US20160320062A1 - Nozzle for a gas turbine combustor - Google Patents

Nozzle for a gas turbine combustor Download PDF

Info

Publication number
US20160320062A1
US20160320062A1 US15/138,648 US201615138648A US2016320062A1 US 20160320062 A1 US20160320062 A1 US 20160320062A1 US 201615138648 A US201615138648 A US 201615138648A US 2016320062 A1 US2016320062 A1 US 2016320062A1
Authority
US
United States
Prior art keywords
nozzle
channel
outlet
fuel
swirl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/138,648
Inventor
Martin Zajadatz
Douglas Anthony Pennell
Thorsten Christoph Motzkus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH, Alstom Technology AG filed Critical General Electric Technology GmbH
Assigned to ALSTOM TECHNOLOGY LTD reassignment ALSTOM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOTZKUS, THORSTEN CHRISTOPH, PENNELL, DOUGLAS ANTHONY, ZAJADATZ, MARTIN
Assigned to GENERAL ELECTRIC TECHNOLOGY GMBH reassignment GENERAL ELECTRIC TECHNOLOGY GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALSTOM TECHNOLOGY LTD
Publication of US20160320062A1 publication Critical patent/US20160320062A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)

Abstract

The disclosure concerns a nozzle for a gas turbine combustor, the nozzle comprising an inner channel, a swirl channel, a mixing zone and an outlet channel, wherein the nozzle extends from an inlet to an outlet, the swirl channel is disposed around the inner channel, the inner channel and the swirl channel extend from the inlet to the mixing zone, the mixing zone extends from the inner channel and the swirl channel to the outlet channel, and the outlet channel extends from the mixing zone to the outlet. A burner and a gas turbine comprising the nozzle are also described, along with a method of using the nozzle.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to European Patent Application No. 15165682.4 filed Apr. 29, 2015, the contents of which are hereby incorporated in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to a nozzle for a gas turbine combustor, and particularly to a nozzle for a gas turbine combustor with a swirl channel and an inner channel.
  • BACKGROUND
  • Today's nozzle systems for gas turbine combustors are mostly designed as plain jet or swirl nozzles. The main differences between these nozzle types are atomising quality, spray cone angle and pressure drop. Swirl nozzles provide good atomising combined with large spray cone angles. Comparatively, plain jets provide a lower fuel pressure drop, but also worse atomising quality and smaller spray cone angles.
  • A plain jet nozzle consists of an axial bore hole, and the corresponding manufacturing costs are low. The plain jet nozzle also requires less space in the combustor compared to a swirl nozzle. Swirl nozzles generally have a geometrically complex swirler combined with a sophisticated nozzle exit shape, and therefore provide better spray quality. The manufacturing costs for swirl nozzles can be a great deal larger than for plain jet nozzles, although as a result of the better spray quality a greater operation range can be available.
  • The requirements for fuel nozzles with respect to through flow values are strict, and confined in a narrow range with a specified tolerance band that cannot be exceeded. As a result, a 100% flow rate check of the fuel nozzles is required. Deviations from the specified tolerance band are not acceptable and can require expensive reworking of the nozzles. For complex swirl nozzles in particular, this may be too expensive, and exchangeable additional orifices are applied upstream of the nozzle in order to regulate the throughput. This measure leads to additional pressure loss, increased manufacturing costs and increased space requirements, along with a reduction in fuel injection system reliability with its associated increased commissioning and maintenance costs.
  • As a result of these issues with existing nozzles, it has been appreciated that existing designs could be improved.
  • SUMMARY
  • The invention is defined in the appended independent claims to which reference should now be made. Advantageous features of the invention are set forth in the dependent claims.
  • A first aspect of the invention provides a nozzle for a gas turbine combustor, the nozzle comprising an inner channel, a swirl channel, a mixing zone and an outlet channel, wherein the nozzle extends from an inlet to an outlet, the swirl channel is disposed around the inner channel, the inner channel and the swirl channel extend from the inlet to the mixing zone, the mixing zone extends from the inner channel and the swirl channel to the outlet channel, and the outlet channel extends from the mixing zone to the outlet.
  • This can result in a fuel spray from the nozzle outlet with an improved spray quality compared to a plain jet nozzle. The nozzle can also provide some of the advantages of a plain jet nozzle and a swirl nozzle within the same nozzle, and can provide an optimised compromise between the two designs. The nozzle can also be made smaller than a swirl nozzle.
  • In one embodiment, the nozzle is arranged such that when in use 30 to 75% of a fuel goes through the inner channel. In one embodiment, the nozzle comprises a diffuser attached to the outlet channel and wherein the outlet channel extends from the mixing zone to the diffuser. The diffuser can enhance the spray angle and improve mixing with air to reduce hot spots in the combustion chamber and thereby increase lifetime and reduce emissions.
  • In one embodiment, the diameter of the inner channel is smaller than the diameter of the outlet channel. The flow number of the nozzle can be corrected even when the nozzle is in place in a gas turbine by reaming the inner channel.
  • In one embodiment, the nozzle is for use with a liquid fuel such as fuel oil, kerosene, diesel oil, or an emulsion of fuel oil, kerosene or diesel oil with water. Use of an emulsion fuel can reduce the peak burning temperature and reduce emissions, particularly of NOx. In one embodiment, the outlet channel opens directly into a combustion chamber.
  • A second aspect of the invention provides a burner comprising the nozzle as described above. In one embodiment, the burner comprises at least one shielding fluid hole disposed around the outlet of the nozzle. A shielding fluid such as air provided through the shielding fluid holes can help protect the nozzle and other nearby parts from heat (when the nozzle is not being used), and from the fuel and from coke formation when in use.
  • A third aspect of the invention provides a gas turbine comprising a combustor comprising the nozzle as described above or the burner as described above.
  • A fourth aspect of the invention provides a method of using a nozzle for a gas turbine combustor, the nozzle comprising an inner channel, a swirl channel, a mixing zone and an outlet channel and the nozzle having an inlet and an outlet, wherein the swirl channel is disposed around the inner channel, the inner channel and the swirl channel extend from the inlet to the mixing zone, the mixing zone extends from the inner channel and the swirl channel to the outlet channel, and the outlet channel extends from the mixing zone to the outlet, the method comprising feeding a fuel through the nozzle and combusting the fuel in a combustion chamber. In one embodiment, the fuel is a liquid fuel such as fuel oil, kerosene, diesel oil, or an emulsion of fuel oil, kerosene or diesel oil with water.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • An embodiment of the invention will now be described by way of example only and with reference to the accompanying drawings in which:
  • FIG. 1 shows a cross-section of part of a burner for a gas turbine including a nozzle according to the invention;
  • FIG. 2 shows a side view of a nozzle according to the invention; and
  • FIG. 3 shows a cross-section of the nozzle in FIG. 2 along A-A.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a nozzle 1 according to the invention in a burner 8 for a gas turbine. The nozzle comprises at least one inner channel 3 (inner axial inlet channel) with at least one swirl channel 4 (outer swirl channel) extending around the outer diameter of the inner channel 3. The inner channel 3 and the swirl channel 4 extend from a nozzle inlet 20 to a mixing zone 5 downstream of the inner channel 3 and swirl channel 4. The mixing zone 5 is a cylindrical hole through the nozzle, with the axis of the mixing zone cylindrical hole 16 being perpendicular to the axis 18 of the nozzle (see also FIG. 2).
  • An outlet channel 6 is disposed at the other side of the mixing zone from the inner channel 3 and the swirl channel 4 (downstream of the mixing zone 5), with the outlet channel 6 extending from the mixing zone 5 to the outlet 22 of the nozzle.
  • A shielding fluid hole 10 (shielding fluid channel) is provided between a nozzle carrier 2 and the burner 8, for providing a shielding fluid such as cooling air. The nozzle carrier 2 is part of a fuel supply line 9.
  • FIG. 2 shows a side view of the nozzle of FIG. 1, with features as described above. FIG. 2 includes dashed lines showing the internal extent of the walls of the nozzle. FIG. 3 shows a cross-section view of the nozzle in the same direction as FIG. 1 but without the surrounding burner. FIG. 3 is also a cross-section of the nozzle in FIG. 2 along A-A. An optional diffuser 24 is shown in FIG. 3, downstream of and attached at the outlet of the nozzle.
  • The nozzle and burner described above are for use in a gas turbine. For example, the nozzle could be used in an AEV burner (advanced environmental burner). The nozzle can be used in a liquid fuel burner or as the liquid fuel nozzles in a combined gas and liquid fuel burner with both liquid fuel nozzles and gas nozzles.
  • When in use, fuel 14 is fed through the fuel supply line 9 and the nozzle carrier 2 to the inlet 20, where it splits into two flows, a main flow going through the inner channel 3 and a second flow going through the swirl channel 4. After flowing through the inner channel 3 and swirl channel 4 respectively, the main flow and the second flow recombine in the mixing zone 5. From the mixing zone 5, the fuel 14 flows through the outlet channel 6 and into the combustion chamber 7. If a diffuser is provided after the outlet, the fuel flows through the diffuser after leaving the outlet channel before entering the combustor.
  • The fuel can be a liquid fuel such as fuel oil, kerosene, diesel oil, or an emulsion of fuel oil, kerosene or diesel oil with water. The fuel oil may be fuel oil number 2, for example (i.e. oil which is primarily made up of hydrocarbon molecules with chain lengths of between 10 and 20 carbon atoms).
  • In some embodiments, a majority of the fuel goes through the inner channel, preferably at least 75%, more preferably at least 85% and most preferably at least 95%. The remaining fuel goes through the swirl channel, generally at least 1% or 2%. The maximum fuel flow fraction through the inner channel is therefore generally 98% or 99%. In other embodiments, 30 to 75% of the fuel goes through the inner channel, preferably 40 to 70% and most preferably 55 to 60%. One embodiment has 58% of the fuel going through the inner channel and 42% of the fuel going through the swirl channel, for example. This means that a part of the fuel goes directly through (is fed through) the inner channel, the mixing zone and the outlet channel into the combustor. The remaining fuel takes the same path except that it goes through the swirl channel instead of through the inner channel, generating additional swirl and turbulence in the mixing zone. This can result in a fuel spray from the nozzle outlet with an improved spray quality compared to a plain jet nozzle.
  • Both the swirl of the fuel exiting the nozzle outlet and the number and position of fuel-rich zones in the fuel flow field in the combustor vary based on the mass flow ratio (between the inner channel and the swirl channel) and on the number of swirl channels. The location of the fuel-rich zones in the fuel flow field is important, and fuel-rich zones should be kept away from other components in the combustor to minimise the thermal load on these components. The orientation of the nozzle can be chosen to optimise the position of the fuel-rich zones and minimise the thermal load.
  • In a method of manufacture of a nozzle 1 as described above, the nozzle 1 may be manufactured as an integral part or as several separate parts. Generally, the nozzle 1 is then attached to the nozzle carrier 2, which is then attached to the fuel supply line 9. The nozzle 1 may be attached to the nozzle carrier 2 by any appropriate method, such as brazing or welding. The join between the nozzle 1 and the nozzle carrier 2 is generally gas-tight. Similarly, the nozzle carrier 2 may attached to the fuel supply line 9 by any appropriate method, such as brazing or welding.
  • Before, during or after insertion of the nozzle into the gas turbine, the inner channel may be reamed to increase its inner diameter; that is, its diameter in a plane perpendicular to the nozzle axis 18. This can be useful if the nozzle is outside of a tolerance band after initial manufacture, or is found subsequently to be outside of a tolerance band. The nozzle may be retrofitted to existing gas turbines.
  • The nozzle is generally a cylindrical or substantially cylindrical shape, although other shapes are also possible. As a result, the cross-section of the nozzle in the plane perpendicular to the nozzle axis 18 is generally circular, although again other shapes are possible. The nozzle can be part of a combustor, and can lead fuel directly to a combustion chamber after the outlet of the nozzle. If a diffuser is provided, the fuel exits through the outlet into the diffuser and then into the combustion chamber.
  • One, two or more inner channels 3 may be provided. The inner channel may have a smaller diameter than the outlet channel, as can be seen in the Figures. However, the inner channel may alternatively have the same or a larger diameter than the outlet channel. One, two or more swirl channels 4 may be provided. The swirl channel(s) and the inner channel(s) are preferably concentric. The swirl channel may be disposed around the entire circumference (relative to the nozzle axis direction) of the inner channel.
  • The mixing zone 5 is shown as a cylindrical hole through the nozzle, but may be other shapes and at other angles, such as a cuboid or ovoid shape or an irregular shape.
  • The nozzle carrier 2 is shown in FIG. 1 extending around the nozzle and beyond the inlet 20 of the nozzle. Alternatively, the nozzle carrier may extend up to the inlet 20 of the nozzle, or may only extend part of the length of the nozzle (relative to the nozzle axis direction). Beyond the end of the nozzle carrier, the fuel supply line continues as shown in FIG. 1. The nozzle carrier 2 (fuel supply line) may extend around the entire circumference (relative to the nozzle axis) of the nozzle. In the region of the nozzle carrier adjacent to the swirl channel 4, the nozzle carrier (or another portion of the fuel supply line) generally provides the outer limit of the swirl channel, as shown in FIG. 1. Alternatively, the structure of the nozzle itself may delimit the swirl channel. The nozzle carrier 2 may also be an integral part of the fuel supply line 9. The nozzle axis 18 may also be an axis of the fuel supply line. The nozzle and the fuel supply line (nozzle carrier) may be concentric.
  • The shielding fluid hole 10 is optional, and the nozzle carrier 2 may be directly adjacent to the burner. The burner can be attached to the nozzle carrier. The shielding fluid hole may extend around the entire circumference of the nozzle (and nozzle carrier), or alternatively one or more shielding fluid holes may be provided that each only extend part of the way around the entire circumference. Supports may also be provided in the shielding fluid hole between the nozzle carrier and the burner, particularly in embodiments where the shielding fluid hole extends around the entire circumference. The shielding fluid hole is normally further from the nozzle axis 18 than the inner channel 3 and the swirl channel 4. The shielding fluid hole can provide an annulus of air through which the shielded fluid (i.e. the fluid from the inner channel and swirl channel) flows.
  • The diffuser may be a conical shape (conical frustum) or another appropriate shape, such as pyramidal. The diffuser will generally conform to the shape of the outlet of the nozzle.
  • Various modifications to the embodiments described are possible and will occur to those skilled in the art without departing from the invention which is defined by the following claims.

Claims (12)

1. A nozzle for a gas turbine combustor, the nozzle comprising an inner channel, a swirl channel, a mixing zone and an outlet channel, wherein
the nozzle extends from an inlet to an outlet,
the swirl channel is disposed around the inner channel,
the inner channel and the swirl channel extend from the inlet to the mixing zone,
the mixing zone extends from the inner channel and the swirl channel to the outlet channel, and
the outlet channel extends from the mixing zone to the outlet.
2. The nozzle of claim 1, arranged such that when in use 30 to 75% of a fuel goes through the inner channel.
3. The nozzle of claim 1, further comprising a diffuser attached to the outlet channel and wherein the outlet channel extends from the mixing zone to the diffuser.
4. The nozzle of any of claims 1, wherein the diameter of the inner channel is smaller than the diameter of the outlet channel.
5. The nozzle of any of claims 1, wherein the nozzle is for use with a liquid fuel such as fuel oil, kerosene, diesel oil, or an emulsion of fuel oil, kerosene or diesel oil with water.
6. The nozzle of claim 1, wherein the outlet channel opens directly into a combustion chamber.
7. A fuel supply line comprising the nozzle of any of claim 1.
8. A burner comprising the nozzle of claim 1.
9. The burner of claim 8, wherein the burner comprises at least one shielding fluid hole disposed around the outlet of the nozzle.
10. A gas turbine comprising a combustor comprising the nozzle of claim 1.
11. A method of using nozzle for a gas turbine combustor, the nozzle comprising an inner channel, a swirl channel, a mixing zone and an outlet channel, wherein the nozzle extends from an inlet to an outlet, the swirl channel is disposed around the inner channel, the inner channel and the swirl channel extend from the inlet to the mixing zone, the mixing zone extends from the inner channel and the swirl channel to the outlet channel, and the outlet channel extends from the mixing zone to the outlet, the method comprising feeding a fuel through the nozzle and combusting the fuel in a combustion chamber.
12. The method of claim 11, wherein the fuel is a liquid fuel such as fuel oil, kerosene, diesel oil, or an emulsion of fuel oil, kerosene or diesel oil with water.
US15/138,648 2015-04-29 2016-04-26 Nozzle for a gas turbine combustor Abandoned US20160320062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15165682.4 2015-04-29
EP15165682 2015-04-29

Publications (1)

Publication Number Publication Date
US20160320062A1 true US20160320062A1 (en) 2016-11-03

Family

ID=53005524

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/138,648 Abandoned US20160320062A1 (en) 2015-04-29 2016-04-26 Nozzle for a gas turbine combustor

Country Status (4)

Country Link
US (1) US20160320062A1 (en)
EP (1) EP3088802A1 (en)
CN (1) CN106091012A (en)
RU (1) RU2016116770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974259B2 (en) 2018-03-13 2021-04-13 Innomist Llc Multi-mode fluid nozzles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916911B (en) * 2018-04-27 2019-12-03 北京航空航天大学 A kind of pre-combustion grade uses the center classification low emission combustor head of pre- diaphragm plate structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920187A (en) * 1974-05-24 1975-11-18 Porta Test Mfg Spray head
DE2733102A1 (en) * 1977-07-22 1979-02-01 Bayer Ag METHOD AND DEVICE FOR ATOMIZING LIQUIDS
CN86200959U (en) * 1986-02-21 1986-12-03 中国人民解放军第五七○六工厂 Inner combustion type heavy oil burner with double atomization nozzle
DE19608349A1 (en) * 1996-03-05 1997-09-11 Abb Research Ltd Pressure atomizer nozzle
DE19730617A1 (en) * 1997-07-17 1999-01-21 Abb Research Ltd Pressure atomizer nozzle
EP0902233B1 (en) * 1997-09-15 2003-03-12 ALSTOM (Switzerland) Ltd Combined pressurised atomising nozzle
DE102004027702A1 (en) * 2004-06-07 2006-01-05 Alstom Technology Ltd Injector for liquid fuel and stepped premix burner with this injector
EP1802915B1 (en) * 2004-10-18 2016-11-30 General Electric Technology GmbH Gas turbine burner
GB0815761D0 (en) * 2008-09-01 2008-10-08 Rolls Royce Plc Swirler for a fuel injector
CN201363721Y (en) * 2009-02-13 2009-12-16 上海鸿臣实业有限公司 Multi-atomizing mixing burner
US9127843B2 (en) * 2013-03-12 2015-09-08 Pratt & Whitney Canada Corp. Combustor for gas turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974259B2 (en) 2018-03-13 2021-04-13 Innomist Llc Multi-mode fluid nozzles
US11590518B2 (en) 2018-03-13 2023-02-28 Innomist Llc Multi-mode fluid nozzles
US11845091B2 (en) 2018-03-13 2023-12-19 Innomist Llc Multi-mode fluid nozzles

Also Published As

Publication number Publication date
EP3088802A1 (en) 2016-11-02
CN106091012A (en) 2016-11-09
RU2016116770A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
US10072848B2 (en) Fuel injector with premix pilot nozzle
EP2213944B1 (en) Apparatus for fuel injection in a turbine engine
US9810433B2 (en) Inclined fuel injection of fuel into a swirler slot
JP5188238B2 (en) Combustion apparatus and burner combustion method
US8024932B1 (en) System and method for a combustor nozzle
JP4922878B2 (en) Gas turbine combustor
JP4894295B2 (en) Combustion device, combustion method of combustion device, and modification method of combustion device
US10125992B2 (en) Gas turbine combustor with annular flow sleeves for dividing airflow upstream of premixing passages
JP2010223577A (en) Swirler, method of preventing flashback in burner equipped with at least one swirler, and burner
JP2010223577A5 (en)
US9958152B2 (en) Multi-functional fuel nozzle with an atomizer array
JP2010223577A6 (en) Swirl, method for preventing backfire in burner equipped with at least one swirler, and burner
EP3475616B1 (en) A burner with fuel and air supply incorporated in a wall of the burner
CN103270369B (en) With the gas-turbine combustion chamber of fuel nozzle, with the burner of this fuel nozzle, and fuel nozzle
CN105402770A (en) Dilution gas or air mixer for a combustor of a gas turbine
EP3472518B1 (en) Fuel oil axial stage combustion for improved turbine combustor performance
US10132240B2 (en) Multi-functional fuel nozzle with a dual-orifice atomizer
JP2016099107A (en) Premix fuel nozzle assembly
RU2533609C2 (en) Burner flame stabilisation
US20160320062A1 (en) Nozzle for a gas turbine combustor
US20180340689A1 (en) Low Profile Axially Staged Fuel Injector
US11525403B2 (en) Fuel nozzle with integrated metering and flashback system
JP2011038710A (en) Gas turbine combustor
JP5958981B2 (en) Method for changing flame lift distance in gas turbine combustor
JP5807899B2 (en) Gas turbine combustor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAJADATZ, MARTIN;PENNELL, DOUGLAS ANTHONY;MOTZKUS, THORSTEN CHRISTOPH;REEL/FRAME:038781/0095

Effective date: 20160530

AS Assignment

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:ALSTOM TECHNOLOGY LTD;REEL/FRAME:039714/0578

Effective date: 20151102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION