US20160332704A1 - Prefabricated pontoon - Google Patents

Prefabricated pontoon Download PDF

Info

Publication number
US20160332704A1
US20160332704A1 US14/652,028 US201414652028A US2016332704A1 US 20160332704 A1 US20160332704 A1 US 20160332704A1 US 201414652028 A US201414652028 A US 201414652028A US 2016332704 A1 US2016332704 A1 US 2016332704A1
Authority
US
United States
Prior art keywords
main body
coupling
main bodies
coupling grooves
prefabricated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/652,028
Inventor
Gyong-Ho Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGSHIN INDUSTRY Inc
Original Assignee
DONGSHIN INDUSTRY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONGSHIN INDUSTRY Inc filed Critical DONGSHIN INDUSTRY Inc
Assigned to DONGSHIN INDUSTRY INC. reassignment DONGSHIN INDUSTRY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, GYONG-HO
Publication of US20160332704A1 publication Critical patent/US20160332704A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • B63B35/38Rigidly-interconnected pontoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D15/00Movable or portable bridges; Floating bridges
    • E01D15/14Floating bridges, e.g. pontoon bridges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • E02B3/062Constructions floating in operational condition, e.g. breakwaters or wave dissipating walls
    • E02B3/064Floating landing-stages

Definitions

  • the present disclosure relates to a prefabricated pontoon, and more particularly, to a prefabricated pontoon, which enables various offshore structures, such as ship mooring aprons or berthing facilities of boats or yachts, or floating bridges that float on the sea surface so as to serve as bridges, to be simply installed in a prefabricated manner.
  • prefabricated pontoons have been used as various offshore structures including ship mooring aprons or berthing facilities of boats or yachts or floating bridges that float on the sea surface so as to serve as bridges, and development of such prefabricated pontoons is of great concern due to spread expansion of water sports and necessity of offshore structures for various purposes.
  • Such prefabricated pontoons have advantages that they can dissolve structural vulnerability of a berthing facility in the related art which is made of wood for berthing of boats or yachts, difficulty of approach to the berthing facility that has a concrete structure due to the level change of the sea surface, and the increase of efforts and costs for installing the berthing facility.
  • Korean Registered Patent No. 10-1060086 discloses “Prefabricated pontoon mounted with deck”.
  • a mounting groove is recessively formed on an upper surface of a hollow-shaped main body having an airtight space portion formed therein, and a deck is put on the mounting groove.
  • a fastening member which has a bar shape and is formed to extend in a body with a flange along the outer circumference thereof, is insert-blow-molded, and bolts that penetrate the deck are fastened to the fastening member.
  • a border portion is formed to project from the circumferential surface of the upper surface of the main body, and at least one drain-outlet is penetratingly formed on the border portion. Further, a step portion that supports the deck is formed to project from the periphery of an insertion portion, into which the fastening member is inserted, on the upper surface of the main body, and a drain path is formed between the deck and the mounting groove.
  • the prefabricated pontoons in the related art have a stable coupling structure with respect to a lamination in upward/downward direction, but their lateral coupling structure is almost of a point contact type through hook portions, which may be unwantedly separated by external water pressure or load. Further, since the pontoons having the above-described coupling structure perform rotational motion around coupling portions through the hook portions due to the external load, an upper surface that is provided by the pontoons becomes uneven to form the unstable upper surface.
  • the present disclosure has been made to solve the aforementioned problems occurring in the prior art, and it is an object of the present disclosure to provide a prefabricated pontoon, of which a plurality of main bodies are mutually coupled to keep surface contact with one another through connectors to secure endurance enough to endure external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • a prefabricated pontoon which includes a plurality of main bodies, each including an upper main body and a lower main body that come in surface contact with each other and having a plurality of coupling grooves formed thereon at predetermined intervals along border surfaces thereof; a plurality of joint bars configured to be inserted into the upper main body and the lower main body during forming of the upper main body and the lower main body, with a part thereof being positioned and thus exposed in the plurality of coupling grooves to correspond to the plurality of coupling grooves; a plurality of pairs of fastening members configured to be inserted into a plurality of through-holes symmetrically formed in predetermined positions of the upper main body and the lower main body to be fastened to one another; and a plurality of connectors configured to connect the plurality of main bodies to one another and each having one end that is inserted into any one of the plurality of coupling grooves formed on one of the plurality of main bodies and the
  • the pair of fastening members may include first and second fasteners, each of which has a flange portion and a fastening portion formed to project from the flange portion, wherein a male screw portion is formed on an outer periphery of one of the fastening portions and a female screw portion is formed on an inner periphery of the other of the fastening portions.
  • a hook portion may be formed to project from any one of the pair of flange portions in an opposite direction to the fastening portions.
  • At least one insertion groove may be formed on an upper surface of the lower main body, and at least one insertion projection that is inserted into the insertion groove may be formed on a lower surface of the upper main body.
  • Each of the plurality of joint bars may include a body on which at least one fixing rib is formed to project to be symmetrical with an upper surface and a lower surface thereof in a predetermined position in a length direction thereof, a first coupling portion coupled to one end of the body and having a coupling groove formed thereon, and a second coupling portion coupled to the other end of the body and having a coupling projection formed thereon.
  • the first coupling portion and the second coupling portion may be coupled to the body with different heights.
  • Core materials for strength reinforcement may be provided in the plurality of connectors.
  • the prefabricated pontoon since the plurality of main bodies are mutually coupled to keep surface contact with one another through the connectors, it becomes possible to secure endurance enough to endure the external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • FIG. 1 is a perspective view of a prefabricated pontoon according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged perspective view of a main part of a prefabricated pontoon according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG. 1 ;
  • FIG. 4 is a cross-sectional view taken along line B-B of FIG. 1 ;
  • FIG. 5 is an exploded perspective view schematically illustrating coupling of joint bars illustrated in FIG. 2 ;
  • FIG. 6 is a schematic view illustrating a use state of prefabricated pontoons according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a prefabricated pontoon according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged perspective view of a main part of a prefabricated pontoon according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG. 1
  • FIG. 4 is a cross-sectional view taken along line B-B of FIG. 1
  • FIG. 5 is an exploded perspective view schematically illustrating coupling of joint bars illustrated in FIG. 2
  • FIG. 6 is a schematic view illustrating a use state of prefabricated pontoons according to an embodiment o the present disclosure.
  • a prefabricated pontoon 100 includes a plurality of main bodies 110 , a plurality of joint bars 120 , a plurality of pairs of fastening members 130 , and a plurality of connectors 140 .
  • Each of the plurality of main bodies 110 includes an upper main body 112 and a lower main body 114 that come in surface contact with each other and has a plurality of coupling grooves 112 a and 114 a formed thereon at predetermined intervals along border surfaces thereof.
  • the upper main body 112 and the lower main body 113 are made of expanded polypropylene (EPP) that is a light-weight material having buoyancy on the surface of water.
  • EPP expanded polypropylene
  • At least one insertion groove 118 is formed on an upper surface of the lower main body 114 , and at least one insertion projection 116 that is inserted into the insertion groove 118 is formed on a lower surface of the upper main body 112 .
  • the insertion groove 118 and the insertion projection 116 are accurately coupled to one another when the upper main body 112 and the lower main body 114 are mutually coupled to each other.
  • the plurality of joint bars 120 which are made of a long fiber thermoplastic (LFT) material, are insert-molded into the upper main body 112 and the lower main body 114 during forming of the upper main body 112 and the lower main body 114 , and have outer surfaces partially positioned in the plurality of coupling grooves 112 a and 114 a to correspond to the plurality of coupling grooves 112 a and 114 a.
  • LFT long fiber thermoplastic
  • Each of the plurality of joint bars 120 includes a body 122 on which at least one fixing rib 122 a is formed to project to be symmetrical with an upper surface and a lower surface thereof in a predetermined position in a length direction thereof, a first coupling portion 124 coupled to one end of the body 122 and having a coupling groove 124 a formed thereon, and a second coupling portion 126 coupled to the other end of the body 122 and having a coupling projection 126 a that is formed thereon.
  • the fixing rib 122 a is firmly coupled when the plurality of joint bars 120 are insert-molded into the upper main body 112 and the lower main body 114 .
  • first coupling portion 124 and the second coupling portion 126 are coupled to the body 122 with different heights, and thus when the plurality of joint bars 120 are mutually coupled and inserted into the upper main body 112 and the lower main body 114 , the first coupling portion 124 and the second coupling portion 126 have the same height.
  • the pairs of fastening members 130 are to fix the upper main body 112 and the lower main body 114 , which come in surface contact with each other, to each other, and are inserted into a plurality of through-holes 117 symmetrically formed in predetermined positions of the upper main body 112 and the lower main body 114 to be fastened to each other.
  • Each of the pairs of fastening members 130 includes a pair of flange portions 132 and 132 ′ and first and second fasteners 134 and 134 ′ having fastening portions 134 a and 134 a′ formed to project from the pair of flange portions 132 .
  • a male screw portion is formed on an outer periphery of one of the fastening portions 134 a and 134 a′ formed to project from the pair of flange portions 132 and 132 ′ and a female screw portion is formed on an inner periphery of the other of the fastening portions 134 a and 134 a′, so that the first and second fasteners 134 and 134 ′ are mutually coupled to each other.
  • a hook portion 136 is formed to project from any one of the pair of flange portions 132 and 132 ′ in an opposite direction to the fastening portions 134 a and 134 a′ , and a rope or the like is coupled to the hook portion 136 .
  • the plurality of connectors 140 are to connect the plurality of main bodies 110 to one another, and each of the plurality of connectors 140 has one end that is inserted into any one of the plurality of coupling grooves 112 a and 114 a formed on one of the plurality of main bodies 110 and the other end that is inserted into any one of the plurality of coupling grooves 112 a and 114 a formed on another of the plurality of main bodies 110 .
  • the plurality of connectors 140 are made of a rubber material.
  • the plurality of connectors 140 absorb an impact when an external force, such as a wave, is applied to coupling portions of the plurality of main bodies 110 that are mutually coupled by the plurality of connectors 140 .
  • Each of the plurality of connectors 140 as described above includes a connection portion 142 and insertion portions 144 formed at both ends of the connectors 142 to be inserted into the plurality of coupling grooves 112 a and 114 a.
  • Cut portions 144 a are formed on lower surfaces of the insertion portions 144 in a height direction thereof. When, the insertion portions 144 are inserted into the coupling grooves 112 a and 114 a , the cut portions 144 a are inserted into the body 122 of the joint bar 120 that is positioned inside the coupling grooves 112 a and 114 a.
  • core materials 146 for strength reinforcement are provided in the plurality of connectors 149 .
  • the plurality of main bodies 110 are mutually coupled to one another through insertion of the plurality of connectors 140 into the plurality of coupling grooves 112 a and 114 a formed on the border surfaces of the upper main body 112 and the lower main body 114 to enable a user to install the offshore structure for the purpose intended by the user.
  • the cut portions 144 a formed on the lower surfaces of the insertion portions 144 of the plurality of connectors 140 which are inserted into the plurality of coupling grooves 112 a and 114 a , are inserted into the bodies 122 of the joint bars 120 , the coupling of the plurality of main bodies 110 becomes firmer.
  • the prefabricated pontoon since the plurality of main bodies are mutually coupled to keep surface contact with one another through the connectors, it becomes possible to secure endurance enough to endure the external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • the present disclosure provides a prefabricated pontoon, and can be used in a prefabricated pontoon that enables various offshore structures, such as ship mooring aprons or berthing facilities of boats or yachts, or floating bridges that float on the sea surface so as to serve as bridges, to be simply installed and used in a prefabricated manner.
  • various offshore structures such as ship mooring aprons or berthing facilities of boats or yachts, or floating bridges that float on the sea surface so as to serve as bridges, to be simply installed and used in a prefabricated manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

A prefabricated pontoon includes: main bodies, each including an upper and a lower main bodies that come in surface contact with each other and having coupling grooves formed thereon along border surfaces thereof; joint bars configured to be inserted into the upper and lower main bodies during forming of the upper and lower main bodies, with a part thereof being positioned and exposed in the coupling grooves to correspond to the coupling grooves; pairs of fastening members configured to be inserted into through-holes symmetrically formed in the upper and lower main bodies to be fastened to one another; and connectors configured to connect the main bodies and each having one end that is inserted into any one of the coupling grooves formed on one of the main bodies and the other end that is inserted into any one of the coupling grooves formed on another of the main bodies.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a prefabricated pontoon, and more particularly, to a prefabricated pontoon, which enables various offshore structures, such as ship mooring aprons or berthing facilities of boats or yachts, or floating bridges that float on the sea surface so as to serve as bridges, to be simply installed in a prefabricated manner.
  • BACKGROUND ART
  • In general, prefabricated pontoons have been used as various offshore structures including ship mooring aprons or berthing facilities of boats or yachts or floating bridges that float on the sea surface so as to serve as bridges, and development of such prefabricated pontoons is of great concern due to spread expansion of water sports and necessity of offshore structures for various purposes.
  • Such prefabricated pontoons have advantages that they can dissolve structural vulnerability of a berthing facility in the related art which is made of wood for berthing of boats or yachts, difficulty of approach to the berthing facility that has a concrete structure due to the level change of the sea surface, and the increase of efforts and costs for installing the berthing facility.
  • As a prefabricated pontoon in the related art, Korean Registered Patent No. 10-1060086 discloses “Prefabricated pontoon mounted with deck”.
  • According to the prefabricated pontoon in the related art, a mounting groove is recessively formed on an upper surface of a hollow-shaped main body having an airtight space portion formed therein, and a deck is put on the mounting groove. On the upper surface of the main body on which the deck is put, a fastening member, which has a bar shape and is formed to extend in a body with a flange along the outer circumference thereof, is insert-blow-molded, and bolts that penetrate the deck are fastened to the fastening member.
  • A border portion is formed to project from the circumferential surface of the upper surface of the main body, and at least one drain-outlet is penetratingly formed on the border portion. Further, a step portion that supports the deck is formed to project from the periphery of an insertion portion, into which the fastening member is inserted, on the upper surface of the main body, and a drain path is formed between the deck and the mounting groove.
  • However, the prefabricated pontoons in the related art have a stable coupling structure with respect to a lamination in upward/downward direction, but their lateral coupling structure is almost of a point contact type through hook portions, which may be unwantedly separated by external water pressure or load. Further, since the pontoons having the above-described coupling structure perform rotational motion around coupling portions through the hook portions due to the external load, an upper surface that is provided by the pontoons becomes uneven to form the unstable upper surface.
  • DISCLOSURE Technical Problem
  • Accordingly, the present disclosure has been made to solve the aforementioned problems occurring in the prior art, and it is an object of the present disclosure to provide a prefabricated pontoon, of which a plurality of main bodies are mutually coupled to keep surface contact with one another through connectors to secure endurance enough to endure external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • Technical Solution
  • To achieve the above and other objects, according to one aspect of the present disclosure, there is provided a prefabricated pontoon, which includes a plurality of main bodies, each including an upper main body and a lower main body that come in surface contact with each other and having a plurality of coupling grooves formed thereon at predetermined intervals along border surfaces thereof; a plurality of joint bars configured to be inserted into the upper main body and the lower main body during forming of the upper main body and the lower main body, with a part thereof being positioned and thus exposed in the plurality of coupling grooves to correspond to the plurality of coupling grooves; a plurality of pairs of fastening members configured to be inserted into a plurality of through-holes symmetrically formed in predetermined positions of the upper main body and the lower main body to be fastened to one another; and a plurality of connectors configured to connect the plurality of main bodies to one another and each having one end that is inserted into any one of the plurality of coupling grooves formed on one of the plurality of main bodies and the other end that is inserted into any one of the plurality of coupling grooves formed on another of the plurality of main bodies.
  • The pair of fastening members may include first and second fasteners, each of which has a flange portion and a fastening portion formed to project from the flange portion, wherein a male screw portion is formed on an outer periphery of one of the fastening portions and a female screw portion is formed on an inner periphery of the other of the fastening portions.
  • A hook portion may be formed to project from any one of the pair of flange portions in an opposite direction to the fastening portions.
  • At least one insertion groove may be formed on an upper surface of the lower main body, and at least one insertion projection that is inserted into the insertion groove may be formed on a lower surface of the upper main body.
  • Each of the plurality of joint bars may include a body on which at least one fixing rib is formed to project to be symmetrical with an upper surface and a lower surface thereof in a predetermined position in a length direction thereof, a first coupling portion coupled to one end of the body and having a coupling groove formed thereon, and a second coupling portion coupled to the other end of the body and having a coupling projection formed thereon.
  • The first coupling portion and the second coupling portion may be coupled to the body with different heights.
  • Core materials for strength reinforcement may be provided in the plurality of connectors.
  • Advantageous Effect
  • According to the prefabricated pontoon according to an embodiment of the present disclosure, since the plurality of main bodies are mutually coupled to keep surface contact with one another through the connectors, it becomes possible to secure endurance enough to endure the external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a prefabricated pontoon according to an embodiment of the present disclosure;
  • FIG. 2 is an enlarged perspective view of a main part of a prefabricated pontoon according to an embodiment of the present disclosure;
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG. 1;
  • FIG. 4 is a cross-sectional view taken along line B-B of FIG. 1;
  • FIG. 5 is an exploded perspective view schematically illustrating coupling of joint bars illustrated in FIG. 2; and
  • FIG. 6 is a schematic view illustrating a use state of prefabricated pontoons according to an embodiment of the present disclosure.
  • EXPLANATION OF REFERENCE NUMERALS FOR MAIN PARTS IN THE DRAWING
    • 110: a plurality of main bodies
    • 112: upper main body
    • 114: lower main body
    • 112 a, 114 a: coupling groove
    • 116: insertion projection
    • 117: through-hole
    • 118: insertion groove
    • 120: a plurality of joint bars
    • 122: body
    • 122 a: fixing rib
    • 124: first coupling portion
    • 124 a: coupling groove
    • 126: second coupling portion
    • 126 a: coupling projection
    • 130: a pair of fastening members
    • 132, 132′: a pair of flange portions
    • 134: first fastener
    • 134′: second fastener
    • 134 a, 134 a′: fastening portion
    • 136: hook portion
    • 140: a plurality of connectors
    • 142: connection portion
    • 144: insertion portion
    • 144 a: cut portion
    • 146: core material
    EMBODIMENTS OF THE INVENTION
  • Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In describing the present disclosure, the thickness of lines or the size of constituent elements illustrated in the drawings may be exaggerated for clarity and convenience in explanation.
  • Further, all terms used in the description are terms that are defined in consideration of their functions in the present disclosure, and may differ depending on intentions of a user or an operator or customs. Accordingly, they should be defined on the basis of the contents of the whole description of the present disclosure.
  • FIG. 1 is a perspective view of a prefabricated pontoon according to an embodiment of the present disclosure, and FIG. 2 is an enlarged perspective view of a main part of a prefabricated pontoon according to an embodiment of the present disclosure. FIG. 3 is a cross-sectional view taken along line A-A of FIG. 1, FIG. 4 is a cross-sectional view taken along line B-B of FIG. 1, and FIG. 5 is an exploded perspective view schematically illustrating coupling of joint bars illustrated in FIG. 2. FIG. 6 is a schematic view illustrating a use state of prefabricated pontoons according to an embodiment o the present disclosure.
  • Referring to FIGS. 1 to 6, a prefabricated pontoon 100 according to an embodiment of the present disclosure includes a plurality of main bodies 110, a plurality of joint bars 120, a plurality of pairs of fastening members 130, and a plurality of connectors 140.
  • Each of the plurality of main bodies 110 includes an upper main body 112 and a lower main body 114 that come in surface contact with each other and has a plurality of coupling grooves 112 a and 114 a formed thereon at predetermined intervals along border surfaces thereof.
  • The upper main body 112 and the lower main body 113 are made of expanded polypropylene (EPP) that is a light-weight material having buoyancy on the surface of water.
  • At least one insertion groove 118 is formed on an upper surface of the lower main body 114, and at least one insertion projection 116 that is inserted into the insertion groove 118 is formed on a lower surface of the upper main body 112. The insertion groove 118 and the insertion projection 116 are accurately coupled to one another when the upper main body 112 and the lower main body 114 are mutually coupled to each other.
  • The plurality of joint bars 120, which are made of a long fiber thermoplastic (LFT) material, are insert-molded into the upper main body 112 and the lower main body 114 during forming of the upper main body 112 and the lower main body 114, and have outer surfaces partially positioned in the plurality of coupling grooves 112 a and 114 a to correspond to the plurality of coupling grooves 112 a and 114 a.
  • Each of the plurality of joint bars 120 includes a body 122 on which at least one fixing rib 122 a is formed to project to be symmetrical with an upper surface and a lower surface thereof in a predetermined position in a length direction thereof, a first coupling portion 124 coupled to one end of the body 122 and having a coupling groove 124 a formed thereon, and a second coupling portion 126 coupled to the other end of the body 122 and having a coupling projection 126 a that is formed thereon.
  • Here, the fixing rib 122 a is firmly coupled when the plurality of joint bars 120 are insert-molded into the upper main body 112 and the lower main body 114.
  • Further, the first coupling portion 124 and the second coupling portion 126 are coupled to the body 122 with different heights, and thus when the plurality of joint bars 120 are mutually coupled and inserted into the upper main body 112 and the lower main body 114, the first coupling portion 124 and the second coupling portion 126 have the same height.
  • The pairs of fastening members 130 are to fix the upper main body 112 and the lower main body 114, which come in surface contact with each other, to each other, and are inserted into a plurality of through-holes 117 symmetrically formed in predetermined positions of the upper main body 112 and the lower main body 114 to be fastened to each other.
  • Each of the pairs of fastening members 130 includes a pair of flange portions 132 and 132′ and first and second fasteners 134 and 134′ having fastening portions 134 a and 134 a′ formed to project from the pair of flange portions 132.
  • A male screw portion is formed on an outer periphery of one of the fastening portions 134 a and 134 a′ formed to project from the pair of flange portions 132 and 132′ and a female screw portion is formed on an inner periphery of the other of the fastening portions 134 a and 134a′, so that the first and second fasteners 134 and 134′ are mutually coupled to each other.
  • Further, a hook portion 136 is formed to project from any one of the pair of flange portions 132 and 132′ in an opposite direction to the fastening portions 134 a and 134 a′, and a rope or the like is coupled to the hook portion 136.
  • The plurality of connectors 140 are to connect the plurality of main bodies 110 to one another, and each of the plurality of connectors 140 has one end that is inserted into any one of the plurality of coupling grooves 112 a and 114 a formed on one of the plurality of main bodies 110 and the other end that is inserted into any one of the plurality of coupling grooves 112 a and 114 a formed on another of the plurality of main bodies 110.
  • Here, it is preferable that the plurality of connectors 140 are made of a rubber material. The plurality of connectors 140 absorb an impact when an external force, such as a wave, is applied to coupling portions of the plurality of main bodies 110 that are mutually coupled by the plurality of connectors 140.
  • Each of the plurality of connectors 140 as described above includes a connection portion 142 and insertion portions 144 formed at both ends of the connectors 142 to be inserted into the plurality of coupling grooves 112 a and 114 a.
  • Cut portions 144 a are formed on lower surfaces of the insertion portions 144 in a height direction thereof. When, the insertion portions 144 are inserted into the coupling grooves 112 a and 114 a, the cut portions 144 a are inserted into the body 122 of the joint bar 120 that is positioned inside the coupling grooves 112 a and 114 a.
  • Further, core materials 146 for strength reinforcement are provided in the plurality of connectors 149.
  • According to the prefabricated pontoon according to an embodiment of the present disclosure, the plurality of main bodies 110 are mutually coupled to one another through insertion of the plurality of connectors 140 into the plurality of coupling grooves 112 a and 114 a formed on the border surfaces of the upper main body 112 and the lower main body 114 to enable a user to install the offshore structure for the purpose intended by the user. In this case, since the cut portions 144 a formed on the lower surfaces of the insertion portions 144 of the plurality of connectors 140, which are inserted into the plurality of coupling grooves 112 a and 114 a, are inserted into the bodies 122 of the joint bars 120, the coupling of the plurality of main bodies 110 becomes firmer.
  • As described above, according to the prefabricated pontoon according to an embodiment of the present disclosure, since the plurality of main bodies are mutually coupled to keep surface contact with one another through the connectors, it becomes possible to secure endurance enough to endure the external water pressure or load and to facilitate coupling and separation of the plurality of main bodies.
  • Although the present disclosure has been described with reference to the embodiments in the attached figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the present disclosure as recited in the claims.
  • INDUSTRIAL APPLICABILITY
  • The present disclosure provides a prefabricated pontoon, and can be used in a prefabricated pontoon that enables various offshore structures, such as ship mooring aprons or berthing facilities of boats or yachts, or floating bridges that float on the sea surface so as to serve as bridges, to be simply installed and used in a prefabricated manner.

Claims (7)

What is claimed is:
1. A prefabricated pontoon comprising:
a plurality of main bodies, each including an upper main body and a lower main body that come in surface contact with each other and having a plurality of coupling grooves formed thereon at predetermined intervals along border surfaces thereof;
a plurality of joint bars configured to be inserted into the upper main body and the lower main body during forming of the upper main body and the lower main body, with a part thereof being positioned and thus exposed in the plurality of coupling grooves to correspond to the plurality of coupling grooves;
a plurality of pairs of fastening members configured to be inserted into a plurality of through-holes symmetrically formed in predetermined positions of the upper main body and the lower main body to be fastened to one another; and
a plurality of connectors configured to connect the plurality of main bodies to one another and each having one end that is inserted into any one of the plurality of coupling grooves formed on one of the plurality of main bodies and the other end that is inserted into any one of the plurality of coupling grooves formed on another of the plurality of main bodies.
2. The prefabricated pontoon as claimed in claim 1, wherein the pair of fastening members comprise first and second fasteners, each of which has a flange portion and a fastening portion formed to project from the flange portion,
wherein a male screw portion is formed on an outer periphery of one of the fastening portions and a female screw portion is formed on an inner periphery of the other of the fastening portions.
3. The prefabricated pontoon as claimed in claim 2, wherein a hook portion is formed to project from any one of the pair of flange portions in an opposite direction to the fastening portions.
4. The prefabricated pontoon as claimed in claim 1, wherein at least one insertion groove is formed on an upper surface of the lower main body, and at least one insertion projection that is inserted into the insertion groove is formed on a lower surface of the upper main body.
5. The prefabricated pontoon as claimed in claim 1, wherein each of the plurality of joint bars comprises a body on which at least one fixing rib is formed to project to be symmetrical with an upper surface and a lower surface thereof in a predetermined position in a length direction thereof, a first coupling portion coupled to one end of the body and having a coupling groove formed thereon, and a second coupling portion coupled to the other end of the body and having a coupling projection formed thereon.
6. The prefabricated pontoon as claimed in claim 5, wherein the first coupling portion and the second coupling portion are coupled to the body with different heights.
7. The prefabricated pontoon as claimed in claim 1, wherein core materials for strength reinforcement are provided in the plurality of connectors.
US14/652,028 2014-02-10 2014-11-26 Prefabricated pontoon Abandoned US20160332704A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0014824 2014-02-10
KR1020140014824A KR101561255B1 (en) 2014-02-10 2014-02-10 Assemblable Type Pontoon
PCT/KR2014/011406 WO2015119363A1 (en) 2014-02-10 2014-11-26 Prefabricated pontoon

Publications (1)

Publication Number Publication Date
US20160332704A1 true US20160332704A1 (en) 2016-11-17

Family

ID=53778141

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/652,028 Abandoned US20160332704A1 (en) 2014-02-10 2014-11-26 Prefabricated pontoon

Country Status (4)

Country Link
US (1) US20160332704A1 (en)
JP (1) JP2016510287A (en)
KR (1) KR101561255B1 (en)
WO (1) WO2015119363A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275304B (en) * 2016-09-12 2018-03-16 东莞市中上模具塑胶科技有限公司 A kind of buoyancy tank assembly type Waterborne movable platform
KR101875501B1 (en) * 2016-12-01 2018-07-09 동신산업(주) A bouy for fish farming cage
KR101775902B1 (en) * 2017-06-14 2017-09-07 (주)명일정공 A connected device of a pontoons
KR102039355B1 (en) * 2017-09-15 2019-11-01 동신산업(주) Buoy assembly and floating structure using the same
KR101980174B1 (en) * 2017-11-16 2019-05-20 오토렉스 주식회사 Connecting device for floating structures
KR102138026B1 (en) * 2018-05-23 2020-07-28 한국전력공사 Protection apparatus of submarine cable
KR102340990B1 (en) * 2018-12-31 2021-12-21 (주)오션솔라라이팅 Safety floating pontoon
KR102010751B1 (en) 2019-06-11 2019-10-21 (주)명일정공 A connected device of a pontoons

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135785B2 (en) * 1972-06-21 1976-10-05
JPS525755B2 (en) * 1973-02-27 1977-02-16
JPS5849012U (en) * 1981-09-30 1983-04-02 株式会社ムラコシ精工 screw tool
CA1233704A (en) * 1985-02-08 1988-03-08 Ferdinand M. Svirklys Flotation system
US4733626A (en) * 1985-02-15 1988-03-29 Dominion A1-Chrome Corporation Flotation system
JP3063487B2 (en) * 1993-09-27 2000-07-12 村田機械株式会社 Palletizing pattern recognition device
US5460114A (en) * 1994-07-20 1995-10-24 New England Plastics Corporation Float for dock construction
US6179525B1 (en) * 1999-05-11 2001-01-30 Schafer Systems Inc. Floating dock section
JP4143701B2 (en) * 2003-09-09 2008-09-03 豊田合成株式会社 Floating structure
KR20090002683U (en) * 2007-09-13 2009-03-18 양홍모 Structur for assemblying floating docks
JP4548804B2 (en) * 2008-12-15 2010-09-22 有限会社 石川技工 Fastening device
KR101180822B1 (en) * 2010-10-12 2012-09-07 스코트라 주식회사 Assemblable pontoon
KR101239060B1 (en) * 2012-12-03 2013-03-05 (주)에코원 Floating body for cultivating plants
KR101349966B1 (en) * 2013-05-29 2014-02-17 동신산업(주) Assemblable type pontoon
KR101342579B1 (en) * 2013-07-11 2013-12-17 주식회사 에바다 Fiber reinforced concrete pontoon

Also Published As

Publication number Publication date
KR101561255B1 (en) 2015-10-16
WO2015119363A1 (en) 2015-08-13
JP2016510287A (en) 2016-04-07
KR20150094043A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US20160332704A1 (en) Prefabricated pontoon
KR101009264B1 (en) Floating assembly for water surface structure
KR101349966B1 (en) Assemblable type pontoon
US7640881B1 (en) Dock system
KR101140412B1 (en) Pontoon
KR20150090677A (en) Buoyancy body for water
KR200447755Y1 (en) Float
KR101180822B1 (en) Assemblable pontoon
KR101666558B1 (en) Float assembly with installation structure of finish panel
KR101669363B1 (en) Assembly type watercraft
KR101369799B1 (en) Method for constructing ship on the sea, and connecting block used therein
KR20170029142A (en) Assemblable Type Bouyancy
KR101919870B1 (en) Construction method of Assembly type Floating marine structure using connector block
JP2010024664A (en) Fender
KR101919868B1 (en) Assembly type Floating marine structure using connector block
KR20170059642A (en) Floating Structure On The Water
KR101475009B1 (en) Barge
KR101691185B1 (en) Insert Frame Assembly For Pontoon
KR101899664B1 (en) Floating body
KR20200102820A (en) Marine floats
KR101646184B1 (en) Pontoon to Carry Heavy Equipment and Deck for Pontoon
KR101498709B1 (en) Band assembly for foam buoy and marine floating structure manufacturing method using the same
KR101384447B1 (en) Gangway
KR101995467B1 (en) Floating body
KR101063726B1 (en) Hinge device for visual connection bridge

Legal Events

Date Code Title Description
AS Assignment

Owner name: DONGSHIN INDUSTRY INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, GYONG-HO;REEL/FRAME:036578/0778

Effective date: 20150605

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE