“group 1” influenza viruses) and inter alia the H3, H4, H7 and H10 subtypes in phylogenetic group 2 (“group 2” influenza viruses).
  • As used herein, the term “influenza virus disease” refers to the pathological state resulting from the presence of an influenza virus, e.g., an influenza A or B virus in a cell or subject or the invasion of a cell or subject by an influenza virus. In specific embodiments, the term refers to a respiratory illness caused by an influenza virus.
  • As used herein, the term “nucleic acid” (or polynucleotide) is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid can be single-stranded or double-stranded. The nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.). A reference to a nucleic acid sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence. The complementary strand is also useful, e.g., for anti-sense therapy, hybridization probes and PCR primers.
  • As used herein, in certain embodiments, the numbering of the amino acids in HA is based on the numbering of amino acids in HA0 of a wild-type influenza virus, e.g., the numbering of the amino acids of the H1N1 influenza strain A/Brisbane/59/2007 (SEQ ID NO: 1). As used in the disclosure, the wording “the amino acid at position “x” in HA” thus means the amino acid corresponding to the amino acid at position x in HA0 of the particular wild-type influenza virus, e.g., A/Brisbane/59/2007 (SEQ ID NO: 1; wherein the amino acids of the HA2 domain have been indicated in italics). It will be understood by the skilled person that equivalent amino acids in other influenza virus strains and/or subtypes can be determined by multiple sequence alignment (see, e.g., Table 8). Note that, in the numbering system used throughout this application 1 refers to the N-terminal amino acid of an immature HA0 protein (SEQ ID NO: 1). The mature sequence starts, e.g., on position 18 of SEQ ID NO: 1. In certain embodiments, the numbering of the equivalent amino acids is based on the numbering of amino acids in H3 HA0, in particular the numbering of the amino acids of the H3N2 influenza strain A/Wisconsin/67/2005 (SEQ ID NO: 89).The equivalent amino acids in other H3 HA sequences can be determined by alignment. It will be understood by the skilled person that the leader sequence (or signal sequence) that directs transport of a protein during production (e.g., corresponding to amino acids 1-17 of SEQ ID NO: 89), generally is not present in the final polypeptide, that is, e.g., used in a vaccine. In certain embodiments, the polypeptides according to the disclosure thus comprise an amino acid sequence without the leader sequence, i.e., the amino acid sequence is based on the amino acid sequence of HA0 without the signal sequence.
  • “Polypeptide” refers to a polymer of amino acids linked by amide bonds as is known to those of skill in the art. As used herein, the term can refer to a single polypeptide chain linked by covalent amide bonds. The term can also refer to multiple polypeptide chains associated by non-covalent interactions such as ionic contacts, hydrogen bonds, Van der Waals contacts and hydrophobic contacts. Those of skill in the art will recognize that the term includes polypeptides that have been modified, for example, by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation).
  • “Stem domain polypeptide” refers to a polypeptide that comprises one or more polypeptide chains that make up a stem domain of a naturally-occurring (or wild-type) hemagglutinin (HA). Typically, a stem domain polypeptide is a single polypeptide chain (i.e., corresponding to the stem domain of a hemagglutinin HA0 polypeptide) or two polypeptide chains (i.e., corresponding to the stem domain of a hemagglutinin HA1 polypeptide in association with a hemagglutinin HA2 polypeptide). According to the disclosure, a stern domain polypeptide comprises one or more mutations as compared to the wild-type HA molecule, in particular one or more amino acid residues of the wild-type HA may have been substituted by other amino acids, not naturally occurring on the corresponding position in a particular wild-type HA. Stem domain polypeptides according to the disclosure can furthermore comprise one or more linking sequences, as described below.
  • The term “vector” denotes a nucleic acid molecule into which a second nucleic acid molecule can be inserted for introduction into a host where it will be replicated, and in some cases expressed. In other words, a vector is capable of transporting a nucleic acid molecule to which it has been linked. Cloning as well as expression vectors are contemplated by the term “vector,” as used herein. Vectors include, but are not limited to, plasmids, cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC) and vectors derived from bacteriophages or plant or animal (including human) viruses. Vectors comprise an origin of replication recognized by the proposed host and in case of expression vectors, promoter and other regulatory regions recognized by the host. Certain vectors are capable of autonomous replication in a host into which they are introduced (e.g., vectors having a bacterial origin of replication can replicate in bacteria). Other vectors can be integrated into the genome of a host upon introduction into the host, and thereby are replicated along with the host genome. As used herein, the term “wild-type” in the context of a virus refers to influenza viruses that are prevalent, circulating naturally and producing typical outbreaks of disease.
  • Influenza viruses have a significant impact on global public health, causing millions of cases of severe illness each year, thousands of deaths, and considerable economic losses. Current trivalent influenza vaccines elicit a potent neutralizing antibody response to the vaccine strains and closely related isolates, but rarely extend to more diverged strains within a subtype or to other subtypes. In addition, selection of the appropriate vaccine strains presents many challenges and frequently results in sub-optimal protection. Furthermore, predicting the subtype of the next pandemic virus, including when and where it will arise, is currently impossible.
  • Hemagglutinin (HA) is the major envelope glycoprotein from influenza A viruses which is the major target of neutralizing antibodies. Hemagglutinin has two main functions during the entry process. First, hemagglutinin mediates attachment of the virus to the surface of target cells through interactions with sialic acid receptors. Second, after endocytosis of the virus, hemagglutinin subsequently triggers the fusion of the viral and endosomal membranes to release its genome into the cytoplasm of the target cell. HA comprises a large ectodomain of ˜500 amino acids that is cleaved by host-derived enzymes to generate 2 polypeptides that remain linked by a disulfide bond. The majority of the N-terminal fragment (HA1 320-330 amino acids) forms a membrane-distal globular domain that contains the receptor-binding site and most determinants recognized by virus-neutralizing antibodies. The smaller C-terminal portion (HA2, ˜180 amino acids) forms a stern-like structure that anchors the globular domain to the cellular or viral membrane. The degree of sequence homology between subtypes is smaller in the HA1 polypeptides (34%-59% homology between subtypes) than in the HA2 polypeptide (51%-80% homology). The most conserved region is the sequence around the cleavage site, particularly the HA2 N-terminal 23 amino acids, which is conserved among all influenza A virus subtypes (Lorieau et al., 2010). Part of this region is exposed as a surface loop in the HA precursor molecule (HA0), but becomes inaccessible when HA0 is cleaved into HA1 and HA2.
  • Most neutralizing antibodies bind to the loops that surround the receptor binding site and interfere with receptor binding and attachment. Since these loops are highly variable, most antibodies targeting these regions are strain-specific, explaining why current vaccines elicit such limited, strain-specific immunity. Recently, however, fully human monoclonal antibodies against influenza virus hemagglutinin with broad cross-neutralizing potency were generated. Functional and structural analysis have revealed that these antibodies interfere with the membrane fusion process and are directed against highly conserved epitopes in the stem domain of the influenza HA protein (Throsby et al., 2008; Ekiert et al., 2009, WO 2008/028946, WO 2010/130636).
  • New HA stem domain polypeptides have been designed containing these epitopes in order to create a universal epitope-based vaccine inducing protection against a broad range of influenza strains. Essentially, the highly variable and immunodominant part, i.e., the head domain, is first removed from the full-length HA molecule to create a stem domain polypeptide, also called mini-HA. In this way the immune response will be redirected towards the stem domain where the epitopes for the broadly neutralizing antibodies are located. The broadly neutralizing antibodies mentioned above were used to probe the correct folding of the newly created molecules, and to confirm the presence of the neutralizing epitopes.
  • The stem domain polypeptides hereof are capable of presenting the conserved epitopes of the membrane proximal stem domain HA molecule to the immune system in the absence of dominant epitopes that are present in the membrane distal head domain. To this end, part of the primary sequence of the HA0 protein making up the head domain is removed and reconnected, either directly or, in some embodiments, by introducing a short flexible linking sequence (“linker”) to restore the continuity of the polypeptide chain. The resulting polypeptide sequence is further modified by introducing specific mutations that stabilize the native 3-dimensional structure of the remaining part of the HA0 molecule.
  • Thus provided are polypeptides comprising (a) an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment, and (b) an influenza hemagglutinin HA2 domain, wherein on or more amino acids in the HA2 domain have been mutated. In the polypeptides hereof; the HA2 domain thus comprises one or more mutations as compared to the HA2 domain of a wild-type influenza hemagglutinin on which the HA stem domain polypeptide is based.
  • The influenza hemagglutinin stem domain polypeptides are based on HA of influenza A virus subtypes that are generally used in human influenza virus vaccines. In preferred embodiments, the stem domain polypeptides are based on HA of an influenza virus comprising HA of the H1, H5 and/or H3 subtype.
  • In particular, provided are influenza hemagglutinin stem domain polypeptides comprising (a) an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment, and (b) an influenza hemagglutinin HA2 domain, wherein the hemagglutinin stem domain polypeptide is resistant to protease cleavage at the junction between HA1 and HA2, and wherein one or more amino acids in the amino acid sequence connecting the A helix and the helix CD of HA2 have been mutated as compared to a wild-type influenza HA2 domain. Preferably, the HA1 and HA2 domain are derived from an influenza A virus subtype selected from the group consisting of H1, H5 and H3.
  • The polypeptides hereof thus comprise one or more mutations in the HA2 amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD, as indicated in FIG. 1. In certain embodiments, one or more hydrophobic amino acids in the HA2 amino acid sequence have been substituted by hydrophilic amino acids, such as polar and/or charged amino acids, or the flexible amino acid glycine (G).
  • The polypeptides hereof do not comprise the full-length HA1.
  • In certain embodiments, the immunogenic polypeptides are substantially smaller than HA0, preferably lacking all or substantially all of the globular head of HA. Preferably, the immunogenic polypeptides are no more than 360, preferably no more than 350, 340, 330, 320, 310, 305, 300, 295, 290, 285, 280, 275, or 270 amino acids in length. In certain embodiments, the immunogenic polypeptides are from about 250 to about 350, preferably from about 260 to about 340, preferably from about 270 to about 330, preferably from about 270 to about 330 amino acids in length.
  • In certain embodiments, the polypeptides further comprise one or more additional mutations in the HA1 and/or HA2 domain, as compared to the amino acid sequence of the HA of which the HA 1 and HA2 domains are derived. Thus, the stability of the stem polypeptides is further increased.
  • As used herein, the “HA1 N-terminal segment” refers to a polypeptide segment that corresponds to the amino-terminal portion of the HA1 domain of an influenza hemagglutinin (HA) molecule. In certain embodiments, the HA1 N-terminal polypeptide segment comprises the amino acids from position 1 to position x of the HA1. domain, wherein amino acid on position x is an amino acid residue within HA1. The term “HA1 C-terminal segment” refers to a polypeptide segment that corresponds to the carboxy-terminal portion of an influenza hemagglutinin HA1 domain. In certain embodiments, the HA1 C-terminal polypeptide segment comprises the amino acids from position y to and including the C-terminal amino acid of the HA1 domain, wherein the amino acid on position y is an amino acid residue within HA1. According to the disclosure, y is greater than x, thus a segment of the HA1 domain between the HA1 N-terminal segment and the HA1 C-terminal segment, i.e., between the amino acid on position x and the amino acid on position y of HA1, has been deleted, and in some embodiments, replaced by a linking sequence.
  • In certain embodiments, the HA1 N-terminal stem segment comprises the amino acids 1-x of HA1, and the HA1 C-terminal stem segment comprises the amino acids y-end of HA1. Thus, in certain embodiments, the deletion in the HA1 segment comprises the amino acid sequence from the amino acid at position x+1 up to and including the amino acid at position y−1.
  • In certain embodiments, the polypeptides do not comprise the signal sequence. Thus, in certain embodiments, the HA1 N-terminal segment comprises the amino acid p-x of HA1, wherein p is the first amino acid of the mature HA molecule (e.g., p=18 in case of SEQ ID NO: 1). The skilled person will be able to prepare the polypeptides described herein without the signal peptides (e.g., amino acids 1-17 of SEQ ID NO: 1). In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the polypeptides hereof do not comprise the intracellular sequences of HA and the transmembrane domain. In certain embodiments, the intracellular and transmembrane sequence, e.g., the amino acid sequence from position (or the equivalent of) 523, 524, 525, 526, 527, 526, 528, 529, or 530 of the HA2 domain to the C-terminus of the HA2 domain has been removed.
  • The hemagglutinin stem domain polypeptides are resistant to protease cleavage at the junction between HA1 and HA2. It is known to those of skill in the art that the Arg (R)-Gly (G) sequence spanning HA1 and HA2 is a recognition site for trypsin and trypsin-like proteases and is typically cleaved for hemagglutinin activation. Since the HA stem domain polypeptides described herein should not be activated, the influenza hemagglutinin stem domain polypeptides of the disclosure are resistant to protease cleavage. According to the disclosure, thus the protease cleavage site is removed or the protease site spanning HA1 and HA2 is mutated to a sequence that is resistant to protease cleavage.
  • In certain embodiments, the C-terminal amino acid residue of the HA1 C-terminal stem segment is any amino acid other than arginine (R) or lysine (K). In certain embodiments, the HA1 C-terminal amino acid is glutamine (Q), serine (S), threonine (T), asparagine (N), aspartic acid (D) or glutamic acid (E). In certain embodiments, the C-terminal amino acid residue of the HA1 C-terminal stem segment is glutamine (Q).
  • In certain embodiments, the polypeptides are glycosylated.
  • The influenza hemagglutinin stem domain polypeptides may be based on HA of any naturally occurring influenza A hemagglutinin virus of a subtype that is used in human influenza vaccines. Influenza A virus subtypes that are generally used in influenza vaccines are influenza A viruses of the H1, H3 or H5 subtypes. With “based on” it is meant that the N-terminal segments, and/or C-terminal segments of the HA1 domain and/or the HA2 domains have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity with the corresponding N-terminal and/or C-terminal segments of HA1 and/or the HA2 domains of any naturally occurring influenza hemagglutinin of a H1, H3 and/or H5 subtype known to those of skill in the art or later discovered. In certain embodiments, the influenza hemagglutinin stem domain polypeptides are based on an influenza hemagglutinin of a group 1 influenza A virus. In certain embodiments, the influenza hemagglutinin stem domain polypeptides are based on an influenza hemagglutinin of a group 2 influenza A virus. In some embodiments, the influenza hemagglutinin stem domain polypeptide is a hybrid or chimeric polypeptide that comprises or consists of segments and/or domains from a plurality of influenza strains or subtypes. For example, an influenza hemagglutinin stem domain polypeptide may comprise HA1 N-terminal and HA1 C-terminal stem segments and/or HA2 domains from different influenza A virus HA subtypes.
  • In certain embodiments, the polypeptides are based on H I HA. In a particular embodiment, the polypeptides comprise hemagglutinin stem domains from or based on HA of an influenza A virus comprising HA of the H1 subtype, such as from the influenza virus A/Brisbane/59/2007 (HINT) (SEQ ID NO: 1), as described below. It will be understood by the skilled person that also other influenza A viruses comprising HA of the H1 subtype may be used according to the disclosure. In certain embodiments, the polypeptides comprise hemagglutinin stem domains based on HA of an influenza A H1 virus selected from Table 7.
  • In certain embodiments, the polypeptides comprise a HA1 N-terminal polypeptide segment comprising the amino acids from position 1 to position x of the H1 HA1 domain, wherein x is any amino acid between the amino acid on position 46 and the amino acid on position 60, such as the amino acid on position 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, or 59, preferably wherein x is 52, 53, 55 or 59. Preferably, the polypeptides comprise a HA1 N-terminal segment without the signal sequence, i.e., a HA1 N-terminal segment comprising the amino acids from position 18 (e.g., for H1 HA, such as SEQ ID NO: 1), or an equivalent position in other H1 influenza virus strains, to position x of the HA1 domain. In certain embodiments, the HA1 N-terminal segment thus comprises the amino acids from position p (wherein p=18 for H1 HA in SEQ ID NO: 1 or an equivalent position on other H1 HAs), to position x of the HA1. domain.
  • In certain embodiments, the HA1 C-terminal polypeptide segment comprises the amino acids from position y to and including the C-terminal amino acid of the H1 HA1 domain, wherein y is any amino acid between the amino acid on positions 290 and the amino acid on position 325 of H1 HA1 preferably wherein y is 291, 303, 318, or 321. The HA2 domain comprises one or more mutations in the HA2 amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD (FIG. 1). In certain embodiments, one or more hydrophobic amino acids in the HA2 amino acid sequence have been substituted by hydrophilic amino acids, such as polar and/or charged amino acids. In certain embodiments (e.g., for H1 HA, such as SEQ ID NO: 1), the HA2 amino acid sequence connecting the C-terminal residue of helix A and the N-terminal residue of helix CD comprises the amino acid sequence between residues 402-418 of influenza HA2. In certain embodiments, the HA2 amino acid sequence connecting the C-terminal residue of helix A and the N-terminal residue of helix CD comprises the amino acid sequence MNTQFTAVGKEFN(H/K)LE(K/R) (SEQ ID NO: 17).
  • In certain embodiments, x is 59 and y is 291.
  • In certain embodiments, x is 52 and y is 321.
  • In certain embodiments, x is 53 and y is 303.
  • In certain embodiments, x is 55 and y is 318.
  • In an embodiment, the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD corresponds to the amino acid sequence between the amino acid on position 402 and the amino acid on position 418 of HA2 of SEQ ID NO: 1, wherein the polypeptides comprise one or more mutations in the amino acid sequence spanning from amino acid 402 to 418 of SEQ ID NO: 1. The amino acid sequence between residue 402-418 of influenza HA of serotype H1 comprises the amino acid sequence MNTQFTAVGKEFN(H/K)LE(K/R) (SEQ ID NO: 17). In certain embodiments, the amino acid sequence between residue 402-418 of influenza HA of serotype H1 comprises the amino acid sequence MNTQX1TAX2GKEX3N(H/K)X4E(K/R) (SEQ ID NO: 190).
  • In certain embodiments, the polypeptides thus comprise one or more of the mutations in the H1 HA2 domain as indicated in Table 6. In certain embodiments, one or more of the amino acids on position 406, 409, 413 and 416, i.e., one or more of the amino acids X1, X2, X3 and X4 have been mutated (numbering refers to SEQ ID NO: 1). In certain embodiments, the amino acid on position 406, i.e., X1 has been changed into an amino acid selected from the group consisting of S, T, N, Q, R, H, K, D, E, and G, preferably S. In certain embodiments, the amino acid on position 409, i.e., X2 has been changed into an amino acid selected from the group consisting of S, T, N, Q, R, H, K, D, E, and G, preferably T, Q or G. In certain embodiments, the amino acid on position 413, i.e., X3 has been changed into an amino acid selected from the group consisting of S, T, N, Q, R, H, K, D, E, G, preferably S. In certain embodiments, the amino acid on position 416, i.e., X4 has been changed into an amino acid selected from the group consisting of S, T, N, Q, R, H, K, D, E, G, preferably S. Combinations of these mutations are also possible.
  • In certain embodiments, the HA1 N-terminal stem segment comprises the amino acid residues 1-59 of HA1 and the HA1 C-terminal stem segment comprises the amino acid residues 291-343 of HA1 wherein the amino acid on position 343, i.e., R343, has been mutated and is an amino acid other than R, preferably glutamine (Q). In certain embodiments, the HA1 N-terminal segment consists of the amino acid residues 1-59 of HA1 and the HA1 C-terminal segment consists of the amino acid residues 291-343 of HA1. It is noted that the numbering of the amino acids is based on the numbering of amino acids in H1 HA0, in particular the numbering of the amino acids of the H1N1 influenza strain A/Brisbane/59/2007 (SEQ ID NO: 1). It is noted that since HA sequences of different influenza subtypes/strains may have insertions or deletions in the head region compared to each other, the numbering is not always the same. The skilled person will be able to determine the equivalent amino acid positions in HA sequences of different influenza virus strains and/or subtypes by sequence alignment.
  • In certain embodiments, the HA1 N-terminal polypeptide segment does not comprise the signal sequence. In preferred embodiments, the HA1 N-terminal segment comprises the amino acids from position 18 to position 59 of the HA1 domain. In certain embodiments, the HA1 N-terminal segment consists of the amino acids 18-59 of the HA1 domain.
  • In some embodiments, the polypeptides hereof, comprise one or more further mutations, i.e., amino acid substitutions, in the HA1 domain and/or the HA2 domain. In certain embodiments, the HA1 domain thus further comprises one or more of the following mutations: L58T, V314T and I316T. It is again noted that the numbering of the amino acids is based on the numbering of amino acids in H1 HA0, in particular the numbering of the amino acids of the H1N1 influenza strain A/Brisbane/59/2007 (SEQ ID NO: 1). The skilled person will be able to determine the equivalent amino acids in HA of other influenza H1 viruses and, thus, will be able to determine equivalent mutations.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, and I316T, and the HA2 domain comprises one or more of the following mutations: F406S, V409T, and L416S.
  • In certain embodiments, the HA1 domain further comprises the mutation K321C and/or the HA2 domain further comprises one or more of the following mutations: Q405C, F413C, E421 C, and Y502S.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, I316T, and K321C and the HA2 domain comprises the mutations: Q405C, F406S, V409T, and L416S.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, and I316T, and the HA2 domain comprises the mutations: F406S, V409T, F413C, L416S and E421C.
  • In a specific embodiment, the HA1. domain comprises the mutations L58T, V314T, and I316T, and the HA2 domain comprises the mutations: F406S, V409T, L416S, and Y502S.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, I316T, and K321C and the HA2 domain comprises the mutations: Q405C, F406S, V409T, F413C, L416S and E421C.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, I316T, and K321C and the HA2 domain comprises the mutations: Q405C, F406S, V409T, F413C, L416S, E421C and Y502S.
  • In other embodiments, the HA2 domain further comprises one or more of the mutations M420I and V421I, or equivalent mutations.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, and I316T, and the HA2 domain comprises one or more of the following mutations: F406S, V409T, L416S, M420I and V421I.
  • In certain embodiments, the HA1 N-terminal stem segment comprises the amino acid residues 1-52 of HA1 preferably the amino acid residues 18-52 of HA1, and the HA1 C-terminal stem segment comprises the amino acid residues 321-343 of HA1 wherein the amino acid on position 343, i.e., R343, has been mutated and is an amino acid other than R, preferably glutamine (Q), wherein the HA2 domain comprises the mutations F406S, V409T, L416S, M420I and V421I. In certain embodiments, the HA1 N-terminal stem segment consists of the amino acid residues 1-52 of HA1, preferably the amino acid residues 18-52 of HA1, and the HA1 C-terminal stem segment consists of the amino acid residues 321-343 of HA1.
  • In certain embodiments, the HA1 N-terminal stem segment comprises the amino acid residues 1-53 of HA1, preferably the amino acid residues 18-53 of HA1, and the HA1 C-terminal stem segment comprises the amino acid residues 303-343 of HA1, wherein the amino acid on position 343, i.e., R343, has been mutated and is an amino acid other than R, preferably glutamine (Q). In certain embodiments, the HA1 N-terminal stem segment consists of the amino acid residues 1-53 of HA1, preferably the amino acid residues 18-53 of HA1, and the HA1 C-terminal stem segment consists of the amino acid residues 303-343 of HA1 In a specific embodiment, the HA1 domain comprises the mutations V314T and I316T, and the HA2 domain comprise's one or more of the following mutations: F406S, V409T, L416S, M420I and V421I. In a preferred embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO: 11.
  • In certain embodiments, the HA1 N-terminal stern segment comprises the amino acid residues 1-55 of HA1 preferably the amino acid residues 18-55 of HA1 and the HA1 C-terminal stem segment comprises the amino acid residues 318-343 of HA1, wherein the amino acid on position 343, i.e., R343, has been mutated and is an amino acid other than R, preferably glutamine (Q). In certain embodiments, the HA1 N-terminal stem segment consists of the amino acid residues 1-55 of HA1 preferably the amino acid residues 18-55 of HA1 and the HA1 C-terminal stem segment consists of the amino acid residues 318-343 of HA1. In an embodiment, the HA2 domain comprises the mutations F406S, V409T, L416S, M420I and V421I.
  • In certain embodiments, the polypeptides further comprise the mutation R324C in the HA1 domain and T436C in the HA2 domain.
  • In a specific embodiment, the HA1 domain comprises the mutations L58T, V314T, I316T, and R324C and the HA2 domain comprises one or more of the following mutations: F406S, V409T, L416S, M420I, V421I and T436C.
  • In an embodiment, the HA1 domain comprises the mutation R324C, and the HA2 domain comprises the mutations F406S, V409T, L416S, M420I, V421I and T436C.
  • In another embodiment, the HA1 domain comprises the mutations V314T, I316T and R324C, and the HA2 domain comprises one or more of the following mutations: F406S, V409T, L416S, M420I, V421I and T436C.
  • In an embodiment, the HA1 domain comprises the mutation R324C, and the HA2 domain comprises the mutations F406S, V409T, L416S, M420I, V421I and T436C.
  • In certain embodiments, the polypeptides contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the intracellular and transmembrane sequences, e.g., the amino acid sequence from position (or the equivalent of) 523, 524, 525, 526, 527, 526, 528, 529, or 530 of the HA2 domain to the C-terminus of the HA2 domain (numbering according to SEQ ID NO: 1) has been removed. In certain embodiments, the polypeptides are further stabilized by introducing a sequence known to form trimeric structures, e.g., AYVRKDGEWVLL (SEQ ID NO: 143) (“foldon” sequence), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag (HHHHHHH (SEQ ID NO: 191)) connected via a short linker, e.g., EGR. In some embodiments the linker and his-tag sequence are added without the foldon sequence being present.
  • In certain embodiments, the amino acid sequence from position (or the equivalent of) 530 of the HA2 domain to the C-terminus of the HA2 domain (numbering according to SEQ ID NO: 1) has been removed. In certain embodiments, the intracellular and transmembrane sequence have been replaced by the amino acid sequence AGRHHHHHHH (SEQ ID NO: 81) or SGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGHHHHHHH (SEQ ID NO: 82).
  • In certain embodiments, the polypeptides selectively bind to the antibodies CR6261 and/or CR9114. In an embodiment, the polypeptide does not bind to the antibody CR8057. In an embodiment, CR6261 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 20 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 21; CR9114 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 18 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 19. In an embodiment, CR8057 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 22 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 23.
  • As described above, the polypeptides comprise an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment that is covalently linked by a linking sequence of 0-50 amino acid residues to the HA1 C-terminal stem segment. The linking sequence does not occur in naturally occurring, or wild-type, HA. In certain embodiments, the linker is a peptide that comprises one amino acid residue, two or less amino acid residues, three or less amino acid residues, four or less amino acid residues, five or less amino acid residues, ten or less amino acid residues, 15 or less amino acid residues, or 20 or less amino acid residues or 30 or less amino acid residues or 40 or less amino acid residues or 50 or less amino acid residues. In a specific embodiment, the linking sequence is a sequence selected from the group consisting of G, GS, GGG, GSG, GSA, GSGS (SEQ ID NO: 192), GSAG (SEQ ID NO: 193), GGGG (SEQ ID NO: 194), GSAGS (SEQ ID NO: 195), GSGSG (SE Q ID NO: 196), GSAGSA (SEQ ID NO: ‘189), GSAGSAG (SEQ ID NO: 188), and GSGSGSG (SEQ ID NO: 197).
  • Also provided are methods to provide the polypeptides, in particular, to provide the H1 HA stem domain polypeptide according to the disclosure, as well as the polypeptides obtainable or obtained by these methods. In certain embodiments, the methods comprise the steps of:
      • (a) Providing an influenza HA0 amino acid sequence, in particular an influenza HA0 amino acid sequence of serotype H1;
      • (b) Removing the cleavage site between HA1 and HA2, preferably by mutating the C-terminal amino acid of HA1 into an amino acid other that arginine (R) or lysine (K);
      • (c) Removing the amino acid sequence of the globular head domain from the HA0 sequence; This is done by deleting a segment of the HA1 domain between amino acid on position x and an amino acid on position y, and reconnecting the N-terminal segment (spanning from amino acid on position 1 to and including amino acid on position x of HA1) and the C-terminal segment of HA1 (spanning from amino acid y to the C-terminal amino acid of HA1) , thus obtained, optionally through a linking sequence of 0-50 amino acids. In certain embodiments, x is an amino acid on any position between positions 46 and 60, preferably the amino acid on position 52, 53, 55 or 59 of HA1 and wherein y is an amino acid on any position between positions 290 and 325, preferably an amino acid on position 291, 303, 318, or 321 of HA1 Again, the numbering used refers to SEQ ID NO: 1. It will be understood by the skilled person that the leader sequence (or signal sequence) that directs transport of a protein during production (e.g., corresponding to amino acids 1-17 of SEQ ID NO: 1), generally will not be present in the final polypeptide, that is, e.g., used in a vaccine. In certain embodiments, the polypeptides according to the disclosure thus comprise a HA1 N-terminal segment without the leader sequence.
      • (d) Increasing the stability of the pre-fusion conformation and destabilizing the post-fusion conformation of the modified HA, preferably by introducing one or more mutations in the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD, preferably in the amino acid sequence spanning from amino acid 402-418 of SEQ ID NO: 1 in particular comprising the amino acid sequence of MNTQFTAVGKEFN(H/K)LE(K/R) (SEQ ID NO: 17). The mutations preferably comprise the substitution of hydrophobic amino acid residues into hydrophilic amino acid residues.
      • (e) Introducing one or more disulfide bridges in the HA stem domain polypeptide.
  • Removal of the cleavage site between HA1 and HA2 can be achieved by mutation of R (in a small number of cases K) to Q at the P1 position (see, e.g., Sun et al., 2010, for an explanation of the nomenclature of the cleavage site (position 343 in SEQ ID NO: 1). A mutation to Q is preferred but S, T, N, D or E are alternatives.
  • Removal of the head domain can be achieved, e.g., by deleting amino acids 53 to 320 from SEQ ID NO; 1, or at equivalent positions in HA from other influenza viruses. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly, or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar. The length of the deletion can also be varied, e.g., by starting the deletion at (the equivalent of) position (x), e.g., at position 54, 55, 56, 57 or 58, or to increase the length of the deletion, by cutting at position 47, 48, 49, 50, 51, or 52. Similarly, the last amino acid to be deleted can be at (the equivalent of) position (y), such as 315, 316, 317, 318 or 319, or to increase the length of the deletion at (the equivalent of) position 321, 322, 323, 324, or 325. It is important to realize that changes in the length of the deletion can be in part compensated for by matching the length of the linker sequence, i.e., a larger deletion can be matched with a longer linker and vice versa. These polypeptides are also encompassed by the disclosure.
  • The solubility of the loop between the A-helix and the CD helix is increased. This loop is formed by (the equivalent of) residues 402 to 418 in H1 A/Brisbane/59/2007 (SEQ ID NO: 1). Thus, the stability of the pre-fusion conformation is increased and the post-fusion conformation of the modified HA is destabilized. This loop is highly conserved in H1 sequences, as can be seen in Table 6 below. This can, for example, be achieved by ‘replacing the amino acids I, L, F or V in the loop with hydrophilic counterparts. Equivalent position can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. Mutations to glycine destabilize the post-fusion conformation since the high flexibility of this amino acid leads to a decrease in stability of the post-fusion helix to be formed by this part of the HA sequence. The consensus sequence describing the loop between residue 402-418 of influenza HA of serotype H1 is (SEQ ID NO: 17) MNTQFTAVGKEFN(H/K)LE(K/R). In polypeptides of the disclosure, the amino acid at positions 406, 409, 413 and/or 416 (or their equivalent, as determined from a sequence alignment) is a polar (S, T, N, Q), charged (R, H, K, D, E) or flexible (G) amino acid. Combinations of mutations at these sites are also possible, for example, F406S, V409T, L416S. In some cases, a mutation to restore the consensus amino acid is preferred, e.g., where V or M is at position 404 (to T), V at 408 (to A) or 410 (to G) or I at 414 (to N); the incidence of sequences with these particular amino acids is very low. An overview of the mutations described above that characterize polypeptides of the disclosure is given in Table 6.
  • One or more disulfide bridges are introduced in the stern domain polypeptides, preferably between amino acids of (or the equivalent of) position 324 and 436 in H1 A/Brisbane/59/2007. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • The native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stern domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. According to the disclosure, a consensus sequence for the formation of a trimeric coiled coil, e.g., IEAIEKKIEAIEKKIE (SEQ ID NO: 83), may be introduced in a polypeptide of the disclosure at (the equivalent of) position 418 to 433. In certain embodiments, the sequence MKQIEDKIEEIESKQ (SEQ ID NO: 84), derived from GCN4 and also known to trimerize is introduced at (the equivalent of) position 419-433. In certain embodiments, the trimer interface is stabilized by modifying M420, L423, V427, G430 into isoleucine.
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of H1 HA and the transmembrane domain. In other embodiments, the intracellular and transmembrane sequences, e.g., the amino acid sequence from position (or the equivalent of) 523, 524, 525, 526, 527, 526, 528, 529, or 530 of the HA2 domain to the C-terminus of the HA2 domain (numbering according to SEQ ID NO: 1) has been removed to produce a soluble polypeptide following expression in cells. In certain embodiments, the polypeptides are further stabilized by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 80), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag (HHHHHHH (SEQ ID NO: 191)) connected via a short linker, e.g., EGR. In some embodiments, the linker and his-tag sequence are added without the foldon sequence being present. In certain embodiments, the intracellular and transmembrane sequence have been replaced by the amino acid sequence AGRHHHHHHH (SEQ ID NO: 97) or SGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGHHHHHHH (SEQ ID NO: 82).
  • Applicants have previously identified broadly neutralizing antibodies isolated from primary human B-cells from vaccinated individuals some of which were specific for group 1 (e.g., CR6261, as described in WO 2008/028946) and some of which were specific for group 2 influenza viruses (e.g., CR8020 as described in WO 2010/130636). Detailed analysis of the epitopes of these monoclonal antibodies has revealed the reason for the lack of cross-reactivity of these specific antibodies. In both cases the presence of glycans in group 1 or group 2 HA molecules on different positions at least partly explained the fact that the antibodies are group-specific. With the identification of CR9114-like antibodies that cross-react with many group 1 and 2 HA molecules, as described below, it has become clear that it is possible for the human immune system to elicit very broad neutralizing antibodies against influenza viruses. However, given the need for a yearly vaccination scheme these antibodies are apparently not, or only to a very low extent elicited following infection or vaccination with (seasonal) influenza viruses of subtypes H1 and/or H3. In certain embodiments, the disclosure thus provides polypeptides that present the stem region of HA in a conformational correct manner so that the epitopes that elicit the broadly neutralizing antibodies are presented to the immune system in the absence of immune dominant variable regions. Since it is known that the pattern of glycans differs between H1 and H3 HA, and that this difference may lead to more group restricted antibody response, in different embodiments, the polypeptides hereof are based on group 2 HA molecules (e.g., HA of the H3). As shown in Example 3, below, the in vitro neutralizing capacity of CR9114 is higher on H1 subtypes compared to 1-13 subtypes. Therefore, it is hypothesized that the epitope of CR9114 is more accessible on H1 compared to 113 HA molecules which could be due to a glycan on N38 in HA1 common to many group 2 HA subtypes. Without wishing to be bound to this theory, it may be reasoned that if a polypeptide of the disclosure is based on H1, the resulting antibodies are more likely to be hindered by the glycan on N38 on group 2 HA molecules and thus be somewhat less active on group 2 influenza viruses. Therefore, to enable elicitation of broadly neutralizing antibodies that act on both group 1 and group 2 influenza viruses with good activity, in certain embodiments, the stem domain polypeptides hereof are based on H3 HA subtypes.
  • Humans are frequently infected with seasonal influenza viruses comprising HA of the H1 or H3 subtype. Apparently despite the exposure to these influenza viruses, broadly neutralizing antibodies are not often raised in the natural situation. One of the reasons for this, besides the presence of the variable head region in HA, might be that the exposure to a new subtype that is closely related to the one seen previously somehow makes the response less broad. It thus may be preferred to expose the individual to a more unrelated subtype sequence. Therefore, in yet another embodiment, the stem domain polypeptides hereof are based on HA of a group 2 subtype that does contain an asparagine (N) on position 38 in HA1 (N38), and that is not an H3 subtype.
  • In certain embodiments, the polypeptides are based on an influenza A virus subtype. In certain embodiments, the polypeptides are not based on H7 HA.
  • As described above, polypeptides of the disclosure are not only designed based on parental HA sequences from influenza vaccine virus subtypes of group 1 (such as, e.g., H1 and H5), but can also be based on HA sequences of influenza subtypes from group 2, in particular influenza virus subtypes of group 2 that are used for influenza vaccines, such as H3. According to the disclosure, polypeptides were constructed that conserve the epitope of CR8020 and CR8043 because these antibodies are capable of neutralizing a wide range of group 2 strains (WO 2010/130636). In these polypeptides, the beta-sheet at the bottom of the stem region and its surroundings should be as conserved as possible since this is the region where CR8020 and CR8043 bind to H3 HA.
  • In certain embodiments, the HA domains are of a H3 subtype, preferably of A/Wisconsin/67/2005 (SEQ ID NO: 89), or A/Hong Kong/1/1968 (SEQ ID NO: 121). It will be understood by the skilled person that also other influenza A viruses comprising HA of the H3 subtype may be used according to the disclosure.
  • In certain embodiments, the polypeptides comprise, or consist of, a HA1 N-terminal polypeptide segment comprising the amino acids from position 1 to position x of the H3 HA1 domain, preferably the amino acids from position p to position x of the HA 1 domain, wherein x is any amino acid between the positions 56 and 69, such as 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 or 68, of H3 HA1, preferably wherein x is 61, 62, 63 or 68. In certain embodiments, the HA1 C-terminal polypeptide segment comprises the amino acids from position y to and including the C-terminal amino acid of the H3 HA1 domain, wherein y is any amino acid between and including the positions 292 and 325, of H3 HA1, preferably wherein y is 293, 306, 318 or 323.
  • In certain embodiments, the HA domains are of a H3 subtype, preferably A/Wisconsin/67/2005 (SEQ ID NO: 89), or A/Hong Kong/1/1968 (SEQ ID NO: 121).
  • The head domain may be removed by deleting a large part of the HA1 sequence and reconnecting the N- and C-terminal sequences through a short linker. The deletion can vary in length, but it is preferred that the last residue of the N-terminal sequence of HA1 and the first residue of the C-terminal sequence are spatially close together to avoid introducing strain through the linking sequence. In H3 sequence deletions can be introduced at (the equivalent positions of) S62-P322, S63-P305 and T64-T317. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50, amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar. The length of the deletion can also be varied, e.g., by decreasing the number of residues in the deletion by starting at (the equivalent of) position 63, 64, 65, 66, 67, or to increase the length of the deletion, by cutting at position 57, 58, 59, 60 or 61. Similarly, the last amino acid to be deleted can be at (the equivalent of) position 317, 318, 319, 320 or 321, or to increase the length of the deletion at (the equivalent of) position 323, 324, 325, 326, or 327. It is important to realize that changes in the length of the deletion can be in part compensated for by matching the length of the linker sequence, i.e., a larger deletion can be matched with a longer linker and vice versa. These polypeptides are also included in the disclosure.
  • In certain embodiments, x is 61 and y is 323.
  • In certain embodiments, x is 62 and y is 306.
  • In certain embodiments, x is 63 and y is 318.
  • In certain embodiments, x is (the equivalent of) position 62, 63, 64, 65, 66, or position 56, 57, 58, 59 or 60.
  • In certain embodiments, y is (the equivalent of) position 306, 318, 319, 320, 321 or 322, or (the equivalent of) position 324, 325, 326, 327, or 328.
  • In an embodiment, the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD corresponds to the amino acid sequence between the amino acid on position 400 and the amino acid on position 420 of HA2 of SEQ ID NO: 89, or the amino acid residues on equivalent positions in other H3 virus strains, wherein the polypeptides comprise one or more mutations in the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD, i.e., the amino acid sequence spanning from amino acid 400-420 of SEQ ID NO: 89, or equivalent amino acid residues in other H3 influenza virus strains.
  • In certain embodiments, the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD of influenza HA of serotype H3 comprises the amino acid sequence of SEQ ID NO: 104.
  • The polypeptides comprise one or more mutations in the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD. In certain embodiments, the polypeptides comprise one or more mutations of Table 8, or equivalent mutations in other influenza virus strains of the H3 subtype.
  • The cleavage site between HA1 and HA2 has been removed. In certain embodiments, the removal of the cleavage site at position 345 (numbering refers to SEQ ID NO: 89) has been mutated (R345Q) to prevent the formation of HA1 and HA2 from HA0. Optionally, residue 347 to 351 (IFGAI, part of the fusion peptide) can additionally be deleted to minimize the exposure of hydrophobic residues to the aqueous solvent. The positive charge at the cleavage is 100% conserved in H3 and this mutation can, therefore, be applied in all sequences.
  • The deletion of the head domain leaves the B-loop between residues 400 to 420 now exposed to the aqueous solvent. In H3 HAs this loop is highly conserved (see Table 9). The consensus sequence is: 401 1(E/G)KTNEKFHQIEKEFSEVEGR 421 (SEQ ID NO: 104; numbering refers to SEQ ID NO: 89). To increase the solubility of this loop for the polypeptides hereof in the pre-fusion conformation and destabilize the post-fusion conformation, some hydrophobic residues have to be modified into polar (S, T, N, Q), charged amino acids (R, H, K, D, E), or flexibility has to be increased by mutation to G. Specifically mutations at positions 401, 408, 411, 415, 418, (numbering refers to SEQ ID NO: 89) will contribute to the stability of a polypeptide of the disclosure.
  • To stabilize the pre-fusion conformation of polypeptides of the disclosure, a covalent bond between two parts distant in the primary sequences but close in the folded pre-fusion conformation is introduced. To this end, a disulfide bridge may be engineered in the polypeptides hereof, preferably between (the equivalent of) position 326 and 438 in H3 A/Wisconsin/67/2005 (SEQ ID NO: 89). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues. An alternative cysteine bridge can be created between (the equivalent of) position 334 and 393 in H3 A/Wisconsin/67/2005 (SEQ ID NO: 89) by mutation of these residues into cysteine. In some cases the cysteine at (the equivalent of) position 321 is modified into a glycine to avoid formation of unwanted disulfide bridges.
  • In certain embodiments, the polypeptides comprise one or more of the following mutations: F408S, I411T, F415S, V418G, I401R, K326C, S438C, T334C, I393C, C321G.
  • The native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. A consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIEAIEKK (SEQ ID NO: 198), is introduced at (the equivalent of) position 421 to 441. To avoid interference with the formation of the disulfide bridge between positions 326 and 438 an alternative shorter sequence IEAIEKKIEAIEKKI (SEQ ID NO: 199) at (the equivalent of) positions 421 to 435 was also used. An alternative is to introduce the sequence RMKQIEDKIEEIESKQKKIEN (SEQ ID NO: 200), derived from GCN4 and known to trimerize, at position 421-441 or the shorter sequence RMKQIEDKIEEIESK (SEQ ID NO: 201) at position 421 to 435.
  • The polypeptides hereof may contain the intracellular sequences of HA and the transmembrane domain so that the resulting polypeptides are presented on the cell surface when expressed in cells. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from (the equivalent of) position 522 to the C-terminus is removed so that a secreted (soluble) polypeptide is produced following expression in cells. Optionally, some additional residues can be included in the soluble protein by deleting the sequence from (the equivalent of) 523, 524, 525, 526, 527, 528 or 529. The soluble polypeptide can be further stabilized by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 143) (“foldon” sequence), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag (HHHHHHH (SEQ ID NO: 191)) connected via a short linker, e.g., EGR. In some embodiments, the linker and his-tag sequence are added without the foldon sequence being present.
  • According to the disclosure, the amino acid sequence from position 530 (numbering according to SEQ ID NO: 1) to the C-terminal amino acid of the HA2 domain may be removed and replaced by the following sequences: EGRHHHHHHH (SEQ ID NO: 81), or SGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGHHHHHHH (SEQ ID NO: 82).
  • In certain embodiments, the HA1 N-terminal stem segment does not comprise the signal sequence. It will be understood by the skilled person that the leader sequence (or signal sequence) that directs transport of a protein during production (e.g., corresponding to amino acids 1-17 of SEQ ID NO: 89), generally will not be present in the final polypeptide, that is, e.g., used in a vaccine. In certain embodiments, the polypeptides according to the disclosure thus comprise an amino acid sequence without the leader sequence.
  • According to the disclosure, the polypeptides are not based on HA molecules of Influenza B. The influenza type B virus strains are strictly human. The antigenic variation in HA within the influenza type B virus strains is smaller than those observed within the type A strains. Two genetically and antigenically distinct lineages of influenza B virus are circulating in humans, as represented by the B/Yamagata/16/88 (also referred to as B/Yamagata) and B/Victoria/2/87 (B/Victoria) lineages (Ferguson et al., 2003). Although the spectrum of disease caused by influenza B viruses is generally milder than that caused by influenza A viruses, severe illness requiring hospitalization is still frequently observed with influenza B infection.
  • Polypeptides are provided herein that mimic the specific epitopes of CR6261 and CR9114, and that can be used as immunogenic polypeptides, e.g., to elicit cross-neutralizing antibodies when administered in vivo, either alone, or in combination with other prophylactic and/or therapeutic treatments. With “cross-neutralizing antibodies,” antibodies are meant that are capable of neutralizing at least two, preferably at least three, four, or five different subtypes of influenza A viruses of phylogenetic group 1, and/or at least two, preferably at least three, four, or five different subtypes of influenza A viruses of phylogenetic group 2, and/or at least two, different subtypes of influenza B viruses, in particular at least all virus strains that are neutralized by CR6261 and CR9114.
  • The polypeptides hereof do not comprise the full-length HA1 In certain embodiments, the immunogenic polypeptides are substantially smaller than HA0, preferably lacking all or substantially all of the globular head of HA. Preferably, the immunogenic polypeptides are no more than 360, preferably no more than 350, 340, 330, 320, 310, 305, 300, 295, 290, 285, 280, 275, or 270 amino acids in length. In an embodiment, the immunogenic polypeptide is from about 250 to about 350, preferably from about 260 to about 340, preferably from about 270 to about 330, preferably from about 270 to about 330 amino acids in length.
  • In certain embodiments, the polypeptides selectively bind to the antibodies CR6261 and/or CR9114. In an embodiment, the polypeptide does not bind to the antibody CR8057. In an embodiment, CR6261 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 20 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 21; CR9114 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 18 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 19. In an embodiment, CR8057 comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 22 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 23.
  • As described above, the polypeptides comprise an influenza hemagglutinin HA1 domain that comprises an HA1 N-terminal stem segment that is covalently linked by a linking sequence of 0-50 amino acid residues to the HA1 C-terminal stem segment. The linking sequence does not occur in naturally occurring, or wild-type, HA. In certain embodiments, the linker is a peptide that comprises one amino acid residue, two or less amino acid residues, three or less amino acid residues, four or less amino acid residues, five or less amino acid residues, ten or less amino acid residues, 15 or less amino acid residues, or 20 or less amino acid residues or 30 or less amino acid residues or 40 or less amino acid residues or 50 or less amino acid residues. In a specific embodiment, the linking sequence is a sequence selected from the group consisting of G, GS, GGG, GSG, GSA, GSGS (SEQ ID NO: 192), GSAG (SEQ ID NO: 193), GGGG (SEQ ID NO: 194), GSAGS (SEQ ID NO: 195), GSGSG (SEQ ID NO: 196), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188), and GSGSGSG (SEQ ID NO: 197).
  • Also provided are methods to provide the polypeptides, in particular, to provide the amino acid sequence of the HA stem domain polypeptide according to the disclosure, as well as the polypeptides obtainable or obtained by these methods. In certain embodiments, the methods comprise the steps of:
      • Providing an influenza HA0 amino acid sequence, e.g., an influenza HA0 sequence of serotype H1, H5 or H3;
      • Removing the cleavage site between HA1 and HA2, preferably by mutating the C-terminal amino acid of HA1 into an amino acid other that arginine (R) or lysine (K);
      • Removing the amino acid sequence of the globular head domain from the HA0 sequence; This is done by deleting a segment of the HA1 domain between amino acid on position x and an amino acid on position y, and reconnecting the N-terminal segment (spanning from amino acid on position 1 to and including amino acid on position x of HA1) and the C-terminal segment of HA1 (spanning from amino acid y to the C-terminal amino acid of HA1) , thus obtained, optionally through a linking sequence of 0-50 amino acids.
      • Increasing the stability of the pre-fusion conformation and destabilizing the post-fusion conformation of the modified HA, preferably by introducing one or more mutations in the amino acid sequence connecting the C-terminal residue of helix A to the N-terminal residue of helix CD, preferably in the amino acid sequence spanning from amino acid 402-418 of H1 HA, in particular comprising the amino acid sequence of MNTQFTAVGKEFN(H/K)LE(K/R) (SEQ ID NO: 17) or I(E/G)KTNEKFHQIEKEFSEVEGR 421 (SEQ ID NO: 104) for H3 HA. The mutations preferably comprise the substitution of hydrophobic amino acid residues into hydrophilic amino acid residues.
      • Introducing one or more disulfide bridges in the HA stem domain polypeptide.
  • Removal of the cleavage site between HA1 and HA2 can be achieved by mutation of R (in a small number of cases K) to Q at the P1 position (see, e.g., Sun et al., 2010, for an explanation of the nomenclature of the cleavage site (position 343 in SEQ ID NO: 1). A mutation to Q is preferred but S, T, N, D or E are alternatives.
  • Removal of the head domain can be achieved, e.g., by deleting amino acids 53 to 320 from SEQ ID NO: 1. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly, or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar. The length of the deletion can also be varied, e.g., by starting the deletion at (the equivalent of) position (x), e.g., at position 54, 55, 56, 57 or 58, or to increase the length of the deletion, by cutting at position 47, 48, 49, 50, 51, or 52. Similarly, the last amino acid to be deleted can be at (the equivalent of) position (y), such as 315, 316, 317, 318 or 319, or to increase the length of the deletion at (the equivalent of) position 321, 322, 323, 324, or 325. It is important to realize that changes in the length of the deletion can be in part compensated for by matching the length of the linker sequence, i.e., a larger deletion can be matched with a longer linker and vice versa. These polypeptides are also encompassed by the disclosure.
  • According to the disclosure, the solubility of the loop between the A-helix and the CD helix is increased. This loop is formed by (the equivalent of) residues 402 to 418 in H1 A/Brisbane/59/2007 (SEQ ID NO: 1). Thus, the stability of the pre-fusion conformation is increased and the post-fusion conformation of the modified HA is destabilized. This loop is highly conserved in H1 sequences, as can be seen in Table 6 below. This can, for example, be achieved by replacing the amino acids I, L, F or V in the loop with hydrophilic counterparts. Equivalent position can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. Mutations to glycine destabilize the post-fusion conformation since the high flexibility of this amino acid leads to a decrease in stability of the post-fusion helix to be formed by this part of the HA sequence. The consensus sequence describing the loop between residue 402-418 of influenza HA of serotype H1 is (SEQ ID NO: 17) MNTQFTAVGKEFN(H/K)LE(K/R). In certain polypeptides of the disclosure, the amino acid at positions 406, 409, 413 and/or 416 (or their equivalent, as determined from a sequence alignment) is a polar (S, T, N, Q), charged (R, H, K, D, E) or flexible (G) amino acid. Combinations of mutations at these sites are also possible, for example, F406S, V409T, L416S as in SEQ ID NO: 10 and SEQ ID NO: 14. In some cases a mutation to restore the consensus amino acid is preferred, e.g., where V or M is at position 404 (to T), V at 408 (to A) or 410 (to G) or I at 414 (to N); the incidence of sequences with these particular amino acids is very low. An overview of the mutations described above that characterize polypeptides of the disclosure is given in Table 6.
  • According to the disclosure, one or more disulfide bridges are introduced in the stem domain polypeptides, preferably between amino acids of (or the equivalent of) position 324 and 436 in H1 A/Brisbane/59/2007: SEQ ID NOs: 13-16. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • Polypeptides obtainable by the method are also part of the disclosure.
  • The native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. According to the disclosure, a consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIE (SEQ ID NO: 83), may be introduced in a polypeptide of the disclosure at (the equivalent of) position 418 to 433. In certain embodiments, the sequence MKQIEDKIEEIESKQ (SEQ ID NO: 84), derived from GCN4 and known to trimerize is introduced at (the equivalent of) position 419-43. In certain embodiments, the trimer interface is stabilized by modifying M420, L423, V427, G430 into Isoleucine.
  • In certain embodiments, the polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 3-16, SEQ ID NO: 44-53, SEQ ID NO: 111-114, SEQ ID NO: 119-120, SEQ ID NO: 125, 126, 130, SEQ ID NO: 144-175 and SEQ ID NO: 177-187.
  • In certain embodiments, the polypeptides are selected from the group consisting of SEQ ID NO: 45, SEQ ID NO: 113 and SEQ ID NO: 130.
  • It will be understood by the skilled person that the leader sequence (or signal sequence) that directs transport of a protein during production (e.g., corresponding to amino acids 1-17 of SEQ ID NO: 1), is not present in the final polypeptide, that is, e.g., used in a vaccine. In certain embodiments, the polypeptides according to the disclosure thus comprise an amino acid sequence without the leader sequence.
  • The influenza hemagglutinin stem domain polypeptides can be prepared according to any technique deemed suitable to one of skill, including techniques described below.
  • Thus, the immunogenic polypeptides of the disclosure may be synthesized as DNA sequences by standard methods known in the art and cloned and subsequently expressed, in vitro or in vivo, using suitable restriction enzymes and methods known in the art. The disclosure thus also relates to nucleic acid molecules encoding the above described polypeptides. The disclosure further relates to vectors comprising the nucleic acids encoding the polypeptides hereof. In certain embodiments, a nucleic acid molecule according to the disclosure is part of a vector, e.g., a plasmid. Such vectors can easily be manipulated by methods well known to the person skilled in the art, and can, for instance, be designed for being capable of replication in prokaryotic and/or eukaryotic cells. In addition, many vectors can directly or in the form of an isolated desired fragment there from be used for transformation of eukaryotic cells and will integrate in whole or in part into the genome of such cells, resulting in stable host cells comprising the desired nucleic acid in their genome. The vector used can be any vector that is suitable for cloning DNA and that can be used for transcription of a nucleic acid of interest. When host cells are used it is preferred that the vector is an integrating vector. Alternatively, the vector may be an episomally replicating vector.
  • The person skilled in the art is capable of choosing suitable expression vectors, and inserting the nucleic acid sequences of the disclosure in a functional manner. To obtain expression of nucleic acid sequences encoding polypeptides, it is well known to those skilled in the art that sequences capable of driving expression can be functionally linked to the nucleic acid sequences encoding the polypeptide, resulting in recombinant nucleic acid molecules encoding a protein or polypeptide in expressible format. In general, the promoter sequence is placed upstream of the sequences that should be expressed. Many expression vectors are available in the art, e.g., the pcDNA and pEF vector series of lnvitrogen, pMSCV and pTK-Hyg from BD Sciences, pCMV-Script from Stratagene, etc., which can be used to obtain suitable promoters and/or transcription terminator sequences, polyA sequences, and the like. Where the sequence encoding the polypeptide of interest is properly inserted with reference to sequences governing the transcription and translation of the encoded polypeptide, the resulting expression cassette is useful to produce the polypeptide of interest, referred to as expression. Sequences driving expression may include promoters, enhancers and the like, and combinations thereof. These should be capable of functioning in the host cell, thereby driving expression of the nucleic acid sequences that are functionally linked to them. The person skilled in the art is aware that various promoters can be used to obtain expression of a gene in host cells. Promoters can be constitutive or regulated, and can be obtained from various sources, including viruses, prokaryotic, or eukaryotic sources, or artificially designed. Expression of nucleic acids of interest may be from the natural promoter or derivative thereof or from an entirely heterologous promoter (Kaufman, 2000). Some well-known and much used promoters for expression in eukaryotic cells comprise promoters derived from viruses, such as adenovirus, e.g., the EIA promoter, promoters derived from cytomegalovirus (CMV), such as the CMV immediate early (IE) promoter (referred to herein as the CMV promoter) (obtainable for instance from pcDNA, Invitrogen), promoters derived from Simian Virus 40 (SV40) (Das et al., 1985), and the like. Suitable promoters can also be derived from eukaryotic cells, such as methallothionein (MT) promoters, elongation factor la (EF-1α) promoter (Gill et al., 2001), ubiquitin C or UB6 promoter (Gill et al., 2001), actin promoter, an immunoglobulin promoter, heat shock promoters, and the like. Testing for promoter function and strength of a promoter is a matter of routine for a person skilled in the art, and in general may for instance encompass cloning a test gene such as lacZ, luciferase, GFP, etc., behind the promoter sequence, and test for expression of the test gene. Of course, promoters may be altered by deletion, addition, mutation of sequences therein, and tested for functionality, to find new, attenuated, or improved promoter sequences. According to the disclosure, strong promoters that give high transcription levels in the eukaryotic cells of choice are preferred.
  • The constructs may be transfected into eukaryotic cells (e.g., plant, fungal, yeast or animal cells) or suitable prokaryotic expression systems like E. coli using methods that are well known to persons skilled in the art. In some cases, a suitable “tag” sequence (such as, for example, but not limited to, a his-, myc-, strep-, or flag-tag) or complete protein (such as, for example, but not limited to, maltose binding protein or glutathione S transferase) may be added to the sequences of the disclosure to allow for purification and/or identification of the polypeptides from the cells or supernatant. Optionally, a sequence containing a specific proteolytic site can be included to afterwards remove the tag by proteolytic digestion.
  • Purified polypeptides can be analyzed by spectroscopic methods known in the art (e.g., circular dichroism spectroscopy, Fourier Transform Infrared spectroscopy and NMR spectroscopy or X-ray crystallography) to investigate the presence of desired structures like helices and beta sheets. ELISA, Octet and FACS and the like can be used to investigate binding of the polypeptides hereof to the broadly neutralizing antibodies described before (CR6261, CR9114, CR8057). Thus, polypeptides according to the disclosure having the correct conformation can be selected.
  • The disclosure further relates to immunogenic compositions comprising a therapeutically effective amount of at least one of the polypeptides and/or nucleic acids of the disclosure. In certain embodiments, the compositions comprise polypeptides comprising hemagglutinin stem domains from (or based on) HA of one influenza subtype, e.g., based on HA of an influenza virus comprising HA of, e.g., a H1 or H7 subtype. In certain embodiments, the compositions comprise polypeptides comprising hemagglutinin stem domains based on HA of two or more different influenza subtypes, e.g., compositions comprising both polypeptides comprising hemagglutinin stem domains based on HA of the H1 subtype and polypeptides comprising hemagglutinin stem domains based on HA of the H7 subtype.
  • The immunogenic compositions preferably further comprise a pharmaceutically acceptable carrier. In the present context, the term “pharmaceutically acceptable” means that the carrier, at the dosages and concentrations employed, will not cause unwanted or harmful effects in the subjects to which they are administered. Such pharmaceutically acceptable carriers and excipients are well known in the art (see Remington's Pharmaceutical Sciences, 18th edition, A. R. Gennaro, Ed., Mack Publishing Company (1990); Pharmaceutical Formulation Development of Peptides and Proteins, S. Frokjaer and L. Hovgaard, Eds., Taylor & Francis (2000); and Handbook of Pharmaceutical Excipients, 3rd edition, A. Kibbe, Ed., Pharmaceutical Press (2000)). The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the composition is administered. Saline solutions and aqueous dextrose and glycerol solutions can, e.g., be employed as liquid carriers, particularly for injectable solutions. The exact formulation should suit the mode of administration. The polypeptides and/or nucleic acid molecules preferably are formulated and administered as a sterile solution. Sterile solutions are prepared by sterile filtration or by other methods known per se in the art. The solutions can then be lyophilized or filled into pharmaceutical dosage containers. The pH of the solution generally is in the range of pH 3.0 to 9.5, e.g., pH 5.0 to 7.5.
  • The disclosure also relates to methods for inducing an immune response in a subject, the method comprising administering to a subject, a polypeptide, nucleic acid molecule and/or immunogenic composition as described above. A subject according to the disclosure preferably is a mammal that is capable of being infected with an infectious disease-causing agent, in particular an influenza virus, or otherwise can benefit from the induction of an immune response, such subject for instance being a rodent, e.g., a mouse, a ferret, or a domestic or farm animal, or a non-human-primate, or a human. Preferably, the subject is a human subject. The disclosure thus provides methods for inducing an immune response to an influenza virus hemagglutinin (HA), in particular of a group 1 and/or group 2 influenza A virus, such as an influenza virus comprising HA of the H1, H2, H3, H4, H5, H7 and/or H10 subtype, and/or of an influenza B virus, in a subject utilizing the polypeptides, nucleic acids and/or immunogenic compositions described herein. In some embodiments, the immune response induced is effective to prevent and/or treat an influenza virus infection caused group 1 and/or group 2 influenza A virus subtypes and/or influenza B viruses. In some embodiments, the immune response induced by the polypeptides, nucleic acids and/or immunogenic compositions described herein is effective to prevent and/or treat an influenza A and/or B virus infection caused by two, three, four, five or six subtypes of influenza A and/or B viruses.
  • Since it is well known that small proteins and/or nucleic acid molecules do not always efficiently induce a potent immune response it may be necessary to increase the immunogenicity of the polypeptides and/or nucleic acid molecules by adding an adjuvant. In certain embodiments, the immunogenic compositions described herein comprise, or are administered in combination with, an adjuvant. The adjuvant for administration in combination with a composition described herein may be administered before, concomitantly with, or after administration of the composition. Examples of suitable adjuvants include aluminium salts such as aluminium hydroxide and/or aluminium phosphate; oil-emulsion compositions (or oil-in-water compositions), including squalene-water emulsions, such as MF59 (see, e.g., WO 90/14837); saponin formulations, such as, for example, QS21 and Immunostimulating Complexes (ISCOMS) (see, e.g., U.S. Pat. No. 5,057,540; WO 90/03184, WO 96/11711, WO 2004/004762, WO 2005/002620); bacterial or microbial derivatives, examples of which are monophosphoryl lipid A (MPL), 3-O-deacylated MPL (3dMPL), CpG-motif containing oligonucleotides, ADP-ribosylating bacterial toxins or mutants thereof, such as E. coli heat labile enterotoxin LT, cholera toxin CT, pertussis toxin PT, or tetanus toxoid TT, Matrix M (Isconova). In addition, known immunopotentiating technologies may be used, such as fusing the polypeptides hereof to proteins known in the art to enhance immune response (e.g., tetanus toxoid, CRM197, rCTB, bacterial flagellins or others) or including the polypeptides in virosomes, or combinations thereof. Other non-limiting examples that can be used are, e.g., disclosed by Coffman et al. (2010).
  • In one embodiment, the influenza hemagglutinin stem domain polypeptides of the disclosure are incorporated into viral-like particle (VLP) vectors. VLPs generally comprise a viral polypeptide(s) typically derived from a structural protein(s) of a virus. Preferably, the VLPs are not capable of replicating. In certain embodiments, the VLPs may lack the complete genome of a virus or comprise a portion of the genome of a virus. In some embodiments, the VLPs are not capable of infecting a cell. In some embodiments, the VLPs express on their surface one or more of viral (e.g., virus surface glycoprotein) or non-viral (e.g., antibody or protein) targeting moieties known to one skilled in the art.
  • In a specific embodiment, the polypeptide is incorporated into a virosome. A virosome containing a polypeptide according to the disclosure may be produced using techniques known to those skilled in the art. For example, a virosome may be produced by disrupting a purified virus, extracting the genome, and reassembling particles with the viral proteins (e.g., an influenza hemagglutinin stem domain polypeptide) and lipids to form lipid particles containing viral proteins.
  • The disclosure also relates to the above-described polypeptides, nucleic acids and/or immunogenic compositions for inducing an immune response in a subject against influenza HA, in particular for use as a vaccine. The influenza hemagglutinin stem domain polypeptides, nucleic acids encoding such polypeptides, or vectors comprising such nucleic acids or polypeptides described herein thus may be used to elicit neutralizing antibodies against influenza viruses, for example, against the stem region of influenza virus hemagglutinin. The disclosure in particular relates to polypeptides, nucleic acids, and/or immunogenic compositions as described above for use as a vaccine in the prevention and/or treatment of a disease or condition caused by an influenza A virus of phylogenetic group 1 and/or phylogenetic group 2 and/or an influenza B virus. In an embodiment, the vaccine may be used in the prevention and/or treatment of diseases caused by two, three, four, five, six or more different subtypes of phylogenetic group 1 and/or 2 and/or influenza B viruses. The polypeptides hereof may be used after synthesis in vitro or in a suitable cellular expression system, including bacterial and eukaryotic cells, or alternatively, may be expressed in vivo in a subject in need thereof, by expressing a nucleic acid coding for the immunogenic polypeptide. Such nucleic acid vaccines may take any form, including naked DNA, plasmids, or viral vectors including adenoviral vectors.
  • Administration of the polypeptides, nucleic acid molecules, and/or immunogenic compositions according to the disclosure can be performed using standard routes of administration. Non-limiting examples include parenteral administration, such as intravenous, intradermal, transdermal, intramuscular, subcutaneous, etc., or mucosal administration, e.g., intranasal, oral, and the like. The skilled person will be capable to determine the various possibilities to administer the polypeptides, nucleic acid molecules, and/or immunogenic compositions according to the disclosure, in order to induce an immune response. In certain embodiments, the polypeptide, nucleic acid molecule, and/or immunogenic composition (or vaccine) is administered more than one time, i.e., in a so-called homologous prime-boost regimen. In certain embodiments where the polypeptide, nucleic acid molecule, and/or immunogenic composition is administered more than once, the administration of the second dose can be performed after a time interval of, for example, one week or more after the administration of the first dose, two weeks or more after the administration of the first dose, three weeks or more after the administration of the first dose, one month or more after the administration of the first dose, six weeks or more after the administration of the first dose, two months or more after the administration of the first dose, 3 months or more after the administration of the first dose, 4 months or more after the administration of the first dose, etc., up to several years after the administration of the first dose of the polypeptide, nucleic acid molecule, and/or immunogenic composition. It is also possible to administer the vaccine more than twice, e.g., three times, four times, etc., so that the first priming administration is followed by more than one boosting administration. In other embodiments, the polypeptide, nucleic acid molecule, and/or immunogenic composition according to the disclosure is administered only once.
  • The polypeptides, nucleic acid molecules, and/or immunogenic compositions may also be administered, either as prime, or as boost, in a heterologous prime-boost regimen.
  • Further provided are methods for preventing and/or treating an influenza virus disease in a subject utilizing the polypeptides, nucleic acids and/or compositions described herein. In a specific embodiment, a method for preventing and/or treating an influenza virus disease in a subject comprises administering to a subject in need thereof an effective amount of a polypeptide, nucleic acid and/or immunogenic composition, as described above. A therapeutically effective amount refers to an amount of the polypeptide, nucleic acid, and/or composition as defined herein, that is effective for preventing, ameliorating and/or treating a disease or condition resulting from infection by a group 1 or 2 influenza A virus, and/or an influenza B virus. Prevention encompasses inhibiting or reducing the spread of influenza virus or inhibiting or reducing the onset, development or progression of one or more of the symptoms associated with infection by an influenza virus. “Amelioration” as used in herein may refer to the reduction of visible or perceptible disease symptoms, viremia, or any other measurable manifestation of influenza infection.
  • Those in need of treatment include those already inflicted with a condition resulting from infection with a group 1 or a group 2 influenza A virus, or an influenza B virus, as well as those in which infection with influenza virus is to be prevented. The polypeptides, nucleic acids and/or compositions of the disclosure thus may be administered to a naive subject, i.e., a subject that does not have a disease caused by influenza virus infection or has not been and is not currently infected with an influenza virus infection, or to subjects that already are and/or have been infected with an influenza virus.
  • In an embodiment, prevention and/or treatment may be targeted at patient groups that are susceptible to influenza virus infection. Such patient groups include, but are not limited to e.g., the elderly (e.g., ≧50 years old, ≧60 years old, and preferably ≧65 years old), the young (e.g., ≦5 years old, ≦1 year old), hospitalized patients and patients who have been treated with an antiviral compound but have shown an inadequate antiviral response.
  • In another embodiment, the polypeptides, nucleic acids and/or immunogenic compositions may be administered to a subject in combination with one or more other active agents, such as existing, or future influenza vaccines, monoclonal antibodies and/or antiviral agents, and/or antibacterial, and/or immunomodulatory agents. The one or more other active agents may be beneficial in the treatment and/or prevention of an influenza virus disease or may ameliorate a symptom or condition associated with an influenza virus disease. In some embodiments, the one or more other active agents are pain relievers, anti-fever medications, or therapies that alleviate or assist with breathing.
  • Dosage regimens of the polypeptides and/or nucleic acid molecules of the disclosure can be adjusted to provide the optimum desired response (e.g., a therapeutic response). A suitable dosage range may for instance be 0.1-100 mg/kg body weight, preferably 1-50 mg/kg body weight, preferably 0.5-15 mg/kg body weight. The precise dosage of the polypeptides and/or nucleic acid molecules to be employed will, e.g., depend on the route of administration, and the seriousness of the infection or disease caused by it, and should be decided according to the judgment of the practitioner and each subject's circumstances. For example, effective doses vary depending target site, physiological state of the patient (including age, body weight, health), and whether treatment is prophylactic or therapeutic. Usually, the patient is a human but non-human mammals including transgenic mammals can also be treated. Treatment dosages are optimally titrated to optimize oafety and efficacy.
  • The polypeptides hereof may also be used to verify binding of monoclonal antibodies identified as potential therapeutic candidates. In addition, the polypeptides hereof may be used as diagnostic tool, for example, to test the immune status of an individual by establishing whether there are antibodies in the serum of such individual capable of binding to the polypeptide of the disclosure. The disclosure thus also relates to an in vitro diagnostic method for detecting the presence of an influenza infection in a patient, the method comprising the steps of a) contacting a biological sample obtained from the patient with a polypeptide according to the disclosure; and b) detecting the presence of antibody-antigen complexes.
  • The polypeptides hereof may also be used to identify new binding molecules or improve existing binding molecules, such as monoclonal antibodies and antiviral agents.
  • The disclosure is further illustrated in the following Examples and Figures. The Examples are not intended to limit the scope of the disclosure in any way.
  • EXAMPLES Example 1 Identification of a Novel Group 1 and Group 2 Cross-Neutralizing Antibody: CR9114
  • Peripheral blood was collected from normal healthy donors by venapuncture in EDTA anti-coagulation sample tubes. scFv phage display libraries were obtained essentially as described in WO 2008/028946, which is incorporated by reference herein. Selection was performed against recombinant hemagglutinin (HA) of influenza A subtype H1 (A/New Caledonia/20/99), H3 (A/Wisconsin/67/2005), H4 (A/Duck/Hong Kong/24/1976), H5 (A/Chicken/Vietnam/28/2003), H7 (A/Netherlands/219/2003) and H9 (A/Hong Kong/1073/99). Two consecutive rounds of selections were performed before isolation of individual single-chain phage antibodies. After the second round of selection, individual E. coli colonies were used to prepare monoclonal phage antibodies. Selected supernatants containing single-chain phage antibodies that were obtained in the screenings described above were validated in ELISA for specificity, i.e., binding to different HA antigens. For this purpose, baculovirus expressed recombinant H1 (A/New Caledonia/20/99), H3 (A/Wisconsin/67/2005), H5 (A/Vietnam/1203/04) H7 (A/Netherlands/219/2003), and B (B/Ohio/01/2005) HAs (Protein Sciences, CT, USA) were coated to MAXISORP™ ELISA plates. Of the single-chain phage antibodies that were obtained, single-chain phage antibody SC09-114 was shown to specifically bind recombinant influenza A H1, H3, H5, H7 and influenza B HA. Binding and specificity of SC09-114 was validated by FACS analysis. For this purpose, full-length recombinant influenza A subtypes H1 (A/New Caledonia/20/1999), H3 (A/Wisconsin/67/2005) and H7 (A/Netherlands/219/2003) HAs were expressed on the surface of PER.C6® cells. SC09-114 was shown to specifically bind to influenza A subtypes H1, H3 and H7 HA. Heavy and light chain variable regions of the scFv were cloned as described before (WO 2008/028946). The resulting expression constructs encoding the human IgG1 heavy and light chains were transiently expressed in combination in 293T cells and supernatants containing the human IgG1 antibody CR9114 were obtained and produced using standard purification procedures. The amino acid sequence of the CDRs of the heavy and light chains of CR9114 are given in Table 1. The nucleotide and amino acid sequences and of the heavy and light chain variable regions are given below.
  • Example 2 Cross-Binding Reactivity of CR9114
  • CR9114 was validated in ELISA for binding specificity, i.e., binding to different HA antigens. For this purpose, baculovirus expressed recombinant H1 (A/New Caledonia/20/1999), H3 (A/Wisconsin/67/2005), H5 (A/Vietnam/1203/04, H7 (A/Netherlands/219/2003) and H9 (A/Hong Kong/1073/99) HAs (Protein Sciences, CT, USA) were coated to MAXISORP™ ELISA plates. As a control, an unrelated IgG CR4098 was used. CR114 was shown to have heterosubtypic cross-binding activity to all the recombinant HAs tested. See Table 2.
  • Additionally, the antibody was tested for heterosubtypic binding by FACS analysis. For this purpose, full-length recombinant influenza A subtypes H1 (A/New Caledonia/20/1999), H3 (A/Wisconsin/67/2005) and H7 (A/Netherlands/219/2003) HAs were expressed on the surface of PER.C6® cells. The cells were incubated with CR9114 for I hour followed by three wash steps with PBS+0.1% BSA. Bound antibody was detected using PE conjugated anti-human antibody. As a control, untransfected PER.C6® cells were used. CR9114 showed cross-binding activity to influenza A subtypes H1, H3 and H7 HA but not wild-type PER.C6® cells. See Table 2.
  • Example 3 Cross-Neutralizing Activity of CR9114
  • In order to determine whether CR9114 was capable of blocking multiple influenza A strains, additional in vitro virus neutralization assays (VNA) were performed. The VNA were performed on MDCK cells (ATCC CCL-34). MDCK cells were cultured in MDCK cell culture medium (MEM medium supplemented with antibiotics, 20 mM Hepes and 0.15% (w/v) sodium bicarbonate (complete MEM medium), supplemented with 10% (v/v) fetal bovine serum). The H1 (A/WSN/33, A/New Caledonia/20/1999, A/Solomon Islands/IVR-145 (high-growth reassortant of A/Solomon Islands/3/2006), A/Brisbane/59/2007, A/NYMC/X-181(high-growth reassortant of A/California/07/2009), H2 (A/Env/MPU3156/05), H3 (A/Hong Kong/1/68, A/Johannesburg/33/94, A/Panama/2000/1999, A/Hiroshima/52/2005, A/Wisconsin/67/2005 and A/Brisbane/10/2007), H4 (A/WF/HIUMPA892/06), H5 (PR8-H5N1-HK97 (6:2 reassortant of A/Hong Kong/156/97 and A/PR/8/34) and A/Eurasian Wigeon/MPF461/07), H6 (A/Eurasian Wigeon/MPD411/07), H7 (NIBRG-60 (6:2 reassortant of A/Mallard/Netherlands/12/2000) and PR8-H7N7-NY (7:1 reassortant of A/New York/107/2003 (H7N7) and A/PR/8/34)), H8 (A/Eurasian Wigeon/MPH571/08) H9 (A/Hong Kong/1073/99 and A/Chick/HK/SSP176/09), H10 (A/Chick/Germany/N/49) and H14 (PR8-H14N5 (6:2 reassortant of A/mallard/Astrakhan/263/1982 (H14N5) and A/PR/8/34)) strains which were used in the assay were all diluted to a titer of 5,7×103 TCID50/ml (50% tissue culture infective dose per ml), with the titer calculated according to the method of Spearman and Karber. The IgG preparations (200 μg/ml) were serially 2-fold diluted (1:2-1:512) in complete MEM medium in quadruplicate wells. 25 μl of the respective IgG dilution was mixed with 25 μl of virus suspension (100 TCID50/25 μl) and incubated for one hour at 37° C. The suspension was then transferred in quadruplicate onto 96-well plates containing confluent MDCK cultures in 50 μl complete MEM medium. Prior to use, MDCK cells were seeded at 3×104 cells per well in MDCK cell culture medium, grown until cells had reached confluence, washed with 300-350 μl PBS, pH 7.4 and finally 50 μl complete MEM medium was added to each well. The inoculated cells were cultured for 3-4 days at 37° C. and observed daily for the development of cytopathogenic effect (CPE). CPE was compared to the positive control.
  • CR9114 was shown to have heterosubtypic cross-neutralizing activity to representative strains of all tested influenza A subtypes H1, H2, H3, H4, H5, H6, H7, H8, H9 and H10 viruses. See Table 3.
  • Example 4 Design of a Stem Domain Polypeptide Comprising the Conserved Stem Domain Epitopes of CR6261 and CR9114 Based on H1 HA
  • Fully human monoclonal antibodies against influenza virus hemagglutinin with broad cross-neutralizing potency were identified previously. CR6261 (as described in WO 2008/028946) was shown to have broadly cross-neutralizing activity against influenza A viruses of phylogenetic group 1. In addition, CR9114, described above, has been shown to be able to bind to and neutralize influenza A viruses of both phylogenetic group 1 and 2, as well as influenza B viruses. Functional and structural analysis have revealed that these antibodies interfere with the membrane fusion process and are directed against highly conserved epitopes in the stem domain of the influenza HA protein (Throsby et al. (2008); Ekiert et al. (2009) W02008/028946, and co-pending application no. EP11173953.8).
  • In the research that led to the disclosure, new molecules comprising the stem domains of HA containing these epitopes were designed in order to create universal epitope-based immunogenic polypeptides that can be used, e.g., as a vaccine inducing protection against a broad range of influenza strains. Essentially, the highly variable and immunodominant part, i.e., the head domain is first removed from the full-length HA molecule to create a HA stem-domain polypeptide, also referred to as “mini-HA.” In this way the immune response will be redirected towards the stem domain where the epitopes for the broadly neutralizing antibodies are located. The antibodies CR6261 and CR9114 are used to probe the correct folding of the newly created molecules, and to confirm the presence of the neutralizing epitopes.
  • The polypeptides hereof thus present the conserved epitopes of the membrane proximal stem domain HA molecule to the immune system in the absence of dominant epitopes that are present in the membrane distal head domain. To this end, part of the primary sequence of the HA0 protein making up the head domain is removed and reconnected, either directly or by introducing a short flexible linking sequence (“linker”) to restore the continuity of the chain. The resulting sequence is further modified by introducing specific mutations that stabilize the native 3-dimensional structure of the remaining part of the HA0 molecule.
  • The function of the HA molecule in the virus is binding to the cell surface receptor sialic acid and, after uptake in endosomes, mediating the fusion of viral and endosomal membranes leading to release of the viral RNA into the cell. An essential step in the fusion process is a large conformational change of the HA molecule that rearranges the secondary structure elements of the molecule so that the fusion peptide becomes exposed. Consequently, two conformations (pre- and post-fusion) of the HA molecule exist that are very different in terms in their tertiary structure. Since the viral HA protein is primarily exposed to the immune system in the pre-fusion state, it is important to make sure that the polypeptide of the disclosure adopts this conformation. This requirement can be met by stabilizing the pre-fusion conformation and at the same time destabilizing the post-fusion conformation. This stabilization/destabilization is a necessity since the pre-fusion conformation is metastable and adopting the post-fusion conformation results in a stable conformation, i.e., a low energy minimum (Chen et al., 1995).
  • In this example, HA from H1N1 A/Brisbane/59/2007 (SEQ ID NO: 1) is taken as the primary (or wild-type) sequence to create the polypeptides hereof.
  • In a first step, polypeptides hereof are constructed by removing HA1 sequences between positions 59 and 291 (the numbering refers to the position in the HA0 sequence, as shown in SEQ ID NO: 1. In certain embodiments, the HA1 part comprises the amino acids 18-343 and the HA2 part the amino acid residues 344-565; since SEQ ID NO: 1 comprises the signal peptide, and the HA1 part starts at position 18). This results in the removal of residues 60 to 290 of HA0. These residues were replaced by a GGGG (SEQ ID NO: 194) linking sequence. Next, the accessible surface area of each residue in both the pre- and post-fusion conformation was calculated with the aid of Brugel (Delhaise et al., 1984). The degree of exposure and burial of each residue was determined as described in Samantha et al. (2002), wherein was focused on residues that are exposed in the pre-fusion conformation and get buried in the post-fusion conformation. Further analysis of these residues indicated that some of these amino acid residues can be mutated in such a way that the mutation does not have an effect on the pre-fusion conformation but destabilizes the post-fusion conformation. These residues have in general a hydrophobic side chain and are involved in the formation of the coiled coil in the post-fusion conformation. Mutating these amino acid residues to a hydrophilic amino acid will disturb the coiled coil properties—the contacts between the helices in a coiled coil are in general hydrophobic—and hence destabilize the post-fusion conformation.
  • Following this reasoning, in the HA2 part of the sequence some mutations were introduced: Phe 406 to Ser (F406S), Val 409 to Thr (V409T), Leu 416 to Ser (L416S) and Tyr 502 to Ser (Y502S). These are mutations that remove a hydrophobic residue from the surface of HA. It should be noted that mutation of L416 to either S or T also introduces a consensus N-glycosylation site (consensus sequence is NX(S/T). Glycosylation at this position will further increase solubility of this region. In addition, Leu 58 was mutated to Thr (L58T), Val 314 to Thr (V314T) and Ile 316 to Thr (I316T); these mutations are all in the HA1 domain, i.e., the part of the sequence corresponding to HA1 after cleavage of the native HA0 chain. The latter two mutations maintain the beta-branch of the side chain but remove a hydrophobic residue from the surface. As will be shown below some of these mutations were introduced in all variants, others were tested in separate polypeptides to investigate whether the mutations influence each other in an undesirable manner.
  • To increase the stability of the polypeptides, two disulfide bridges were investigated to lock HA in the pre-fusion conformation. The disulfide bridges are formed between residues which are spatially at an appropriate distance from each other (in the full-length HA molecule) and which have their C-beta atom already at the correct position to form a disulfide bridge. The first disulfide bridge proposed is between position 321 (HA1 domain) and position 405 (HA2 domain). Within the HA2 domain, a disulfide bridge was created between positions 413 and 421.
  • Since cleavage of HA at position R343 is an essential step for the conformational change to be able to take place, in the polypeptides hereof the cleavage site was removed by introducing a mutation of Arg (R) to a Gln (Q). Another solution according to the disclosure is to change Arg into a Gln and to delete residues 345 to 350, a small part of the fusion peptide of HA2. Removal of these (hydrophobic) sequence will further stabilize the polypeptide.
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from position (or the equivalent thereof) 523, 524, 525, 526, 527, 528, 529, or 530 of HA2 to the C-terminus of HA2 (numbering according to SEQ ID NO: 1) were removed so that a secreted (soluble) polypeptide was produced following expression in cells, which can be used, e.g., in a vaccine. The soluble polypeptide was further stabilized by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 143), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag (HHHHHHH (SEQ ID NO: 191)) connected via a short linker, e.g., EGR. In some embodiments, the linker and his-tag sequence are added without the foldon sequence being present. According to the disclosure, the amino acid sequence from position 530 (numbering according to SEQ ID NO: 1) to the C-terminal amino acid of the HA2 domain was removed and replaced by the following sequences:
      • EGRHHHHHHH (SEQ ID NO: 81), comprising a short linker and his-tag, or SGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGHHHHHHH (SEQ ID NO: 82), comprising a thrombin cleavage site, trimerization domain, and his-tag.
  • The mutations described above were grouped into clusters according to their function and location in the 3-dimensional structure of the HA stem polypeptides. All polypeptides contain H1 HA sequence 1-59 and 291-565 and the R343Q mutation, with the following additional mutations: L58T, V314T, I316T, F406S, V409T, L416S (SEQ ID NO: 3; named cluster 1). In addition variants were made that have additional mutations:
      • Cluster 2: K321C, Q405C (SEQ ID NO: 4)
      • Cluster 3: F413C, E421C (SEQ ID NO: 5)
      • Cluster 4: HA2 Y502S (SEQ ID NO: 6)
  • Furthermore two variants were made that contained the cluster 1 sequence and in addition the mutations of cluster 2 and 3 (SEQ ID NO: 7) or cluster 2, 3 and 4 (SEQ ID NO: 8).
  • The genes encoding the above protein sequences were synthesized and cloned into expression vector pcDNA2004 using methods generally known to those skilled in the art. For reasons of comparison the full-length sequence (SEQ ID NO: 1) was included in the experiment as well as the sequence described by Steel et al. (2010) (H1-PR8-dHl; SEQ ID NO: 24), which is based on the H1N1 A/Puerto Rico/8/1934 sequence.
  • HEK293F (Invitrogen) suspension cells (106 cells/ml, 30 ml) were transfected with the expression vectors (1 μg/ml using 40 μl 293transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested, aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with either polyclonal serum raised against H1 HA to probe expression or a HA-specific monoclonal antibody (5 microgram/ml) and a secondary antibody used for staining. The cells were then analyzed by fluorescence associated cell sorting (FACS) for expression of the membrane attached HA stem domain polypeptides of the disclosure using polyclonal serum raised against H1 HA to probe expression. A panel of monoclonal antibodies of known specificity that bind the full-length protein (e.g., CR6261 and CR9114) were used to probe for the presence of conserved epitopes and, by inference, correct folding of the full-length HA and the mini-HA polypeptides of the disclosure. Results are expressed as percentage positive cells and mean fluorescence intensity and are shown in FIG. 2.
  • The results show that all constructs are expressed on the cell surface since the reaction with the polyclonal serum (anti-H1 poly) results in 75% or higher of all cells analyzed being positive compared to ca 4% for non-transfected cells. This is confirmed by the values of the mean fluorescence intensity (MFI), which is similar for all constructs after treatment with polyclonal serum. Control experiments in the absence of IgG, using only the labeled anti-Human IgG or an irrelevant mAb are all negative. Both the A/Brisbane/59/2007 and A/Puerto Rico/8/1934 full-length HA proteins are recognized by monoclonal antibodies CR6261, CR6254, CR6328 (all known to bind and neutralize H1 HA; Throsby et al. (2008), WO 2008/028946), CR9114 (described above), CR8001 (binds to H1 HA, but does not neutralize Hl; described in WO 2010/130636), but not CR8057 (binds only to some H3 strains, also described in WO 2010/130636) and CR6307 (Throsby et al. (2008), WO 2008/028946).
  • Considering the discontinuous and conformational character of the CR6261 epitope (Ekiert et al. 2009) it is concluded that both full-length proteins are present in their native 3-dimensional conformation. For the newly designed polypeptides of the disclosure that are tested in this experiment the same pattern of recognition by the panel of monoclonal antibodies was observed: binding by CR6261, CR6254, CR6328, CR9114 and CR8001 but not CR6307 and CR8057. This is most evident in the data on the percentage positive cells, but is also observed in the mean fluorescence intensity data. Best results are obtained with miniHA-cluster1 both with respect to % cells positive as well as mean fluorescence intensity.
  • Adding further modifications, such as the above described disulfide bridges (cluster 2 and 3) and the Y502S mutation of cluster 4 (or combinations of these, resulted in decreased percentages of positive cells and lower mean intensities. The construct described by Steel et al. (2010) (SEQ ID NO: 24) which contains the deletion of the head domain, but lacks further modifications is not recognized above background level by any of the antibodies used in this experiment. Therefore, it is concluded that after DNA transfection this protein is not displayed in the native 3-dimensional conformation that it has in HA.
  • The results described above point towards the importance of cluster 1 mutations increasing the hydrophilic character of the loop formed by residues 402 to 418 connecting the A-helix and the long backbone helix (CD) of the HA-molecule and the surrounding area. To further establish the beneficial effect the mutations of cluster1 on the stability and folding of the polypeptides hereof miniHA (SEQ ID NO: 2; polypeptide according to Steel, but based on A/Brisbane) and miniHA_cluster1 (polypeptide according to the disclosure; SEQ ID NO: 3) were compared in a separate experiment (FIG. 3).
  • Whereas about 60% of cells transfected with miniHA-cluster1 is positive after binding of CR6261, CR6254, CR6328 and CR9114, transfection with miniHA (polypeptide according to Steel, but based on A/Brisbane; SEQ ID NO: 2) leads to values very close to background level (1-3%). We conclude that the mutations of cluster1 contribute favorably to proper folding and stability of the polypeptides according to the disclosure, as compared to unmodified miniHA protein (SEQ ID NO: 2) that lacks these mutations.
  • Steel et al. created a new molecule by deleting amino acid residue 53 to 276 of HA1 of the H1 A/Puerto Rico/8/1934 and H3 HK68 strain from the primary sequence, and replacing this by a short flexible linker. As shown in this example, this results in a highly unstable molecule that does not adjust the correct conformation, as proven by the lack of binding of antibodies that were previously shown to bind to conserved epitopes in the stem region. The incorrect folding is caused by solvent exposure of a large area that is normally shielded by the globular head in the full-length HA molecule. Since this area is hydrophobic in nature the molecule is no longer stable and, therefore, adaptations are necessary.
  • Exchange of hydrophobic residues for hydrophilic residues as has been done in the polypeptides hereof counteracts this effect and stabilizes the HA stem domain polypeptides. Further stabilization of the native 3-dimensional fold of the stem domain is achieved by introducing disulfide bridges at appropriate locations to closely connect residues that are spatially close in the native tertiary structure but acparated in the primary structure.
  • Example 5 Immunogenicity of HA Stem Domain Polypeptides of Example 4
  • In order to assess the immunogenicity of the stem domain polypeptides mice were immunized with the expression vectors encoding full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1), miniHA-cluster1 (SEQ ID NO: 3), miniHA-cluster1+2 (SEQ ID NO: 4) and miniHA-cluster1+4 (SEQ ID NO: 6). For reasons of comparison the miniHA design by Steel et al. (2010) (mini-PR8; SEQ ID NO: 24) and the corresponding full-length protein HA from A/Puerto Rico/8/1934 were also included in the experiment. An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 50 μg construct+50 μg adjuvant (pUMCV1-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. The sera were analyzed by FACS assay. HEK293F (Invitrogen) suspension cells (106 cell/ml, 30 ml) were transfected with the expression vectors (1 microgram/ml) using 40 microliter 293transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested, aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with the construct-specific sera, stained with secondary antibodies and analyzed by fluorescence associated cell sorting. The results are shown in FIGS. 4A and 4B.
  • As expected, the cM2-specific serum (negative control) recognizes cM2, but none of the full-length HA or stem domain polypeptides as evidenced by the % positive cells and MFI. In contrast, the full-length HA-specific serum stains cells expressing the corresponding full-length HA (SEQ ID NO: 1), but also miniHA-cluster1 (SEQ ID NO: 3), miniHA-cluster1+2 (SEQ ID NO: 4) and miniHA-cluster1+4(SEQ ID NO: 6), albeit at a lower level (ca 40% positive cells versus ca 80% for full-length MFI ca 1000 versus ca 7000 for full length). The reverse is also true: sera specific for miniHA-cluster1 (SEQ ID NO: 3), miniHA-cluster1+2 (SEQ ID NO: 4) and miniHA-cluster1+4(SEQ ID NO: 6) recognize cells expressing the corresponding construct as well as the full-length HA (SEQ ID NO: 1). The results are summarized in Table 4, below.
  • In contrast to the result above for miniHA-cluster1(SEQ ID NO: 3), miniHA-cluster1+2 (SEQ ID NO: 4) and miniHA-cluster1+4(SEQ ID NO: 6), the serum obtained from mice immunized with the full-length PR8 did not bind very well to cells transfected with H1-PR8-dH1 (SEQ ID NO: 24). Percentage cells positive was around 20%, compared to 40-50% for the miniHA-cluster1 (SEQ ID NO: 3) and miniHA-cluster 1+2 (SEQ ID NO: 4). The results are also reflected in the observed in the mean fluorescent intensity which is barely above background level.
  • In conclusion, the data show that polypeptides of the disclosure are capable of inducing an immune response directed towards full-length HA. In particular modifications in the region between residue 402 and 418 (numbering according to SEQ ID NO: 1) is important to create a stable molecule.
  • Example 6 Preparation of Second Generation of Stem Domain Polypeptides
  • The mean fluorescence intensities for the stem domain polypeptides described in Example 4 are in all cases lower than observed for the corresponding full-length proteins; in fact the best design, miniHA-cluster 1 (SEQ ID NO: 3), has an intensity that is in the order of 10% of the mean intensity of the full-length construct after binding with monoclonal antibodies. This indicates that the expression and/or folding of the stem domain polypeptides on the cells surface is lower than observed for the full-length proteins and that the designs can be further improved. The results obtained from the first generation show that improvement of the first generation constructs is possible and, therefore, a second round of design was initiated.
  • The polypeptides described in Example 4 were based on the same deletion of the HA0 chain, i.e., residues L60 to K290 (mini1; numbering refers to position in the full-length HA0 from H1N1 A/Brisbane/59/2007; SEQ ID NO: 1). This approach creates a long unstructured loop that is now no longer attached to the head domain. It was reasoned that this loop is not contributing to the overall protein stability and can be shortened considerably without affecting folding of the other parts of the polypeptide. Three additional deletions were designed and replaced with a GGGG (SEQ ID NO: 194) linker sequence as before and combined with the mutations of cluster1 described above. The deletions are S53 to P320 (mini2), H54 to I302 (mini3), G56 to G317 (mini4). Additional modifications were introduced identical to cluster 1 above (L58T, V314T, I316T, F406S, V409T, L416S). Some of the residues belonging to this cluster are part of the deleted sequences and can, therefore, no longer be modified (see below). Furthermore, two additional mutations were created in the long helix C that forms a trimeric coiled-coil in the pre-fusion state. It is well known in the art that trimeric coiled coils are stabilized by Ile at positions 420 a and d of the heptad repeat sequence that is the hallmark of this structural motif (Suzuki et al. (2005); Woolfson et al. (2005)). This knowledge was applied by introducing Ile at positions 420 (M4201) and 427 (V4271). The combination of these two mutations and the mutations of cluster 1 were designated cluster11; for clarification the combinations are listed below:
      • Mini1: deletion L60 to K290 cluster11: M420I, V427I, L58T, V314T, I316T, F406S, V409T, L416S
      • Mini2: deletion S53 to P320 cluster11: M420I, V427I, F406S, V409T, L416S
      • Mini3: deletion H54 to I302 cluster11: M420I, V427I, V314T, I316T, F406S, V409T, L416S
      • Mini4: deletion G56 to G317 cluster11: M420I, V427I, F406S, V409T, L416S
  • To further stabilize the pre-fusion state of the stem domain polypeptides an additional disulfide bridge was introduced between positions 324 and 436 (cluster 5: R324C, T436C) and combined with the different deletion mutants. The following combinations were synthesized and tested for binding in the FACS assay as described above:
      • Mini1-cluster11 (SEQ ID NO: 9)
      • Mini2-cluster11 (SEQ ID NO: 10)
      • Mini3-cluster11 (SEQ ID NO: 11)
      • Mini4-cluster11 (SEQ ID NO: 12)
      • Mini1-cluster11+5 (SEQ ID NO: 13)
      • Mini2-cluster11+5 (SEQ ID NO: 14)
      • Mini3-cluster11+5 (SEQ ID NO: 15)
      • Mini4-cluster11+5 (SEQ ID NO: 16)
  • For reasons of comparison, miniHA-cluster1 (SEQ ID NO: 3) was also included in the experiment. The results are shown in FIG. 5.
  • In all cases, the stem domain polypeptides were present on the cell surface after transfection of expression vectors into HEK293F cells, as evidenced by the percentage of positive cells (90% or larger) after treatment with polyclonal anti-H1 serum.
  • All HA stem domain polypeptides in this experiment were recognized by CR6261, CR6254, CR6328 and CR9114, but not CR8057; the latter is expected since this mAb is specific for H3 HA. There are, however, clear differences in the percentages of cells positive and MFI for the different antibodies. The best characterized antibody is CR6261, of which the epitope is known in detail. The epitope is discontinuous and conformational, and binding of this antibody can, therefore, be regarded as a stringent test of correct folding of the HA stem domain polypeptides. CR9114 is broadly neutralizing, covering strains from both group 1 and 2 (Table 3). Of the epitopes of CR6328 and CR6254 less details are known, but based on the higher values that are found for % positive cells and MFI, as well as a smaller spread in the data, binding of these antibodies seems to be a less sensitive probe of correct folding than CR6261.
  • Comparing the percentage positive cells (taking into account the data for all antibodies) Mini1 to 4 constructs can be ranked (highest to lowest %).
  • Mini2>Mini1>Mini4>Mini3 for combinations with cluster11 and
  • Mini2>Mini1=Mini4>Mini3 for combinations with cluster11+5
  • This ranking is also reflected in the data on the MF1, and leads to the conclusion that the deletion of the Mini2 construct, S53 to P320, leads to the highest level of proteins displayed on the cell surface in the correct conformation from this set.
  • Comparing MiniHA-cluster1 (SEQ ID NO: 3) with mini1-cluster11 (SEQ ID NO: 9), the additional mutations M420I, V427I do not seem to lead to additional stabilization of the construct; if anything, they lead to lower percentages of positive cells and MFI values, but the differences are small.
  • The introduction of disulfide bridge R324C, T436C (cluster 5) leads to an increase of correctly folded protein on the cell surface for mini2-cluster11 (SEQ ID NO: 10) and mini4-cluster11 (SEQ ID NO: 12), but minimal or no improvement for mini1-cluster11 (SEQ ID NO: 9) and mini3-cluster11 (SEQ ID NO: 11). The best results overall are obtained with mini2-cluster11+5 (SEQ ID NO: 14). This is in particular evident from the MFI values which for this construct are ca 50% of the value for the full-length construct.
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from position (or the equivalent thereof) 523, 524, 525, 526, 527, 528, 529, or 530 of HA2 to the C-terminus of HA2 (numbering according to SEQ ID NO: 1) is removed, and optionally replaced by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 143), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag HHHHHHH (SEQ ID NO: 191) connected via a short linker, e.g., EGR. According to the disclosure, the amino acid sequence from position 530 (numbering according to SEQ ID NO: 1) to the C-terminal amino acid of the HA2 domain was removed and replaced by SEQ ID NO: 81 or SEQ ID NO: 82.
  • Example 7 Immunogenicity of Second Generation HA Stem Domain Polypeptides
  • In order to assess the immunogenicity of the stem domain polypeptides of Example 6, mice were immunized with the expression vectors encoding full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1), miniHA-cluster1 (SEQ ID NO: 3), Mini2-cluster11 (SEQ ID NO: 10), Mini1-cluster11+5 (SEQ ID NO: 13), Mini2-cluster11+5 (SEQ ID NO: 14). An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 50 μg construct+50 μg adjuvant (pUMCVI-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. Full-length HA0 (SEQ ID NO: 1), negative control cM2 and Mini2-cluster11+5 (SEQ ID NO: 14) were also administered to separate groups of mice by gene gun, using ca 10 μg construct+ca. 2 μg adjuvant (pUMCVI-GM-CSF) and the same immunization scheme. The sera were analyzed by ELISA using the recombinant ectodomain of the full-length HA from A/Brisbane/59/2007 strain (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 20-fold dilution of the serum is added. Bound antibody is detected using HRP-conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve using mAb 3AH1 InA134 (Hytest, Turku, Finland) to derive ELISA units/ml (EU/ml).
  • Results of the ELISA after 28 and 49 days are shown in FIGS. 6A and 6B, respectively. Serum obtained from mice immunized with DNA encoding Mini2-cluster11+5 (SEQ ID NO: 14) exhibit clear binding to the ectodomain full-length HA after 28 and 49 days after immunization using the gene gun and also after 49 days when immunized IM. For Mini2-cluster11 (SEQ ID NO: 10) and Mini1-cluster11+5 (SEQ ID NO: 13) a response was detected for 1 out of 4 mice, whereas for miniHA-cluster1 (SEQ ID NO: 3) no binding was detected.
  • In conclusion, the data show that polypeptides of the disclosure are capable of inducing an immune response directed toward full-length HA. In particular modifications in the region between residue 402 and 418 (numbering according to SEQ ID NO: 1), deletion S53 to P320 in combination with disulfide bridge R324C, T436C are important to create a stable molecule.
  • Example 8 Preparation of Third Generation Stem Domain Polypeptides
  • To further improve the design of the stem domain polypeptides a third round of design was implemented. An additional mutation to increase hydrophilicity of surfaces buried in the full-length HA, but not the stem domain polypeptides was introduced at position 413, F413G (numbering according to SEQ ID NO: 1), and named cluster 6. This cluster was combined with the deletion of mini-2 (S53 to P320), the disulfide bridge of cluster 5 (R324C, T436C) and the mutations of either cluster 1 (i.e., F406S, V409T, L416S; SEQ ID NO: 46) or cluster 11 (M420I, V427I, F406S, V409T, L416S; SEQ ID NO: 47). The combination of the mini-2 deletion (S53 to P320) with cluster 1 (F406S, V409T, L416S) and cluster 5 (R324C, T436C) is also included in this experiment for reference (SEQ ID NO: 48).
  • The native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. According to the disclosure, a consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIE (SEQ ID NO: 83), is introduced in a polypeptide of the disclosure at (the equivalent of) position 418 to 433 (SEQ ID NO: 44) in H1 A/Brisbane/59/2007 (numbering according to SEQ ID NO: 1). An alternative is to introduce the sequence MKQIEDKIEEIESKQ (SEQ ID NO: 84), derived from GCN4 and known to trimerize, at position 419-433 (SEQ ID NO: 45).
  • In the case of the stem domain polypeptides described by SEQ ID NO: 44 to SEQ ID NO: 48 all proteins were present on the cell surface after transfection of expression vectors into HEK293F cells, as evidenced by the percentage of positive cells (90% or larger) after treatment with polyclonal anti-H1 serum. The results are shown in FIG. 7.
  • All HA stem domain polypeptides in this experiment, with the exception of miniHA (SEQ ID NO: 2), were recognized by CR6261, CR6328 and CR9114, but not CR8020; the latter is expected since this mAb is specific for H3 HA. The percentage positive cells is around 80% for the stem domain polypeptides using CR6261, CR6328 and CR9114 for staining, with the exception of miniHA, which is only recognized by the polyclonal anti-H1 serum. Again, this is indicative of a lack of proper folding of this particular construct. There are, however, clear differences in the MFI for the different antibodies. The best characterized antibody is CR6261, of which the epitope is known in detail. The epitope is discontinuous and conformational, and binding of this antibody can, therefore, be regarded as a stringent test of correct folding of the HA stem domain polypeptides. CR9114 is broadly neutralizing, covering strains from both group 1 and 2 (Table 3). Less details of the epitope of CR6328 are known, but in binding experiments on full-length HA, competition with CR6261 is observed.
  • The MFI for H1-mini2-cl11+5 (SEQ ID NO: 14), H1-mini2-cl1+5 (SEQ ID NO: 48), H1-mini2-cl1+5+6 (SEQ ID NO: 46) and H1-mini2-cl 11+5+6 (SEQ ID NO: 47) are very similar, irrespective of the monoclonal antibody that is used in the experiment. The inclusion of the consensus trimerization domain (SEQ ID NO: 44) reduces the MFI by a factor 3 to 4 compared to the equivalent sequence without the trimerization domain (i.e., H1-mini2-cluster1+5+6; SEQ ID NO: 46), but the result is still clearly better than in the absence of modifications to the stem polypeptide after deletion of the head domain (cf miniHA results). The addition of the GCN4 trimerization sequence (SEQ ID NO: 45) increases the MFI to levels comparable to the full-length protein.
  • Example 9 Design of Further Stem Domain Polypeptides Comprising the Conserved Stem Domain Epitopes of CR6261 and CR9114
  • Polypeptides of the disclosure designed following the procedure described above can be further modified to increase the stability. Such modifications can be introduced to enhance the formation of trimeric forms of the polypeptides hereof over monomeric and/or dimeric species. As described above, the native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created.
  • According to the disclosure, a consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIE (SEQ ID NO; 83), was introduced in a polypeptide of the disclosure, at (the equivalent of) position 418 to 433 (SEQ ID NO: 44) in H1 A/Brisbane/59/2007 (numbering according to SEQ ID NO: 1). Alternatively IEAIEKKIEAIEKKI (SEQ ID NO: 85) can be introduced at 419-433 (SEQ ID NO: 49) or IEAlEKKIEAIEKK (SEQ ID NO: 86) at 420-433 (SEQ ID NO: 50). An alternative is to introduce the sequence MKQIEDKlEEIESKQ (SEQ ID NO: 84) derived from GCN4 and known to trimerize, at position 419-433 (SEQ ID NO: 45). Alternatively, MKQIEDKIEEIESK (SEQ ID NO: 87) can be introduced at position 420-433 (SEQ ID NO: 51) or RMKQIEDKIEEIESKQK (SEQ ID NO: 88) at position 417-433 (SEQ ID NO: 52). Similarly, the trimer interface is strengthened by modifying M420, L423, V427, G430 into Isoleucine. (SEQ ID NO: 53).
  • All peptides were shown to bind CR9114 and CR6261.
  • In certain embodiments, the polypeptides hereof do not contain the signal sequence and/or the intracellular sequences and the transmembrane domain of HA, as described earlier.
  • Example 10 Design of a Stem Domain Polypeptide Comprising the Conserved Stem Domain Epitopes of CR6261 and CR9114 Based on H7 HA
  • The procedure described above to design polypeptides of the disclosure was also be applied to H7. In this example, the design of a polypeptide of the disclosure on the basis of serotype H7 is described. HA of the H7 influenza virus A/Mallard/Netherlands/12/2000 (SEQ ID NO: 31) was used as the parental sequence, but those skilled in the art will understand that the use of other H7 sequences would have been equally possible because the sequences are well conserved, in particular in the stem region.
  • The first modification in the sequence is the removal of the cleavage site at position 339 (numbering refers to SEQ ID NO: 31 by mutating R to Q (R339Q) to prevent the formation of HA1 and HA2 from HA0. Optionally, residue 341 to 345 (LFGAI, part of the fusion peptide) can additionally be deleted to minimize the exposure of hydrophobic residues to the aqueous solvent. The positive charge at the cleavage is 100% conserved in H7 and this mutation can, therefore, be applied in all sequences.
  • The second modification is the removal of the head domain by deleting a large part of the HA1 sequence and reconnecting the N- and C-terminal sequences through a short linker. The deletion can vary in length, but it is preferred that the last residue of the N-terminal sequence of HA1 and the first residue of the C-terminal sequence are spatially close together to avoid introducing strain through the linking sequence. In H7 sequences deletions can be introduced at (the equivalent positions of) R53-P315 (mini2; SEQ ID NO: 33) in H7 A/Mallard/Netherlands/12/2000 (SEQ ID NO: 31). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar.
  • SEQ ID NO: 40 describes such a polypeptide containing deletion T54-C314 (minis; SEQ ID NO: 40). The deletions described above ensure that the unstructured regions formed by residues 280-310 are also removed; this is beneficial to the overall stability of the polypeptides hereof. A similar effect was observed for polypeptides of the disclosure derived from a H1 sequence (see above).
  • The deletion of the head domain leaves the loop between residues 394 to 414 now exposed to the aqueous solvent. In H7 HAs, this loop is highly conserved (see Table 7). The consensus sequence is: LI (E/D/G) KTNQQFELIDNEF (N/T/S) E (I/V) E (Q/K) (SEQ ID NO: 32).
  • To increase the solubility of this loop in the pre-fusion conformation and destabilize the post-fusion conformation some hydrophobic residues were modified into polar (S, T, N, Q), charged amino acids (R, H, K, D, E), ur flexibility was increased by mutation to G. Specifically mutations at positions 402, 404, 405, 409, 412 (numbering refers to SEQ ID NO: 31) will contribute to the stability of a polypeptide of the disclosure.
  • For positions F402 and F409 mutation to S is preferred but other polar (T, N, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect. For position 404 (96% L), mutation to N or S is preferred; the latter amino acid also occurs naturally, albeit at low frequency, and mutation of this position is in those cases unnecessary. Other polar (T, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect. For position 405 (99% I) mutation to T or D is preferred. D also occurs naturally and mutation of this position is then unnecessary. Other polar (S, N, Q), charged (R, H, K), and highly flexible amino acids (G) will have the same effect. For position 412 (I or V) mutation to N is preferred but other polar (S, T, Q), charged (R, H, K, D, E) or flexible (G) residues are also possible. So polypeptides contain at least one of the mutations described above. Combinations of more than one imitation have also been applied, as shown, for example, in SEQ ID NOs: 34-39 and 41-43.
  • To stabilize the pre-fusion conformation of polypeptides of the disclosure a covalent bond between two parts distant in the primary sequences but close in the folded pre-fusion conformation was introduced. To this end, a disulfide bridge was engineered in the polypeptides hereof, preferably between (the equivalent of) position 319 and 432 in H7 A/Mallard/Netherlands/12/2000 (SEQ ID NOS: 36-39, 42, 43). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • As described above, the native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. It is well known in the art that trimeric coiled coils are stabilized by Ile at positions a and d of the heptad repeat sequence that is the hallmark of this structural motif. Here this knowledge was applied by introducing Ile at (the equivalent of) positions 419, 423, 426 and 430 (SEQ ID NO: 38, 43). Alternatively a consensus sequence for the formation of a trimeric coiled coil, EAIEKKIEAI (SEQ ID NO: 209), is introduced at (the equivalent of) position 417 to 426 (SEQ ID NO: 39).
  • These sequences (SEQ ID NOS: 33-43) were subjected to the Fluorescence Associated Cell Sorting assay described above. However, no binding of monoclonal antibodies CR8020, CR8043, CR9114 or CR8957 could be detected. It was concluded that these sequences do not present the epitopes of these antibodies and consequently the proteins as present on the cell-membrane are not folded into their native 3-dimensional structure.
  • Example 11 Design of Stem Domain Polypeptides Comprising the Conserved Stem Domain Epitopes of CR8020, CR8043 and CR9114 Based on H3 HA
  • In a first step, a sequence representing a polypeptide of the disclosure was constructed analogously as described by Steel and coworkers (Steel et al., 2010) using HA from H3 A/Wisconsin/67/2005 as the parental sequence (SEQ ID NO: 89). The head of HA is removed by deletion of a part of HA1 from amino acid D69 to amino acid K292.
  • These residues can be replaced by 3 or 4 Gly. The 4 Gly linker was tested by Steel and coworkers and gave good results of expression and was adopted here to create mini-H3 (SEQ ID NO: 90). To prevent cleavage of the polypeptide chain, a normal post-translational processing step for the full-length HA protein, the cleavage site at position 345 (arginine) was mutated into a glutamine (R345Q).
  • Next, the accessible surface area of each residue in both the constructed mini-HA and the post-fusion conformation was calculated with the aid of Brugel. The degree of exposure and burial of each residue was determined as described in Samantha and coworkers (Samantha et al., 2002). It was focused on residues which are exposed in the pre-fusion conformation and get buried in the post-fusion conformation. Further analysis of these residues indicates that some of them can be modified in such a way that the mutation does not have an effect on the pre-fusion but destabilizes the post-fusion conformation. In general these residues have a hydrophobic side chain and are involved in the formation of the coiled coil in the post-fusion conformation. Mutation of these residues to include a hydrophilic side-chain will disturb the coiled coil properties—the contacts between the helices in a coiled coil are in general hydrophobic—and hence destabilize the post-fusion conformation. Residues that go from exposed in pre-fusion to buried in the post-fusion conformation and that are expected to have a destabilizing effect on the latter conformation after mutation are L397, I401 and L425 (numbering according to SEQ ID NO: 89). Here L397K and I401T are included.
  • The loop (B-loop, residues 401 to 420) that connects helix A (residue 383 to 400) with the central helix CD (residues 421 to 470) changes conformation upon adopting the post-fusion state; it becomes helical and is part of an extended trimeric coiled coil. To stabilize the pre-fusion loop conformation of this linker and/or to destabilize its post-fusion conformation it was reasoned that it should be sufficient to mutate all residues that are involved in formation of the core of the coiled coil. For position N405 several mutations are designed, in particular residues carrying a negative charge (Asp and Glu, N405D, N405E) since this extra charge will reinforce the ionic network observed in the prefusion conformation. A mutation to the neutral Ala (N405A) is also included in this study. We also mutated Phe 408 to Thr, His 409 to Ser and Val 418 to Ser (numbering according to SEQ ID NO: 89; F408T, H409S, V418S) to further increase the solubility of the newly exposed surface after removal of the head domain.
  • Five disulfide bridges were designed to lock HA in the pre-fusion conformation. These bridges are formed between residues which are spatially at an appropriate distance from each other and which have their Cβ atoms already at the correct position to form a disulfide bridge. They are introduced between positions 320 and 406 (A320C, E406C; numbering according to SEQ ID NO: 89), 326 and 438 (K326C, S438C) and between 415 and 423 (F415C, Q423C). The first two are cross-links between HA1 and HA2 parts of the chain, whereas the last covalently connects the top of the B-loop together. The K326C, S438C disulfide bridge is accompanied by mutation of Asp 435 to Ala (D435A). Disulfide bridges F347C/N461C and S385C/L463C were taken from the paper by Bommakanti et al. (2010), and also used in this study.
  • To remove newly exposed hydrophobic residues form the solvent several additional mutations are designed. The Ile at position 67 (numbering according to SEQ ID NO: 89) is mutated to a Thr (167T). This mutation maintains the beta-branch of the side chain but removes a hydrophobic residue from the surface. The same can be said for the mutation of Ile 298 to Thr (I298T). Another mutation is introduced at position 316, isoleucine in the native sequence. Intuitively, one would propose to mutate this residue to a Thr to maintain the beta-branch but remove the hydrophobicity from the surface. However, this mutation would result in the introduction of an extra N-glycosylation site (position 314 is an Asn) and, therefore, a mutation to Gln is introduced (I316Q).
  • Gly 495 was also mutated to Glu (G495E). This mutation is designed to introduce an ionic bridge since there is a positive charge in the surrounding. Nature already provided some H3 strains with a Glu at this position.
  • An important residue of HA is position 345 (Arg) since this is the position where the protease cleavage occurs to render the protein fusion competent. Mutation of this Arg to a Gln (R345Q) prevents cleavage from occurring thereby locking the protein in the pre-fusion state.
  • The mutations described above were clustered as described below:
      • Cluster 1: 167T, 198T, I316Q, F408T, H409S, V418S
      • Cluster 2: A320C, E406C
      • Cluster 3: K326C , D435A, S438C
      • Cluster 4: L397K, I401T
      • Cluster 5: N405D or N405E or N405A
      • Cluster 6: F415C, Q423C
      • Cluster 7: G495E
      • Cluster 8: F347C, S385C, N461C, L463C
  • To arrive at the polypeptides hereof, the clusters were combined with the deletion D69 to K292 and the R345Q mutation according to the scheme described below
      • H3 Mini-HA cluster 1 (SEQ ID NO: 91)
      • H3 Mini-HA cluster 1+2 (SEQ ID NO: 92)
      • H3 Mini-HA cluster 1+3 (SEQ ID NO: 93)
      • H3 Mini-HA cluster 1+4 (SEQ ID NO: 94)
      • H3 Mini-HA cluster 1+5 N405A (SEQ ID NO: 95)
      • H3 Mini-HA cluster 1+5 N405D (SEQ ID NO: 96)
      • H3 Mini-HA cluster 1+5 N405E (SEQ ID NO: 97)
      • H3 Mini-HA cluster 1+6 (SEQ ID NO: 98)
      • H3 Mini-HA cluster 1+7 (SEQ ID NO: 99)
      • H3 Mini-HA cluster 1+2+3+4+5+6+7-N405E (SEQ ID NO: 100)
      • H3 Mini-HA cluster 1+2+3+4+5+6+7-N405A (SEQ ID NO: 101)
      • H3 Mini-HA cluster 1+2+3+4+5+6+7-N405D (SEQ ID NO: 102)
      • H3 Mini-HA cluster 1+8 (SEQ ID NO: 103).
  • The genes encoding the above protein sequences were synthesized and cloned into expression vector pcDNA2004 using methods generally known to those skilled in the art. For reasons of comparison the full-length HA sequence of H3 A/Wisconsin/67/2005 was included in the experiment, as well as the full-length HA sequence of H1 A/Brisbane/59/2007 containing the cleavage site mutation R343Q.
  • HEK293F (Invitrogen) suspension cells (106 cells/ml, 30 ml) were transfected with the expression vectors (1 μg/ml) using 40 μl 293transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested, aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with either polyclonal serum raised against H3 HA (Protein Sciences Corp, Meriden, Conn., USA) to probe expression or a HA-specific monoclonal antibody (5 microgram/ml) and a secondary antibody used for staining. The cells were then analyzed by fluorescence associated cell sorting (FACS) for expression of the membrane attached HA stern domain polypeptides of the disclosure using polyclonal serum raised against H3 HA or H1 HA to probe expression. A panel of monoclonal antibodies of known specificity that bind the full-length protein (CR8020, CR8043 and CR9114) were used to probe for the presence of conserved epitopes and, by inference, correct folding of the full-length HA and the mini-HA polypeptides of the disclosure. Monoclonal antibody CR6261 (known not to bind to H3 HAs) and CR8057 (binds to the head domain of HA from A/Wisconsin/67/2005) were also included in the experiment. Results are expressed as percentage positive cells and are shown in FIGS. 8A and 8B.
  • The results show that all constructs are expressed on the cell surface since the reaction with the H3 polyclonal serum results in 80-90% of all cells analyzed being positive for H3-based sequences and more than 50% for the full-length H1 sequence compared to below 4% for non-transfected cells. Using the anti-H1 polyclonal 60-70% of all cells are positive, except for the full-length H1 sequence that approaches 100%. Control experiments in the absence of IgG, using only the labeled anti-Human or anti-rabbit IgG are all negative. Both the A/Wisconsin/67/2005 and the A/Brisbane/59/2007 full-length HA proteins are recognized by monoclonal antibody CR9114, known to be capable of neutralizing both strains. A/Wisconsin/67/2005 full-length HA further binds CR8020, CR8043, and CR8057 (binds only to some H3 strains, described in WO 2010/130636), but not CR6261 (Throsby et al. (2008), WO 2008/028946). For full-length HA from A/Brisbane/59/2007 the reverse is true: it does bind to CR6261 but not CR8020, CR8043 and CR8057.
  • The polypeptides as described in SEQ ID NO: 91 to SEQ ID NO: 103 are not capable of binding to CR8020, CR8043 and CR9114 in any of the cases as evidenced by the lack of signals above background in FIGS. 8A and 8B. It was, therefore, concluded that these sequences do not present the epitopes of these antibodies and consequently that the proteins as present on the cell-membrane are not folded into their native 3-dimensional structure.
  • Example 12 Design of Further Stern Domain Polypeptides Comprising the Conserved Stern Domain Epitopes of CR8020, CR8043 and CR9114 Based on H3 HA
  • In this example, the design of further polypeptides of the disclosure on the basis of serotype H3 is described. HA of the H3 influenza virus A/Wisconsin/67/2005 (SEQ ID NO: 89) and A/Hong Kong/1/1968 (SEQ ID NO: 121) were used as the parental sequence.
  • The first modification in the sequence is the removal of the cleavage site at position 345 (numbering refers to SEQ ID NO: 89 by mutating R to Q (R345Q) to prevent the formation of HA1 and HA2 from HA0. Optionally, residue 347 to 351 (IFGA1, part of the fusion peptide) can additionally be deleted to minimize the exposure of hydrophobic residues to the aqueous solvent. The positive charge at the cleavage is 100% conserved in H3 and this mutation can, therefore, be applied in all sequences.
  • The second modification is the removal of the head domain by deleting a large part of the HA1 sequence and reconnecting the N- and C-terminal sequences through a short linker. The deletion can vary in length, but it is preferred that the last residue of the N-terminal sequence of HA1 and the first residue of the C-terminal sequence are spatially close together to avoid introducing strain through the linking sequence. In H3 sequence deletions can be introduced at (the equivalent positions of) S62-P322 (mini2; SEQ ID NO: 105), S63-P305 (mini3; SEQ ID NO: 119) and T64-T317 (mini4; SEQ ID NO: 120. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50, amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar. The length of the deletion can also be varied, e.g., by decreasing the number of residues in the deletion by starting at (the equivalent of) position 63, 64, 65, 66, 67, or to increase the length of the deletion, by cutting at position 57, 58, 59, 60 or 61. Similarly, the last amino acid to be deleted can be at (the equivalent of) position 317, 318, 319, 320 or 321, or to increase the length of the deletion at (the equivalent of) position 323, 324, 325, 326, or 327. It is important to realize that changes in the length of the deletion can be in part compensated for by matching the length of the linker sequence, i.e., a larger deletion can be matched with a longer linker and vice versa. These polypeptides are also included in the disclosure.
  • The deletion of the head domain leaves the B-loop between residues 400 to 420 now exposed to the aqueous solvent. In H3 HAs this loop is highly conserved (see Table 9). The consensus sequence is: 401 I(E/G)KTNEKFHQIEKEFSEVEGR 421 (SEQ ID NO: 104; numbering refers to SEQ ID NO: 89). To increase the solubility of this loop for the polypeptides hereof in the pre-fusion conformation and destabilize the post-fusion conformation some hydrophobic residues have to be modified into polar (S, T, N, Q), charged amino acids (R, H, K, D, E), or flexibility has to be increased by mutation to G. Specifically mutations at positions 401, 408, 411, 415, 418, (numbering refers to SEQ ID NO: 89) will contribute to the stability of a polypeptide of the disclosure.
  • For positions F408 and F415 mutation to S is preferred but other polar (T, N, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect. For position 411 (1), mutation to T is preferred. Other polar (S, N, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect and are, therefore, also included in the disclosure. For position 418 (V), mutation to G is preferred. Other polar (S, T, N, Q), charged (R, H, K, D, E) will have the same effect and are, therefore, also included in the disclosure. For position 401 (1) mutation to R is preferred but other polar (S, T, N, Q), charged (H, K, D, E) or flexible (G) residues are also possible. So polypeptides of the disclosure contain at least one of the mutations described above. Combinations of more than one mutation are also possible, as shown, for example, in SEQ ID NOS: 123-127 and 129-131.
  • To stabilize the pre-fusion conformation of polypeptides of the disclosure, a covalent bond between two parts distant in the primary sequences but close in the folded pre-fusion conformation is introduced. To this end, a disulfide bridge is engineered in the polypeptides hereof, preferably between (the equivalent of) position 326 and 438 in H3 A/Wisconsin/67/2005 (SEQ ID NO: 89). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues. An alternative cysteine bridge can be created between (the equivalent of) position 334 and 393 in H3 A/Wisconsin/67/2005 (SEQ ID NO: 89) by mutation of these residues into cysteine. In some cases the cysteine at (the equivalent of) position 321 is modified into a glycine to avoid formation of unwanted disulfide bridges.
  • The native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. A consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIEAIEKK (SEQ ID NO: 198), is introduced at (the equivalent of) position 421 to 441. To avoid interference with the formation of the disulfide bridge between positions 326 and 438 an alternative shorter sequence lEAIEKKIEAIEKKI (SEQ ID NO: 199) at (the equivalent of) positions 421 to 435 was also used. An alternative is to introduce the sequence RMKQIEDKIEEIESKQKKIEN (SEQ ID NO: 200), derived from GCN4 and known to trimerize, at position 421-441 or the shorter sequence RMKQIEDKIEEIESK (SEQ ID NO: 201) at position 421 to 435.
  • The polypeptides hereof may contain the intracellular sequences of HA and the transmembrane domain so that the resulting polypeptides are presented on the cell surface when expressed in cells. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from (the equivalent of) position 522 to the C-terminus is removed so that a secreted (soluble) polypeptide is produced following expression in cells. Optionally, some additional residues can be included in the soluble protein by deleting the sequence from (the equivalent of) 523, 524, 525, 526, 527, 528 or 529. The soluble polypeptide can be further stabilized by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 143) (“foldon” sequence), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a his-tag (HHHHHHH (SEQ ID NO: 191)) connected via a short linker, e.g., EGR. In some embodiments, the linker and his-tag sequence are added without the foldon sequence being present.
  • An important residue of HA is position 345 (Arg) since this is the position where the protease cleavage occurs to render the protein fusion competent. Mutation of this Arg to a Gln (R345Q) prevents cleavage from occurring thereby locking the protein in the pre-fusion state.
  • The mutations described above were clustered as described below:
      • Cluster 9 F408S, I411T, F415S
      • Cluster 10 V418G
      • Cluster 11 I401R
      • Cluster 12 K326C, S438C
      • Cluster 13 T334C, I393C
      • Cluster 14 C321G
      • GCN4 RMKQIEDKIEEIESKQKKIEN (SEQ ID NO: 200) at position 421 to 441 or RMKQIEDKIEEIESK (SEQ ID NO: 201) at position 421 to 435
      • tri IEAIEKKIEAIEKKIEAIEKK (SEQ ID NO: 198) at position 421 to 441 or IEAIEKKIEAIEKKI (SEQ ID NO: 199) at positions 421 to 435
  • Using the sequence of full-length HA from H3N2 A/Wisconsin/67/2005 as starting point the clusters described above were combined with the S62-P322 deletion (mini2; SEQ ID NO: 105) to arrive at polypeptides of the disclosure:
      • SEQ ID NO: 105: H3-mini2
      • SEQ ID NO: 106: H3-mini2-cl9+10
      • SEQ ID NO: 107: H3-mini2-cl9+11
      • SEQ ID NO: 108: H3-mini2-cl9+10+11
      • SEQ ID NO: 109: H3-mini2-cl9+10+11-tri (tri sequence at position 421-441)
      • SEQ ID NO: 110: H3mini2-cl9+10+11-GCN4 (GCN4 sequence at position 421-441)
      • SEQ ID NO: 111: H3-mini2-cl9+10+11+12
      • SEQ ID NO: 112: H3-mini2-cl9+10+12
      • SEQ ID NO: 113: H3-mini2-cl9+10+11+12-GCN4 (short GCN4 sequence at position 421-435)
      • SEQ ID NO: 114: H3-mini2-cl9+10+11+12-tri (short tri sequence at position 421-435)
      • SEQ ID NO: 115: H3-mini2-cl9+13
      • SEQ ID NO: 116: H3-mini2-cl9+10+11+13
      • SEQ ID NO: 117: H3-mini2-cl9+10+11+13-GCN4 (GCN4 sequence at position 421-441)
      • SEQ ID NO: 118: H3-mini2-cl9+10+11+13-tri (tri sequence at position 421-441)
  • In addition the deletions S63-P305 (mini3) and T64-T317 (mini4) were combined with clusters 9, 10, 11 and 14 to create the polypeptides hereof:
      • SEQ ID NO: 119: H3-mini3-cl9+10+11+12+14
      • SEQ ID NO: 120: H3-mini4-cl9+10+11+12+14
  • Using the sequence of full-length HA from H3N2 A/Hong Kong/1/1968 as starting point the clusters described above were combined with the S62-P322 deletion to arrive at polypeptides of the disclosure:
      • SEQ ID NO: 121: H3 Full-length A/Hong Kong/1/1968
      • SEQ ID NO: 122: HK68 H3m2-cl9
      • SEQ ID NO: 123: HK68 H3m2-cl9+10
      • SEQ ID NO: 124: HK68 H3m2-cl9+10+11
      • SEQ ID NO: 125: HK68 H3m2-cl9+10+12
      • SEQ ID NO: 126: HK68 H3m2-cl9+10+11+12
      • SEQ ID NO: 127: HK68 H3m2-cl9+10+11+13
      • SEQ ID NO: 128: HK68 H3m2-cl9+10+11+12-tri (short tri sequence at position 421-435)
      • SEQ ID NO: 129: HK68 H3m2-cl9+10+11+13-tri (tri sequence at position 421-441)
      • SEQ ID NO: 130: HK68 H3m2-cl9+10+11+12-GCN4 (short GCN4 sequence at position 421-435)
      • SEQ ID NO: 131: HK68 113m2-cl9+10+11+13-GCN4 (GCN4 sequence at position 421-441).
  • The genes encoding the above protein sequences were synthesized and cloned into expression vector pcDNA2004 using methods generally known to those skilled in the art. For reasons of comparison the full-length HA sequence of H3 A/Wisconsin/67/2005 and/or H3 A/Hong Kong/1/1968 was included in the experiment.
  • HEK293F (Invitrogen) suspension cells (106 cells/ml, 30 ml) were transfected with the expression vectors (1 82 g/ml) using 40 μl 293transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested, aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with either polyclonal serum raised against H3 HA (Protein Sciences Corp, Meriden, Conn., USA) to probe expression or a HA-specific monoclonal antibody (5 microgram/ml) and a secondary antibody used for staining. The cells were then analyzed by fluorescence associated cell sorting (FACS) for expression of the membrane attached HA stem domain polypeptides of the disclosure using polyclonal serum raised against H3 HA or H1 HA to probe expression. A panel of monoclonal antibodies of known specificity that bind the full-length protein (CR8020, CR8043 and CR9114) were used to probe for the presence of conserved epitopes and, by inference, correct folding of the full-length HA and the mini-HA polypeptides of the disclosure. Monoclonal antibody CR6261 (known not to bind to H3 HAs) and CR8057 (binds to the head domain of HA from A/Wisconsin/67/2005) were also included in the experiments. Results are expressed as percentage positive cells and are shown in FIGS. 9A and 9B for H3 HA of A/Wisconsin/67/2005 based sequences and FIGS. 10A and 10B for H3 HA of A/Hong Kong/1/1968 based sequences.
  • The results show that all A/Wisconsin/67/2005 based constructs (FIGS. 9A and 9B) are expressed on the cell surface since the reaction with the H3 polyclonal serum results in ca 80% or more of all cells analyzed being positive compared to below 5% for non-transfected cells. Control experiments in the absence of IgG, using only the labeled anti-Human or anti-rabbit IgG are all negative. The A/Wisconsin/67/2005 full-length HA is recognized by monoclonal antibodies CR8020, CR8043, CR8057 (binds only to some H3 strains, described in WO 2010/130636) and CR9114 known to be capable of binding to this protein, but not by mAb CR6261. In contrast, most of the stem domain polypeptides are not recognized by CR8020, CR8043 or CR9114 with some notable exceptions. Polypeptides comprising the cluster 12 mutation were recognized by CR8020 and/or CR8043. H3-mini2-cl9+10+11+12 (SEQ ID NO: 111), H3-mini2-cl9+10+12(SEQ ID NO: 112), H3-mini2-cl9+10+11+12-GCN4 (SEQ ID NO: 113) and H3-mini2-cl9+10+11+12-tri (SEQ ID NO: 114) exhibit recognition by CR8020 (% percentage positive cells ranging from ca 10 to 60) and CR8043 (40 to 70%) (indicated by arrows). Of the 4 positive constructs H3-mini2-cl9+10+11+12-GCN4 (SEQ ID NO: 113) exhibits the largest responses in this assay. The same results are obtained from the Mean fluorescence intensity that is shown in panel B (FIGS. 9A and 9B). H3-mini2-cl9+10+11+12 (SEQ ID NO: 111), H3-mini2-cl9+10+12(SEQ ID NO: 112), H3-mini2-cl9+10+11+12-GCN4 (SEQ ID NO: 113) and H3-mini2-cl9+10+11+12-tri (SEQ ID NO: 114) exhibit mean fluorescence intensity well above background after exposure to CR8020 and CR8043 and staining, with the highest responses for H3-mini2-cl9+10+11+12-GCN4 (SEQ ID NO: 113). None of the polypeptides based on HA from A/Wisconsin/67/2005 is capable of recognizing CR9114.
  • FIGS. 10A and 10B show that all A/Hong Kong/1/1968 based constructs are expressed on the cell surface since the reaction with the H3 polyclonal serum for most constructs results in ca 40-60% of all cells analyzed being positive compared to below 5% for non-transfected cells. Control experiments in the absence of IgG, using only the labeled anti-Human or anti-rabbit IgG are all negative. The percentage positive cells for the full-length protein from A/Hong Kong/1/1968 after treatment with the polyclonal serum is low (ca 10%), but strong signals obtained from the binding of CR8020, CR8043 and CR9114 indicate that the protein is present on the cell surface. CR8057 does not recognize A/Hong Kong/1/1968 based sequences, only the full-length protein from A/Wisconsin/67/2005. Four constructs (containing the cluster 12 mutation) are recognized by CR8020 and CR8043, i.e., HK68 H3m2-cl9+10+12 (SEQ ID NO: 125), HK68 H3m2-cl9+10+11+12 (SEQ ID NO: 126), HK68 H3m2-cl9+10+11+12-tri (SEQ ID NO: 128 containing the shortened tri sequence at position 421-435) and HK68 H3m2-cl9+10+11+12-GCN4 (SEQ ID NO: 130, containing the short GCN4 sequence at position 421-435), as indicated by the % positive cells (15% or higher) and MFI clearly above background. The strongest signals (MFI) are obtained for HK68 H3m2-cl9+10+11+12-GCN4 (SEQ ID NO: 130); this stem domain polypeptide construct also shows a detectable binding to CR9114.
  • In conclusion we have shown that following the method described above stem domain polypeptides of the disclosure can be obtained for serotypes of group 2, in particular influenza A viruses of the H3 subtype.
  • Example 13 Design, Expression and Partial Purification of Soluble Stem Domain Polypeptides Comprising the Conserved Stem Domain Epilopes
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain so that the resulting polypeptides are presented on the cell surface when expressed in cells. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from position (or the equivalent of) 523, 524, 525, 526, 527, 528, 529 or 530 to the C-terminus of HA2 (numbering according to SEQ ID NO: 1) was removed so that expression in cells results in secreted (soluble) polypeptide which can be used, e.g., in a vaccine. The soluble polypeptide can further be stabilized by introducing a sequence known to form trimeric structures (also known as “foldon”), i.e., AYVRKDGEWVLL (SEQ ID NO: 143) optionally connected through a linker (e.g., GSGYIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO: 202)). The linker may optionally contain a cleavage site for processing following purification according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a histidine-tag (six or seven consecutive Histidines) connected via a short linker, e.g., EGR. In some embodiments, the linker and the histidine-tag are added without the foldon sequence being present.
  • According to the disclosure, the amino acid sequence from position 530 of the full-length HA from H1N1 A/Brisbane/59/2007 (numbering according to SEQ ID NO: 1) to the C-terminal amino acid of the HA2 domain was removed and replaced by the following sequences EGRHHHHHHH (SEQ ID NO: 81) comprising a short linker and a histidine tag. This exchange was applied to SEQ ID NO: 44: H1-mini2-cluster1+5+6-trim (resulting in SEQ ID NO: 144: s-H1-mini2-cluster1+5+6-trim), SEQ ID NO: 45: H1-mini2-cluster1+5+6-GCN4 (resulting in SEQ ID NO: 145: s-H1-mini2-cluster1+5+6-GCN4), SEQ ID NO: 46: mini2-cluster1+5+6 (A/Brisbane/59/2007) (resulting in SEQ ID NO: 146: s-H1-mini2-cluster1+5+6), SEQ ID NO: 47: mini2-cluster11+5+6 (A/Brisbane/59/2007) (resulting in SEQ ID NO: 147: s-H1-mini2-cluster11+5+6), SEQ ID NO: 48: mini2-cluster1+5 (A/Brisbane/59/2007) (resulting in SEQ ID NO: 148: s-111-mini2-cluster1+5).
  • Similarly, for reasons of comparison the exchange was applied to the SEQ ID NO: 1: H1 Full-length (A/Brisbane/59/2007) and in addition the HA cleavage site was impaired by modifying Arginine 343 to a Glutamine (R343Q mutation) to yield SEQ ID NO: 149: s-H1 Full-length R343Q). Furthermore two polypeptides of the disclosure were created with a different linker between the N-terminal and C-terminal parts of HA1: s-H1-mini2-cluster1+5+6-nl (SEQ ID NO: 150) and s-H1-mini2-cluster1+5+6-nl2 (SEQ ID NO: 151).
  • The genes encoding the above protein sequences were synthesized and cloned into expression vector pcDNA2004neo using methods generally known to those skilled in the art. HEK293F (Invitrogen) suspension cells were transfected with the expression vectors using 293transfectin as the transfection agent following protocols well known in the art and allowed to further propagate for 7 days. Cells were separated from the culture medium by centrifugation and discarded, while the supernatant containing the soluble polypeptides of the disclosure was collected for further processing. The supernatant was purified by immobilized metal affinity chromatography on a Ni-NTA column to bind the His-tagged polypeptides of the disclosure to the resin and the flow-through was collected. The column was washed with 3-10 column volumes 20 mM sodium phosphate pH 7.4, 500 mM NaCl, 10 mM imidazole (“wash”), 5-15 column volumes 20 mM sodium phosphate pH 7.4, 500 mM NaCl, 100 mM imidazole (“stringent wash”) and eluted with 20 mM sodium phosphate pH 7.4, 500 mM NaCl, 500 mM imidazole. In individual cases buffer compositions or used volumes were adapted to increase purity or yield, or a linear gradient was used instead of a step gradient. Fractions were collected throughout and analyzed on SDS-PAGE and Western blot, using a polyclonal anti-H1 HA serum for detection (see FIGS. 11A-11F). Results indicate a clear enrichment of the polypeptides hereof in the eluates compared to the starting materials.
  • In order to confirm proper folding and functionality of the purified polypeptides of the disclosure, the preparations were tested for binding of monoclonal antibody CR9114. To this end, a monoclonal antibody capable of binding a His-tag (6 or 7 consecutive histidines) at the C-terminus of a protein was coated on a standard 96-well plate by applying 100 microliter of a 1 μg/ml antibody solution to each well and incubating for overnight at 4° C. After removal of excess solution and washing, the plate was blocked with 150 microliter of a 2% skimmed milk solution for 1 hour at room temperature. After removal of the blocking agent and washing, 100 microliter of a 1 μg/ml solution of the polypeptides hereof, as well as the ectodomain of the corresponding full-length protein (SEQ ID NO: 149) was added and incubated for 2 hours at room temperature. After removal of excess polypeptides of the disclosure, mAb CR9114, mAb CR8020 (negative control) or polyclonal serum raised against H1 HA in rabbits (positive control) was added at concentrations varying between 2 and 20 μg/ml and incubated for 2 hours at room temperature. Binding was detected through HRP-conjugated anti-human antibody using protocols well known in the art.
  • The results (FIGS. 12A-12C) show that monoclonal antibody CR9114 is binding to the purified soluble polypeptides of the disclosure, as well as to the full-length ectodomain (FIG. 12A), whereas monoclonal antibody CR8020 does not (FIG. 12B). Polyclonal anti-H1 serum also binds to the polypeptides hereof and the full-length ectodomain in a very similar manner (FIG. 12C). It is thus concluded that the broadly neutralizing epitope of CR9114 is preserved in the polypeptides hereof, and taking into account the discontinuous and conformational nature of this epitope, that the stem domain is properly folded and adopts a three-dimensional conformation equal or very similar to the conformation in the native full-length HA.
  • The preparations of the polypeptides hereof were inhomogeneous in size as determined from the SDS-PAGE and Western blot results. We hypothesized that the variation is due to variation in protein glycosylation patterns between individual protein molecules. To confirm this, small aliquots of the protein preparations were treated with 3 units of N-glycosidase F (an enzyme that removes N-linked carbohydrate moieties from Asparagine residues) for 18 hours at 37° C. and analyzed by SDS-PAGE and Western Blot. The results (FIGS. 13A and 13B) show that treatment with the N-glycosidase focuses the diffuse bands of the polypeptides hereof to a single band at the expected molecular weight calculated from the amino acid sequence. This is clear evidence that the observed size inhomogeneity indeed arises from variation in glycosylation patterns.
  • The preparations of the polypeptides hereof were further characterized by HP-SEC. To this end, approximately 40 μg of the polypeptides hereof in a volume between 43 and 63 μl (concentration of polypeptide between 0.64 and 0.93 mg/ml) was applied to a Tosoh TSK-gel G2000 SWxI column connected to a multi-angle light scattering detector. Results are shown in FIG. 14. The main peak (retention time ca 8 minutes) arises from the polypeptides hereof, and is well separated from the larger species, indicating that further purification can be achieved. Based on the data of the multi-angle light scattering detector the main peaks correspond to a molecular species with molecular weight between 50 and 80 kilo Dalton (see Table 9) depending on the polypeptide of the disclosure under study. In light of the size inhomogeneity and variety in polypeptide glycosylation described above, as well as the dependence of the results on the hydrodynamic shape of the molecules, these numbers should be taken as an indication only.
  • Example 14 Expression and Partial Purification of a Soluble Stem Domain Polypeptide Comprising the Conserved Stem Domain Epitope of Monoclonal Antibodies CR9114, CR6261 and FI6v3
  • In order to obtain a highly pure preparation of a polypeptide of the disclosure, HEK293F cells were transfected with expression vector pcDNA2004 containing the gene encoding s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145). It will be understood by the skilled person that the leader sequence (or signal sequence) that directs transport of a protein during production (corresponding to amino acids 1-17 of SEQ ID NO: 145) will not be present in the secreted final polypeptide. To this end, 1.0* 106 vc/mL were seeded by spinning down HEK293F cells (Invitrogen) at 300 g for 5 minutes and resuspending in 300 mL pre-warmed FREESTYLE™ medium per SF1000. This culture was incubated for 1 hour at 37° C., 10% CO2 at 110 rpm in a multitron incubator. After 1 hour the plasmid DNA was pipetted in 9.9 mL OPTI-MEM® medium to a concentration of 1.0 μg/mL in the 300 mL culture volume. In parallel 440 μL 293fectin® was pipetted in 9.9 mL OPTI-MEM® medium and incubated for 5 minutes at room temperature. After 5 minutes the plasmid DNA/OPTI-MEM® mix was added to the 293fectin®/OPTI-MEM® mix and incubated at room temperature for 20 minutes. After the incubation the plasmid DNA/293fectin® mix was added drop wise to the cell suspension. The transfected cultured was incubated at 37° C., 10% CO2 and 110 rpm in a multitron incubator. At day 7, cells were separated from the culture medium by centrifugation (30 minutes at 3000 g), while the supernatant containing the soluble polypeptides of the disclosure was filtrated over a 0.2 μm bottle top filter for further processing.
  • To verify the presence of the polypeptide of the disclosure, a small aliquot of the supernatant was analyzed by Western Blot, using a monoclonal antibody directed against the his-tag for detection (FIG. 15A). Several bands were observed at an apparent molecular weight between 37 and 50 kDa, which is close to or above the calculated molecular weight based on the amino acid composition of the protein. The size in homogeneity is caused by variation in glycosylation patterns, since earlier experiments have shown that treatment of this protein with N-glycosidase F to remove attached N-linked glycans from the protein results in focusing of the band at the expected molecular weight.
  • The presence of the broadly neutralizing epitopes on the polypeptide of the disclosure was confirmed by ELISA, using broadly neutralizing antibodies CR6261, CR9114 and F16v3 as probes. For reasons of comparison monoclonal antibody CR8020 was also included as a negative control in the experiment; this antibody is capable of binding to HA molecules from group 2 viruses (e.g., H3 and H7 HA), but not from group 1 (e.g., H1 and H5 HA). To this end, a monoclonal antibody capable of binding a His-tag (6 or 7 consecutive histidines) at the C-terminus of a protein was coated on a standard 96-well plate by applying 100 microliter of a 1 μg/ml antibody solution to each well and incubation overnight at 4° C. After removal of excess solution and washing, the plate was blocked with 150 microliter of a 2% skimmed milk solution for 1 hour at room temperature. After removal of the blocking agent and washing, 100 microliter of the supernatant was added and incubated for 2 hours at room temperature. After removal of excess polypeptides of the disclosure, mAb CR9114 was added, in a 1:2 dilution series starting at a 5 μg/ml concentration, and incubated for 2 hours at room temperature. Binding was detected through HRP-conjugated anti-human antibodies using protocols well known in the art. Clear binding of CR9114, FI6v3 and to a lesser extent CR6261 to the polypeptide of the disclosure is observed, whereas no response is observed for CR8020 indicating that the observed binding is specific for the monoclonal antibodies tested (FIG. 15B).
  • For purification purposes, 250 ml of culture supernatant was applied to a 5 ml His-trap column, washed with 75 ml wash buffer (20 mM TRIS, 500 mM NaCl, pH 7.8), and eluted with a step-wise gradients of imidazole (10, 50, 100, 200, 300 and 500 mM in wash buffer). The chromatogram (FIG. 16) exhibits multiple peaks, with the polypeptides hereof eluting at 100 mM imidazole (peak A) and 200 mM imidazole (peak B). Both peaks were collected, concentrated, and applied to a size exclusion column for further purification (Superdex 200). Elution profiles are shown in FIG. 17, Panels a and b. Fractions were collected and analyzed on SDS-PAGE (FIG. 17, Panels c and d). Fraction 3 derived from both peak A and B contain highly pure polypeptide of the disclosure. The final yield was ca 10 ug/ml of culture supernatant. Purified batches are free of endotoxin (dosing at 5 mg/kg; <1 EU/mg); Chromogenic LAL) and bio burden is below 1 CFU/50 μg.
  • Example 15 Design of a Stem Domain Polypeptide Comprising the Conserved Stem Domain Epitope of CR9114 Based on Influenza B HA
  • The procedure described above to design polypeptides of the disclosure was also applied to Influenza B. In this Example, polypeptides of the disclosure on the basis of HA sequences taken from virus strains of both known lineages, i.e., B/Florida/4/2006 (B/Yamagata lineage) and B/Malaysia/2506/2004 (B/Victoria lineage) are described. Those skilled in the art will understand that the use of other Influenza B HA sequences is also possible because the sequences are well conserved, in particular in the stem region. Therefore, polypeptides derived from other Influenza B HA sequences according to the description below are also encompassed by the disclosure.
  • The first modification in the HA sequence of B/Florida/4/2006 was the removal of the cleavage site at position 361 (numbering refers to SEQ ID NO: 132) by mutating R (or in a limited number of cases K) to Q (R361Q) to prevent the formation of HA1 and HA2 from HA0. Optionally, residue 363 to 367 (GFGAI, part of the fusion peptide) (numbering refers to SEQ ID NO: 132) can additionally be deleted to minimize the exposure of hydrophobic residues to the aqueous solvent. The positive charge at the cleavage is 100% conserved in HA from Influenza B and this mutation can, therefore, be applied in all sequences.
  • The second modification is the removal of the head domain by deleting a large part of the HA1 sequence and reconnecting the N- and C-terminal sequences through a short linker. The deletion can vary in length, but it is preferred that the last residue of the N-terminal sequence of HA1 and the first residue of the C-terminal sequence are spatially close together to avoid introducing strain through the linking sequence. In B sequences deletions can be introduced at (the equivalent positions of) P51-1336 (m2; SEQ ID NO: 133) in B/Florida/4/2006 (SEQ ID NO: 132). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar.
  • SEQ ID NO: 133 describes such a polypeptide of the disclosure containing deletion P51-I332 (m2; SEQ ID NO: 133). The deletions described above ensure that the unstructured regions formed by residues between P51 and N58 and between E306 and 1337 are also removed; this is beneficial to the overall stability of the polypeptides hereof. A similar effect was observed for polypeptides of the disclosure derived from a H1 sequence (see above).
  • The deletion of the head domain leaves the loop between residues 416 to 436 now exposed to the aqueous solvent. In B HAs, this loop is highly conserved (see Table 10). The consensus sequence is: LSELEVKNLQRLSGAMDELHN (SEQ ID NO: 203).
  • To increase the solubility of this loop in the pre-fusion conformation and destabilize the post-fusion conformation some hydrophobic residues were modified into polar (S, T, N, Q), charged amino acids (R, H, K, D, E), or flexibility has to be increased by mutation to G. Specifically mutations at positions 421, 424, 427, 434 (numbering refers to SEQ ID NO: 132) will contribute to the stability of a polypeptide of the disclosure.
  • For positions V421 and L427 mutation to T is preferred but other polar (S, N, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect. For position 424, mutation to S is preferred. Other polar (N, T, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same. For position L434 mutation to G is preferred. Other polar (S, T, N, Q), charged (R, H, K, D, E) will have the same effect. Polypeptides containing at least one of the mutations described above were made. Combinations of more than one mutation are also possible, as shown, for example, in SEQ ID NOs: 134-136.
  • To stabilize the pre-fusion conformation of polypeptides of the disclosure a covalent bond between two parts distant in the primary sequences but close in the folded pre-fusion conformation was introduced. To this end, a disulfide bridge is engineered in the polypeptides, preferably between (the equivalent of) position K340 and S454 in HA from B/Florida/4/2006 (SEQ ID NOS: 134-136). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. Sequences supporting the formation of a trimeric coiled coil derived from GCN4 are introduced at (the equivalent of) position 436 to 452 RRMKQIEDKIEEILSKI (SEQ ID NO: 135), or alternatively RMKQIEDKIEEILSKI at position 436 to 451 (SEQ ID NO: 136).
  • The same procedure was followed for HA from B/Malaysia/2506/2004 (SEQ ID NO: 137) to provide polypeptides. Compared to HA from B/Florida/4/2006 this HA has an additional asparagine residue inserted at position 178 as can be readily seen in an alignment of the two sequences. Consequently the cleavage site is at position 362, and the corresponding mutation to prevent cleavage is R362Q. The deletion to remove the head region of in this case is, for example, P51 to I337 (m2; SEQ ID NO: 138). Again the remaining parts of the sequence can be joined directly or alternatively a flexible linker can be introduced. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar.
  • SEQ ID NO: 138 describes such a polypeptide-containing deletion P51-I332 (m2; SEQ ID NO: 138). The deletions described above ensure that the unstructured regions formed by residues between P51 and N58 and between E307 and I338 are also removed; this is beneficial to the overall stability of the polypeptides hereof. A similar effect was observed for polypeptides of the disclosure derived from a H1 sequence (see above).
  • The deletion of the head domain leaves the loop between residues L420 to H436 now exposed to the aqueous solvent. In B HAs, this loop is highly conserved (see Table 10). The consensus sequence is: LSELEVKNLQRLSGAMDELHN (SEQ ID NO: 203).
  • To increase the solubility of this loop in the pre-fusion conformation and destabilize the post-fusion conformation some hydrophobic residues were modified into polar (S, T, N, Q), charged amino acids (R, H, K, D, E), or flexibility has to be increased by mutation to G. Specifically mutations at positions 422, 425, 428, 435 (numbering refers to SEQ ID NO: 137) were tested.
  • For positions V422 and L428 mutation to T is preferred but other polar (S, N, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same effect. For position 425, mutation to S is preferred. Other polar (N, T, Q), charged (R, H, K, D, E) and highly flexible amino acids (G) will have the same. For position L435 mutation to G is preferred. Other polar (S, T, N, Q), charged (R, H, K, D, E) will have the same. Polypeptides containing at least one of the mutations described above were made. Combinations of more than one mutation are also possible, as shown, for example, in SEQ ID NOs: 139-141.
  • To stabilize the pre-fusion conformation of polypeptides of the disclosure a covalent bond between two parts distant in the primary sequences but close in the folded pre-fusion conformation is introduced. To this end, a disulfide bridge is engineered in the polypeptides hereof, preferably between (the equivalent of) position K341 and S455 in HA from B/Malaysia/2506/2004 (SEQ ID NOS: 139-141). Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • As described above, the native HA exists as a trimer on the cell surface. Most of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability. In the stem domain trimerization is mediated by the formation of a trimeric coiled coil motif. By strengthening this motif a more stable trimer can be created. Sequences supporting the formation of a trimeric coiled coil derived from GCN4 are introduced at (the equivalent of) position 437 to 453 RRMKQIEDKIEEILSKI (SEQ ID NO: 135), or alternatively RMKQIEDKIEEILSKI at position 437 to 452 (SEQ ID NO: 136).
  • The polypeptides based on influenza B hemagglutinin, SEQ ID NOS: 133-136 and 138-141 were tested for the presence of the epitope of CR9114 by Fluorescence Associated Cell Sorting as described above. However, no binding of mAb CR9114 was observed for these constructs.
  • Example 16 Immunogenicity of Third Generation HA Stem Domain Polypeptides
  • In order to assess the immunogenicity of the stem domain polypeptides mice were immunized with the expression vectors encoding full-length H1 from A/Brisbane/59/2007,(SEQ ID NO: 1), Mini3-cluster11 (SEQ ID NO: 11), Mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5 (SEQ ID NO: 48), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) and mini2-cluster1+5+6-nl (SEQ ID NO: 152). An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 50 μg construct+50 μg adjuvant (pUMCV1-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. The sera were analyzed by ELISA using the recombinant ectodomains of the full-length HA from the A/Brisbane/59/2007 and the A/California/07/2009 strains (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 20-fold dilution of the serum is added. Bound antibody is detected using HRP-conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve using mAb 3AH1 InA134 (Hytest, Turku, Finland) to derive ELISA units/ml (EU/ml).
  • The time course of the IgG response towards the ectodomain of the homologous full-length protein induced by the immunization schedule described above are shown in FIG. 18. A high response can already be observed for the mice immunized with DNA (SEQ ID NO: 1) encoding the full-length protein after 4 weeks. The response is increased by a boost injection, as shown from the increased titer at 7 weeks. Immunization with DNA encoding polypeptides of the disclosure mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5 (SEQ ID.NO: 48), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) and mini2-cluster1+5+6-nl (SEQ ID NO: 152) leads to intermediate titers that are further increased upon a booster immunization as evidenced from titers at week 7. Immunization with DNA encoding Mini3-cluster11 (SEQ ID NO: 11) and negative control cM2 do not result in a detectable response in this assay.
  • FIGS. 19A and 19B exhibit the IgG responses at week 7 after initial immunization for individual mice against the ectodomain of the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 19A) and the heterologous strain H1N1 A/California/07/2009. Antibodies induced by DNA encoding polypeptides of the disclosure mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5 (SEQ ID NO: 48), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) and mini2-cluster1+5+6-nl (SEQ ID NO: 152) bind equally well to the ectodomain of hemagglutinin derived from the homologous and heterologous strain. In contrast, immunization with DNA encoding the full-length protein (SEQ ID NO: 1) results in high titers against the homologous hemagglutinin (more than an order of magnitude higher than titers observed for immunization with DNA encoding the polypeptides hereof), but in low titers against the ectodomain of the heterologous hemagglutinin. Immunization with DNA encoding Mini3-cluster11 (SEQ ID NO: 11) and negative control cM2 do not result in a detectable response against either of the hemagglutinin ectodomains in this assay.
  • In conclusion, antibodies raised against the polypeptides hereof mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5 (SEQ ID NO: 48), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1++6-GCN4 (SEQ ID NO: 45) and mini2-cluster1+5+6-nl (SEQ ID NO: 152) are capable of recognizing full-length hemagglutinin. Their epitopes necessarily are located on the hemagglutinin stem domain and are conserved between the full-length hemagglutinins from H1N1 A/Brisbane/59/2007 and H1N1 A/California/07/2009.
  • Example 17 Immunogenicity of Third Generation HA Stem Domain Polypeptide mini2-cluster1+5+6-GCN4
  • In order to further assess the immunogenicity of the stem domain polypeptides of the disclosure, mice were immunized once with the expression vector encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) (prime) and boosted twice with purified protein s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) at three week intervals. For reasons of comparison, separate groups were immunized three times at three week intervals immunization with the expression vectors encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) as well as full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1). An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized intramuscularly (i.m.) with 1000 μg construct encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45)+100 μg adjuvant (pUMCV1-GM-CSF) on day 1 and with s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145; 100 μg purified protein) adjuvanted with 10 μg Matrix-M on day 21 and 42. One group received 2nd and 3rd immunization s.c., whereas another received 2nd and 3rd immunizations i.m. A third group was again primed with 100 μg construct encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45)+100 μg adjuvant (pUMCV1-GM-CSF) on day 1 as above and received booster immunizations on day 21 and 41 of s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145; 100 μg purified protein) adjuvanted with MONTANIDE® ISA-720 (1:1 v/v). For comparison, groups of 4 mice (BALB\c) were immunized i.m. on day 1, 21 and 42 with 100 μg construct encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1) or cM2, adjuvanted with 100 μg adjuvant (pUMCV1-GM-CSF).
  • On day 49, a final bleed was performed and serum collected. The sera were analyzed by ELISA using the recombinant full-length HA from the H1N1 A/Brisbane/59/2007, H1N1 A/California/07/2009, H5N1 A/Vietnam/1203/2004 and H3N2 A/Hong Kong//1968 strains (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 20-fold dilution of the serum is added. Bound antibody is detected using HRP—conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve composed of a serial dilution of a mouse monoclonal antibody binding to the HA antigen and expressed as ELISA units per ml (EU/ml). FIGS. 20°-20D exhibit the IgG responses at week 7 after initial immunization for individual mice against the ectodomain of the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 20A), the heterologous strain H1N1 A/California/07/2009 (FIG. 20B) the heterosubtypic strain H5N1 A/Vietnam/1203/2004 (FIG. 20C) and the heterosubtypic strain H3N2 A/Hong Kong/1/1968 (FIG. 20D). Antibodies induced by immunization with DNA encoding the polypeptide of the disclosure mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) are capable of recognizing the HA of H1N1 A/Brisbane/59/2007, H1N1 A/California/07/2009 and to a lesser extent H5N1 A/Vietnam/1203/2004. Antibodies elicited by immunization with DNA encoding the full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1) recognize the homologous protein very well, but the heterologous HA from H1N1 A/California/07/2009, and heterosubtypic HA from H5N1 A/Vietnam/1203/2004 much less so, as is evidenced by the lower titers in FIG. 17, Panels b and c. The group of mice immunized with DNA encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45; prime) followed by booster immunizations with s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) protein exhibit high titers against the ectodomains of HA derived from homologous H1N1 A/Brisbane/59/2007, heterologous H1N1 A/California/07/2009 and heterosubtypic H5N1 A/Vietnam/1203/2004.
  • FIG. 20D exhibits the IgG responses at week 7 against the ectodomain of HA from H3N2 A/Hong Kong/1/1968. Unlike mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) and s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) that are derived from HA of H1N1 A/Brisbane/59/2007, a strain that belongs to Influenza group 1, H3N2 A/Hong Kong/1/1968 belongs to Influenza group 2 and is, therefore, phylogenetically distant from the parent sequence used to design the polypeptides hereof used in this experiment. Immunizing three times with DNA encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) or full-length HA from H1N1 A/Brisbane/59/2007 (SEQ ID NO: 1) does not result in IgG levels detectable by ELISA against this antigen. In contrast, the immunization with DNA encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) followed by two booster immunizations with purified protein s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) results in high titers against HA from H3N2 A/Hong Kong/1/1968. This result is obtained independent from the immunization route used (i.e., intramuscular vs subcutaneous) or the adjuvant added to the protein boost immunizations (Matrix-M or MONTANIDEO ISA-720).
  • In conclusion, immunization with polypeptides of the disclosure can elicit IgGs that are capable of recognizing HA from a broad range of influenza strains, including homologous, heterologous, and heterosubtypic strains from influenza group 1 as well as a strain form influenza group 2. In contrast immunization with the full-length HA results in high titers against HA of the homologous strains, reduced titers against heterologous and heterosubtypic strains and IgG levels below the limit of detection for the strain from influenza group 2.
  • Example 18 Design of Further Stem Domain Polypeptides Comprising the Conserved Stem Domain Epitopes of CR6261 and CR9114
  • Polypeptides of the disclosure designed following the procedure described above can be further modified to increase the stability. Such modifications can be introduced to enhance the formation of trimeric forms of the polypeptides hereof over monomeric and/or dimeric species. As described, the native HA exists as a trimer on the cell surface. Many of the interactions between the individual monomers that keep the trimer together are located in the head domain. After removal of the head the tertiary structure is thus destabilized and, therefore, reinforcing the interactions between the monomers in the truncated molecule will increase the stability of the trimeric form. Trimerization is mediated by the formation of a trimeric. By strengthening the coiled coil motif in the stem domain a more stable trimer form can be achieved.
  • According to the disclosure, a consensus sequence for the formation of a trimeric coiled coil, IEAIEKKIEAIEKKIE (SEQ ID NO: 83), is introduced in a polypeptide of the disclosure at (the equivalent of) position 418 to 433 (SEQ ID NO: 44) in H1 A/Brisbane/59/2007 (numbering according to SEQ ID NO: 1). Alternatively, IEAIEKKIEAIEKKI (SEQ ID NO: 85) can be introduced at 419-433 (SEQ ID NO: 49) or IEAIEKKIEAIEKK (SEQ ID NO: 86) at 420-433 (SEQ ID NO: 50). An alternative is to introduce the sequence MKQIEDKIEEIESKQ (SEQ ID NO: 84), derived from GCN4 and known to trimerize, at position 419-433 (SEQ ID NO: 45). Alternatively MKQIEDKIEEIESK (SEQ ID NO: 87) can be introduced at position 420-433 (SEQ ID NO: 51) or RMKQIEDKIEEIESKQK (SEQ ID NO: 88) at position 417-433 (SEQ ID NO: 52). Similarly, the trimer interface might be strengthened by modifying M420, L423, V427, G430 into Isoleucine (SEQ ID NO: 53).
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of H1 HA and the transmembrane domain. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from position (or the equivalent thereof) 523, 524, 525, 526, 527, 528, 529, or 530 of HA2 to the C-terminus of HA2 (numbering according to SEQ ID NO: 1) is removed so that a secreted (soluble) polypeptide is produced. The soluble polypeptide can be further stabilized as described above.
  • Description Linker Variants
  • The genes encoding the above protein sequences (SEQ ID NOS: 44 to 46; SEQ ID NOS: 49 to 53 and SEQ ID NOS: 152-157 were synthesized and cloned into expression vector pcDNA2004 using methods generally known to those skilled in the art. For reasons of comparison an expression vector encoding the full-length sequence (SEQ ID NO: 1) as well as cM2 was included in the experiment
  • HEK293F (Invitrogen) suspension cells (106 cells/ml, 30 ml) were transfected with the expression vectors (1 μg/ml) using 40 μl 293-transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested; aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with either polyclonal serum raised against H1 HA to probe expression or a HA-specific monoclonal antibody (5 microgram/ml) and a secondary antibody used for staining. The cells were then analyzed by fluorescence associated cell sorting (FACS) for expression of the membrane attached HA stem domain polypeptides of the disclosure using polyclonal serum raised against H1 HA to probe expression. A panel of monoclonal antibodies of known specificity that bind the full-length protein (CR6261, CR9114, CR9020 and CR8020) were used to probe for the presence of conserved epitopes and, by inference, correct folding of the full-length HA and the mini-HA polypeptides of the disclosure. Results are expressed as percentage positive cells and mean fluorescence intensity and are shown in FIG. 21.
  • Results show that all tested variants are expressed on the cell surface as evidenced by the positive response from the polyclonal anti-H 1 serum. H3 HA specific antibody CR8020 does not recognize any of the constructs included in the experiment, whereas CR9020, which binds to the head domain of H1, HAs only clearly recognizes the full-length protein. All polypeptides of the disclosure, as well as the full-length protein are recognized by CR6261 and CR9114, indicating that the correspondent epitopes are present in the polypeptides hereof in the same conformation as in the wild-type protein. Among the polypeptides hereof with an additional trimerization motif included in helix CD (see FIG. 1), SEQ ID NOS: 45, 51 and 52 containing the GCN4-derived sequences SEQ ID NOS: 84, 87 and 88, respectively result in an equal or higher responses (MFI) than SEQ ID NOS: 44, 49 and 50, containing the consensus trimerization sequences of SEQ ID NOS: 83, 85 and 86.
  • The variation in the composition of the linker connecting amino acids 52 and 321 (numbering refers to SEQ ID NO: 1) in the polypeptides hereof does not lead to major changes in the recognition of monoclonal antibodies CR6261 and CR9114. The largest change is observed when GGGG (SEQ ID NO: 194) in SEQ ID NO: 46 is replaced with HNGK (SEQ ID NO: 210), resulting in SEQ ID NO: 152, which leads to a somewhat lower response to CR6261, but does not affect the response to CR9114. Removing the linker and introducing amino acids 53-56 of SEQ ID NO: 1 (SHNG), i.e., creating a polypeptide of the disclosure without a linker in SEQ ID NO: 46 (resulting in SEQ ID NO: 153), SEQ ID NO: 45 (resulting in SEQ ID NO: 154) or SEQ ID NO: 50 (resulting in SEQ ID NO: 155) does not impact the response in the FACS assay, indicating that the linker sequence is not critical.
  • SEQ ID NO: 156 is derived from SEQ ID NO: 46 by introducing mutations I337N, I340N and F352Y, whereas SEQ ID NO: 157 contains an additional mutation at position 353, i.e., I353N. These mutations do not lead to an improved response to CR6261 and CR9114 in the FACS assay shown in FIG. 21.
  • In certain embodiments, the polypeptides hereof contain the intracellular sequences of HA and the transmembrane domain. In other embodiments, the cytoplasmic sequence and the transmembrane sequence from position (or the equivalent thereof) 523, 524, 525, 526, 527, 528, 529, or 530 of HA2 to the C-terminus of HA2 (numbering according to SEQ ID NO: 1) is removed, and optionally replaced by introducing a sequence known to form trimeric structures, i.e., AYVRKDGEWVLL (SEQ ID NO: 143), optionally connected through a linker. The linker may optionally contain a cleavage site for processing afterwards according to protocols well known to those skilled in the art. To facilitate purification of the soluble form a tag sequence may be added, e.g., a His-tag HHHHHHH (SEQ ID NO: 191) connected via a short linker, e.g., EGR. According to the disclosure, the amino acid sequence from position 530 (numbering according to SEQ ID NO: 1) to the C-terminal amino acid of the HA2 domain was removed and replaced by SEQ ID NO: 81 or SEQ ID NO: 82.
  • Example 19 Immunogenicity of Third Generation HA Stem Domain Polypeptides
  • In order to assess the immunogenicity of the stem domain polypeptides mice were immunized with the expression vectors encoding full-length H1 from A/Brisbane/59/2007 (SEQ ID NO: 1), Mini3-cluster11 (SEQ ID NO: 11), Mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), mini2-cluster1+5+6-nl (SEQ ID NO: 152), mini2-cluster1+5+6-nl2 (SEQ ID NO: 153), mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154), mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51), mini2-cluster1+5+6-GCN4t3 (SEQ ID NO: 52), mini2-cluster1+5+6+12 (SEQ ID NO: 156) and mini2-cluster1+5+6+12+13 (SEQ ID NO: 157). An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 100 μg construct+100 μg adjuvant (pUMCV1-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. The sera were analyzed by ELISA using recombinant full-length HA from the H1N1 A/Brisbane/59/2007, H1N1 A/California/07/2009 and H5N1 A/Vietnam/1203/2004 strains (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 50-fold dilution of the serum is added. Bound antibody is detected using HRP—conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve composed of a serial dilution of a mouse monoclonal antibody binding to the HA antigen and expressed as ELISA units per ml (EU/ml).
  • FIGS. 22A-22C exhibit the IgG responses at week 7 after initial immunization for individual mice against the full-length hemagglutinin from the homologous strain H1N1 A/Brisbane/59/2007 (FIG. 22A), the heterologous strain H1N1 A/California/07/2009 (FIG. 22B) and the heterosubtypic strain H5N1 A/Vietnam/1203/2004 (FIG. 22C). Antibodies induced by immunization with DNA encoding polypeptides of the disclosure Mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), mini2-cluster1+5+6-nl (SEQ ID NO: 152), mini2-cluster1+5+6-nl2 (SEQ ID NO: 153), mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154), mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51), mini2-cluster1+5+6-GCN4t3 (SEQ ID NO: 52), mini2-cluster1+5+6+12 (SEQ ID NO: 156) and mini2-cluster1+5+6+12+13 (SEQ ID NO: 157) bind equally well to the ectodomain of hemagglutinin derived from the homologous HIN1 A/Brisbane/59/2007 and heterologous H1N1 A/California/07/2009 strain (FIGS. 22A and 22B). Highest titers are observed for mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51) and mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154). In contrast, immunization with DNA encoding the full-length protein (SEQ ID NO: 1) results in high titers against the homologous hemagglutinin (more than an order of magnitude higher than titers observed for immunization with DNA encoding the polypeptides of the disclosure), but in low titers against the ectodomain of the heterologous hemagglutinin (more than an order of magnitude). Immunization with DNA encoding Mini3-cluster11 (SEQ ID NO: 11) and negative control cM2 do not result in a detectable response against either of the hemagglutinin ectodomains in this assay.
  • The titers against the ectodomain of the heterosubtypic hemagglutinin from H5N1 A/Vietnam/1203/2004 (FIG. 22C) indicate a clear response for mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51). Observable titers are also obtained for 2 out of 4 mice after immunization with DNA encoding mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45) and for l out of 4 mice for mini2-cluster1+5+6-nl (SEQ ID NO: 152), mini2-cluster1+5+6-nl2 (SEQ ID NO: 153), mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154). Surprisingly, we also find detectable titers after immunization with DNA encoding Mini3-cluster11 (SEQ ID NO 11) and Mini2-cluster11+5 (SEQ ID NO: 14). The former construct did not induce any detectable antibody titers against homologous and heterologous H1 HA, whereas the latter induced only moderate responses (FIGS. 22A and 22B). Comparison of the sequences of all constructs in this experiment and H5 HA point towards a putative linear epitope located at the membrane distal end of the long CD helix (see FIG. 1). The methionine to isoleucine mutation at position 175 in SEQ ID NO: 11 and position 156 in SEQ ID NO: 14 results in linear sequence ERRIENLNKK (position 172 to 181 in SEQ ID NO: 11; position 153 to 162 in SEQ ID NO: 14). This sequence is also present in HA from H5N1 A/Vietnam/1203/2004, but not in the HA from H1N1 A/Brisbane/59/2007 and H1N1 A/California/07/2009, where the corresponding sequences are ERRMENLNKK (SEQ ID NO: 211) and EKRIENLNKK (SEQ ID NO: 212), respectively.
  • In conclusion, antibodies raised against the polypeptides hereof mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5+6 (SEQ ID NO: 46), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), mini2-cluster1+5+6-nl (SEQ ID NO: 152), mini2-cluster1+5+6-nl2 (SEQ ID NO: 153), mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154), mini2-cluster1+5+6-GCN4t3 (SEQ ID NO: 52), mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51), mini2-cluster1+5+6+12 (SEQ ID NO: 156) and mini2-cluster1+5+6+12+13 (SEQ ID NO: 157) are capable of recognizing full-length hemagglutinin. The epitopes of these antibodies must be located on the hemagglutinin stem domain and are conserved between the full-length hemagglutinins from H1N1 A/Brisbane/59/2007 and H1N1 A/California/07/2009. Antibodies elicited through immunization with DNA encoding mini2-cluster1+5+6-GCN4t2 (SEQ ID NO: 51), and to a lesser extent mini2-cluster11+5 (SEQ ID NO: 14), mini2-cluster1+5+6-GCN4 (SEQ ID NO: 45), mini2-cluster1+5+6-nl (SEQ ID NO: 152), mini2-cluster1+5+6-nl2 (SEQ ID NO: 153), mini2-cluster1+5+6-nl2s-GCN4 (SEQ ID NO: 154) and mini2-cluster1+5+6+12 (SEQ ID NO: 156) are also able to recognize the ectodomain of HA from H5N1 A/Vietnam/1203/2004. Polypeptide of the disclosure Mini3-cluster11 (SEQ ID NO: 11) is capable of inducing antibodies that recognize from H5N1 A/Vietnam/1203/2004.
  • Example 20 General Method to Design of Stem Domain Polypeptides Comprising the Conserved Stem Domain Epitopes of CR6261 and CR9114
  • On the basis of the results described above a general method is defined to create a polypeptide of the disclosure from an influenza virus HA0 sequence, in particular from an influenza HA0 sequence of serotype H1. The method comprises the steps:
      • 1. Removal of the cleavage site between HA 1 and HA2. This can be achieved by mutation of R (in a small number of cases K) to Q at the P1 position (see, e.g., Sun et al., 2010, for an explanation of the nomenclature of the cleavage site (position 343 in SEQ ID NO: 1). A mutation to Q is preferred but S, T, N, D or E are alternatives.
      • 2. Removal of the head domain by deleting amino acids 53 to 320 from SEQ ID NO: 1, or at equivalent positions in HA from other influenza viruses. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using suitable algorithms such as, e.g., Clustal or Muscle. The remaining parts of the sequence can be joined directly or alternatively by introducing a flexible linker. Linker sequences can be 1 to 50 amino acids in length. Preferred are flexible linkers of limited length (smaller or equal to 10 amino acids), e.g., GGG, GGGG (SEQ ID NO: 194), GSA, GSAG (SEQ ID NO: 193), GSAGSA (SEQ ID NO: 189), GSAGSAG (SEQ ID NO: 188) or similar. The length of the deletion can also be varied, e.g. by starting the deletion at (the equivalent of) position 54, 55, 56, 57 or 58, or to increase the length of the deletion, by cutting at position 47, 48, 49, 50, 51, or 52. Similarly, the last amino acid to be deleted can be at (the equivalent of) position 315, 316, 317, 318 or 319, or to increase the length of the deletion at (the equivalent of) position 321, 322, 323, 324, or 325. It is important to realize that changes in the length of the deletion can be in part compensated for by matching the length of the linker sequence, i.e., a larger deletion can be matched with a longer linker and vice versa. These polypeptides are also encompassed by the disclosure.
      • 3. Increasing the solubility of the loop (between the A-helix and the CD helix) formed by (the equivalent of) residues 402 to 418 in H1 A/Brisbane/59/2007 (SEQ ID NO: 1) to increase the stability of the pre-fusion conformation and destabilize the post-fusion conformation of the modified HA. This loop is highly conserved in H1 sequences, as can be seen in Table 6 below. This can, for example, be achieved by replacing I, L, F or V residues in the loop with hydrophilic counterparts. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as, e.g., Clustal or Muscle. Mutations to glycine destabilize the post-fusion conformation since the high flexibility of this amino acid leads to a decrease in stability of the post-fusion helix to be formed by this part of the HA sequence. The consensus sequence describing the loop between residue 402-418 of influenza HA of serotype H1 is (SEQ ID NO: 17) MNTQFTAVGKEEN(H/K)LE(K/R). In polypeptides of the disclosure, the amino acid at positions 406, 409, 413 and/or 416 (or their equivalent, as determined from a sequence alignment) is a polar (S, T, N, Q), charged (R, H, K, D, E) or flexible (G) amino acid. It should be noted that mutation of L416 to either S or T also introduces a consensus N-glycosylation site (consensus sequence is NX(S/T)). Glycosylation of the Asparagine this position will further increase the solubility of this region. Combinations of mutations at these sites are also possible, for example, F406S, V409T, L416S as in SEQ ID NO: 10 and SEQ ID NO: 14. In some cases a mutation to restore the consensus amino acid is preferred, e.g., where V or M is at position 404 (to T), V at 408 (to A) or 410 (to G) or 1 at 414 (to N); the incidence of sequences with these particular amino acids is very low. An overview of the mutations described above that characterize polypeptides of the disclosure is given in Table 6.
      • 4. Introducing a disulfide bridge in the polypeptides hereof, preferably between amino acids of (the equivalent of) position 324 and 436 in H1 A/Brisbane/59/2007; SEQ ID NO: 13-16. Equivalent positions can be easily determined by those skilled in the art by aligning the sequences using a suitable algorithm such as Clustal, Muscle, etc. Engineered disulfide bridges are created by mutating at least one (if the other is already a cysteine), but usually two residues that are spatially close into a cysteine, that will spontaneously or by active oxidation form a covalent bond between the sulfur atoms of these residues.
  • Using the general method according to the disclosure, described above, polypeptides of the disclosure were created based on the HA0 sequences of H1N1 A/California/04/2009 (SEQ ID NO: 159), H1N1 A/California/07/2009 (SEQ ID NO: 56), H1N1 A/Puerto Rico/8/1934 (SEQ ID NO: 78), and H1N1 A/Texas/36/1991 (SEQ ID NO: 64). In addition the method was applied to HA from another subtype that is part of Group 1, i.e., H5, using HA from H5N1 A/Vietnam/1203/2004 (SEQ ID NO: 158).
  • H1 mini-HA A/California/07/2009 (SEQ ID NO: 160) is created from H1 FL HA A/California/07/2009 (SEQ ID NO: 56) by:
      • 1. Removing the cleavage site: mutation R344Q (numbering refers to SEQ ID NO: 56.
      • 2. Deleting residues K53 to P321 and introducing a GGGG (SEQ ID NO: 194) linker between D52 and K322 (numbering refers to SEQ ID NO: 56)
      • 3. Introducing a Serine residue at position 407, 417 (F407S, L417S; numbering refers to SEQ ID NO: 2), Threonine at position 410 (V410T; numbering refers to SEQ ID NO: 56) and a Glycine residue at position 414 (F414G; numbering refers to SEQ ID NO: 2) in the loop between the A-helix and the CD helix (residues 403-419 in SEQ ID NO: 56)
      • 4. Introducing a disulfide bridge by mutating residues Lysine 325 and Threonine 437 into a cysteine (K325C, T437C; numbering refers to SEQ ID NO: 56)
      • 5. An additional stabilizing element was introduced by replacing 419KRIENLNKKVDDGFLD434 (numbering refers to SEQ ID NO: 56) with the sequence RMKQIEDKIEEIESKQ (SEQ ID NO: 204).
  • The mini-HA sequence based on the full-length HA from A/California/04/2009 (SEQ ID NO: 159) can be created in the same manner and is identical to the sequence of H1 mini-HA A/California/07/2009 (SEQ ID NO: 160).
  • Similarly, H1 mini-HA A/Puerto Rico/8/1934 (SEQ ID NO: 161) is created from H1 FL HA A/Puerto Rico/8/1934 (SEQ ID NO: 78) by:
      • 1. Removing the cleavage site: mutation R343Q (numbering refers to SEQ ID NO: 78)
      • 2. Deleting residues S53 to P320 and introducing a GGGG (SEQ ID NO: 194) linker between D52 and K321 (numbering refers to SEQ ID NO: 78)
      • 3. Introducing a Serine residue at position 406, 416 (F406S, L416S; numbering refers to SEQ ID NO: 78) Threonine at position 409 (V409T; numbering refers to SEQ ID NO: 78) and a Glycine residue at position 413 (F413G; numbering refers to SEQ ID NO: 78) in the loop between the A-helix and the CD helix (residues 402-418 in SEQ ID NO: 78)
      • 4. Introducing a disulfide bridge by mutating residues Arginine 324 and Threonine 436 into a cysteine (R324C, T436C; numbering refers to SEQ ID NO: 78)
      • 5. An additional stabilizing element was introduced by replacing 418KRMENLNNKVDDGFLD433 (numbering refers to SEQ ID NO: 78) with the sequence RMKQIEDKIEEIESKQ (SEQ ID NO: 204).
  • An additional difference between H1 mini-HA A/Puerto Rico/8/1934 (SEQ ID NO: 161) and H1 FL HA A/Puerto Rico/8/1934 (SEQ ID NO: 78) is at position 397, which is a Serine in the full-length protein (SEQ ID NO: 78) but a Threonine in the polypeptide of the disclosure of SEQ ID NO: 161 (S397T mutation). This is a naturally occurring variation in the A/Puerto Rico/8/1934 sequence, and sequences containing this mutation are, therefore, also included in the disclosure.
  • H1 mini-HA A/Texas/36/1991 (SEQ ID NO: 162) is created from H1 FL HA A/Texas/36/1991 (SEQ ID NO: 64) by:
      • 1. Removing the cleavage site: mutation R344Q (numbering refers to SEQ ID NO: 64)
      • 2. Deleting residues S53 to P321 and introducing a GGGG (SEQ ID NO: 194) linker between D52 and K322 (numbering refers to SEQ ID NO: 64)
      • 3. Introducing a Serine residue at position 407, 417 (F407S, L417S; numbering refers to SEQ ID NO: 64), Threonine at position 410 (V410T; numbering refers to SEQ ID NO: 64) and a Glycine residue at position 414 (F414G; numbering refers to SEQ ID NO: 64) in the loop between the A-helix and the CD helix (residues 403-419 in SEQ ID NO: 64)
      • 4. Introducing a disulfide bridge by mutating residues Arginine 325 and Threonine 437 into a cysteine (R325C, T437C; numbering refers to SEQ ID NO: 64)
      • 5. An additional stabilizing element was introduced by replacing 419RRMENLNKKVDDGELD434 (numbering refers to SEQ ID NO: 64) with the sequence RMKQIEDKIEEIESKQ (SEQ ID NO: 204).
  • H5 mini-HA A/Vietnam/1203/2004 (SEQ ID NO: 163) is created from H5 FL HA A/Vietnam/1203/2004 (SEQ ID NO: 158) by:
      • 1. Removing the cleavage site. Since H5 FL HA A/Vietnam/1203/2004 (SEQ ID NO: 158) contains a polybasic cleavage site (341RRRKKR346 (residues 341-346 in SEQ ID NO: 158)) a single site mutation is not enough to prevent protein cleavage. Instead 341RRRKK345 (residues 341-345 in SEQ ID NO: 158) is deleted and a R346Q mutation is introduced.
      • 2. Deleting residues K52 to P319 and introducing a GGGG (SEQ ID NO: 194) linker between K51 and K320 (numbering refers to SEQ ID NO: 158)
      • 3. Introducing a Serine residue at position 409, 419 (F409S, L419S; numbering refers to SEQ ID NO: 158), Threonine at position 412 (V412T; numbering refers to SEQ ID NO: 158) and a Glycine residue at position 416 (F416G; numbering refers to SEQ ID NO: 158) in the loop between the A-helix and the CD helix (residues 405-421 in SEQ ID NO: 158)
      • 4. Introducing a disulfide bridge by mutating residues Lysine 323 and Threonine 439 into a cysteine (K323C, T439C; numbering refers to SEQ ID NO: 158)
      • 5. An additional stabilizing element was introduced by replacing 421RRIENLNKKMEDGFLDV437 (numbering refers to SEQ ID NO: 158) with the sequence RMKQIEDKIEEIESKQI (SEQ ID NO: 205).
  • The genes encoding the protein sequences of SEQ ID NOS: 56, 160, 78, 161, 162, 158 and 163 were synthesized and cloned into expression vector pcDNA2004 using methods generally known to those skilled in the art. For reasons of comparison the full-length HA sequence of H3 A/Hong Kong/1/1968 (SEQ ID NO: 121), as well as the full-length HA sequence of H1 A/Brisbane/59/2007 (SEQ ID NO: 1) with additional cleavage site mutation R343Q were included in the experiment.
  • HEK293F (Invitrogen) suspension cells (106 cells/ml, 30 ml) were transfected with the expression vectors (1 μg/ml) using 40 μl 293transfectin as the transfection agent and allowed to further propagate for 2 days. Cells were harvested, aliquotted (0.3 ml, approximately 3*105 cells) and aliquots were treated with either polyclonal serum raised against H1 HA (Sino Biological Inc., Beijing, China) to probe expression or a HA-specific monoclonal antibody (5 microgram/ml) and a secondary antibody used for staining. The cells were then analyzed by Fluorescence Associated Cell Sorting (FACS) for expression of the membrane attached HA stem domain polypeptides of the disclosure on the cell surface. A panel of monoclonal antibodies of known specificity that bind the stem domain in the full-length protein (CR6261, CR9114) were used to probe for the presence of conserved epitopes and, by inference, correct folding of the full-length HA and the mini-HA polypeptides of the disclosure. Monoclonal antibody CR8020 (known not to bind to H1 and H5 HAs) and CR9020 (binds to the head domain of HA from H1 A/Brisbane/59/2007) were also included in the experiment. Results are expressed as percentage positive cells and Mean Fluorescence Intensity (MFI) and are shown in FIG. 23.
  • Treatment of the transfected cells with polyclonal anti-H1 serum results in 20 to 80% positive cells for the full-length HA (solid bars) and 40-50% positive cells for the mini-HAs. Negative controls FL H3 A/Hong Kong/1/1968 and cM2 only display very low numbers of positive cells. This is mirrored by mean fluorescence intensity (bottom panel) which shows a clearly detectable signal for all H1 full-length HA proteins. The signal for the full-length H5 HA remains low; however, this can be explained by a lower number of transfected cells in combination with a reduced recognition by the polyclonal H1 serum. Negative controls FL A/Hong Kong/1/1968 and cM2 show intensities at background level.
  • Both CR6261 and CR9114, known to be strong group 1 stem binders, recognize all Group 1 full-length HA and mini-HA proteins as indicated by high numbers of positive cells (ca. 50 to ca. 95%) and high MFI. This is strong evidence that the neutralizing epitopes of these antibodies are present in the mini-HA proteins, indicating a three-dimensional structure that strongly resembles the native structure of the HA stem domain in the full-length HA. As expected, negative control CR8020 (specific for group 2 HA) does not bind to H1 and H5 full-length HA or H1 and H5 mini-HA, indicating that the observed binding of the CR6261/CR9114 neutralizing antibodies to the mini-HA proteins does not arise from a specific protein-protein interactions. Binding between full-length H3 HA from A/Hong Kong/1/1968 and CR9114 or CR8020 is clearly observed from both the percentage positive cells and the MFI, in line with earlier observations and proving the functionality of these monoclonal antibodies. Similarly, negative control antibody CR9020 (HA head binder for A/Brisbane/59/2007) does not recognize the mini-HAs or full-length HA proteins, with the exception of HA from A/Brisbane/59/2007, further underlining the specificity of the observed binding between CR6261 and CR9114.
  • In conclusion, four novel HA derived polypeptides of the disclosure have been created that have shown to contain the epitopes recognized by the neutralizing CR6261 and CR9114 antibodies in the absence of the HA head domain.
  • Example 21 Protection Against Lethal Influenza Challenge in Mice by Polypeptides of the Disclosure
  • In order to determine whether polypeptides of the disclosure are capable of inducing an immune response that protects mice from death upon an exposure to influenza virus that would otherwise be lethal an influenza challenge experiment was performed. Mice were immunized i.m. with expression vectors encoding SEQ ID NOS: 78, 161, 45 and 6, as well as full-length HA from A/Brisbane/59/2007 (SEQ ID NO: 1) containing an additional R343Q mutation to remove the cleavage site. An expression vector encoding cM2 was included as a negative control. Immunization was performed using 50 μg expression construct+50 μg adjuvant (pUMCV1-GM-CSF) according to the study protocol below.
  • Study Protocol
      • Day-1 Bleed.
      • Day 0 Administration of vaccine (i.m.).
      • Day 21 Administration of vaccine (i.m.).
      • Day 28 Bleed.
      • Day 42 Administration of vaccine (i.m.).
      • Day 47 Bleed.
      • Day 48 Measurement of weight, temperature, clinical score and lethality.
      • Day 49 Challenge with lethal dose of influenza viral infection (per nasal).
      • Day 49 Remaining inoculum is utilized for back titration of virus.
      • Day 49-70 Daily measurement of weight, temperature, clinical score and lethality. Animals with clinical score ≧3 are monitored two times per day. Animals with clinical score ≧4 or temperature >32° C., whichever comes first, are immediately removed from the study.
      • Day 70 Sacrifice of all mice.
  • Group 1-6: Challenge with PR8 (A/Puerto Rico8/34, H1N1)
      • Group 1: SEQ ID NO: 78
      • Group 2: SEQ ID NO: 161
      • Group 3: SEQ ID NO: 1 R343Q
      • Group 4: SEQ ID NO: 45
      • Group 5: SEQ ID NO: 6
      • Group 6: empty vector
      • 10 mice per group. Total 60 mice. BALB/c.
    Materials and Methods: Virus Strain and Source:
  • Influenza virus strain PR8 (A/Puerto Rico8/34, H1N1) was sourced from Virapur (San Diego). Stock solution 1x10e8 pfu/ml Batch #E2004B.
  • Storage conditions. −75° C.±10° C. Freezer: −86° C. UCT freezer. Thermo Form. Fisher Scientific.
  • Animals:
  • Mouse, BALB/c (Specified Pathogen Free; SPF), female. 6 to 8 weeks old on Study Day 0 ˜17-19 grams. Sourced from Charles River Laboratories and identified by “ear identification.” All animals were acclimatized and maintained for 11 days before the start of the experiment.
  • DNA Administration
  • Method of Inoculum Reconstitution
  • Appropriate DNA formulations, as listed above were prepared aliquotted and stored at −20° C. Per construct one aliquot was thawed to room temperature immediately before injection, drawn into a syringe and injected. The remainder of each aliquot was discarded after completion of all injections of each immunization round.
  • Dose Level and Method of Administration
  • Mice are anaesthetized by intraperitoneal injection with 9.75 mg Xylasol (Graeub E Dr. AG (on the World Wide Web at graeub.com); Cat: 763.02) and 48.75 mg Ketasol (Graeub E Dr. AG (on the World Wide Web at graeub.com); Cat: 668.51) per kg body weight. 50 μl DNA solution was injected using a 0.5 ml syringe with a G29 needle intramuscularly (i.m.) in the quadriceps muscle of each hind leg, yielding a total volume of 100 μl injected per mouse. The remainder of each aliquot was discarded after completion of all injections of each immunization round.
  • Virus Administration:
  • Method of Inoculum Reconstitution
  • The virus material was stored at −75° C.±10° C. and was defrosted prior to administration. Once defrosted, the material was diluted in cold PBS (4° C.) corresponding to 5 LD50/50 ill for the A/PR/8/34 challenges. The diluted virus was kept on ice until administration to the mice.
  • Dose Level and Method of Administration
  • The animals were anaesthetized by intraperitoneal injection with 9.75 mg Xylasol and 48.75 mg Ketasol per kg body weight and each animal received 50 μl virus solution by intranasal. Unused material was returned to the lab for back titration.
  • Blood Withdrawal and Serum Preparation
  • At days specified in the Study Protocol, above, blood samples were taken (intermediate bleedings: 100-150 μl via retro-orbital cannulation, terminal bleeding via cardiac puncture: approximately 300-500 μl). Serum was isolated from this blood by centrifugation for 5 minutes at 14000 g and stored at −20° C. until shipment on dry ice.
  • Clinical Scoring
  • Clinical signs after virus challenge were scored with a scoring system (1 point for a healthy mouse; 2 points for a mouse showing signs of malaise, including slight piloerection, slightly changed gait and increased ambulation; 3 points for a mouse showing signs of strong piloerection, constricted abdomen, changed gait, periods of inactivity, increased breathing rate and sometime rates (clicking/crackling noise); 4 points for a mouse with enhanced characteristics of the previous group, but showing little activity and becoming moribund; 5 points for a dead mouse). Animals were inspected twice a day as long as they received a score of 3. Scoring was performed by a single investigator and mice with symptoms partially represented by two scores were score +/−0.5.
  • Weighing
  • All animals were weighed daily, starting on day 48 (authorization number 2216). Animals were also weighed prior to the end of the study in case of death, i.e., at removal from study. Bodyweight was recorded in grams(s).
  • Virus Back Titration
  • The dose of the virus administered was determined by titrating 8 replicate samples from the inoculum remaining after inoculation of the animals was completed. For viral back titration TCID50 measurement was utilized following the protocol outlined in “Current Protocols in Immunology, Animal Models of Infectious Disease 19.11.7.”
  • Results:
  • The study was performed without technical difficulties and in line with the defined study protocol. Back titration of the inoculums of Influenza virus strain PR8 (A/Puerto Rico8/34, H1N1) resulted in the following TCID50: PR8 (A/Puerto Rico8/34, H1N1 ): 3.2×104 TCID50/ml.
  • FIG. 24A shows the Kaplan-Meier survival curves for this experiment. Immunization with DNA encoding polypeptides of the disclosure SEQ ID NOS: 45, 6 and 161 results in survival of 50, 40 and 40% of mice infected with a lethal dose of influenza, respectively, indicating that immunization with the polypeptides hereof can indeed induce a protective immune response. In contrast animals immunized with the empty vector control all succumb to infection 8 days after the viral challenge. Immunization with DNA encoding the full-length HA homologous to the challenge strain (SEQ ID NO: 78) fully protects all animals (i.e., 100% survival) from the lethal challenge, whereas immunization with DNA encoding full-length HA derived from the heterologous strain A/Brisbane/59/2007 (SEQ ID NO: 1) containing an additional cleavage site mutation (R343Q; numbering refers to SEQ ID NO: 1) leads to survival of 90% of the animals infected.
  • The results obtained from the survival curves are also reflected in the mean body weight change and median clinical scores for each group shown in FIGS. 24B and 24C. Animals immunized with polypeptides of the disclosure SEQ ID NOS: 45, 6 and 161 exhibit weight loss up to 25-30%, but animals surviving after day 9 post-infection show an increase in weight. For animals immunized with SEQ ID NO: 45 a drop in clinical score from 4 to 3 is also observed. Animals immunized with DNA encoding the full-length HA homologous to the challenge strain (SEQ ID NO: 78) do not show weight loss, whereas animals immunized with DNA encoding full-length HA derived from the heterologous strain A/Brisbane/59/2007 (SEQ ID NO: 1) containing an additional cleavage site mutation (R343Q; numbering refers to SEQ ID NO: 1) experience weight loss and clinical symptoms but survivors fully cover. The highest weight loss is and clinical symptoms are observed for the control group immunized with an empty vector, in line with the lack of survival of these animals.
  • In conclusion, polypeptides SEQ ID NOS: 6, 45 and 78 are capable of inducing a protective response against a lethal challenge with H1N1 A/Puerto Rico/8/1934 in mice. It is of note that polypeptides of the disclosure SEQ ID NOS: 6 and 45 are derived from an HA molecule heterologous to the challenge strain, whereas SEQ ID NO: 78 is derived from the homologous influenza strain. So polypeptides of the disclosure can induce protection against both homologous and heterologous influenza infection.
  • Example 22 Selection of a Panel of Representative H1N1 HA Sequences and Design of Polypeptides of the Disclosure Based on These Sequences.
  • In order to show the wide applicability of the design method described in Example 20, the method was applied to a panel of selected HA0 sequences that cover a large percentage of the natural sequence variation found in H1N1 viruses. The selection of a panel of representative HA sequences from the pool of known human H1N1 HA sequences in this example has the objective to select a minimum number of strains with a maximum representativeness. To achieve this, all differences between the HA sequences of human H1N1 influenza viruses present in the Influenza Virus Sequence Database have been quantified, the structure in these differences has been investigated and homogenous subgroups have been identified. From each of such groups the most representative sequence has been selected to contribute to the panel.
  • The primary step in the procedure is the quantification of the difference between each pair or sequences in the considered sequence database. The reverse PAM250 (rPAM250) matrix (Xu, 2004) is used to quantify the difference at each amino acid position. Euclidian addition is then used to quantify the total difference for that pair. All pair-wise differences are used to form a symmetric n×n matrix of differences, where n equals the number virus strains considered.
  • Principal Coordinates Analysis (PCA) is used to structure the matrix of differences (Higgins, 1992). PCA is based on dimension reduction. The input matrix is considered a distribution in n dimensional space (where n equals the number of strains considered). The variability is then analyzed and structured in such a way that a minimum dimensionality is required to cover most (or all) variability. The result is an m dimensional coordinate system (where m is the number dimension to cover most or all variability) with most variation on the first axis and then decreasing. All considered sequences are positioned within that coordinate system. In the case where only 2 or 3 dimensions are needed, the result can be plotted completely in a 2D or 3D graph, respectively, in which the difference between the strains can be visualized. In the case where more dimensions are needed, also a 3D plot can be constructed from the first 3 axes, but that graph does not cover all variability, since part of the variation is in the 4th and higher dimensions.
  • The sequences in the m dimensional space are then clustered, using both hierarchical and k means clustering. Average linkage within groups is used to obtain groups with similar internal variability, and to avoid a large proportion of single strain clusters. Clustering is done at all levels, starting at 1 (all strains in one cluster) till n (each strain forming its own cluster). From each cluster the most central strain is selected as the most representative. The set of most central strains then form the panel of representative strains for that level clustering. For each level of clustering the coverage (or percentage of variation explained) is estimated by computing the sum of squared distances of each strain to its center strain as compared to the sum of squared distances of each strain to the center of the coordinate system. A minimum level of coverage to be achieved is then set to be the smallest required size of the representative panel.
  • Additionally to the Xu rPAM250 matrix, small values were assigned for the difference when one of the two sequences had a gap on a certain position (due to inserts or deletions). Also a weight factor was included in the procedure, to account for the large differences in numbers of isolates through the years. This variation was considered to be partially true variation in occurrence, partially driven by different levels of surveillance/awareness. Therefore, the weight factor was set at one divided by the square root of the numbers of observations in a particular year. This weight factor was taken into consideration when constructing the m dimensional space, during the cluster analysis and selection of center points, and at estimation of the level of covered variation.
  • In this example, constructed sequences are used, consisting of the parts of HA coding for the polypeptide of the disclosure. Two different sets of constructed sequences were created. In the first set the natural sequences with the exception of the signal sequence (e.g., amino acids 1-18), amino acids 53 to 320 (the HA head domain), the transmembrane sequence (amino acid 530 to the C-terminal amino acid) (numbering refers to SEQ ID NO: 1) or the equivalent of these positions in other sequences were taken into consideration. In the second set amino acids at position (or the equivalent position) 406, 409, 416, 324, 436, 413 were also not taken into consideration, since these are modified according to the general method described in Example 20. Furthermore, (the equivalent of) positions 419-433 were also not taken into account in the second set reflecting the addition of a GCN4-based stabilization sequence in polypeptides of the disclosure as described in Example 9.
  • Using the method described above 7 HA sequences, were selected from constructed sequences set 1, selected, covering 75% of the sequence variation and 8 HA sequences from constructed sequences set 2 covering 74% of the sequence variation. The strains are listed in Table 10. Three of the selected sequences appear iri both sets, so 13 unique HA sequences remain. These sequences were used to design polypeptides of the disclosure according to the method described in Example 20. In addition the stabilizing GCN4 sequence MKQIEDKIEEIESKQ (SEQ ID NO: 84) is introduced at the equivalent of position 419-433 (numbering refers to SEQ ID NO: 1), as described in Example 9. The polypeptides hereof designed on the basis of the HA sequences of H1N1 A/Memphis/20/1978 and H1N1 A/USSR/92/1977 are identical, as are the polypeptides hereof designed on the basis of the HA sequences of A/Wisconsin/629-D01415/2009 and H1N1 A/Sydney/DD3-55/2010. So in total 10 unique polypeptides of the disclosure were designed, and an alignment of these sequences is shown in FIG. 25.
  • Expression vectors containing the DNA encoding polypeptides of the disclosure SEQ ID NO: 164 to SEQ ID NO: 173,” as well as polypeptide of the disclosure SEQ ID NO: 45 based on the HA sequences of A/Brisbane/59/2007 and the corresponding full-length HA SEQ ID NO: 1 with additional cleavage site mutation R343Q in expression vector pcDNA2004 were used for transfection of HEK293F cells and the cells were analyzed by FACS as before. In addition to human monoclonal antibodies CR6261, CR9114 and CR8020, also mouse monoclonal antibody C179 known to neutralize Influenza A H1 and H2 strains (Okuna et al., 1993) was included in the experiment. The results are shown in FIG. 26.
  • All polypeptides of the disclosure, as well as the full-length sequence of A/Brisbane/59/2007, are expressed on the cell surface and recognized by broadly neutralizing antibodies CR6261, CR9114 and C179, but not CR8020. The latter is known to bind only to HA from Influenza A group 2. The binding of the antibodies CR6261, CR9114 and C179 indicates that the broadly neutralizing epitopes are well preserved in the polypeptides hereof. Considering the sequence variation covered in these sequences this is clear evidence of the general applicability of our design method to generate polypeptides of the disclosure containing broadly neutralizing epitopes.
  • Example 23 Characterization of Polypeptide of the Disclosure s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145)
  • Purified polypeptide of the disclosure s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) was obtained as described in Example 13. To confirm the presence of the conformational epitopes of CR6261 and CR9114 the binding of these antibodies with the purified protein was studied by biolayer interferometry (Octet Red384, Forte Bio). To this end, biotinylated CR6261, CR9114 and CR8020 were immobilized on streptavidin coated sensors, the sensors were exposed first to a solution of the purified polypeptide (250 nM) of the disclosure to measure the rate of association and then to a wash solution to measure the rate of dissociation. For reasons of comparison the experiment was repeated with the full-length protein (SEQ ID NO 149) both in its trimeric and monomeric form. The results are shown in FIG. 27.
  • The immobilized CR6261 recognizes both the monomeric and trimeric forms of the ectodomain of full-length HA from H1N1 A/Brisbane/59/2007 as evidenced by the clear responses after exposure to these proteins in solution (FIG. 27, Panel A). The response observed for the trimeric protein is larger than observed for the monomer (ca. 1.3 nm vs 0.9) with the same sequence, an effect that is caused (at least in part) by the smaller size of the monomer compared to the trimer. Binding of CR6261 to s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) results in a maximum response of approximately 0.25 nm. Upon exposure to the wash solution dissociation of the complex is observed for all three analytes with the fastest release observed for the polypeptide of the disclosure s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145), and the slowest for the trimeric form of the ectodomain of full-length HA from H1N1 A/Brisbane/59/2007 (SEQ ID NO 149).
  • Similar to CR6261 immobilized CR9114 also recognizes both trimeric and monomeric forms of the ectodomain of full-length HA from H1N1 A/Brisbane/59/2007, as well as the polypeptide of the disclosure s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145). Response are stronger for all three analytes compared to CR6261 (1.5, 1.4 and 0.8 nm for trimeric, monomeric full-length HA (SEQ ID NO: 149) and stem domain polypeptide s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145), respectively) and upon exposure of the complex to wash buffer release of the antigen is minimal or undetectable in all three cases. For CR8020 no responses were observed for any of the analytes, in line with the influenza group 2 stem domain specificity of this antibody.
  • To further characterize the binding of CR6261 and CR9114 to the purified stem domain polypeptide a titration was performed. To this end, immobilized CR6261 containing sensors were exposed to s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) solutions at concentrations of 500, 250, 125, 63, 31, 16 and 8 nM, respectively, and the final response after 14000s recorded. The responses were plotted as a function of the stem domain polypeptide concentration, and a fit to a steady state 1:1 binding model was performed, yielding a dissociation constant Kd of ca 190 nM for the CR6261/stem domain polypeptide complex (FIG. 28, Panel A). Similarly, sensors modified with immobilized CR9114 were exposed to s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) at concentrations of 80, 40, 20, 10, 5, 2.5 and 1.3 nM, respectively, and the final response after 10800s recorded. Fitting of the final responses as a function of stem domain polypeptide concentration yields a Kd value of 5.4 nM for the CR9114/stem domain polypeptide complex (FIG. 28, Panel B).
  • In conclusion ,polypeptide of the disclosure s-H1-mini2-cluster1+5+6-GCN4 (SEQ ID NO: 145) is capable of binding broadly neutralizing monoclonal antibodies CR6261 and CR9114, confirming the presence of the corresponding neutralizing epitopes in this stem domain polypeptide.
  • Example 24 Protection Against Lethal Influenza Challenge in Mice by Polypeptides of the Disclosure
  • In order to determine whether polypeptides of the disclosure are capable of inducing an immune response that protects mice from death upon an exposure to influenza virus that would otherwise be lethal an influenza challenge experiment was performed. Mice were immunized i.m. with expression vectors encoding H3 Full-length A/Hong Kong/1/1968 (SEQ ID NO: 121), HK68 H3m2-cl9+10+11 (SEQ ID NO: 124) and HK68 H3m2-cl9+10+11+12-GCN4 SEQ ID NO: 130. Immunization was performed using 50 μg expression construct+50 μg adjuvant (pUMCV1-GM-CSF) according to the study protocol below.
  • Study Protocol
      • Day -1 Bleed.
      • Day 0 Administration of vaccine (i.m.).
      • Day 21 Administration of vaccine (i.m.).
      • Day 28 Bleed.
      • Day 42 Administration of vaccine (i.m.).
      • Day 47 Bleed.
      • Day 48 Measurement of weight, temperature, clinical score and lethality.
      • Day 49 Challenge with lethal dose of influenza viral infection (per nasal).
      • Day 49 Remaining inoculum is utilized for back titration of virus.
      • Day 49-70 Daily measurement of weight, temperature, clinical score and lethality. Animals with clinical score ≧3 are monitored two times per day. Animals with clinical score ≧4 or temperature >32° C., whichever comes first, are immediately removed from the study.
      • Day 70 Sacrifice of all mice.
  • Group 7-10: Challenge with HK68 (A/Hong Kong/1/68, H3N2)
      • Group 7: SEQ ID NO: 121
      • Group 8: SEQ ID NO: 130
      • Group 9: SEQ ID NO: 124
      • Group 10: empty vector
      • 10 mice per group. Total 40 mice. BALB/c.
    Materials and Methods: Virus Strain and Source:
  • Influenza virus strain HK68 (A/Hong Kong/1/68) was provided by Prof J. Katz (Center for Disease Control and Prevention, Atlanta, Ga., USA) followed by propagation by Virapur (San Diego). The virus has been passaged multiple times in mouse lungs to enhance virulence in mice. A suitable reference for this virus is: Frace et al., Vaccine 1999; 17:2237. Stock solution 3×10e8 pfu/ml. Batch #F1109A.
  • Storage conditions. −75° C.±10° C. Freezer: −86° C. UCT freezer. Thermo Form. Fisher Scientific.
  • Animals:
  • Mouse, BALB/c (Specified Pathogen Free; SPF), female. 6 to 8 weeks old on Study Day 0 ˜17-19 grams. Sourced from Charles River Laboratories and identified by “ear identification.” All animals were acclimatized and maintained for 11 days before the start of the experiment.
  • DNA Administration
  • Method of Inoculum Reconstitution
  • Appropriate DNA formulations, as listed above were prepared aliquoted and stored at −20° C. Per construct one aliquot was thawed to room temperature immediately before injection, drawn into a syringe and injected. The remainder of each aliquot was discarded after completion of all injections of each immunization round.
  • Dose Level and Method of Administration
  • Mice are anaesthetized by intraperitoneal injection with 9.75 mg Xylasol (Graeub E Dr. AG (on the World Wide Web at graeub.com); Cat: 763.02) and 48.75 mg Ketasol (Graeub E Dr. AG (on the World Wide Web at graeub.com); Cat: 668.51) per kg body weight. 50 μl DNA solution was injected using a 0.5 ml syringe with a G29 needle intramuscularly (i.m.) in the quadriceps muscle of each hind leg, yielding a total volume of 100 μl injected per mouse. The remainder of each aliquot was discarded after completion of all injections of each immunization round.
  • Virus Administration:
  • Method of Inoculum Reconstitution
  • The virus material was stored at −75° C.±10° C. and was defrosted prior to administration. Once defrosted, the material was diluted in cold PBS (4° C.) corresponding to 10 LD50/50 μl for the A/HK/1/68 challenges. The diluted virus was kept on ice until administration to the mice.
  • Dose Level and Method of Administration
  • The animals were anaesthetized by intraperitoneal injection with 9.75 mg Xylasol and 48.75 mg Ketasol per kg body weight and each animal received 50 μl virus solution by intranasal. Unused material was returned to the lab for back titration.
  • Blood Withdrawal and Serum Preparation
  • At days specified in the Study Protocol, above, blood samples were taken (intermediate bleedings: 100-150 μl via retro-orbital cannulation, terminal bleeding via cardiac puncture: approximately 300-500 μl). Serum was isolated from this blood by centrifugation for 5 minutes at 14000 g and stored at −20° C. until shipment on dry ice.
  • Clinical Scoring
  • Clinical signs after virus challenge were scored with a scoring system (1 point for a healthy mouse; 2 points for a mouse showing signs of malaise, including slight piloerection, slightly changed gait and increased ambulation; 3 points for a mouse showing signs of strong piloerection, constricted abdomen, changed gait, periods of inactivity, increased breathing rate and sometime rales (clicking/crackling noise); 4 points for a mouse with enhanced characteristics of the previous group, but showing little activity and becoming moribund; 5 points for a dead mouse). Animals were inspected twice a day as long as they received a score of 3. Scoring was performed by a single investigator and mice with symptoms partially represented by two scores were score +/−0.5.
  • Weighing
  • All animals were weighed daily, starting on day 48 (authorization number 2216). Animals were also weighed prior to the end of the study in case of death, i.e., at removal from study. Bodyweight was recorded in grams (g)
  • Virus Back Titration
  • The dose of the virus administered was determined by titrating 8 replicate samples from the inoculum remaining after inoculation of the animals was completed. For viral back titration TCID50 measurement was utilized following the protocol outlined in “Current Protocols in Immunology, Animal Models of Infectious Disease 19.11.7.”
  • Results:
  • The study was performed without technical difficulties and in line with the defined study protocol. Back titration of the inoculums of Influenza virus strain HK68 (A/Hong Kong/1/68, H3N2) resulted in the following TCID50: HK68 (A/Hong Kong/1/68): 1×103 TCID50/ml.
  • FIG. 29 shows the IgG response against the ectodomain of HA from A/Hong Kong/1/1968 at day 49 as determined by ELISA. Immunization with DNA encoding polypeptides of the disclosure SEQ ID NO: 124 and SEQ ID NO: 130 induces a clearly detectable response against the H3 HA HK68 ectodomain, whereas no response is detected for the empty vector negative control. As expected, the highest responses are observed for immunization with H3 Full-length A/Hong Kong/1/1968 (SEQ ID NO: 121).
  • FIG. 30A shows the Kaplan-Meier survival curves for this experiment. Immunization with DNA encoding polypeptides of the disclosure SEQ ID NOS: 124 and 130 results in survival of 40 and 20% of mice infected with a lethal dose of influenza, respectively, indicating that immunization with the polypeptides hereof can indeed induce a protective immune response. In contrast animals immunized with the empty vector control all succumb to infection 10 days after the viral challenge. Immunization with DNA encoding the full-length HA (SEQ ID NO: 121) fully protects all animals (i.e., 100% survival) from the lethal challenge.
  • The results obtained from the survival curves are also reflected in the mean body weight change and median clinical scores for each group shown in FIGS. 30B and 30C. Animals immunized with DNA encoding polypeptides of the disclosure SEQ ID NOS: 124 and 130 exhibit weight loss up to 20%, but animals surviving after day 9 post-infection show an increase in weight. Animals immunized with DNA encoding the full-length HA (SEQ ID NO: 121) do not show weight loss. The highest weight loss and clinical symptoms are observed for the control group immunized with an empty vector, in line with the lack of survival of these animals.
  • In conclusion, polypeptides of the disclosure SEQ ID NOS: 124 and 130 are immunogenic and capable of inducing a protective response against a lethal challenge with H3N2 A/Hong Kong/1/1968 in mice.
  • Example 25 Design and Characterization of Stem Domain Polypeptides Based on H3 HA
  • To further improve the stem domain polypeptides described in Example 12, an additional set of constructs was designed. Two additional sets of cysteine mutations were designed that will allow formation of stabilizing disulfide bridges at position 53 and 334 (T53C, G334C; cluster 16) and position 39 and 51 (G39C-E51C; cluster 17) (numbering refers to SEQ ID NO: 121). Furthermore, two sequences to be inserted between positions 420 and 421, i.e., at the N-terminal side of the long CD-helix (see FIG. 1). The insertion sequences have been designed such that they will facilitate the formation of inter-monomer disulfide bridges between individual monomers in the trimeric molecule. Two different sequences have been designed, i.e., NATGGCCGG (SEQ ID NO: 206) (Cluster 18) and GSGKCCGG (SEQ ID NO: 207) (Cluster 19). The sequence of cluster 18 also comprises a sequence introducing a glycosylation site (i.e., NAT) in the stem domain polypeptide. In some cases a glycosylation site is also introduced at position 417-419 by mutation into NAT.
  • Using the sequence of full-length HA from A/Hong Kong/l/1968 as a starting point the modifications described above were combined with the S62-P322 deletion to arrive at the following stem domain polypeptides:
      • SEQ ID NO: 174: H3 HK mini2a-linker+cl9 +10+11+12+GCN4T-CG7-1
      • SEQ ID NO: 175: HK68 H3mini2a-linker+cl9_+10+12+18+GCN4T
      • SEQ ID NO: 176: HK68 H3mini2a-linker+cl9_+10+12+16+CG7-GCN4T
      • SEQ ID NO: 177: HK68 H3mini2a-linker+cl9_+10+12+19+GCN4T
      • SEQ ID NO: 178: HK68 H3mini2a-linker+cl9_+10+12+17+CG7-GCN4T
      • SEQ ID NO: 179: H3 HK68 mini2a-linker2+cl9_+10+12+GCN4T
  • The genes encoding the protein sequences described above were synthesized and cloned in expression vector pcDNA2004 using methods generally known in the art. Expression on the cell surface and binding of monoclonal antibodies was analyzed by fluorescence associated cell sorting as described above. For reasons of comparison also the full-length HA of H3N2 A/Hong Kong/1/1968 (SEQ ID NO: 121), additionally containing an R345Q mutation in the cleavage site, and SEQ ID NO: 130 (HK68 H3m2-cl9+10+11+12-GCN4) were also included in the experiment as well as negative control cM2.
  • FIG. 31 shows the results of this experiment. All constructs are expressed on the cell surface as evidenced by the responses (MFI, panel A; percentage positive cells, panel B) observed for the polyclonal anti-H3 serum. Binding of CR8043 and CR8020 is observed for SEQ ID NOS: 174, 175, 176, 177, 178, 179, 121 and 130, indicating that the mutations of cluster 16 do not contribute to stabilizing the conformational epitopes of these antibodies. For mAb CR9114 binding above background can only be observed for SEQ ID NO: 174: H3 HK mini2a-linker+cl9 +10+11+12+GCN4T-CG7-1 and to a lesser extent SEQ ID NO: 177: HK68 H3mini2a-linker+cl9_+10+12+17+CG7-GCN4T. Both sequences contain an additional glycosylation site in the B-loop, indicating the stabilizing effect of this modification on the conformational neutralizing epitope of CR9114.
  • In conclusion, it is shown that following the method described above stern domain polypeptides of the disclosure can be obtained for serotypes of group 2, in particular H3 subtypes. Further stabilization of these stem domain polypeptides can be achieved by introducing a glycosylation site in the B-loop. These sequences are also encompassed by the disclosure.
  • Example 26 Immunogenicity HA Stem Domain Polypeptides Based on H3 HA
  • In order to assess the immunogenicity of the stem domain polypeptides mice were immunized with the expression vectors encoding full-length H3 from A/Wisconsin/67/2005 (SEQ ID NO: 89), SEQ ID NO: 105: H3-mini2, SEQ ID NO: 108: H3-mini2-cl9+10+11, SEQ ID NO: 112: H3-mini2-cl9+10+12, SEQ ID NO: 111: H3-mini2-cl9+10+11+12, SEQ ID NO: 114: H3-mini2-cl9+10+11+12-tri, SEQ ID NO: 113: H3-mini2-cl9+10+11+12-GCN4, SEQ ID NO: 119: H3-mini3-cl9+10+11+12+14, SEQ ID NO: 120: H3-mini4-cl9+10+11+12+14. An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 50 μg construct+50 μg adjuvant (pUMCV1-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. Negative control plasmid cM2 was administered by gene gun, using approximately 10 μg construct+approximately 2 μg adjuvant (pUMCV1-GM-CSF) and the same immunization scheme. The sera were analyzed by ELISA using recombinant full-length HA from A/Wisconsin/67/2005 and A/Hong Kong/1/1968 (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 50-fold dilution of the serum is added. Bound antibody is detected using HRP—conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve composed of a serial dilution of a mouse monoclonal antibody binding to the HA antigen and expressed as ELISA units per ml (EU/ml). Results of the ELISAs using HA from A/Wisconsin/67/2005, A/Hong Kong/1/1968 and A/Perth/16/2009 after 49 days are shown in FIGS. 32A, 32B and 32C, respectively. Sera obtained from mice immunized with DNA encoding the stem domain polypeptides included in this experiment are capable of recognizing the homologous full-length HA from A/Wisconsin/67/2005 and to a similar extent the heterologous full-length HA from A/Hong Kong/1/1968. In contrast, serum obtained from mice immunized with the full-length HA from A/Wisconsin/67/2005 (SEQ ID NO: 89) show a higher response towards the homologous HA than to the heterologous HA from A/Hong Kong/1/1968 and A/Perth/16/2009.
  • In conclusion, the data show that polypeptides of the disclosure derived from H3 HA are capable of inducing an immune response directed towards full-length HA.
  • Example 27 Immtmogenicity HA Stem Domain Polypeptides Based on H3 HA of A/Hong Kong/1/1968
  • In order to assess the immunogenicity of the stem domain polypeptides mice were immunized with the expression vectors encoding full-length H3 from A/Hong Kong/1/1968 (SEQ ID NO: 121), SEQ ID NO: 124: HK68 H3m2-cl9+10+11, SEQ ID NO: 125: HK68 H3m2-cl9+10+12, SEQ ID NO: 126: HK68 H3m2-cl9+10+11+12, SEQ ID NO: 128: HK68 H3m2-cl9+10+11+12-tri, SEQ ID NO: 130: HK68 H3m2-cl9+10+11+12-GCN4. An expression vector encoding for cM2 was also included as a negative control.
  • Groups of 4 mice (BALB\c) were immunized with 100 μg construct+100 μg adjuvant (pUMCV1-GM-CSF) i.m. on day 1, 21 and 42. On day 49 a final bleed was performed and serum collected. Negative control plasmid cM2 was administered by gene gun, using approximately 10 μg construct+approximately 2 μg adjuvant (pUMCV1-GM-CSF) and the same immunization scheme. The sera were analyzed by ELISA using recombinant full-length HA from A/Hong Kong/1/1968 (obtained from Protein Sciences Corporation, Meriden, Conn., USA) as the antigen. In short, 96-well plates were coated with 50 ng HA overnight at 4° C., followed by incubation with block buffer (100 μl PBS, pH 7.4+2% skim milk) for 1 hour at room temperature. Plates were washed with PBS+0.05% TWEEN®-20, and 100 μl of a 2-fold dilution series in block buffer, starting from a 50-fold dilution of the serum is added. Bound antibody is detected using HRP—conjugated goat-anti-mouse IgG, using standard protocols well-established in the art. Titers are compared to a standard curve composed of a serial dilution of a mouse monoclonal antibody binding to the HA antigen and expressed as ELISA units per ml (EU/ml).
  • Results of the ELISAs using HA from A/Hong Kong/1/1968 after 49 days are shown in FIG. 33. Sera obtained from mice immunized with DNA encoding the stem domain polypeptides included in this experiment are capable of recognizing the homologous full-length HA from A/Hong Kong/1/1968. As expected immunization with DNA encoding the full-length HA leads to high antibody titers to the homologous HA protein, whereas immunization with the negative control expression vector encoding cM2 does not induce antibodies that recognize the full-length HA of A/Hong Kong/1/1968.
  • In conclusion, the data show that polypeptides of the disclosure derived from H3 HA are capable of inducing an immune response directed towards the full-length H3 HA.
  • Example 28 Design of Another Stem-Domain Polypeptide Based on a H1 HA Capable of Eliciting Antibodies Neutralizing Group 1 and Group 2 Influenza Viruses
  • Examples 4 and 6 disclose polypeptides based on H1 sequences that stably expose the epitope of the broadly neutralizing CR6261 antibody. Given the fact that CR6261 exclusively neutralizes influenza viruses from phylogenetic group 1, polypeptides designed to this epitope may not elicit a strong reaction to phylogenetic group 2 influenza viruses. Another way to design polypeptides according to the disclosure that induce such broadly cross-neutralizing antibodies is to use H1 HA sequence variants that more closely resemble H3 HA sequences in terms of structural and biochemical characteristics of the important amino acids in the epitope. Based on comparison between the structures of group-specific antibodies and molecules (CR6261, F10 and HB36) and the crystallized pan-influenza antibody F16 (Corti et al., 2011), we found that the group 1-group 2 T49N (HA2) mutation can only be accommodated by F16 without introduction of steric clashes. Asparagine at position 49 of HA2 exists in two group 1 viruses in the NCBI flu-database: A/swine/Hubei/S1/2009 (ACY06623) and A/swine/Haseluenne/IDT2617/2003 (ABV60697). Therefore, in one embodiment, the H1 sequences that constitute the basis of the disclosure as disclosed in Examples 4, 6 and 9 is one of these N-49-containing HA sequences. Alternatively, sequences according to the disclosure as described in Examples 4, 6 and 9 have an additional mutation at position 49 in HA2 to change the T into an N amino acid. Table 7 shows a sequence alignment of exemplary H1 HA sequences that can be used as starting sequences for the polypeptides hereof.
  • SEQ ID NO: 180 is derived from SEQ ID NO: 45 by mutation T392N (numbering refers to SEQ ID NO: 1) T392 in SEQ ID NO: 1 corresponds to Threonine at position 49 in HA2 as described above. The gene encoding this polypeptide of the disclosure was synthesized and cloned into expression vector pcDNA2004 using methods well known to those skilled in the art. The presence of the neutralizing epitopes of CR9114 and CR6261 was confirmed by fluorescence associated cell sorting as described above. The results are shown in FIG. 34. MFI for SEQ ID NO: 180 is comparable to MFI observed for SEQ ID NO: 45 and SEQ ID NO: 1 for CR6261 and CR9114 binding, whereas CR9020 (known to bind to the head region of the full-length HA molecule) only recognizes SEQ ID NO: 1, and CR8020 (specific for HA of Influenza A group 2) does not recognize SEQ ID NO: 180, SEQ ID NO: 1 or SEQ ID NO: 45. Negative control cM2 is not recognized by any of the monoclonal antibodies used in this experiment.
  • In conclusion, SEQ ID NO: 180, containing mutation T392N comprises the neutralizing epitopes of CR6261 and CR9114.
  • Example 29 Design of Additional Polypeptides of the Disclosure Lacking the Transmembrane Sequence.
  • Influenza HA in its native form exists as a trimer on the cell or virus membrane. In certain embodiments, the intracellular and transmembrane sequence is removed so that a secreted (soluble) polypeptide is produced following expression in cells. Methods to express and purify secreted ectodomains of HA have been described (see, e.g., Dopheide et al., 2009; Ekiert et al., 2009, 2011; Stevens et al., 2004, 2006; Wilson et al., 1981). A person skilled in the art will understand that these methods can also be applied directly to stem domain polypeptides of the disclosure in order to achieve expression of secreted (soluble) polypeptide. Therefore, these polypeptides are also encompassed in the disclosure.
  • For example, in the case of a polypeptide of the disclosure derived from a HA sequence of group 1 influenza virus, a soluble polypeptide of the disclosure can be created from a by deletion of the polypeptide sequence from residue (the equivalent of) 514 to the C-terminus (numbering according to SEQ ID NO: 1), Alternatively, additional residues can be included in the polypeptide of the disclosure, e.g., by deleting the sequence from residue 515, 516, 517, 518, 519, 520, 521 or 522. Optionally, a his-tag sequence (HHHHHH (SEQ ID NO: 208) or HHHHHHH (SEQ ID NO: 191)) may be added, for purification purposes, optionally connected through a linker. Optionally, the linker may contain a proteolytic cleavage site to remove the his-tag after purification. The soluble polypeptide can be further stabilized by introducing a sequence known to form trimeric structures, such as the foldon sequence. Polypeptides obtained as described above are also encompassed in the disclosure.
  • SEQ ID NOS: 181 to 185 show sequences of soluble polypeptides derived from the HA sequence of H1N1 A/Brisbane/59/2007. Similarly, SEQ ID NOS: 186 to 187 show sequences of soluble polypeptides the HA sequence of H3N2 A/Hong Kong/1/1968. A person skilled in the art will understand that equivalent sequences for polypeptides derived from other HA sequences of other influenza A vaccine strains of, e.g., H1, H3, H5 subtypes can be designed. It will also be clear to that person that the C-terminal 6 histidines are attached for purification purposes. Since other purification methods that do not use this tag are in existence, the 6 histidine sequence is optional, and sequences lacking this purification tag are also encompassed in the disclosure.
  • TABLE 1
    CDR regions of antibodies. The SEQ ID NO is  
    given between brackets.
    HC HC LC LC
    Ab CDR1 CDR2 HC CDR3 CDR1 CDR2 LC CDR3
    911 GGTSNNY ISPIFGST ARHGNYYYYS DSNIGRRS SND AAWDDSL
    4 A (25) (26) GMDV (27) (28) (29) KGAV 
    (30)
  • TABLE 2
    Cross-binding reactivity of CR9114, as measured by ELISA and FACS.
    H1 = soluble recombinant A/New Caledonia/20/1999 H1 HA;
    H3 = soluble recombinant A/Wisconsin/67/2005 H3 HA; H5 = soluble recombinant
    A/Vietnam/1203/04 H5 HA; H7 = soluble recombinant A/Netherlands/219/2003 H7 HA;
    H9 = soluble recombinant A/Hong Kong/1073/99 H9 HA; B = soluble recombinant
    B/Ohio/01/05 influenza B HA; Rabies = rabies glycoprotein; PER.C6 ® = untransfected
    PER.C6 ® cells (control); mH1 = PER.C6 ® expressed A/New Caledonia/20/1999
    H1 HA; mH3 = PER.C6 ® expressed A/Wisconsin/67/2005 H3 HA; mH7 = PER.C6 ®
    expressed A/Netherlands/219/2003 H7 HA; ND = not done. + = binding (>10x
    background); +/− = low binding (2-10x background) − = no detectable binding.
    IgG ELISA IgG FACS
    H1 H3 H5 H7 H9 B Rabies PerC6 mH1 mH3 mH7
    CR9114 + + + + + + + + +
    CR4098 +
  • TABLE 3
    Cross-neutralizing activity of CR9114; Titers (indicated in μg/ml) are
    geomean IC50 values as determined according to the Spearman-Karber
    method of at least duplicate experiments; >100 =
    not neutralizing at highest tested concentration (100 μg/ml).
    Subtype Strain CR9114
    Group I H1 A/WSN/33 1.1
    A/New Caledonia/20/99 3.7
    A/Solomon Islands/3/2006 1.8
    A/Brisbane/59/2007 2.6
    A/California/7/2009 0.3
    H2 A/Env/MPU3156/05 8.8
    H5 A/Hong Kong/156/97 0.4
    A/EW/MPF461/07 10.5
    H6 A/EW/MPD411/07 10.5
    H8 A/EW/MPH571/08 8.8
    H9 A/Hong Kong/1073/99 4.4
    A/Ck/HK/SSP176/09 6.3
    Group H3 A/Hong Kong/1/68 19
    II A/Johannesburg/33/94 21.9
    A/Panama/2007/1999 39.9
    A/Hiroshima/52/2005 12.5
    A/Wisconsin/67/2005 32.4
    A/Brisbane/10/2007 5.6
    H4 A/WF/MPA 892/06 0.8
    H7 A/Mallard/Netherlands/12/2000 4.8
    A/New York/107/2003 >100
    H10 A/Chick/Germany/N/49 15.7
    H14 A/Mallard/Astrakhan/263/1982 >100
  • TABLE 4
    Binding of serum obtained from mice immunized with either full-length HA or
    mini-HA constructs as analyzed by FACS. Data are the average values (n = 4) for
    percentage of cells positive after staining followed by the mean fluorescence intensity
    (in brackets). H1-FL (SEQ ID NO: 1), CL1 (SEQ ID NO: 3), CL1 + 2 (SEQ ID NO: 4)
    and CL1 + 4 (SEQ ID NO: 6). cM2 is a negative control.
    Immunization
    (serum)
    DNA transfected cM2 H1-FL CL1 CL1 + 2 CL1 + 4
    cM2 47.5 (1817) 4.8 (404) 0.9 (272) 0.7 (263) 0.7 (269)
    H1-FL 2.1 (389) 84.1 (7130) 40.0 (1324) 38.7 (1195) 45.5 (1618)
    CL1 2.1 (368) 39.1 (1124) 43.9 (1763) ND ND
    CL1 + 2 1.7 (348) 47.9 (1616) ND 51.4 (2472) ND
    CL1 + 4 1.7 (342) 19.6 (787)  ND ND 30.0 (1047)
    % PE pos (Geometric MFI, n = 4)
  • TABLE 5
    Standard amino acids, abbreviations and properties
    Side chain Side chain charge
    Amino Acid 3-Letter 1-Letter polarity (pH 7.4)
    alanine Ala A nonpolar Neutral
    arginine Arg R polar Positive
    asparagine Asn N polar Neutral
    aspartic acid Asp D polar Negative
    cysteine Cys C nonpolar Neutral
    glutamic acid Glu E polar Negative
    glutamine Gln Q polar Neutral
    glycine Gly G nonpolar Neutral
    histidine His H polar positive (10%)
    neutral (90%)
    isoleucine Ile I nonpolar Neutral
    leucine Leu L nonpolar Neutral
    lysine Lys K polar Positive
    methionine Met M nonpolar Neutral
    phenylalanine Phe F nonpolar Neutral
    proline Pro P nonpolar Neutral
    serine Ser S polar Neutral
    threonine Thr T polar Neutral
    tryptophan Trp W nonpolar Neutral
    tyrosine Tyr Y polar Neutral
    valine Val V nonpolar Neutral
  • TABLE 6
    Consensus sequence for H1 402-418 (SEQ ID NO: 17), other natural variants and
    mutations that stabilize polypeptides of the disclosure. One or more mutations in the parental
    sequence are present in polypeptides of the disclosure.
    Other Other Other
    amino conservation other naturally preferred polar charged flexible
    position acid (%) occurring a.a. mutation mutations mutations mutations
    402 M 99.88 T, I
    403 N 99.88 T, D
    404 T 96.24 S, A, M, N, I, V
    405 Q 99.92 H, K
    406 F 99.92 L S T, N, Q R, H, K, G
    D, E
    407 T 99.73 A, I, K
    408 A 96.71 S, G, V
    409 V 99.45 Q, M, I, G, L T, Q, G S, N R, H, K,
    D, E
    410 G 99.1 S, N, D, C, V
    411 K 99.8 T, N, R, E
    412 E 99.84 A, G
    413 F 99.92 S, L S T, N, Q R, H, K, G
    D, E
    414 N 96.52 S, D, I
    415 H/K 56.20/32.76 S, T, N, E, Q,
    R, D
    416 L 99.8 F, S, I, P S T, N, Q R, H, K, G
    D, E
    417 E 99.84 A, D, R
    418 K/R 63.95/35.69 S, Q, T, N
  • TABLE 7
    Sequence alignment of H1 sequences according to
    particular embodiments of the disclosure.
    1. A/Solomon Islands/6/2003 (H1N1) (SEQ ID NO: 54)
    2. A/Brisbane/59/2007 (H1N1) (SEQ ID NO: 1)
    3. A/New Caledonia/20/1999(H1N1) (SEQ ID NO: 55)
    4. A/California/07/2009 (H1N1) (SEQ ID NO: 56)
    5. A/swine/Hubei/S1/2009(H1N1) (SEQ ID NO: 57)
    6. A/swine/Haseluenne/IDT2617/2003(H1N1) (SEQ ID NO: 58)
    7. A/NewYork/8/2006(H1N1) (SEQ ID NO: 59)
    8. A/SolomonIslands/3/2006(H1N1) (SEQ ID NO: 60)
    9. A/NewYork/146/2000(H1N1) (SEQ ID NO: 61)
    10. A/NewYork/653/1996(H1N1) (SEQ ID NO: 62)
    11. A/Beijing/262/1995(H1N1) (SEQ ID NO: 63)
    12. A/Texas/36/1991(H1N1) (SEQ ID NO: 64)
    13. A/Singapore/6/1986(H1N1) (SEQ ID NO: 65)
    14. A/Chile/1/1983(H1N1) (SEQ ID NO: 66)
    15. A/Baylor/11515/1982(H1N1) (SEQ ID NO: 67)
    16. A/Brazil/11/1978(H1N1) (SEQ ID NO: 68)
    17. A/USSR/90/1977(H1N1) (SEQ ID NO: 69)
    18. A/NewJersey/8/1976(H1N1) (SEQ ID NO: 70)
    19. A/Denver/1957(H1N1) (SEQ ID NO: 71)
    20. A/Albany/4835/1948(H1N1) (SEQ ID NO: 72)
    21. A/FortMonmouth/1/1947(H1N1) (SEQ ID NO: 73)
    22. A/Cameron/1946(H1N1) (SEQ ID NO: 74)
    23. A/Weiss/1943(H1N1) (SEQ ID NO: 75)
    24. A/Iowa/1943(H1N1) (SEQ ID NO: 76)
    25. A/Bellamy/1942(H1N1) (SEQ ID NO: 77)
    26. A/PuertoRico/8/1934(H1N1) (SEQ ID NO: 78)
    27. A/WSN/1933(H1N1) (SEQ ID NO: 79)
    28. A/SouthCarolina/1/1918(H1N1) (SEQ ID NO: 80)
  • TABLE 8
     1. MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCL  60
     2. MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL ENSHNGKLCL  60
     3. MKAKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCL  60
     4. MKAILVVLLY TFATANADTL CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDKHNGKLCK  60
     5. MEAKLFVLFC AFTALKADTF CVGYHANYST HTVDTILEKN VTVTHSVNLL ENSHNGKLCS  60
     6. MEAKLFVLFC AFTALKADTI CVGYHANNST DTVDTILEKN VTVTHSINLL ENNHNGKLCS  60
     7. MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCL  60
     8. MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCL  60
     9. MKAKLLVLLC AFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    10. MKAKLLVLLC AFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    11. MKAKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCL  60
    12. MKAKLLVLLC AFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    13. MKAKLLVLLC AFTATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    14. MKAKLLVLLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDNHNGKLCK  60
    15. MKAKLLVLLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    16. MKAKLLVLLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    17. MKAKLLVLLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    18. MKAKLLVLLC AFTATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    19. MKAKLLILLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    20. MKAKLLVLLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    21. MKAKLLILLC ALTATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    22. MKAKLLILLC ALSATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    23. MKARLLVLLC ALAATDADTI CIGYHANNST DTVDTILEKN VTVTHSVNLL EDSHNGKLCR  60
    24. MKARLLVLLC ALAATDADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    25. MKARLLVLLC AIAATDADTI CIGYHANNST DTVDTILEKN VTVTHSVNLL EDSHNGKLCR  60
    26. MKANLLVLLC ALAAADADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCR  60
    27. MKAKLLVLLY AFVATDADTI CIGYHANNST DTVDTIFEKN VAVTHSVNLL EDRHNGKLCK  60
    28. MEARLLVLLC AFAATNADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL EDSHNGKLCK  60
    *:. *::**  :: :: ***: ********** *****::*** *:******** *: ******
     1. LKGIAPLQLG NCSVAGWILG NPECELLISR ESWSYIVEKP NPENGTCYPG HFADYEELRE 120
     2. LKGIAPLQLG NCSVAGWILG NPECELLISK ESWSYIVEKP NPENGTCYPG HFADYEELRE 120
     3. LKGIAPLQLG NCSVAGWILG NPECELLISK ESWSYIVETP NPENGTCYPG YFADYEELRE 120
     4. LRGVAPLHLG KCNIAGWILG NPECESLSTA SSWSYIVETP SSDNGTCYPG DFIDYEELRE 120
     5. LNGKIPLQLG NCNVAGWILG NPKCDLLLTA NSSSYIIETS KSKNGACYPG EFADYEELKE 120
     6. LNGKAPLQLG NCNVAGWILG NPECDLLLTV DSWSYIIETS NSKNGACYPG EFADYEELRE 120
     7. LKGIAPLQLG NCSVAGWILG NPECELLISK ESWSYIVETP NPENGTCYPG YFADYEELRE 120
     8. LKGIAPLQLG NCSVAGWILG NPECELLISR ESWSYIVEKP NPENGTCYPG HFADYEELRE 120
     9. LKGTAPLQLG NCSIAGWILG NPECESLFSK ESWSYIAETP NPKNGTCYPG YFADYEELRE 120
    10. LKGTAPLQLG NCSVAGWILG NPECESLFSK ESWSYIAETP NPENGTCYPG YFADYEELRE 120
    11. LKGIAPLQLG NCSVAGWILG NPECESLISK ESWSYIVETP NPENGTCYPG YFADYEELRE 120
    12. LKGIAPLQLG NCSVAGWILG NPKCESLFSK ESWSYIAETP NPENGTCYPG YFADYEELRE 120
    13. LKGIAPLQLG NCSIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    14. LKGIAPLQLG KCSIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    15. LKGIAPLQLG KCSIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    16. LKGIAPLQLG KCSIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    17. LKGIAPLQLG KCNIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    18. LKGIAPLQLG NCSIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    19. LKGKAPLQLG NCNIAGWVLG NPECESLLSN RSWSYIAETP NSENGTCYPG DFADYEELRE 120
    20. LKGIAPLQLG KCNIAGWILG NPECESLFSK KSWSYIAETP NSENGTCYPG YFADYEELRE 120
    21. LKGIAPLQLG KCNIAGWILG NPECESLLSK RSWSYIAETP NSENGACYPG DFADYEELRE 120
    22. LKGIAPLQLG KCNIAGWILG NPECESLLSK RSWSYIAETP NSENGACYPG DFADYEELRE 120
    23. LKGIAPLOLG KCNIAGWILG NPECESLLSE RSWSYIVEIP NSENGTCYPG DFTDYEELRE 120
    24. LKGIAPLQLG KCNIAGWILG NPECESLLSE RSWSYIVETP NSENGTCYPG DFIDYEELRE 120
    25. LKGIAPLQLG KCNIAGWILG NPECESLLSE RSWSYIVETP NSENGTCYPG DFIDYEELRE 120
    26. LKGIAPLQLG KCNIAGWLLG NPECDPLLPV RSWSYIVETP NSENGICYPG DFIDYEELRE 120
    27. LKGIAPLQLG KCNITGWLLG NPECDSLLPA RSWSYIVETP NSENGACYPG DFIDYEELRE 120
    28. LKGIAPLQLG KCNIAGWLLG NPECDLLLTA SSWSYIVETS NSENGTCYPG DFIDYEELRE 120
    *:* ***:** :*.::**:** **:*: * .   *****.* . ...** ****  * *******
     1. QLSSVSSFER FEIFPKESSW PNHTTT-GVS ASCSHNGESS FYKNLLWLTG KNGLYPNLSK 179
     2. QLSSVSSFER FEIFPKESSW PNHTVT-GVS ASCSHNGESS FYRNLLWLTG KNGLYPNLSK 179
     3. QLSSVSSFER FEIFPKESSW PNHTVT-GVS ASCSHNGKSS FYRNLLWLTG KNGLYPNLSK 179
     4. QLSSVSSFER FEIFPKTSSW PNHDSNKGVT AACPHAGAKS FYKNLIWLVK KGNSYPKLSK 180
     5. QLSTVSSFER FEIFPKAISW PDHDATRGTT VACSHSGVNS FYRNLLSTVK KGNSYPKLSK 180
     6. QLSTVSSFER FEIFPKATSW PNHDTTRGTT ISCSHSGANS FYRNLLWIVK KGNSYPKLSK 180
     7. QLSSVSSFER FEIFPKESSW PNHTVT-GVS ASCSHNGKSS FYRNLLWLTG KNGLYPNLSK 179
     8. QLSSVSSFER FEIFPKESSW PNHTTT-GVS ASCSHNGESS FYKNLLWLTG KNGLYPNLSK 179
     9. QLSSVSSFER FEIFPKDSSW PNHTVTKGVT ASCSHNGKSS FYKNLLWLTE KNGLYPNLSK 180
    10. QLSSVSSFER FEIFPKESSW PNHTVTKGVT ASCSHNGKSS FYKNLLWLTE KNGLYPNLSK 180
    11. QLSSVSSFER FEIFPKESSW PNHTVT-GVT ASCSHNGKSS FYRNLLWLTE KNGLYPNLSN 179
    12. QLSSVSSFER FEIFPKESSW PNHTVTKGVT TSCSHNGKSS FYRNLLWLTK KNGLYPNVSK 180
    13. QLSSVSSFER FEIFPKESSW PNHTVTKGVT ASCSHKGRSS FYRNLLWLTK KNGSYPNLSK 180
    14. QLSSVSSFER FEIFPKESSW PKHNVTKGVT AACSHKGKSS FYRNLLWLTE KNGSYPNLSK 180
    15. QLSSVSSFER FEIFPKESSW PKHSVTRGVT ASCSHKGKSS FYRNLLWLTE KNGSYPNLSK 180
    16. QLSSVSSFER FEIFPKERSW PKHNITRGVT ASCSHKGKSS FYRNLLWLTE KNGSYPNLSK 180
    17. QLSSVSSFER FEIFPKERSW PKHNVTRGVT ASCSHKGKSS FYRNLLWLTE KNGSYPNLSK 180
    18. QLSSVSSFER FEIFPKESSW PNHTVTKGVT ASCSHKGRSS FYRNLLWLTK KNGSYPNLSK 180
    19. QLSSVSSFER FEIFPKERSW PNHTTR-GVT AACPHARKSS FYKNLVWLTE ANGSYPNLSR 179
    20. QLSSVSSFER FEIFPKERSW PKHNITRGVT AACSHKGKSS FYRNLLWLTE KNGSYPNLNK 180
    21. QLSSVSSFER FEIFPKERSW PKHNITRGVT AACSHAGKSS FYKNLLWLTE TDGSYPKLSK 180
    22. QLSSVSSFER FEIFPKGRSW PEHNIDIGVT AACSHAGKSS FYKNLLWLTE KDGSYPNLNK 180
    23. QLSSVSSFER FEIFPKESSW PKHNTARGVT AACSHAGKSS FYRNLLWLTE KDGSYPNLKN 180
    24. QLSSVSSFER FEIFSKESSW PKHTTG-GVT AACSHAGKSS FYRNLLWLTE KDGSYPNLNN 179
    25. QLSSVTSFER FEIFPKETSW PKHNTTKGVT AACSHAGKCS FYRNLLWLTE KDGSYPNLNN 180
    26. QLSSVSSFER FEIFPKESSW PNHNTN-GVT AACSHEGKSS FYRNLLWLTE KEGSYPKLKN 179
    27. QLSSVSSLER FEIFPKESSW PNHTFN-GVT VSCSHRGKSS FYRNLLWLTK KGDSYPKLTN 179
    28. QLSSVSSFEK FEIFPKTSSW PNHETTKGVT AACSYAGASS FYRNLLWLTK KGSSYPKLSK 180
    *****:*:*: ****.*  ** *:*    **: .:*.:    * **:**:**.    . **::..
     1. SYANNKEKEV LVLWGVHHPP NIGDQRALYH KENAYVSVVS SHYSRKFTPE IAKRPKVRDQ 239
     2. SYANNKEKEV LVLWGVHHPP NIGNQKALYH TENAYVSVVS SHYSRKFTPE IAKRPKVRDQ 239
     3. SYVNNKEKEV LVLWGVHHPP NIGNQRALYH TENAYVSVVS SHYSRRFTPE IAKRPKVRDQ 239
     4. SYINDKGKEV LVLWGIHHPS TSADQQSLYQ NADAYVFVGS SRYSKKFKPE IAIRPKVRXX 240
     5. SYTNNKGKEV LVIWGVHHPP TDSVQQTLYQ NKHTYVSVGS SKYYKRFTPE IVARPKVRGQ 240
     6. SYTNNKGKEV LVIWGVHHPP TDSDQQTLYQ NNHTYVSVGS SKYYQRFTPE IVTRPKVRGQ 240
     7. SYANNKEKEV LVLWGVHHPP NIGDQRALYH TENAYVSVVS SHYSRRFTPE IAKRPKVRDQ 239
     8. SYANNKEKEV LVLWGVHHPP NIGDQRALYH KENAYVSVVS SHYSRKFTPE IAKRPKVRDQ 239
     9. SYVNKKGKEV LVLWGVHHPS NMGDQRAIYH KENAYVSVLS SHYSRRFTPE IAKRPKVRDQ 240
    10. SYVNNKEKEV LVLWGVHHPS NIGDQRAIYH TENAYVSVVS SHYSRRFTPE ITKRPKVRDQ 240
    11. SYVNNKEKEV LVLWGVHHPS NIRDQRAIYH TENAYVSVVS SHYSRRFTPE IAKRPKVRGQ 239
    12. SYVNNKEKEV LVLWGVHHPS NIGDQRAIYH TENAYVSVVS SHYSRRFTPE IAKRPKVRDQ 240
    13. SYVNNKEKEV LVLWGVHHPS NIGDQRAIYH TENAYVSVVS SHYNRRFTPE IAKRPKVRDQ 240
    14. SYVNNKEKEV LVLWGVHHPS NIEDQKTIYR KENAYVSVVS SHYNRRFTPE IAKRPKVRNQ 240
    15. SYVNDKEKEV LVLWGVHHPS NIEDQKTIYR KENAYVSVVS SHYNRRFTPE IAKRPKVRDQ 240
    16. SYVNNKEKEV LVLWGVHHPS NIEDQKTIYR KENAYVSVVS SNYNRRFTPE IAKRPKVRGQ 240
    17. SYVNNKEKEV LVLWGVHHPS NIEDQKTIYR KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 240
    18. SYVNNKEKEV LVLWGVHHPS NIGDQRAIYH TENAYVSVVS SHYNRRFTPE IAKRPKVRDQ 240
    19. SYVNNQEKEV LVLWGVHHPS NIEEQRALYR KDNAYVSVVS SNYNRRFTPE IAKRPKVRDQ 239
    20. SYVNNKEKEV LVLWGVHHPS NIEDQKTLYR KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 240
    21. SYVNNKEKEV LVLWGVHHPS NIEDQKTLYR KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 240
    22. SYVNKKEKEV LILWGVHHPP NIENQKTLYR KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 240
    23. SYVNKKGKEV LVLWGVHHPS SIKEQQTLYQ KENAYVSVVS SNYNRRFTPE IAERPKVRDQ 240
    24. SYVNKKGKEV LVLWGVHHPS NIKDQQTLYQ KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 239
    25. SYVNKKGKEV LVLWGVHHPS NIKDQQTLYQ KENAYVSVVS SNYNRRFTPE IAERPKVRGQ 240
    26. SYVNKKGKEV LVLWGIHHPP NSKEQQNLYQ NENAYVSVVT SNYNRRFTPE IAERPKVRDQ 239
    27. SYVNNKGKEV LVLWGVHHPS SSDEQQSLYS NGNAYVSVAS SNYNRRFTPE IAARPKVKDQ 239
    28. SYVNNKGKEV LVLWGVHHPP TGTDQQSLYQ NADAYVSVGS SKYNRRFTPE IAARPKVRDQ 240
    ** *.: *** *:***:***. .  :*: :*  . :*** * : *.*.::*.** *: ****:
     1. EGRINYYWTL LEPGDTIIFE ANGNLIAPRY AFALSRGFGS GIINSNAPMD ECDAKCQTPQ 299
     2. EGRINYYWTL LEPGDTIIFE ANGNLIAPRY AFALSRGFGS GIINSNAPMD KCDAKCQTPQ 299
     3. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNAPMD ECDAKCQTPQ 299
     4. EGRMNYYWTL VEPGDKITFE ATGNLVVPRY AFAMERNAGS GIIISDTPVH DCNTTCQTPK 300
     5. AGRMNYYWTL FDQGDTITFE ATGNLIAPWH AFALKKGSSS GIMLSDAQVH NCTTKCQTPH 300
     6. AGRMNYYWTL LDQGDTITFE ATGNLIAPWH AFALNKGPSS GIMISDAHVH NCTTKCQTPH 300
     7. EGRINYYWTL LEPGDTIIFE ANGNLIAPRF AFALSRGFGS GIITSNAPMD ECDAKCQTPQ 299
     8. EGRINYYWTL LEPGDTIIFE ANGNLIAPRY AFALSRGFGS GIINSNAPMD ECDAKCQTPQ 299
     9. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIIISNASMG ECDAKCQTPQ 300
    10. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMG ECDAKCQTPQ 300
    11. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNAPMN ECDAKCQTPQ 299
    12. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMD ECDAKCQTPQ 300
    13. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMD ECDAKCQTPQ 300
    14. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMD ECDAKCQTPQ 300
    15. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNVSMD ECDAKCQTPQ 300
    16. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMD ECDTKCQTPQ 300
    17. AGRINYYWTL LEPGDTIIFE ANGNLIAPWH AFALNRGFGS GIITSNASMD ECDTKCQTPQ 300
    18. EGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMD ECDAKCQTPQ 300
    19. SGRMNYYWTL LEPGDTIIFE ATGNLIAPWY AFALSRGPGS GIITSNAPLD ECDTKCQTPQ 299
    20. AGRINYYWTL LEPGDTIIFE ANGNLIAPWH AFALSRGFGS GIITSNASMD ECDTKCQTPQ 300
    21. AGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRDFGS GIITSNASMD ECDTKCQTPQ 300
    22. AGRINYYWTL LEPGDTIIFE ANGNLIAPWY AFALNRGIGS GIITSNASMD ECDTKCQTPQ 300
    23. AGRMNYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMH ECDTKCQTPQ 300
    24. AGRINYYWTL LKPGDTIMFE ANGNLIAPWY AFALSRGFGS GIITSNASMH ECDTKCQTPQ 299
    25. AGRMNYYWTL LEPGDTIIFE ANGNLIAPWY AFALSRGFGS GIITSNASMH ECNTKCQTPQ 300
    26. AGRMNYYWTL LKPGDTIIFE ANGNLIAPMY AFALRRGFGS GIITSNASMH ECNTKCQTPL 299
    27. HGRMNYYWTL LEPGDTIIFE ATGNLIAPWY AFALSRGFES GIITSNASMH ECNTKCQTPQ 299
    28. AGRMNYYWTL LEPGDTITFE ATGNLIAPWY AFALNRGSGS GIITSDAPVH DCNTKCQTPH 300
     **:****** ::***.* ** *.***:.* . ***: *.  * *** *:..:  .*::.****
     1. GAINSSLPFQ NVHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
     2. GAINSSLPFQ NVHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
     3. GAINSSLPFQ NVHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
     4. GAINTSLPFQ NIHPITIGKC PKYVKSTKLR LATGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
     5. GALKNNLPLQ NVHLFTIGEC PKYVKSTQLR MATGLRNIPS IQSRGLFGAI AGFIEGGRTG 360
     6. GALKSNLPFQ NVHPSTIGEC PKYVKSTQLR MATGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
     7. GAINSSLPFQ NVHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
     8. GAINSSLPFQ NVHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
     9. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNVPS IQSRGLFGAI AGFIEGGWTG 360
    10. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    11. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
    12. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    13. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    14. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    15. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    16. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    17. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    18. GAINSSLPFQ NVHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    19. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS VQSRGLFGAI AGFIEGGWTG 359
    20. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    21. GAINSSLPFQ NIHPVTIGEC PKYVKSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    22. GAINSSLPFQ NIHPFTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWDG 360
    23. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    24. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
    25. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    26. GAINSSLPYQ NIHPVTIGEC PKYVRSAKLR MVTGLRNIPS IQSRGLFGAI AGFIEGGWTG 359
    27. GSINSNLPFQ NIHPVTIGEC PKYVRSTKLR MVTGLRNIPS IQYRGLFGAI AGFIEGGWTG 359
    28. GAINSSLPFQ NIHPVTIGEC PKYVRSTKLR MATGLRNIPS IQSRGLFGAI AGFIEGGWTG 360
    *:**:.**:* *:**.***:* ****:*:*** :.*****:** :* ******* ******** *
     1. MVDGWYGYHH QNEQGSGYAA DQKSTQNAIN GI T NKVNSVI EKMNTQFTAV GKEFNKLERR 419
     2. MVDGWYGYHH QNEQGSGYAA DQKSTQNAIN GI T NKVNSVI EKMNTQFTAV GKEFNKLERR 419
     3. MVDGWYGYHH QNEQGSGYAA DQKSTQNAIN GI T NKVNSVI EKMNTQFTAV GKEFNKLERR 419
     4. MVDGWYGYHH QNEQGSGYAA DLKSTQNAID EI T NKVNSVI EKMNTQFTAV GKEFNHLEKR 420
     5. MIDGWYGYHH QNEQGSGYAA DQKSTQIAID GI N NKANSVI GKMNIQLTSV GKEFNSLEKR 420
     6. MIDGWYGYHH QNEQGSGYAA DQKSTQIAID GI N NKVNSII EKMNTQFTSV GKEFNDLEKR 420
     7. MVDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 419
     8. MVDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 419
     9. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSII EKMNTQFTAV GKEFNKLEKR 420
    10. MIDGWYGYHH QNEQGSGYAA DQKSTQNAID GITNKVNSVI EKMNTQFTAV GKEFNKLERR 420
    11. MMDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 419
    12. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 420
    13. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 420
    14. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSII EKMNTQFTAV GKEFNKLEKR 420
    15. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    16. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    17. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    18. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLERR 420
    19. MMDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 419
    20. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    21. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN WITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    22. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNKLEKR 420
    23. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNNLEKR 420
    24. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNNLEKR 419
    25. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNNLEKR 420
    26. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNIQFTAV GKEFNKLEKR 419
    27. MIDGWYGYHH QNEQGSGYAA DQKSTQNAIN GITNKVNSVI EKMNTQFTAV GKEFNNLEKR 419
    28. MIDGWYGYHH QNEQGSGYAA DQKSTQNAID GITNKVNSVI EKMNTQFTAV GKEFNNLERR 420
    *:******** ********** * *******:  *******:* **** ***** *****:**:*
     1. MENLNKKVDD GFIDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
     2. MENLNKKVDD GFIDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
     3. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
     4. IENLNKKVDD GFLDIWTYNA ELLVLLENER TLDYHDSNVK NLYEKVRSQL KNNAKEIGNG 480
     5. KENLNKTVDD RFLDVWTFNA ELLVLLENQR TLEFHDLNIK SLYEKVKSHL RNNDKEIGNG 480
     6. IENLNKKVDD GFLDVWTYNA ELLILLENER TLDFHDFNVK NLYEKVKSQL RNNAKEIGNG 480
     7. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
     8. MENLNKKVDD GFIDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
     9. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDLNVK NLYEKVKNQL KNNAKEIGNG 480
    10. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKTQL KNNAKEIGNG 480
    11. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
    12. MENLNKKVDD GFLDIWTYNA ELLVLLENGR TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    13. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    14. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    15. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    16. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    17. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    18. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    19. MENLNKKVDD GFMDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKNQL RNNAKELGNG 479
    20. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 480
    21. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKNQL RNNAKEIGNG 480
    22. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKNQL RNNAKEIGNG 480
    23. MENLNKKVDD GFLDIWTYNA ELLILLENER TLDFHDSNVK NLYEKVKSQL RNNAKEIGNG 480
    24. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKNQL RNNAKEIGNG 479
    25. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL RNNAKEIGNG 480
    26. MENLNNKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVK NLYEKVKSQL KNNAKEIGNG 479
    27. MENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDLNVK NLYEKVKSQL KNNAKEIGNG 479
    28. IENLNKKVDD GFLDIWTYNA ELLVLLENER TLDFHDSNVR NLYEKVKSQL KNNAKEIGNG 480
    :****:**** **:******* ***:**** * ***:** **: ******:.** :*****:***
     1. CFEFYHKCND ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
     2. CFEFYHKCND ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
     3. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
     4. CFEFYHKCDN TCMESVKNGT YDYPKYSEEA KLNREEIDGV KLESTRIYQI LAIYSTVASS 540
     5. CFEFYHKRDN ECLECVKNGT YNYPKYSEES KFNREEIVGV KLESMGIHQI LAIYSTVASS 540
     6. CFEFYHKCDN ECMESVKNGT YNYPKYSEES KLNREKIDGV KLESMGVHQI LAIYSTVASS 540
     7. CFEFYHKCND ECMESVKNGT YDYPKYSEES KLNRERIDGV KLESMGVYQI LAIYSTVASS 539
     8. CFEFYHKCND ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
     9. CFEFYHKCNN ECMESVKNGT YDYPKYSKES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    10. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    11. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
    12. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNRGKIDGV KLESMGVYQI LAIYSTVASS 540
    13. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    14. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    15. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    16. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    17. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    18. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    19. CFEFYHKCDN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYRI LAIYSTVASS 539
    20. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    21. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    22. CFEFYHKCNN ECMESVKNGT YDYPKFSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    23. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    24. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTAASS 539
    25. CFEFYHKCNN ECMESVKNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 540
    26. CFEFYHKCDN ECMESVRNGT YDYPKYSEES KLNREKVDGV KLESMGIYQI LAIYSTVASS 539
    27. CFEFYHKCDN ECMESVRNGT YDYPKYSEES KLNREKIDGV KLESMGVYQI LAIYSTVASS 539
    28. CFEFYHKCDD ACMESVRNGT YDYPKYSEES KLNREEIDGV KLESMGVYQI LAIYSTVASS 540
    ********:: *****:***  *****:*:*: **** .:*** ****  :*:* ******.***
     1. LVLLVSLGAI SFWMCSNGSL QCRICI 565
     2. LVLLVSLGAI SFWMCSNGSL QCRICI 565
     3. LVLLVSLGAI SFWMCSNGSL QCRICI 565
     4. LVLVVSLGAI SFWMCSNGSL QCRICI 566
     5. LVLLVSLGAI SFWMCSNGSL QCRVCI 566
     6. LVLLVSLGAI SFWMCSNGSL QCRICI 566
     7. LVLLVSLGAI SFWMCSNGSL QCRICI 565
     8. LVLLVSLGAI SFWMCSNGSL QCRICI 565
     9. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    10. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    11. LVLLVSLGAI SFWMCSNGSL QCRICI 565
    12. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    13. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    14. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    15. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    16. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    17. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    18. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    19. LVLLVSLGAI SFWMCSNGSL QCRICI 565
    20. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    21. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    22. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    23. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    24. LVLLVSLGAI SFWMCSNGSL QCRICI 565
    25. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    26. LVLLVSLGAI SFWMCSNGSL QCRICI 565
    27. LVLLVSLGAI SFWMCSNGSL QCRICI 565
    28. LVLLVSLGAI SFWMCSNGSL QCRICI 566
    ***:****** ********** ******
  • TABLE 9
    Consensus sequence for H3 401-421 (SEQ ID NO: 104), other natural variants
    and mutations that stabilize polypeptides hereof. One or more mutations in the parental
    sequence are present in the polypeptides.
    amino conservation other preferred
    Position acid (%) natural mutation polar charged flexible
    401 I 99.26 V R K
    402 E/G 56.2/40.3 K
    403 K 94.85 R
    404 T 99.88 A
    405 N 99.88 S
    406 E 100
    407 K 100
    408 F 100 S T, N, Q R, H, K, D, E G
    409 H 100
    410 Q 100
    411 I 100 T S, N, Q R, H, K, D, E G
    412 E 100
    413 K 100
    414 E 100
    415 F 100 S T, N, Q R, H, K, D, E G
    416 S 99.46 T, L
    417 E 99.71 G, D
    418 V 98.64 I G S, T, N, Q R, H, K, D, E
    419 E 100
    420 G 99.84 E
    421 R 100
  • TABLE 10
    Calculated and experimental molecular weight as determined from
    SEC-MALS. The calculated molecular weight is based on the amino acid
    composition of the processed polypeptide of the disclosure, i.e., after the
    leader peptide has been cleaved of. Addtional mass arising from
    glycosylation ahs nopt been taken into account.
    SEQ Calculated molecular weight Experimental molecular weight
    ID NO (Da) (kDa)
    144 29137 75
    145 29257 50
    146 29203 56
    147 29119 60
    148 29293 66
    150 29411 64
    151 29283 79
  • TABLE 11
    Selected strains
    Set 1 Set 2
    H1N1 A/Maryland/12/1991 H1N1 A/Maryland/12/1991
    H1N1 A/Henry/1936/ H1N1 A/Henry/1936/
    H1N1 A/AA/Marton/1943 H1N1 A/AA/Marton/1943
    H1N1 A/Memphis/20/1978 H1N1 A/USSR/92/1977
    H1N1 A/New York/607/1995 H1N1 A/New York/629/1995
    H1N1 A/New Jersey/11/2007 H1N1 A/Virginia/
    UR06-0549/2007
    H1N1 A/Wisconsin/629-D01415/2009 H1N1 A/Texas/UR06-0526/2007
    H1N1 A/Sydney/DD3-55/2010
  • REFERENCES
    • Bommakanti et al. (2010), PNAS 107(31):l3701-13706.
    • Chen et al. (1995), PNAS 92, 12205-12209.
    • Coffman et al. (2010), Immunity 33:492.
    • Corti et al. (2011), Science 333(6044):850-856.
    • Delhaise, et al. (1984), J. Mol. Graph. 2:103-106.
    • Devereux et al. (1984), Nucl. Acids Res. 12:387.
    • Dopheide, Ward (1981), J. Gen. Virol. 367-370.
    • Edgar R.C. (2004), Nucleic Acids Res. 32, 1792-1797.
    • Ekiert et al. (2009), Science 324:246.
    • Ekiert et al. (2011), Science 333:844.
    • Ferguson et al. (2003), Nature 422.428-443.
    • Higgins (1992), Comput. Appl. Biosci. 8:15-22.
    • Lorieau et al. (2010), Proc. Natl. Acad. Sci. USA, 107:11341.
    • Okuno et al. (1993), J. Virol. 67:2552-2558.
    • Russel et al. (2004), Virology 325:287.
    • Samantha et al. (2002), Prot. Eng. 15, 659-667.
    • Steel et al. (2010), mBio. 1(1):1-9.
    • Steven et al. (2004), Science 303:1866.
    • Steven et al. (2006), Science 312:404.
    • Sun et al. (2010), J. Virol. 84:8683
    • Suzuki et al. (2005), Prot. Eng. 11, 1051.
    • Throsby et al. (2008), Plos One 12(3):1-15.
    • Wilson et al. (1981), Nature 289:366.
    • Woolfson (2005), Adv Protein Chem 70:79-112.
    • Xu & Miranker (2004), Bioinformatics 8:1214-1221.
  • SEQUENCES
    SEQ ID NO: 1: H1 Full-length (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGKLCL LKGIAPLQLG NCSVAGWILG NPECELLISK ESWSYIVEKP 100
    NPENGTCYPG HFADYEELRE QLSSVSSFER FEIFPKESSW PNHTVTGVSA 150
    SCSHNGESSF YRNLLWLTGK NGLYPNLSKS YANNKEKEVL VLWGVHHPPN 200
    IGDQKALYHT ENAYVSVVSS HYSRKFTPEI AKRPKVRDQE GRINYYWTLL 250
    EPGDTIIFEA NGNLIAPRYA FALSRGFGSG IINSNAPMDK CDAKCQTPQG 300
    AINSSLPFQN VHPVTIGECP KYVRSAKLRM VTGLRNIPSI QSRGLFGAIA 350
    GFIEGGWTGM VDGWYGYHHQ NEQGSGYAAD QKSTQNAING ITNKVNSVIE 400
    KMNTQFTAVG KEFNKLERRM ENLNKKVDDG FIDIWTYNAE LLVLLENERT 450
    LDFHDSNVKN LYEKVKSQLK NNAKEIGNGC FEFYHKCNDE CMESVKNGTY 500
    DYPKYSEESK LNREKIDGVK LESMGVYQIL AIYSTVASSL VLLVSLGAIS 550
    FWMCSNGSLQ CRICI 565
    SEQ ID NO: 2: miniHA (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGKLC G GGG CDAKCQT PQGAINSSLP FQNVHPVTIG ECPKYVRSAK 100
    LRMVTGLRNT PSIQSQ GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQFT AVGKEFNKLE RRMENLNKKV 200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 3: miniHA cluster1 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECPKYVRSAK 100
    LRMVTGLRNI PSIQSQ GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQ
    Figure US20160355553A1-20161208-P00001
    T A
    Figure US20160355553A1-20161208-P00002
    GKEFNK
    Figure US20160355553A1-20161208-P00003
    E RRMENLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 4: miniHA cluster1 + 2 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECP C YVRSAK 100
    LRMVTGLRNI PSIQSQ GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNT
    Figure US20160355553A1-20161208-P00004
    T A
    Figure US20160355553A1-20161208-P00005
    GKEFNKSE RRMENLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 5: miniHA cluster1 + 3 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECPKYVRSAK 100
    LRMVTGLRNI PSIQSQ GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQ
    Figure US20160355553A1-20161208-P00006
    T A
    Figure US20160355553A1-20161208-P00007
    GKECNK
    Figure US20160355553A1-20161208-P00008
    E RRM
    Figure US20160355553A1-20161208-P00009
    NLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 6: miniHA cluster1 + 4 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CTGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECPKYVRSAK 100
    LRMVTGLRNI PSIQS Q GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQ
    Figure US20160355553A1-20161208-P00010
    T A
    Figure US20160355553A1-20161208-P00011
    GKEFNK
    Figure US20160355553A1-20161208-P00012
    E RRMENLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYD
    Figure US20160355553A1-20161208-P00013
    PKYSE ESKLNREKID GVKLESMGVY
    300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 7: miniHA cluster1 + 2 + 3 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECP C YVRSAK 100
    LRMVTGLRNI PSIQS Q GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNT
    Figure US20160355553A1-20161208-P00014
    T A
    Figure US20160355553A1-20161208-P00015
    GKE
    Figure US20160355553A1-20161208-P00016
    NK
    Figure US20160355553A1-20161208-P00017
    E RRM
    Figure US20160355553A1-20161208-P00018
    NLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 8: miniHA cluster1 + 2 + 3 + 4 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECP C YVRSAK 100
    LRMVTGLRNI PSIQS Q GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNT
    Figure US20160355553A1-20161208-P00019
    T A
    Figure US20160355553A1-20161208-P00020
    GKE
    Figure US20160355553A1-20161208-P00021
    NK
    Figure US20160355553A1-20161208-P00022
    E RRM
    Figure US20160355553A1-20161208-P00021
    NLNKKV
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYD
    Figure US20160355553A1-20161208-P00023
    PKYSE ESKLNREKID GVKLESMGVY
    300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 9: mini1 cluster11 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECPKYVRSAK 100
    LRMVTGLRNI PSIQS Q GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQ
    Figure US20160355553A1-20161208-P00023
    T A
    Figure US20160355553A1-20161208-P00024
    GKEFNK
    Figure US20160355553A1-20161208-P00025
    E RR
    Figure US20160355553A1-20161208-P00026
    ENLNKK
    Figure US20160355553A1-20161208-P00027
    200
    DDGFIDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 10: mini2 cluster11 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYVR SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00028
    TA
    Figure US20160355553A1-20161208-P00029
    GKEFN
    150
    K
    Figure US20160355553A1-20161208-P00030
    ERR
    Figure US20160355553A1-20161208-P00031
    ENLN KK
    Figure US20160355553A1-20161208-P00032
    DDGFIDI WTYNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 11: mini3 cluster11 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENS GGGG NSS LPFQNVHP T T  T GECPKYVRS AKLRMVTGLR NIPSIQS Q GL 100
    FGAIAGFIEG GWTGMVDGWY GYHHQNEQGS GYAADQKSTQ NAINGITNKV 150
    NSVIEKMNTQ
    Figure US20160355553A1-20161208-P00033
    TA
    Figure US20160355553A1-20161208-P00034
    GKEFNK
    Figure US20160355553A1-20161208-P00035
    ERR
    Figure US20160355553A1-20161208-P00036
    ENLNK K
    Figure US20160355553A1-20161208-P00037
    DDGFIDIW TYNAELLVLL
    200
    ENERTLDFHD SNVKNLYEKV KSQLKNNAKE IGNGCFEFYH KCNDECMESV 250
    KNGTYDYPKY SEESKLNREK IDGVKLESMG VYQILAIYST VASSLVLLVS 300
    LGAISFWMCS NGSLQCRICI 320
    SEQ ID NO: 12: mini4 cluster11 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHN GGGG E CPKYVRSAKL RMVTGLRNIP SIQS Q GLFGA IAGFIEGGWT 100
    GMVDGWYGYH HQNEQGSGYA ADQKSTQNAI NGITNKVNSV IEKMNTQ
    Figure US20160355553A1-20161208-P00038
    TA
    150
    Figure US20160355553A1-20161208-P00039
    GKEFNK
    Figure US20160355553A1-20161208-P00040
    ER R
    Figure US20160355553A1-20161208-P00041
    ENLNKK
    Figure US20160355553A1-20161208-P00042
    D DGFIDIWTYN AELLVLLENE RTLDFHDSNV
    200
    KNLYEKVKSQ LKNNAKEIGN GCFEFYHKCN DECMESVKNG TYDYPKYSEE 250
    SKLNREKIDG VKLESMGVYQ ILAIYSTVAS SLVLLVSLGA ISFWMCSNGS 300
    LQCRICI 307
    SEQ ID NO: 13: mini1 cluster11 + 5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGK T C G GGG CDAKCQT PQGAINSSLP FQNVHP T T T G ECPKYV C SAK 100
    LRMVTGLRNI PSIQS Q GLFG AIAGFIEGGW TGMVDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNTQ
    Figure US20160355553A1-20161208-P00043
    T A
    Figure US20160355553A1-20161208-P00044
    GKEFNK
    Figure US20160355553A1-20161208-P00045
    E RR
    Figure US20160355553A1-20161208-P00046
    ENLNKK
    Figure US20160355553A1-20161208-P00047
    200
    DDGFIDIW
    Figure US20160355553A1-20161208-P00048
    Y NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG
    250
    NGCFEFYHKC NDECMESVKN GTYDYPKYSE ESKLNREKID GVKLESMGVY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 14: mini2 cluster11 + 5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGATAGFIE GGWTGMVDGW 700
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00049
    TA
    Figure US20160355553A1-20161208-P00050
    GKEFN
    150
    K
    Figure US20160355553A1-20161208-P00051
    ERR
    Figure US20160355553A1-20161208-P00052
    ENLN KK
    Figure US20160355553A1-20161208-P00053
    DDGFIDI W
    Figure US20160355553A1-20161208-P00048
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 15: mini3 cluster11 + 5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENS GGGG NSS LPFQNVHP T T  T GECPKYV C S AKLRMVTGLR NIPSIQS Q GL 100
    FGAIAGFIEG GWTGMVDGWY GYHHQNEQGS GYAADQKSTQ NAINGITNKV 150
    NSVIEKMNTQ
    Figure US20160355553A1-20161208-P00054
    TA
    Figure US20160355553A1-20161208-P00055
    GKEFNK
    Figure US20160355553A1-20161208-P00056
    ERR
    Figure US20160355553A1-20161208-P00057
    ENLNK K
    Figure US20160355553A1-20161208-P00058
    DDGFIDIW
    Figure US20160355553A1-20161208-P00059
    YNAELLVLL
    200
    ENERTLDFHD SNVKNLYEKV KSQLKNNAKE IGNGCFEFYH KCNDECMESV 250
    KNGTYDYPKY SEESKLNREK IDGVKLESMG VYQILAIYST VASSLVLLVS 300
    LGAISFWMCS NGSLQCRICI 320
    SEQ ID NO: 16: mini4 cluster11 + 5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHN GGGG E CPKYV C SAKL RMVTGLRNIP SIQS Q GLFGA IAGFIEGGWT 100
    GMVDGWYGYH HQNEQGSGYA ADQKSTQNAI NGITNKVNSV IEKMNTQ
    Figure US20160355553A1-20161208-P00060
    TA
    150
    Figure US20160355553A1-20161208-P00061
    GKEFNK
    Figure US20160355553A1-20161208-P00062
    ER R
    Figure US20160355553A1-20161208-P00063
    ENLNKK
    Figure US20160355553A1-20161208-P00064
    D DGFIDIW
    Figure US20160355553A1-20161208-P00065
    YN AELLVLLENE RTLDFHDSNV
    200
    KNLYEKVKSQ LKNNAKEIGN GCFEFYHKCN DECMESVKNG TYDYPKYSEE 250
    SKLNREKIDG VKLESMGVYQ ILAIYSTVAS SLVLLVSLGA ISFWMCSNGS 300
    LQCRICI 307
    SEQ ID NO: 17: H1 consensus sequence residue 402-418
    (numbering according to SEQ ID NO: 1)
    402 MNTQFTAVG KEFN(H/K)LE(K/R) 418
    >SC09-114 VH PROTEIN (SEQ ID NO: 18):
    QVQLVQSGAEVKKPGSSVKVSCKSSGGTSNNYAISWVRQAPGQGLDWMGGISPIFGSTAYAQKFQGRVTISAD
    IFSNTAYMELNSLTSEDTAVYFCARHGNYYYYSGMDVWGQGTTVTVSS
    >SC09-114 VL PROTEIN (SEQ ID NO: 19):
    SYVLTQPPAVSGTPGQRVTISCSGSDSNIGRRSVNWYQQFPGTAPKLLIYSNDQRPSVVPDRFSGSKSGTSAS
    LAISGLQSEDEAEYYCAAWDDSLKGAVFGGGTQLTVL
    >CR6261 VH PROTEIN (SEQ ID NO: 20):
    E V Q L V E S G A E V K K P G S S V K V S C K A S G G P F R S Y A I S W V
    R Q A P G Q G P E W M G G I I P I F G T T K Y A P K F Q G R V T I T A D D
    F A G T V Y M E L S S L R S E D T A M Y Y C A K H M G Y Q V R E T M D V W
    G K G T T V T V S S
    >CR6261 VL PROTEIN (SEQ ID NO: 21):
    Q S V L T Q P P S V S A A P G Q K V T I S C S G S S S N I G N D Y V S W Y
    Q Q L P G T A P K L L I Y D N N K R P S G I P D R F S G S K S G T S A T L
    G I T G L Q T G D E A N Y Y C A T W D R R P T A Y V V F G G G T K L T V L
    G
    >SC08-057 VH PROTEIN (SEQ ID NO: 22):
    EVQLVESGGGLVQPGGSLRLSCAASGFTDSVIFMSWVRQAPGKGLECVSIIYIDDSTYYADSVKGRFTISRHN
    SMGTVFLEMNSLRPDDTAVYYCATESGDFGDQTGPYHYYAMDV
    >SC08-057 VL PROTEIN (SEQ ID NO: 23):
    QSALTQPASVSGSPGQSITISCTGSSGDIGGYNAVSWYQHHPGKAPKLMIYEVTSRPSGVSDRFSASRSGDTA
    SLTVSGLQAEDEAHYYCCSFADSNILI
    SEQ ID NO: 24 (STEEL):
    MKANLLVLLC ALAAADADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EDSHNGKLC G GGG CNTKCQT PLGAINSSLP YQNIHPVTIG ECPKYVRSAK 100
    LRMVTGLRNI PSIQSRGLFG AIAGFIEGGW TGMIDGWYGY HHQNEQGSGY 150
    AADQKSTQNA INGITNKVNS VIEKMNIQFT AVGKEFNKLE KRMENLNNKV 200
    DDGFLDIWTY NAELLVLLEN ERTLDFHDSN VKNLYEKVKS QLKNNAKEIG 250
    NGCFEFYHKC DNECMESVRN GTYDYPKYSE ESKLNREKVD GVKLESMGIY 300
    QILAIYSTVA SSLVLLVSLG AISFWMCSNG SLQCRICI 338
    SEQ ID NO: 31: H7 Full-length (A/Mallard/Netherlands/12/2000)
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VERTNVPRIC SKGKRTVDLG QCGLLGTITG PPQCDQFLEF SADLIIERRE 100
    GSDVCYPGKF VNEEALRQIL RESGGIDKET MGFTYSGIRT NGATSACRRS 150
    GSSFYAEMKW LLSNTDNAAF PQMTKSYKNT RKDPALIIWG IHHSGSTTEQ 200
    TKLYGSGNKL ITVGSSNYQQ SFVPSPGARP QVNGQSGRID FHWLILNPND 250
    TVTFSFNGAF IAPDRASFLR GKSMGIQSGV QVDANCEGDC YHSGGTIISN 300
    LPFQNINSRA VGKCPRYVKQ ESLLLATGMK NVPEIPKGRG LFGAIAGFIE 350
    NGWEGLIDGW YGFRHQNAQG EGTAADYKST QSAIDQITGK LNRLIEKTNQ 400
    QFELIDNEFT EVEKQIGNVI NWTRDSMTEV WSYNAELLVA MENQHTIDLA 450
    DSEMNKLYER VKRQLRENAE EDGTGCFEIF HKCDDDCMAS IRNNTYDHSK 500
    YREEAMQNRI QIDPVKLSSG YKDVILWFSF GASCFILLAI AMGLVFICVK 550
    NGNMRCTICI 560
    SEQ ID NO: 32: H7 consensus sequence residue 394-414
    (numbering according to SEQ ID NO: 31)
    394 LI(E/D/G)KTNQQFELIDNEF (N/T/S) E (I/V) E (Q/K) 414
    SEQ ID NO: 33: H7-mini2 (A/Mallard/Netherlands/12/2000)
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYVK QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQFELIDNEF 150
    TEVEKQIGNV INWTRDSMTE VWSYNAELLV AMENQHTIDL ADSEMNKLYE 200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 34: H7-mini2-cluster15
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYVK QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQ
    Figure US20160355553A1-20161208-P00066
    EL
    Figure US20160355553A1-20161208-P00067
    DNE
    Figure US20160355553A1-20161208-P00068
    150
    TEVEKQIGNV INWTRDSMTE VWSYNAELLV AMENQHTIDL ADSEMNKLYE 200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 35: H7-m1ni2-cluster15 + 16
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYVK QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQ
    Figure US20160355553A1-20161208-P00069
    E
    Figure US20160355553A1-20161208-P00070
    DNE
    Figure US20160355553A1-20161208-P00071
    150
    TE
    Figure US20160355553A1-20161208-P00072
    EKQIGNV INWTRDSMTE VWSYNAELLV AMENQHTIDL ADSEMNKLYE
    200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 36: H7-mini2-cluster17
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYV C  QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQFELIDNEF 150
    TEVEKQIGNV INWTRDSMTE VW
    Figure US20160355553A1-20161208-P00073
    YNAELLV AMENQHTIDL ADSEMNKLYE
    200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 37: H7-mini2-cluster15 + 16 + 17
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYV C  QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQ
    Figure US20160355553A1-20161208-P00074
    E
    Figure US20160355553A1-20161208-P00075
    DNE
    Figure US20160355553A1-20161208-P00076
    150
    TE
    Figure US20160355553A1-20161208-P00077
    EKQIGNV INWTRDSMTE VW
    Figure US20160355553A1-20161208-P00078
    YNAELLV AMENQHTIDL ADSEMNKLYE
    200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 38: H7-mini2-cluster15 + 16 + 17 + 18
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYV C  QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQ
    Figure US20160355553A1-20161208-P00079
    E
    Figure US20160355553A1-20161208-P00080
    DNE
    Figure US20160355553A1-20161208-P00081
    150
    TE
    Figure US20160355553A1-20161208-P00082
    EKQIGN
    Figure US20160355553A1-20161208-P00083
    INW
    Figure US20160355553A1-20161208-P00084
    RD
    Figure US20160355553A1-20161208-P00085
    MTE
    Figure US20160355553A1-20161208-P00086
    W
    Figure US20160355553A1-20161208-P00078
    YNAELLV AMENQHTIDL ADSEMNKLYE
    200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 39: H7-mini2-cluster15 + 16 + 17 + tri
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VE GGGG RYV C  QESLLLATGM KNVPEIPKG Q GLFGAIAGFI ENGWEGLIDG 100
    WYGFRHQNAQ GEGTAADYKS TQSAIDQITG KLNRLIEKTN QQ
    Figure US20160355553A1-20161208-P00087
    E
    Figure US20160355553A1-20161208-P00088
    DNE
    Figure US20160355553A1-20161208-P00089
    150
    TE
    Figure US20160355553A1-20161208-P00090
    EKQI
    Figure US20160355553A1-20161208-P00091
    Figure US20160355553A1-20161208-P00092
    Figure US20160355553A1-20161208-P00093
    YNAELLV AMENQHTIDL ADSEMNKLYE
    200
    RVKRQLRENA EEDGTGCFEI FHKCDDDCMA SIRNNTYDHS KYREEAMQNR 250
    IQIDPVKLSS GYKDVILWFS FGASCFILLA IAMGLVFICV KNGNMRCTIC 300
    I 301
    SEQ ID NO: 40: H7-mini5
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VER GGGG PRY VKQESLLLAT GMKNVPEIPK GQ GLFGAIAG FIENGWEGLI 100
    DGWYGFRHQN AQGEGTAADY KSTQSAIDQI TGKLNRLIEK TNQQFELIDN 150
    EFTEVEKQIG NVINWTRDSM TEVWSYNAEL LVAMENQHTI DLADSEMNKL 200
    YERVKRQLRE NAEEDGTGCF EIFHKCDDDC MASIRNNTYD HSKYREEAMQ 250
    NRIQIDPVKL SSGYKDVILW FSFGASCFIL LAIAMGLVFI CVKNGNMRCT 300
    ICI 303
    SEQ ID NO: 41: H7-mini5-cluster15 + 16
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VER GGGG PRY VKQESLLLAT GMKNVPEIPK GQ GLFGAIAG FIENGWEGLI 100
    DGWYGFRHQN AQGEGTAADY KSTQSAIDQI TGKLNRLIEK TNQQ
    Figure US20160355553A1-20161208-P00094
    E
    Figure US20160355553A1-20161208-P00095
    DN
    150
    E
    Figure US20160355553A1-20161208-P00096
    TE
    Figure US20160355553A1-20161208-P00097
    EKQIG NVINWTRDSM TEVWSYNAEL LVAMENQHTI DLADSEMNKL
    200
    YERVKRQLRE NAEEDGTGCF EIFHKCDDDC MASIRNNTYD HSKYREEAMQ 250
    NRIQIDPVKL SSGYKDVILW FSFGASCFIL LAIAMGLVFI CVKNGNMRCT 300
    ICI 303
    SEQ ID NO: 42: H7-mini5-cluster17
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VER GGGG PRY  C KQESLLLAT GMKNVPEIPK GQ GLFGAIAG FIENGWEGLI 100
    DGWYGFRHQN AQGEGTAADY KSTQSAIDQI TGKLNRLIEK TNQQFELIDN 150
    EFTEVEKQIG NVINWTRDSM TEVW
    Figure US20160355553A1-20161208-P00098
    YNAEL LVAMENQHTI DLADSEMNKL
    200
    YERVKRQLRE NAEEDGTGCF EIFHKCDDDC MASIRNNTYD HSKYREEAMQ 250
    NRIQIDPVKL SSGYKDVILW FSFGASCFIL LAIAMGLVFI CVKNGNMRCT 300
    ICI 303
    SEQ ID NO: 43: H7-mini5-cluster15 + 16 + 17 + 18
    MNTQILVFAL MAIIPTNADK ICLGHHAVSN GTKVNTLTER GVEVVNATET  50
    VER GGGG PRY V C QESLLLAT GMKNVPEIPK GQ GLFGAIAG FIENGWEGLI 100
    DGWYGFRHQN AQGEGTAADY KSTQSAIDQI TGKLNRLIEK TNQQ
    Figure US20160355553A1-20161208-P00099
    E
    Figure US20160355553A1-20161208-P00100
    DN
    150
    E
    Figure US20160355553A1-20161208-P00101
    TE
    Figure US20160355553A1-20161208-P00102
    EKQIG N
    Figure US20160355553A1-20161208-P00103
    INW
    Figure US20160355553A1-20161208-P00104
    RD
    Figure US20160355553A1-20161208-P00105
    M TE
    Figure US20160355553A1-20161208-P00106
    W
    Figure US20160355553A1-20161208-P00107
    YNAEL LVAMENQHTI DLADSEMNKL
    200
    YERVKRQLRE NAEEDGTGCF EIFHKCDDDC MASIRNNTYD HSKYREEAMQ 250
    NRIQIDPVKL SSGYKDVILW FSFGASCFIL LAIAMGLVFI CVKNGNMRCT 300
    ICI 303
    SEQ ID NO: 44: H1-mini2-cluster1 + 5 + 6-trim
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENGGGGKYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00108
    TA
    Figure US20160355553A1-20161208-P00109
    GKE
    Figure US20160355553A1-20161208-P00110
    N
    150
    K
    Figure US20160355553A1-20161208-P00111
    E
    Figure US20160355553A1-20161208-P00112
    Figure US20160355553A1-20161208-P00113
    I W
    Figure US20160355553A1-20161208-P00114
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 45: H1-mini2-cluster1 + 5 + 6-GCN4
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENGGGGKYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00115
    TA
    Figure US20160355553A1-20161208-P00116
    GKE
    Figure US20160355553A1-20161208-P00117
    N
    150
    K
    Figure US20160355553A1-20161208-P00118
    ERM
    Figure US20160355553A1-20161208-P00119
    Figure US20160355553A1-20161208-P00120
    I W
    Figure US20160355553A1-20161208-P00121
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 46: mini2-cluster1 + 5 + 6 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00122
    TA
    Figure US20160355553A1-20161208-P00123
    GKE
    Figure US20160355553A1-20161208-P00124
    N
    150
    K
    Figure US20160355553A1-20161208-P00125
    ERRMENLN KKVDDGFIDI W
    Figure US20160355553A1-20161208-P00126
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 47: mini2-cluster11 + 5 + 6 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00127
    TA
    Figure US20160355553A1-20161208-P00128
    GKE
    Figure US20160355553A1-20161208-P00129
    N
    150
    K
    Figure US20160355553A1-20161208-P00130
    ERR
    Figure US20160355553A1-20161208-P00131
    ENLN KK
    Figure US20160355553A1-20161208-P00132
    DDGFIDI W
    Figure US20160355553A1-20161208-P00133
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 48: mini2-cluster1 + 5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00134
    TA
    Figure US20160355553A1-20161208-P00135
    GKEFN
    150
    K
    Figure US20160355553A1-20161208-P00136
    ERRMENLN KKVDDGFIDI W
    Figure US20160355553A1-20161208-P00137
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 49: H1-mini2-cluster1 + 5 + 6-trim2
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00138
    TA
    Figure US20160355553A1-20161208-P00139
    GKE
    Figure US20160355553A1-20161208-P00140
    N
    150
    K
    Figure US20160355553A1-20161208-P00141
    ER
    Figure US20160355553A1-20161208-P00142
    Figure US20160355553A1-20161208-P00143
    I W
    Figure US20160355553A1-20161208-P00144
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 50: H1-mini2-cluster1 + 5 + 6-trim3
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00145
    TA
    Figure US20160355553A1-20161208-P00146
    GKE
    Figure US20160355553A1-20161208-P00147
    N
    150
    K
    Figure US20160355553A1-20161208-P00148
    ERR
    Figure US20160355553A1-20161208-P00149
    Figure US20160355553A1-20161208-P00143
    I W
    Figure US20160355553A1-20161208-P00150
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 51: H1-mini2-cluster1 + 5 + 6-GCN4t2
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYVC SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00151
    TA
    Figure US20160355553A1-20161208-P00152
    GKE
    Figure US20160355553A1-20161208-P00153
    N
    150
    K
    Figure US20160355553A1-20161208-P00148
    ERR
    Figure US20160355553A1-20161208-P00154
    Figure US20160355553A1-20161208-P00155
    I W
    Figure US20160355553A1-20161208-P00150
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 52: H1-mini2-cluster1 + 5 + 6-GCN4t3
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYVC SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00156
    TA
    Figure US20160355553A1-20161208-P00157
    GKE
    Figure US20160355553A1-20161208-P00158
    N
    150
    KS
    Figure US20160355553A1-20161208-P00159
    Figure US20160355553A1-20161208-P00160
    I W
    Figure US20160355553A1-20161208-P00161
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 53: H1-mini2-cluster1 + 5 + 6-IleTri
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENGGGGKYVC SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00162
    TA
    Figure US20160355553A1-20161208-P00163
    GKE
    Figure US20160355553A1-20161208-P00164
    N
    150
    KSERRIEN
    Figure US20160355553A1-20161208-P00165
    N KK
    Figure US20160355553A1-20161208-P00166
    DD
    Figure US20160355553A1-20161208-P00167
    FID
    Figure US20160355553A1-20161208-P00168
    WCYNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQILAIYS TVASSLVLLV SLGAISFWMC SNGSLQCRIC 300
    I 301
    SEQ ID NO: 89: H3 Full-length A/Wisconsin/67/2005
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGGICDS PHQILDGENC TLIDALLGDP QCDGFQNKKW 100
    DLFVERSKAY SNCYPYDVPD YASLRSLVAS SGTLEFNDES FNWTGVTQNG 150
    TSSSCKRRSN NSFFSRLNWL THLKFKYPAL NVTMPNNEKF DKLYIWGVHH 200
    PVTDNDQIFL YAQASGRITV STKRSQQTVI PNIGSRPRIR NIPSRISIYW 250
    TIVKPGDILL INSTGNLIAP RGYFKIRSGK SSIMRSDAPI GKCNSECITP 300
    NGSIPNDKPF QNVNRITYGA CPRYVKQNTL KLATGMRNVP EKQTRGIFGA 350
    IAGFIENGWE GMVDGWYGFR HQNSEGIGQA ADLKSTQAAI NQINGKLNRL 400
    IGKTNEKFHQ IEKEFSEVEG RIQDLEKYVE DTKIDLWSYN AELLVALENQ 450
    HTIDLTDSEM NKLFERTKKQ LRENAEDMGN GCFKIYHKCD NACIGSIRNG 500
    TYDHDVYRDE ALNNRFQIKG VELKSGYKDW ILWISFAISC FLLCVVLLGF 550
    IMWACQKGNI RCNICI 566
    SEQ ID NO: 90: mini-H3
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGGIC GG GG CNSECITP NGSIPNDKPF QNVNRITYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTNEKFHQ IEKEFSEVEG 200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 91: mini-H3 cluster1
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTNEK
    Figure US20160355553A1-20161208-P00169
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00170
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 92: mini-H3 cluster1 + 2
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYG C 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTN
    Figure US20160355553A1-20161208-P00171
    K
    Figure US20160355553A1-20161208-P00169
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00170
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 93: mini-H3 cluster1 + 3
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYV C QNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTNE
    Figure US20160355553A1-20161208-P00172
    SQ IEKEFSE
    Figure US20160355553A1-20161208-P00173
    EG
    200
    RIQDLEKYVE DTKI
    Figure US20160355553A1-20161208-P00174
    LW
    Figure US20160355553A1-20161208-P00175
    YN AELLVALENQ HTIDLTDSEM NKLFERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 94: mini-H3 cluster1 + 4
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGK
    Figure US20160355553A1-20161208-P00176
    NRL
    Figure US20160355553A1-20161208-P00177
    GKTNEK
    Figure US20160355553A1-20161208-P00178
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00179
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 95: mini-H3 cluster1 + 5 N60A
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKT
    Figure US20160355553A1-20161208-P00180
    EK
    Figure US20160355553A1-20161208-P00181
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00182
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 96: mini-H3 cluster1 + 5 N60D
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKT
    Figure US20160355553A1-20161208-P00183
    EK
    Figure US20160355553A1-20161208-P00184
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00185
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 97: mini-H3 cluster1 + 5 N60E
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKT
    Figure US20160355553A1-20161208-P00186
    EK
    Figure US20160355553A1-20161208-P00187
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00188
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 98: mini-H3 cluster1 + 6
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTNEK
    Figure US20160355553A1-20161208-P00189
    Q IEKE
    Figure US20160355553A1-20161208-P00190
    SE
    Figure US20160355553A1-20161208-P00191
    EG
    200
    RI
    Figure US20160355553A1-20161208-P00192
    DLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 99: mini-H3 cluster1 + 7
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGKLNRL IGKTNEK
    Figure US20160355553A1-20161208-P00193
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00194
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM NKLFERTKKQ 250
    LRENAEDMGN GCFKIYHKCD NACI
    Figure US20160355553A1-20161208-P00195
    SIRNG TYDHDVYRDE ALNNRFQIKG
    300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 100: mini-H3 cluster1 + 2 + 3 + 4 + 5 + 6 + 7-N405E
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYG C 100
    CPRYV C QNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGK
    Figure US20160355553A1-20161208-P00196
    NRL
    Figure US20160355553A1-20161208-P00197
    GKT
    Figure US20160355553A1-20161208-P00198
    K
    Figure US20160355553A1-20161208-P00199
    Q IEKE
    Figure US20160355553A1-20161208-P00200
    SE
    Figure US20160355553A1-20161208-P00201
    EG
    200
    RI
    Figure US20160355553A1-20161208-P00202
    DLEKYVE DTKI
    Figure US20160355553A1-20161208-P00203
    LW
    Figure US20160355553A1-20161208-P00204
    YN AELLVALENQ HTIDLTDSEM NKLFERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACI
    Figure US20160355553A1-20161208-P00205
    SIRNG TYDHDVYRDE ALNNRFQIKG
    300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 101: mini-H3 cluster1 + 2 + 3 + 4 + 5 + 6 + 7-N405A
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYG C 100
    CPRYV C QNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGK
    Figure US20160355553A1-20161208-P00206
    NRL
    Figure US20160355553A1-20161208-P00207
    GKT
    Figure US20160355553A1-20161208-P00208
    K
    Figure US20160355553A1-20161208-P00209
    Q IEKE
    Figure US20160355553A1-20161208-P00210
    SE
    Figure US20160355553A1-20161208-P00211
    EG
    200
    RI
    Figure US20160355553A1-20161208-P00212
    DLEKYVE DTKI
    Figure US20160355553A1-20161208-P00213
    LW
    Figure US20160355553A1-20161208-P00214
    YN AELLVALENQ HTIDLTDSEM NKLFERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACI
    Figure US20160355553A1-20161208-P00215
    SIRNG TYDHDVYRDE ALNNRFQIKG
    300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 102: mini-H3 cluster1 + 2 + 3 + 4 + 5 + 6 + 7-N405D
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYG C 100
    CPRYV C QNTL KLATGMRNVP EKQT Q GIFGA IAGFIENGWE GMVDGWYGFR 150
    HQNSEGIGQA ADLKSTQAAI NQINGK
    Figure US20160355553A1-20161208-P00216
    NRL
    Figure US20160355553A1-20161208-P00217
    GKT
    Figure US20160355553A1-20161208-P00218
    K
    Figure US20160355553A1-20161208-P00219
    Q IEKE
    Figure US20160355553A1-20161208-P00220
    SE
    Figure US20160355553A1-20161208-P00221
    EG
    200
    RI
    Figure US20160355553A1-20161208-P00222
    DLEKYVE DTKI
    Figure US20160355553A1-20161208-P00223
    LW
    Figure US20160355553A1-20161208-P00224
    YN AELLVALENQ HTIDLTDSEM NKLFERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACI
    Figure US20160355553A1-20161208-P00225
    SIRNG TYDHDVYRDE ALNNRFQIKG
    300
    VELKSGYKDW ILWISFAISC FILCVVLLGF IMWACQKGNI RCNICI 346
    SEQ ID NO: 103: mini-H3 cluster1 + 8
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSSTGG T C GG GG CNSEC T TP NGSIPNDKPF QNVNR Q TYGA 100
    CPRYVKQNTL KLATGMRNVP EKQT Q GI
    Figure US20160355553A1-20161208-P00226
    GA IAGFIENGWE GMVDGWYGFR
    150
    HQNSEGIGQA ADLK
    Figure US20160355553A1-20161208-P00226
    TQAAI NQINGKINRL IGKTNEK
    Figure US20160355553A1-20161208-P00227
    Q IEKEFSE
    Figure US20160355553A1-20161208-P00228
    EG
    200
    RIQDLEKYVE DTKIDLWSYN AELLVALENQ HTIDLTDSEM
    Figure US20160355553A1-20161208-P00226
    K
    Figure US20160355553A1-20161208-P00229
    FERTKKQ
    250
    LRENAEDMGN GCFKIYHKCD NACIGSIRNG TYDHDVYRDE ALNNRFQIKG 300
    VELKSGYKDW ILWISFAISC FLLCVVLLGF INMACQKGNI RCNICI 346
    SEQ ID NO: 104: H3 consensus sequence residue 401-421
    (numbering according to SEQ ID No: 1)
    401 I(E/G)KTNEKFHOIEKEFSEVEGR 421
    SEQ ID NO: 105: H3-mini2
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRLIGKTNEK 150
    FHQIEKEFSE VEGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD 200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 106: H3-mini2-c19 + 10
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRLIGKTNEK 150
    Figure US20160355553A1-20161208-P00230
    HQ
    Figure US20160355553A1-20161208-P00231
    EKE
    Figure US20160355553A1-20161208-P00232
    SE
    Figure US20160355553A1-20161208-P00233
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 107: H3-mini2-c19 + 11
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00234
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00235
    HQ
    Figure US20160355553A1-20161208-P00236
    EKE
    Figure US20160355553A1-20161208-P00237
    SE VEGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 108: H3-mini2-c19 + 10 + 11
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00238
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00239
    HQ
    Figure US20160355553A1-20161208-P00240
    EKE
    Figure US20160355553A1-20161208-P00241
    SE
    Figure US20160355553A1-20161208-P00242
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 109: H3-mini2-c19 + 10 + 11-tri
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00243
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00244
    HQ
    Figure US20160355553A1-20161208-P00245
    EKE
    Figure US20160355553A1-20161208-P00246
    SE
    Figure US20160355553A1-20161208-P00247
    EG
    Figure US20160355553A1-20161208-P00248
    Figure US20160355553A1-20161208-P00249
    Figure US20160355553A1-20161208-P00250
    ELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 110: H3-mini2-c19 + 10 + 11-GCN4
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00251
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00252
    HQ
    Figure US20160355553A1-20161208-P00253
    EKE
    Figure US20160355553A1-20161208-P00254
    SE
    Figure US20160355553A1-20161208-P00255
    EG
    Figure US20160355553A1-20161208-P00256
    Figure US20160355553A1-20161208-P00257
    Figure US20160355553A1-20161208-P00258
    ELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 111: H3-mini2-c19 + 10 + 11 + 12
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVCQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00259
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00260
    HQ
    Figure US20160355553A1-20161208-P00261
    EKE
    Figure US20160355553A1-20161208-P00262
    SE
    Figure US20160355553A1-20161208-P00263
    EGRIQDLEK YVEDTKIDLW
    Figure US20160355553A1-20161208-P00264
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 112: H3-mini2-c19 + 10 + 12
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYV C Q NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRLIGKTNEK 150
    Figure US20160355553A1-20161208-P00265
    HQ
    Figure US20160355553A1-20161208-P00266
    EKE
    Figure US20160355553A1-20161208-P00267
    SE
    Figure US20160355553A1-20161208-P00268
    EGRIQDLEK YVEDTKIDLW
    Figure US20160355553A1-20161208-P00269
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 113: H3-mini2-c19 + 10 + 11 + 12-GCN4
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SGGGGRYVCQ NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00270
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00271
    HQ
    Figure US20160355553A1-20161208-P00272
    EKE
    Figure US20160355553A1-20161208-P00273
    SE
    Figure US20160355553A1-20161208-P00274
    EG
    Figure US20160355553A1-20161208-P00275
    Figure US20160355553A1-20161208-P00276
    LW
    Figure US20160355553A1-20161208-P00277
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 114: H3-mini2-c19 + 10 + 11 + 12-tri
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYV C Q NTLKLATGMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQINGKL NRL
    Figure US20160355553A1-20161208-P00278
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00279
    HQ
    Figure US20160355553A1-20161208-P00280
    EKE
    Figure US20160355553A1-20161208-P00281
    SE
    Figure US20160355553A1-20161208-P00282
    EG
    Figure US20160355553A1-20161208-P00283
    Figure US20160355553A1-20161208-P00284
    LW
    Figure US20160355553A1-20161208-P00285
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 115: H3-mini2-c19 + 13
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLA C GMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQ
    Figure US20160355553A1-20161208-P00286
    NGKL NRLIGKTNEK
    150
    Figure US20160355553A1-20161208-P00287
    HQ
    Figure US20160355553A1-20161208-P00288
    EKE
    Figure US20160355553A1-20161208-P00289
    SE VEGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 116: H3-mini2-c19 + 10 + 11 + 13
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLA C GMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQ
    Figure US20160355553A1-20161208-P00290
    NGKL NRL
    Figure US20160355553A1-20161208-P00291
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00292
    HQ
    Figure US20160355553A1-20161208-P00293
    EKE
    Figure US20160355553A1-20161208-P00294
    SE
    Figure US20160355553A1-20161208-P00295
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 117: H3-mini2-c19 + 10 + 11 + 13-GCN4
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLA C GMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQ
    Figure US20160355553A1-20161208-P00296
    NGKL NRL
    Figure US20160355553A1-20161208-P00297
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00298
    HQ
    Figure US20160355553A1-20161208-P00299
    EKE
    Figure US20160355553A1-20161208-P00300
    SE
    Figure US20160355553A1-20161208-P00301
    EG
    Figure US20160355553A1-20161208-P00302
    Figure US20160355553A1-20161208-P00303
    Figure US20160355553A1-20161208-P00304
    ELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 118: H3-mini2-c19 + 10 + 11 + 13-tri
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ S GGGG RYVKQ NTLKLA C GMR NVPEKQT Q GI FGAIAGFIEN 100
    GWEGMVDGWY GFRHQNSEGI GQAADLKSTQ AAINQ
    Figure US20160355553A1-20161208-P00305
    NGKL NRL
    Figure US20160355553A1-20161208-P00306
    GKTNEK
    150
    Figure US20160355553A1-20161208-P00307
    HQ
    Figure US20160355553A1-20161208-P00308
    EKE
    Figure US20160355553A1-20161208-P00309
    SE
    Figure US20160355553A1-20161208-P00310
    EG
    Figure US20160355553A1-20161208-P00311
    Figure US20160355553A1-20161208-P00312
    Figure US20160355553A1-20161208-P00313
    ELLVAL ENQHTIDLTD
    200
    SEMNKLFERT KKQLRENAED MGNGCFKIYH KCDNACIGSI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQK 300
    GNIRCNICI 309
    SEQ ID NO: 119: H3-mini3-c19 + 10 + 11 + 12 + 14
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SS GGGG NDKP FQNVNRITYG A G PRYV C QNT LKLATGMRNV 100
    PEKQT Q GIFG AIAGFIENGW EGMVDGWYGF RHQNSEGIGQ AADLKSTQAA 150
    INQINGKLNR L
    Figure US20160355553A1-20161208-P00314
    GKTNEK
    Figure US20160355553A1-20161208-P00315
    H Q
    Figure US20160355553A1-20161208-P00316
    EKE
    Figure US20160355553A1-20161208-P00317
    SE
    Figure US20160355553A1-20161208-P00318
    E GRIQDLEKYV EDTKIDLW
    Figure US20160355553A1-20161208-P00319
    Y
    200
    NAELLVALEN QHTIDLTDSE MNKLFERTKK QLRENAEDMG NGCFKIYHKC 250
    DNACIGSIRN GTYDHDVYRD EALNNRFQIK GVELKSGYKD WILWISFAIS 300
    CFLLCVVLLG FIMWACQKGN IRCNICI 327
    SEQ ID NO: 120: H3-mini4-c19 + 10 + 11 + 12 + 14
    MKTIIALSYI LCLVFAQKLP GNDNSTATLC LGHHAVPNGT IVKTITNDQI  50
    EVTNATELVQ SSST GGGG YG A G PRYV C QNT LKLATGMRNV PEKQT Q GIFG 100
    AIAGFIENGW EGMVDGWYGF RHQNSEGIGQ AADLKSTQAA INQINGKLNR 150
    L
    Figure US20160355553A1-20161208-P00320
    GKTNEK
    Figure US20160355553A1-20161208-P00321
    H Q
    Figure US20160355553A1-20161208-P00322
    EKE
    Figure US20160355553A1-20161208-P00323
    SE
    Figure US20160355553A1-20161208-P00324
    E GRIQDLEKYV EDTKIDLW
    Figure US20160355553A1-20161208-P00325
    Y NAELLVALEN
    200
    QHTIDLTDSE MNKLFERTKK QLRENAEDMG NGCFKIYHKC DNACIGSIRN 250
    GTYDHDVYRD EALNNRFQIK GVELKSGYKD WILWISFAIS CFLLCVVLLG 300
    FIMWACQKGN IRCNICI 317
    SEQ ID NO: 121: H3 Full-length A/Hong Kong/1/1968
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ SSSTGKICNN PHRILDGIDC TLIDALLGDP HCDVFQNETW 100
    DLFVERSKAF SNCYPYDVPD YASLRSLVAS SGTLEFITEG FTWTGVTQNG 150
    GSNACKRGPG SGFFSRLNWL TKSGSTYPVL NVTMPNNDNF DKLYIWGVHH 200
    PSTNQEQTSL YVQASGRVTV STRRSQQTII PNIGSRPWVR GLSSRISIYW 250
    TIVKPGDVLV INSNGNLIAP RGYFKMRTGK SSIMRSDAPI DTCISECITP 300
    NGSIPNDKPF QNVNKITYGA CPKYVKQNTL KLATGMRNVP EKQTRGLFGA 350
    IAGFIENGWE GMIDGWYGFR HQNSEGTGQA ADLKSTQAAI DQINGRINRV 400
    IEKTNEKFHQ IEKEFSEVEG RIQDLEKYVE DTKIDLWSYN AELLVALENQ 450
    HTIDLTDSEM NKLFEKTRRQ LRENAEDMGN GCFKIYHKCD NACIESIRNG 500
    TYDHDVYRDE ALNNRFQIKG VELKSGYKDW ILWISFAISC FLLCVVLLGF 550
    IMWACQRGNI RCNICI 566
    SEQ ID NO: 122: HK68 H3m2-c19
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRVIEKTNEK 150
    Figure US20160355553A1-20161208-P00326
    HQ
    Figure US20160355553A1-20161208-P00327
    EKE
    Figure US20160355553A1-20161208-P00328
    SE VEGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 123: HK68 H3m2-c19 + 10
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRVIEKTNEK 150
    Figure US20160355553A1-20161208-P00329
    HQ
    Figure US20160355553A1-20161208-P00330
    EKE
    Figure US20160355553A1-20161208-P00331
    SE
    Figure US20160355553A1-20161208-P00332
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 124: HK68 H3m2-c19 + 10 + 11
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRV
    Figure US20160355553A1-20161208-P00333
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00334
    HQ
    Figure US20160355553A1-20161208-P00335
    EKE
    Figure US20160355553A1-20161208-P00336
    SE
    Figure US20160355553A1-20161208-P00337
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 125: HK68 H3m2-c19 + 10 + 12
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYV C Q NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRVIEKTNEK 150
    Figure US20160355553A1-20161208-P00338
    HQ
    Figure US20160355553A1-20161208-P00339
    EKE
    Figure US20160355553A1-20161208-P00340
    SE
    Figure US20160355553A1-20161208-P00341
    EGRIQDLEK YVEDTKIDLW
    Figure US20160355553A1-20161208-P00342
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 126: HK68 H3m2-c19+  10 + 11 + 12
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYV C Q NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRV
    Figure US20160355553A1-20161208-P00343
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00344
    HQ
    Figure US20160355553A1-20161208-P00345
    EKE
    Figure US20160355553A1-20161208-P00346
    SE
    Figure US20160355553A1-20161208-P00347
    EGRIQDLEK YVEDTKIDLW
    Figure US20160355553A1-20161208-P00348
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 127: HK68 H3m2-c19 + 10 + 11 + 13
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLA C GMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQCNGKL NRV
    Figure US20160355553A1-20161208-P00349
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00350
    HQ
    Figure US20160355553A1-20161208-P00351
    EKE
    Figure US20160355553A1-20161208-P00352
    SE
    Figure US20160355553A1-20161208-P00353
    EGRIQDLEK YVEDTKIDLW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 128: HK68 H3m2-c19 + 10 + 11 + 12-tri
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYV C Q NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRV
    Figure US20160355553A1-20161208-P00354
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00355
    HQ
    Figure US20160355553A1-20161208-P00356
    EKE
    Figure US20160355553A1-20161208-P00357
    SE
    Figure US20160355553A1-20161208-P00358
    EG
    Figure US20160355553A1-20161208-P00359
    Figure US20160355553A1-20161208-P00360
    LW
    Figure US20160355553A1-20161208-P00361
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 129: HK68 H3m2-c19 + 10 + 11 + 13-tri
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLA C GMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQ
    Figure US20160355553A1-20161208-P00362
    NGKL NRV
    Figure US20160355553A1-20161208-P00363
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00364
    HQ
    Figure US20160355553A1-20161208-P00365
    EKE
    Figure US20160355553A1-20161208-P00366
    SE
    Figure US20160355553A1-20161208-P00367
    EG
    Figure US20160355553A1-20161208-P00368
    Figure US20160355553A1-20161208-P00369
    LW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 130: HK68 H3m2-c19 + 10 + 11 + 12-GCN4
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYV C Q NTLKLATGMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQINGKL NRV
    Figure US20160355553A1-20161208-P00370
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00371
    HQ
    Figure US20160355553A1-20161208-P00372
    EKE
    Figure US20160355553A1-20161208-P00373
    SE
    Figure US20160355553A1-20161208-P00374
    EG
    Figure US20160355553A1-20161208-P00375
    Figure US20160355553A1-20161208-P00376
    LW
    Figure US20160355553A1-20161208-P00377
    YNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 131: HK68 H3m2-c19 + 10 + 11 + 13-GCN4
    MKTIIALSYI FCLALGQDLP GNDNSTATLC LGHHAVPNGT LVKTITDDQI  50
    EVTNATELVQ S GGGG KYVKQ NTLKLA C GMR NVPEKQT Q GL FGAIAGFIEN 100
    GWEGMIDGWY GFRHQNSEGT GQAADLKSTQ AAIDQ
    Figure US20160355553A1-20161208-P00377
    NGKL NRV
    Figure US20160355553A1-20161208-P00370
    EKTNEK
    150
    Figure US20160355553A1-20161208-P00378
    HQ
    Figure US20160355553A1-20161208-P00379
    EKE
    Figure US20160355553A1-20161208-P00380
    SE
    Figure US20160355553A1-20161208-P00381
    EG
    Figure US20160355553A1-20161208-P00382
    Figure US20160355553A1-20161208-P00383
    LW SYNAELLVAL ENQHTIDLTD
    200
    SEMNKLFEKT RRQLRENAED MGNGCFKIYH KCDNACIESI RNGTYDHDVY 250
    RDEALNNRFQ IKGVELKSGY KDWILWISFA ISCFLLCVVL LGFIMWACQR 300
    GNIRCNICI 309
    SEQ ID NO: 132: B/Florida/4/2006 Full-length HA
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    PTKSYFANLK GTRTRGKLCP DCLNCTDLDV ALGRPMCVGT TPSAKASILH 100
    EVKPVTSGCF PIMHDRTKIR QLPNLLRGYE NIRLSTQNVI DAEKAPGGPY 150
    RLGTSGSCPN ATSKSGFFAT MAWAVPKDNN KNATNPLTVE VPYICTEGED 200
    QITVWGFHSD DKTQMKNLYG DSNPQKFTSS ANGVTTHYVS QIGSFPDQTE 250
    DGGLPQSGRI VVDYMMQKPG KTGTIVYQRG VLLPQKVWCA SGRSKVIKGS 300
    LPLIGEADCL HEKYGGLNKS KPYYTGEHAK AIGNCPIWVK TPLKLANGTK 350
    YRPPAKLLKE RGFFGAIAGF LEGGWEGMIA GWHGYTSHGA HGVAVAADLK 400
    STQEAINKIT KNLNSLSELE VKNLQRLSGA MDELHNEILE LDEKVDDLRA 450
    DTISSQIELA VLLSNEGIIN SEDEHLLALE RKLKKMLGPS AVEIGNGCFE 500
    TKHKCNQTCL DRIAAGTFNA GEFSLPTFDS LNITAASLND DGLDNHTILL 550
    YYSTAASSLA VTLMLAIFIV YMVSRDNVSC SICL 584
    SEQ ID NO 133: FL4-06 B-m2
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWVKTP LKLANGTKYR PPAKLLKE Q G FFGAIAGFEE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELEVK NLQRLSGAMD 150
    ELHNEILELD EKVDDLRADT ISSQIELAVL LSNEGIINSE DEHLLALERK 200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFNAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMLAIFIVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 134: FL4-06 B-m2-CL1 + 5
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFIE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00384
    K N
    Figure US20160355553A1-20161208-P00385
    QR
    Figure US20160355553A1-20161208-P00386
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00387
    HNEILELD EKVDDLRADT I
    Figure US20160355553A1-20161208-P00388
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFNAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMLAIFIVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 135: FL4-06 B-m2-CL1 + 5-GCN4a
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00389
    K N
    Figure US20160355553A1-20161208-P00390
    QR
    Figure US20160355553A1-20161208-P00391
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00392
    H
    Figure US20160355553A1-20161208-P00393
    Figure US20160355553A1-20161208-P00394
    I
    Figure US20160355553A1-20161208-P00395
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFNAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMLAIFIVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 136: FL4-06 B-m2-CL1 + 5-GCN4b
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00396
    K N
    Figure US20160355553A1-20161208-P00397
    QR
    Figure US20160355553A1-20161208-P00398
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00399
    H
    Figure US20160355553A1-20161208-P00400
    Figure US20160355553A1-20161208-P00401
    T I
    Figure US20160355553A1-20161208-P00402
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFNAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMLAIFIVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 137: B/Malaysia/2506/2004 Full-length HA
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    PTKSHFANLK GTETRGKLCP KCLNCTDLDV ALGRPKCTGN IPSARVSILH 100
    EVRPVTSGCF PIMHDRTKIR QLPNLLRGYE HIRLSTHNVI NAENAPGGPY 150
    KIGTSGSCPN VTNGNGFFAT MAWAVPKNDN NKTATNSLTI EVPYICTEGE 200
    DQITVWGFHS DNEAQMAKLY GDSKPQKFTS SANGVTTHYV SQIGGFPNQT 250
    EDGGLPQSGR IVVDYMVQKS GKTGTITYQR GILLPQKVWC ASGRSKVIKG 300
    SLPLIGEADC LHEKYGGLNK SKPYYTGEHA KAIGNCPIWV KTPLKLANGT 350
    KYRPPAKLLK ERGFFGAIAG FIEGGWEGMI AGWHGYTSHG AHGVAVAADL 400
    KSTQEAINKI TKNLNSLSEL EVKNLQRLSG AMDELHNEIL ELDEKVDDLR 450
    ADTISSQIEL AVLLSNEGII NSEDEHLLAL ERKLKKMLGP SAVEIGNGCF 500
    ETKHKCNQTC LDRIAAGTFD AGEFSLPTFD SLNITAASLN DDGLDNHTIL 550
    LYYSTAASSL AVTLMIAIFV VYMVSRDNVS CSICL 585
    SEQ ID NO: 138: Mal2506-04 B-m2
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWVKTP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELEVK NLQRLSGAMD 150
    ELHNEILELD EKVDDLRADT ISSQIELAVL LSNEGIINSE DEHLLALERK 200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFDAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMIAIFVVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 139: Mal2506-04 B-m2-CL1 + 5
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00403
    K N
    Figure US20160355553A1-20161208-P00404
    QR
    Figure US20160355553A1-20161208-P00405
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00406
    HNEILELD EKVDDLRADT I
    Figure US20160355553A1-20161208-P00407
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFDAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMIAIFVVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 140: Mal2506-04 B-m2-CL1 + 5-GCN4a
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00408
    K N
    Figure US20160355553A1-20161208-P00409
    QR
    Figure US20160355553A1-20161208-P00410
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00411
    H
    Figure US20160355553A1-20161208-P00412
    Figure US20160355553A1-20161208-P00413
    I
    Figure US20160355553A1-20161208-P00414
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFDAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMIAIFVVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 141: Mal2506-04 B-m2-CL1 + 5-GCN4b
    MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT  50
    GGGG IWV C TP LKLANGTKYR PPAKLLKE Q G FFGAIAGFLE GGWEGMIAGW 100
    HGYTSHGAHG VAVAADLKST QEAINKITKN LNSLSELE
    Figure US20160355553A1-20161208-P00415
    K N
    Figure US20160355553A1-20161208-P00416
    QR
    Figure US20160355553A1-20161208-P00417
    SGAMD
    150
    E
    Figure US20160355553A1-20161208-P00418
    H
    Figure US20160355553A1-20161208-P00419
    Figure US20160355553A1-20161208-P00420
    T I
    Figure US20160355553A1-20161208-P00421
    SQIELAVL LSNEGIINSE DEHLLALERK
    200
    LKKMLGPSAV EIGNGCFETK HKCNQTCLDR IAAGTFDAGE FSLPTFDSLN 250
    ITAASLNDDG LDNHTILLYY STAASSLAVT LMIAIFVVYM VSRDNVSCSI 300
    CL 302
    SEQ ID NO: 142: Influenza B HA consensus sequence residue 416-436
    416 LSELEVKNLQRLSGAMDELHN 436
    SEQ ID NO: 144: s-H1-mini2-cluster1 + 5 + 6-trim (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00422
    TA
    Figure US20160355553A1-20161208-P00423
    GKE
    Figure US20160355553A1-20161208-P00424
    N
    150
    K
    Figure US20160355553A1-20161208-P00425
    E
    Figure US20160355553A1-20161208-P00426
    Figure US20160355553A1-20161208-P00427
    I W
    Figure US20160355553A1-20161208-P00428
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO: 145: s-H1-mini2-cluster1 + 5 + 6-GCN4 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00429
    TA
    Figure US20160355553A1-20161208-P00430
    GKE
    Figure US20160355553A1-20161208-P00431
    N
    150
    K
    Figure US20160355553A1-20161208-P00432
    ERM
    Figure US20160355553A1-20161208-P00433
    Figure US20160355553A1-20161208-P00434
    I W
    Figure US20160355553A1-20161208-P00435
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO: 146: s-H1-mini2-cluster1 + 5 + 6 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00436
    TA
    Figure US20160355553A1-20161208-P00437
    GKE
    Figure US20160355553A1-20161208-P00438
    N
    150
    K
    Figure US20160355553A1-20161208-P00439
    ERRMENLN KKVDDGFIDI W
    Figure US20160355553A1-20161208-P00440
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO: 147: s-H1-mini2-cluster11 + 5 + 6 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00441
    TA
    Figure US20160355553A1-20161208-P00442
    GKE
    Figure US20160355553A1-20161208-P00443
    N
    150
    K
    Figure US20160355553A1-20161208-P00444
    ERR
    Figure US20160355553A1-20161208-P00445
    ENLN KK
    Figure US20160355553A1-20161208-P00446
    DDGFIDI W
    Figure US20160355553A1-20161208-P00447
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO: 148: s-H1-mini2-clust+er1  5 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN GGGG KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00448
    TA
    Figure US20160355553A1-20161208-P00449
    GKEFN
    150
    K
    Figure US20160355553A1-20161208-P00450
    ERRMENLN KKVDDGFIDI W
    Figure US20160355553A1-20161208-P00451
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO 149: s-H1 Full-length R343Q (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    ENSHNGKLCL LKGIAPLQLG NCSVAGWILG NPECELLISK ESWSYIVEKP 100
    NPENGTCYPG HFADYEELRE QLSSVSSFER FEIFPKESSW PNHTVTGVSA 150
    SCSHNGESSF YRNLLWLTGK NGLYPNLSKS YANNKEKEVL VLWGVHHPPN 200
    IGDQKALYHT ENAYVSVVSS HYSRKFTPEI AKRPKVRDQE GRINYYWTLL 250
    EPGDTIIFEA NGNLIAPRYA FALSRGFGSG IINSNAPMDK CDAKCQTPQG 300
    AINSSLPFQN VHPVTIGECP KYVRSAKLRM VTGLRNIPSI QS Q GLFGAIA 350
    GFIEGGWTGM VDGWYGYHHQ NEQGSGYAAD QKSTQNAING ITNKVNSVIE 400
    KMNTQFTAVG KEFNKLERRM ENLNKKVDDG FIDIWTYNAE LLVLLENERT 450
    LDFHDSNVKN LYEKVKSQLK NNAKEIGNGC FEFYHKCNDE CMESVKNGTY 500
    DYPKYSEESK LNREKIDGVK LESMGVYQIE GRHHHHHHH 539
    SEQ ID NO: 150: s-H1-mini2-cluster1 + 5 + 6-n1 (A/Brisbane/59/2007
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN HNGK KYV C  SAKLRMVTGL RNIPSIQS Q G LFGAIAGFIE GGWTGMVDGW 100
    YGYHHQNEQG SGYAADQKST QNAINGITNK VNSVIEKMNT Q
    Figure US20160355553A1-20161208-P00452
    TA
    Figure US20160355553A1-20161208-P00453
    GKE
    Figure US20160355553A1-20161208-P00454
    N
    150
    K
    Figure US20160355553A1-20161208-P00455
    ERRMENLN KKVDDGFIDI W
    Figure US20160355553A1-20161208-P00456
    YNAELLVL LENERTLDFH DSNVKNLYEK
    200
    VKSQLKNNAK EIGNGCFEFY HKCNDECMES VKNGTYDYPK YSEESKLNRE 250
    KIDGVKLESM GVYQIEGRHH HHHHH 275
    SEQ ID NO: 151: s-H1-mini2-cluster1 + 5 + 6-n12 (A/Brisbane/59/2007)
    MKVKLLVLLC TFTATYADTI CIGYHANNST DTVDTVLEKN VTVTHSVNLL  50
    EN HNG KYV C S AKLRMVTGLR NIPSIQS Q GL FGAIAGFIEG GWTGMVDGWY 100
    GYHHQNEQGS GYAADQKSTQ NAINGITNKV NSVIEKMNTQ
    Figure US20160355553A1-20161208-P00457
    TA
    Figure US20160355553A1-20161208-P00458
    GKE
    Figure US20160355553A1-20161208-P00459
    NK
    150
    Figure US20160355553A1-20161208-P00460
    ERRMENLNK KVDDGFIDIW
    Figure US20160355553A1-20161208-P00461
    YNAELLVLL ENERTLDFHD SNVKNLYEKV
    200
    KSQLKNNAKE IGNGCFEFYH KCNDECMESV KNGTYDYPKY SEESKLNREK 250
    IDGVKLESMG VYQIEGRHHH HHHH 274
    SEQ ID NO: 152: H1mini2a-c11 + 5 + 6_no_linker(HNGK)
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ENHNGKKYVCSAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATGKEGN 150
    KSERRMENLNKKVDDGFIDIWCYNAELLVLLENERTLDFHDSNVKNLYEK 200
    VKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNRE 250
    KIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC 300
    I 301
    SEQ ID NO: 153: H1 mini2a-c11 + 5 + 6_no_linker2s
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ENHNGKYVCSAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGWY 100
    GYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATGKEGNK 150
    SERRMENLNKKVDDGFIDIWCYNAELLVLLENERTLDFHDSNVKNLYEKV 200
    KSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNREK 250
    IDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRICI 300
    SEQ ID NO: 154: H1-mini2-c11 + 5 + 6-no_linker2s-GCN4
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ENSHNGKYVCSAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATGKEGN 150
    KSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDFHDSNVKNLYEK 200
    VKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNRE 250
    KIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC 300
    I 301
    SEQ ID NO: 155: H1 mini2a-c11 + 5 + 6_no_linker2s-trim3
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ENSHNGKYVCSAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATGKEGN 150
    KSERRIEAIEKKIEAIEKKIWCYNAELLVLLENERTLDFHDSNVKNLYEK 200
    VKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNRE 250
    KIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC 300
    I 301
    SEQ ID NO: 156: H1mini2a-c11 + 5 + 6-12
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ENGGGGKYVCSAKLRMVTGLRNNPSNQSQGLFGAIAGYIEGGWTGMVDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATGKEGN 150
    KSERRMENLNKKVDDGFIDIWCYNAELLVLLENERTLDFHDSNVKNLYEK 200
    VKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNRE 250
    KIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLOCRIC 300
    I 301
    SEQ ID NO: 157: H1mini2a-c11 + 5 + 6-12 + 13
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNN
    PSNQSQGLFGAIAGYNEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERRMENLNKKVDDGFIDIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSN
    GSLQCRICI
    SEQ ID NO: 158: H5 FL HA A/Vietnam/1203/2004
    (341 RRRKK 345 is deleted and a R346Q mutation is introduced)
    MEKIVLLFAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE  50
    KKHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKAN 100
    PVNDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKSSWSSHEASLGVSSA 150
    CPYQGKSSFFRNVVWLIKKNSTYPTIKRSYNNTNQEDLLVLWGIHHPNDA 200
    AEQTKLYQNPTTYISVGTSTLNQRLVPRIATRSKVNGQSGRMEFFWTILK 250
    PNDAINFESNGNFIAPEYAYKIVKKGDSTIMKSELEYGNCNTKCQTPMGA 300
    INSSMPFHNIHPLTIGECPKYVKSNRLVLATGLRNSPQRERRRKKRGLFG 350
    AIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNS 400
    IIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN 450
    ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVRN 500
    GTYDYPQYSEEARLKREEISGVKLESIGIYQILSIYSTVASSLALAIMVA 550
    GLSLWMCSNGSLQCRICI 568
    SEQ ID NO: 159: H1 FL HA A/California/04/2009 R343Q
    MKAILVVLLYTFATANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    EDKHNGKLCKLRGVAPLHLGKCNIAGWILGNPECESLSTASSWSYIVETP 100
    SSDNGTCYPGDFIDYEELREQLSSVSSFERFEIFPKTSSWPNHDSNKGVT 150
    AACPHAGAKSFYKNLIWLVKKGNSYPKLSKSYINDKGKEVLVLWGIHHPS 200
    TSADQQSLYQNADTYVFVGSSRYSKKFKPEIAIRPKVRDQEGRMNYYWTL 250
    VEPGDKITFEATGNLVVPRYAFAMERNAGSGIIISDTPVHDCNTTCQTPK 300
    GAINTSLPFQNIHPITIGKCPKYVKSTKLRLATGLRNIPSIQSRGLFGAI 350
    AGFIEGGWTGMVDGWYGYHHQNEQGSGYAADLKSTQNAIDEITNKVNSVI 400
    EKMNTQFTAVGKEFNHLEKRIENLNKKVDDGFLDIWTYNAELLVLLENER 450
    TLDYHDSNVKNLYEKVRSQLKNNAKEIGNGCFEFYHKCDNTCMESVKNGT 500
    YDYPKYSEEAKLNREEIDGVKLESTRIYQILAIYSTVASSLVLVVSLGAI 550
    SFWMCSNGSLQCRICI 566
    SEQ ID NO: 160: H1 mini-HAA/California/07/2009
    MKAILVVLLYTFATANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    EDGGGGKYVCSTKLRLATGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGW 100
    YGYHHQNEQGSGYAADLKSTQNAIDEITNKVNSVIEKMNTQSTATGKEGN 150
    HSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDYHDSNVKNLYEK 200
    VRSQLKNNAKEIGNGCFEFYHKCDNTCMESVKNGTYDYPKYSEEAKLNRE 250
    EIDGVKLESTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRIC 300
    I 301
    SEQ ID NO: 161: H1mini-HAA/PuertoRico/8/1934
    MKANLLVLLCALAAADADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    EDGGGGKYVCSAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNTVIEKMNTQSTATGKEGN 150
    KSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDFHDSNVKNLYEK 200
    VKSQLKNNAKEIGNGCFEFYHKCDNECMESVRNGTYDYPKYSEESKLNRE 250
    KVDGVKLESMGIYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC 300
    I 301
    SEQ ID NO: 162: H1mini-HAA/Texas/36/1991
    MKAKLLVLLCAFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLL  50
    ED GGGG KYV C STKLRMVTGLRNIPSIQS Q GLFGAIAGFIEGGWTGMIDGW 100
    YGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQ
    Figure US20160355553A1-20161208-P00462
    TA
    Figure US20160355553A1-20161208-P00463
    GKE
    Figure US20160355553A1-20161208-P00464
    N
    150
    K
    Figure US20160355553A1-20161208-P00465
    ER
    Figure US20160355553A1-20161208-P00466
    IWCYNAELLVLLENGRTLDFHDSNVKNLYEK
    200
    VKSQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPKYSEESKLNRG 250
    KIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLOCRIC 300
    I 301
    SEQ ID NO: 163: H5mini-HAA/Vietnam/1203/2004
    MEKIVLLFAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE  50
    K GGGG KYV C SNRLVLATGLRNSPQRE SQ GLFGAIAGFIEGGWQGMVDGWY 100
    GYHHSNEQGSGYAADKESTQKAIDGVTNKVNSTTDKMNTQ
    Figure US20160355553A1-20161208-P00467
    EA
    Figure US20160355553A1-20161208-P00468
    GRE
    Figure US20160355553A1-20161208-P00469
    NN
    150
    Figure US20160355553A1-20161208-P00470
    ER
    Figure US20160355553A1-20161208-P00471
    W
    Figure US20160355553A1-20161208-P00472
    YNAELLVLMENERTLDFHDSNVKNLYDKV
    200
    RLQLRDNAKELGNGCFEFYHKCDNECMESVRNGTYDYPQYSEEARLKREE 250
    ISGVKLESIGIYQILSIYSTVASSLALAIMVAGLSLWMCSNGSLQCRICI 300
    SEQ ID NO: 164: mHA_H1N1_A_Maryland_12_1991
    MKAILLVLLYTFTAANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
    STKLRMATGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    QNAIDGITNKVNSVIEKMNTQSTATGKEGNHSERMKQIEDKIEEIESKQVWCYNAELLVL
    LENERTLDYHDSNVKNLYEKVRSQLKNNAKEIGNGCFEFYHKCDDTCMESVKNGTYDYPK
    YSEESKLNREEIDGVKLESTRIYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    I*
    SEQ ID NO: 165: mHA_H1N1_A_Henry_1936
    MKARLLVLLCALAATDADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
    SAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    QNAINGITNKVNSVIEKMNTQSTATGKEGNNSERMKQIEDKIEEIESKQIWCYNAELLVL
    LENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCDNECMESVRNGTYDYPK
    YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    I*
    SEQ ID NO: 166: mHA_H1N1 A/AA/Marton/1943
    MKARLLVLLCALAATDADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
    STKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    QNAINGITNKVNSVIEKMNTQSTATGKEGNNSERMKQIEDKIEEIESKDIWCYNAELLVL
    LENERTLDFHDSNVKNLYEKVKNQLRNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPK
    YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    I
    SEQ ID NO: 167: _mHA_H1N1_A_New_York_607_1995
    MKAKLLVLLCAFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
    STKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    QNAIDGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    LENERTLDFHDSNVKNLYEKVKTQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPK
    YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    I*
    SEQ ID NO: 168: mHA_H1N1_A_New_Jersey_11_2007
      1 MKARLLVLLCALAATDADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 SAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKST
    121 QNAINGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPK
    241 YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 169: mHA_H1N1_A_USSR_92_1977
      1 MKAKLLVLLCALSATDADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 STKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    121 QNAINGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPK
    241 YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 170: mHA_H1N1_A_New_York_629_1995
      1 MKVKLLVLLCAFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 STKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKST
    121 QNAIDGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDFHDSNVKNLYEKVKNQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPK
    241 YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 171: mHA_HN1_A_Virginia_UR06-0549_2007
      1 MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 SAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKST
    121 QNAINGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPK
    241 YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 172: mHA_H1N1_A_Texas_UR0-0526_2007
      1 MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 SAKLRMVTGLRNIPSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKST
    121 QNAINGITNKVNSVIEKMNTQSTATGKEGNKSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDFHDSNVKNLYEKVKNQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPK
    241 YSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLISLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 173: mHA _H1N1_A_Sydney_DD3-55_2010
      1 MKAILVVLLYTFATANADTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDGGGGKYVC
     61 STKLRLATGLRNVPSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADLKST
    121 QNAIDEITNKVNSVIEKMNTQSTATGKEGNHSERMKQIEDKIEEIESKQIWCYNAELLVL
    181 LENERTLDYHDSNVKNLYEKVRSQLKNNAKEIGNGCFEFYHKCDNTCMESVKNGTYDYPK
    241 YSEEAKLNREEIDGVKLESTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRIC
    301 I*
    SEQ ID NO: 174: H3mini2a-linker + c19_ + 10 + 11 + 12 + GCN4T_CG7-1
    (A/HongKong/1/1968(H3N2)
      1 MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQ
     61 SGGGGKYVCQNTLKLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGT
    121 GQAADLKSTQAAIDQINGKLNRVREKTNEKSHQTEKESSNATGRMKQIEDKIEEIESKLW
    181 CYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHKCDNACIESI
    241 RNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLLGFIMWACQR
    301 GNIRCNICI
    SEQ ID NO: 175: II3mini2a-linker|c19_|10|12|18|GCN4T
    (A/HongKong/1/1968(H3N2))
      1 MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQ
     61 SGGGGKYVCQNTLKLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGT
    121 GQAADLKSTQAAIDQINGKLNRVIEKTNEKSHQTEKESSEGEGNATGGCCGGRMKQIEDK
    181 IEEIESKLWCYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHK
    241 CDNACIESIRNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLL
    301 GFIMWACQRGNIRCNICI
    SEQ ID NO: 176: H3mini2a-linker + c19_ + 10 + 12 + 16 + CG7-GCN4T
    (A/HongKong/1/1968(H3N2))]
      1 MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVCNATELVQ
     61 SGGGGKYVCQNTLKLATCMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGT
    121 GQAADLKSTQAAIDQINGKLNRVIEKTNEKSHQTEKESSNATGRMKQIEDKIEEIESKLW
    181 CYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHKCDNACIESI
    241 RNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLLGFIMWACQR
    301 GNIRCNICI
    SEQ ID NO: 177: H3mini2a-linker + c19_ + 10 + 12 + 19 + GCN4T
    (A/HongKong/1/1968(H3N2))]
      1 MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQ
     61 SGGGGKYVCQNTLKLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGT
    121 GQAADLKSTQAAIDQINGKLNRVIEKTNEKSHQTEKESSEGEGSGSGGCCGGRMKQIEDK
    181 IEEIESKLWCYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHK
    241 CDNACIESIRNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLL
    301 GFIMWACQRGNIRCNICI
    SEQ ID NO: 178: H3mini2a-linker + c19_ + 10 + 12 + 17 + CG7-GCN4T
    (A/HongKong/1/1968(H3N2))]
      1 MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNCTLVKTITDDQICVTNATELVQ
     61 SGGGGKYVCQNTLKLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGT
    121 GQAADLKSTQAAIDQINGKLNRVIEKTNEKSHQTEKESSNATGRMKQIEDKIEEIESKLW
    181 CYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHKCDNACIESI
    241 RNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLLGFIMWACQR
    301 GNIRCNICI
    SEQ ID NO: 179: H3_HK68_mini2a-linker2 + c19_ + 10 + 12 + GCN4T
      1 LATMKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATE
     61 LVQSGSGSGGKYVCQNTLKLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQ
    121 NSEGTGQAADLKSTQAAIDQINGKLNRVIEKTNEKSHQTEKESSEGEGRMKQIEDKIEEI
    181 ESKLWCYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHKCDNA
    241 CIESIRNGTYDHDVYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLLGFIM
    301 WACQRGNIRCNICI**
    SEQ ID NO: 180: H1-mini2-cluster1 + 5 + 6 + GCN4-T49N
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGINNKVNSVIEKMNTQSTATG
    KEGNKSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQILAIYSTVASSLVLLVSLGAISFWMCSN
    GSLQCRICI
    SEQ ID NO: 181: sH1-mini2-c11 + 5 + 6-GCN4-Bromelain
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGRSLVPRGSPGHHHHHH
    SEQ ID NO: 182: sH1-mini2-c11 + 5 + 6-GCN4-Bromelain-Foldon
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERMKQIEDKIEEIESKQIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFL
    GHHHHHH
    SEQ ID NO: 183: sH1-mini2-c11 + 5 + 6-GCN4t2
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERRMKQIEDKIEEIESKIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQIEGRHHHHHHH
    SEQ ID NO: 184: sH1-mini2-c11 + 5 + 6-GCN4t2-Bromelain
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERRMKQIEDKIEEIESKIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGRSLVPRGSPGHHHHHH
    SEQ ID NO: 185: sH1-mini2-c11 + 5 + 6-GCN4t2-Bromelain-Foldon
    MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNI
    PSIQSQGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQSTATG
    KEGNKSERRMKQIEDKIEEIESKIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEF
    YHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFL
    GIIIIIIIIIIII
    SEQ ID NO: 186: sH3 HK mini2a-linker + c19 + 10 + 11 + 12 + GCN4T-CG7-His
    MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQSGGGGKYVCQNTL
    KLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGTGQAADLKSTQAAIDQINGKLNRVREK
    TNEKSHQTEKESSNATGRMKQIEDKIEEIESKLWCYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAE
    DMGNGCFKIYHKCDNACIESIRNGTYDHDVYRDEALNNRFQIKGRSLVPRGSPGHHHHHH
    SEQ ID NO: 187: sH3 HK mini2a-linker + c19 + 10 + 11 + 12 +
    GCN4T-CG7-Foldon-His
    MKTIIALSYIFCLALGQDLPGNDNSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQSGGGGKYVCQNTL
    KLATGMRNVPEKQTQGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGTGQAADLKSTQAAIDQINGKLNRVREK
    TNEKSHQTEKESSNATGRMKQIEDKIEEIESKLWCYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAE
    DMGNGCFKIYHKCDNACIESIRNGTYDHDVYRDEALNNRFQIKGRSLVPRGSPGSGYIPEAPRDGQAYVRKDG
    EWVLLSTFLGHHHHHH

Claims (21)

1. An influenza hemagglutinin stem domain polypeptide comprising:
an influenza hemagglutinin HA1 domain comprising an HA1 N-terminal stem segment, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment, and
an influenza hemagglutinin HA2 domain,
wherein the hemagglutinin stem domain polypeptide is resistant to protease cleavage at a junction between HA1 and HA2,
wherein one or more amino acids in the peptide connecting the A helix and the helix CD of HA2 are mutated as compared to a wild-type influenza HA2 domain, and
wherein the HA1 domain and HA2 domain are derived from an influenza A virus subtype selected from the group consisting of H1, H5, and H3.
2. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide does not comprise a full-length HA1 domain.
3. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide is glycosylated.
4. The influenza hemagglutinin stem domain polypeptide of claim 1, comprising:
an HA1 N-terminal segment comprising the amino acids 1-x of HA1
covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment comprising the amino acids y-end of HA1 and
an influenza hemagglutinin HA2 domain.
5. The influenza hemagglutinin stem domain polypeptide of claim 1, comprising:
an influenza hemagglutinin HA1 and/or HA2 domain based upon influenza hemagglutinin from an influenza A virus comprising HA of the H1 subtype, and
wherein x=any amino acid between 46 and 60 and y=any amino acid between 290 and 325.
6. The influenza hemagglutinin stem domain polypeptide of claim 5, comprising:
an influenza hemagglutinin HA1 and/or HA2 domain based upon influenza hemagglutinin from an influenza A virus comprising HA of the H1 subtype selected from the group consisting of A/Solomon Islands/6/2003, A/Brisbane/59/2007, A/New Caledonia/20/1999, A/California/07/2009, A/swine/Hubei/S1/2009, A/swine/Haseluenne/IDT2617/2003, A/NewYork/8/2006, A/SolomonIslands/3/2006, A/NewYork/146/2000, A/NewYork/653/1996, A/Beijing/262/1995, A/Texas/36/1991, A/Singapore/6/1986, A/Chile/1/1983, A/Baylor/11515/1982, A/Brazil/11/1978, A/USSR/90/1977, A/NewJersey/8/1976, A/Denver/1957, A/Albany/4835/1948, A/FortMonmouth/1/1947, A/Cameron/1946, A/Weiss/1943, A/Iowa/1943, A/Bellamy/1942, A/PuertoRico/8/1934, A/WSN/1933, and A/SouthCarolina/1/1918.
7. The influenza hemagglutinin stem domain polypeptide of claim 1, comprising:
an influenza hemagglutinin HA1. and/or HA2 domain based upon influenza hemagglutinin from an influenza A virus comprising HA of the H3 subtype,
wherein x=any amino acid between 56 and 69, and
wherein and y=any amino acid between 292 and 325.
8. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the C-terminal amino acid residue of the HA1 C-terminal stem segment is any amino acid other than arginine (R),or lysine (K).
9. The influenza hemagglutinin stem domain polypeptide of claim 1, comprising:
at least one or further mutations in the HA1 domain and/or the HA2 domain.
10. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide comprises at least one disulfide bridge.
11. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide does not comprise the signal sequence.
12. The influenza hemagglutinin stem domain polypeptide of claim 11, comprising:
an HA1 N-terminal segment comprising amino acids p-x of HA1, covalently linked by a linking sequence of 0-50 amino acid residues to an HA1 C-terminal stem segment comprising the amino acids y-end of HA1, and
an influenza hemagglutinin HA2 domain, wherein p=the first amino acid of the mature HA.
13. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide does not comprise the intracellular sequence and transmembrane sequence of HA.
14. The influenza hemagglutinin stem domain polypeptide of claim 13, wherein the influenza hemagglutinin stem domain polypeptide does not comprise the C-terminal part of the influenza H1 HA2 domain spanning from amino acid residue 520, 521, 522, 523, 524, 525, 526, 527, 528, 529 or 530 to the C-terminal amino acid of H1 HA2.
15. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide selectively binds to antibody CR6261 and/or antibody CR9114, but does not bind to antibody CR8057.
16. The influenza hemagglutinin stem domain polypeptide of claim 1, wherein the influenza hemagglutinin stem domain polypeptide selectively binds to antibody CR8020, antibody CR843 and/or antibody CR9114, but does not bind to antibody CR8057.
17. An influenza hemagglutinin stem domain polypeptide produced by a method comprising:
providing an influenza HA0 peptide;
removing the cleavage site between HA1. and HA2 of the influenza HA0 peptide;
removing the peptide of the globular head domain from the HA0 sequence;
introducing one or more mutations in the peptide connecting the C-terminal residue of helix A to the N-terminal residue of helix CD; and
introducing one or more disulfide bridges in the HA stem domain polypeptide.
18. A nucleic acid molecule encoding the influenza hemagglutinin stem domain polypeptide of claim 1.
19. An immunogenic composition comprising:
the influenza hemagglutinin stem domain polypeptide of claim 1.
20. A medicament comprising:
the influenza hemagglutinin stem domain polypeptide of claim 1.
21. The influenza hemagglutinin stem domain polypeptide of claim 8, wherein the C-terminal amino acid residue of the HA1. C-terminal stem segment is glutamine (Q).
US15/243,738 2011-11-28 2016-08-22 Influenza virus vaccines and uses thereof Abandoned US20160355553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/243,738 US20160355553A1 (en) 2011-11-28 2016-08-22 Influenza virus vaccines and uses thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201161564086P 2011-11-28 2011-11-28
US201161564198P 2011-11-28 2011-11-28
EP11191003 2011-11-28
EP11191003.0 2011-11-28
EP11191009.7 2011-11-28
EP11191009 2011-11-28
EP12166268.8 2012-05-01
EP12166268 2012-05-01
US201261720281P 2012-10-30 2012-10-30
US14/361,281 US9452211B2 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof
PCT/EP2012/073706 WO2013079473A1 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof
US15/243,738 US20160355553A1 (en) 2011-11-28 2016-08-22 Influenza virus vaccines and uses thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2012/073706 Continuation WO2013079473A1 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof
US14/361,281 Continuation US9452211B2 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof

Publications (1)

Publication Number Publication Date
US20160355553A1 true US20160355553A1 (en) 2016-12-08

Family

ID=48534691

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/361,281 Active US9452211B2 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof
US15/243,738 Abandoned US20160355553A1 (en) 2011-11-28 2016-08-22 Influenza virus vaccines and uses thereof
US15/253,535 Active US9969778B2 (en) 2011-11-28 2016-08-31 Influenza virus vaccines and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/361,281 Active US9452211B2 (en) 2011-11-28 2012-11-27 Influenza virus vaccines and uses thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/253,535 Active US9969778B2 (en) 2011-11-28 2016-08-31 Influenza virus vaccines and uses thereof

Country Status (20)

Country Link
US (3) US9452211B2 (en)
EP (2) EP3566714A1 (en)
JP (1) JP6294828B2 (en)
KR (1) KR101983989B1 (en)
CN (1) CN104066446B (en)
AR (1) AR089005A1 (en)
AU (1) AU2012343981B2 (en)
BR (1) BR112014012681A8 (en)
CA (1) CA2857087C (en)
EA (1) EA033386B1 (en)
HK (1) HK1199211A1 (en)
IL (1) IL232780A (en)
IN (1) IN2014CN04742A (en)
MX (1) MX357009B (en)
MY (1) MY170927A (en)
PH (1) PH12014501118A1 (en)
SG (1) SG11201402633UA (en)
TW (1) TWI618715B (en)
WO (1) WO2013079473A1 (en)
ZA (1) ZA201404797B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908930B2 (en) 2013-03-14 2018-03-06 Icahn School Of Medicine At Mount Sinai Antibodies against influenza virus hemagglutinin and uses thereof
US9968670B2 (en) 2012-12-18 2018-05-15 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10131695B2 (en) 2011-09-20 2018-11-20 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10179806B2 (en) 2010-03-30 2019-01-15 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10301379B2 (en) 2014-06-26 2019-05-28 Janssen Vaccines & Prevention B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
WO2019100147A1 (en) * 2017-11-22 2019-05-31 Her Majesty the Queen in the Right of Canada as represented by the Minister of Health Synthetic hemagglutinin as universal vaccine against infection by type b influenza viruses (ibv)
US10562963B2 (en) 2014-06-26 2020-02-18 Janssen Vaccines & Prevention, B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
US10736956B2 (en) 2015-01-23 2020-08-11 Icahn School Of Medicine At Mount Sinai Influenza virus vaccination regimens
US11254733B2 (en) 2017-04-07 2022-02-22 Icahn School Of Medicine At Mount Sinai Anti-influenza B virus neuraminidase antibodies and uses thereof
US11266734B2 (en) 2016-06-15 2022-03-08 Icahn School Of Medicine At Mount Sinai Influenza virus hemagglutinin proteins and uses thereof
US11576962B2 (en) 2017-12-21 2023-02-14 Green Biomed, Inc. Cross-immunizing antigen vaccine and method for preparation thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2787099A1 (en) 2009-03-30 2010-10-14 Anice C. Lowen Influenza virus hemagglutinin polypeptides containing stem domains, vaccines and uses thereof
US9701723B2 (en) 2010-02-18 2017-07-11 Icahn School Of Medicine At Mount Sinai Vaccines for use in the prophylaxis and treatment of influenza virus disease
WO2013079473A1 (en) 2011-11-28 2013-06-06 Crucell Holland B.V. Influenza virus vaccines and uses thereof
WO2013177444A2 (en) * 2012-05-23 2013-11-28 The Board Of Trustees Of The Leland Stanford Junior University Influenza vaccine constructs
KR102252163B1 (en) * 2013-05-30 2021-05-14 얀센 백신스 앤드 프리벤션 비.브이. Influenza virus vaccines and uses thereof
EP3395826B1 (en) 2013-08-03 2020-10-14 Calder Biosciences Inc. Methods of making and using influenza virus hemagglutinin complexes
WO2015166329A1 (en) * 2014-05-01 2015-11-05 Indian Institute Of Science Polypeptides for generating anti-influenza antibodies and uses thereof
IL249704B (en) * 2014-07-10 2021-03-25 Janssen Vaccines & Prevention Bv Influenza virus vaccines and uses thereof
US10111944B2 (en) * 2014-07-10 2018-10-30 Janssen Vaccines & Prevention B.V. Influenza virus vaccines and uses thereof
CN107074912B (en) * 2014-07-10 2021-10-29 扬森疫苗与预防公司 Influenza virus vaccine and uses thereof
CA2985402A1 (en) * 2015-05-11 2016-11-17 Janssen Vaccines & Prevention B.V. Influenza virus neutralizing peptidomimetic compounds
AU2016316723B2 (en) 2015-09-02 2021-03-25 Janssen Vaccines & Prevention B.V. Stabilized viral class I fusion proteins
EP3506938A1 (en) * 2016-09-02 2019-07-10 The U.S.A. as represented by the Secretary, Department of Health and Human Services Stabilized group 2 influenza hemagglutinin stem region trimers and uses thereof
CN110325208A (en) * 2016-09-16 2019-10-11 威克斯技术公司 For the composition and method of the vaccine inoculation of influenza
EP3939604A3 (en) * 2016-10-21 2022-06-22 Merck Sharp & Dohme Corp. Influenza hemagglutinin protein vaccines
PT3743106T (en) 2018-01-23 2022-08-24 Janssen Vaccines & Prevention Bv Influenza virus vaccines and uses thereof
WO2020216844A1 (en) * 2019-04-25 2020-10-29 Janssen Vaccines & Prevention B.V. Recombinant influenza antigens
JP2022547107A (en) 2019-09-05 2022-11-10 ヤンセン ファッシンズ アンド プリベンション ベーフェー Influenza virus vaccine and its use
KR20220082042A (en) * 2019-10-15 2022-06-16 얀센 백신스 앤드 프리벤션 비.브이. Influenza virus vaccine and uses thereof
WO2022051327A1 (en) * 2020-09-02 2022-03-10 St. Jude Children's Research Hospital, Inc. Hemagglutinin modifications for improved influenza vaccine production
CA3190070A1 (en) 2020-09-07 2022-03-10 Martijn Alexander LANGEREIS Ha stem vaccine for ha antibody-positive targets
WO2023274860A1 (en) * 2021-06-28 2023-01-05 Glaxosmithkline Biologicals Sa Novel influenza antigens
WO2024038382A1 (en) * 2022-08-16 2024-02-22 Seqirus Inc. Modified influenza viruses
CN116947982A (en) * 2023-07-12 2023-10-27 吉林大学 Three dominant epitope peptide sequences and application thereof in influenza virus vaccine

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
NZ230747A (en) 1988-09-30 1992-05-26 Bror Morein Immunomodulating matrix comprising a complex of at least one lipid and at least one saponin; certain glycosylated triterpenoid saponins derived from quillaja saponaria molina
JPH0832638B2 (en) 1989-05-25 1996-03-29 カイロン コーポレイション Adjuvant formulation comprising submicron oil droplet emulsion
JP3037554B2 (en) * 1993-04-20 2000-04-24 寳酒造株式会社 Immunogenic artificial polypeptide
AUPM873294A0 (en) 1994-10-12 1994-11-03 Csl Limited Saponin preparations and use thereof in iscoms
US6670188B1 (en) 1998-04-24 2003-12-30 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6413776B1 (en) 1998-06-12 2002-07-02 Galapagos Geonomics N.V. High throughput screening of gene function using adenoviral libraries for functional genomics applications
US20030017138A1 (en) 1998-07-08 2003-01-23 Menzo Havenga Chimeric adenoviruses
US6248780B1 (en) 1998-10-01 2001-06-19 Duquesne University Of The Holy Ghost Compounds for the treatment of estrogen-dependent illnesses and methods for making and using the same
US6929946B1 (en) 1998-11-20 2005-08-16 Crucell Holland B.V. Gene delivery vectors provided with a tissue tropism for smooth muscle cells, and/or endothelial cells
US6869936B1 (en) 1999-03-04 2005-03-22 Crucell Holland B.V. Means and methods for fibroblast-like or macrophage-like cell transduction
US7604960B2 (en) 1999-04-15 2009-10-20 Crucell Holland B.V. Transient protein expression methods
US7468181B2 (en) 2002-04-25 2008-12-23 Crucell Holland B.V. Means and methods for the production of adenovirus vectors
US6492169B1 (en) 1999-05-18 2002-12-10 Crucell Holland, B.V. Complementing cell lines
US6913922B1 (en) 1999-05-18 2005-07-05 Crucell Holland B.V. Serotype of adenovirus and uses thereof
DE60116513T2 (en) 2000-08-10 2006-09-21 Crucell Holland B.V. ADENOVIRENVEKTOREN FOR THE TRANSDUCTION OF CHONDROCYTES
US6905678B2 (en) 2001-07-07 2005-06-14 Crucell Holland B.V. Gene delivery vectors with cell type specificity for mesenchymal stem cells
JP4495588B2 (en) 2002-04-25 2010-07-07 クルセル ホランド ベー ヴェー Stable adenoviral vector and method for propagation thereof
SE0202110D0 (en) 2002-07-05 2002-07-05 Isconova Ab Iscom preparation and use thereof
US20080153083A1 (en) 2003-10-23 2008-06-26 Crucell Holland B.V. Settings for recombinant adenoviral-based vaccines
WO2004037294A2 (en) 2002-10-23 2004-05-06 Crucell Holland B.V. New settings for recombinant adenoviral-based vaccines
US20050221493A1 (en) 2002-12-04 2005-10-06 Crucell Holland B.V. Recombinant virus production for the manufacturing of vaccines
SE0301998D0 (en) 2003-07-07 2003-07-07 Isconova Ab Quil A fraction with low toxicity and use thereof
DK1670925T3 (en) 2003-10-02 2013-07-08 Crucell Holland Bv Packaging cells for recombinant adenovirus
NZ581306A (en) 2004-11-16 2011-03-31 Crucell Holland Bv Multivalent vaccines comprising recombinant viral vectors
PL2059532T3 (en) 2006-09-07 2013-05-31 Crucell Holland Bv Human binding molecules capable of neutralizing influenza virus h5n1 and uses thereof
CA2787099A1 (en) * 2009-03-30 2010-10-14 Anice C. Lowen Influenza virus hemagglutinin polypeptides containing stem domains, vaccines and uses thereof
US8470327B2 (en) 2009-05-11 2013-06-25 Crucell Holland B.V. Human binding molecules capable of neutralizing influenza virus H3N2 and uses thereof
AU2011235220B2 (en) * 2010-03-30 2016-03-10 Mount Sinai School Of Medicine Influenza virus vaccines and uses thereof
MX354752B (en) 2010-09-27 2018-03-20 Janssen Vaccines & Prevention Bv Heterologous prime boost vaccination regimen against malaria.
MY166282A (en) 2011-07-14 2018-06-25 Crucell Holland Bv Human binding molecules capable of neutralizing influenza a viruses of phylogenetic group 1 and phylogenetic group 2 and influenza b viruses
US20130122038A1 (en) 2011-11-14 2013-05-16 The United States Of America As Represented By The Secretary Of The Department Heterologous prime-boost immunization using measles virus-based vaccines
WO2013079473A1 (en) 2011-11-28 2013-06-06 Crucell Holland B.V. Influenza virus vaccines and uses thereof
US20130236494A1 (en) 2012-03-06 2013-09-12 Crucell Holland B.V. Vaccination against influenza
CN104169298B (en) 2012-03-08 2018-04-20 扬森疫苗与预防公司 It can combine and neutralize mankind's binding molecule of Type B influenza virus and application thereof
US9119813B2 (en) 2012-03-22 2015-09-01 Crucell Holland B.V. Vaccine against RSV
CA2884388A1 (en) 2012-09-27 2014-04-03 Crucell Holland B.V. Human binding molecules capable of binding to and neutralizing hepatitis b viruses and uses thereof
KR102252163B1 (en) 2013-05-30 2021-05-14 얀센 백신스 앤드 프리벤션 비.브이. Influenza virus vaccines and uses thereof
US10111944B2 (en) 2014-07-10 2018-10-30 Janssen Vaccines & Prevention B.V. Influenza virus vaccines and uses thereof
CN107074912B (en) 2014-07-10 2021-10-29 扬森疫苗与预防公司 Influenza virus vaccine and uses thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179806B2 (en) 2010-03-30 2019-01-15 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10131695B2 (en) 2011-09-20 2018-11-20 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10583188B2 (en) 2012-12-18 2020-03-10 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US9968670B2 (en) 2012-12-18 2018-05-15 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10137189B2 (en) 2012-12-18 2018-11-27 Icahn School Of Medicine At Mount Sinai Influenza virus vaccines and uses thereof
US10544207B2 (en) 2013-03-14 2020-01-28 Icahn School Of Medicine At Mount Sinai Antibodies against influenza virus hemagglutinin and uses thereof
US9908930B2 (en) 2013-03-14 2018-03-06 Icahn School Of Medicine At Mount Sinai Antibodies against influenza virus hemagglutinin and uses thereof
US10400034B2 (en) 2014-06-26 2019-09-03 Janssen Vaccines & Prevention, B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
US10562963B2 (en) 2014-06-26 2020-02-18 Janssen Vaccines & Prevention, B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
US10301379B2 (en) 2014-06-26 2019-05-28 Janssen Vaccines & Prevention B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
US11472869B2 (en) 2014-06-26 2022-10-18 Janssen Vaccines & Prevention B.V. Antibodies and antigen-binding fragments that specifically bind to microtubule-associated protein tau
US10736956B2 (en) 2015-01-23 2020-08-11 Icahn School Of Medicine At Mount Sinai Influenza virus vaccination regimens
US11266734B2 (en) 2016-06-15 2022-03-08 Icahn School Of Medicine At Mount Sinai Influenza virus hemagglutinin proteins and uses thereof
US11865173B2 (en) 2016-06-15 2024-01-09 Icahn School Of Medicine At Mount Sinai Influenza virus hemagglutinin proteins and uses thereof
US11254733B2 (en) 2017-04-07 2022-02-22 Icahn School Of Medicine At Mount Sinai Anti-influenza B virus neuraminidase antibodies and uses thereof
WO2019100147A1 (en) * 2017-11-22 2019-05-31 Her Majesty the Queen in the Right of Canada as represented by the Minister of Health Synthetic hemagglutinin as universal vaccine against infection by type b influenza viruses (ibv)
US11413345B2 (en) 2017-11-22 2022-08-16 Her Majestry the Queen in Right of Canada as Represented by the Minister of Health Synthetic hemagglutinin as universal vaccine against infection by type B influenza viruses (IBV)
US11576962B2 (en) 2017-12-21 2023-02-14 Green Biomed, Inc. Cross-immunizing antigen vaccine and method for preparation thereof

Also Published As

Publication number Publication date
ZA201404797B (en) 2022-03-30
CA2857087C (en) 2021-05-25
EP2785372A1 (en) 2014-10-08
AU2012343981B2 (en) 2017-09-07
EP3566714A1 (en) 2019-11-13
PH12014501118B1 (en) 2014-08-04
EA033386B1 (en) 2019-10-31
TWI618715B (en) 2018-03-21
TW201329101A (en) 2013-07-16
AR089005A1 (en) 2014-07-23
US9452211B2 (en) 2016-09-27
HK1199211A1 (en) 2015-06-26
CN104066446B (en) 2017-10-03
BR112014012681A2 (en) 2017-06-13
JP6294828B2 (en) 2018-03-14
MX357009B (en) 2018-06-22
IL232780A0 (en) 2014-07-31
KR20140099515A (en) 2014-08-12
MY170927A (en) 2019-09-19
EP2785372B1 (en) 2019-06-19
IL232780A (en) 2017-09-28
KR101983989B1 (en) 2019-05-31
NZ625973A (en) 2016-09-30
US20160362455A1 (en) 2016-12-15
BR112014012681A8 (en) 2017-06-20
JP2015502353A (en) 2015-01-22
SG11201402633UA (en) 2014-09-26
US9969778B2 (en) 2018-05-15
CN104066446A (en) 2014-09-24
WO2013079473A1 (en) 2013-06-06
CA2857087A1 (en) 2013-06-06
MX2014006396A (en) 2014-07-22
PH12014501118A1 (en) 2014-08-04
EA201491051A1 (en) 2015-04-30
US20140357845A1 (en) 2014-12-04
AU2012343981A1 (en) 2014-07-10
IN2014CN04742A (en) 2015-09-18

Similar Documents

Publication Publication Date Title
US9969778B2 (en) Influenza virus vaccines and uses thereof
US10328144B2 (en) Influenza virus vaccines and uses thereof
US10517941B2 (en) Influenza virus vaccines and uses thereof
EP3166963B1 (en) Influenza virus vaccines and uses thereof
JP2018052953A (en) Influenza vaccines and uses thereof
NZ625973B2 (en) Influenza virus vaccines and uses thereof
NZ715583B2 (en) Influenza virus vaccines and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CRUCELL HOLLAND B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEIJBERG, JAN WILLEM;IMPAGLIAZZO, ANTONIETTA;VOGELS, RONALD;AND OTHERS;REEL/FRAME:039509/0185

Effective date: 20121127

Owner name: JANSSEN VACCINES & PREVENTION B.V., NETHERLANDS

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:CRUCELL HOLLAND B.V.;JANSSEN VACCINES & PREVENTION B.V.;REEL/FRAME:039785/0143

Effective date: 20160601

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION