US20160345823A1 - Perimeter - Google Patents

Perimeter Download PDF

Info

Publication number
US20160345823A1
US20160345823A1 US15/117,574 US201515117574A US2016345823A1 US 20160345823 A1 US20160345823 A1 US 20160345823A1 US 201515117574 A US201515117574 A US 201515117574A US 2016345823 A1 US2016345823 A1 US 2016345823A1
Authority
US
United States
Prior art keywords
region
stimulus
perimetry
stimulus presentation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/117,574
Inventor
Satoshi Shimada
Takuya Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Assigned to KOWA COMPANY, LTD. reassignment KOWA COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARA, TAKUYA, SHIMADA, SATOSHI
Publication of US20160345823A1 publication Critical patent/US20160345823A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0033Operational features thereof characterised by user input arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images

Definitions

  • the invention relates to a perimeter for inspecting a visual field of an examinee in a state that the examinee fixates a predetermined stimulus, and especially to the perimeter that is configured to designate a region that is expected to be inspected.
  • the perimeter has been used in order to find ocular diseases, such as the glaucoma.
  • a conventional problem in such a perimeter is that it takes a longer time to conduct a perimetry on the whole visual field that results in heavy burden on a patient. is
  • FIG. 7 is a typical view that shows an example of a way of designating the region, a reference number A denotes the fundus image, and B denotes the designated region.
  • Patent-related document 1 Japanese Patent Application Publication No. H06-054804
  • Patent-related document 2 Japanese Patent Application Publication No. 2000-262472
  • the examinee is forced to fixate the fixation point and keep his (her) concentration till finish of the perimetry that results in rather heavy burden on the examinee although the perimetry time is shorter than the perimetry on the whole visual field.
  • a lesion can be found with a high possibility in such an perimetry (that is, the perimetry which is conducted on the designated region), for this reason the perimetry with high precision is expected, and it is preferable to reduce the burden on the examinee as much as possible and keep the examinee's concentration.
  • An object of the invention is to provide the perimeter for solving the above-mentioned problems.
  • a first aspect of the invention is a perimeter ( 1 ) exemplarily shown in FIG. 1 for inspecting a visual field of an examinee in such a state the examinee fixates a fixation point, comprising:
  • a second aspect of the invention is a perimeter ( 1 ) wherein the stimulus presenter ( 6 ) is configured to present the stimuli to each stimulus presentation spot, gradually changing their brightness twice or more, and the position determiner ( 5 ) determines the total number of the stimulus presentation spots and the positions when the upper limit time (Tmax) is set through the upper limit condition setter ( 4 ), and the position of each stimulus presentation spot when the total number of the stimulus presentation spots is set through the upper limit condition setter ( 4 ).
  • a third aspect of the invention is a perimeter ( 1 ), wherein the region determiner ( 3 ) determines the inspection region (B 1 ) as the stimulus presentation region (E 1 ) when a ratio that the inspection region occupies the designation image (A) with respect to an area or a length (“the occupancy ratio” hereinafter) is a predetermined standard value or higher (see FIG. 3( a ) , “the first state” hereinafter), and determines both regions (C 2 and B 2 ), the region separated in an up/down direction, an oblique direction and a right/left direction from the inspection region (B 2 ) (see FIG.
  • the stimulus presenter ( 6 ) is configured to present the stimuli in the inspection region (B 1 ) in a case of the first state, and to present the stimuli in both regions (C 2 and B 2 ), the spaced region and the inspection region in a case of the second state.
  • a fourth aspect of the invention is the perimeter ( 1 ), wherein the position determiner ( 5 ) determines the stimulus presentation spots (P 1 , . . . , P 1 ′, . . . ) such that “the total number of the stimulus presentation spots (P 1 , . . . ) in the inspection region (B 2 of FIG. 4 )” is more than “the total number of the stimulus presentation spots (P 1 ′, . . . ) in the spaced region (C 2 )” in a case of the second state.
  • a fifth aspect of the invention is the perimeter ( 1 ), wherein the region designator ( 2 ) is configured to display the perimetry result image and to designate the inspection region (B, B 1 to B 3 ) on the perimetry result image, and the position determiner ( 5 ) is configured to determine at least one of the stimulus presentation spots in the past perimetry as the stimulus presentation spot at this time of the perimetry.
  • a sixth aspect of the invention is the perimeter ( 1 ), further comprising a state confirmor ( 9 ) that confirms a progress state of the perimetry during the perimetry based upon signals from the stimulus presenter ( 6 ) and the operation device ( 7 ), a finish time predictor ( 10 ) that predicts whether the perimetry finishes for all the stimulus presentation spots within the upper limit time (Tmax) based upon the progress state confirmed by the state confirmor ( 9 ), and a stimulus controller ( 11 ) that controls the stimulus presenter ( 6 ) not to present the stimuli to a part of the stimulus presentation spots if the finish time predictor ( 10 ) predicted that the perimetry does not finish on all the stimuli presentation spots within the upper limit time (Tmax).
  • a seventh aspect of the invention is the perimeter ( 1 ), wherein the position determiner ( 5 ) is configured to give a priority to each stimulus presentation spot, and the stimulus controller ( 11 ) is configured to omit the stimulus presentation to the spot having a lower priority.
  • a eighth aspect of the invention is the perimeter ( 1 ), further comprising a state confirmor ( 9 ) that confirms the progress state of the perimetry during the perimetry based upon the signals from the stimulus presenter ( 6 ) and the operation device ( 7 ), a finish time predictor ( 10 ) that predicts whether the perimetry finishes within the upper limit time (Tmax) for all stimulus presentation spots based upon the progress state confirmed by the state confirmor ( 9 ) and a stimulus controller ( 11 ) that controls the stimulus presenter ( 6 ) not to present the stimuli onto a part of the stimulus presentation spots if the finish time predictor ( 10 ) predicted that the perimetry does not finish within the upper limit time (Tmax) for all the stimulus presentation spots,
  • the stimulus presenter ( 6 ) presents the stimuli in the inspection region (B 1 ) in a case of the first state, and presents the stimuli in both regions (C 2 and B 2 ), the spaced region (c 2 ) and the inspection region (B 2 ) in a case of the second state;
  • the stimulus controller ( 11 ) controls the stimulus presenter ( 6 ) not to present the stimulus onto a part of the stimulus presentation spots in the spaced region (C 2 ) if the finish time predictor ( 10 ) predicted that the perimetry does not finish within the upper limit time (Tmax) for all the stimulus presentation spots and it is in the second state.
  • the perimetry is configured to be conducted by setting the upper limit condition, so that the examinee knows a time to finish of the perimetry and is capable to keeping his (her) concentration in a case where the required time is not known. At the result, the precision of the perimetry can be improved.
  • the examinee it is difficult for the examinee to predict the stimulus presentation spot even if the inspection region is narrow, thereby obtaining the correct perimetry result that does not receive the examinee's prediction.
  • the inspection region can be inspected within the determined upper limit condition in detail and the perimetry result with higher precision can be obtained.
  • the 5th aspect of the invention it is possible to compare the past perimetry result and this time of the perimetry result with each other at the same stimulus presentation spot, and to grasp the progress state of the ocular diseases.
  • the 8th aspect of the invention it is possible to keep the perimetry precision of the inspection region in an excellent condition with no omission of stimulus presentation in the inspection region.
  • FIG. 1 is a block diagram that shows an example of a structure of a perimeter according to the present invention.
  • FIG. 2 is a typical view that shows an example of a structure of a region designator.
  • FIG. 3 ( a ) through ( c ) are typical views exemplarily show positions of an inspection region and the like.
  • FIG. 4 is a typical view that shows an example of stimulus presentation spots in the inspection region and a spaced region.
  • FIG. 5 is a conceptual view that shows a way of a threshold perimetry in one stimulus presentation spot.
  • FIG. 6 is a perspective view that shows an example of a structure of the perimeter.
  • FIG. 7 is a typical view that schematically shows an example of a way of designating a region (inspection region) (conventional example).
  • FIGS. 1 through 6 Embodiments of the invention are now explained, referring to appended figures FIGS. 1 through 6 .
  • a perimeter according to the invention that exemplarily shown with a reference number 1 of FIG. 1 , is for testing a visual field of an examinee in a state that he (or she) fixates a predetermined fixation point, such as a central position of a visual field dome 61 exemplarily shown in FIG. 6 ), and has a region designator 2 , a region determiner 3 , an upper limit condition setter 4 , a position determiner 5 , a stimulus presenter 6 , an operation device 7 and a result judger 8 .
  • the region designator 2 displays “an image that shows a result of a past perimetry (“the perimetry result image” hereinafter)” or “a normal fundus image that does not show the result of the perimetry (see a reference number A of FIG. 2 , FIG. 3( a ) to ( c ) and FIG. 4 ).
  • the perimetry result image and the fundus image are referred to as “the designation image” hereinafter.), and designates a region on which the perimetry is to be done (see a reference number B of FIG. 2 and reference numbers B 1 to B 3 of FIG. 3( a ) to ( c ) and FIG. 4 . “the inspection region” hereinafter) on the designation image A.
  • the region determiner 3 determines the region on which a stimulus is actually presented (see reference numbers E 1 to E 3 of FIG. 3( a ) to ( c ) . “the stimulus presentation region” hereinafter) based upon the designated inspection regions B, B 1 to B 3 .
  • the upper limit condition setter 4 sets “upper limit for conducting the perimetry (“the upper limit time” hereinafter) Tmax” or “total number of spots in the stimulus presentation region where the stimuli are presented (“the stimulus presentation spot” hereinafter) (both upper limit time and the total number are referred to as “the upper limit condition” hereinafter).
  • the position determiner 5 determines a position of each stimulus presentation spot at least in order to finish the perimetry on a condition lower than the upper limit condition (that is, the time shorter than the upper limit time or the stimulus presentation spots the number of which is smaller than the total number).
  • the stimulus presenter 6 presents the stimuli having a predetermined brightness in order at each position that is determined through the position determiner 5 .
  • the operation device 7 is operated by the examinee who perceives the presented stimulus.
  • the result judger 8 judges the perimetry result based upon signals from the stimulus presenter 6 and the operation device 7 .
  • reference numbers “B 1 , “B 2 ” and “B 3 ” are used, and when such a distinction is not necessary, only the reference number “B” is used in the following explanation. This is similar regarding the stimulus presentation region, and if it is necessary to distinguish the stimulus presentation regions by their shapes and positions, reference numbers “E 1 , “E 2 ” and “E 3 ” are used, and when such a distinction is not necessary, only the reference number “E” is used.
  • the perimetry is done on the designated region as the present invention since ocular diseases, such as the glaucoma, exists in such a region with a higher possibility, so that it is necessary to enhance the precision of the perimetry in comparison with a normal perimetry (that is, the perimetry which is done on whole visual field with no region designation), and necessary to highly keep the examinee's concentration during the perimetry.
  • the perimetry is configured to be done by setting the upper limit condition (concretely speaking, the upper limit time Tmax and the total number of the stimulus presentation spots), the examinee knows a predetermined required time till the finish of the perimetry, and is able to highly keep his (or her) concentration in comparison with the case where required predetermined time is not known. At the result, it is improve the precision of the perimetry.
  • the region designator 2 exemplarily shown in FIG. 2 has a monitor 20 , such as a liquid crystal display, and a monitor drive portion (not shown) through which the fundus image A and the perimetry result image of the examinee (not shown) are displayed on the monitor 20 , and an input portion 21 for designating the inspection region B on a screen of the monitor 20 .
  • the input portion 21 exemplarily shown in FIG. 2 is a mouse, but may be a stylus pen, or the other well-known input device.
  • the inspection region B exemplarily shown in FIG. 2 is a rectangular shape, but may have the other shape, such as a circle or an optional shape.
  • the region on which the perimetry is expected (the inspection region) varies among patients. For instance, rather wider region may be inspected for some patients (the examinees) (for instance, see B 1 of FIG. 3( a ) ), and it may be sufficient to inspect only the extremely narrow region for the other patients (see B 2 and B 3 of FIGS. 3 ( b ), ( c ) ). In the case where the stimuli are presented on only the narrow inspection region, the patient may predict the rough region where the stimuli are presented and it is not possible to obtain the correct perimetry result by the influence of his (her) prediction.
  • the region determiner 3 in the invention determines the inspection region B 1 as the stimulus presentation region E 1 when the ratio that the inspection region B 1 occupies the designation image A (that is, in the area of the fundus) that is the ratio regarding its area and length and is referred to as “occupancy ratio” hereinafter is a predetermined standard value or higher (“the first state” hereinafter) as exemplarily shown in FIG.
  • the stimulus presenter 6 presents the stimuli on the inspection region B in the case of the first state, and on both the spaced region C and the inspection region B in the case of the second state.
  • a predetermined value is 60%, 70% or so of the designation image A (that is, the area of the ocular fundus) in the area or the maximum length (that is, the diameter of the designation image A that is almost a circle), and is the value with which the precision of the perimetry is expected to be similar to the case where the perimetry is conducted while the stimuli are presented to the whole visual field.
  • the examinee is difficult to predict the stimulus presentation spot since the inspection region itself is sufficiently wide, thereby obtaining the correct perimetry result that does not receive the influence of the examinee's prediction.
  • the stimuli are presented also to the spot spaced from the inspection region B (that is, the spaced region C) in addition to the inspection region B, so that the examinee is difficult to predict the stimulus presentation spot, thereby obtaining the correct result that does not receive the influence of the examinee's prediction.
  • the stimuli are presented to both the inspection region B and the spaced region C under the condition lower than the upper limit condition.
  • the spaced regions C is only one or more.
  • the region determiner 3 may compare one of the area and the length of the inspection region with a predetermined standard value.
  • the region determiner 3 may judge whether “the area” of the inspection region is a predetermined standard value or higher, or lower in a case where the dimension ratio of the length and the width of the inspection region is close to 1 (one) (that is, the dimensions of the length and width are almost equal), and may judge whether “the maximum length” is a predetermined standard value or higher, or lower in a case where the dimension ratio of the length and the width of the inspection region is extremely different.
  • the position determiner 5 determines the stimulus presentation spots so that “the total number of the stimulus presentation spots (P 1 , . . . ) in the inspection region (see B 2 of FIG. 4 )” are more than “the total number of the stimulus presentation spots (P 1 ′, . . . ) in the spaced region (C 2 )” in the case of the second state.
  • the total number of the stimulus presentation spots is 100 spots, for instance, the total number of the stimulus presentation spots in the inspection region B may be 70 spots and the total number of the stimulus presentation spots in the spaced region C may be 30 spots. In such a case, it is possible to inspect the inspection region B within the determined upper limit condition, such as the upper limit time Tmax), and to obtain the perimetry result with high precision.
  • the space region C 2 is set at the position symmetric with the inspection region B in the up/down direction on the basis of a horizontal base line HL (the horizontal line including a center of a retina G (that is, a center of a fovea) in the designation image A) in a case where it is in the second state and the inspection region B 2 is on the position spaced from the horizontal base line HL.
  • a horizontal base line HL the horizontal line including a center of a retina G (that is, a center of a fovea) in the designation image A
  • “the total number of the stimulus presentation spots in the inspection region B 2 ” may be more than “the total number of the stimulus presentation spots in the spaced region C 2 ”. If the stimulus presentation spots (P 1 , . . .
  • a main stimulus presentation spot in the inspection region B 2 is referred to as “a main stimulus presentation spot”
  • the stimulus presentation spots (P 1 ′, . . . ) in the spaced region C 2 is referred to as “a sub stimulus presentation spot”
  • one main stimulus presentation spot (P 1 , for instance) may always be set at the position symmetric with the position of the sub stimulus presentation spot (for instance, P 1 ′) with respect to the horizontal base line HL.
  • “the stimulus presented to the main stimulus presentation spot” and “the stimulus presented to the sub presentation spot” may have the same size and brightness.
  • the spaced region may be set at the position excluding one symmetric with respect to the horizontal base line HL (the position apart in the up/down direction, the lateral direction or the oblique direction).
  • the inspection region B 3 and the spaced region C 3 may be the stimulus presentation regions, or the inspection region B 3 , the spaced region C 3 and the symmetric region D 3 may be the stimulus presentation regions.
  • the inspection region B 3 , the spaced region C 3 and the symmetric region D 3 are the stimulus presentation regions and the stimulus presentation spot in the inspection region B 3 is referred to as “the main presentation spot” and the stimulus presentation spot in the symmetric region D 3 is referred to as “the sub stimulus presentation spot”
  • one main stimulus presentation spot may always be set at the position symmetric with the position of the sub stimulus presentation spot on the basis of the horizontal base line HL.
  • the stimulus presented to the main stimulus presentation spot and “the stimulus presented to the sub presentation spot” may have the same size and brightness.
  • the gap of the symmetry in the up/down direction can be found, thereby easily finding ocular diseases, such as the glaucoma.
  • the stimuli may be presented in such a state that “the total number of the stimulus presentation spots in the inspection region B 3 ”>“the total number of the stimulus presentation spots in the symmetric region D 3 ”>“the total number of the stimulus presentation spots in the spaced region C 3 ”.
  • the stimuli may be presented in such a state that stimulus presentation density in the inspection region B 3 ′′>“the stimulus presentation density in the symmetric region D 3 (if the inspection region B 3 overlaps the symmetric region D 3 as exemplarily shown in FIG. 3( c ) , the spot that does not overlap the inspection region B 3 in the symmetric region D 3 )>“the stimulus presentation density in the spaced region C 3 ”.
  • the upper limit condition setter 4 There are various kinds of the upper limit condition setter 4 , and these are a graphical user interface on the screen (and a pointing device for setting the upper limit condition on the interface), and some kind of switch attached to the perimeter, such as a dial switch, for instance.
  • Such an upper limit condition setter 4 sets any one of “the upper limit time Tmax” and “the total number of the stimulus presentation spots”. Concretely speaking, it has a function to set only the upper limit time Tmax, a function to set only the total number of the stimulus presentation spots, and a function to set both “the upper limit time Tmax” and “the total number of the stimulus presentation spots, and the examiner is able to select it as needed.
  • the position determiner 5 determines the total number N of the stimulus presentation spots and the positions in the stimulus presentation region E when the upper limit condition setter 4 sets the upper limit time Tmax, and determines the position of each stimulus presentation spot when the upper limit condition setter 4 sets the total number of the stimulus presentation spots.
  • the stimulus presenter 6 presents the stimuli two times or more, gradually changing the brightness of the stimulus at each stimulus presentation spot (the details are mentioned hereinafter), and the position determiner 5 may determine the number of times to present the stimuli at each stimulus presentation spot (that is, the number of times to present the stimuli at each presentation spot, gradually changing the brightness, four times in the example as shown in FIG. 5 ( 1 ) to ( 4 )).
  • the total number N of the stimulus presentation spots is obtained with Tmax ⁇ t.
  • the stimulus presenter 6 sometimes presents the stimuli onto the spaced region C and the symmetric region D in addition to the inspection region B, and it is necessary for the position determiner 5 to determine the number N 1 of the stimulus presentation spots in the inspection region B, the number N 2 of the stimulus presentation spots in the spaced region C and the number N 3 of the stimulus presentation spots in the symmetric region D so as to be N 1 +N 2 +N 3 ⁇ N.
  • the position determiner 5 may determine at least one of “the stimulus presentation spots in the past perimetry (the positions onto which the stimuli were presented) as “the stimulus presentation spots in this time of the perimetry (the positions onto which the stimuli to be presented). By doing so, the result of the past perimetry and the result of this time of the perimetry can be compared with each other in the same stimulus presentation spot, thereby grasping the progress of the ocular disease.
  • the perimetry images are stored, adding identification information of the patients, thereby comparing the perimetry results as mentioned before through the identification information.
  • the region designator 2 displays the perimetry result image, highlighting the spots which perimetry result was bad (the bad spots rather than a predetermined standard) that are the stimulus presentation spots in the past perimetry (the positions onto which the stimuli were actually presented). By doing so, it is easily grasp the regions to be inspected again.
  • the position determiner 5 may determine “the spots which perimetry result was bad in the stimulus presentation spots in the past perimetry (the spots on which the stimuli were presented)” as “the stimulus presentation spots in this time of the perimetry (the spots on which the stimuli are to be presented)”.
  • the stimulus presenter 6 is configured to present the stimuli, gradually changing their brightness at the respective stimulus presentation spots twice or more and to conduct a so-called threshold perimetry.
  • FIG. 5 is a conceptual diagram that shows a way of the threshold perimetry at one stimulus presentation spot.
  • the stimuli are presented four times in order of (1) ⁇ (2) ⁇ (3) ⁇ (4), and the brightness of the respective stimuli are gradually changed in order of 21 dB ⁇ 25 dB (rather darker than 21 dB) ⁇ 29 dB (rather darker than 25 dB) ⁇ 27 dB (rather brighter than 29 dB).
  • the stimulus presenter 6 may be configured to have a projection optical system 60 for projecting the stimuli Q and the visual field dome (projection member) 61 , but is not limited to such a configuration shown in FIG. 6 . Any configuration may be taken as long as the stimuli are presented in the visual field of the examinee. For instance, two or more LED may be located and are selectively lighted.
  • the projection member 61 as shown in FIG. 6 is in the shape of a hemisphere dome (visual field dome), but is not limited to such a configuration, and may have a curve surface excluding the hemispheric surface, or a flat surface.
  • the stimulus presenter 6 may be configured to present the stimuli so as to make “the stimulus presented onto the spaced region C” bigger than and/or brighter than “the stimulus presented onto the spaced region C”.
  • the examinee is easy to perceive the stimuli that are presented onto the spaced region C, it is possible to prevent the examinee's concentration from being poured onto only the inspection region B, and obtain the correct perimetry result that does not receive the influence of the examinee's prediction.
  • a well-known mechanism such as a push switch, is used for the above-mentioned operation device 7 .
  • the perimeter 1 presents the stimuli onto two or more spots in the stimulus presentation regions E 1 to E 3 , and presents the stimuli twice or more, receiving the responses from the examinee, not once for one spot. If the response from the examinee is late, then, it takes a longer time for the perimetry, so that the perimetry may not finish within the upper limit time Tmax.
  • the perimeter 1 has a state confirmor 9 , a finish time predictor 10 and a stimulus controller 11 .
  • the state confirmor 9 confirms the progress state of the perimetry during the perimetry based upon signals from the stimulus presenter 6 and the operation device 7 .
  • the finish time predictor 10 predicts whether the perimetry finishes within the upper limit time Tmax for all stimulus presentation spots based upon the progress state confirmed by the state confirmor 9 .
  • the stimulus controller 11 controls the stimulus presenter 6 not to present the stimulus onto a part of the stimulus presentation spots if the finish time predictor 10 predicted the perimetry does not finish within the upper limit time Tmax for all stimulus presentation spots.
  • the perimetry in the present invention is conducted, receiving the responses from the examinee, and it may take a longer time for the perimetry on each stimulus presentation spot.
  • the finish time predictor 10 may have a time measurer for measuring a passage time from the start of the perimetry.
  • the stimulus presentation may be omitted in such away that when the stimuli are presented to one stimulus presentation spot, gradually changing the brightness, the number of the stimulus presentation is reduced, or all stimulus presentation is omitted to some stimulus presentation spot (the spot to which the stimulus presentation is scheduled).
  • the latter method that is, the method of omitting all stimulus presentation to some stimulus presentation spot
  • the latter method that is, the method of omitting all stimulus presentation to some stimulus presentation spot
  • the above-mentioned “a part of stimulus presentation spots (that is, the spots that are omitted to be presented by the stimulus controller 11 )” is not ones in the inspection region B, but ones in the spaced region C.
  • the finish time predictor 10 predicted the perimetry does not finish within the upper limit time Tmax for all the stimulus presentation spots and it is in the second state
  • the stimulus controller 11 may control the stimulus presenter 6 not to present the stimuli onto a part of the stimulus presentation spots in the spaced region C. By doing so, the stimulus presentation is not omitted on the inspection region B, thereby well keeping the precision of the perimetry in the inspection region B.
  • the finish time predictor 10 obtains from respective data, the upper limit time Tmax that is set, already passed time T 0 , number N a of the stimulus presentation spots on which stimulus presentation does not finish (the number obtained from the information from the state confirmor 9 ) and approximate time required for the perimetry on one stimulus presentation spot, the time left for the perimetry “Tmax ⁇ T 0 ” and time necessary for remaining perimetry “N a ⁇ t”, and compares both times.
  • the above-mentioned time t (that is, the approximate time necessary for the perimetry on one stimulus presentation spot) is obtained from the respective data, “the number n of the stimulus presentation on each stimulus presentation spot (the number of times that is expected)”, “the expected response time ⁇ t 1 of the examinee (the time from the presentation of the stimulus till the response from the examinee)” and “the time ⁇ t 2 till the next stimulus presentation if no response is received from the examinee (the time that is set).
  • the position determiner 5 is configured to give the respective stimulus presentation spots priority (the orders from the view of the importance of the perimetry), and the stimulus controller 11 omits the stimulus presentation on the spot having the lower priority (the stimulus presentation spot).
  • the stimulus controller 11 may conduct the stimulus presentation that has been omitted at this time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

In a perimetry to be conducted, designating an inspection region through a region designator, a perimeter is configured to set a required time of the perimetry (upper limit time) through an upper limit condition setter and to determine total number or positions of stimulus presentation spots based upon the upper limit time. In such a configuration, an examinee knows the time to finish the inspection, and is able to highly keep his (her) concentration in comparison with a case where the required time is not known, thereby improving precision of the inspection.

Description

    TECHNICAL FIELD
  • The invention relates to a perimeter for inspecting a visual field of an examinee in a state that the examinee fixates a predetermined stimulus, and especially to the perimeter that is configured to designate a region that is expected to be inspected.
  • BACKGROUND ART
  • The perimeter has been used in order to find ocular diseases, such as the glaucoma. A conventional problem in such a perimeter is that it takes a longer time to conduct a perimetry on the whole visual field that results in heavy burden on a patient. is
  • Then, such a perimeter that the region on which the perimetry is conducted is designated on a fundus image, and the perimetry is conducted on such a designated region has been proposed (see Patent-related documents 1 and 2, for instance).
  • FIG. 7 is a typical view that shows an example of a way of designating the region, a reference number A denotes the fundus image, and B denotes the designated region.
  • According to such a perimeter, it is possible to designate only the region on which the perimetry is to be conducted and conduct the perimetry on only such a region, and to shorten the perimetry time and reduce the burden on examinees and examiners, and to effectively detect the disorder of the visual field in comparison with a case where the perimetry is conducted on the whole visual field.
  • PRIOR ART Patent-Related Document
  • [Patent-related document 1]: Japanese Patent Application Publication No. H06-054804
    [Patent-related document 2]: Japanese Patent Application Publication No. 2000-262472
  • DISCLOSURE OF INVENTION Problems to be Solved by Invention
  • The examinee is forced to fixate the fixation point and keep his (her) concentration till finish of the perimetry that results in rather heavy burden on the examinee although the perimetry time is shorter than the perimetry on the whole visual field. A lesion can be found with a high possibility in such an perimetry (that is, the perimetry which is conducted on the designated region), for this reason the perimetry with high precision is expected, and it is preferable to reduce the burden on the examinee as much as possible and keep the examinee's concentration.
  • An object of the invention is to provide the perimeter for solving the above-mentioned problems.
  • Means for Solving Problems
  • A first aspect of the invention is a perimeter (1) exemplarily shown in FIG. 1 for inspecting a visual field of an examinee in such a state the examinee fixates a fixation point, comprising:
      • when a region on which a perimetry is expected (See B of FIG. 2, and B1 to B3 of FIG. 3(a) to (c) and FIG. 4) is referred to as “the inspection region”, an upper limit time for conducting the perimetry (Tmax) is referred to as “the upper limit time”, a region to which stimuli are presented (see E1 to E3 of FIG. 3 (a) to (c)) to is referred to as “the stimulus presentation region”, and a spot to which the stimuli are presented (see P1 of FIG. 4) in the stimulus presentation region is referred to as “the stimulus presentation spot”;
      • a region designator (2) that is configured to display an image that shows a past perimetry result or a fundus image (both images are collectively referred to as “the designation images” hereinafter, see FIG. 2 and FIGS. 3(a) to (c) and A of FIG. 4), and to designate the inspection region on the designation image (A);
      • a region determiner (3) that determines the stimulus presentation region (E1 to E3) based upon the designated inspection region (B, B1 to B3);
      • an upper limit condition setter (4) that sets total number of the stimulus presentation spots (P1, . . . ) in the stimulus presentation region or the upper limit time (Tmax) (that are collectively referred to as “the upper limit condition” hereinafter);
      • a position determiner (5) that determines a position of each stimulus presentation spot so as to finish the perimetry under a condition lower than the upper limit condition (Tmax);
      • a stimulus presenter (6) that presents the stimulus with a predetermined brightness to each position determined through the position determiner (5) in order;
      • an operation device (7) to be operated by the examinee who perceived the presented stimulus; and
      • a result judger (8) that judges the perimetry result based upon signals from the stimulus Presenter (6) and the operation device (7).
  • A second aspect of the invention is a perimeter (1) wherein the stimulus presenter (6) is configured to present the stimuli to each stimulus presentation spot, gradually changing their brightness twice or more, and the position determiner (5) determines the total number of the stimulus presentation spots and the positions when the upper limit time (Tmax) is set through the upper limit condition setter (4), and the position of each stimulus presentation spot when the total number of the stimulus presentation spots is set through the upper limit condition setter (4).
  • A third aspect of the invention is a perimeter (1), wherein the region determiner (3) determines the inspection region (B1) as the stimulus presentation region (E1) when a ratio that the inspection region occupies the designation image (A) with respect to an area or a length (“the occupancy ratio” hereinafter) is a predetermined standard value or higher (see FIG. 3(a), “the first state” hereinafter), and determines both regions (C2 and B2), the region separated in an up/down direction, an oblique direction and a right/left direction from the inspection region (B2) (see FIG. 3(b), “the spaced region” hereinafter) and the inspection region (B2) as the stimulus presentation region (E2) when the occupancy ratio is lower than a predetermined standard value (see FIG. 3(b), “the second state” hereinafter); and the stimulus presenter (6) is configured to present the stimuli in the inspection region (B1) in a case of the first state, and to present the stimuli in both regions (C2 and B2), the spaced region and the inspection region in a case of the second state.
  • A fourth aspect of the invention is the perimeter (1), wherein the position determiner (5) determines the stimulus presentation spots (P1, . . . , P1′, . . . ) such that “the total number of the stimulus presentation spots (P1, . . . ) in the inspection region (B2 of FIG. 4)” is more than “the total number of the stimulus presentation spots (P1′, . . . ) in the spaced region (C2)” in a case of the second state.
  • A fifth aspect of the invention is the perimeter (1), wherein the region designator (2) is configured to display the perimetry result image and to designate the inspection region (B, B1 to B3) on the perimetry result image, and the position determiner (5) is configured to determine at least one of the stimulus presentation spots in the past perimetry as the stimulus presentation spot at this time of the perimetry.
  • A sixth aspect of the invention is the perimeter (1), further comprising a state confirmor (9) that confirms a progress state of the perimetry during the perimetry based upon signals from the stimulus presenter (6) and the operation device (7), a finish time predictor (10) that predicts whether the perimetry finishes for all the stimulus presentation spots within the upper limit time (Tmax) based upon the progress state confirmed by the state confirmor (9), and a stimulus controller (11) that controls the stimulus presenter (6) not to present the stimuli to a part of the stimulus presentation spots if the finish time predictor (10) predicted that the perimetry does not finish on all the stimuli presentation spots within the upper limit time (Tmax).
  • A seventh aspect of the invention is the perimeter (1), wherein the position determiner (5) is configured to give a priority to each stimulus presentation spot, and the stimulus controller (11) is configured to omit the stimulus presentation to the spot having a lower priority.
  • A eighth aspect of the invention is the perimeter (1), further comprising a state confirmor (9) that confirms the progress state of the perimetry during the perimetry based upon the signals from the stimulus presenter (6) and the operation device (7), a finish time predictor (10) that predicts whether the perimetry finishes within the upper limit time (Tmax) for all stimulus presentation spots based upon the progress state confirmed by the state confirmor (9) and a stimulus controller (11) that controls the stimulus presenter (6) not to present the stimuli onto a part of the stimulus presentation spots if the finish time predictor (10) predicted that the perimetry does not finish within the upper limit time (Tmax) for all the stimulus presentation spots,
      • wherein the region determiner (3) determines the inspection region (E1) as the stimulus presentation region (B1) when the ratio that the inspection region occupies the designation image (A) regarding the area and length (“the occupancy ratio” hereinafter) is a predetermined standard value or higher (see FIG. 3(a), “the first state” hereinafter), and determines both regions (C2 and B2), the regions separated in an up/down direction, an oblique direction and a right/left direction from the inspection region (B2) (“the spaced region” hereinafter), and the inspection region as the stimulus presentation region (E2) when the occupancy ratio is lower than a predetermined standard value (see FIG. 3(b), “the second state” hereinafter);
  • the stimulus presenter (6) presents the stimuli in the inspection region (B1) in a case of the first state, and presents the stimuli in both regions (C2 and B2), the spaced region (c2) and the inspection region (B2) in a case of the second state; and
  • the stimulus controller (11) controls the stimulus presenter (6) not to present the stimulus onto a part of the stimulus presentation spots in the spaced region (C2) if the finish time predictor (10) predicted that the perimetry does not finish within the upper limit time (Tmax) for all the stimulus presentation spots and it is in the second state.
  • The number in parentheses shows the corresponding element in the drawings for the sake of convenience, accordingly, the descriptions are not restricted and bound by the descriptions on the drawings.
  • Effects of Invention
  • According to the 1st and 2nd aspects of the invention, the perimetry is configured to be conducted by setting the upper limit condition, so that the examinee knows a time to finish of the perimetry and is capable to keeping his (her) concentration in a case where the required time is not known. At the result, the precision of the perimetry can be improved.
  • According to the 3rd aspect of the invention, it is difficult for the examinee to predict the stimulus presentation spot even if the inspection region is narrow, thereby obtaining the correct perimetry result that does not receive the examinee's prediction.
  • According to the 4th aspect of the invention, the inspection region can be inspected within the determined upper limit condition in detail and the perimetry result with higher precision can be obtained.
  • According to the 5th aspect of the invention, it is possible to compare the past perimetry result and this time of the perimetry result with each other at the same stimulus presentation spot, and to grasp the progress state of the ocular diseases.
  • According to the 6th and 7th aspects of the invention, even if it takes a longer time for the perimetry on each presentation spot, it is possible to finish the perimetry within the upper limit time by omitting a part of the stimulus presentation.
  • According to the 8th aspect of the invention, it is possible to keep the perimetry precision of the inspection region in an excellent condition with no omission of stimulus presentation in the inspection region.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a block diagram that shows an example of a structure of a perimeter according to the present invention.
  • FIG. 2 is a typical view that shows an example of a structure of a region designator.
  • FIG. 3 (a) through (c) are typical views exemplarily show positions of an inspection region and the like.
  • FIG. 4 is a typical view that shows an example of stimulus presentation spots in the inspection region and a spaced region.
  • FIG. 5 is a conceptual view that shows a way of a threshold perimetry in one stimulus presentation spot.
  • FIG. 6 is a perspective view that shows an example of a structure of the perimeter.
  • FIG. 7 is a typical view that schematically shows an example of a way of designating a region (inspection region) (conventional example).
  • PREFERRED EMBODIMENT
  • Embodiments of the invention are now explained, referring to appended figures FIGS. 1 through 6.
  • A perimeter according to the invention that exemplarily shown with a reference number 1 of FIG. 1, is for testing a visual field of an examinee in a state that he (or she) fixates a predetermined fixation point, such as a central position of a visual field dome 61 exemplarily shown in FIG. 6), and has a region designator 2, a region determiner 3, an upper limit condition setter 4, a position determiner 5, a stimulus presenter 6, an operation device 7 and a result judger 8. The region designator 2 displays “an image that shows a result of a past perimetry (“the perimetry result image” hereinafter)” or “a normal fundus image that does not show the result of the perimetry (see a reference number A of FIG. 2, FIG. 3(a) to (c) and FIG. 4). The perimetry result image and the fundus image are referred to as “the designation image” hereinafter.), and designates a region on which the perimetry is to be done (see a reference number B of FIG. 2 and reference numbers B1 to B3 of FIG. 3(a) to (c) and FIG. 4. “the inspection region” hereinafter) on the designation image A. The region determiner 3 determines the region on which a stimulus is actually presented (see reference numbers E1 to E3 of FIG. 3(a) to (c). “the stimulus presentation region” hereinafter) based upon the designated inspection regions B, B1 to B3. The upper limit condition setter 4 sets “upper limit for conducting the perimetry (“the upper limit time” hereinafter) Tmax” or “total number of spots in the stimulus presentation region where the stimuli are presented (“the stimulus presentation spot” hereinafter) (both upper limit time and the total number are referred to as “the upper limit condition” hereinafter). The position determiner 5 determines a position of each stimulus presentation spot at least in order to finish the perimetry on a condition lower than the upper limit condition (that is, the time shorter than the upper limit time or the stimulus presentation spots the number of which is smaller than the total number). The stimulus presenter 6 presents the stimuli having a predetermined brightness in order at each position that is determined through the position determiner 5. The operation device 7 is operated by the examinee who perceives the presented stimulus. The result judger 8 judges the perimetry result based upon signals from the stimulus presenter 6 and the operation device 7.
  • If it is necessary to distinguish the inspection regions by their shapes and positions, reference numbers “B1, “B2” and “B3” are used, and when such a distinction is not necessary, only the reference number “B” is used in the following explanation. This is similar regarding the stimulus presentation region, and if it is necessary to distinguish the stimulus presentation regions by their shapes and positions, reference numbers “E1, “E2” and “E3” are used, and when such a distinction is not necessary, only the reference number “E” is used. Furthermore, it is similar regarding a spaced region, and reference numbers “C2” and “C3” are used if it is not necessary to distinguish the stimulus presentation regions by their shapes and positions, and only the reference number “C” is used when such a distinction is not necessary.
  • The perimetry is done on the designated region as the present invention since ocular diseases, such as the glaucoma, exists in such a region with a higher possibility, so that it is necessary to enhance the precision of the perimetry in comparison with a normal perimetry (that is, the perimetry which is done on whole visual field with no region designation), and necessary to highly keep the examinee's concentration during the perimetry. According to the present invention, the perimetry is configured to be done by setting the upper limit condition (concretely speaking, the upper limit time Tmax and the total number of the stimulus presentation spots), the examinee knows a predetermined required time till the finish of the perimetry, and is able to highly keep his (or her) concentration in comparison with the case where required predetermined time is not known. At the result, it is improve the precision of the perimetry.
  • Subsequently, respective elements comprising the perimeter are now explained.
  • <Region Designator>
  • Preferably, the region designator 2 exemplarily shown in FIG. 2 has a monitor 20, such as a liquid crystal display, and a monitor drive portion (not shown) through which the fundus image A and the perimetry result image of the examinee (not shown) are displayed on the monitor 20, and an input portion 21 for designating the inspection region B on a screen of the monitor 20. The input portion 21 exemplarily shown in FIG. 2 is a mouse, but may be a stylus pen, or the other well-known input device. The inspection region B exemplarily shown in FIG. 2 is a rectangular shape, but may have the other shape, such as a circle or an optional shape.
  • <Region Determiner>
  • The region on which the perimetry is expected (the inspection region) varies among patients. For instance, rather wider region may be inspected for some patients (the examinees) (for instance, see B1 of FIG. 3(a)), and it may be sufficient to inspect only the extremely narrow region for the other patients (see B2 and B3 of FIGS. 3 (b), (c)). In the case where the stimuli are presented on only the narrow inspection region, the patient may predict the rough region where the stimuli are presented and it is not possible to obtain the correct perimetry result by the influence of his (her) prediction. Then, preferably, the region determiner 3 in the invention determines the inspection region B1 as the stimulus presentation region E1 when the ratio that the inspection region B1 occupies the designation image A (that is, in the area of the fundus) that is the ratio regarding its area and length and is referred to as “occupancy ratio” hereinafter is a predetermined standard value or higher (“the first state” hereinafter) as exemplarily shown in FIG. 3(a), and determines both regions, the regions separated in an up/down direction, an oblique direction and a right/left direction from the inspection regions B2 and B3 (“the spaced regions” hereinafter), and the inspection regions B2 and B3 as the stimulus presentation regions E2 and E3 when the occupancy ratio is lower than a predetermined standard value as exemplarily shown in FIGS. 3(b) and (c). Preferably, the stimulus presenter 6 presents the stimuli on the inspection region B in the case of the first state, and on both the spaced region C and the inspection region B in the case of the second state. In this case, “a predetermined value” is 60%, 70% or so of the designation image A (that is, the area of the ocular fundus) in the area or the maximum length (that is, the diameter of the designation image A that is almost a circle), and is the value with which the precision of the perimetry is expected to be similar to the case where the perimetry is conducted while the stimuli are presented to the whole visual field. In the case of the first state (that is, the case where the occupancy ratio is a predetermined standard value or higher), the examinee is difficult to predict the stimulus presentation spot since the inspection region itself is sufficiently wide, thereby obtaining the correct perimetry result that does not receive the influence of the examinee's prediction. In a case of the second state (that is, the occupation ratio is lower than a predetermined standard value), the stimuli are presented also to the spot spaced from the inspection region B (that is, the spaced region C) in addition to the inspection region B, so that the examinee is difficult to predict the stimulus presentation spot, thereby obtaining the correct result that does not receive the influence of the examinee's prediction. In the case of the second state, the stimuli are presented to both the inspection region B and the spaced region C under the condition lower than the upper limit condition. The spaced regions C is only one or more. The region determiner 3 may compare one of the area and the length of the inspection region with a predetermined standard value. Alternatively, the region determiner 3 may judge whether “the area” of the inspection region is a predetermined standard value or higher, or lower in a case where the dimension ratio of the length and the width of the inspection region is close to 1 (one) (that is, the dimensions of the length and width are almost equal), and may judge whether “the maximum length” is a predetermined standard value or higher, or lower in a case where the dimension ratio of the length and the width of the inspection region is extremely different.
  • Preferably, the position determiner 5 determines the stimulus presentation spots so that “the total number of the stimulus presentation spots (P1, . . . ) in the inspection region (see B2 of FIG. 4)” are more than “the total number of the stimulus presentation spots (P1′, . . . ) in the spaced region (C2)” in the case of the second state. In a case where the total number of the stimulus presentation spots is 100 spots, for instance, the total number of the stimulus presentation spots in the inspection region B may be 70 spots and the total number of the stimulus presentation spots in the spaced region C may be 30 spots. In such a case, it is possible to inspect the inspection region B within the determined upper limit condition, such as the upper limit time Tmax), and to obtain the perimetry result with high precision.
  • Preferably, the space region C2 is set at the position symmetric with the inspection region B in the up/down direction on the basis of a horizontal base line HL (the horizontal line including a center of a retina G (that is, a center of a fovea) in the designation image A) in a case where it is in the second state and the inspection region B2 is on the position spaced from the horizontal base line HL. In such a case also, “the total number of the stimulus presentation spots in the inspection region B2” may be more than “the total number of the stimulus presentation spots in the spaced region C2”. If the stimulus presentation spots (P1, . . . ) in the inspection region B2 is referred to as “a main stimulus presentation spot”, and the stimulus presentation spots (P1′, . . . ) in the spaced region C2 is referred to as “a sub stimulus presentation spot”, one main stimulus presentation spot (P1, for instance) may always be set at the position symmetric with the position of the sub stimulus presentation spot (for instance, P1′) with respect to the horizontal base line HL. Besides, “the stimulus presented to the main stimulus presentation spot” and “the stimulus presented to the sub presentation spot” may have the same size and brightness. When comparing the perimetry results of the main stimulus presentation spot P1, . . . and the sub stimulus presentation spot P1′, . . . that are symmetric in the up/down direction with each other in the above-mentioned case, the gap of the symmetry in the up/down direction can be found, thereby easily finding ocular diseases, such as the glaucoma.
  • On the contrary, in a case where it is in the second state, and the inspection region B3 includes the horizontal base line HL or approaches the horizontal base line HL, so that the region symmetric with the inspection region B3 on the basis of the horizontal base line HL (“the symmetric region” hereinafter) is not spaced from the inspection region B3 as exemplarily shown in FIG. 3 (c), the spaced region (see C3) may be set at the position excluding one symmetric with respect to the horizontal base line HL (the position apart in the up/down direction, the lateral direction or the oblique direction). In such a case, the inspection region B3 and the spaced region C3 may be the stimulus presentation regions, or the inspection region B3, the spaced region C3 and the symmetric region D3 may be the stimulus presentation regions. In the latter case (that is, in the case where the inspection region B3, the spaced region C3 and the symmetric region D3 are the stimulus presentation regions and the stimulus presentation spot in the inspection region B3 is referred to as “the main presentation spot” and the stimulus presentation spot in the symmetric region D3 is referred to as “the sub stimulus presentation spot”, one main stimulus presentation spot may always be set at the position symmetric with the position of the sub stimulus presentation spot on the basis of the horizontal base line HL. Besides, “the stimulus presented to the main stimulus presentation spot” and “the stimulus presented to the sub presentation spot” may have the same size and brightness. In such a case, it is difficult for the examinee to predict the stimulus presentation spot by presenting the stimuli on the space region C3, thereby obtaining the correct perimetry result that does not receive the influence of the examinee's prediction. At the same time, when comparing the perimetry results of the main stimulus presentation spot and the sub stimulus presentation spot that are symmetric in the up/down direction with each other, the gap of the symmetry in the up/down direction can be found, thereby easily finding ocular diseases, such as the glaucoma. In this case, the stimuli may be presented in such a state that “the total number of the stimulus presentation spots in the inspection region B3”>“the total number of the stimulus presentation spots in the symmetric region D3”>“the total number of the stimulus presentation spots in the spaced region C3”. Besides, the stimuli may be presented in such a state that stimulus presentation density in the inspection region B3″>“the stimulus presentation density in the symmetric region D3 (if the inspection region B3 overlaps the symmetric region D3 as exemplarily shown in FIG. 3(c), the spot that does not overlap the inspection region B3 in the symmetric region D3)>“the stimulus presentation density in the spaced region C3”.
  • <Upper Limit Condition Setter>
  • There are various kinds of the upper limit condition setter 4, and these are a graphical user interface on the screen (and a pointing device for setting the upper limit condition on the interface), and some kind of switch attached to the perimeter, such as a dial switch, for instance. Such an upper limit condition setter 4 sets any one of “the upper limit time Tmax” and “the total number of the stimulus presentation spots”. Concretely speaking, it has a function to set only the upper limit time Tmax, a function to set only the total number of the stimulus presentation spots, and a function to set both “the upper limit time Tmax” and “the total number of the stimulus presentation spots, and the examiner is able to select it as needed.
  • <Position Determiner>
  • Preferably, the position determiner 5 determines the total number N of the stimulus presentation spots and the positions in the stimulus presentation region E when the upper limit condition setter 4 sets the upper limit time Tmax, and determines the position of each stimulus presentation spot when the upper limit condition setter 4 sets the total number of the stimulus presentation spots. And, the stimulus presenter 6 presents the stimuli two times or more, gradually changing the brightness of the stimulus at each stimulus presentation spot (the details are mentioned hereinafter), and the position determiner 5 may determine the number of times to present the stimuli at each stimulus presentation spot (that is, the number of times to present the stimuli at each presentation spot, gradually changing the brightness, four times in the example as shown in FIG. 5(1) to (4)). If the upper limit time that is set is Tmax and approximate time necessary for the perimetry for one stimulus presentation spot is t, the total number N of the stimulus presentation spots is obtained with Tmax÷t. As mentioned before, the stimulus presenter 6 sometimes presents the stimuli onto the spaced region C and the symmetric region D in addition to the inspection region B, and it is necessary for the position determiner 5 to determine the number N1 of the stimulus presentation spots in the inspection region B, the number N2 of the stimulus presentation spots in the spaced region C and the number N3 of the stimulus presentation spots in the symmetric region D so as to be N1+N2+N3≦N.
  • <Stimulus Presenter>
  • On the other hand, when the region designator 2 is configured to display the perimetry result image and designate the inspection region based upon the perimetry result image, the position determiner 5 may determine at least one of “the stimulus presentation spots in the past perimetry (the positions onto which the stimuli were presented) as “the stimulus presentation spots in this time of the perimetry (the positions onto which the stimuli to be presented). By doing so, the result of the past perimetry and the result of this time of the perimetry can be compared with each other in the same stimulus presentation spot, thereby grasping the progress of the ocular disease. Preferably, the perimetry images are stored, adding identification information of the patients, thereby comparing the perimetry results as mentioned before through the identification information. Preferably, the region designator 2 displays the perimetry result image, highlighting the spots which perimetry result was bad (the bad spots rather than a predetermined standard) that are the stimulus presentation spots in the past perimetry (the positions onto which the stimuli were actually presented). By doing so, it is easily grasp the regions to be inspected again. Furthermore, the position determiner 5 may determine “the spots which perimetry result was bad in the stimulus presentation spots in the past perimetry (the spots on which the stimuli were presented)” as “the stimulus presentation spots in this time of the perimetry (the spots on which the stimuli are to be presented)”.
  • <Stimulus Presenter>
  • The stimulus presenter 6 is configured to present the stimuli, gradually changing their brightness at the respective stimulus presentation spots twice or more and to conduct a so-called threshold perimetry. FIG. 5 is a conceptual diagram that shows a way of the threshold perimetry at one stimulus presentation spot. In the instance as shown in FIG. 5, the stimuli are presented four times in order of (1)→(2)→(3)→(4), and the brightness of the respective stimuli are gradually changed in order of 21 dB→25 dB (rather darker than 21 dB)→29 dB (rather darker than 25 dB)→27 dB (rather brighter than 29 dB). Responses through the operation device 7 from the examinee are respectively “responded”, “responded”, “no response” “responded” in the stimulus presentation (1), (2), (3) and (4). In such a case, the result judger 8 judges the sensitivity of the retina in this spot (the stimulus presentation spot) is 27 dB.
  • As exemplarily shown in FIG. 6, the stimulus presenter 6 may be configured to have a projection optical system 60 for projecting the stimuli Q and the visual field dome (projection member) 61, but is not limited to such a configuration shown in FIG. 6. Any configuration may be taken as long as the stimuli are presented in the visual field of the examinee. For instance, two or more LED may be located and are selectively lighted. The projection member 61 as shown in FIG. 6 is in the shape of a hemisphere dome (visual field dome), but is not limited to such a configuration, and may have a curve surface excluding the hemispheric surface, or a flat surface.
  • When it is in the second state and the inspection region B and the spaced region C are not located on the positions symmetric in the up/down direction with respect to the horizontal base line HL, the stimulus presenter 6 may be configured to present the stimuli so as to make “the stimulus presented onto the spaced region C” bigger than and/or brighter than “the stimulus presented onto the spaced region C”. By doing so, the examinee is easy to perceive the stimuli that are presented onto the spaced region C, it is possible to prevent the examinee's concentration from being poured onto only the inspection region B, and obtain the correct perimetry result that does not receive the influence of the examinee's prediction.
  • <Operation Device>
  • Preferably, a well-known mechanism, such as a push switch, is used for the above-mentioned operation device 7.
  • <The Other Elements>
  • The perimeter 1 according to the present invention presents the stimuli onto two or more spots in the stimulus presentation regions E1 to E3, and presents the stimuli twice or more, receiving the responses from the examinee, not once for one spot. If the response from the examinee is late, then, it takes a longer time for the perimetry, so that the perimetry may not finish within the upper limit time Tmax.
  • Preferably, the perimeter 1 according to the invention has a state confirmor 9, a finish time predictor 10 and a stimulus controller 11. The state confirmor 9 confirms the progress state of the perimetry during the perimetry based upon signals from the stimulus presenter 6 and the operation device 7. The finish time predictor 10 predicts whether the perimetry finishes within the upper limit time Tmax for all stimulus presentation spots based upon the progress state confirmed by the state confirmor 9. The stimulus controller 11 controls the stimulus presenter 6 not to present the stimulus onto a part of the stimulus presentation spots if the finish time predictor 10 predicted the perimetry does not finish within the upper limit time Tmax for all stimulus presentation spots. The perimetry in the present invention is conducted, receiving the responses from the examinee, and it may take a longer time for the perimetry on each stimulus presentation spot. However, it is possible to finish the perimetry within the upper limit time Tmax by omitting a part of the stimulus presentation when providing the state confirmor 9, the finish time predictor 10 and the stimulus controller 11. In such a case, the finish time predictor 10 may have a time measurer for measuring a passage time from the start of the perimetry. In this case, the stimulus presentation may be omitted in such away that when the stimuli are presented to one stimulus presentation spot, gradually changing the brightness, the number of the stimulus presentation is reduced, or all stimulus presentation is omitted to some stimulus presentation spot (the spot to which the stimulus presentation is scheduled). When presenting the stimulus in the regions symmetric in the up/down direction in order to find the ocular disease, the latter method (that is, the method of omitting all stimulus presentation to some stimulus presentation spot) may be taken, not the former one.
  • Preferably, the above-mentioned “a part of stimulus presentation spots (that is, the spots that are omitted to be presented by the stimulus controller 11)” is not ones in the inspection region B, but ones in the spaced region C. When the finish time predictor 10 predicted the perimetry does not finish within the upper limit time Tmax for all the stimulus presentation spots and it is in the second state, the stimulus controller 11 may control the stimulus presenter 6 not to present the stimuli onto a part of the stimulus presentation spots in the spaced region C. By doing so, the stimulus presentation is not omitted on the inspection region B, thereby well keeping the precision of the perimetry in the inspection region B.
  • Preferably, the finish time predictor 10 obtains from respective data, the upper limit time Tmax that is set, already passed time T0, number Na of the stimulus presentation spots on which stimulus presentation does not finish (the number obtained from the information from the state confirmor 9) and approximate time required for the perimetry on one stimulus presentation spot, the time left for the perimetry “Tmax−T0” and time necessary for remaining perimetry “Na×t”, and compares both times. Preferably, the above-mentioned time t (that is, the approximate time necessary for the perimetry on one stimulus presentation spot) is obtained from the respective data, “the number n of the stimulus presentation on each stimulus presentation spot (the number of times that is expected)”, “the expected response time Δt1 of the examinee (the time from the presentation of the stimulus till the response from the examinee)” and “the time Δt2 till the next stimulus presentation if no response is received from the examinee (the time that is set). Preferably, the position determiner 5 is configured to give the respective stimulus presentation spots priority (the orders from the view of the importance of the perimetry), and the stimulus controller 11 omits the stimulus presentation on the spot having the lower priority (the stimulus presentation spot). Furthermore, if the perimetry is conducted earlier than expectation after omitting apart of the stimulus presentation and the finish time predictor 10 predicts the perimetry finishes within the above-mentioned upper limit time Tmax, the stimulus controller 11 may conduct the stimulus presentation that has been omitted at this time.
  • EXPLANATION OF REFERENCE NUMBERS
    • 1 . . . perimeter
    • 2 . . . region designator
    • 3 . . . region determiner
    • 4 . . . upper limit condition setter
    • 5 . . . position determiner
    • 6 . . . stimulus presenter
    • 7 . . . operation device
    • 8 . . . result judger
    • 9 . . . state confirmor
    • 10 . . . finish time predictor
    • 11 . . . stimulus controller
    • A . . . fundus image
    • B, B1˜B3 . . . inspection region
    • C2, C3 . . . spaced region
    • E1˜E3 . . . stimulus presentation region
    • P1, . . . , P1′ . . . , . . . stimulus presentation spot
    • Tmax . . . upper limit time

Claims (9)

1.-8. (canceled)
9. A perimeter for conducting a perimetry on an examinee that enables the examinee to better concentrate on the perimetry, the perimeter comprising:
a region designator that is configured to display designation images, the designation images comprising an image that shows a past perimetry result image or a fundus image, and to designate an inspection region on the designation images, wherein the inspection region is a region which the perimetry is expected;
a region determiner that determines a stimulus presentation region based upon the designated inspection region, wherein the stimulus presentation region is a region in which one or more visual stimuli are presented to the examinee;
an upper limit condition setter that sets an upper limit condition, wherein the upper limit condition is either a total number of stimulus presentation spots in the stimulus presentation region or an upper limit time duration for conducting the perimetry, wherein the stimulus presentation spot is a spot in the stimulus presentation region to which a visual stimulus is presented;
a position determiner that determines a position of each stimulus presentation spot in the stimulus presentation region that enables completing the perimetry under a condition lower than the upper limit condition;
a stimulus presenter that presents the one or more visual stimuli in order with a predetermined brightness to each position determined by the position determiner;
an operation device to be operated by the examinee when the examinee perceives the presented one or more visual stimuli; and
a result judger that judges results of the perimetry based upon signals from the stimulus presenter and the operation device.
10. The perimeter according to claim 9, wherein the stimulus presenter is configured to present each of the visual stimuli to each stimulus presentation spot, gradually changing their brightness twice or more, and the position determiner determines the total number of the stimulus presentation spots and the positions when the upper limit time is set through the upper limit condition setter, and the position of each stimulus presentation spot when the total number of the stimulus presentation spots is set through the upper limit condition setter.
11. The perimeter according to claim 9, wherein the region determiner determines the inspection region as the stimulus presentation region when an occupancy ratio is at a first state,
wherein the occupancy ratio is the ratio of an area or a length occupied by the inspection region to an area or a length occupied by the designation image,
wherein the first state is when the occupancy ratio is at least a predetermined standard value; and
the region determiner determines both a spaced region and the inspection region as the stimulus presentation region when the occupancy ratio is at a second state,
wherein the spaced region is the regions separated in an up/down direction, in an oblique direction, and in a right/left direction from the inspection region,
wherein the second state is when the occupancy ratio is lower than the predetermined standard value; and
the stimulus presenter is configured to present the visual stimuli in the inspection region when the occupancy ratio is at the first state, and the stimulus presenter is configured to present the visual stimuli in both the spaced region and the inspection region when the occupancy ratio is at the second state.
12. The perimeter according to claim 11, wherein the position determiner determines the stimulus presentation spots such that the total number of the stimulus presentation spots in the inspection region is more than a total number of the stimulus presentation spots in the spaced region when occupancy ratio is at the second state.
13. The perimeter according to claim 9, wherein the region designator is configured to display the past perimetry result image and to designate the inspection region on the past perimetry result image, and the position determiner is configured to determine at least one of the stimulus presentation spots in the past perimetry result image as the stimulus presentation spot for the perimetry.
14. The perimeter according to claim 9, further comprising:
a state confirmor that confirms a progress state of the perimetry during the perimetry based upon signals from the stimulus presenter and the operation device;
a finish time predictor that predicts whether the perimetry finishes for all the stimulus presentation spots within the upper limit time based upon the progress state confirmed by the state confirmor; and
a stimulus controller that controls the stimulus presenter not to present the visual stimuli to a part of the stimulus presentation spots if the finish time predictor predicts that the perimetry does not finish on all the stimulus presentation spots within the upper limit time.
15. The perimeter according to claim 14, wherein the position determiner is configured to give a priority to each stimulus presentation spot, and the stimulus controller is configured to omit the stimulus presentation to the spot having a lower priority.
16. The perimeter according to claim 9, further comprising:
a state confirmor that confirms the progress state of the perimetry during the perimetry based upon the signals from the stimulus presenter and the operation device;
a finish time predictor that predicts whether the perimetry finishes within the upper limit time for all stimulus presentation spots based upon the progress state confirmed by the state confirmor; and
a stimulus controller that controls the stimulus presenter not to present the visual stimuli onto a part of the stimulus presentation spots if the finish time predictor predicted that the perimetry does not finish within the upper limit time for all the stimulus presentation spots,
wherein the region determiner determines the inspection region as the stimulus presentation region when an occupancy ratio is at a first state,
wherein the occupancy ratio is the ratio of an area or a length occupied by the inspection region to an area or a length occupied by the designation image,
wherein the first state is when the occupancy ratio is at least a predetermined standard value; and
the region determiner determines both a spaced region and the inspection region as the stimulus presentation region when the occupancy ratio is at a second state,
wherein the spaced region is the regions separated in an up/down direction, in an oblique direction, and in a right/left direction from the inspection region,
wherein the second state is when the occupancy ratio is lower than the predetermined standard value; and
the stimulus presenter is configured to present the visual stimuli in the inspection region when the occupancy ratio is at the first state, and the stimulus presenter is configured to present the visual stimuli in both the spaced region and the inspection region when the occupancy ratio is at the second state; and
the stimulus controller controls the stimulus presenter not to present the visual stimulus onto a part of the stimulus presentation spots if the finish time predictor predicts that the perimetry does not finish within the upper limit time for all the stimulus presentation spots and the occupancy ratio is in the second state.
US15/117,574 2014-02-12 2015-02-09 Perimeter Abandoned US20160345823A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014024284 2014-02-12
JP2014-024284 2014-02-12
PCT/JP2015/053482 WO2015122376A1 (en) 2014-02-12 2015-02-09 Perimeter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053482 A-371-Of-International WO2015122376A1 (en) 2014-02-12 2015-02-09 Perimeter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/210,038 Continuation US10932663B2 (en) 2014-02-12 2018-12-05 Perimeter

Publications (1)

Publication Number Publication Date
US20160345823A1 true US20160345823A1 (en) 2016-12-01

Family

ID=53800119

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/117,574 Abandoned US20160345823A1 (en) 2014-02-12 2015-02-09 Perimeter
US16/210,038 Active 2035-11-02 US10932663B2 (en) 2014-02-12 2018-12-05 Perimeter

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/210,038 Active 2035-11-02 US10932663B2 (en) 2014-02-12 2018-12-05 Perimeter

Country Status (4)

Country Link
US (2) US20160345823A1 (en)
EP (1) EP3106081B1 (en)
JP (1) JP6474740B2 (en)
WO (1) WO2015122376A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234980A1 (en) * 2010-03-29 2011-09-29 Takuya Hara Perimeter and method of controlling perimeter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654804A (en) 1992-08-05 1994-03-01 Canon Inc Perimeter
JP4855085B2 (en) * 2006-01-27 2012-01-18 興和株式会社 Perimeter
JP4896621B2 (en) * 2006-08-09 2012-03-14 興和株式会社 Perimeter
JP4806602B2 (en) * 2006-08-09 2011-11-02 興和株式会社 Perimeter
JP5624272B2 (en) * 2008-10-06 2014-11-12 興和株式会社 Perimeter
ES2632724T3 (en) * 2010-02-25 2017-09-15 Oculus Optikgeräte GmbH Perimetric procedure
JP5553659B2 (en) * 2010-03-29 2014-07-16 興和株式会社 Perimeter
JP5936606B2 (en) 2011-04-13 2016-06-22 興和株式会社 Perimeter
JP5953740B2 (en) * 2011-12-27 2016-07-20 株式会社ニデック Fundus examination device
WO2015122377A1 (en) 2014-02-12 2015-08-20 興和株式会社 Perimeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234980A1 (en) * 2010-03-29 2011-09-29 Takuya Hara Perimeter and method of controlling perimeter

Also Published As

Publication number Publication date
WO2015122376A1 (en) 2015-08-20
EP3106081A1 (en) 2016-12-21
EP3106081A4 (en) 2017-09-20
JPWO2015122376A1 (en) 2017-03-30
US20190117059A1 (en) 2019-04-25
US10932663B2 (en) 2021-03-02
JP6474740B2 (en) 2019-02-27
EP3106081B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US9826897B2 (en) Perimeter
KR102581657B1 (en) Cognitive dysfunction diagnosis device and cognitive dysfunction diagnosis program
Altpeter et al. The importance of sustained attention for patients with maculopathies
US8337019B2 (en) Testing vision
EP3542704A1 (en) Visual testing using mobile devices
KR101564168B1 (en) Brain damage and cognitive function in the visual perception training device
EP2172148A1 (en) Perimeter
JP6184046B1 (en) Inspection apparatus and inspection method
Grillini et al. Towards using the spatio-temporal properties of eye movements to classify visual field defects
Born et al. Predictability of spatial and non-spatial target properties improves perception in the pre-saccadic interval
Vallejo et al. Effects of Alzheimer’s disease on visual target detection: a “Peripheral Bias”
Perperidis et al. The assessment of visual fields in infants using saccadic vector optokinetic perimetry (SVOP): a feasibility study
US10932663B2 (en) Perimeter
EP2380488B1 (en) Perimeter for controlling fixation
JP6560765B2 (en) Method, apparatus, program and recording medium for acquiring data for diagnosing schizophrenia
JP5876704B2 (en) Field of view measurement method and field of view measurement apparatus
JP2016116542A (en) Device, method, program, and storage medium of the program for visual inspection
JP2009136663A (en) Full-field retinal function scanning program
US10413170B2 (en) Perimeter
JP2013085710A (en) Perimetry method
RU2245096C1 (en) Method and device for diagnosing vision defects
Eayrs Individual differences in visual perception capacity and related brain morphology
Rodrigues et al. Peripheral Vision Pattern Detection Dynamic Test.
Sosa Machado Studies of Visuospatial Attention
Lustig Global enhancement of task‐irrelevant dimensions of attended objects

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOWA COMPANY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMADA, SATOSHI;HARA, TAKUYA;REEL/FRAME:039384/0928

Effective date: 20160713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION