US20160348824A1 - Heated Fluid Conduits, Systems and Methods - Google Patents

Heated Fluid Conduits, Systems and Methods Download PDF

Info

Publication number
US20160348824A1
US20160348824A1 US15/231,435 US201615231435A US2016348824A1 US 20160348824 A1 US20160348824 A1 US 20160348824A1 US 201615231435 A US201615231435 A US 201615231435A US 2016348824 A1 US2016348824 A1 US 2016348824A1
Authority
US
United States
Prior art keywords
sleeve
conduit
hose
semi
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/231,435
Inventor
Micheal H. Ellis
Timothy Deans
Evan Twarog
Donald R. Gilbreath
Walker Bolger
Tim Saupe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gates Corp
Original Assignee
Gates Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gates Corp filed Critical Gates Corp
Priority to US15/231,435 priority Critical patent/US20160348824A1/en
Publication of US20160348824A1 publication Critical patent/US20160348824A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/37Ohmic-resistance heating the heating current flowing directly through the pipe to be heated
    • F16L53/007
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • This invention relates generally to fluid conduits such as hoses and tubes, more particularly to heated fluid conduits, and specifically to fluid conduits heated using semiconductive resistance heating.
  • SCR vehicles are diesel powered motor vehicles which are compatible with the use of an operating fluid to reduce emissions.
  • the SCR vehicle has a urea tank, separate from the fuel tank, which is used to carry an operating fluid such as an automotive urea solution, or the like.
  • Automotive Urea Solution is a solution of high purity urea in de-mineralized water. AUS is stored in a urea tank of an SCR vehicle and is sprayed into the exhaust gases of the vehicle in order to convert oxides of nitrogen into elementary nitrogen and water.
  • An SCR vehicle may then advantageously satisfy various emission standards, such as the Euro V Emissions Standard.
  • AUS freezes at a temperature of approximately minus eleven degrees centigrade.
  • the AUS needs to be maintained in a liquid state to allow injection
  • SCR vehicles generally rely on a heating wire or the like, which may be molded into or wrapped around the AUS hose or line to avoid freezing of the AUS. This is a rather inefficient and inflexible solution that requires a complete redesign of the fluid line to change its heating properties.
  • another production run of the hose must be produced and the resistance per foot is changed when the hose is being extruded by either changing the wire pitch, the wire size or adding more wires into the system, or a combination of all three.
  • oil drilling rigs are being operated in harsher environments as oil is drilled for in Alaska and the Arctic and Antarctica. It is now not unusual for a rig to start up in minus sixty degree Fahrenheit weather. This cold weather has an adverse effect on equipment and hydraulic components on a drill rig. When starting up a hydraulic machine at these cold temperatures it is not unusual for the seals to rupture in valves and cylinders.
  • the present invention is directed to fluid conduits, systems and methods which heat the fluid in the conduit (a hose, tube or the like).
  • the present invention is an electrically heated hose or other conduit that warms the fluid, before starting of the associated equipment to prevent seal and component failure in hydraulic systems and/or that heats a urea line to prevent freezing of AUS.
  • Embodiments of this hose may use a semi-conductive member of rubber or carbon fiber filament to create a resistive heating element within the hose, or a semi-conductive sleeve disposed about the hose.
  • the hose can be used for many different applications for heating fluids that the hose is conveying.
  • the materials that could be heated are hydraulic fluid, urea mixtures for catalytic converters, grease lines, oil lubrication lines and/or the like.
  • the semiconductive resistive heated hose is composed of an electrically conductive rubber tube on the inside of the hose with a resistance of 2 to 15 ohms per foot. It can also be composed of a composite, braided, carbon fiber tensile member or a carbon fiber sleeve that is pushed over the hose assembly after the hose is constructed.
  • This tube or sleeve because of the electrical resistance, will heat up when a voltage is applied to it in such a manner as to provide an electrical path. The heat that is produced in the tube or sleeve will warm the internal fluid lowering the viscosity of the fluid and allowing it to flow without damaging components.
  • This tube or sleeve can be constructed into or on a conventional high pressure, wire reinforced, hydraulic hose, or the carbon fiber can also be the tensile member of the hose.
  • electricity When electricity is connected to the tube or sleeve electricity will flow through the tube of sleeve to ground and the result will be a heated hose that is in contact with the fluid.
  • the couplings associated with the hose or tube it may be advantageous to warm the couplings associated with the hose or tube. If the couplings are not warmed with the hose, it may be difficult for fluid may to pass through the couplings. Therefore, it may be advantageous to heat the couplings along with the hose, such as by extending the heating sleeve over the hose couplings. Also, preferably, the hose couplings are insulated and protected along with the wiring providing power to the heating sleeve.
  • a method for providing a heated fluid conduit might include disposing a semi-conductive material in the body of a fluid conduit and applying an electrical current across the body of the fluid conduit, heating the fluid conduit.
  • the semi-conductive material might comprise a semi-conductive carbon fiber material, which might be made up of carbon fiber threads or carbon fiber tensile reinforcement material. If the conduit is a hose the semi-conductive material might be disposed in the tube of the hose or in the cover.
  • a heated fluid conduit such as a hose or tube
  • a body with a semi-conductive material disposed therein and might include means for coupling an electrical power supply to each end of the conduit to provide a voltage across the conduit and a current therethrough, heating the fluid conduit.
  • This semi-conductive material might be a semi-conductive carbon fiber material, which might be made up of carbon fiber threads and/or carbon fiber tensile reinforcement material.
  • the semi-conductive material may be disposed in the tube of the hose or in the cover of the hose.
  • a method for heating a fluid conduit might comprise disposing a semi-conductive sleeve over the fluid conduit and applying an electrical current to the semi-conductive sleeve, heating the sleeve and the fluid conduit within.
  • the sleeve might comprise a fabric sleeve having carbon fiber threads which are at least semi-conductive.
  • a fluid conduit heating system might employ a semi-conductive flexible sleeve disposed over a fluid conduit and an electrical power supply coupled to each end of the sleeve to provide a voltage across the sleeve and a resulting current through the semi-conductive sleeve, heating the sleeve and the fluid conduit.
  • a first conductor can be conductively coupled to a first end of the sleeve and a second conductor conductively coupled to a second end of the sleeve, with the electrical power supply connected to the conductors to provide the voltage across the conductors and the resulting current through the semi-conductive sleeve.
  • one of the conductors such as a wire
  • one of the conductors may be disposed along the sleeve, such as within the sleeve, such that the free ends of the conductors are at a same end of the sleeve, facilitating connecting the conductors to the power supply, such as through the electrical system of a vehicle or piece of equipment.
  • the sleeve is a fabric sleeve having carbon fiber threads which are semi-conductive.
  • such a fluid conduit heating system might include a conductive ferrule disposed at each end of the sleeve in conductive contact with the sleeve, with a first conductor conductively coupled to a first of the ferrules and a second conductor connected to a second of the ferrules, such that the electrical power supply may be connected to the conductors to provide a voltage across the conductors and a resulting current through the semi-conductive sleeve.
  • the electrical power supply may be coupled to each end of the conduit or sleeve.
  • one terminal of the electrical power supply may be coupled to each end of the conduit or sleeve, and another terminal of the electrical power supply may be coupled to the conduit or sleeve at a point therebetween.
  • a cover may be disposed over a coupling fitted to an end of the conduit and/or over an end of a wire coupling the power supply to an end of the conduit, with the wire passing through an opening in the cover.
  • the sleeve may extend over the coupling and a cover may be disposed over the coupling and the sleeve extending over the coupling, as well as over an end of a conductor coupling the power supply to an end of the sleeve, again with the conductor passing through the opening in the cover.
  • the cover insulates the coupling retaining heat generated.
  • various embodiments may employ an insulating jacket disposed over the conduit (and sleeve).
  • the present sleeve heating system affords an ability to tailor the resistance per foot at assembly to meet heating requirements needed for individual conduit lengths.
  • a sleeve with different resistance levels such as may be expressed in ohms per foot one may lower the resistance per foot for a longer length assembly.
  • FIG. 1 is a partially fragmented illustration of an embodiment of a heated fluid conduit of the present invention
  • FIG. 2 is a partially fragmented illustration of an embodiment of a fluid conduit heating system in accordance with the present invention
  • FIG. 3 is a partially fragmented illustration of another embodiment of a fluid conduit heating system in accordance with the present invention.
  • FIG. 4 is a partially fragmented illustration of yet another embodiment of a fluid conduit heating system in accordance with the present invention employing parallel heating circuits;
  • FIG. 5 is a perspective illustration of an embodiment of a cover for use with various embodiments of the present fluid conduit heating system
  • FIG. 6 is a perspective illustration of another embodiment of a cover for use with various embodiments of the present fluid conduit heating system
  • FIG. 7 is a perspective illustration of yet another embodiment of a cover for use with various embodiments of the present fluid conduit heating system.
