US20160324893A1 - Calcium polyphosphate salts, methods of making and use in beverage compositions - Google Patents

Calcium polyphosphate salts, methods of making and use in beverage compositions Download PDF

Info

Publication number
US20160324893A1
US20160324893A1 US15/066,652 US201615066652A US2016324893A1 US 20160324893 A1 US20160324893 A1 US 20160324893A1 US 201615066652 A US201615066652 A US 201615066652A US 2016324893 A1 US2016324893 A1 US 2016324893A1
Authority
US
United States
Prior art keywords
calcium
polyphosphate
sodium
acid
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/066,652
Inventor
Gregory Arcuino
Robert J. Sarama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunny Delight Beverages Co
Original Assignee
Sunny Delight Beverages Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunny Delight Beverages Co filed Critical Sunny Delight Beverages Co
Priority to US15/066,652 priority Critical patent/US20160324893A1/en
Publication of US20160324893A1 publication Critical patent/US20160324893A1/en
Assigned to SUNNY DELIGHT BEVERAGES CO. reassignment SUNNY DELIGHT BEVERAGES CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARCUINO, Gregory, SARAMA, ROBERT
Assigned to TCW ASSET MANAGEMENT COMPANY LLC, AS COLLATERAL AGENT reassignment TCW ASSET MANAGEMENT COMPANY LLC, AS COLLATERAL AGENT ASSIGNMENT FOR SECURITY -- PATENTS Assignors: SD IP HOLDINGS COMPANY, SUNNY DELIGHT BEVERAGES CO.
Assigned to SUNNY DELIGHT BEVERAGES CO., SD IP HOLDINGS COMPANY reassignment SUNNY DELIGHT BEVERAGES CO. RELEASE OF SECURITY INTEREST UNDER REEL/FRAME NO. 42384/430 Assignors: TCW ASSET MANAGEMENT COMPANY LLC
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/42Preservation of non-alcoholic beverages
    • A23L2/44Preservation of non-alcoholic beverages by adding preservatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/385Condensed phosphates of alkaline-earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/44Metaphosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium

Definitions

  • the present invention relates to the formulation of mineral fortified beverage products containing sodium hexametaphosphate as a preservative.
  • SHMP sodium hexametaphosphate
  • a beverage product is to be fortified with vitamin D3
  • federal regulations require that the beverage also be fortified with calcium.
  • Calcium can deactivate the SHMP preservative, thereby significantly decreasing the shelf-life of the product.
  • the beverage must be formulated such that the calcium does not deactivate the SHMP or otherwise impede its function, the calcium must also be bio-available, not produce unacceptable tastes or colors, must not settle out of the product, must be able to be processed on a large scale, and not add significant cost to the beverage product.
  • the goal in formulating beverages is to develop a form of calcium which is an effective dietary supplement (i.e., bio-available), but which does not deactivate the SHMP preservative, and which is safe, cost-effective and easy to use in a beverage product.
  • the calcium material utilized in the beverage cannot impart off-flavors or bad mouthfeel to the product and must be easy to incorporate within the product. That is what the present invention accomplishes.
  • SHMP is a powerful chelating agent. It functions as a preservative by extraction of divalent metallic ions (e.g., calcium, iron, magnesium) from microbial enzymatic systems. The extracted metals are no longer available to the microbes and so the microbes enter a stationary phase and, finally, a death phase.
  • divalent metallic ions e.g., calcium, iron, magnesium
  • the present invention provides a calcium polyphosphate product (e.g., calcium hexametaphosphate) which can be used to provide a bio-available source of calcium to a beverage product without deactivating the SHMP preservative in that beverage product.
  • a calcium polyphosphate product e.g., calcium hexametaphosphate
  • the present application also describes the formation of calcium hexametaphosphate particles, particularly coated particles, and also describes methods of making the calcium polyphosphate-calcium hexametaphosphate material.
  • the present invention teaches how to formulate the calcium polyphosphate so as to minimize any off-tastes.
  • a calcium polyphosphate salt can be produced and maintained in equilibrium with SHMP in such a manner so as to not affect the preservative action of SHMP.
  • the average polyphosphate chain length of SHMP is 19-25, which makes it a very strong chelating agent. It has been found that by producing a calcium polyphosphate salt with a phosphorus chain length of 11-15, the salt not only remains in equilibrium with SHMP, but releases its calcium cations at gastric pH making the calcium bio-available.
  • the ratio of calcium to lower chain polyphosphate is critical as well.
  • the optimum molar ratio of calcium polyphosphate is about 4:1. Lowering the level causes overuse of polyphosphate whereas exceeding a ratio of about 4:1 causes the formation of a sticky amorphous glass structure which physically separates from the aqueous base during preparation. This amorphous glass solid is unstable in that form and will not mix homogenously with aqueous beverages.
  • the present application therefore describes a calcium polyphosphate salt, such as a calcium hexametaphosphate salt, in soluble form, which has a calcium/polyphosphate molar ratio of from about 2.5:1 to about 4.5:1, and wherein the polyphosphate has a phosphorus chain length of from about 9 to about 16, for example, from about 11 to about 15.
  • the present application also describes a method of making a calcium polyphosphate salt, in particulate form, comprising the steps of:
  • the present application also describes two methods for the preparation of the calcium polyphosphate salt; this can be done in situ thereby allowing the completed reaction mixture to be made directly into a beverage product.
  • the first such method which directly reacts calcium with the polyphosphate includes the following steps:
  • a metallic polyphosphate such as a sodium, potassium polyphosphate
  • the solubility of the calcium source will typically be low in near neutral pH aqueous medium and so will slowly react with the polyphosphate, for example, having a 10-15 minute reaction time.
  • That completed reaction mixture can then be used to formulate a beverage in situ by the addition of water, sodium hexametaphosphate, flavor, color and sweetener (and, if desired, other conventional beverage components).
  • the second such method for preparing the calcium polyphosphate salt comprises the steps of:
  • step (c) with agitation, adding the calcium and surrogate solution (step (a)) to the polyphosphate solution (step (b)), thereby forming the calcium polyphosphate salt.
  • reaction mixture can be used to formulate a beverage in situ by addition of water, sodium hexametaphosphate, flavor, color and sweetener (and, if desired, other conventional beverage components).
  • the calcium polyphosphate particles as described in paragraph [0011] herein are insoluble in a beverage product of typical pH, such as between pH 2.8 and 7.6.
  • the formation of the particles lends itself to a purification step that allows the removal of byproducts that may impact flavor (i.e., potassium ions).
  • This higher calcium loaded polyphosphate material does not affect the preservative action of SHMP and releases its calcium cations at gastric pH, making the calcium bioavailable.
  • an oil-in-water (O/W) emulsion such as those used to provide beverage opacity or disperse flavors, can mask the unpleasant flavor that may come from displaced ions (e.g., potassium) that are present as a result of the making of the calcium polyphosphate.
  • displaced ions e.g., potassium
  • sodium ions must also be present with the emulsion to optimally mask the unpleasant flavor that may come from displaced ions (e.g., potassium) that are present as a result of the making of the calcium polyphosphate.
  • the present invention thus provides a calcium polyphosphate product (e.g., calcium metaphosphate or calcium polyphosphate) which:
  • (a) is soluble and does not deactivate a chelating preservative, such as SHMP, and can be used to provide a bio-available source of calcium to a beverage product;
  • (b) is in particulate form, free from extraneous matter that may impact flavor (e.g., potassium ions), does not deactivate a chelating preservative, such as SHMP, and can be used to provide a bio-available source of calcium to a beverage product;
  • flavor e.g., potassium ions
  • SHMP chelating preservative
  • (c) can be used in combination with an oil-in-water emulsion that masks the unpleasant flavor that may be associated with potassium ions that are present as a result of the making of the calcium polyphosphate;
  • (d) utilizes sodium ions in addition to the oil-in-water emulsion that masks the unpleasant flavor that may be associated with potassium ions that are present as a result of the making of the calcium polyphosphate.
  • the present invention relates to calcium polyphosphate materials (such as calcium hexametaphosphate), containing relatively short polyphosphate chain lengths and utilizing specific calcium:phosphate molar ratios. These materials can be used to provide calcium supplementation to beverages, particularly beverages which use a chelating preservative (such as SHMP) without deactivating that preservative. The methods of making these materials are also disclosed in this application.
  • a chelating preservative such as SHMP
  • a calcium polyphosphate salt can be produced and maintained in equilibrium with SHMP in a beverage product in such a manner as to not affect the preservative activity of the SHMP in that beverage.
  • the average polyphosphate chain length of SHMP is from 19 to 25. This makes for a very strong chelating agent (which accounts for SHMP's excellent preservative characteristics). It has now been found that by producing a calcium, polyphosphate salt with a relatively short phosphorus chain length of from about 9 to about 16, such as from about 11 to about 15, the calcium polyphosphate not only remains in equilibrium with SHMP (i.e., does not ruin SHMP's preservative properties) but also releases its calcium cation at gastric pH making the calcium bio-available.
  • the ratio of calcium to lower chain polyphosphate in the composition is important.
  • the molar ratio of calcium to polyphosphate in the material is from about 2.5:1 to about 4.5:1, such as about 4:1. Lowering the ratio causes the overuse of polyphosphate, whereas significantly exceeding the ratio causes the formation of a sticky, amorphous, glass structure which physically separates from the aqueous base during preparation.
  • This amorphous glass solid is unusable in that form to be a calcium supplement in a beverage, and will not itself mix homogeneously with aqueous beverages. However, it has been found that this amorphous glass solid can be dehydrated, ground or physically processed by a jet mill or similar methods to produce small particles. These particles can then be added back to the SHMP-containing beverage with great success.
  • the amorphous glass solid can be decanted and dehydrated by filtering, evaporation, solvent extraction, microwave heating or other similar means, for example, such that it has a water content of no greater than about 0.1%, preferably no greater than about 0.05%.
  • the particles formed by grinding this solid typically have an average particle size of no greater than about 0.5 ⁇ m, such as from about 0.1 ⁇ m to about 0.3 ⁇ m. This small particle size is primarily important to avoid product grittiness or otherwise inappropriate mouthfeel for the consumer.
  • calcium phosphate amorphous glass solid at a molar ratio of from about 5:1 to about 9:1, such as about 5.5:1, calcium:short chain polyphosphate, a high calcium loaded salt, suitable for use after dehydration and particle processing is produced.
  • An added benefit of this approach is that any metallic ions (sodium, potassium, etc.) originating from the starting shorter chain polyphosphate are essentially removed during the isolation of the amorphous glass solid.
  • shorter chain polyphosphate materials ideally has a phosphorus chain length of from about 9 to about 16, such as from about 11 to about 15, but longer chain lengths, for example 19-25, can be used particularly in conjunction with shorter chain length polyphosphates. They can, for example, be selected from the group consisting of metal salts of polyphosphates and metaphosphates, such as sodium metaphosphate, sodium calcium metaphosphate, sodium calcium polyphosphates, or sodium potassium metaphosphate, as well as other salts of metaphosphates or polyphosphates either of mono, binary, tertiary salts (e.g., a sodium potassium magnesium polyphosphate) encompassing all ratios of salt, for example, a sodium potassium polyphosphate with a sodium: potassium molar ratio of from about 1:9 to about 9:1.
  • metal salts of polyphosphates and metaphosphates such as sodium metaphosphate, sodium calcium metaphosphate, sodium calcium polyphosphates, or sodium potassium metaphosphate, as well as other salts of metaphosphates or polyphosphates either
  • the calcium polyphosphate salts defined herein can be synthesized in several ways.
  • the first is to directly react the metallic short chain polyphosphate with a calcium source (for example, calcium hydroxide) in an aqueous neutral medium. Since the solubility of calcium hydroxide is very low in an aqueous medium, the calcium hydroxide solely reacts over the course of from about 5 to about 20 minutes, such as from about 10 to about 15 minutes, as calcium is transferred from the calcium hydroxide to the polyphosphate.
  • a small amount of organic or mineral acid, such as citric acid is added toward the end of this process to complete the dissociation of calcium from its hydroxide moiety and complete the transfer of calcium to the polyphosphate substrate.
  • a metallic polyphosphate having a phosphorus chain length of from about 9 to about to about 16 with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium salt ionizable at aqueous, acidic solution, and mixtures thereof, in an aqueous medium, having a pH of from about 6 to about 7.5, the molar ratio of calcium to polyphosphate source being from about 2.5:1 to about 4.5:1;
  • an organic acid is utilized as a surrogate carrier of the calcium. This is accomplished by first preparing an aqueous solution of the acid (for example, citric acid). To this aqueous solution the correct amount of calcium salt (e.g., calcium hydroxide) is added. The amount of calcium salt used is based on the desired ratio of calcium to metaphosphate or polyphosphate. Because the solution is acidic (pH of from about 1.5 to about 2.5), calcium hydroxide immediately dissociates allowing the calcium to react with the acid forming a salt (e.g., calcium citrate). Separately, the polyphosphate is solubilized in water.
  • the acid for example, citric acid
  • calcium salt e.g., calcium hydroxide
  • This polyphosphate is reacted with the calcium salt (i.e., the surrogate carrier solution) (e.g., calcium citrate, calcium malate, calcium tartrate, calcium phosphate, calcium lactate, calcium acetate, calcium chloride, calcium carbonate, calcium gluconate, and mixtures thereof) by mixing of the calcium salt solution into the polyphosphate solution.
  • the calcium is then quickly chelated or transferred from the calcium salt to the polyphosphate resulting in the formation of calcium polyphosphate.
  • an aqueous solution of an organic or mineral acid such as citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, hydrochloric acid, and mixtures thereof
  • a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous, acidic solution, and mixtures thereof, to achieve a calcium to polyphosphate molar ratio of from about 2.5:1 to about 4.5:1 when mixed with the polyphosphate solution, said solution having a pH of from about 1.5 to about 3.5, such as from about 1.5 to about 2.5;
  • the metallic polyphosphate utilized in this reaction can, for example, be a sodium or a sodium/potassium polyphosphate.
  • the Na/K mixture can preferably include from about 50% to about 75% potassium.
  • the calcium polyphosphate formed by the reaction include calcium metaphosphate, calcium sodium metaphosphate, calcium sodium potassium metaphosphate, calcium sodium polyphosphate, and calcium sodium potassium polyphosphate.
  • the above reaction can be optimized to form a material which includes a relatively high loading of calcium so that fewer particles can be used in the beverage product to attain the desired level of calcium in that product; this will minimize aesthetic concerns in the final beverage product.
  • the calcium polyphosphate particles can be separated out and incorporated into a separate beverage making process.
  • the beverage can actually be formed in situ in the reaction mixture used to prepare the calcium polyphosphate material.
  • water, preservative such as sodium hexametaphosphate
  • flavor materials, colorants, and sweeteners are added to the reaction mixture. All of these materials are well-known to those skilled in the beverage art and they are used at their conventional levels for their conventional purposes.
  • the finished beverage compositions typically contain from about 100 mg to about 300 mg of calcium per serving, and from about 0.1 wt % to about 0.18 wt % of the SHMP preservative.
  • the calcium source utilized in these reactions is selected to be compatible with a beverage product.
  • calcium hydroxide or calcium oxide can be used because water is then formed in the reaction.
  • Calcium phosphate can be used, but care must be taken to be sure that the phosphorus RDI is not exceeded in the final product.
  • the reaction needs to drive calcium to the sodium/potassium polyphosphate where it is bound, and not to the acid in the form of calcium citrate because in that instance it would still be available to deactivate the SHMP preservative.
  • Examples of calcium sources which can be used in the present reactions include calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium phyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous, acidic solution, and mixtures thereof.
  • the acid selected for use in the reactions defined herein must be edible and have a pKa at low pH so that the acid stays protonated, thereby assuring that the calcium will not bind to it (this is because the calcium acid salt will not prevent the calcium from deactivating the SI-IMP preservative).
  • useful acids in the reactions herein include citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, hydrochloric acid, and mixtures thereof.
  • the reactions defined herein typically take place at a temperature within the range of from about 10 to about 30 degrees C.
  • the amorphous glass solid material is formed, it is allowed to settle and the liquid is decanted off or filtered, and then the remaining amorphous solid material is dried using conventional means, such as a static dryer, solvent extraction, microwave heating or other similar means.
  • This dry material is then ground into calcium polyphosphate particles using conventional means, such as a jet mill, to a particle size which is less than about 0.5 ⁇ m, such as from about 0.1 to about 0.3 ⁇ m.
  • the particles can be added to the beverage product as is or can be coated (such as with a hydrogenated phospholipid material, for example, lecithin).
  • the particles comprise from about 10 to about 90 weight percent of the calcium polyphosphate material, and from about 90 to about 10 weight percent of the coating material.
  • the coating itself can be carried out using any known coating process, such as using a process by which the coating is sprayed onto the calcium polyphosphate particles and allowed to dry; or by incorporating the particles in a melt of phytosterols and other plant lipids and then spray chilling (prilling) the melt to allow a core of calcium polyphosphate and a coating of phytosterol.
  • the present application also describes a method of utilizing an oil-in-water (O/W) emulsion, such as those used to provide beverage opacity or disperse flavors, to mask the unpleasant flavor that may come from displaced ions (i.e., potassium) that are present as a result of the making of the soluble calcium phosphate.
  • O/W oil-in-water
  • composition of the O/W emulsion is from about 10% to about 20%, such as about 14%, oil such as food approved oils (e.g., canola oil) used for such purposes; from about 5% to about 10%, preferably about 7%, emulsifier such as modified food starch; from about 68% to about 83%, preferably about 77%, water; and may include necessary preservatives, colors, and flavors to meet desired beverage organoleptics.
  • the droplet size of the discontinuous phase of the O/W emulsion is less than about 1 ⁇ m, such as less than about 0.5 ⁇ m; it is preferred that 90% or greater of the droplets are at 0.1 ⁇ m; which can be achieved through typical emulsification methods such as high shear mixing or high pressure homogenization. Droplet size can be measured, for example, using a Horiba, Laser Diffraction Particle Size Analyzer.
  • the present invention describes utilizing sodium ions in addition to the O/W emulsion to further mask any unpleasant flavor that may come from displaced ions (i.e., potassium) that are present as a result of the making of the soluble calcium phosphate.
  • the sodium concentration is from about 100 ppm to about 500 ppm, such as about 250 ppm, not to exceed about 400 mg per 8 oz serving of the finished beverage;
  • the sodium source is selected from sodium ions present in softened process water, and inorganic or organic salts approved for food use (such as sodium chloride, sodium citrate, sodium malate, sodium tartrate, sodium acetate, encompassing all food approved sodium-containing additives or mixtures thereof).
  • SHMP sodium potassium hexametaphosphate
  • SHMP sodium potassium hexametaphosphate
  • SHMP sodium hexametaphosphate
  • SHMP sodium potassium hexametaphosphate
  • SHMP sodium hexametaphosphate
  • the calcium polyphosphate particles can now be utilized in an SHMP-containing beverage where the salt. remains insoluble without deactivating SHMP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An equilibrium solution, such as a beverage product, containing a calcium salt of a sequestrant (such as calcium hexametaphosphate), coordinated compound of a calcium sequestrant and a sequestrant allows the delivery of bio-available calcium while maintaining the preservative qualities of the sequestrant (such as sodium hexametaphosphate). In one embodiment, the reaction of a salt such as calcium hydroxide and a sequestrant such as sodium potassium hexametaphosphate (sodium potassium polyphosphate) yields such an equilibrium solution in a beverage matrix. Calcium hexametaphosphate having a relatively short phosphate chain is disclosed, as well as the method of making that material, and beverage compositions containing the material together with a sequestrant preservative, such as SHMP.

Description

  • The present application is based on and claims priority from U.S. Provisional Patent Application Ser. No. 62/157,680, Sarama and Arcuino, filed May 6, 2015, incorporated herein by reference.
  • BACKGROUND
  • The present invention relates to the formulation of mineral fortified beverage products containing sodium hexametaphosphate as a preservative.
  • Beverage products frequently utilize sodium hexametaphosphate (SHMP) as a preservative. It is important to have an effective preservative in beverage products since such products tend to require a relatively long shelf life from manufacture to retail outlet to drinking by the consumer. SHMP, although often referred to as a hexametaphosphate, technically is a polyphosphate and a powerful chelating agent. The SHMP functions as a preservative by extracting divalent metallic ions from microbial enzymatic systems. This prevents calcium, iron and magnesium utilization by microorganisms; this interrupts their physiology, resulting in the organisms' death.
  • While it is desirable to provide vitamin or mineral fortification in some beverage products, particularly beverage products aimed at children, such supplementation can present formulation difficulties in beverages with chelating preservatives. For example, if a beverage product is to be fortified with vitamin D3, federal regulations require that the beverage also be fortified with calcium. Calcium, however, can deactivate the SHMP preservative, thereby significantly decreasing the shelf-life of the product. Thus, the beverage must be formulated such that the calcium does not deactivate the SHMP or otherwise impede its function, the calcium must also be bio-available, not produce unacceptable tastes or colors, must not settle out of the product, must be able to be processed on a large scale, and not add significant cost to the beverage product. Thus, the goal in formulating beverages, and particularly the goal in the present invention, is to develop a form of calcium which is an effective dietary supplement (i.e., bio-available), but which does not deactivate the SHMP preservative, and which is safe, cost-effective and easy to use in a beverage product. In addition, the calcium material utilized in the beverage cannot impart off-flavors or bad mouthfeel to the product and must be easy to incorporate within the product. That is what the present invention accomplishes.
  • Specifically, SHMP is a powerful chelating agent. It functions as a preservative by extraction of divalent metallic ions (e.g., calcium, iron, magnesium) from microbial enzymatic systems. The extracted metals are no longer available to the microbes and so the microbes enter a stationary phase and, finally, a death phase.
  • It has been estimated to require 0.24 g of a polyphosphate (e.g., SHMP) to kill 1×103 CFU's (colony-forming units) of microorganisms. The level of calcium contained in 1×103 CFU's of microorganisms is estimated to be approximately 2.6×10−8 g. The addition of 100 mg of calcium to a beverage containing SHMP will inactivate the SHMP and support the growth of 3.85×109 CFU's.
  • The question arises as to how best to add calcium to a beverage containing SHMP as required by 21 CFR 172.380, in order to supplement with Vitamin D. In addition, the calcium must not deactivate the SHMP or impede its function, the calcium must be bio-available, produce no unacceptable taste or color, must not precipitate out and be able to be processed on a large scale.
  • The present invention provides a calcium polyphosphate product (e.g., calcium hexametaphosphate) which can be used to provide a bio-available source of calcium to a beverage product without deactivating the SHMP preservative in that beverage product. The present application also describes the formation of calcium hexametaphosphate particles, particularly coated particles, and also describes methods of making the calcium polyphosphate-calcium hexametaphosphate material. Finally, the present invention teaches how to formulate the calcium polyphosphate so as to minimize any off-tastes.
  • BRIEF SUMMARY
  • It has been discovered that a calcium polyphosphate salt can be produced and maintained in equilibrium with SHMP in such a manner so as to not affect the preservative action of SHMP. The average polyphosphate chain length of SHMP is 19-25, which makes it a very strong chelating agent. It has been found that by producing a calcium polyphosphate salt with a phosphorus chain length of 11-15, the salt not only remains in equilibrium with SHMP, but releases its calcium cations at gastric pH making the calcium bio-available.
  • The ratio of calcium to lower chain polyphosphate is critical as well. The optimum molar ratio of calcium polyphosphate is about 4:1. Lowering the level causes overuse of polyphosphate whereas exceeding a ratio of about 4:1 causes the formation of a sticky amorphous glass structure which physically separates from the aqueous base during preparation. This amorphous glass solid is unstable in that form and will not mix homogenously with aqueous beverages.
  • The present application therefore describes a calcium polyphosphate salt, such as a calcium hexametaphosphate salt, in soluble form, which has a calcium/polyphosphate molar ratio of from about 2.5:1 to about 4.5:1, and wherein the polyphosphate has a phosphorus chain length of from about 9 to about 16, for example, from about 11 to about 15.
  • The present application also describes a method of making a calcium polyphosphate salt, in particulate form, comprising the steps of:
  • (a) preparing a calcium phosphate salt having a phosphorus chain length of from about 9 to about 16, and a calcium:polyphosphate molar ratio of from about 5:1 to about 9:1 (especially about 5.5:1), in the form of an amorphous glass solid;
  • (b) dehydrating the amorphous glass solid to form a solid having a water content no greater than about 0.1%; and
  • (c) processing the solid (such as by grinding) to form particles having an average particle size no greater than about 0.5 μm.
  • The present application also describes two methods for the preparation of the calcium polyphosphate salt; this can be done in situ thereby allowing the completed reaction mixture to be made directly into a beverage product. The first such method which directly reacts calcium with the polyphosphate includes the following steps:
  • (a) directly reacting a metallic polyphosphate (such as a sodium, potassium polyphosphate) having a phosphorus chain length of from about 9 to about 16 (such as from about 11 to about 15), with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate or any other calcium source ionizable at aqueous, acidic solution, and mixtures thereof, in an aqueous near neutral (pH=about 6 to about 7.5) medium, the molar ratio of polyphosphate to calcium source being from about 2.5:1 to about 4.5:1; and
  • (b) adding a minor portion, for example about 25% of the total added, the total being from about 0.18 wt % to about 0.725 wt %, of an organic or mineral acid toward the end of this reaction to complete the dissociation of the calcium from its counter moiety and complete the transfer of calcium to the polyphosphate substrate thereby forming the soluble calcium phosphate salt.
  • The solubility of the calcium source will typically be low in near neutral pH aqueous medium and so will slowly react with the polyphosphate, for example, having a 10-15 minute reaction time.
  • That completed reaction mixture can then be used to formulate a beverage in situ by the addition of water, sodium hexametaphosphate, flavor, color and sweetener (and, if desired, other conventional beverage components).
  • The second such method for preparing the calcium polyphosphate salt comprises the steps of:
  • (a) preparing an aqueous solution of an organic mineral acid (such as citric acid), together with from about 1.3 parts to about 10 parts of a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous, acidic solution, and mixtures thereof, to one part polyphosphate, said solution having a pH of from about 1.5 to about 3.5, with the amount of calcium used based on a calcium polyphosphate molar ratio from about 2.5:1 to about 4.5:1;
  • (b) forming a separate aqueous solution of a metallic (such as a sodium or sodium/potassium) polyphosphate having a chain length of from about 9 to about 16 (such as from about 11 to about 15), at such a concentration as to form a calcium polyphosphate soluble salt with a molar ratio from about 2.5:1 to about 4.5:1; and
  • (c) with agitation, adding the calcium and surrogate solution (step (a)) to the polyphosphate solution (step (b)), thereby forming the calcium polyphosphate salt.
  • This completed reaction mixture can be used to formulate a beverage in situ by addition of water, sodium hexametaphosphate, flavor, color and sweetener (and, if desired, other conventional beverage components).
  • The calcium polyphosphate particles as described in paragraph [0011] herein are insoluble in a beverage product of typical pH, such as between pH 2.8 and 7.6. The formation of the particles lends itself to a purification step that allows the removal of byproducts that may impact flavor (i.e., potassium ions). This higher calcium loaded polyphosphate material does not affect the preservative action of SHMP and releases its calcium cations at gastric pH, making the calcium bioavailable.
  • It has also been discovered that an oil-in-water (O/W) emulsion, such as those used to provide beverage opacity or disperse flavors, can mask the unpleasant flavor that may come from displaced ions (e.g., potassium) that are present as a result of the making of the calcium polyphosphate.
  • Further, it has been found that, in addition to the flavor masking of the O/W emulsion, sodium ions must also be present with the emulsion to optimally mask the unpleasant flavor that may come from displaced ions (e.g., potassium) that are present as a result of the making of the calcium polyphosphate.
  • The present invention thus provides a calcium polyphosphate product (e.g., calcium metaphosphate or calcium polyphosphate) which:
  • (a) is soluble and does not deactivate a chelating preservative, such as SHMP, and can be used to provide a bio-available source of calcium to a beverage product;
  • (b) is in particulate form, free from extraneous matter that may impact flavor (e.g., potassium ions), does not deactivate a chelating preservative, such as SHMP, and can be used to provide a bio-available source of calcium to a beverage product;
  • (c) can be used in combination with an oil-in-water emulsion that masks the unpleasant flavor that may be associated with potassium ions that are present as a result of the making of the calcium polyphosphate; and
  • (d) utilizes sodium ions in addition to the oil-in-water emulsion that masks the unpleasant flavor that may be associated with potassium ions that are present as a result of the making of the calcium polyphosphate.
  • All references herein to polyphosphates are interchangeable with the terms hexametaphosphates and metaphosphates, including reference to their cyclic or linear forms, and can refer to any member of their metallic salts. All percentages and ratios stated herein are “by weight”, unless otherwise specified. Further, all patents, patent applications and other publications cited in this application are incorporated by reference herein.
  • DETAILED DESCRIPTION
  • The present invention relates to calcium polyphosphate materials (such as calcium hexametaphosphate), containing relatively short polyphosphate chain lengths and utilizing specific calcium:phosphate molar ratios. These materials can be used to provide calcium supplementation to beverages, particularly beverages which use a chelating preservative (such as SHMP) without deactivating that preservative. The methods of making these materials are also disclosed in this application.
  • It has been discovered that a calcium polyphosphate salt can be produced and maintained in equilibrium with SHMP in a beverage product in such a manner as to not affect the preservative activity of the SHMP in that beverage. The average polyphosphate chain length of SHMP is from 19 to 25. This makes for a very strong chelating agent (which accounts for SHMP's excellent preservative characteristics). It has now been found that by producing a calcium, polyphosphate salt with a relatively short phosphorus chain length of from about 9 to about 16, such as from about 11 to about 15, the calcium polyphosphate not only remains in equilibrium with SHMP (i.e., does not ruin SHMP's preservative properties) but also releases its calcium cation at gastric pH making the calcium bio-available.
  • The ratio of calcium to lower chain polyphosphate in the composition is important. The molar ratio of calcium to polyphosphate in the material is from about 2.5:1 to about 4.5:1, such as about 4:1. Lowering the ratio causes the overuse of polyphosphate, whereas significantly exceeding the ratio causes the formation of a sticky, amorphous, glass structure which physically separates from the aqueous base during preparation.
  • This amorphous glass solid is unusable in that form to be a calcium supplement in a beverage, and will not itself mix homogeneously with aqueous beverages. However, it has been found that this amorphous glass solid can be dehydrated, ground or physically processed by a jet mill or similar methods to produce small particles. These particles can then be added back to the SHMP-containing beverage with great success. The amorphous glass solid can be decanted and dehydrated by filtering, evaporation, solvent extraction, microwave heating or other similar means, for example, such that it has a water content of no greater than about 0.1%, preferably no greater than about 0.05%. The particles formed by grinding this solid typically have an average particle size of no greater than about 0.5 μm, such as from about 0.1 μm to about 0.3 μm. This small particle size is primarily important to avoid product grittiness or otherwise inappropriate mouthfeel for the consumer. By producing calcium phosphate amorphous glass solid at a molar ratio of from about 5:1 to about 9:1, such as about 5.5:1, calcium:short chain polyphosphate, a high calcium loaded salt, suitable for use after dehydration and particle processing is produced. An added benefit of this approach is that any metallic ions (sodium, potassium, etc.) originating from the starting shorter chain polyphosphate are essentially removed during the isolation of the amorphous glass solid.
  • The selection of shorter chain polyphosphate materials ideally has a phosphorus chain length of from about 9 to about 16, such as from about 11 to about 15, but longer chain lengths, for example 19-25, can be used particularly in conjunction with shorter chain length polyphosphates. They can, for example, be selected from the group consisting of metal salts of polyphosphates and metaphosphates, such as sodium metaphosphate, sodium calcium metaphosphate, sodium calcium polyphosphates, or sodium potassium metaphosphate, as well as other salts of metaphosphates or polyphosphates either of mono, binary, tertiary salts (e.g., a sodium potassium magnesium polyphosphate) encompassing all ratios of salt, for example, a sodium potassium polyphosphate with a sodium: potassium molar ratio of from about 1:9 to about 9:1.
  • The calcium polyphosphate salts defined herein can be synthesized in several ways. The first is to directly react the metallic short chain polyphosphate with a calcium source (for example, calcium hydroxide) in an aqueous neutral medium. Since the solubility of calcium hydroxide is very low in an aqueous medium, the calcium hydroxide solely reacts over the course of from about 5 to about 20 minutes, such as from about 10 to about 15 minutes, as calcium is transferred from the calcium hydroxide to the polyphosphate. A small amount of organic or mineral acid, such as citric acid, is added toward the end of this process to complete the dissociation of calcium from its hydroxide moiety and complete the transfer of calcium to the polyphosphate substrate.
  • Specifically, in this first method of making the calcium polyphosphate salt, where there is a direct reaction of the calcium with the polyphosphate, the following steps are utilized:
  • (a) reacting a metallic polyphosphate having a phosphorus chain length of from about 9 to about to about 16, with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium salt ionizable at aqueous, acidic solution, and mixtures thereof, in an aqueous medium, having a pH of from about 6 to about 7.5, the molar ratio of calcium to polyphosphate source being from about 2.5:1 to about 4.5:1;
  • (b) adding to the reaction mixture from about 0.18 wt % to about 0.725 wt % of an organic or mineral acid (such as citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, and mixtures thereof), thereby forming the calcium phosphate salt.
  • In a second method of preparing the soluble calcium polyphosphate salt described herein, an organic acid is utilized as a surrogate carrier of the calcium. This is accomplished by first preparing an aqueous solution of the acid (for example, citric acid). To this aqueous solution the correct amount of calcium salt (e.g., calcium hydroxide) is added. The amount of calcium salt used is based on the desired ratio of calcium to metaphosphate or polyphosphate. Because the solution is acidic (pH of from about 1.5 to about 2.5), calcium hydroxide immediately dissociates allowing the calcium to react with the acid forming a salt (e.g., calcium citrate). Separately, the polyphosphate is solubilized in water. This polyphosphate is reacted with the calcium salt (i.e., the surrogate carrier solution) (e.g., calcium citrate, calcium malate, calcium tartrate, calcium phosphate, calcium lactate, calcium acetate, calcium chloride, calcium carbonate, calcium gluconate, and mixtures thereof) by mixing of the calcium salt solution into the polyphosphate solution. The calcium is then quickly chelated or transferred from the calcium salt to the polyphosphate resulting in the formation of calcium polyphosphate.
  • More specifically, in the second method of preparing the calcium polyphosphate salt, where there is a surrogate carrier of the calcium, the following steps are utilized:
  • (a) preparing an aqueous solution of an organic or mineral acid (such as citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, hydrochloric acid, and mixtures thereof) together with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous, acidic solution, and mixtures thereof, to achieve a calcium to polyphosphate molar ratio of from about 2.5:1 to about 4.5:1 when mixed with the polyphosphate solution, said solution having a pH of from about 1.5 to about 3.5, such as from about 1.5 to about 2.5;
  • (b) forming a separate aqueous solution of from about 3 wt % to about 5 wt % of metallic polyphosphate having a phosphate chain length of from about 9 to about 16, such as from about 11 to about 15; and
  • (c) mixing the calcium salt solution into the polyphosphate solution thereby forming the calcium polyphosphate salt.
  • The metallic polyphosphate utilized in this reaction can, for example, be a sodium or a sodium/potassium polyphosphate. For health reasons, it is desirable to keep sodium levels relatively low; thus, the Na/K mixture can preferably include from about 50% to about 75% potassium. Examples of the calcium polyphosphate formed by the reaction include calcium metaphosphate, calcium sodium metaphosphate, calcium sodium potassium metaphosphate, calcium sodium polyphosphate, and calcium sodium potassium polyphosphate. The above reaction can be optimized to form a material which includes a relatively high loading of calcium so that fewer particles can be used in the beverage product to attain the desired level of calcium in that product; this will minimize aesthetic concerns in the final beverage product.
  • Once the reaction is completed, the calcium polyphosphate particles can be separated out and incorporated into a separate beverage making process. In the alternative, the beverage can actually be formed in situ in the reaction mixture used to prepare the calcium polyphosphate material. In order to achieve that in situ beverage formulation, water, preservative (such as sodium hexametaphosphate), flavor materials, colorants, and sweeteners (as well as other formulation materials well-known in the beverage art) are added to the reaction mixture. All of these materials are well-known to those skilled in the beverage art and they are used at their conventional levels for their conventional purposes. The finished beverage compositions typically contain from about 100 mg to about 300 mg of calcium per serving, and from about 0.1 wt % to about 0.18 wt % of the SHMP preservative.
  • The calcium source utilized in these reactions is selected to be compatible with a beverage product. As an example, calcium hydroxide or calcium oxide can be used because water is then formed in the reaction. Calcium phosphate can be used, but care must be taken to be sure that the phosphorus RDI is not exceeded in the final product. The reaction needs to drive calcium to the sodium/potassium polyphosphate where it is bound, and not to the acid in the form of calcium citrate because in that instance it would still be available to deactivate the SHMP preservative. Examples of calcium sources which can be used in the present reactions include calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium phyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous, acidic solution, and mixtures thereof.
  • The acid selected for use in the reactions defined herein must be edible and have a pKa at low pH so that the acid stays protonated, thereby assuring that the calcium will not bind to it (this is because the calcium acid salt will not prevent the calcium from deactivating the SI-IMP preservative). Examples of useful acids in the reactions herein include citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, hydrochloric acid, and mixtures thereof.
  • The reactions defined herein typically take place at a temperature within the range of from about 10 to about 30 degrees C.
  • In making the particles of the calcium polyphosphate material (i.e., having a high calcium:polyphosphate molar ratio), see paragraph [0011] herein, the amorphous glass solid material is formed, it is allowed to settle and the liquid is decanted off or filtered, and then the remaining amorphous solid material is dried using conventional means, such as a static dryer, solvent extraction, microwave heating or other similar means. This dry material is then ground into calcium polyphosphate particles using conventional means, such as a jet mill, to a particle size which is less than about 0.5 μm, such as from about 0.1 to about 0.3 μm. The particles can be added to the beverage product as is or can be coated (such as with a hydrogenated phospholipid material, for example, lecithin). When used, the particles comprise from about 10 to about 90 weight percent of the calcium polyphosphate material, and from about 90 to about 10 weight percent of the coating material. The coating itself can be carried out using any known coating process, such as using a process by which the coating is sprayed onto the calcium polyphosphate particles and allowed to dry; or by incorporating the particles in a melt of phytosterols and other plant lipids and then spray chilling (prilling) the melt to allow a core of calcium polyphosphate and a coating of phytosterol.
  • The present application also describes a method of utilizing an oil-in-water (O/W) emulsion, such as those used to provide beverage opacity or disperse flavors, to mask the unpleasant flavor that may come from displaced ions (i.e., potassium) that are present as a result of the making of the soluble calcium phosphate.
  • Three critical elements support the use of the O/W emulsion as masking agent:
  • (a) The soluble calcium polyphosphate salt must make contact with the O/W emulsion separately prior to addition of other beverage components; and maximum contact is ensured with the mixture thoroughly agitated, such as with high shear mixing, for a period of contact time of about five minutes or more.
  • (b) The composition of the O/W emulsion is from about 10% to about 20%, such as about 14%, oil such as food approved oils (e.g., canola oil) used for such purposes; from about 5% to about 10%, preferably about 7%, emulsifier such as modified food starch; from about 68% to about 83%, preferably about 77%, water; and may include necessary preservatives, colors, and flavors to meet desired beverage organoleptics.
  • (c) The droplet size of the discontinuous phase of the O/W emulsion is less than about 1 μm, such as less than about 0.5 μm; it is preferred that 90% or greater of the droplets are at 0.1 μm; which can be achieved through typical emulsification methods such as high shear mixing or high pressure homogenization. Droplet size can be measured, for example, using a Horiba, Laser Diffraction Particle Size Analyzer.
  • In addition, the present invention describes utilizing sodium ions in addition to the O/W emulsion to further mask any unpleasant flavor that may come from displaced ions (i.e., potassium) that are present as a result of the making of the soluble calcium phosphate. In formulating such beverages, the sodium concentration is from about 100 ppm to about 500 ppm, such as about 250 ppm, not to exceed about 400 mg per 8 oz serving of the finished beverage; the sodium source is selected from sodium ions present in softened process water, and inorganic or organic salts approved for food use (such as sodium chloride, sodium citrate, sodium malate, sodium tartrate, sodium acetate, encompassing all food approved sodium-containing additives or mixtures thereof).
  • The following examples are intended to illustrate the present invention and are not intended to be in any way limiting thereof.
  • EXAMPLE 1 Direct Method
  • 1. In an appropriate vessel, add 1094 g distilled H2O (ca. 25% of total water).
  • 2. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 3. While high shear mixing the solution from (2), add 3.831 g Ca(OH)2.
  • 4. Mix for 10-15 minutes.
  • 5. While high shear mixing the solution from (4), add 8.51 g citric acid (ca. 23% of total citric acid).
  • 6. Mix for 5 minutes.
  • 7. In another vessel, add 3280.74 g distilled water (ca. 75% of total water).
  • 8. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 9. While high shear mixing the solution from (8), add 28.71 g citric acid (ca. 78% of total citric acid).
  • 10. To the solution from (9), add flavors, colors and sweeteners and mix well.
  • 11. To achieve the finished beverage, to the solution from (10) add the solution from (6) and mix well.
  • EXAMPLE 2 Surrogate Method
  • 1. In an appropriate vessel, add 1094 g distilled H2O (ca. 25% of total water).
  • 2. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 3. In another vessel, add 1094 g distilled H2O (ca. 25% of total water).
  • 4. While high shear mixing the solution from (3), add 3.831 g Ca(OH)2.
  • 5. While high shear mixing the solution from (4), add 37.22 g citric acid to dissolve.
  • 6. In another vessel, add 2186.74 g distilled H2O (ca. 50% of total water).
  • 7. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 8. To the solution from (7) add flavors, colors and sweeteners and mix well.
  • 9. Mix the solution from (5) into the solution from (2).
  • 10. Mix the solution from (9) into the solution from (8) to achieve the finished beverage.
  • EXAMPLE 3 Plant Batch
  • 1. Add 80% of the batch's process water to the blend tank and start agitator and recirculation pump.
  • 2. Add the Ca(OH)2 to the tank and agitate to disperse.
  • 3. Add the sodium potassium hexametaphosphate (SHMP) to the above solution as it is being agitated and continue agitating from 5 minutes up to 12 minutes.
  • 4. To the tank add a portion of the citric acid that equals 21.48% of the total citric acid being added to the batch.
  • 5. Mix for 2-5 minutes, then circulate through the recirculation loop to remove any unreacted calcium.
  • 6. While agitating the above solution, add sodium hexametaphosphate (SHMP) to dissolve.
  • 7. Add flavors, colors and sweeteners and agitate to mix ingredients well.
  • 8. Add the remaining citric acid.
  • 9. Add the remaining process water and agitate well until homogenous.
  • EXAMPLE 4 Direct Method with Emulsion Flavor Masking
  • 1. In an appropriate vessel, add 1094 g distilled H2O (ca. 25% of total water).
  • 2. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 3. While high shear mixing the solution from (2), add 3.831 g Ca(OH)2.
  • 4. Mix for 10-15 minutes.
  • 5. While high shear mixing the solution from (4), add 8.51 g citric acid (ca. 23% of total citric acid).
  • 6. Mix for 5 minutes.
  • 7. While high shear mixing the solution from (6) add 25.53 g of oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 8. High shear mix for 10-15 minutes.
  • 9. In another vessel, add 3280.74 g distilled water (ca. 75% of total water).
  • 10. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 11. While high shear mixing the solution from (10), add 28.71 g citric acid (ca. 78% of total citric acid).
  • 12. To the solution from (11), add flavors, colors, and sweeteners and mix well.
  • 13. To achieve the finished beverage, to the solution from (12) add the solution from (8) and mix well.
  • EXAMPLE 5 Surrogate Method with Emulsion Flavor Masking
  • 1. In an appropriate vessel add 1094 g distilled H2O (ca. 25% of total water).
  • 2. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 3. In another vessel add 1094 g distilled H2O (ca. 25% of total water).
  • 4. While high shear mixing the solution from (3), add 3.81 g Ca(OH)2.
  • 5. While high shear mixing the solution from (4), add 37.22 g citric acid to dissolve.
  • 6. In another vessel, add 2186.74 g distilled H2O (ca. 50% of total water).
  • 7. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 8. To the solution from (7) add flavors, colors and sweeteners and mix well.
  • 9. Mix the solution from (5) into the solution from (2).
  • 10. While high shear mixing the solution from (9) add 25.53 g of oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 11. High shear mix for 10-15 minutes.
  • 12. Mix the solution from (11) into the solution from (8) to achieve the finished beverage.
  • EXAMPLE 6 Plant Batch with Emulsion Flavor Masking
  • 1. Add 80% of the batch's process water to the blend tank and start agitator and recirculation pump.
  • 2. Add the Ca(OH)2 to the tank and disperse.
  • 3. Add the sodium potassium hexametaphosphate (SHMP) to the above solution as it is being agitated and continue agitating from 5 minutes up to 12 minutes.
  • 4. To the tank add a portion of the citric acid that equals 21.48% of the total citric acid being added to the batch.
  • 5. Mix for 2-5 minutes, then circulate through the recirculation loop to remove any unreacted calcium.
  • 6. While high shear mixing the solution from (5) add the oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 7. High shear mix for 10-15 minutes.
  • 8. While agitating the above solution, add sodium hexametaphosphate (SHMP) to dissolve.
  • 9. Add flavors, colors and sweeteners and agitate to mix ingredients well.
  • 10. Add the remaining citric acid.
  • 11. Add the remaining process water and agitate well until homogenous.
  • EXAMPLE 7 Direct Method with Emulsion and Sodium Flavor Masking
  • 1. To the process water add sodium citrate to dissolve and bring the water sodium level to 255 ppm, resulting in modified process water (MPW).
  • 2. In an appropriate vessel, add 1094 g MPW (ca. 25% of total water).
  • 3. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 4. While high shear mixing the solution from (3), add 3.831 g Ca(OH)2.
  • 5. Mix for 10-15 minutes.
  • 6. While high shear mixing the solution from (5), add 8.51 g citric acid (ca. 23% of total citric acid).
  • 7. Mix for 5 minutes.
  • 8. While high shear mixing the solution from (7) add 25.53 g of oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 9. High shear mix for 10-15 minutes.
  • 10. In another vessel, add 3280.74 g MPW (ca. 75% of total water).
  • 11. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 12. While high shear mixing the solution from (11), add 28.71 g citric acid (ca. 78% of total citric acid).
  • 13. To the solution from (12), add flavors, colors, and sweeteners and mix well.
  • 14. To achieve the finished beverage, to the solution from (13) add the solution from (9) and mix well.
  • EXAMPLE 8 Surrogate Method with Emulsion and Salt Flavor Masking
  • 1. To the process water add sodium citrate to dissolve to bring the water sodium level to 255 ppm, resulting in modified process water (MPW).
  • 2. In an appropriate vessel add 1094 g MPW (ca. 25% of total water).
  • 3. While high shear mixing the water, add 21.592 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 4. In another vessel add 1094 g MPW (ca. 25% of total water).
  • 5. While high shear mixing the solution from (4), add 3.81 g Ca(OH)2.
  • 6. While high shear mixing the solution from (5), add 37.22 g citric acid to dissolve.
  • 7. In another vessel, add 2186.74 g MPW (ca. 50% of total water).
  • 8. While high shear mixing the water, add 4.92 g sodium hexametaphosphate (SHMP) to dissolve.
  • 9. To the solution from (8) add flavors, colors and sweeteners and mix well.
  • 10. Mix the solution from (6) into the solution from (3).
  • 11. While high shear mixing the solution from (10) add 25.53 g of oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 12. High shear mix for 10-15 minutes.
  • 13. Mix the solution from (12) into the solution from (9) to achieve the finished beverage.
  • EXAMPLE 9 Plant Batch with Emulsion and Salt Flavor Masking
  • 1. Modify the process water to achieve 255 ppm sodium by adding sodium citrate to dissolve.
  • 2. Add 80% of the batch's process water to the blend tank and start agitator and recirculation pump.
  • 3. Add the Ca(OH)2 to the tank and disperse.
  • 4. Add the sodium potassium hexametaphosphate (SHMP) to the above solution as it is being agitated and continue agitating from 5 minutes up to 12 minutes.
  • 5. To the tank add a portion of the citric acid that equals 21.48% of the total citric acid being added to the batch.
  • 6. Mix for 2-5 minutes, then circulate through the recirculation loop to remove any unreacted calcium.
  • 7. While high shear mixing the solution from (6) add the oil-in-water emulsion (the o/w emulsion as described herein containing starch, water and canola oil).
  • 8. High shear mix for 10-15 minutes.
  • 9. While agitating the above solution, add sodium hexametaphosphate (SHMP) to dissolve.
  • 10. Add flavors, colors and sweeteners and agitate to mix ingredients well.
  • 11. Add the remaining citric acid.
  • 12. Add the remaining process water and agitate well until homogenous.
  • EXAMPLE 10 Calcium Polyphosphate Particles
  • 1. In an appropriate vessel, add 1094 g distilled H2O (ca. 25% of total water).
  • 2. While high shear mixing the water, add 21.59 g sodium potassium hexametaphosphate (SHMP) to dissolve.
  • 3. While high shear mixing the solution from (2), add 5.268 g Ca(OH)2.
  • 4. Mix for 5-10 minutes or until mixture begins to clear.
  • 5. Stop agitating.
  • 6. Decant aqueous supernatant containing potassium and sodium ions.
  • 7. Collect amorphous glass precipitate and place into a drying vessel.
  • 8. Dry at 50-58 degrees C. until moisture content is less than 0.1% as measured by Karl Fisher.
  • 9. Pulverize the dried salt and follow with high intensity grinding to achieve appropriate size and distribution as measured by using a Horiba PSA.
  • 10. If particles exceed 0.5 μm, prepare an aqueous slurry using the particles and high shear grind until desired particle size and distribution are achieved.
  • 11. After drying and grinding, the calcium polyphosphate particles can now be utilized in an SHMP-containing beverage where the salt. remains insoluble without deactivating SHMP.

Claims (22)

What is claimed:
1. A calcium polyphosphate salt, having a calcium:polyphosphate molar ratio of from about 2.5:1 to about 4.5:1 and wherein the polyphosphate has a phosphorus chain length of from about 9 to about 16.
2. The calcium polyphosphate salt according to claim 1 wherein the phosphorus chain length is from about 11 to about 15.
3. The calcium polyphosphate salt according to claim 2 wherein the calcium:polyphosphate molar ratio is about 4:1.
4. A method of in situ preparation of a soluble calcium polyphosphate salt comprising the steps of:
(a) reacting a metallic polyphosphate having a phosphorus chain length of from about 9 to about 16, with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium salt ionizable at aqueous acidic solution, and mixtures thereof, in an aqueous medium, the molar ratio of polyphosphate to calcium source being from about 2.5:1 to about 4.5:1; and
(b) adding to the reaction mixture from about 0.18% to about 0.752% of an organic or mineral acid, thereby forming the calcium phosphate salt.
5. The method according to claim 4 wherein the metallic polyphosphate has a phosphorus chain length of from about 11 to about 15.
6. The method according to claim 5 wherein the metallic polyphosphate is a sodium or a sodium/potassium polyphosphate.
7. The method according to claim 6 wherein the organic or mineral acid is selected from citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, and mixtures thereof.
8. The method according to claim 6 wherein the reaction of step (a) proceeds for about 5 to about 20 minutes.
9. The method according to claim 8 which includes the following additional step, following step (b):
(c) formulating a beverage in situ by addition of water, sodium hexametaphosphate, flavor, color, and sweetener to the reaction mixture.
10. The method according to claim 8 wherein the calcium polyphosphate salt formed is selected from calcium metaphosphate, calcium sodium metaphosphate, calcium sodium potassium metaphosphate, calcium sodium polyphosphate, and calcium sodium potassium polyphosphate.
11. A method of in situ preparation of a soluble calcium polyphosphate salt comprising the steps of:
(a) preparing an aqueous solution of an organic or mineral acid, together with a calcium source selected from calcium hydroxide, calcium oxide, calcium phosphate, calcium chloride, calcium carbonate, calcium glycerophosphate, calcium pyrophosphate, calcium metaphosphate, or any calcium source ionizable at aqueous acidic solution, and mixtures thereof, to achieve a calcium to polyphosphate molar ratio of from about 2.5:1 to about 4.5:1 when mixed with the polyphosphate solutions, said solution having a pH of from about 1.5 to about 3.5;
(b) forming a separate aqueous solution of from about 3% to about 5% of a metallic polyphosphate having a phosphate chain length of from about 9 to about 16; and
(c) mixing the calcium salt solution into the polyphosphate solution, thereby forming the calcium polyphosphate salt.
12. The method according to claim 11 wherein the calcium polyphosphate salt formed has a phosphorus chain length of from about 11 to about 15.
13. The method according to claim 12 wherein the metallic polyphosphate reactant in step (a) is a sodium or a sodium/potassium polyphosphate.
14. The method according to claim 13 wherein the organic or mineral acid utilized is step (a) is selected from citric acid, malic acid, tartaric acid, phosphoric acid, carbonic acid, lactic acid, gluconic acid, acetic acid, hydrochloric acid, and mixtures thereof.
15. The method according to claim 14 wherein the pH of the solution in step (a) is from about 1.5 to about 2.5.
16. The method according to claim 15 wherein the calcium polyphosphate salt formed in the reaction is selected from calcium metaphosphate, calcium sodium metaphosphate, calcium sodium potassium metaphosphate, calcium sodium polyphosphate, and calcium sodium potassium polyphosphate.
17. The method according to claim 13 which, following step (c) includes the following additional step:
(d) formulating a beverage in situ by addition of water, sodium hexametaphosphate, flavor, color, and sweetener to the reaction mixture.
18. A beverage composition which comprises water, sodium hexametaphosphate, flavor, colorant, sweetener and the calcium polyphosphate salt of claim 1 in an amount such that each 8 oz. serving contains from about 100 mg to about 300 mg calcium.
19. A beverage composition which comprises water, sodium hexametaphosphate, flavor, colorant, sweetener and the calcium polyphosphate salt of claim 3 in an amount such that each 8 oz. serving contains from about 100 mg to about 300 mg calcium.
20. The beverage composition according to claim 18 made by high sheer mixing of the calcium polyphosphate salt with an edible oil-in-water emulsion comprising a food approved oil, an emulsifier, and water, prior to addition of other beverage components.
21. The beverage composition according to claim 20 wherein the oil-in-water emulsion comprises canola oil, starch and water.
22. The beverage composition according to claim 21 which additionally comprises about 100 ppm to about 500 ppm sodium ions.
US15/066,652 2015-05-06 2016-03-10 Calcium polyphosphate salts, methods of making and use in beverage compositions Abandoned US20160324893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/066,652 US20160324893A1 (en) 2015-05-06 2016-03-10 Calcium polyphosphate salts, methods of making and use in beverage compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562157680P 2015-05-06 2015-05-06
US15/066,652 US20160324893A1 (en) 2015-05-06 2016-03-10 Calcium polyphosphate salts, methods of making and use in beverage compositions

Publications (1)

Publication Number Publication Date
US20160324893A1 true US20160324893A1 (en) 2016-11-10

Family

ID=55646884

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/066,652 Abandoned US20160324893A1 (en) 2015-05-06 2016-03-10 Calcium polyphosphate salts, methods of making and use in beverage compositions
US15/066,678 Active 2036-09-27 US10005670B2 (en) 2015-05-06 2016-03-10 Calcium polyphosphate salt particles and method of making

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/066,678 Active 2036-09-27 US10005670B2 (en) 2015-05-06 2016-03-10 Calcium polyphosphate salt particles and method of making

Country Status (4)

Country Link
US (2) US20160324893A1 (en)
BR (2) BR112017023878B1 (en)
MX (2) MX2017014242A (en)
WO (2) WO2016178747A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005670B2 (en) 2015-05-06 2018-06-26 Sunny Delight Beverages Co. Calcium polyphosphate salt particles and method of making
CN109399598A (en) * 2018-12-28 2019-03-01 湖北泰盛化工有限公司 A kind of method that the purification of crude product sodium pyrophosphate produces sodium pyrophosphate and sodium chloride
CN111634897A (en) * 2020-05-27 2020-09-08 天宝动物营养科技股份有限公司 Nano-grade calcium hydroxy phosphate/calcium hydrogen phosphate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405928B (en) * 2017-11-30 2023-06-20 高露洁-棕榄公司 Oral care compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696826A (en) * 1986-05-16 1987-09-29 General Foods Corporation Process for manufacture of emulsions containing soy protein
US4906482A (en) * 1986-03-19 1990-03-06 Zemel Michael B Method of making calcium fortified soy milk and the calcium fortified soy milk
WO2014160920A1 (en) * 2013-03-29 2014-10-02 Cargill, Incorporated Process for the production of stable emulsions

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852341A (en) * 1954-08-20 1958-09-16 Victor Chemical Works Calcium polyphosphate and method of producing the same
US4010241A (en) * 1974-08-27 1977-03-01 Alfred Lvovich Mosse Process for the production of hydrogen fluoride, phosphoric anhydride, calcium polyphosphates and nitric acid
US4360625A (en) * 1979-12-14 1982-11-23 Monsanto Company Acicular, crystalline calcium metaphosphate
US5431940A (en) * 1994-02-24 1995-07-11 The Procter & Gamble Company Preparation of noncarbonated beverage products with improved microbial stability
US6261619B1 (en) * 1994-02-24 2001-07-17 The Procter & Gamble Co. Noncarbonated beverage products with improved microbial stability and processes for preparing
US6294214B1 (en) * 1994-02-24 2001-09-25 The Procter & Gamble Co. Noncarbonated beverage products with improved microbial stability and processes for preparing
US6268003B1 (en) * 1994-02-24 2001-07-31 The Procter & Gamble Company Noncarbonated beverage products with improved microbial stability and processes for preparing
BR9604884A (en) * 1995-02-28 1998-05-19 Procter & Gamble Preparation of non-carbonated beverage products with superior microbial stability
US6326040B1 (en) 1999-03-08 2001-12-04 The Procter & Gamble Co. Beverage products having superior vitamin stability
US7094282B2 (en) 2000-07-13 2006-08-22 Calcitec, Inc. Calcium phosphate cement, use and preparation thereof
GB0007421D0 (en) 2000-03-27 2000-05-17 Smithkline Beecham Plc Novel use
US7494614B2 (en) * 2002-07-12 2009-02-24 Pilliar Robert M Method of manufacture of porous inorganic structures
US8067321B2 (en) * 2008-05-21 2011-11-29 Icl Performance Products, Lp Sodium-potassium hexametaphosphate and potassium metaphosphate with a low insolubles content
US8999031B2 (en) * 2010-08-10 2015-04-07 Agtec Innovations, Inc. Polyphosphate fertilizer combinations
ES2399000B1 (en) * 2012-12-12 2014-01-28 Biotechnology Institute I Mas D S.L. Method to produce a porous structure of calcium polysphosphate
US20140199439A1 (en) 2013-01-14 2014-07-17 Sunny Delight Beverages Company Coated calcium particulates for use in beverage products
GB2532283A (en) 2014-11-17 2016-05-18 Ernst Ludwig Georg Muller Werner Morphogenetically active calcium polyphosphate nanoparticles
US20160324893A1 (en) 2015-05-06 2016-11-10 Sunny Delight Beverages Co. Calcium polyphosphate salts, methods of making and use in beverage compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906482A (en) * 1986-03-19 1990-03-06 Zemel Michael B Method of making calcium fortified soy milk and the calcium fortified soy milk
US4696826A (en) * 1986-05-16 1987-09-29 General Foods Corporation Process for manufacture of emulsions containing soy protein
WO2014160920A1 (en) * 2013-03-29 2014-10-02 Cargill, Incorporated Process for the production of stable emulsions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CRC Handbook of Food Additives, Second edition. Vol 1. Edited by Thomas Furia. 1972. CRC Press, Boca Raton Florida. pages 628-629. *
Exerpt from Wikipedia entry for soy milk. From: Wikipedia entry for Soy Milk, downloaded December 21, 2016 from https://en.wikipedia.org/wiki/Soy_milk *
Wilson, Pamela. The Good on Cooking Oils. Downloaded December 26, 2016, from http://www.abc.net.au/health/thepulse/stories/2012/04/24/3471676.htm. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005670B2 (en) 2015-05-06 2018-06-26 Sunny Delight Beverages Co. Calcium polyphosphate salt particles and method of making
CN109399598A (en) * 2018-12-28 2019-03-01 湖北泰盛化工有限公司 A kind of method that the purification of crude product sodium pyrophosphate produces sodium pyrophosphate and sodium chloride
CN111634897A (en) * 2020-05-27 2020-09-08 天宝动物营养科技股份有限公司 Nano-grade calcium hydroxy phosphate/calcium hydrogen phosphate and preparation method thereof

Also Published As

Publication number Publication date
BR112017023880A2 (en) 2018-07-24
WO2016178748A1 (en) 2016-11-10
US10005670B2 (en) 2018-06-26
MX2017014243A (en) 2018-06-28
US20160325997A1 (en) 2016-11-10
BR112017023878B1 (en) 2022-03-29
WO2016178747A1 (en) 2016-11-10
MX2017014242A (en) 2018-06-28
BR112017023878A2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
EP1743530B1 (en) Iron fortified food product and additive
US10005670B2 (en) Calcium polyphosphate salt particles and method of making
KR100381632B1 (en) Calcium fortified beverages and preparation methods thereof
US20200339922A1 (en) Preparation of a powdered vinegar
US20090238947A1 (en) Calcium Fortified Food Product and Additive
CN102228249A (en) Method for manufacturing wheat germ oil microcapsule
US8501255B2 (en) Particulate composition comprising calcium lactate and calcium citrate microparticles
JP4700497B2 (en) Method for preventing or fading green color of chlorophyll-containing food by mineral-containing lactic acid bacteria and restoring green color of bleached chlorophyll-containing food
CN102892308A (en) Encapsulated salts and use in high acid beverages
DE60002678T2 (en) SYSTEM FOR ENRICHING WITH IRON
WO2007107501A1 (en) Double-fortified salt and preparation process therefor
EP2988614B1 (en) Lutein composition suitable for infant food formulations
CN108013319A (en) Antioxidation activity lotion and preparation method thereof
JP4042977B2 (en) Method for producing food additive composition
US3600197A (en) Flavor enhancing compositions for foods and beverages
KR100974852B1 (en) Inorganic­particle­containing additive composition, process for producing the same, and food composition containing the additive composition
KR100839211B1 (en) Composite of iron content and their manufacturing method
KR20070019132A (en) Calcium slurry composition for food additives and preparation method thereof
JPH11132A (en) Chlorophyll preparation and its production
US20040259937A1 (en) Hydroxycitric acid complex metal salts, composition, and methods
EP0838161A2 (en) Flavor-stabilized beet colorant composition
EP1792543A1 (en) Magnesium fortified food product and additive
JP2001186863A (en) Food additive slurry composition, powder composition and food composition containing these compositions
JPH0380054A (en) Calcium enriching agent
WO2022048873A1 (en) Iron-fortified food concentrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUNNY DELIGHT BEVERAGES CO., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SARAMA, ROBERT;ARCUINO, GREGORY;REEL/FRAME:041486/0280

Effective date: 20150826

AS Assignment

Owner name: TCW ASSET MANAGEMENT COMPANY LLC, AS COLLATERAL AG

Free format text: ASSIGNMENT FOR SECURITY -- PATENTS;ASSIGNORS:SUNNY DELIGHT BEVERAGES CO.;SD IP HOLDINGS COMPANY;REEL/FRAME:042384/0430

Effective date: 20170501

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SUNNY DELIGHT BEVERAGES CO., OHIO

Free format text: RELEASE OF SECURITY INTEREST UNDER REEL/FRAME NO. 42384/430;ASSIGNOR:TCW ASSET MANAGEMENT COMPANY LLC;REEL/FRAME:053663/0844

Effective date: 20200828

Owner name: SD IP HOLDINGS COMPANY, OHIO

Free format text: RELEASE OF SECURITY INTEREST UNDER REEL/FRAME NO. 42384/430;ASSIGNOR:TCW ASSET MANAGEMENT COMPANY LLC;REEL/FRAME:053663/0844

Effective date: 20200828