  • FIG. 8 is a partially fragmented side illustration of an embodiment of a fluid conduit heating system in accordance with the present invention employing coupling covers.
  • FIG. 1 a fragment view of an embodiment of heated fluid conduit 100 is shown.
  • Illustrated fluid conduit 100 a hose, is shown having body 101 with semi-conductive material disposed therein.
  • the semi-conductive may take the form of “chopped” material 105 , disposed in cover 108 ; woven or braided semi-conductive textile material 110 and/or 112 ; “chopped” material 115 and/or 117 , disposed in intermediate hose layers 116 and 118 ; and/or “chopped” material 120 , disposed in tube 122 .
  • this conductive material is intended to be illustrated as carbon fiber reinforcement material.
  • these carbon fiber threads act as tensile reinforcement material in illustrated hose 100 .
  • Electrical power such as may be provided through the electrical system of a vehicle or piece of equipment may be supplied to each end of conduit 100 such as through conductive wires, or the like, electrically coupled to the hose to provide a voltage across conduit 100 and a current therethrough, heating fluid conduit 100 due to resistive conductivity provided by the semi-conductive reinforcement material.
  • the fluid conduit may be a hose, as illustrated.
  • the fluid conduit may be a tube, such as a plastic tube, with the semi-conductive material disposed in the body of the tube.
  • a fluid conduit heating system ( 200 ), such as illustrated in FIG. 2 , might employ semi-conductive sleeve 201 disposed over fluid conduit 202 and electrical power supply 205 , such as might be provided by a vehicle's electrical system of the electrical system associated with equipment using the fluid conduit.
  • This supply of electricity is preferably coupled to each end of sleeve 201 .
  • a first conductor such as illustrated wire 207
  • a second conductor such as illustrated wire 210
  • electrical connectors 215 and 217 may be disposed at respective ends 208 and 212 of sleeve 201 .
  • the electrical power supply provides a voltage across conductors and 207 and 210 and the resulting current through semi-conductive sleeve 201 causes the sleeve, and thereby the conduit within, to heat, due to the electrically semi-conductive nature of the material making up the sleeve.
  • conductive wires 207 and 210 are disposed along the sleeve such that ends of the conductors connected to the power supply are at a same end of hose assembly 200 (end 212 of sleeve 201 in FIG. 2 ).
  • wires 207 and 210 may be at least partially disposed either within sleeve 201 , or in a further outer covering of the hose, such as illustrated insulation sleeve 220 .
  • Insulation sleeve 220 may be made of any material which sufficiently retains the heat generated by hose sleeve 201 , such as closed cell rubber foam.
  • sleeve 201 is flexible.
  • the sleeve might comprise a fabric having carbon fiber threads which are semi-conductive, similar to the hose of FIG. 1 .
  • the fluid conduit is illustrated as hose 202 .
  • the fluid conduit could be a tube, such as a plastic or metal tube.
  • system 300 might include semi-conductive sleeve 301 , similar to sleeve 201 above, disposed over fluid conduit 302 .
  • Conductive ferrule 315 or 317 disposed at each end, 308 and 312 respectively, of sleeve 301 in electrically conductive contact with sleeve 301 .
  • First conductor is conductively coupled to first ferrule 315 and second conductor 310 is connected to a second ferrule 317 .
  • Electrical power supply 305 connected to conductors 307 and 310 , preferably provides a voltage across the conductors and a resulting current through semi-conductive sleeve 301 .
  • sleeve 301 is also preferably flexible and may comprise a fabric sleeve material having carbon fiber threads which are semi-conductive.
  • the fluid conduit in system 300 may be a hose (as shown in FIG. 3 ), a metal tube, a plastic tube, or the like.
  • an embodiment similar to that shown in FIG. 3 may employ non-conductive ferrules which may hold the end of a conductor in electrically conductive contact with the semi conductive sleeve or hose body, in provide a current through the sleeve or semiconductive body to heat the conduit in accordance with the present invention.
  • FIG. 4 is a partially fragmented illustration of an embodiment of fluid conduit heating system 400 employing parallel heating circuits.
  • Parallel heating may be provided to any embodiment of the present invention by coupling one terminal of the electrical power supply to each end of the conduit or sleeve, and another terminal of the electrical power supply to the conduit or sleeve at a point therebetween.
  • FIG. 4 applies such a parallel heating circuit embodiment to a sleeve embodiment similar to embodiment 200 , illustrated in FIG. 2 .
  • more than the two illustrated parallel circuits could be provided in accordance with the present systems and methods.
  • FIG. 4 is a partially fragmented illustration of an embodiment of fluid conduit heating system 400 employing parallel heating circuits.
  • Parallel heating may be provided to any embodiment of the present invention by coupling one terminal of the electrical power supply to each end of the conduit or sleeve, and another terminal of the electrical power supply to the conduit or sleeve at a point therebetween.
  • FIG. 4 applies such a parallel heating circuit embodiment to a s
  • semi-conductive sleeve 401 is disposed over fluid conduit 402 and electrical power supply 405 , such as might be provided by a vehicle's electrical system of the electrical system associated with equipment using the fluid conduit is coupled to sleeve 401 .
  • One terminal of power supply 405 is preferably coupled to each end of sleeve 401 .
  • a first conductor such as illustrated wire 407
  • a second conductor such as illustrated wire 409
  • each of conductors 407 and 409 are preferably coupled to a same terminal of power supply 405 .
  • a third conductor such as illustrated wire 410 , may be conductively coupled to sleeve 401 at some point, such as mid-point 413 , between ends 408 and 412 .
  • electrical connectors 415 , 418 , and 417 may be disposed at end 408 , midpoint 413 and end 412 , respectively.
  • the electrical power supply provides a voltage across conductors 407 and 410 , and also across conductors 409 and 410 , in a parallel manner, the resulting currents through semi-conductive sleeve 401 causes the sleeve, and thereby the conduit within, to heat, due to the semi-conductive nature of the material making up the sleeve.
  • the conduit is heated at a greatly accelerated rate.
  • a single circuit sleeve embodiment such as shown in FIGS. 2 and 3 might heat fluid in a conduit from ⁇ 20° F. to 8° F. in 30 minutes
  • a parallel circuit embodiment such as illustrated in FIG. 4 might heat the fluid in the conduit from ⁇ 20° F. to 8° F. in less than 6 minutes.
  • the paired terminals of the power supply may be electrically conductively coupled to the hose or sleeve in any number of pairs along the length of the hose or sleeve to provide the aforementioned multiple parallel circuits.
  • Some of these embodiments might use switching, or the like, to control operation of such circuits, or even the effective number of circuits.
  • an open switch in conductor 407 or 409 could disable the associated circuit.
  • a switch might open conductor 410 and shunt the output therefrom to conductor 407 or 409 to provide conduit 400 a single restive heating circuit along its length.
  • FIGS. 5, 6 and 7 are perspective illustrations of embodiments a covers 500 , 600 and 700 for use with various embodiments of the present heated fluid conduits and/or fluid conduit heating systems.
  • FIG. 8 is a partially fragmented illustration of embodiment 800 of a fluid conduit heating system in accordance with the present invention employing coupling covers similar to cover 500 and 600 illustrated in FIGS. 5 and 6 .
  • Covers 500 , 600 and 700 provide protection and insulation for quick-connect couplings and wiring, such as conductors 807 and 810 , associated with a heated fluid conduit in accordance with various embodiments of the present invention.
  • the embodiments of covers 500 , 600 and 700 shown are comprised of paired molded plastic parts, placed together to form a hard protective coverings for the couplings and the wiring.
  • the illustrated covering embodiments each comprise two pieces, which are generally mirror images of each other, 501 and 502 , 601 and 602 , and 701 and 702 .
  • the two halves may be adapted to “snap” together, thus alleviating any need for an adhesive or other cumbersome method of joining the two halves together.
  • the two pieces may be molded together in one mold with a small bit of plastic holding them together. This would allow the two pieces to be “hinged” over for installation.
  • Covers 500 and 600 are intended for use on straight couplings, while embodiment 700 is intended for use on a ninety-degree elbow coupling. However, within the scope of the present invention, it is contemplated that any number of fitting configurations may be employed and covered in a similar fashion in a heated conduit system. On the internal surfaces of various embodiments of such covers, ridges may be employed to grip corrugated tubing, other types of sleeves, a hose cover, or the like. These ridges may hold such a cover in place and help prevent exposure of a heating sleeve.
  • a separate third opening 605 or 705 for wiring, such as for conductors 801 , or the like.
  • a third opening may not be employed on every cover since the wiring for the hose may only exit from one end of a hose.
  • the wiring may exit opposite the end of the coupling (i.e. in FIG. 7 the coupling may extend out of opening 703 , the hose out of opening 704 and wiring out of opening 705 ).
  • wiring opening out of a cover such as cover 600 may be disposed perpendicular to the coupling, resulting in a generally “T” shaped cover.
  • the inner surfaces of wiring exits 605 or 705 may also have ridges, such as ridges 606 and 607 seen in FIG. 6 , to grab onto any corrugated tubing, or the like, protecting the wiring.
  • an access opening ( 510 , 511 , 610 , 611 , 710 or 711 ) may be disposed on either side of a cover. These openings allow access to a quick-connect couplings disconnect button, or the like. This will allow a quick-connect couplings to disconnect from an adapter without requiring the whole cover be removed. This increases the convenience and speed with which a conduit employing the present heating system can be attached or removed from a particular piece of equipment. It is also anticipated that gaps may be defined in the internal ridges of the cover to allow for better air flow in the cover to enhance heating of the coupling.

Abstract

A heated fluid conduit has a body with a semi-conductive material disposed therein with an electrical power supply coupled to the conduit to provide a voltage across the conduit and a current therethrough, heating the fluid conduit. A fluid conduit heating system comprises a semiconductive sleeve disposed over a fluid conduit and an electrical power supply coupled to the ends of the sleeve to provide a voltage across the sleeve and a resulting current through the semiconductive sleeve, heating the sleeve and conduit Alternatively, one terminal of the electrical power supply is coupled to each end of the sleeve or conduit, and another terminal of the electrical power supply is coupled to the sleeve or conduit therebetween, to provide parallel heating circuits.

Description

    BACKGROUND OF THE INVENTION
  • Field of the Invention
  • This invention relates generally to fluid conduits such as hoses and tubes, more particularly to heated fluid conduits, and specifically to fluid conduits heated using semiconductive resistance heating.
  • Description of the Prior Art
  • Selective Catalytic Reduction (SCR) vehicles, referred to in Europe as Euro V vehicles, are diesel powered motor vehicles which are compatible with the use of an operating fluid to reduce emissions. Typically, the SCR vehicle has a urea tank, separate from the fuel tank, which is used to carry an operating fluid such as an automotive urea solution, or the like. Automotive Urea Solution (AUS) is a solution of high purity urea in de-mineralized water. AUS is stored in a urea tank of an SCR vehicle and is sprayed into the exhaust gases of the vehicle in order to convert oxides of nitrogen into elementary nitrogen and water. An SCR vehicle may then advantageously satisfy various emission standards, such as the Euro V Emissions Standard.
  • Problematically, AUS freezes at a temperature of approximately minus eleven degrees centigrade. In order to ensure this method of reducing emissions in an SCR vehicle remains effective, the AUS needs to be maintained in a liquid state to allow injection
  • SCR vehicles generally rely on a heating wire or the like, which may be molded into or wrapped around the AUS hose or line to avoid freezing of the AUS. This is a rather inefficient and inflexible solution that requires a complete redesign of the fluid line to change its heating properties. Thus, to change the heating characteristics of an internal wire assembly, another production run of the hose must be produced and the resistance per foot is changed when the hose is being extruded by either changing the wire pitch, the wire size or adding more wires into the system, or a combination of all three.
  • Also, oil drilling rigs are being operated in harsher environments as oil is drilled for in Alaska and the Arctic and Antarctica. It is now not unusual for a rig to start up in minus sixty degree Fahrenheit weather. This cold weather has an adverse effect on equipment and hydraulic components on a drill rig. When starting up a hydraulic machine at these cold temperatures it is not unusual for the seals to rupture in valves and cylinders.
  • SUMMARY
  • The present invention is directed to fluid conduits, systems and methods which heat the fluid in the conduit (a hose, tube or the like). The present invention is an electrically heated hose or other conduit that warms the fluid, before starting of the associated equipment to prevent seal and component failure in hydraulic systems and/or that heats a urea line to prevent freezing of AUS. Embodiments of this hose may use a semi-conductive member of rubber or carbon fiber filament to create a resistive heating element within the hose, or a semi-conductive sleeve disposed about the hose. The hose can be used for many different applications for heating fluids that the hose is conveying. The materials that could be heated are hydraulic fluid, urea mixtures for catalytic converters, grease lines, oil lubrication lines and/or the like.
  • The semiconductive resistive heated hose is composed of an electrically conductive rubber tube on the inside of the hose with a resistance of 2 to 15 ohms per foot. It can also be composed of a composite, braided, carbon fiber tensile member or a carbon fiber sleeve that is pushed over the hose assembly after the hose is constructed. This tube or sleeve, because of the electrical resistance, will heat up when a voltage is applied to it in such a manner as to provide an electrical path. The heat that is produced in the tube or sleeve will warm the internal fluid lowering the viscosity of the fluid and allowing it to flow without damaging components. This tube or sleeve can be constructed into or on a conventional high pressure, wire reinforced, hydraulic hose, or the carbon fiber can also be the tensile member of the hose. When electricity is connected to the tube or sleeve electricity will flow through the tube of sleeve to ground and the result will be a heated hose that is in contact with the fluid.
  • To facilitate operation of a semi-conductive heating sleeve it may be advantageous to warm the couplings associated with the hose or tube. If the couplings are not warmed with the hose, it may be difficult for fluid may to pass through the couplings. Therefore, it may be advantageous to heat the couplings along with the hose, such as by extending the heating sleeve over the hose couplings. Also, preferably, the hose couplings are insulated and protected along with the wiring providing power to the heating sleeve.
  • Hence, in accordance with embodiments of the present invention a method for providing a heated fluid conduit, such as a hose or tube, might include disposing a semi-conductive material in the body of a fluid conduit and applying an electrical current across the body of the fluid conduit, heating the fluid conduit. In these embodiments the semi-conductive material might comprise a semi-conductive carbon fiber material, which might be made up of carbon fiber threads or carbon fiber tensile reinforcement material. If the conduit is a hose the semi-conductive material might be disposed in the tube of the hose or in the cover.
  • Thus, in accordance with embodiments of the present invention a heated fluid conduit, such as a hose or tube, might have a body with a semi-conductive material disposed therein and might include means for coupling an electrical power supply to each end of the conduit to provide a voltage across the conduit and a current therethrough, heating the fluid conduit. This semi-conductive material might be a semi-conductive carbon fiber material, which might be made up of carbon fiber threads and/or carbon fiber tensile reinforcement material. In the case of a hose, the semi-conductive material may be disposed in the tube of the hose or in the cover of the hose.
  • Alternatively, in accordance with other embodiments of the present invention a method for heating a fluid conduit might comprise disposing a semi-conductive sleeve over the fluid conduit and applying an electrical current to the semi-conductive sleeve, heating the sleeve and the fluid conduit within. In accordance with various of these embodiments the sleeve might comprise a fabric sleeve having carbon fiber threads which are at least semi-conductive.
  • Therefore, in other embodiments of the present invention a fluid conduit heating system might employ a semi-conductive flexible sleeve disposed over a fluid conduit and an electrical power supply coupled to each end of the sleeve to provide a voltage across the sleeve and a resulting current through the semi-conductive sleeve, heating the sleeve and the fluid conduit. In particular, a first conductor can be conductively coupled to a first end of the sleeve and a second conductor conductively coupled to a second end of the sleeve, with the electrical power supply connected to the conductors to provide the voltage across the conductors and the resulting current through the semi-conductive sleeve. In this embodiment, one of the conductors, such as a wire, may be disposed along the sleeve, such as within the sleeve, such that the free ends of the conductors are at a same end of the sleeve, facilitating connecting the conductors to the power supply, such as through the electrical system of a vehicle or piece of equipment. In accordance with various embodiments the sleeve is a fabric sleeve having carbon fiber threads which are semi-conductive.
  • In some embodiments such a fluid conduit heating system might include a conductive ferrule disposed at each end of the sleeve in conductive contact with the sleeve, with a first conductor conductively coupled to a first of the ferrules and a second conductor connected to a second of the ferrules, such that the electrical power supply may be connected to the conductors to provide a voltage across the conductors and a resulting current through the semi-conductive sleeve.
  • As noted above, in various embodiments the electrical power supply may be coupled to each end of the conduit or sleeve. However, in other embodiments one terminal of the electrical power supply may be coupled to each end of the conduit or sleeve, and another terminal of the electrical power supply may be coupled to the conduit or sleeve at a point therebetween.
  • Also, in some embodiments of the present invention, a cover may be disposed over a coupling fitted to an end of the conduit and/or over an end of a wire coupling the power supply to an end of the conduit, with the wire passing through an opening in the cover. In some sleeve embodiments of the present conduits, systems or methods, the sleeve may extend over the coupling and a cover may be disposed over the coupling and the sleeve extending over the coupling, as well as over an end of a conductor coupling the power supply to an end of the sleeve, again with the conductor passing through the opening in the cover. Preferably, the cover insulates the coupling retaining heat generated. Also to retain heat, various embodiments may employ an insulating jacket disposed over the conduit (and sleeve).
  • Advantageously, the present sleeve heating system affords an ability to tailor the resistance per foot at assembly to meet heating requirements needed for individual conduit lengths. By using a sleeve with different resistance levels, such as may be expressed in ohms per foot one may lower the resistance per foot for a longer length assembly.
  • The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form part of the specification in which like numerals designate like parts, illustrate embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings:
  • FIG. 1 is a partially fragmented illustration of an embodiment of a heated fluid conduit of the present invention;
  • FIG. 2 is a partially fragmented illustration of an embodiment of a fluid conduit heating system in accordance with the present invention;
  • FIG. 3 is a partially fragmented illustration of another embodiment of a fluid conduit heating system in accordance with the present invention;
  • FIG. 4 is a partially fragmented illustration of yet another embodiment of a fluid conduit heating system in accordance with the present invention employing parallel heating circuits;
  • FIG. 5 is a perspective illustration of an embodiment of a cover for use with various embodiments of the present fluid conduit heating system;
  • FIG. 6 is a perspective illustration of another embodiment of a cover for use with various embodiments of the present fluid conduit heating system;
  • FIG. 7 is a perspective illustration of yet another embodiment of a cover for use with various embodiments of the present fluid conduit heating system; and
  • FIG. 8 is a partially fragmented side illustration of an embodiment of a fluid conduit heating system in accordance with the present invention employing coupling covers.
  • DETAILED DESCRIPTION
  • In FIG. 1 a fragment view of an embodiment of heated fluid conduit 100 is shown. Illustrated fluid conduit 100, a hose, is shown having body 101 with semi-conductive material disposed therein. The semi-conductive may take the form of “chopped” material 105, disposed in cover 108; woven or braided semi-conductive textile material 110 and/or 112; “chopped” material 115 and/or 117, disposed in intermediate hose layers 116 and 118; and/or “chopped” material 120, disposed in tube 122. In the illustrated example of FIG. 1 this conductive material is intended to be illustrated as carbon fiber reinforcement material. Preferably, these carbon fiber threads act as tensile reinforcement material in illustrated hose 100. Electrical power, such as may be provided through the electrical system of a vehicle or piece of equipment may be supplied to each end of conduit 100 such as through conductive wires, or the like, electrically coupled to the hose to provide a voltage across conduit 100 and a current therethrough, heating fluid conduit 100 due to resistive conductivity provided by the semi-conductive reinforcement material.
  • In accordance with the present invention the fluid conduit may be a hose, as illustrated. Alternatively, the fluid conduit may be a tube, such as a plastic tube, with the semi-conductive material disposed in the body of the tube.
  • In accordance with other embodiments of the present invention a fluid conduit heating system (200), such as illustrated in FIG. 2, might employ semi-conductive sleeve 201 disposed over fluid conduit 202 and electrical power supply 205, such as might be provided by a vehicle's electrical system of the electrical system associated with equipment using the fluid conduit. This supply of electricity is preferably coupled to each end of sleeve 201. For example, a first conductor, such as illustrated wire 207, may be conductively coupled to first end 208 of sleeve 201 and a second conductor, such as illustrated wire 210, may be conductively coupled to second end 212 of sleeve 201. To facilitate such coupling electrical connectors 215 and 217 may be disposed at respective ends 208 and 212 of sleeve 201. The electrical power supply provides a voltage across conductors and 207 and 210 and the resulting current through semi-conductive sleeve 201 causes the sleeve, and thereby the conduit within, to heat, due to the electrically semi-conductive nature of the material making up the sleeve. Preferably, conductive wires 207 and 210 are disposed along the sleeve such that ends of the conductors connected to the power supply are at a same end of hose assembly 200 (end 212 of sleeve 201 in FIG. 2). One, or both, of wires 207 and 210 may be at least partially disposed either within sleeve 201, or in a further outer covering of the hose, such as illustrated insulation sleeve 220. Insulation sleeve 220 may be made of any material which sufficiently retains the heat generated by hose sleeve 201, such as closed cell rubber foam.
  • Preferably, sleeve 201 is flexible. The sleeve might comprise a fabric having carbon fiber threads which are semi-conductive, similar to the hose of FIG. 1. The fluid conduit is illustrated as hose 202. However, the fluid conduit could be a tube, such as a plastic or metal tube.
  • An alternative embodiment of fluid conduit heating system 300 is illustrated in FIG. 3. In accordance with the present invention system 300 might include semi-conductive sleeve 301, similar to sleeve 201 above, disposed over fluid conduit 302. Conductive ferrule 315 or 317 disposed at each end, 308 and 312 respectively, of sleeve 301 in electrically conductive contact with sleeve 301. First conductor is conductively coupled to first ferrule 315 and second conductor 310 is connected to a second ferrule 317. Electrical power supply 305, connected to conductors 307 and 310, preferably provides a voltage across the conductors and a resulting current through semi-conductive sleeve 301. As with embodiment 200 above, sleeve 301 is also preferably flexible and may comprise a fabric sleeve material having carbon fiber threads which are semi-conductive. Also, similar to embodiment 200 the fluid conduit in system 300 may be a hose (as shown in FIG. 3), a metal tube, a plastic tube, or the like. Alternatively, an embodiment similar to that shown in FIG. 3 may employ non-conductive ferrules which may hold the end of a conductor in electrically conductive contact with the semi conductive sleeve or hose body, in provide a current through the sleeve or semiconductive body to heat the conduit in accordance with the present invention.
  • FIG. 4 is a partially fragmented illustration of an embodiment of fluid conduit heating system 400 employing parallel heating circuits. Parallel heating may be provided to any embodiment of the present invention by coupling one terminal of the electrical power supply to each end of the conduit or sleeve, and another terminal of the electrical power supply to the conduit or sleeve at a point therebetween. For purposes of illustration, FIG. 4 applies such a parallel heating circuit embodiment to a sleeve embodiment similar to embodiment 200, illustrated in FIG. 2. However, more than the two illustrated parallel circuits could be provided in accordance with the present systems and methods. In FIG. 4, semi-conductive sleeve 401 is disposed over fluid conduit 402 and electrical power supply 405, such as might be provided by a vehicle's electrical system of the electrical system associated with equipment using the fluid conduit is coupled to sleeve 401. One terminal of power supply 405 is preferably coupled to each end of sleeve 401. For example, a first conductor, such as illustrated wire 407, may be conductively coupled to first end 408 of sleeve 401 and a second conductor, such as illustrated wire 409, may be conductively coupled to second end 412 of sleeve 401, each of conductors 407 and 409 are preferably coupled to a same terminal of power supply 405. A third conductor, such as illustrated wire 410, may be conductively coupled to sleeve 401 at some point, such as mid-point 413, between ends 408 and 412. To facilitate such coupling electrical connectors 415, 418, and 417 may be disposed at end 408, midpoint 413 and end 412, respectively. The electrical power supply provides a voltage across conductors 407 and 410, and also across conductors 409 and 410, in a parallel manner, the resulting currents through semi-conductive sleeve 401 causes the sleeve, and thereby the conduit within, to heat, due to the semi-conductive nature of the material making up the sleeve. In a parallel circuit embodiment, the conduit is heated at a greatly accelerated rate. For example, a single circuit sleeve embodiment such as shown in FIGS. 2 and 3 might heat fluid in a conduit from −20° F. to 8° F. in 30 minutes, while a parallel circuit embodiment such as illustrated in FIG. 4 might heat the fluid in the conduit from −20° F. to 8° F. in less than 6 minutes.
  • Additionally, as mentioned above, more than two parallel circuits may be provided in accordance with the present systems and methods. In such embodiments the paired terminals of the power supply may be electrically conductively coupled to the hose or sleeve in any number of pairs along the length of the hose or sleeve to provide the aforementioned multiple parallel circuits. Some of these embodiments might use switching, or the like, to control operation of such circuits, or even the effective number of circuits. For example, in the embodiment illustrated in FIG. 4 an open switch in conductor 407 or 409 could disable the associated circuit. Additionally, or alternatively, a switch might open conductor 410 and shunt the output therefrom to conductor 407 or 409 to provide conduit 400 a single restive heating circuit along its length.
  • FIGS. 5, 6 and 7 are perspective illustrations of embodiments a covers 500, 600 and 700 for use with various embodiments of the present heated fluid conduits and/or fluid conduit heating systems. FIG. 8 is a partially fragmented illustration of embodiment 800 of a fluid conduit heating system in accordance with the present invention employing coupling covers similar to cover 500 and 600 illustrated in FIGS. 5 and 6.
  • Covers 500, 600 and 700 provide protection and insulation for quick-connect couplings and wiring, such as conductors 807 and 810, associated with a heated fluid conduit in accordance with various embodiments of the present invention. The embodiments of covers 500, 600 and 700 shown are comprised of paired molded plastic parts, placed together to form a hard protective coverings for the couplings and the wiring. The illustrated covering embodiments each comprise two pieces, which are generally mirror images of each other, 501 and 502, 601 and 602, and 701 and 702. The two halves may be adapted to “snap” together, thus alleviating any need for an adhesive or other cumbersome method of joining the two halves together. Alternatively, or additionally, the two pieces may be molded together in one mold with a small bit of plastic holding them together. This would allow the two pieces to be “hinged” over for installation.
  • Covers 500 and 600 are intended for use on straight couplings, while embodiment 700 is intended for use on a ninety-degree elbow coupling. However, within the scope of the present invention, it is contemplated that any number of fitting configurations may be employed and covered in a similar fashion in a heated conduit system. On the internal surfaces of various embodiments of such covers, ridges may be employed to grip corrugated tubing, other types of sleeves, a hose cover, or the like. These ridges may hold such a cover in place and help prevent exposure of a heating sleeve.
  • Along with the two openings in the cover for the hose and coupling end (i.e. openings 503, 504, 603, 604, 703 and 704), there may be a separate third opening (605 or 705) for wiring, such as for conductors 801, or the like. As shown in FIG. 5, such a third opening may not be employed on every cover since the wiring for the hose may only exit from one end of a hose. On the angled versions of a cover, such cover 700, the wiring may exit opposite the end of the coupling (i.e. in FIG. 7 the coupling may extend out of opening 703, the hose out of opening 704 and wiring out of opening 705). Although wiring opening 605 in FIG. 6 is shown at an angle, forming a “Y” shape, a wiring opening out of a cover such as cover 600 may be disposed perpendicular to the coupling, resulting in a generally “T” shaped cover. The inner surfaces of wiring exits 605 or 705 may also have ridges, such as ridges 606 and 607 seen in FIG. 6, to grab onto any corrugated tubing, or the like, protecting the wiring.
  • Additionally, an access opening (510, 511, 610, 611, 710 or 711) may be disposed on either side of a cover. These openings allow access to a quick-connect couplings disconnect button, or the like. This will allow a quick-connect couplings to disconnect from an adapter without requiring the whole cover be removed. This increases the convenience and speed with which a conduit employing the present heating system can be attached or removed from a particular piece of equipment. It is also anticipated that gaps may be defined in the internal ridges of the cover to allow for better air flow in the cover to enhance heating of the coupling.
  • Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (12)

What is claimed is:
1. A method comprising:
disposing a semi-conductive material in the body of a fluid conduit; and
applying an electrical current across said body of said fluid conduit, heating said fluid conduit.
2. The method of claim 1, wherein said semi-conductive material comprises semi-conductive carbon fiber material.
3. The method of claim 2 wherein said carbon fiber material compromises carbon fiber threads.
4. The method of claim 2 wherein said carbon fiber material comprises carbon fiber tensile reinforcement material.
5. The method of claim 1, wherein said fluid conduit is a hose.
6. The method of claim 1, wherein said fluid conduit is a tube.
7. The method of claim 6, wherein said tube is a plastic tube.
8. The method of claim 1, wherein said disposing comprises disposing said semi-conductive material in the tube of a hose.
9. The method of claim 1, wherein said disposing comprises disposing said semi-conductive material in the cover of a hose.
10. The method of claim 1, wherein said applying of said electrical current comprises:
coupling a first terminal of an electrical power supply to a first end of said conduit;
coupling a second terminal of said power supply to a second end of said conduit; and
providing a voltage, by said power supply across the terminals.
11. The method of claim 1, wherein said applying of said electrical current comprises:
coupling a first terminal of an electrical power supply to each end of said conduit;
coupling a second terminal of said power supply to said conduit, between said ends; and
providing a voltage, by said power supply, across the terminals.
12. The method of claim 1, further comprising insulating said conduit to retain heat.
US15/231,435 2009-02-13 2016-08-08 Heated Fluid Conduits, Systems and Methods Abandoned US20160348824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/231,435 US20160348824A1 (en) 2009-02-13 2016-08-08 Heated Fluid Conduits, Systems and Methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/378,435 US9410652B2 (en) 2009-02-13 2009-02-13 Heated fluid conduits, systems and methods
US15/231,435 US20160348824A1 (en) 2009-02-13 2016-08-08 Heated Fluid Conduits, Systems and Methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/378,435 Division US9410652B2 (en) 2009-02-13 2009-02-13 Heated fluid conduits, systems and methods

Publications (1)

Publication Number Publication Date
US20160348824A1 true US20160348824A1 (en) 2016-12-01

Family

ID=42559978

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/378,435 Active 2034-11-30 US9410652B2 (en) 2009-02-13 2009-02-13 Heated fluid conduits, systems and methods
US15/231,435 Abandoned US20160348824A1 (en) 2009-02-13 2016-08-08 Heated Fluid Conduits, Systems and Methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/378,435 Active 2034-11-30 US9410652B2 (en) 2009-02-13 2009-02-13 Heated fluid conduits, systems and methods

Country Status (1)

Country Link
US (2) US9410652B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2499083B1 (en) 2009-11-09 2017-01-11 Wayne Fueling Systems Sweden AB Fluid dispensing unit having a circulation system and a method for circulating a fluid in a fluid dispensing unit
FR2958992B1 (en) * 2010-04-14 2012-05-04 Total Sa DRIVE FOR TRANSPORTING A FLUID COMPRISING HYDROCARBON, AND METHOD FOR MANUFACTURING THE SAME.
FR2958991B1 (en) 2010-04-14 2012-05-04 Total Sa DRIVE FOR TRANSPORTING A FLUID COMPRISING HYDROCARBON, AND METHOD OF MANUFACTURING SUCH A DRIVE.
GB2480072A (en) * 2010-05-05 2011-11-09 Technip France Electrical heating of a pipeline
DE102010032189A1 (en) * 2010-07-23 2012-01-26 Voss Automotive Gmbh Heatable media line and method for its production
CN103867846B (en) * 2014-03-28 2015-11-18 铁道第三勘察设计院集团有限公司 A kind of electric tracing thermal insulation device for cold area subway pipe-line equipment
CN105132865B (en) * 2015-08-20 2017-12-08 京东方科技集团股份有限公司 Evaporation source and evaporated device
JP6616265B2 (en) * 2015-10-16 2019-12-04 株式会社Kokusai Electric Heating unit, substrate processing apparatus, and semiconductor device manufacturing method
US11014105B2 (en) * 2016-10-15 2021-05-25 Akurate Dynamics, Llc Multi-segment heated hose having segment-specific heating means
US10197203B2 (en) 2017-05-17 2019-02-05 Gates Corporation Heated fluid conduit
US10675214B2 (en) 2017-08-15 2020-06-09 Kohler Co. Heated air bath system
US11077018B2 (en) 2018-01-12 2021-08-03 Kohler Co. Bathing system and method of controlling same
US10190716B1 (en) * 2018-09-11 2019-01-29 Akurate Dynamics, Llc Heated hose with improved power feedthrough

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683673A (en) * 1952-03-10 1954-07-13 Electrofilm Corp Film-type heating element
US3727029A (en) * 1964-07-01 1973-04-10 Moore & Co Samuel Composite electrically heated tubing product
US4323174A (en) * 1979-10-11 1982-04-06 Wood Thomas J Apparatus for dispensing mastic material
US4455474A (en) * 1981-11-27 1984-06-19 Nordson Corporation Thermally insulated electrically heated hose for transmitting hot liquids
US4553023A (en) * 1981-11-27 1985-11-12 Nordson Corporation Thermally insulated electrically heated hose for transmitting hot liquids
US4874925A (en) * 1987-06-01 1989-10-17 Dickenson Wilk A Electrically heated hose assembly for conveying electrically conductive liquids
US5381511A (en) * 1993-06-02 1995-01-10 W. L. Gore & Associates, Inc. Flexible electrically heatable hose
US5394507A (en) * 1990-08-31 1995-02-28 Tokyo Kogyo Boyeki Shokai, Ltd. Heated tube with a braided electric heater
US5832178A (en) * 1996-06-25 1998-11-03 Crafco, Incorporated Hot melt mix applicator with electrically heated hose and wand with temperature-controlled electric generator
US5933574A (en) * 1998-02-09 1999-08-03 Avansino; Gary L. Heated fluid conduit
US6738566B2 (en) * 2001-07-03 2004-05-18 Nordson Corporation Insulated hose for transmitting hot liquids
US20070045275A1 (en) * 2005-08-09 2007-03-01 Steinhauser Louis P Modular heater systems
US7266293B1 (en) * 2004-05-03 2007-09-04 Dundas Robert D Hose for hot liquids having heating element
US7732735B2 (en) * 2005-05-06 2010-06-08 Illinois Tool Works Inc. Hot melt adhesive hose assembly having redundant components
US7991273B2 (en) * 2005-12-22 2011-08-02 Volvo Lastvagnar Ab Heated coupling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581521A (en) 1980-08-28 1986-04-08 Grise Frederick Gerard J Electrically heated pipe assembly
US6452138B1 (en) 1998-09-25 2002-09-17 Thermosoft International Corporation Multi-conductor soft heating element
KR100842985B1 (en) 2006-07-21 2008-07-01 엘에스전선 주식회사 Micro Coaxial cable

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683673A (en) * 1952-03-10 1954-07-13 Electrofilm Corp Film-type heating element
US3727029A (en) * 1964-07-01 1973-04-10 Moore & Co Samuel Composite electrically heated tubing product
US4323174A (en) * 1979-10-11 1982-04-06 Wood Thomas J Apparatus for dispensing mastic material
US4455474A (en) * 1981-11-27 1984-06-19 Nordson Corporation Thermally insulated electrically heated hose for transmitting hot liquids
US4553023A (en) * 1981-11-27 1985-11-12 Nordson Corporation Thermally insulated electrically heated hose for transmitting hot liquids
US4874925A (en) * 1987-06-01 1989-10-17 Dickenson Wilk A Electrically heated hose assembly for conveying electrically conductive liquids
US5394507A (en) * 1990-08-31 1995-02-28 Tokyo Kogyo Boyeki Shokai, Ltd. Heated tube with a braided electric heater
US5381511A (en) * 1993-06-02 1995-01-10 W. L. Gore & Associates, Inc. Flexible electrically heatable hose
US5832178A (en) * 1996-06-25 1998-11-03 Crafco, Incorporated Hot melt mix applicator with electrically heated hose and wand with temperature-controlled electric generator
US5933574A (en) * 1998-02-09 1999-08-03 Avansino; Gary L. Heated fluid conduit
US6738566B2 (en) * 2001-07-03 2004-05-18 Nordson Corporation Insulated hose for transmitting hot liquids
US7266293B1 (en) * 2004-05-03 2007-09-04 Dundas Robert D Hose for hot liquids having heating element
US7732735B2 (en) * 2005-05-06 2010-06-08 Illinois Tool Works Inc. Hot melt adhesive hose assembly having redundant components
US20070045275A1 (en) * 2005-08-09 2007-03-01 Steinhauser Louis P Modular heater systems
US7991273B2 (en) * 2005-12-22 2011-08-02 Volvo Lastvagnar Ab Heated coupling

Also Published As

Publication number Publication date
US9410652B2 (en) 2016-08-09
US20100209085A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
US8559800B2 (en) Heated fluid conduit end covers, systems and methods
US9410652B2 (en) Heated fluid conduits, systems and methods
EP1721097B1 (en) Electrically heatable cabling
US7991273B2 (en) Heated coupling
CN103180654B (en) Can heat medium pipe and manufacture method thereof
US20070176418A1 (en) Electrically heatable coupling and an encased fluid hose with an electrically heatable coupling
CN101300412B (en) Apparatus including heating pipe for purifying vehicle vent gas through selectivity catalytic reduction
EP3625494B1 (en) Heated fluid conduit
CN103727348A (en) Automotive SCR system electrical heating urea pipe and liquid anti-freezing delivery pipe
CN110073084B (en) Electric immersion heater for diesel engine exhaust treatment fluid reservoir

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION