US20160305956A1 - Elevated ccl19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy - Google Patents
Elevated ccl19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy Download PDFInfo
- Publication number
- US20160305956A1 US20160305956A1 US15/131,063 US201615131063A US2016305956A1 US 20160305956 A1 US20160305956 A1 US 20160305956A1 US 201615131063 A US201615131063 A US 201615131063A US 2016305956 A1 US2016305956 A1 US 2016305956A1
- Authority
- US
- United States
- Prior art keywords
- lyme disease
- ccl19
- treatment
- levels
- patients
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000016604 Lyme disease Diseases 0.000 title claims abstract description 121
- 208000031732 Post-Lyme Disease Syndrome Diseases 0.000 title claims abstract description 96
- 230000003115 biocidal effect Effects 0.000 title claims abstract description 40
- 230000001154 acute effect Effects 0.000 title description 74
- 238000002560 therapeutic procedure Methods 0.000 title description 14
- 238000011161 development Methods 0.000 title description 7
- 230000008901 benefit Effects 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 104
- 238000011282 treatment Methods 0.000 claims abstract description 103
- 102100036842 C-C motif chemokine 19 Human genes 0.000 claims abstract description 101
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 claims abstract description 100
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 13
- 229940088710 antibiotic agent Drugs 0.000 claims abstract description 11
- 239000000523 sample Substances 0.000 claims description 49
- 210000002966 serum Anatomy 0.000 claims description 47
- 239000012472 biological sample Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 abstract description 10
- 239000000090 biomarker Substances 0.000 description 170
- 208000024891 symptom Diseases 0.000 description 65
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 48
- 239000011230 binding agent Substances 0.000 description 47
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 46
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 45
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 43
- 102000019034 Chemokines Human genes 0.000 description 35
- 108010012236 Chemokines Proteins 0.000 description 35
- 210000001744 T-lymphocyte Anatomy 0.000 description 33
- 108090000765 processed proteins & peptides Proteins 0.000 description 31
- 108010074051 C-Reactive Protein Proteins 0.000 description 30
- 102100032752 C-reactive protein Human genes 0.000 description 29
- 108700028909 Serum Amyloid A Proteins 0.000 description 29
- 102000054727 Serum Amyloid A Human genes 0.000 description 29
- 230000027455 binding Effects 0.000 description 27
- 208000015181 infectious disease Diseases 0.000 description 27
- 102000004196 processed proteins & peptides Human genes 0.000 description 27
- 102000004127 Cytokines Human genes 0.000 description 26
- 108090000695 Cytokines Proteins 0.000 description 26
- 206010062488 Erythema migrans Diseases 0.000 description 26
- 239000000427 antigen Substances 0.000 description 26
- 108091007433 antigens Proteins 0.000 description 26
- 102000036639 antigens Human genes 0.000 description 26
- 238000004458 analytical method Methods 0.000 description 25
- 210000004185 liver Anatomy 0.000 description 25
- 239000000758 substrate Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- 102000004190 Enzymes Human genes 0.000 description 22
- 108090000790 Enzymes Proteins 0.000 description 22
- 229940088598 enzyme Drugs 0.000 description 22
- 230000002757 inflammatory effect Effects 0.000 description 22
- 229920001184 polypeptide Polymers 0.000 description 21
- 108090001005 Interleukin-6 Proteins 0.000 description 20
- 102000004889 Interleukin-6 Human genes 0.000 description 20
- 238000002203 pretreatment Methods 0.000 description 20
- 238000003556 assay Methods 0.000 description 19
- 230000003902 lesion Effects 0.000 description 17
- 108090000623 proteins and genes Proteins 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 230000036541 health Effects 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 15
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 15
- 239000011324 bead Substances 0.000 description 15
- 238000001514 detection method Methods 0.000 description 15
- 238000003745 diagnosis Methods 0.000 description 15
- 201000010099 disease Diseases 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 230000002085 persistent effect Effects 0.000 description 15
- 239000012071 phase Substances 0.000 description 15
- -1 IgM Proteins 0.000 description 13
- 238000002553 single reaction monitoring Methods 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 238000003018 immunoassay Methods 0.000 description 12
- 238000004949 mass spectrometry Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 241000589969 Borreliella burgdorferi Species 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 238000003491 array Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108091023037 Aptamer Proteins 0.000 description 9
- 238000000018 DNA microarray Methods 0.000 description 9
- 206010061218 Inflammation Diseases 0.000 description 9
- 230000030570 cellular localization Effects 0.000 description 9
- 230000004054 inflammatory process Effects 0.000 description 9
- 239000013610 patient sample Substances 0.000 description 9
- 239000013068 control sample Substances 0.000 description 8
- 206010016256 fatigue Diseases 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000000672 surface-enhanced laser desorption--ionisation Methods 0.000 description 8
- 238000002965 ELISA Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000000684 flow cytometry Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 238000007449 liver function test Methods 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 5
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 5
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 108090001090 Lectins Proteins 0.000 description 5
- 102000004856 Lectins Human genes 0.000 description 5
- 206010025327 Lymphopenia Diseases 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 239000012491 analyte Substances 0.000 description 5
- 230000002596 correlated effect Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 239000002523 lectin Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 231100001023 lymphopenia Toxicity 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 230000007310 pathophysiology Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 108010082161 Chemokine CCL19 Proteins 0.000 description 4
- 102000003805 Chemokine CCL19 Human genes 0.000 description 4
- 102100023688 Eotaxin Human genes 0.000 description 4
- 108010065637 Interleukin-23 Proteins 0.000 description 4
- 102000013264 Interleukin-23 Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 230000005875 antibody response Effects 0.000 description 4
- 230000001149 cognitive effect Effects 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000003908 liver function Effects 0.000 description 4
- 210000003563 lymphoid tissue Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000002493 microarray Methods 0.000 description 4
- 238000010172 mouse model Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 208000030090 Acute Disease Diseases 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 3
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 3
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 3
- 101710085500 C-X-C motif chemokine 9 Proteins 0.000 description 3
- 108010055166 Chemokine CCL5 Proteins 0.000 description 3
- 208000035473 Communicable disease Diseases 0.000 description 3
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 3
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 3
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 3
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 3
- 102100026236 Interleukin-8 Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 3
- 238000007413 biotinylation Methods 0.000 description 3
- 230000006287 biotinylation Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 3
- 239000003593 chromogenic compound Substances 0.000 description 3
- 238000001360 collision-induced dissociation Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 229960003722 doxycycline Drugs 0.000 description 3
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 3
- 210000003162 effector t lymphocyte Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000011325 microbead Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000007837 multiplex assay Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 230000002688 persistence Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 206010040882 skin lesion Diseases 0.000 description 3
- 231100000444 skin lesion Toxicity 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000004885 tandem mass spectrometry Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- 208000006820 Arthralgia Diseases 0.000 description 2
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 2
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 101710139422 Eotaxin Proteins 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 2
- 238000000729 Fisher's exact test Methods 0.000 description 2
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 2
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 2
- 102000013691 Interleukin-17 Human genes 0.000 description 2
- 108050003558 Interleukin-17 Proteins 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- 102000017761 Interleukin-33 Human genes 0.000 description 2
- 108010067003 Interleukin-33 Proteins 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- 208000008551 Lyme Neuroborreliosis Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 206010028391 Musculoskeletal Pain Diseases 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 108010043958 Peptoids Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- 208000035056 Tick-Borne disease Diseases 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- 229960003022 amoxicillin Drugs 0.000 description 2
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000012412 chemical coupling Methods 0.000 description 2
- 239000002975 chemoattractant Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009266 disease activity Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000001211 electron capture detection Methods 0.000 description 2
- 238000001077 electron transfer detection Methods 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 201000005884 exanthem Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000008088 immune pathway Effects 0.000 description 2
- 108040001669 interleukin-1 receptor antagonist activity proteins Proteins 0.000 description 2
- 102000009634 interleukin-1 receptor antagonist activity proteins Human genes 0.000 description 2
- 230000017306 interleukin-6 production Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 230000000329 lymphopenic effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000012067 mathematical method Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000001459 mortal effect Effects 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011268 retreatment Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 210000001179 synovial fluid Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 208000037816 tissue injury Diseases 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 229950002929 trinitrophenol Drugs 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000011870 unpaired t-test Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- GPUBPSKTFNYPHI-AYGRAXKESA-N 3-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoyl]-1-hydroxypyrrolidine-2,5-dione Chemical compound O=C1N(O)C(=O)CC1C(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 GPUBPSKTFNYPHI-AYGRAXKESA-N 0.000 description 1
- OBWSOTREAMFOCQ-UHFFFAOYSA-N 4-(4-amino-3,5-dimethylphenyl)-2,6-dimethylaniline;hydrochloride Chemical compound Cl.CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 OBWSOTREAMFOCQ-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- CIVGYTYIDWRBQU-UFLZEWODSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid;pyrrole-2,5-dione Chemical compound O=C1NC(=O)C=C1.N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 CIVGYTYIDWRBQU-UFLZEWODSA-N 0.000 description 1
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 1
- 101710112538 C-C motif chemokine 27 Proteins 0.000 description 1
- 101710155834 C-C motif chemokine 7 Proteins 0.000 description 1
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 1
- 102400000432 CD40 ligand, soluble form Human genes 0.000 description 1
- 101800000267 CD40 ligand, soluble form Proteins 0.000 description 1
- 101150004010 CXCR3 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010051288 Central nervous system inflammation Diseases 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 108010082548 Chemokine CCL11 Proteins 0.000 description 1
- 108010083702 Chemokine CCL21 Proteins 0.000 description 1
- 102000006435 Chemokine CCL21 Human genes 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 108010046732 HLA-DR4 Antigen Proteins 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 1
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 1
- 101100005546 Homo sapiens CCL19 gene Proteins 0.000 description 1
- 101000978392 Homo sapiens Eotaxin Proteins 0.000 description 1
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 1
- 101000853002 Homo sapiens Interleukin-25 Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102100039065 Interleukin-1 beta Human genes 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 description 1
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102100021596 Interleukin-31 Human genes 0.000 description 1
- 101710181613 Interleukin-31 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102100039897 Interleukin-5 Human genes 0.000 description 1
- 102100021592 Interleukin-7 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 102100020880 Kit ligand Human genes 0.000 description 1
- 101710177504 Kit ligand Proteins 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 102000045576 Lactoperoxidases Human genes 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 1
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108060004872 MIF Proteins 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010027940 Mood altered Diseases 0.000 description 1
- 102100030173 Muellerian-inhibiting factor Human genes 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101100481584 Mus musculus Tlr1 gene Proteins 0.000 description 1
- 102100031789 Myeloid-derived growth factor Human genes 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108010049175 N-substituted Glycines Proteins 0.000 description 1
- 206010028836 Neck pain Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010060860 Neurological symptom Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010048233 Procalcitonin Proteins 0.000 description 1
- 208000010362 Protozoan Infections Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 241000589970 Spirochaetales Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000008229 Toll-like receptor 1 Human genes 0.000 description 1
- 108010060889 Toll-like receptor 1 Proteins 0.000 description 1
- 229940127174 UCHT1 Drugs 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 208000011312 Vector Borne disease Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 238000001790 Welch's t-test Methods 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004082 amperometric method Methods 0.000 description 1
- 230000001301 anti-borrelial effect Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 208000013404 behavioral symptom Diseases 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000009640 blood culture Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000014564 chemokine production Effects 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000020403 chronic hepatitis C virus infection Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000012178 germinal center formation Effects 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- 229960004171 hydroxychloroquine Drugs 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000008938 immune dysregulation Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000002650 immunosuppressive therapy Methods 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011566 inbred mouse model Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 238000001616 ion spectroscopy Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 210000002809 long lived plasma cell Anatomy 0.000 description 1
- 239000000891 luminescent agent Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001906 matrix-assisted laser desorption--ionisation mass spectrometry Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- MIKKOBKEXMRYFQ-WZTVWXICSA-N meglumine amidotrizoate Chemical compound C[NH2+]C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CC(=O)NC1=C(I)C(NC(C)=O)=C(I)C(C([O-])=O)=C1I MIKKOBKEXMRYFQ-WZTVWXICSA-N 0.000 description 1
- 206010027175 memory impairment Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 108010029942 microperoxidase Proteins 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000007510 mood change Effects 0.000 description 1
- 230000002969 morbid Effects 0.000 description 1
- 238000002552 multiple reaction monitoring Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000004848 nephelometry Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 238000010827 pathological analysis Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000003836 peripheral circulation Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000013105 post hoc analysis Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011809 primate model Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 208000037922 refractory disease Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000552 rheumatic effect Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000005212 secondary lymphoid organ Anatomy 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010972 statistical evaluation Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
- 210000005222 synovial tissue Anatomy 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 208000016523 tick-borne infectious disease Diseases 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 238000007473 univariate analysis Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/65—Tetracyclines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/43504—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates
- G01N2333/43552—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from insects
- G01N2333/43556—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from insects from ticks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/521—Chemokines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/26—Infectious diseases, e.g. generalised sepsis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/56—Staging of a disease; Further complications associated with the disease
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to the field of Lyme disease. More specifically, the present invention provides methods and composition useful for the treatment of Lyme disease.
- Lyme disease is the most common tick-borne disease in temperate regions of the northern hemisphere, affecting large areas of North America and Eurasia.[1] In North America, Lyme disease is caused by the spirochete Borrelia burgdorferi and cases are concentrated in the Northeast, upper Midwest and Mid-Atlantic. Recently, CDC and state health investigators estimated that 288,000 new infections occurred in the United States in 2008.[2] In certain high-risk communities, studies suggest that the incidence of new cases may be 3%, with cumulative prevalence as high as 7-17%.[3] As the geographic range of the tick vector, and the mouse and deer hosts expands, the impact of Lyme and other tick borne-diseases is likely to grow.[4]
- EM erythema migrans
- B. burgdorferi may disseminate from the site of skin inoculation through the blood or tissues and spread systemically to other areas of the skin, musculoskeletal, cardiac and neurologic systems.
- Antibiotic treatment of early Lyme disease speeds resolution of EM and is effective in preventing later objective manifestations. However, treatment at later stages may be more difficult.
- Approximately 10% of late Lyme arthritis patients have persistent or recurrent objective findings termed post-treatment antibiotic refractory disease. This is thought to be due to autoimmune-mediated inflammation that occurs in genetically susceptible individuals, especially those with Toll-like receptor 1 polymorphism and/or the HLA-DR4 alleles.[10]
- post-treatment Lyme disease syndrome [1, 11, 12] Studies have suggested a severe initial illness,[13, 14] delayed treatment,[13] neurologic involvement,[1, 15] or suboptimal antibiotic therapy [15, 16] as potential risk factors for development of PTLDS.
- the present invention is based, at least in part, on the discovery the chemokine CCL19 has been identified in acute pre-treatment samples from patients with Lyme disease and distinguishes acutely infected patients from controls. In addition we have demonstrated that a subset of patient continue to have elevated levels of CCL19 for up to 6-12 months post-treatment. In addition, the measurement of an elevated CCL19 immediately after the completion of antibiotic therapy identifies those at high risk of having persistent symptoms. This high risk population is a candidate for further antibiotic therapy to prevent the development of long term complications of PTLDS.
- the present invention provides compositions and methods for treating a patient at risk for or likely to develop post-treatment Lyme disease syndrome (PTLDS).
- the patient is already undergoing a first course of antibiotic treatment for Lyme disease.
- a method comprises the step of prescribing or administering a second course of antibiotic treatment to a patient who is determined to have an increased level of CCL19 as compared to a control after completing a first course of antibiotics for Lyme disease.
- the second course of antibiotics comprises an antibiotic that is different from the first course of antibiotics.
- a method for treating a patient likely to develop PTLDS comprises the steps of (a) obtaining a biological sample from a patient being treated for Lyme disease with a first course of antibiotics; (b) measuring the level of CCL19 in the sample; and (c) prescribing or administering a second course of antibiotic treatment to a patient having an increased level of CCL19 as compared to a control.
- a method comprising the steps of (a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and (b) generating a report comprising the measured CCL19 level.
- the report further comprises standard or control levels of CCL19 for comparison.
- the report can further comprise a treatment recommendation based on the measured level of CCL19.
- the present invention provides a method comprising the steps of (a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and (b) recommending a second course of antibiotic treatment to treat or prevent PTLDS if the measure level of CCL19 is statistically significantly increased as compared to a reference or control.
- levels of CCL19 are statistically significantly increased if the levels are 2 standard deviations above the control.
- the cutoff is ⁇ 182 pg/mL.
- the methods described herein further comprise measuring the levels of one or more biomarkers described herein.
- the biomarkers described herein, including CCL19 can be measured using the techniques described herein including, but not limited to, immunoassay and mass spectrometry.
- the biomarkers, including CCL19 are detected and measured using a multiplex assay system such as the Bio-Plex® Multiplex System (Bio-Rad Laboratories, Inc. (Hercules, Calif.)).
- the present invention provides methods for treating a patient who continues to have elevated biomarker levels, including CCL19, after the antibiotic retreatment.
- the method further comprises recommending, prescribing or administering an immunomodulator or immunosuppressive therapy. Examples include, but are not limited to, low dose allergy (LDA) therapy/low dose immunotherapy (LDI).
- LDA low dose allergy
- LPI low dose immunotherapy
- a therapeutic that blocks CCL19 production, pathway or acts as a CCL19 antagnoist could be used.
- a rheumatic drug like hydroxychloroquine is used.
- FIG. 1A Results are displayed as a heat map to visualize differences in mediator levels in Acute Lyme patients relative to controls.
- FIG. 1B Unsupervised hierarchical clustering of the results was performed, and the output displayed as a heat map.
- the second “mediator low” cluster includes a subset of samples from acute B. burgdorferi infection as well as the matched healthy controls, both of which exhibited low levels of inflammatory mediators.
- FIG. 6A-6B CXCR3 Expressing CD4+T cell levels correlate with serum CXCL10.
- FIG. 6A CXCR3 expressing CD4+T cells were detected using polychromatic flow cytometry. Displayed is a representative plot.
- FIG. 7A-7B CCL19 Identified as an Immune Mediator in PTLDS. Serum samples from patients with diagnosed acute Lyme disease and healthy controls were assayed for the presence of soluble mediators using an optimized multiplex-based assay system. Results are displayed as a heat map to visualize differences in mediator levels.
- FIG. 7A shows those mediators with significant changes (q ⁇ 0.1%) in Lyme patients compared to controls at six months post-treatment.
- FIG. 7B shows significant differences in CCL19 levels between Lyme-exposed PTLDS patients and Lyme-exposed non-PTLDS patients at three months post-treatment.
- antibody is used in reference to any immunoglobulin molecule that reacts with a specific antigen. It is intended that the term encompass any immunoglobulin (e.g., IgG, IgM, IgA, IgE, IgD, etc.) obtained from any source (e.g., humans, rodents, non-human primates, caprines, bovines, equines, ovines, etc.). Specific types/examples of antibodies include polyclonal, monoclonal, humanized, chimeric, human, or otherwise-human-suitable antibodies. “Antibodies” also includes any fragment or derivative of any of the herein described antibodies.
- immunoglobulin e.g., IgG, IgM, IgA, IgE, IgD, etc.
- source e.g., humans, rodents, non-human primates, caprines, bovines, equines, ovines, etc.
- Specific types/examples of antibodies include polyclo
- the term “antigen” is generally used in reference to any substance that is capable of reacting with an antibody. More specifically, as used herein, the term “antigen” refers to a biomarker described herein. An antigen can also refer to a synthetic peptide, polypeptide, protein or fragment of a polypeptide or protein, or other molecule which elicits an antibody response in a subject, or is recognized and bound by an antibody.
- biomarker refers to a molecule that is associated either quantitatively or qualitatively with a biological change.
- biomarkers include proteins, polypeptides, and fragments of a polypeptide or protein; and polynucleotides, such as a gene product, RNA or RNA fragment.
- a biomarker is a cytokine.
- a “biomarker” means a molecule/compound that is differentially present (i.e., increased or decreased) in a biological sample as measured/compared against the same marker in another biological sample or control/reference.
- a biomarker can be differentially present in a biological sample as measured/compared against the other markers in same or another biological sample or control/reference.
- one or more biomarkers can be differentially present in a biological sample as measured/compared against other markers in the same or another biological sample or control/reference and against the same markers in another biological sample or control/reference.
- a biomarker can be differentially present in a biological sample from a subject or a group of subjects having a first phenotype (e.g., having a disease or condition) as compared to a biological sample from a subject or group of subjects having a second phenotype (e.g., not having the disease or condition or having a less severe version of the disease or condition).
- a first phenotype e.g., having a disease or condition
- a second phenotype e.g., not having the disease or condition or having a less severe version of the disease or condition
- the one or more biomarkers can be generally present at a level that is increased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more; or is generally present at a level that is decreased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%,
- a biomarker is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using, for example, either Welch's T-test or Wilcoxon's rank-sum Test). Biomarker levels can be used in conjunction with other parameters to assess a patient.
- comparing refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of the corresponding one or more biomarkers in a standard, reference or control sample.
- comparing may refer to assessing whether the proportion, level, or cellular localization of one or more biomarkers in a sample from a patient is the same as, more or less than, or different from the proportion, level, or cellular localization of the corresponding one or more biomarkers in standard, reference or control sample.
- the term may refer to assessing whether the proportion, level, or cellular localization of one or more biomarkers in a sample from a patient is the same as, more or less than, different from or otherwise corresponds (or not) to the proportion, level, or cellular localization of predefined biomarker levels/ratios that correspond to, for example, having or not having or is likely (or not) of developing PTLDS.
- the term “comparing” refers to assessing whether the level of one or more biomarkers of the present invention in a sample from a patient is the same as, more or less than, different from other otherwise correspond (or not) to levels/ratios of the same biomarkers in a control sample (e.g., predefined levels/ratios that correlate to having or having a likelihood (or not) of developing PTLDS.
- the term “comparing” refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of one or more biomarkers in the same sample. For example, a ratio of one biomarker to another (or more) from the same patient sample can be compared. Percentages or ratios of expression or levels of the biomarkers can be compared to other percentages or ratios in the same sample and/or to predefined reference or control percentages or ratios. Such comparison can be made to assess whether the patient has or does not have or is likely (or not) of developing PTLDS, which assessment can be used to direct further therapy.
- the ratio can include 1-fold, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 22-, 23-, 24-, 25-, 26-, 27-, 28-, 29-, 30-, 31-, 32-, 33-, 34-, 35-, 36-, 37-, 38-, 39-, 40-, 41-, 42-, 43-, 44-, 45-, 46-, 47-, 48-, 49-, 50-, 51-, 52-, 53-, 54-, 55-, 56-, 57-, 58-, 59-, 60-, 61-, 62-, 63-, 64-, 65-, 66-, 67-, 68-, 69-, 70-, 71-, 72-, 73-, 74-, 75-,
- the difference can include 0.9-fold, 0.8-fold, 0.7-fold, 0.7-fold, 0.6-fold, 0.5-fold, 0.4-fold, 0.3-fold, 0.2-fold, and 0.1-fold (higher or lower) depending on context.
- the foregoing can also be expressed in terms of a range (e.g., 1-5 fold/times higher or lower) or a threshold (e.g., at least 2-fold/times higher or lower).
- the evaluation of the relationship between one or more biomarkers in a sample can also be expressed in terms of a percentage including, but not limited to, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%
- the terms “identifies,” “indicates” or “correlates” in reference to a parameter, e.g., a modulated proportion, level, or cellular localization in a sample from a patient, may mean that the patient has or does not have or is likely (or not) of developing PTLDS.
- the parameter may comprise the level (expression level or protein level) of one or more biomarkers of the present invention.
- a particular set or pattern of the amounts of one or more biomarkers may identify the patient as having or not having or being likely (i.e., at risk) (or not) of developing PTLDS.
- “identifying,” “indicating,” or “correlating,” as used according to the present invention may be by any linear or non-linear method of quantifying the relationship between levels/ratios of biomarkers to other biomarkers and/or standard, control or comparative value for the assessment of Lyme disease/PTLDS.
- patient refers to a mammal, particularly, a human.
- the patient may have mild, intermediate or severe disease.
- the patient may be treatment na ⁇ ve, responding to any form of treatment, or refractory.
- the patient may be an individual in need of treatment or in need of diagnosis based on particular symptoms or family history.
- the terms may refer to treatment in experimental animals, in veterinary application, and in the development of animal models for disease, including, but not limited to, rodents including mice, rats, and hamsters; and primates.
- measuring and determining are used interchangeably throughout, and refer to methods which include obtaining a patient sample and/or detecting the level of a biomarker(s) in a sample. In one embodiment, the terms refer to obtaining a patient sample and detecting the level of one or more biomarkers in the sample. In another embodiment, the terms “measuring” and “determining” mean detecting the level of one or more biomarkers in a patient sample. Measuring can be accomplished by methods known in the art and those further described herein. The terms are also used interchangeably throughout with the term “detecting.”
- sample encompasses a variety of sample types obtained from a patient, individual, or subject and can be used in a diagnostic or monitoring assay.
- the patient sample may be obtained from a healthy subject, a diseased patient or a patient having associated symptoms of Lyme disease and/or PTLDS.
- a sample obtained from a patient can be divided and only a portion may be used for diagnosis. Further, the sample, or a portion thereof, can be stored under conditions to maintain sample for later analysis.
- the definition specifically encompasses solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof.
- the term sample includes blood and other liquid samples of biological origin (including, but not limited to, peripheral blood, serum, plasma, cerebrospinal fluid, urine, saliva, stool and synovial fluid).
- the biological sample is a serum sample.
- sample also includes samples that have been manipulated in any way after their procurement, such as by centrifugation, filtration, precipitation, dialysis, chromatography, treatment with reagents, washed, or enriched for certain cell populations.
- the terms further encompass a clinical sample, and also include cells in culture, cell supernatants, tissue samples, organs, and the like. Samples may also comprise fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks, such as blocks prepared from clinical or pathological samples, prepared for pathological analysis or study by immunohistochemistry.
- a sample comprises an optimal cutting temperature (OCT)-embedded frozen tissue sample.
- OCT optimal cutting temperature
- the term “predetermined threshold value” of a biomarker refers to the level of the same biomarker in a corresponding control/normal sample or group of control/normal samples. Further, the term “altered level” of a biomarker in a sample refers to a level that is either below or above the predetermined threshold value for the same biomarker and thus encompasses either high (increased) or low (decreased) levels.
- binding agent specific for or “binding agent that specifically binds” refers to an agent that binds to a biomarker and does not significantly bind to unrelated compounds.
- binding agents that can be effectively employed in the disclosed methods include, but are not limited to, lectins, proteins and antibodies, such as monoclonal or polyclonal antibodies, or antigen-binding fragments thereof, aptamers, etc.
- a binding agent binds a biomarker with an affinity constant of, for example, greater than or equal to about 1 ⁇ 10 ⁇ 6 M.
- a binding agent can also comprise a probe or primer that specifically hybridizes a biomarker nucleic acid.
- binding refers to that binding which occurs between such paired species as enzyme/substrate, receptor/agonist, antibody/antigen, nucleic acid/complement and lectin/carbohydrate which may be mediated by covalent or non-covalent interactions or a combination of covalent and non-covalent interactions.
- the binding which occurs is typically electrostatic, hydrogen-bonding, or the result of lipophilic interactions. Accordingly, “specific binding” occurs between a paired species where there is interaction between the two which produces a bound complex having the characteristics of an antibody/antigen or enzyme/substrate interaction.
- the specific binding is characterized by the binding of one member of a pair to a particular species and to no other species within the family of compounds to which the corresponding member of the binding member belongs.
- an antibody typically binds to a single epitope and to no other epitope within the family of proteins.
- specific binding between an antigen and an antibody will have a binding affinity of at least 10 ⁇ 6 M.
- the antigen and antibody will bind with affinities of at least 10 ⁇ 7 M, 10 ⁇ 8 M to 10 ⁇ 9 M, 10 ⁇ 10 M, 10 ⁇ 11 M, or 10 ⁇ 12 M.
- Various methodologies of the instant invention include a step that involves comparing a value, level, feature, characteristic, property, etc. to a “suitable control,” referred to interchangeably herein as an “appropriate control,” a “control sample” or a “reference.”
- a “suitable control,” “appropriate control,” “control sample” or a “reference” is any control or standard familiar to one of ordinary skill in the art useful for comparison purposes.
- a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, etc., determined in a cell, organ, or patient, e.g., a control cell, organ, or patient, exhibiting, for example, a particular disease state (e.g., Lyme disease, PTLDS, etc.) or lack thereof.
- a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, ratio, etc. (e.g., biomarker levels that correlate to a particular phenotype) determined prior to performing a therapy (e.g., Lyme disease treatment) on a patient.
- a transcription rate, mRNA level, translation rate, protein level/ratio, biological activity, cellular characteristic or property, genotype, phenotype, etc. can be determined prior to, during, or after administering a therapy into a cell, organ, or patient.
- a “suitable control,” “appropriate control” or a “reference” is a predefined value, level, feature, characteristic, property, ratio, etc.
- a “suitable control” can be a profile or pattern of levels/ratios of one or more biomarkers of the present invention that correlates to a particular phenotype (e.g., having or is likely to develop PTLDS) to which a patient sample can be compared.
- the patient sample can also be compared to a negative control.
- Such reference levels may also be tailored to specific techniques that are used to measure levels of biomarkers in biological samples (e.g., LC-MS, GC-MS, ELISA, PCR, etc.), where the levels of biomarkers may differ based on the specific technique that is used.
- a control or reference can be a profile or pattern of levels of one or more biomarkers that correlates having or not having or likely (or not) of developing PTLDS.
- a binding agent is an agent that binds to a biomarker.
- the binding agent can be a capture agent, and the terms can be used interchangeably as the context indicates.
- the capture agent can be a capture antibody that binds to an antigen on the biomarker.
- the capture agent can be coupled to a substrate and used to isolate the biomarker.
- a binding agent can be DNA, RNA, monoclonal antibodies, polyclonal antibodies, Fabs, Fab′, single chain antibodies, synthetic antibodies, aptamers (DNA/RNA), peptoids, zDNA, peptide nucleic acids (PNAs), locked nucleic acids (LNAs), lectins, synthetic or naturally occurring chemical compounds (including but not limited to drugs, labeling reagents), dendrimers, or combinations thereof.
- the binding agent can be a capture antibody.
- a single binding agent can be employed to isolate a biomarker.
- a combination of different binding agents may be employed to isolate a biomarker. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 50, 75 or 100 different binding agents may be used to isolate a biomarker from a biological sample.
- Different binding agents can also be used for multiplexing. For example, isolation of more than biomarker can be performed by isolating each biomarker with a different binding agent. Different binding agents can be bound to different particles, wherein the different particles are labeled. In another embodiment, an array comprising different binding agents can be used for multiplex analysis, wherein the different binding agents are differentially labeled or can be ascertained based on the location of the binding agent on the array. Multiplexing can be accomplished up to the resolution capability of the labels or detection method, such as described below.
- the binding agent can be an antibody.
- a biomarker may be isolated using one or more antibodies specific for one or more antigens present on the biomarker.
- the antibodies can be immunoglobulin molecules or immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen and synthetic antibodies.
- the immunoglobulin molecules can be of any class (e.g., IgG, IgE, IgM, IgD or IgA) or subclass of immunoglobulin molecule.
- Antibodies include, but are not limited to, polyclonal, monoclonal, bispecific, synthetic, humanized and chimeric antibodies, single chain antibodies, Fab fragments and F(ab′) 2 fragments, Fv or Fv′ portions, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, or epitope-binding fragments of any of the above.
- An antibody, or generally any molecule “binds specifically” to an antigen (or other molecule) if the antibody binds preferentially to the antigen, and, e.g., has less than about 30%, 20%, 10%, 5% or 1% cross-reactivity with another molecule.
- the binding agent can also be a polypeptide or peptide.
- Polypeptide is used in its broadest sense and may include a sequence of subunit amino acids, amino acid analogs, or peptidomimetics. The subunits may be linked by peptide bonds.
- the polypeptides may be naturally occurring, processed forms of naturally occurring polypeptides (such as by enzymatic digestion), chemically synthesized or recombinantly expressed.
- the polypeptides for use in the methods of the present invention may be chemically synthesized using standard techniques.
- the polypeptides may comprise D-amino acids (which are resistant to L-amino acid-specific proteases), a combination of D- and L-amino acids, ⁇ amino acids, or various other designer or non-naturally occurring amino acids (e.g., ⁇ -methyl amino acids, Ca-methyl amino acids, and N ⁇ -methyl amino acids, etc.) to convey special properties.
- Synthetic amino acids may include ornithine for lysine, and norleucine for leucine or isoleucine.
- the polypeptides can have peptidomimetic bonds, such as ester bonds, to prepare polypeptides with novel properties.
- a polypeptide may be generated that incorporates a reduced peptide bond, i.e., R 1 —CH 2 —NH—R 2 , where R 1 and R 2 are amino acid residues or sequences.
- a reduced peptide bond may be introduced as a dipeptide subunit.
- Polypeptides can also include peptoids (N-substituted glycines), in which the side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the a-carbons, as in amino acids.
- Polypeptides and peptides are intended to be used interchangeably throughout this application, i.e., where the term peptide is used, it may also include polypeptides and where the term polypeptides is used, it may also include peptides.
- a binding agent can also be linked directly or indirectly to a solid surface or substrate.
- a solid surface or substrate can be any physically separable solid to which a binding agent can be directly or indirectly attached including, but not limited to, surfaces provided by microarrays and wells, particles such as beads, columns, optical fibers, wipes, glass and modified or functionalized glass, quartz, mica, diazotized membranes (paper or nylon), polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, quantum dots, coated beads or particles, other chromatographic materials, magnetic particles; plastics (including acrylics, polystyrene, copolymers of styrene or other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TEFLON®, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, ceramics,
- the substrate may be coated using passive or chemically-derivatized coatings with any number of materials, including polymers, such as dextrans, acrylamides, gelatins or agarose. Such coatings can facilitate the use of the array with a biological sample.
- an antibody used to isolate a biomarker can be bound to a solid substrate such as a well, such as commercially available plates. Each well can be coated with the antibody.
- the antibody used to isolate a biomarker can be bound to a solid substrate such as an array.
- the array can have a predetermined spatial arrangement of molecule interactions, binding islands, biomolecules, zones, domains or spatial arrangements of binding islands or binding agents deposited within discrete boundaries.
- the term array may be used herein to refer to multiple arrays arranged on a surface, such as would be the case where a surface bore multiple copies of an array. Such surfaces bearing multiple arrays may also be referred to as multiple arrays or repeating arrays.
- a binding agent can also be bound to particles such as beads or microspheres.
- particles such as beads or microspheres.
- an antibody specific for a biomarker can be bound to a particle, and the antibody-bound particle is used to isolate biomarkers from a biological sample.
- the microspheres may be magnetic or fluorescently labeled.
- a binding agent for isolating biomarkers can be a solid substrate itself.
- latex beads such as aldehyde/sulfate beads (Interfacial Dynamics, Portland, Oreg.) can be used.
- a binding agent bound to a magnetic bead can also be used to isolate a biomarker.
- a biological sample such as serum from a patient can be collected for Lyme/PTLDS screening.
- the sample can be incubated with an antibody to a biomarker coupled to magnetic microbeads.
- a low-density microcolumn can be placed in the magnetic field of a MACS Separator and the column is then washed with a buffer solution such as Tris-buffered saline.
- the magnetic immune complexes can then be applied to the column and unbound, non-specific material can be discarded.
- the selected biomarkers can be recovered by removing the column from the separator and placing it on a collection tube.
- a buffer can be added to the column and the magnetically labeled biomarkers can be released by applying the plunger supplied with the column.
- the isolated biomarkers can be diluted in IgG elution buffer and the complex can then be centrifuged to separate the microbeads from the biomarkers.
- the pelleted isolated cell-of-origin specific biomarkers can be resuspended in buffer such as phosphate-buffered saline and quantitated.
- a proteolytic enzyme such as trypsin can be used for the release of captured biomarkers without the need for centrifugation.
- the proteolytic enzyme can be incubated with the antibody captured cell-of-origin specific biomarkers for at least a time sufficient to release the biomarkers.
- a binding agent such as an antibody, for isolating a biomarker is preferably contacted with the biological sample comprising the biomarker of interest for at least a time sufficient for the binding agent to bind to the biomarker.
- an antibody may be contacted with a biological sample for various intervals ranging from seconds to hours to days, including but not limited to, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
- a binding agent such as an antibody specific to a biomarker described herein can be labeled with, but is not limited to, a magnetic label, a fluorescent moiety, an enzyme, a chemiluminescent probe, a metal particle, a non-metal colloidal particle, a polymeric dye particle, a pigment molecule, a pigment particle, an electrochemically active species, semiconductor nanocrystal or other nanoparticles including quantum dots or gold particles.
- the label can be, but not be limited to, fluorophores, quantum dots, or radioactive labels.
- the label can be a radioisotope (radionuclides), such as 3 H 11 C, 14 C, 18 F, 32 F, 35 S, 64 Cu, 68 Ga, 86 Y, 99 Tc, 111 In, 123 I, 124 I, 125 I, 131 I, 133 Xe, 3177 Lu, 211 At, or 213 Bi.
- radioisotope radioisotope
- the label can be a fluorescent label, such as a rare earth chelate (europium chelate), fluorescein type, such as, but not limited to, FITC, 5-carboxyfluorescein, 6-carboxy fluorescein; a rhodamine type, such as, but not limited to, TAMRA; dansyl; Lissamine; cyanines; phycoerythrins; Texas Red; and analogs thereof
- a fluorescent label such as a rare earth chelate (europium chelate), fluorescein type, such as, but not limited to, FITC, 5-carboxyfluorescein, 6-carboxy fluorescein; a rhodamine type, such as, but not limited to, TAMRA; dansyl; Lissamine; cyanines; phycoerythrins; Texas Red; and analogs thereof
- a binding agent can be directly or indirectly labeled, e.g., the label can be attached to the antibody through biotin-streptavidin.
- an antibody is not labeled, but is later contacted with a second antibody that is labeled after the first antibody is bound to an antigen of interest.
- various enzyme-substrate labels are available or disclosed (see for example, U.S. Pat. No. 4,275,149).
- the enzyme generally catalyzes a chemical alteration of a chromogenic substrate that can be measured using various techniques.
- the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically.
- the enzyme may alter the fluorescence or chemiluminescence of the substrate.
- enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No.
- luciferin 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRP), alkaline phosphatase (AP), ⁇ -galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like.
- HRP horseradish peroxidase
- AP alkaline phosphatase
- ⁇ -galactosidase glucoamylase
- lysozyme saccharide oxidases
- glucose oxidase galactose oxidase
- enzyme-substrate combinations include, but are not limited to, horseradish peroxidase (HRP) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3′,5,5′-tetramethylbenzidine hydrochloride (TMB)); alkaline phosphatase (AP) with para-nitrophenyl phosphate as chromogenic substrate; and .beta.-D-galactosidase ( ⁇ -D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl- ⁇ -D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl- ⁇ -D-galactosidase.
- HRP horseradish peroxidase
- OPD orthophenylene diamine
- TMB 3,3′,5,5′-tetramethylbenzidine hydrochloride
- the binding agent may be linked to a solid surface or substrate, such as arrays, particles, wells and other substrates described above.
- Methods for direct chemical coupling of antibodies, to the cell surface are known in the art, and may include, for example, coupling using glutaraldehyde or maleimide activated antibodies.
- Methods for chemical coupling using multiple step procedures include biotinylation, coupling of trinitrophenol (TNP) or digoxigenin using for example succinimide esters of these compounds. Biotinylation can be accomplished by, for example, the use of D-biotinyl-N-hydroxysuccinimide.
- Succinimide groups react effectively with amino groups at pH values above 7, and preferentially between about pH 8.0 and about pH 8.5.
- Biotinylation can be accomplished by, for example, treating the cells with dithiothreitol followed by the addition of biotin maleimide.
- the biomarkers of the present invention can be detected and/or measured by immunoassay.
- Immunoassay requires biospecific binding reagents, such as antibodies, to capture the biomarkers. Many antibodies are available commercially. Antibodies also can be produced by methods well known in the art, e.g., by immunizing animals with the biomarkers. Biomarkers can be isolated from samples based on their binding characteristics. Alternatively, if the amino acid sequence of a polypeptide biomarker is known, the polypeptide can be synthesized and used to generate antibodies by methods well-known in the art.
- the present invention contemplates traditional immunoassays including, for example, sandwich immunoassays including ELISA or fluorescence-based immunoassays, immunoblots, Western Blots (WB), as well as other enzyme immunoassays.
- Nephelometry is an assay performed in liquid phase, in which antibodies are in solution. Binding of the antigen to the antibody results in changes in absorbance, which is measured.
- a biospecific capture reagent for the biomarker is attached to the surface of an MS probe, such as a pre-activated protein chip array. The biomarker is then specifically captured on the biochip through this reagent, and the captured biomarker is detected by mass spectrometry.
- any other suitable agent e.g., a peptide, an aptamer, or a small organic molecule
- an aptamer that specifically binds a biomarker and/or one or more of its breakdown products might be used.
- Aptamers are nucleic acid-based molecules that bind specific ligands. Methods for making aptamers with a particular binding specificity are known as detailed in U.S. Pat. No. 5,475,096; No. 5,670,637; No. 5,696,249; No. 5,270,163; No. 5,707,796; No. 5,595,877; No. 5,660,985; No. 5,567,588; No. 5,683,867; No. 5,637,459; and No. 6,011,020.
- the assay performed on the biological sample can comprise contacting the biological sample with one or more binding/capture agents (e.g., antibodies, peptides, aptamer, etc., combinations thereof) to form a biomarker:binding agent complex.
- binding/capture agents e.g., antibodies, peptides, aptamer, etc., combinations thereof
- the complexes can then be detected and/or quantified.
- a subject can then be identified as having (or not) or likely (or not) to develop PTLDS based on a comparison of the detected/quantified/measured levels of biomarkers to one or more reference controls as described herein.
- the levels of the biomarkers employed herein are quantified by immunoassay, such as enzyme-linked immunoassay (ELISA) technology.
- the levels of expression of the biomarkers are determined by contacting the biological sample with antibodies, or antigen binding fragments thereof, that selectively bind to the biomarkers; and detecting binding of the antibodies, or antigen binding fragments thereof, to the biomarkers.
- the binding agents employed in the disclosed methods and compositions are labeled with a detectable moiety.
- the term antibody is used in describing binding agents or capture molecules. However, it is understood that reference to an antibody in the context of describing an exemplary binding agent in the methods of the present invention also includes reference to other binding agents including, but not limited to lectins, peptides, aptamers and small organic molecules.
- the level of a biomarker in a sample can be assayed by contacting the biological sample with an antibody, or antigen binding fragment thereof, that selectively binds to the target biomarker (referred to as a capture molecule or antibody or a binding agent), and detecting the binding of the antibody, or antigen-binding fragment thereof, to the biomarker.
- the detection can be performed using a second antibody to bind to the capture antibody complexed with its target biomarker.
- Kits for the detection of biomarkers as described herein can include pre-coated strip plates, biotinylated secondary antibody, standards, controls, buffers, streptavidin-horse radish peroxidise (HRP), tetramethyl benzidine (TMB), stop reagents, and detailed instructions for carrying out the tests including performing standards.
- HRP streptavidin-horse radish peroxidise
- TMB tetramethyl benzidine
- the present disclosure also provides methods in which the levels of the biomarkers in a biological sample are determined simultaneously.
- methods comprise: (a) contacting a biological sample obtained from the subject with a plurality of binding agents that selectively bind to a plurality of biomarkers disclosed herein for a period of time sufficient to form binding agent-biomarker complexes; and (b) detecting binding of the binding agents to the plurality of biomarkers, thereby determining the levels of the biomarkers in the biological sample.
- the method further comprises comparing the determined levels to a control or reference sample.
- the method can further comprise generating a report summarizing the biomarker levels.
- the method may further comprise recommending a particular treatment.
- biomarker levels that are stastistically significantly above or below control/reference levels indicates that the subject should be treated with one or more treatment modalities appropriate for a subject having or likely to have (i.e., at risk of) PTLDS.
- the current Infectious Disease Society of America guidelines recommend 10 days to 3 weeks of doxycycline or amoxicillin. Guidelines specifically discourage re-treatment with antibiotics based on persistent symptoms alone.
- if patients had elevated CC119 (especially if still symptomatic) then they should be prescribed/administered a repeat course of a different antibiotic (e.g., if they take doxycycline initially switch to amoxicillin (and vice versa)) for about 1-8 weeks (including 1, 2, 3, 4, 5, 6, 7 or 8 weeks) treatment period. After that they would be reassessed for response of symptoms and declining CCL19 level.
- a different antibiotic e.g., if they take doxycycline initially switch to amoxicillin (and vice versa)
- compositions that can be employed in the disclosed methods.
- such compositions comprise a solid substrate and a plurality of binding agents immobilized on the substrate, wherein each of the binding agents is immobilized at a different, indexable, location on the substrate and the binding agents selectively bind to a plurality of biomarkers disclosed herein.
- the locations are pre-determined.
- kits are provided that comprise such compositions.
- the plurality of biomarkers includes one or more of the biomarkers described herein including CCL19.
- methods for treating PTLDS in a patient/subject can comprise the steps of (a) contacting a biological sample obtained from the subject with a composition disclosed herein comprising binding agents for a period of time sufficient to form binding agent-biomarker complexes; (b) detecting binding of the binding agents to a plurality of biomarkers, thereby determining the levels of biomarkers in the biological sample; and (c) comparing the determined levels to a control or reference sample.
- the method can further comprise the step of (d) treating the patient with one or more treatment modalities appropriate for a subject having or likely to have (i.e., at risk of) PTLDS.
- the assay performed on the biological sample can comprise contacting the biological sample with one or more capture agents (e.g., antibodies, lectins, peptides, aptamers, etc., combinations thereof) to form a biomarker:capture agent complex.
- capture agents e.g., antibodies, lectins, peptides, aptamers, etc., combinations thereof.
- the complexes can then be detected and/or quantified.
- a first capture molecule or binding agent such as an antibody that specifically binds the biomarker of interest
- a suitable solid phase substrate or carrier is immobilized on a suitable solid phase substrate or carrier.
- the test biological sample is then contacted with the capture antibody and incubated for a desired period of time.
- a second, detection, antibody that binds to a different, non-overlapping, epitope on the biomarker is then used to detect binding of the biomarker to the capture antibody.
- the detection antibody is preferably conjugated, either directly or indirectly, to a detectable moiety.
- detectable moieties examples include, but are not limited to, cheminescent and luminescent agents; fluorophores such as fluorescein, rhodamine and eosin; radioisotopes; colorimetric agents; and enzyme-substrate labels, such as biotin.
- the assay is a competitive binding assay, wherein labeled biomarker is used in place of the labeled detection antibody, and the labeled biomarker and any unlabeled biomarker present in the test sample compete for binding to the capture antibody.
- the amount of biomarker bound to the capture antibody can be determined based on the proportion of labeled biomarker detected.
- Solid phase substrates, or carriers, that can be effectively employed in such assays are well known to those of skill in the art and include, for example, 96 well microtiter plates, glass, paper, chips and microporous membranes constructed, for example, of nitrocellulose, nylon, polyvinylidene difluoride, polyester, cellulose acetate, mixed cellulose esters and polycarbonate.
- Suitable microporous membranes include, for example, those described in US Patent Application Publication no. US 2010/0093557 A1.
- Methods for the automation of immunoassays are well known in the art and include, for example, those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750 and 5,358,691.
- a multiplex assay such as a multiplex ELISA.
- Multiplex assays offer the advantages of high throughput, a small volume of sample being required, and the ability to detect different proteins across a board dynamic range of concentrations.
- such methods employ an array, wherein multiple binding agents (for example capture antibodies) specific for multiple biomarkers are immobilized on a substrate, such as a membrane, with each capture agent being positioned at a specific, pre-determined, location on the substrate.
- a substrate such as a membrane
- capture agents for example capture antibodies
- Methods for performing assays employing such arrays include those described, for example, in US Patent Application Publication nos. US2010/0093557A1 and US2010/0190656A1, the disclosures of which are hereby specifically incorporated by reference.
- Flow cytometric multiplex arrays also known as bead-based multiplex arrays, include the Cytometric Bead Array (CBA) system from BD Biosciences (Bedford, Mass.) and multi-analyte profiling (xMAP®) technology from Luminex Corp. (Austin, Tex.), both of which employ bead sets which are distinguishable by flow cytometry. Each bead set is coated with a specific capture antibody.
- CBA Cytometric Bead Array
- xMAP® multi-analyte profiling
- Fluorescence or streptavidin-labeled detection antibodies bind to specific capture antibody-biomarker complexes formed on the bead set. Multiple biomarkers can be recognized and measured by differences in the bead sets, with chromogenic or fluorogenic emissions being detected using flow cytometric analysis.
- a multiplex ELISA from Quansys Biosciences (Logan, Utah) coats multiple specific capture antibodies at multiple spots (one antibody at one spot) in the same well on a 96-well microtiter plate. Chemiluminescence technology is then used to detect multiple biomarkers at the corresponding spots on the plate.
- the cytokine biomarkers are detected using the Bio-Plex® Multiplex System (Bio-Rad Laboratories, Inc. (Hercules, Calif.)).
- the biomarker biomarkers of the present invention may be detected by means of an electrochemicaluminescent assay developed by Meso Scale Discovery (Gaithersrburg, Md.). Electrochemiluminescence detection uses labels that emit light when electrochemically stimulated. Background signals are minimal because the stimulation mechanism (electricity) is decoupled from the signal (light). Labels are stable, non-radioactive and offer a choice of convenient coupling chemistries. They emit light at ⁇ 620 nm, eliminating problems with color quenching. See U.S. Pat. No. 7,497,997; No. 7,491,540; No. 7,288,410; No. 7,036,946; No. 7,052,861; No. 6,977,722; No.
- the biomarkers of the present invention may be detected by mass spectrometry, a method that employs a mass spectrometer to detect gas phase ions.
- mass spectrometers are time-of-flight, magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance, Orbitrap, hybrids or combinations of the foregoing, and the like.
- the biomarkers of the present invention are detected using selected reaction monitoring (SRM) mass spectrometry techniques.
- SRM is a non-scanning mass spectrometry technique, performed on triple quadrupole-like instruments and in which collision-induced dissociation is used as a means to increase selectivity.
- two mass analyzers are used as static mass filters, to monitor a particular fragment ion of a selected precursor ion.
- the specific pair of mass-over-charge (m/z) values associated to the precursor and fragment ions selected is referred to as a “transition” and can be written as parent m/z ⁇ fragment m/z (e.g. 673.5 ⁇ 534.3).
- the detector acts as counting device for the ions matching the selected transition thereby returning an intensity distribution over time.
- Multiple SRM transitions can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs (sometimes called multiple reaction monitoring, MRM).
- MRM multiple reaction monitoring
- the triple quadrupole instrument cycles through a series of transitions and records the signal of each transition as a function of the elution time. The method allows for additional selectivity by monitoring the chromatographic coelution of multiple transitions for a given analyte.
- SRM/MRM are occasionally used also to describe experiments conducted in mass spectrometers other than triple quadrupoles (e.g.
- hSRM highly-selective reaction monitoring
- LC-SRM or any other SRM/MRM-like or SRM/MRM-mimicking approaches performed on any type of mass spectrometer and/or, in which the peptides are fragmented using any other fragmentation method such as e.g. CAD (collision-activated dissociation (also known as CID or collision-induced dissociation), HCD (higher energy CID), ECD (electron capture dissociation), PD (photodissociation) or ETD (electron transfer dissociation).
- CAD collision-activated dissociation
- HCD higher energy CID
- ECD electron capture dissociation
- PD photodissociation
- ETD electrostatic transfer dissociation
- the mass spectrometric method comprises matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF MS or MALDI-TOF).
- method comprises MALDI-TOF tandem mass spectrometry (MALDI-TOF MS/MS).
- mass spectrometry can be combined with another appropriate method(s) as may be contemplated by one of ordinary skill in the art.
- MALDI-TOF can be utilized with trypsin digestion and tandem mass spectrometry as described herein.
- the mass spectrometric technique comprises surface enhanced laser desorption and ionization or “SELDI,” as described, for example, in U.S. Pat. No. 6,225,047 and No. 5,719,060.
- SELDI refers to a method of desorption/ionization gas phase ion spectrometry (e.g. mass spectrometry) in which an analyte (here, one or more of the biomarkers) is captured on the surface of a SELDI mass spectrometry probe.
- SELDI SELDI-Enhanced Desorption Mass Spectrometry
- SEAC Surface-Enhanced Affinity Capture
- SEND Surface-Enhanced Neat Desorption
- Another SELDI method is called Surface-Enhanced Photolabile Attachment and Release (SEPAR), which involves the use of probes having moieties attached to the surface that can covalently bind an analyte, and then release the analyte through breaking a photolabile bond in the moiety after exposure to light, e.g., to laser light (see, U.S. Pat. No. 5,719,060).
- SEPAR and other forms of SELDI are readily adapted to detecting a biomarker or biomarker panel, pursuant to the present invention.
- the biomarkers can be first captured on a chromatographic resin having chromatographic properties that bind the biomarkers.
- a chromatographic resin having chromatographic properties that bind the biomarkers.
- a cation exchange resin such as CM Ceramic HyperD F resin
- wash the resin elute the biomarkers and detect by MALDI.
- this method could be preceded by fractionating the sample on an anion exchange resin before application to the cation exchange resin.
- one could fractionate on an anion exchange resin and detect by MALDI directly.
- the biomarkers of the present invention can be detected by other suitable methods.
- Detection paradigms that can be employed to this end include optical methods, electrochemical methods (voltametry and amperometry techniques), atomic force microscopy, and radio frequency methods, e.g., multipolar resonance spectroscopy.
- the biomarkers of the present invention are detected using nanotechnology including, for example, a nanowire. See, e.g., U.S. Pat. No. 8,323,466 and U.S. Patent Application Publication No. 20120258445 (NanoIVD, Inc. (Los Angeles, Calif.)).
- Biochips generally comprise solid substrates and have a generally planar surface, to which a capture reagent (also called an adsorbent or affinity reagent) is attached. Frequently, the surface of a biochip comprises a plurality of addressable locations, each of which has the capture reagent bound there.
- Protein biochips are biochips adapted for the capture of polypeptides. Many protein biochips are described in the art. These include, for example, protein biochips produced by Ciphergen Biosystems, Inc. (Fremont, Calif.), Invitrogen Corp. (Carlsbad, Calif.), Affymetrix, Inc.
- the biomarkers of the present invention can be used in diagnostic tests to assess, determine, and/or qualify (used interchangeably herein) Lyme/PTLDS status in a patient and therefore, direct treatment of the patient.
- the biomarkers the cytokines described herein including CCL19. Based on this status, further procedures may be indicated, including additional diagnostic tests or therapeutic procedures or regimens.
- biomarkers are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc., of these biomarkers are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. Thus, if a panel of biomarkers A, B, and C are disclosed as well as a class of biomarkers D, E, and F and an example of a combination panel A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed.
- any subset or combination of these is also disclosed.
- the sub-group of A-E, B-F, and C-E would be considered disclosed.
- This concept applies to all aspects of this application including, but not limited to, steps in methods of using the disclosed biomarkers.
- steps in methods of using the disclosed biomarkers are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
- the power of a diagnostic test to correctly predict status is commonly measured as the sensitivity of the assay, the specificity of the assay or the area under a receiver operated characteristic (“ROC”) curve.
- Sensitivity is the percentage of true positives that are predicted by a test to be positive, while specificity is the percentage of true negatives that are predicted by a test to be negative.
- An ROC curve provides the sensitivity of a test as a function of 1-specificity. The greater the area under the ROC curve, the more powerful the predictive value of the test.
- Other useful measures of the utility of a test are positive predictive value and negative predictive value. Positive predictive value is the percentage of people who test positive that are actually positive. Negative predictive value is the percentage of people who test negative that are actually negative.
- the biomarker panels of the present invention may show a statistical difference in different Lyme/PTLDS statuses of at least p ⁇ 0.05, p ⁇ 10 ⁇ 2 , p ⁇ 10 ⁇ 3 , p ⁇ 10 ⁇ 4 or p ⁇ 10 ⁇ 5 . Diagnostic tests that use these biomarkers may show an ROC of at least 0.6, at least about 0.7, at least about 0.8, or at least about 0.9.
- the biomarkers are measured in a patient sample using the methods described herein and a Lyme/PTLDS status is calculated.
- the measurement(s) may then be compared with a relevant diagnostic amount(s), cut-off(s), or multivariate model scores that informs the Lyme/PTLDS status.
- the diagnostic amount(s) represents a measured amount of a biomarker(s) above which or below which a patient is classified as having a particular Lyme/PTLDS status.
- the diagnostic amount(s) represents a measured amount of a biomarker(s) above which or below which a patient is classified as having a particular Lyme/PTLDS status.
- the particular diagnostic cut-off can be determined, for example, by measuring the amount of biomarkers in a statistically significant number of samples from patients with different Lyme/PTLDS statuses, and drawing the cut-off to suit the desired levels of specificity and sensitivity.
- the values measured for markers of a biomarker panel are mathematically combined and the combined value is correlated to the underlying diagnostic question of Lyme/PTLDS status.
- Biomarker values may be combined by any appropriate state of the art mathematical method.
- Well-known mathematical methods for correlating a marker combination to a disease status employ methods like discriminant analysis (DA) (e.g., linear-, quadratic-, regularized-DA), Discriminant Functional Analysis (DFA), Kernel Methods (e.g., SVM), Multidimensional Scaling (MDS), Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting/Bagging Methods), Generalized Linear Models (e.g., Logistic Regression), Principal Components based Methods (e.g., SIMCA), Generalized Additive Models, Fuzzy Logic based
- the method used in a correlating a biomarker combination of the present invention is selected from DA (e.g., Linear-, Quadratic-, Regularized Discriminant Analysis), DFA, Kernel Methods (e.g., SVM), MDS, Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting Methods), or Generalized Linear Models (e.g., Logistic Regression), and Principal Components Analysis.
- DA e.g., Linear-, Quadratic-, Regularized Discriminant Analysis
- DFA Kernel Methods
- MDS Nonparametric Methods
- PLS Partial Least Squares
- Tree-Based Methods e.g., Logic Regression, CART, Random Forest Methods, Boosting Methods
- Generalized Linear Models e.g.,
- reaction conditions e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
- Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function.
- T cell chemokines CXCL9 MIG
- CXCL10 IP-10
- CCL19 MIP3B
- CXCL9 MIG
- CXCL10 IP-10
- CCL19 MIP3B
- the levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations.
- the serum and PBMC samples used have been generated as part of a prospective cohort study with age- and sex-matched controls enrolled from 2008-2013.
- This study included a well-defined cohort of patients with acute Lyme disease enrolled from a Lyme endemic area of the mid-Atlantic United States. Only patients with untreated, confirmed early Lyme disease manifesting an active EM skin lesion at the time of enrollment, as defined by CDC case criteria were eligible [6,11,14]. Patients with a history of prior Lyme disease or the presence of confounding preexisting medical conditions associated with prolonged fatigue, pain or neurocognitive symptoms were excluded [45]. Controls were non-hospitalized age- and sex-matched and had no prior history of Lyme disease or any exclusionary medical conditions including lack of inflammatory disorders.
- the enrolled Lyme disease patients were followed from the time of acute infection longitudinally for a period of 2 years for a total of 7 study visits.
- the matched controls were followed for 2 years across 4 study visits.
- extensive clinical data and biological specimens were collected (see below).
- CBC Complete Blood Count
- CMP Comprehensive Metabolic Panel
- Serology results were determined following the CDC's two-tier testing algorithm measuring both IgM and IgG, with time of symptom onset being determined by a structured interview with the patient at the pre-treatment study visit [6,11,14]. For those patients who were negative according to the two-tier serology at the first study visit, a subsequent serology was drawn at the second study visit after antibiotic treatment and sent to the same commercial laboratory for testing.
- PBMCs Peripheral blood mononuclear cells
- PBMCs Peripheral blood mononuclear cells
- Monoclonal antibody reagents specific for CD3 (UCHT1), CD4 (RPA-T4), CD8 (SK1) and CXCR3 (IC6) were purchased from Becton Dickenson.
- PBMCs were first incubated with unlabeled human IgG to block nonspecific binding followed by incubation with fluorescent tagged monoclonal reagents.
- PBMCs were washed and polychromatic flow cytometry performed using a FACSAria instrument (Becton Dickinson, San Jose, Calif.). Lymphocytes were gated using forward and side scatter and the data analyzed using FlowJo software (Tree Star).
- Categorical variables were analyzed using Fisher's Exact or Chi-square statistics. A standard ANOVA or unpaired t-test was used on two or more group comparisons for continuous variables. Pearson correlations were used for linear comparisons. For longitudinal continuous variables, a repeated measures ANOVA was performed. All statistical calculations were performed with SPSS software (IBM Corporation v 21).
- T cell chemokines CCL19, CXCL9, CXCL10
- CRP and serum amyloid A CRP and serum amyloid A
- IL-1ra, IL-18, IL-33 IL-1 cytokine family members
- IL-6 inflammatory cytokines
- FIG. 1B Displayed in FIG. 1B is an unsupervised hierarchical clustering of the serum mediator profiles of the same early acute Lyme disease at the initial pre-treatment visit and control patients. This analysis allows us to distinguish two patient clusters of acute Lyme disease patients.
- One group termed mediator-high displayed elevated levels of the T cell chemokines and inflammatory markers during acute infection described above.
- a second group of Lyme disease patients (mediator-low) displayed mediator levels that result in their clustering among normal control samples. Since all patients met IDSA guidelines for acute Lyme disease, the mediator-low group represents a subset of Lyme patients that did not exhibit significant elevations in inflammatory mediators in blood.
- T Cell Chemokine Levels are Selectively Elevated in the Acute Phase of Lyme Disease.
- FIGS. 4A-D A striking feature of the cytokine/chemokine profile was the upregulation of T cell specific mediators.
- FIGS. 4A-D Displayed in FIGS. 4A-D are the measured levels of the chemokines CXCL9 (MIG), CXCL10 (IP-10), CCL19 and CXCL8 (IL-8) in sera obtained from patients at the time of their initial diagnosis of acute Lyme disease (pre-treatment), 4 weeks following diagnosis and treatment (post-treatment) and matched controls.
- the T cell chemoattractants CXCL9, CXCL10 and CCL19 were significantly elevated in serum during the acute infection but largely returned to normal levels following treatment, resolution of the erythema migrans and recovery.
- CXCL9, CXCL10 and CCL19 were completely concordant with one another (Table 3).
- the neutrophil chemotactic factor CXCL8 was not elevated during acute infection or at other observed time points ( FIG. 2D ).
- the measured levels of CCL11 (eotaxin-1), CXCL1 (GROa), CCL2 (MCP-1), CCL7 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP1b), CCL5 (RANTES) and CXCL12 (SDF-1a) were not significantly different as compared to the levels in matched controls (data not shown). Therefore in acute Lyme disease there appears to be a selective and coordinate elevation of T cell chemo-attractants.
- cytokine IL-6 and the innate immune acute phase factors C-reactive protein (CRP) and serum amyloid A (SAA) are elevated during acute Lyme disease.
- CRP C-reactive protein
- SAA serum amyloid A
- FIG. 3 A more detailed analysis of the levels over time is presented in FIG. 3 .
- CRP and SAA levels returned to normal control levels following treatment and remained so throughout the follow-up period.
- IL-6 levels remained elevated and only returned to normal levels months after infection and treatment.
- Chemokine and Inflammatory Markers Correlation with Liver Function Abnormalities.
- T cell chemokine levels in acute Lyme patient sera did show heterogeneity with a subset displaying levels similar to controls ( FIGS. 4A-C ).
- a similar case can be made for the inflammatory biomarkers CRP and serum amyloid A ( FIG. 3 ). This heterogeneity suggests that individual chemokine and/or inflammatory markers may correlate with clinical parameters.
- the erythema migrans (EM) lesion is the primary site of inflammation in acute Lyme disease and it can vary in size as well as number. This lesion is characterized as the site of active bacterial growth and the accumulation of immune inflammatory cells that is dominated by T cells [9,15,16].
- the chemokines CXCL9 and CXCL10 were present at high levels within the EM lesion likely produced by fibroblasts and endothelial cells in an interferon-c dependent manner [15-17]. Based on this we reasoned that the levels of CXCL9 and/or CXCL10 might correlate either with the size or degree of dissemination of the EM lesion.
- liver enzymes and acute inflammatory markers were elevated in acute Lyme disease suggested that there these two markers may be related. As shown in FIG. 5 , CRP and SSA but not IL-6 (data not shown) levels correlated with liver enzyme levels.
- the chemokines CXCL9 and CXCL10 bind to a common receptor CXCR3 expressed largely on T cells [20]. We reasoned that high serum levels of these chemokines may drive T cells into inflamed tissues and as a result levels of CXCR3 expressing T cells may be altered during acute Lyme disease. Levels of CXCR3+CD4 T cells were determined by polychromatic flow cytometry ( FIG. 6A ), and found to be significantly lower in the blood of patients with acute Lyme disease versus controls ( FIG. 6B ). In addition, serum levels of CXCL10 ( FIG. 6C ) and CXCL9 (data not shown) were inversely related to the frequency of CXCR3+CD4+T cells in the peripheral circulation.
- a clear coordinated cytokine/chemokine signature was identified that distinguished patients with acute Lyme disease from normal non-inflammatory controls. Furthermore, variation in this signature allowed us to define at least two groups of Lyme disease patients with clear differences in the levels of key mediators. Interestingly, these subgroups of Lyme patients had distinct disease characteristics including number of symptoms, lymphopenia, elevated liver function and rate of seroconversion. At this time we cannot determine if this signature is acute Lyme specific or more reflects a general inflammatory signature. However, a similar analysis of serum from patients with Rheumatoid Arthritis identified a distinct cytokine signature that included Eotaxin, Il-12p40 and Rantes, mediators that were not elevated in our Lyme disease cohort (46-49).
- CXCL9, CXCL10 and CCL19 are three prominent chemokines that were elevated in our cohort of acute Lyme disease patients. All three mediators are coordinately elevated and return to baseline control levels following treatment and resolution of the EM. Previous work has shown elevated levels of CXCL9 and CXCL10 within the EM skin lesion and in the sera of patients with early acute Lyme disease, as well as in the synovial fluid and tissue of patients with Lyme arthritis [16,17,21-23]. Similar to our observations, the levels of serum CXCL9 and CXCL10 can vary among acute Lyme disease patients and levels correlate with severity of disease [23]. Elevated levels of CXCL9 and CXCL10 are found in a number of Th1 driven immune inflammatory settings including autoimmune disorders and viral, bacterial and protozoan infections [20,24,25].
- the chemokines CXCL9 and CXCL10 are produced by macrophages and non-immune cells within inflamed tissues in an interferon-dependent manner. These chemokines bind to the chemokine receptor CXCR3 expressed largely on antigen activated T cells [20].
- the primary site of inflammation and bacterial replication in early acute Lyme disease is thought to be the skin EM lesion. Previous work has shown that this site expresses high levels of CXCL9 and CXCL10 and CXCR3+T cells [15,17].
- burgdorferi induced liver involvement can, in part, be driving the serum levels of CXCL9 and CXCL10. Consistent with this is the finding that CXCL9 and CXCL10 recruits T cells in chronic liver diseases and that CXCR3+ effector T cells accumulate in the liver of B. burgdorferi infected mice [26,29]. Interestingly, CXCL10 levels correlate with severe liver damage levels in hepatitis-C infected patients [30,31]. Whether this is the case for Lyme disease requires further study.
- CSF cerebrospinal fluid
- CXCL19 is a ligand for CCR7 and plays an important role in the homing of B and T lymphocytes and dendritic cells to the lymph node to facilitate cellular interactions essential for the generation of an effective immune response [33,34].
- CXCL9, CXCL10 and CCL19 in acute Lyme disease are consistent with an ongoing host immune response in the draining lymph nodes accompanied by the generation of Borrelia -reactive effector T cells and their migration into the site of infection. These conditions would be predicted favor the generation of an effective antibody response and, indeed seroconversion is significantly associated with elevated levels of CXCL9 and CXCL10.
- chemokine CXCL9 and CXCL10
- cytokine levels can vary in Lyme disease patients depending on the genotype of the infecting B. burgdorferi [ 21].
- the host genetic environment may play a role as TLR-1 polymorphisms are linked to chemokine (CXCL9 and CXCL10) and cytokine levels [23].
- CRP is a short pentraxin produced by the liver and functions as a fluid phase pattern recognition molecule [36].
- SAA is a serum lipoprotein that can recognize bacteria by interacting with outer membrane proteins [37,38].
- CRP and SAA are synthesized by hepatocytes and IL-6 has been identified as a strong stimulator of CRP and SAA production [36,37,39,40]. Infection with B. burgdorferi clearly stimulates the coordinated production CRP and SAA along with IL-6 during the acute stage of Lyme disease. Therefore it was surprising that the levels of serum CRP and SAA reactants correlate poorly with serum IL-6. This implies that IL-6 independent events may be driving production.
- the increases in CRP, and SAA could reflect the localized production of IL-6 in the liver, possibly as a site of infection, inflammation and/or tissue injury in the early acute Lyme phase [41]. This latter scenario is supported by the association of SAA and CRP levels with elevated serum liver enzymes ( FIG. 5A ).
- chemokine and cytokine levels in the serum of Lyme disease patients has allowed us to define at least two subsets of Lyme patients which have distinct disease phenotypes differing in number of symptoms, extent of liver involvement, lymphocyte levels and seroconversion status. It is possible that the inflammatory mediator profiles identified may prove valuable as biomarkers of Lyme disease activity. Moreover, these chemokines likely identify immune pathways that are involved in the resolution of Lyme disease and as such may be potential therapeutic targets.
- Acute Lyme Mediator High Acute Lyme Mediator Low n 27 mean (SD)
- n 17 mean (SD)
- NS Female 55.6% 28.8%
- CCL19 as a Chemokine Risk Factor for Post-Treatment Lyme Disease Syndrome: A Prospective Clinical Cohort Study
- Lyme disease is the most common vector-borne disease in the northern hemisphere. Approximately 10% of optimally treated patients develop persistent symptoms of unknown pathophysiology lasting six months or longer that negatively affect life functioning, known as post-treatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate the association between clinical symptoms and a panel of immune mediators during and following treatment of early Lyme disease.
- Elevated levels of the T-cell chemokine CCL19 were associated with functionally significant, persistent symptoms at six and/or twelve months after diagnosis and treatment.
- a CCL19 cutoff of >115 pg/mL at one month post-treatment generated a sensitivity and specificity over 80%, and a relative risk of 13.25 for identifying those who would develop PTLDS at a later visit.
- Seventy-six patients with EM of greater than 5 cm were enrolled in a one-year prospective cohort study. Patients with a previous history of Lyme disease, or preexisting, confounding medical conditions associated with prolonged fatigue, pain, or neurocognitive symptoms were excluded. Cases were enrolled at time of acute infection, treated with three weeks of oral doxycycline, and seen regularly over the course of one year, for a total of six study visits (pre-treatment baseline, three weeks later following treatment, one month post-treatment, three months post-treatment, six months post-treatment, and one year post-treatment). Extensive clinical and biological specimen data were collected at each study visit. Twenty-six healthy, seronegative controls with no clinical history of Lyme disease were also enrolled. To control for random variability within the control group, samples were taken at two study visits 6 months apart and an average generated for each control participant. This study was approved by the Johns Hopkins Medicine Institutional Review Board. Informed consent was obtained from all patients prior to enrollment.
- Bio-PlexTM bead array system and manufacturer recommended, previously described protocols[24] were employed to perform multiplex analysis of fifty-eight cytokines and chemokines, and nine acute phase markers. However, due to inter-batch variation three were dropped, resulting in six acute phase markers.
- Data processing was completed using Bio-PlexTM manager software (version 5.0). Data normalization between two run batches was achieved by setting all values less than 1 pg/mL to 1 pg/mL, calculating the 10% trimmed mean of each batch, and then multiplying by a factor to equalize the trimmed mean values.
- the protocol and data generated were MAIME compliant and were deposited in the Gene Expression Omnibus Repository. The cytokines, chemokines and inflammatory markers measured were described in a recent publication[21] and are listed in Table 5. Microarray data will be submitted to a public repository.
- the PTLDS definition [23] was applied to our cohort of 76 Lyme patients. Eleven (14.5%) met criteria at either six or twelve months (PTLDS group), 29 (38.2%) met the symptom but not the functional impact criteria (Symptom group), and 36 (47.3%) reported neither new symptoms nor decreased daily function and were considered returned to their pre-morbid health (Return to Health group). There were no statistically significant differences found by group on any of the demographic variables examined (Table 5).
- FIG. 7 a shows that only CCL19 and CRP levels were significantly different in PTLDS patients compared to controls at 6 months following treatment completion, at the time of group status determination.
- FIG. 8 shows the median CCL19 levels over time by clinical outcome group.
- the three Lyme-exposed groups had similar serum CCL19 levels, and all were significantly different from controls (p ⁇ 0.01 for each).
- the median serum CCL19 level of the PTLDS group remained significantly different from control group levels while the Symptom and Return to Health groups did not.
- the persistent elevations in CCL19 level among PTLDS patients were found at each of the subsequent follow-up visits compared to controls (p ⁇ 0.05 at each).
- Tables 5 and 6 were examined in separate univariate analyses, and four were found to be associated with higher CCL19 level at the baseline visit; a higher number of reported symptoms, female sex, presence of disseminated lesions, and seropositivity.
- CCL19 (and the related chemokine CCL21) is largely produced by reticular stromal cells localized to secondary lymphoid tissues and functions to attract and position CCR7 + T cells, B cells, and dendritic cells to establish an optimal microenvironment for immune response generation.[26,27]
- the expression of CCL19 is thought to be constitutive, but activated dendritic cells produce high levels of CCL19 in order to increase immune cell trafficking in secondary lymphoid organs during active immune responses.
- CCL19 CCL19 and other immune mediators seen during acute Lyme disease.
- CCL19 mRNA expression is increased in the lymph nodes of acutely infected mice.
- Elevated levels of CCL19 have also been observed during states of immune-mediated inflammation including HIV infection, systemic lupus erythematosus, and rheumatoid arthritis.[29-32]
- the current study identifies early post-treatment elevated CCL19 as a potential risk factor for PTLDS.
- the origin of persistently elevated CCL19 levels among PTLDS patients is unknown; however, we speculate that it may reflect an ongoing, immune-driven reaction at sites distal to secondary lymphoid tissue.
- the ability to identify a potential immunologic risk factor for PTLDS provides the opportunity to better understand the pathophysiology of PTLDS, identify those at risk, and to develop early interventions to improve long term outcomes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention relates to the field of Lyme disease. More specifically, the present invention provides methods and composition useful for the treatment of Lyme disease. In one aspect, the present invention provides compositions and methods for treating a patient at risk for or likely to develop post-treatment Lyme disease syndrome (PTLDS). In certain embodiments, the patient is already undergoing a first course of antibiotic treatment for Lyme disease. In a specific embodiment, a method comprises the step of prescribing or administering a second course of antibiotic treatment to a patient who is determined to have an increased level of CCL19 as compared to a control after completing a first course of antibiotics for Lyme disease.
Description
- This application claims the benefit of U.S. Provisional Application No. 62/148,332, filed Apr. 16, 2015, which is incorporated herein by reference in its entirety.
- The present invention relates to the field of Lyme disease. More specifically, the present invention provides methods and composition useful for the treatment of Lyme disease.
- Lyme disease is the most common tick-borne disease in temperate regions of the northern hemisphere, affecting large areas of North America and Eurasia.[1] In North America, Lyme disease is caused by the spirochete Borrelia burgdorferi and cases are concentrated in the Northeast, upper Midwest and Mid-Atlantic. Recently, CDC and state health investigators estimated that 288,000 new infections occurred in the United States in 2008.[2] In certain high-risk communities, studies suggest that the incidence of new cases may be 3%, with cumulative prevalence as high as 7-17%.[3] As the geographic range of the tick vector, and the mouse and deer hosts expands, the impact of Lyme and other tick borne-diseases is likely to grow.[4]
- The hallmark of early Lyme disease is a cutaneous lesion, erythema migrans (EM), which occurs with or without symptoms of infection such as fever, arthralgias, fatigue, headache or neck pain.[5] Within days to weeks, B. burgdorferi may disseminate from the site of skin inoculation through the blood or tissues and spread systemically to other areas of the skin, musculoskeletal, cardiac and neurologic systems. More than 50% of patients with EM are found to have positive PCR or blood culture results at this stage.[6, 7] In the absence of effective antibiotic treatment, the adaptive immune response does not reliably eradicate infection, with small numbers of spirochetes able to persist in certain tissues.[8] If untreated, as many as 60% of patients will have a clinical relapse months to years later with manifestations of late Lyme arthritis or less commonly in the United States, neurologic disease.[9]
- Antibiotic treatment of early Lyme disease speeds resolution of EM and is effective in preventing later objective manifestations. However, treatment at later stages may be more difficult. Approximately 10% of late Lyme arthritis patients have persistent or recurrent objective findings termed post-treatment antibiotic refractory disease. This is thought to be due to autoimmune-mediated inflammation that occurs in genetically susceptible individuals, especially those with Toll-
like receptor 1 polymorphism and/or the HLA-DR4 alleles.[10] - Approximately 10% of patients with diagnosed and treated early Lyme disease have persistent symptoms of fatigue, arthralgias, sleep disruption or cognitive complaints following antibiotic treatment. These post-treatment symptoms may be mild and limited, or severe and chronic. When post-treatment symptoms last six months or longer and impair life functioning, patients meet the case definition for post-treatment Lyme disease syndrome (PTLDS).[1, 11, 12] Studies have suggested a severe initial illness,[13, 14] delayed treatment,[13] neurologic involvement,[1, 15] or suboptimal antibiotic therapy [15, 16] as potential risk factors for development of PTLDS.
- The pathophysiology of PTLDS is unknown, but theories include persistence of bacteria and/or spirochetal antigens after antibiotic therapy, as suggested by animal models.(18,19) Immune system abnormalities independent of ongoing infection may also be an important mechanism. Retained spirochetal antigens have been hypothesized to lead to immune dysregulation of CD4+ T cell subsets in antibiotic refractory arthritis.[19] Anti-neural antibodies have been found in one sample of patients with PTLDS.[20]
- As described below, we examined serum levels of sixty-five immune mediators among patients with acute Lyme disease and identified a clear associated signature relative to normal controls, including increased CXCL9, CXCL10, and CCL19.[21] We then sought to examine the relationship of these immune mediators to patient clinical response over time, from pre-treatment diagnosis of early Lyme disease up to one year following completion of antibiotic treatment. We hypothesize that those individuals who meet the case definition of PTLDS, as compared to those that don't meet criteria and normal controls, will have persistent elevations of specific immune mediators following antibiotic treatment.
- The present invention is based, at least in part, on the discovery the chemokine CCL19 has been identified in acute pre-treatment samples from patients with Lyme disease and distinguishes acutely infected patients from controls. In addition we have demonstrated that a subset of patient continue to have elevated levels of CCL19 for up to 6-12 months post-treatment. In addition, the measurement of an elevated CCL19 immediately after the completion of antibiotic therapy identifies those at high risk of having persistent symptoms. This high risk population is a candidate for further antibiotic therapy to prevent the development of long term complications of PTLDS.
- No previous investigators have described persistent elevations of CCL19 in patients after treatment of Lyme disease and have not linked CCL19 elevation to the risk for PTLDS. No one has suggested that this biomarker could be used to identify a subset of patients requiring repeat or prolonged antibiotic therapy in an attempt to prevent the development of PTLDS. Indeed, the present inventors are the first to link the CCL19 patterns before and after treatment of Lyme disease to the clinical phenotype of Post-treatment Lyme disease syndrome.
- Accordingly, in one aspect, the present invention provides compositions and methods for treating a patient at risk for or likely to develop post-treatment Lyme disease syndrome (PTLDS). In certain embodiments, the patient is already undergoing a first course of antibiotic treatment for Lyme disease. In a specific embodiment, a method comprises the step of prescribing or administering a second course of antibiotic treatment to a patient who is determined to have an increased level of CCL19 as compared to a control after completing a first course of antibiotics for Lyme disease. In certain embodiments, the second course of antibiotics comprises an antibiotic that is different from the first course of antibiotics.
- In another embodiment, a method for treating a patient likely to develop PTLDS comprises the steps of (a) obtaining a biological sample from a patient being treated for Lyme disease with a first course of antibiotics; (b) measuring the level of CCL19 in the sample; and (c) prescribing or administering a second course of antibiotic treatment to a patient having an increased level of CCL19 as compared to a control.
- In a further embodiment, a method comprising the steps of (a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and (b) generating a report comprising the measured CCL19 level. In a specific embodiment, the report further comprises standard or control levels of CCL19 for comparison. The report can further comprise a treatment recommendation based on the measured level of CCL19.
- In yet another embodiment, the present invention provides a method comprising the steps of (a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and (b) recommending a second course of antibiotic treatment to treat or prevent PTLDS if the measure level of CCL19 is statistically significantly increased as compared to a reference or control.
- In particular embodiments, levels of CCL19 are statistically significantly increased if the levels are 2 standard deviations above the control. In certain embodiments, the cutoff is ≧182 pg/mL.
- In further embodiments, the methods described herein further comprise measuring the levels of one or more biomarkers described herein. The biomarkers described herein, including CCL19, can be measured using the techniques described herein including, but not limited to, immunoassay and mass spectrometry. In particular embodiments, the biomarkers, including CCL19, are detected and measured using a multiplex assay system such as the Bio-Plex® Multiplex System (Bio-Rad Laboratories, Inc. (Hercules, Calif.)).
- In further embodiments, the present invention provides methods for treating a patient who continues to have elevated biomarker levels, including CCL19, after the antibiotic retreatment. In a specific embodiment, the method further comprises recommending, prescribing or administering an immunomodulator or immunosuppressive therapy. Examples include, but are not limited to, low dose allergy (LDA) therapy/low dose immunotherapy (LDI). In other embodiments, a therapeutic that blocks CCL19 production, pathway or acts as a CCL19 antagnoist could be used. In another specific embodiment, a rheumatic drug like hydroxychloroquine is used.
-
FIG. 1A-1B . Elevated Immune Mediators in Lyme Disease. Serum samples from patients with diagnosed acute Lyme disease (n=44, red) and healthy controls (n=23, black) were assayed for the presence of 58 soluble mediators and 7 acute phase proteins using an optimized multiplex-based assay system. Displayed are those mediators that show significant changes (q,0.1%) in Lyme patients vs. controls.FIG. 1A . Results are displayed as a heat map to visualize differences in mediator levels in Acute Lyme patients relative to controls.FIG. 1B . Unsupervised hierarchical clustering of the results was performed, and the output displayed as a heat map. This analysis resulted in the formation of two clusters, including a “mediator high” cluster that contains samples derived from patients with acute B. burgdorferi infection who exhibited elevated serum inflammatory mediators. The second “mediator low” cluster includes a subset of samples from acute B. burgdorferi infection as well as the matched healthy controls, both of which exhibited low levels of inflammatory mediators. -
FIG. 2A-2D . Chemokine levels in Lyme disease before and after treatment. Displayed are the levels of the chemokines CXCL10 (FIG. 2A ), CCL19 (FIG. 2B ), CXCL9 (FIG. 2C ) and CXCL8 (FIG. 2D ) measured in the serum of Lyme patients (n=44) pre-treatment (acute disease) and post-treatment (4 weeks following diagnosis) as compared to healthy controls (n=23). Horizontal bars represent the medians for each sample group. -
FIG. 3A-3C . Elevated Inflammatory Mediators in Lyme Disease. Serum levels of CRP (FIG. 3A ), Serum Amyloid A (FIG. 3B ) and IL-6 (FIG. 3C ) were measured in healthy controls (n=23) and at various times during the course of diagnosis and treatment in Lyme patients (n=44). CRP, Serum Amyloid A and IL-6 levels are significantly elevated at diagnosis (pre-treatment). CRP and Serum Amyloid A levels return to control levels after treatment while IL-6 levels persist. -
FIG. 4A-4C . Chemokine levels are associated with elevated liver function tests. Lyme patients were separated into two populations based on normal (n=24) vs. elevated liver enzyme tests (n=20) and the levels of CXCL10 (FIG. 4A ), CXCL9 (FIG. 4B ) and CXCL10 (FIG. 4C ) compared at three visits (pre-treatment, post-treatment, and 6 months) relative to healthy controls (n=23). All three chemokines are significantly different between Lyme patients with high liver function tests and those with normal liver function tests at the pre-treatment visit. This difference was not observed at later time points. -
FIG. 5A-5B . Serum Amyloid A levels are associated with elevated liver function tests. Lyme patients were separated into two populations based on normal (n=24) vs. elevated liver enzyme tests (n=20) and the levels of Serum Amyloid A (FIG. 5A ) and CRP (FIG. 5B ) were compared at multiple time points relative to healthy controls (n=23). Serum amyloid A (p=0.036) and CRP (p=0.017) levels are significantly different between Lyme patients with high liver function tests at the pre-treatment visit. Both groups are significantly different from controls at (p<0.0005), but are not different from each other or controls, at both the Post-treatment and 6 Month follow-up visits. There is no significant difference in CRP levels between high and normal liver function groups, however both are significantly different from controls (p<0.0005). -
FIG. 6A-6B . CXCR3 Expressing CD4+T cell levels correlate with serum CXCL10.FIG. 6A . CXCR3 expressing CD4+T cells were detected using polychromatic flow cytometry. Displayed is a representative plot.FIG. 6B . The frequency of CXCR3+CD4+T cells among total CD4+PBMCs were determined in Lyme patients prior to treatment (cases, n=44) and healthy controls (n=23). Levels of CXCR3+CD4+T cells were lower in cases vs. controls at pre-treatment (p=0.0105).FIG. 6C . The levels of blood CXCR3+CD4+T cells were negatively correlated CXCL10 serum levels in pretreatment early Lyme disease cases (p=0.0375). -
FIG. 7A-7B . CCL19 Identified as an Immune Mediator in PTLDS. Serum samples from patients with diagnosed acute Lyme disease and healthy controls were assayed for the presence of soluble mediators using an optimized multiplex-based assay system. Results are displayed as a heat map to visualize differences in mediator levels.FIG. 7A shows those mediators with significant changes (q<0.1%) in Lyme patients compared to controls at six months post-treatment.FIG. 7B shows significant differences in CCL19 levels between Lyme-exposed PTLDS patients and Lyme-exposed non-PTLDS patients at three months post-treatment. -
FIG. 8 . CCL19 levels are elevated in Lyme disease cases with PTLDS defined at 6 or 12 months follow-up. Displayed are the median and IQR serum levels of CCL19 (pg/mL) among Lyme patients (n=76) over time. Lyme-exposed patients are divided into PTLDS, symptom, and return to health subgroups based on self-reported symptoms and survey measurements at six months and one-year post-treatment. The median control value (79.3 pg/mL) is represented by a triangle; * p<0.05, **p<0.01 for comparison of each group to controls. - It is understood that the present invention is not limited to the particular methods and components, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to a “protein” is a reference to one or more proteins, and includes equivalents thereof known to those skilled in the art and so forth.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Specific methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention.
- All publications cited herein are hereby incorporated by reference including all journal articles, books, manuals, published patent applications, and issued patents. In addition, the meaning of certain terms and phrases employed in the specification, examples, and appended claims are provided. The definitions are not meant to be limiting in nature and serve to provide a clearer understanding of certain aspects of the present invention.
- As used herein, the term “antibody” is used in reference to any immunoglobulin molecule that reacts with a specific antigen. It is intended that the term encompass any immunoglobulin (e.g., IgG, IgM, IgA, IgE, IgD, etc.) obtained from any source (e.g., humans, rodents, non-human primates, caprines, bovines, equines, ovines, etc.). Specific types/examples of antibodies include polyclonal, monoclonal, humanized, chimeric, human, or otherwise-human-suitable antibodies. “Antibodies” also includes any fragment or derivative of any of the herein described antibodies.
- As used herein, the term “antigen” is generally used in reference to any substance that is capable of reacting with an antibody. More specifically, as used herein, the term “antigen” refers to a biomarker described herein. An antigen can also refer to a synthetic peptide, polypeptide, protein or fragment of a polypeptide or protein, or other molecule which elicits an antibody response in a subject, or is recognized and bound by an antibody.
- As used herein, the term “biomarker” refers to a molecule that is associated either quantitatively or qualitatively with a biological change. Examples of biomarkers include proteins, polypeptides, and fragments of a polypeptide or protein; and polynucleotides, such as a gene product, RNA or RNA fragment. In particular embodiments, a biomarker is a cytokine. In certain embodiments, a “biomarker” means a molecule/compound that is differentially present (i.e., increased or decreased) in a biological sample as measured/compared against the same marker in another biological sample or control/reference. In other embodiments, a biomarker can be differentially present in a biological sample as measured/compared against the other markers in same or another biological sample or control/reference. In further embodiments, one or more biomarkers can be differentially present in a biological sample as measured/compared against other markers in the same or another biological sample or control/reference and against the same markers in another biological sample or control/reference. In yet another embodiment, a biomarker can be differentially present in a biological sample from a subject or a group of subjects having a first phenotype (e.g., having a disease or condition) as compared to a biological sample from a subject or group of subjects having a second phenotype (e.g., not having the disease or condition or having a less severe version of the disease or condition).
- In general, the one or more biomarkers can be generally present at a level that is increased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more; or is generally present at a level that is decreased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, or by 100% (i.e., absent). A biomarker is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using, for example, either Welch's T-test or Wilcoxon's rank-sum Test). Biomarker levels can be used in conjunction with other parameters to assess a patient.
- As used herein, the term “comparing” refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of the corresponding one or more biomarkers in a standard, reference or control sample. For example, “comparing” may refer to assessing whether the proportion, level, or cellular localization of one or more biomarkers in a sample from a patient is the same as, more or less than, or different from the proportion, level, or cellular localization of the corresponding one or more biomarkers in standard, reference or control sample. In particular embodiments, the term may refer to assessing whether the proportion, level, or cellular localization of one or more biomarkers in a sample from a patient is the same as, more or less than, different from or otherwise corresponds (or not) to the proportion, level, or cellular localization of predefined biomarker levels/ratios that correspond to, for example, having or not having or is likely (or not) of developing PTLDS. In another specific embodiment, the term “comparing” refers to assessing whether the level of one or more biomarkers of the present invention in a sample from a patient is the same as, more or less than, different from other otherwise correspond (or not) to levels/ratios of the same biomarkers in a control sample (e.g., predefined levels/ratios that correlate to having or having a likelihood (or not) of developing PTLDS.
- In another embodiment, the term “comparing” refers to making an assessment of how the proportion, level or cellular localization of one or more biomarkers in a sample from a patient relates to the proportion, level or cellular localization of one or more biomarkers in the same sample. For example, a ratio of one biomarker to another (or more) from the same patient sample can be compared. Percentages or ratios of expression or levels of the biomarkers can be compared to other percentages or ratios in the same sample and/or to predefined reference or control percentages or ratios. Such comparison can be made to assess whether the patient has or does not have or is likely (or not) of developing PTLDS, which assessment can be used to direct further therapy.
- In embodiments in which the relationship of the biomarkers are described in terms of a ratio, the ratio can include 1-fold, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 22-, 23-, 24-, 25-, 26-, 27-, 28-, 29-, 30-, 31-, 32-, 33-, 34-, 35-, 36-, 37-, 38-, 39-, 40-, 41-, 42-, 43-, 44-, 45-, 46-, 47-, 48-, 49-, 50-, 51-, 52-, 53-, 54-, 55-, 56-, 57-, 58-, 59-, 60-, 61-, 62-, 63-, 64-, 65-, 66-, 67-, 68-, 69-, 70-, 71-, 72-, 73-, 74-, 75-, 76-, 77-, 78-, 79-, 80-, 81-, 82-, 83-, 84-, 85-, 86-, 87-, 88-, 89-, 90-, 91-, 92-, 93-, 94-, 95-, 96-, 97-, 98-, 99-, 100-fold or more difference (higher or lower). Alternatively, the difference can include 0.9-fold, 0.8-fold, 0.7-fold, 0.7-fold, 0.6-fold, 0.5-fold, 0.4-fold, 0.3-fold, 0.2-fold, and 0.1-fold (higher or lower) depending on context. The foregoing can also be expressed in terms of a range (e.g., 1-5 fold/times higher or lower) or a threshold (e.g., at least 2-fold/times higher or lower).
- The evaluation of the relationship between one or more biomarkers in a sample (e.g., one or more biomarkers compared to one or more other biomarkers (perhaps in combination with internal standards expression or levels (e.g., actin)) can also be expressed in terms of a percentage including, but not limited to, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, 150%, 200% or more (higher or lower) difference. The foregoing can also be expressed in terms of a range (e.g., 50-100% higher or lower) or a threshold (e.g., at least 50% higher or lower)
- As used herein, the terms “identifies,” “indicates” or “correlates” (or “identifying,” “indicating” or “correlating,” or “identification,” “indication” or “correlation,” depending on the context) in reference to a parameter, e.g., a modulated proportion, level, or cellular localization in a sample from a patient, may mean that the patient has or does not have or is likely (or not) of developing PTLDS. In specific embodiments, the parameter may comprise the level (expression level or protein level) of one or more biomarkers of the present invention. A particular set or pattern of the amounts of one or more biomarkers may identify the patient as having or not having or being likely (i.e., at risk) (or not) of developing PTLDS.
- In certain embodiments, “identifying,” “indicating,” or “correlating,” as used according to the present invention, may be by any linear or non-linear method of quantifying the relationship between levels/ratios of biomarkers to other biomarkers and/or standard, control or comparative value for the assessment of Lyme disease/PTLDS.
- The terms “patient,” “individual,” or “subject” are used interchangeably herein, and refer to a mammal, particularly, a human. The patient may have mild, intermediate or severe disease. The patient may be treatment naïve, responding to any form of treatment, or refractory. The patient may be an individual in need of treatment or in need of diagnosis based on particular symptoms or family history. In some cases, the terms may refer to treatment in experimental animals, in veterinary application, and in the development of animal models for disease, including, but not limited to, rodents including mice, rats, and hamsters; and primates.
- The terms “measuring” and “determining” are used interchangeably throughout, and refer to methods which include obtaining a patient sample and/or detecting the level of a biomarker(s) in a sample. In one embodiment, the terms refer to obtaining a patient sample and detecting the level of one or more biomarkers in the sample. In another embodiment, the terms “measuring” and “determining” mean detecting the level of one or more biomarkers in a patient sample. Measuring can be accomplished by methods known in the art and those further described herein. The terms are also used interchangeably throughout with the term “detecting.”
- The terms “sample,” “patient sample,” “biological sample,” and the like, encompass a variety of sample types obtained from a patient, individual, or subject and can be used in a diagnostic or monitoring assay. The patient sample may be obtained from a healthy subject, a diseased patient or a patient having associated symptoms of Lyme disease and/or PTLDS. Moreover, a sample obtained from a patient can be divided and only a portion may be used for diagnosis. Further, the sample, or a portion thereof, can be stored under conditions to maintain sample for later analysis. The definition specifically encompasses solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof. In other embodiments, the term sample includes blood and other liquid samples of biological origin (including, but not limited to, peripheral blood, serum, plasma, cerebrospinal fluid, urine, saliva, stool and synovial fluid). In particular embodiments, the biological sample is a serum sample.
- The definition of “sample” also includes samples that have been manipulated in any way after their procurement, such as by centrifugation, filtration, precipitation, dialysis, chromatography, treatment with reagents, washed, or enriched for certain cell populations. The terms further encompass a clinical sample, and also include cells in culture, cell supernatants, tissue samples, organs, and the like. Samples may also comprise fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks, such as blocks prepared from clinical or pathological samples, prepared for pathological analysis or study by immunohistochemistry. In certain embodiments, a sample comprises an optimal cutting temperature (OCT)-embedded frozen tissue sample.
- As used herein, the term “predetermined threshold value” of a biomarker refers to the level of the same biomarker in a corresponding control/normal sample or group of control/normal samples. Further, the term “altered level” of a biomarker in a sample refers to a level that is either below or above the predetermined threshold value for the same biomarker and thus encompasses either high (increased) or low (decreased) levels.
- As used herein, the terms “binding agent specific for” or “binding agent that specifically binds” refers to an agent that binds to a biomarker and does not significantly bind to unrelated compounds. Examples of binding agents that can be effectively employed in the disclosed methods include, but are not limited to, lectins, proteins and antibodies, such as monoclonal or polyclonal antibodies, or antigen-binding fragments thereof, aptamers, etc. In certain embodiments, a binding agent binds a biomarker with an affinity constant of, for example, greater than or equal to about 1×10−6 M. A binding agent can also comprise a probe or primer that specifically hybridizes a biomarker nucleic acid.
- The terms “specifically binds to,” “specific for,” and related grammatical variants refer to that binding which occurs between such paired species as enzyme/substrate, receptor/agonist, antibody/antigen, nucleic acid/complement and lectin/carbohydrate which may be mediated by covalent or non-covalent interactions or a combination of covalent and non-covalent interactions. When the interaction of the two species produces a non-covalently bound complex, the binding which occurs is typically electrostatic, hydrogen-bonding, or the result of lipophilic interactions. Accordingly, “specific binding” occurs between a paired species where there is interaction between the two which produces a bound complex having the characteristics of an antibody/antigen or enzyme/substrate interaction. In particular, the specific binding is characterized by the binding of one member of a pair to a particular species and to no other species within the family of compounds to which the corresponding member of the binding member belongs. Thus, for example, an antibody typically binds to a single epitope and to no other epitope within the family of proteins. In some embodiments, specific binding between an antigen and an antibody will have a binding affinity of at least 10−6 M. In other embodiments, the antigen and antibody will bind with affinities of at least 10−7 M, 10−8 M to 10−9M, 10−10 M, 10−11M, or 10−12 M.
- Various methodologies of the instant invention include a step that involves comparing a value, level, feature, characteristic, property, etc. to a “suitable control,” referred to interchangeably herein as an “appropriate control,” a “control sample” or a “reference.” A “suitable control,” “appropriate control,” “control sample” or a “reference” is any control or standard familiar to one of ordinary skill in the art useful for comparison purposes. In one embodiment, a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, etc., determined in a cell, organ, or patient, e.g., a control cell, organ, or patient, exhibiting, for example, a particular disease state (e.g., Lyme disease, PTLDS, etc.) or lack thereof. In another embodiment, a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, ratio, etc. (e.g., biomarker levels that correlate to a particular phenotype) determined prior to performing a therapy (e.g., Lyme disease treatment) on a patient. In yet another embodiment, a transcription rate, mRNA level, translation rate, protein level/ratio, biological activity, cellular characteristic or property, genotype, phenotype, etc., can be determined prior to, during, or after administering a therapy into a cell, organ, or patient. In a further embodiment, a “suitable control,” “appropriate control” or a “reference” is a predefined value, level, feature, characteristic, property, ratio, etc. A “suitable control” can be a profile or pattern of levels/ratios of one or more biomarkers of the present invention that correlates to a particular phenotype (e.g., having or is likely to develop PTLDS) to which a patient sample can be compared. The patient sample can also be compared to a negative control. Such reference levels may also be tailored to specific techniques that are used to measure levels of biomarkers in biological samples (e.g., LC-MS, GC-MS, ELISA, PCR, etc.), where the levels of biomarkers may differ based on the specific technique that is used. In particular embodiments, a control or reference can be a profile or pattern of levels of one or more biomarkers that correlates having or not having or likely (or not) of developing PTLDS.
- A binding agent is an agent that binds to a biomarker. The binding agent can be a capture agent, and the terms can be used interchangeably as the context indicates. For example, the capture agent can be a capture antibody that binds to an antigen on the biomarker. The capture agent can be coupled to a substrate and used to isolate the biomarker.
- A binding agent can be DNA, RNA, monoclonal antibodies, polyclonal antibodies, Fabs, Fab′, single chain antibodies, synthetic antibodies, aptamers (DNA/RNA), peptoids, zDNA, peptide nucleic acids (PNAs), locked nucleic acids (LNAs), lectins, synthetic or naturally occurring chemical compounds (including but not limited to drugs, labeling reagents), dendrimers, or combinations thereof. For example, the binding agent can be a capture antibody.
- In some instances, a single binding agent can be employed to isolate a biomarker. In other instances, a combination of different binding agents may be employed to isolate a biomarker. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 50, 75 or 100 different binding agents may be used to isolate a biomarker from a biological sample.
- Different binding agents can also be used for multiplexing. For example, isolation of more than biomarker can be performed by isolating each biomarker with a different binding agent. Different binding agents can be bound to different particles, wherein the different particles are labeled. In another embodiment, an array comprising different binding agents can be used for multiplex analysis, wherein the different binding agents are differentially labeled or can be ascertained based on the location of the binding agent on the array. Multiplexing can be accomplished up to the resolution capability of the labels or detection method, such as described below.
- The binding agent can be an antibody. For example, a biomarker may be isolated using one or more antibodies specific for one or more antigens present on the biomarker. The antibodies can be immunoglobulin molecules or immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen and synthetic antibodies. The immunoglobulin molecules can be of any class (e.g., IgG, IgE, IgM, IgD or IgA) or subclass of immunoglobulin molecule. Antibodies include, but are not limited to, polyclonal, monoclonal, bispecific, synthetic, humanized and chimeric antibodies, single chain antibodies, Fab fragments and F(ab′)2 fragments, Fv or Fv′ portions, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, or epitope-binding fragments of any of the above. An antibody, or generally any molecule, “binds specifically” to an antigen (or other molecule) if the antibody binds preferentially to the antigen, and, e.g., has less than about 30%, 20%, 10%, 5% or 1% cross-reactivity with another molecule.
- The binding agent can also be a polypeptide or peptide. Polypeptide is used in its broadest sense and may include a sequence of subunit amino acids, amino acid analogs, or peptidomimetics. The subunits may be linked by peptide bonds. The polypeptides may be naturally occurring, processed forms of naturally occurring polypeptides (such as by enzymatic digestion), chemically synthesized or recombinantly expressed. The polypeptides for use in the methods of the present invention may be chemically synthesized using standard techniques. The polypeptides may comprise D-amino acids (which are resistant to L-amino acid-specific proteases), a combination of D- and L-amino acids, β amino acids, or various other designer or non-naturally occurring amino acids (e.g., β-methyl amino acids, Ca-methyl amino acids, and Nα-methyl amino acids, etc.) to convey special properties. Synthetic amino acids may include ornithine for lysine, and norleucine for leucine or isoleucine. In addition, the polypeptides can have peptidomimetic bonds, such as ester bonds, to prepare polypeptides with novel properties. For example, a polypeptide may be generated that incorporates a reduced peptide bond, i.e., R1—CH2—NH—R2, where R1 and R2 are amino acid residues or sequences. A reduced peptide bond may be introduced as a dipeptide subunit. Such a polypeptide would be resistant to protease activity, and would possess an extended half-live in vivo. Polypeptides can also include peptoids (N-substituted glycines), in which the side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the a-carbons, as in amino acids. Polypeptides and peptides are intended to be used interchangeably throughout this application, i.e., where the term peptide is used, it may also include polypeptides and where the term polypeptides is used, it may also include peptides.
- A binding agent can also be linked directly or indirectly to a solid surface or substrate. A solid surface or substrate can be any physically separable solid to which a binding agent can be directly or indirectly attached including, but not limited to, surfaces provided by microarrays and wells, particles such as beads, columns, optical fibers, wipes, glass and modified or functionalized glass, quartz, mica, diazotized membranes (paper or nylon), polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, quantum dots, coated beads or particles, other chromatographic materials, magnetic particles; plastics (including acrylics, polystyrene, copolymers of styrene or other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TEFLON®, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, ceramics, conducting polymers (including polymers such as polypyrole and polyindole); micro or nanostructured surfaces such as nucleic acid tiling arrays, nanotube, nanowire, or nanoparticulate decorated surfaces; or porous surfaces or gels such as methacrylates, acrylamides, sugar polymers, cellulose, silicates, or other fibrous or stranded polymers. In addition, as is known the art, the substrate may be coated using passive or chemically-derivatized coatings with any number of materials, including polymers, such as dextrans, acrylamides, gelatins or agarose. Such coatings can facilitate the use of the array with a biological sample.
- For example, an antibody used to isolate a biomarker can be bound to a solid substrate such as a well, such as commercially available plates. Each well can be coated with the antibody. In some embodiments, the antibody used to isolate a biomarker can be bound to a solid substrate such as an array. The array can have a predetermined spatial arrangement of molecule interactions, binding islands, biomolecules, zones, domains or spatial arrangements of binding islands or binding agents deposited within discrete boundaries. Further, the term array may be used herein to refer to multiple arrays arranged on a surface, such as would be the case where a surface bore multiple copies of an array. Such surfaces bearing multiple arrays may also be referred to as multiple arrays or repeating arrays.
- A binding agent can also be bound to particles such as beads or microspheres. For example, an antibody specific for a biomarker can be bound to a particle, and the antibody-bound particle is used to isolate biomarkers from a biological sample. In some embodiments, the microspheres may be magnetic or fluorescently labeled. In addition, a binding agent for isolating biomarkers can be a solid substrate itself. For example, latex beads, such as aldehyde/sulfate beads (Interfacial Dynamics, Portland, Oreg.) can be used.
- A binding agent bound to a magnetic bead can also be used to isolate a biomarker. For example, a biological sample such as serum from a patient can be collected for Lyme/PTLDS screening. The sample can be incubated with an antibody to a biomarker coupled to magnetic microbeads. A low-density microcolumn can be placed in the magnetic field of a MACS Separator and the column is then washed with a buffer solution such as Tris-buffered saline. The magnetic immune complexes can then be applied to the column and unbound, non-specific material can be discarded. The selected biomarkers can be recovered by removing the column from the separator and placing it on a collection tube. A buffer can be added to the column and the magnetically labeled biomarkers can be released by applying the plunger supplied with the column. The isolated biomarkers can be diluted in IgG elution buffer and the complex can then be centrifuged to separate the microbeads from the biomarkers. The pelleted isolated cell-of-origin specific biomarkers can be resuspended in buffer such as phosphate-buffered saline and quantitated. Alternatively, due to the strong adhesion force between the antibody captured cell-of-origin specific biomarkers and the magnetic microbeads, a proteolytic enzyme such as trypsin can be used for the release of captured biomarkers without the need for centrifugation. The proteolytic enzyme can be incubated with the antibody captured cell-of-origin specific biomarkers for at least a time sufficient to release the biomarkers.
- A binding agent, such as an antibody, for isolating a biomarker is preferably contacted with the biological sample comprising the biomarker of interest for at least a time sufficient for the binding agent to bind to the biomarker. For example, an antibody may be contacted with a biological sample for various intervals ranging from seconds to hours to days, including but not limited to, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 or more minutes, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. 20, 21, 22, 23, 24 or more hours, 1 day, 3 days, 7 days or 10 days.
- A binding agent, such as an antibody specific to a biomarker described herein can be labeled with, but is not limited to, a magnetic label, a fluorescent moiety, an enzyme, a chemiluminescent probe, a metal particle, a non-metal colloidal particle, a polymeric dye particle, a pigment molecule, a pigment particle, an electrochemically active species, semiconductor nanocrystal or other nanoparticles including quantum dots or gold particles. The label can be, but not be limited to, fluorophores, quantum dots, or radioactive labels. For example, the label can be a radioisotope (radionuclides), such as 3H 11C, 14C, 18F, 32F, 35S, 64Cu, 68Ga, 86Y, 99Tc, 111In, 123I, 124I, 125I, 131I, 133Xe, 3177Lu, 211At, or 213Bi. The label can be a fluorescent label, such as a rare earth chelate (europium chelate), fluorescein type, such as, but not limited to, FITC, 5-carboxyfluorescein, 6-carboxy fluorescein; a rhodamine type, such as, but not limited to, TAMRA; dansyl; Lissamine; cyanines; phycoerythrins; Texas Red; and analogs thereof
- A binding agent can be directly or indirectly labeled, e.g., the label can be attached to the antibody through biotin-streptavidin. Alternatively, an antibody is not labeled, but is later contacted with a second antibody that is labeled after the first antibody is bound to an antigen of interest.
- For example, various enzyme-substrate labels are available or disclosed (see for example, U.S. Pat. No. 4,275,149). The enzyme generally catalyzes a chemical alteration of a chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRP), alkaline phosphatase (AP), β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Examples of enzyme-substrate combinations include, but are not limited to, horseradish peroxidase (HRP) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3′,5,5′-tetramethylbenzidine hydrochloride (TMB)); alkaline phosphatase (AP) with para-nitrophenyl phosphate as chromogenic substrate; and .beta.-D-galactosidase (β-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-β-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-β-D-galactosidase.
- Depending on the method of isolation used, the binding agent may be linked to a solid surface or substrate, such as arrays, particles, wells and other substrates described above. Methods for direct chemical coupling of antibodies, to the cell surface are known in the art, and may include, for example, coupling using glutaraldehyde or maleimide activated antibodies. Methods for chemical coupling using multiple step procedures include biotinylation, coupling of trinitrophenol (TNP) or digoxigenin using for example succinimide esters of these compounds. Biotinylation can be accomplished by, for example, the use of D-biotinyl-N-hydroxysuccinimide. Succinimide groups react effectively with amino groups at pH values above 7, and preferentially between about pH 8.0 and about pH 8.5. Biotinylation can be accomplished by, for example, treating the cells with dithiothreitol followed by the addition of biotin maleimide.
- A. Detection by Immunoassay
- In other embodiments, the biomarkers of the present invention can be detected and/or measured by immunoassay. Immunoassay requires biospecific binding reagents, such as antibodies, to capture the biomarkers. Many antibodies are available commercially. Antibodies also can be produced by methods well known in the art, e.g., by immunizing animals with the biomarkers. Biomarkers can be isolated from samples based on their binding characteristics. Alternatively, if the amino acid sequence of a polypeptide biomarker is known, the polypeptide can be synthesized and used to generate antibodies by methods well-known in the art.
- The present invention contemplates traditional immunoassays including, for example, sandwich immunoassays including ELISA or fluorescence-based immunoassays, immunoblots, Western Blots (WB), as well as other enzyme immunoassays. Nephelometry is an assay performed in liquid phase, in which antibodies are in solution. Binding of the antigen to the antibody results in changes in absorbance, which is measured. In a SELDI-based immunoassay, a biospecific capture reagent for the biomarker is attached to the surface of an MS probe, such as a pre-activated protein chip array. The biomarker is then specifically captured on the biochip through this reagent, and the captured biomarker is detected by mass spectrometry.
- Although antibodies are useful because of their extensive characterization, any other suitable agent (e.g., a peptide, an aptamer, or a small organic molecule) that specifically binds a biomarker of the present invention is optionally used in place of the antibody in the above described immunoassays. For example, an aptamer that specifically binds a biomarker and/or one or more of its breakdown products might be used. Aptamers are nucleic acid-based molecules that bind specific ligands. Methods for making aptamers with a particular binding specificity are known as detailed in U.S. Pat. No. 5,475,096; No. 5,670,637; No. 5,696,249; No. 5,270,163; No. 5,707,796; No. 5,595,877; No. 5,660,985; No. 5,567,588; No. 5,683,867; No. 5,637,459; and No. 6,011,020.
- In specific embodiments, the assay performed on the biological sample can comprise contacting the biological sample with one or more binding/capture agents (e.g., antibodies, peptides, aptamer, etc., combinations thereof) to form a biomarker:binding agent complex. The complexes can then be detected and/or quantified. A subject can then be identified as having (or not) or likely (or not) to develop PTLDS based on a comparison of the detected/quantified/measured levels of biomarkers to one or more reference controls as described herein.
- In certain embodiments, the levels of the biomarkers employed herein are quantified by immunoassay, such as enzyme-linked immunoassay (ELISA) technology. In specific embodiments, the levels of expression of the biomarkers are determined by contacting the biological sample with antibodies, or antigen binding fragments thereof, that selectively bind to the biomarkers; and detecting binding of the antibodies, or antigen binding fragments thereof, to the biomarkers. In certain embodiments, the binding agents employed in the disclosed methods and compositions are labeled with a detectable moiety. For ease of reference, the term antibody is used in describing binding agents or capture molecules. However, it is understood that reference to an antibody in the context of describing an exemplary binding agent in the methods of the present invention also includes reference to other binding agents including, but not limited to lectins, peptides, aptamers and small organic molecules.
- Furthermore, the level of a biomarker in a sample can be assayed by contacting the biological sample with an antibody, or antigen binding fragment thereof, that selectively binds to the target biomarker (referred to as a capture molecule or antibody or a binding agent), and detecting the binding of the antibody, or antigen-binding fragment thereof, to the biomarker. The detection can be performed using a second antibody to bind to the capture antibody complexed with its target biomarker. Kits for the detection of biomarkers as described herein can include pre-coated strip plates, biotinylated secondary antibody, standards, controls, buffers, streptavidin-horse radish peroxidise (HRP), tetramethyl benzidine (TMB), stop reagents, and detailed instructions for carrying out the tests including performing standards.
- The present disclosure also provides methods in which the levels of the biomarkers in a biological sample are determined simultaneously. For example, in one embodiment, methods are provided that comprise: (a) contacting a biological sample obtained from the subject with a plurality of binding agents that selectively bind to a plurality of biomarkers disclosed herein for a period of time sufficient to form binding agent-biomarker complexes; and (b) detecting binding of the binding agents to the plurality of biomarkers, thereby determining the levels of the biomarkers in the biological sample. In a further embodiment, the method further comprises comparing the determined levels to a control or reference sample. In other embodiments, the method can further comprise generating a report summarizing the biomarker levels. In other embodiments, the method may further comprise recommending a particular treatment. For example, biomarker levels that are stastistically significantly above or below control/reference levels indicates that the subject should be treated with one or more treatment modalities appropriate for a subject having or likely to have (i.e., at risk of) PTLDS. For example, the current Infectious Disease Society of America guidelines recommend 10 days to 3 weeks of doxycycline or amoxicillin. Guidelines specifically discourage re-treatment with antibiotics based on persistent symptoms alone. In particular embodiments, if patients had elevated CC119 (especially if still symptomatic) then they should be prescribed/administered a repeat course of a different antibiotic (e.g., if they take doxycycline initially switch to amoxicillin (and vice versa)) for about 1-8 weeks (including 1, 2, 3, 4, 5, 6, 7 or 8 weeks) treatment period. After that they would be reassessed for response of symptoms and declining CCL19 level.
- In a further aspect, the present disclosure provides compositions that can be employed in the disclosed methods. In certain embodiments, such compositions comprise a solid substrate and a plurality of binding agents immobilized on the substrate, wherein each of the binding agents is immobilized at a different, indexable, location on the substrate and the binding agents selectively bind to a plurality of biomarkers disclosed herein. In a specific embodiment, the locations are pre-determined. In other embodiments, kits are provided that comprise such compositions. In certain embodiments, the plurality of biomarkers includes one or more of the biomarkers described herein including CCL19.
- In a related aspect, methods for treating PTLDS in a patient/subject can comprise the steps of (a) contacting a biological sample obtained from the subject with a composition disclosed herein comprising binding agents for a period of time sufficient to form binding agent-biomarker complexes; (b) detecting binding of the binding agents to a plurality of biomarkers, thereby determining the levels of biomarkers in the biological sample; and (c) comparing the determined levels to a control or reference sample. In another embodiment, the method can further comprise the step of (d) treating the patient with one or more treatment modalities appropriate for a subject having or likely to have (i.e., at risk of) PTLDS.
- In specific embodiments, the assay performed on the biological sample can comprise contacting the biological sample with one or more capture agents (e.g., antibodies, lectins, peptides, aptamers, etc., combinations thereof) to form a biomarker:capture agent complex. The complexes can then be detected and/or quantified.
- In one method, a first capture molecule or binding agent, such as an antibody that specifically binds the biomarker of interest, is immobilized on a suitable solid phase substrate or carrier. The test biological sample is then contacted with the capture antibody and incubated for a desired period of time. After washing to remove unbound material, a second, detection, antibody that binds to a different, non-overlapping, epitope on the biomarker is then used to detect binding of the biomarker to the capture antibody. The detection antibody is preferably conjugated, either directly or indirectly, to a detectable moiety. Examples of detectable moieties that can be employed in such methods include, but are not limited to, cheminescent and luminescent agents; fluorophores such as fluorescein, rhodamine and eosin; radioisotopes; colorimetric agents; and enzyme-substrate labels, such as biotin.
- In another embodiment, the assay is a competitive binding assay, wherein labeled biomarker is used in place of the labeled detection antibody, and the labeled biomarker and any unlabeled biomarker present in the test sample compete for binding to the capture antibody. The amount of biomarker bound to the capture antibody can be determined based on the proportion of labeled biomarker detected.
- Solid phase substrates, or carriers, that can be effectively employed in such assays are well known to those of skill in the art and include, for example, 96 well microtiter plates, glass, paper, chips and microporous membranes constructed, for example, of nitrocellulose, nylon, polyvinylidene difluoride, polyester, cellulose acetate, mixed cellulose esters and polycarbonate. Suitable microporous membranes include, for example, those described in US Patent Application Publication no. US 2010/0093557 A1. Methods for the automation of immunoassays are well known in the art and include, for example, those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750 and 5,358,691.
- The presence of several different biomarkers in a test sample can be detected simultaneously using a multiplex assay, such as a multiplex ELISA. Multiplex assays offer the advantages of high throughput, a small volume of sample being required, and the ability to detect different proteins across a board dynamic range of concentrations.
- In certain embodiments, such methods employ an array, wherein multiple binding agents (for example capture antibodies) specific for multiple biomarkers are immobilized on a substrate, such as a membrane, with each capture agent being positioned at a specific, pre-determined, location on the substrate. Methods for performing assays employing such arrays include those described, for example, in US Patent Application Publication nos. US2010/0093557A1 and US2010/0190656A1, the disclosures of which are hereby specifically incorporated by reference.
- Multiplex arrays in several different formats based on the utilization of, for example, flow cytometry, chemiluminescence or electron-chemiluminesence technology, are well known in the art. Flow cytometric multiplex arrays, also known as bead-based multiplex arrays, include the Cytometric Bead Array (CBA) system from BD Biosciences (Bedford, Mass.) and multi-analyte profiling (xMAP®) technology from Luminex Corp. (Austin, Tex.), both of which employ bead sets which are distinguishable by flow cytometry. Each bead set is coated with a specific capture antibody. Fluorescence or streptavidin-labeled detection antibodies bind to specific capture antibody-biomarker complexes formed on the bead set. Multiple biomarkers can be recognized and measured by differences in the bead sets, with chromogenic or fluorogenic emissions being detected using flow cytometric analysis. In an alternative format, a multiplex ELISA from Quansys Biosciences (Logan, Utah) coats multiple specific capture antibodies at multiple spots (one antibody at one spot) in the same well on a 96-well microtiter plate. Chemiluminescence technology is then used to detect multiple biomarkers at the corresponding spots on the plate. In specific embodiments, the cytokine biomarkers are detected using the Bio-Plex® Multiplex System (Bio-Rad Laboratories, Inc. (Hercules, Calif.)).
- B. Detection by Electrochemicaluminescent Assay
- In several embodiments, the biomarker biomarkers of the present invention may be detected by means of an electrochemicaluminescent assay developed by Meso Scale Discovery (Gaithersrburg, Md.). Electrochemiluminescence detection uses labels that emit light when electrochemically stimulated. Background signals are minimal because the stimulation mechanism (electricity) is decoupled from the signal (light). Labels are stable, non-radioactive and offer a choice of convenient coupling chemistries. They emit light at ˜620 nm, eliminating problems with color quenching. See U.S. Pat. No. 7,497,997; No. 7,491,540; No. 7,288,410; No. 7,036,946; No. 7,052,861; No. 6,977,722; No. 6,919,173; No. 6,673,533; No. 6,413,783; No. 6,362,011; No. 6,319,670; No. 6,207,369; No. 6,140,045; No. 6,090,545; and No. 5,866,434. See also U.S. Patent Applications Publication No. 2009/0170121; No. 2009/006339; No. 2009/0065357; No. 2006/0172340; No. 2006/0019319; No. 2005/0142033; No. 2005/0052646; No. 2004/0022677; No. 2003/0124572; No. 2003/0113713; No. 2003/0003460; No. 2002/0137234; No. 2002/0086335; and No. 2001/0021534.
- C. Detection by Mass Spectrometry
- In one aspect, the biomarkers of the present invention may be detected by mass spectrometry, a method that employs a mass spectrometer to detect gas phase ions. Examples of mass spectrometers are time-of-flight, magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance, Orbitrap, hybrids or combinations of the foregoing, and the like.
- In particular embodiments, the biomarkers of the present invention are detected using selected reaction monitoring (SRM) mass spectrometry techniques. Selected reaction monitoring (SRM) is a non-scanning mass spectrometry technique, performed on triple quadrupole-like instruments and in which collision-induced dissociation is used as a means to increase selectivity. In SRM experiments two mass analyzers are used as static mass filters, to monitor a particular fragment ion of a selected precursor ion. The specific pair of mass-over-charge (m/z) values associated to the precursor and fragment ions selected is referred to as a “transition” and can be written as parent m/z→fragment m/z (e.g. 673.5→534.3). Unlike common MS based proteomics, no mass spectra are recorded in a SRM analysis. Instead, the detector acts as counting device for the ions matching the selected transition thereby returning an intensity distribution over time. Multiple SRM transitions can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs (sometimes called multiple reaction monitoring, MRM). Typically, the triple quadrupole instrument cycles through a series of transitions and records the signal of each transition as a function of the elution time. The method allows for additional selectivity by monitoring the chromatographic coelution of multiple transitions for a given analyte. The terms SRM/MRM are occasionally used also to describe experiments conducted in mass spectrometers other than triple quadrupoles (e.g. in trapping instruments) where upon fragmentation of a specific precursor ion a narrow mass range is scanned in MS2 mode, centered on a fragment ion specific to the precursor of interest or in general in experiments where fragmentation in the collision cell is used as a means to increase selectivity. In this application the terms SRM and MRM or also SRM/MRM can be used interchangeably, since they both refer to the same mass spectrometer operating principle. As a matter of clarity, the term MRM is used throughout the text, but the term includes both SRM and MRM, as well as any analogous technique, such as e.g. highly-selective reaction monitoring, hSRM, LC-SRM or any other SRM/MRM-like or SRM/MRM-mimicking approaches performed on any type of mass spectrometer and/or, in which the peptides are fragmented using any other fragmentation method such as e.g. CAD (collision-activated dissociation (also known as CID or collision-induced dissociation), HCD (higher energy CID), ECD (electron capture dissociation), PD (photodissociation) or ETD (electron transfer dissociation).
- In another specific embodiment, the mass spectrometric method comprises matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF MS or MALDI-TOF). In another embodiment, method comprises MALDI-TOF tandem mass spectrometry (MALDI-TOF MS/MS). In yet another embodiment, mass spectrometry can be combined with another appropriate method(s) as may be contemplated by one of ordinary skill in the art. For example, MALDI-TOF can be utilized with trypsin digestion and tandem mass spectrometry as described herein.
- In an alternative embodiment, the mass spectrometric technique comprises surface enhanced laser desorption and ionization or “SELDI,” as described, for example, in U.S. Pat. No. 6,225,047 and No. 5,719,060. Briefly, SELDI refers to a method of desorption/ionization gas phase ion spectrometry (e.g. mass spectrometry) in which an analyte (here, one or more of the biomarkers) is captured on the surface of a SELDI mass spectrometry probe. There are several versions of SELDI that may be utilized including, but not limited to, Affinity Capture Mass Spectrometry (also called Surface-Enhanced Affinity Capture (SEAC)), and Surface-Enhanced Neat Desorption (SEND) which involves the use of probes comprising energy absorbing molecules that are chemically bound to the probe surface (SEND probe). Another SELDI method is called Surface-Enhanced Photolabile Attachment and Release (SEPAR), which involves the use of probes having moieties attached to the surface that can covalently bind an analyte, and then release the analyte through breaking a photolabile bond in the moiety after exposure to light, e.g., to laser light (see, U.S. Pat. No. 5,719,060). SEPAR and other forms of SELDI are readily adapted to detecting a biomarker or biomarker panel, pursuant to the present invention.
- In another mass spectrometry method, the biomarkers can be first captured on a chromatographic resin having chromatographic properties that bind the biomarkers. For example, one could capture the biomarkers on a cation exchange resin, such as CM Ceramic HyperD F resin, wash the resin, elute the biomarkers and detect by MALDI. Alternatively, this method could be preceded by fractionating the sample on an anion exchange resin before application to the cation exchange resin. In another alternative, one could fractionate on an anion exchange resin and detect by MALDI directly. In yet another method, one could capture the biomarkers on an immuno-chromatographic resin that comprises antibodies that bind the biomarkers, wash the resin to remove unbound material, elute the biomarkers from the resin and detect the eluted biomarkers by MALDI or by SELDI.
- D. Other Methods for Detecting Biomarkers
- The biomarkers of the present invention can be detected by other suitable methods. Detection paradigms that can be employed to this end include optical methods, electrochemical methods (voltametry and amperometry techniques), atomic force microscopy, and radio frequency methods, e.g., multipolar resonance spectroscopy. Illustrative of optical methods, in addition to microscopy, both confocal and non-confocal, are detection of fluorescence, luminescence, chemiluminescence, absorbance, reflectance, transmittance, and birefringence or refractive index (e.g., surface plasmon resonance, ellipsometry, a resonant mirror method, a grating coupler waveguide method or interferometry).
- In specific embodiments, the biomarkers of the present invention are detected using nanotechnology including, for example, a nanowire. See, e.g., U.S. Pat. No. 8,323,466 and U.S. Patent Application Publication No. 20120258445 (NanoIVD, Inc. (Los Angeles, Calif.)).
- Furthermore, a sample may also be analyzed by means of a biochip. Biochips generally comprise solid substrates and have a generally planar surface, to which a capture reagent (also called an adsorbent or affinity reagent) is attached. Frequently, the surface of a biochip comprises a plurality of addressable locations, each of which has the capture reagent bound there. Protein biochips are biochips adapted for the capture of polypeptides. Many protein biochips are described in the art. These include, for example, protein biochips produced by Ciphergen Biosystems, Inc. (Fremont, Calif.), Invitrogen Corp. (Carlsbad, Calif.), Affymetrix, Inc. (Fremong, Calif.), Zyomyx (Hayward, Calif.), R&D Systems, Inc. (Minneapolis, Minn.), Biacore (Uppsala, Sweden) and Procognia (Berkshire, UK). Examples of such protein biochips are described in the following patents or published patent applications: U.S. Pat. No. 6,537,749; U.S. Pat. No. 6,329,209; U.S. Pat. No. 6,225,047; U.S. Pat. No. 5,242,828; PCT International Publication No. WO 00/56934; and PCT International Publication No. WO 03/048768.
- The biomarkers of the present invention can be used in diagnostic tests to assess, determine, and/or qualify (used interchangeably herein) Lyme/PTLDS status in a patient and therefore, direct treatment of the patient. The biomarkers the cytokines described herein including CCL19. Based on this status, further procedures may be indicated, including additional diagnostic tests or therapeutic procedures or regimens.
- These and other biomarkers are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc., of these biomarkers are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. Thus, if a panel of biomarkers A, B, and C are disclosed as well as a class of biomarkers D, E, and F and an example of a combination panel A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of using the disclosed biomarkers. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
- The power of a diagnostic test to correctly predict status is commonly measured as the sensitivity of the assay, the specificity of the assay or the area under a receiver operated characteristic (“ROC”) curve. Sensitivity is the percentage of true positives that are predicted by a test to be positive, while specificity is the percentage of true negatives that are predicted by a test to be negative. An ROC curve provides the sensitivity of a test as a function of 1-specificity. The greater the area under the ROC curve, the more powerful the predictive value of the test. Other useful measures of the utility of a test are positive predictive value and negative predictive value. Positive predictive value is the percentage of people who test positive that are actually positive. Negative predictive value is the percentage of people who test negative that are actually negative.
- In particular embodiments, the biomarker panels of the present invention may show a statistical difference in different Lyme/PTLDS statuses of at least p<0.05, p<10−2, p<10−3, p<10−4 or p<10−5. Diagnostic tests that use these biomarkers may show an ROC of at least 0.6, at least about 0.7, at least about 0.8, or at least about 0.9.
- In certain embodiments, the biomarkers are measured in a patient sample using the methods described herein and a Lyme/PTLDS status is calculated. In particular embodiments, the measurement(s) may then be compared with a relevant diagnostic amount(s), cut-off(s), or multivariate model scores that informs the Lyme/PTLDS status. The diagnostic amount(s) represents a measured amount of a biomarker(s) above which or below which a patient is classified as having a particular Lyme/PTLDS status. As is well understood in the art, by adjusting the particular diagnostic cut-off(s) used in an assay, one can increase sensitivity or specificity of the diagnostic assay depending on the preference of the diagnostician. In particular embodiments, the particular diagnostic cut-off can be determined, for example, by measuring the amount of biomarkers in a statistically significant number of samples from patients with different Lyme/PTLDS statuses, and drawing the cut-off to suit the desired levels of specificity and sensitivity.
- Furthermore, in certain embodiments, the values measured for markers of a biomarker panel are mathematically combined and the combined value is correlated to the underlying diagnostic question of Lyme/PTLDS status. Biomarker values may be combined by any appropriate state of the art mathematical method. Well-known mathematical methods for correlating a marker combination to a disease status employ methods like discriminant analysis (DA) (e.g., linear-, quadratic-, regularized-DA), Discriminant Functional Analysis (DFA), Kernel Methods (e.g., SVM), Multidimensional Scaling (MDS), Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting/Bagging Methods), Generalized Linear Models (e.g., Logistic Regression), Principal Components based Methods (e.g., SIMCA), Generalized Additive Models, Fuzzy Logic based Methods, Neural Networks and Genetic Algorithms based Methods. The skilled artisan will have no problem in selecting an appropriate method to evaluate a biomarker combination of the present invention. In one embodiment, the method used in a correlating a biomarker combination of the present invention is selected from DA (e.g., Linear-, Quadratic-, Regularized Discriminant Analysis), DFA, Kernel Methods (e.g., SVM), MDS, Nonparametric Methods (e.g., k-Nearest-Neighbor Classifiers), PLS (Partial Least Squares), Tree-Based Methods (e.g., Logic Regression, CART, Random Forest Methods, Boosting Methods), or Generalized Linear Models (e.g., Logistic Regression), and Principal Components Analysis. Details relating to these statistical methods are found in the following references: Ruczinski et al., 12 J. O
F COMPUTATIONAL AND GRAPHICAL STATISTICS 475-511 (2003); Friedman, J. H., 84 J. OF THE AMERICAN STATISTICAL ASSOCIATION 165-75 (1989); Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome, The Elements of Statistical Learning, Springer Series in Statistics (2001); Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. Classification and regression trees, California: Wadsworth (1984); Breiman, L., 45 MACHINE LEARNING 5-32 (2001); Pepe, M. S., The Statistical Evaluation of Medical Tests for Classification and Prediction, Oxford Statistical Science Series, 28 (2003); and Duda, R. O., Hart, P. E., Stork, D. G., Pattern Classification, Wiley Interscience, 2nd Edition (2001). - Without further elaboration, it is believed that one skilled in the art, using the preceding description, can utilize the present invention to the fullest extent. The following examples are illustrative only, and not limiting of the remainder of the disclosure in any way whatsoever.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices, and/or methods described and claimed herein are made and evaluated, and are intended to be purely illustrative and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for herein. Unless indicated otherwise, parts are parts by weight, temperature is in degrees Celsius or is at ambient temperature, and pressure is at or near atmospheric. There are numerous variations and combinations of reaction conditions, e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
- Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (p,0.0005) in symptom presentation. In particular, the T cell chemokines CXCL9 (MIG), CXCL10 (IP-10) and CCL19 (MIP3B) were coordinately increased in the mediator-high group and levels of these chemokines could be associated with seroconversion status and elevated liver function tests (p=0.027 and p=0.021 respectively). There was also upregulation of acute phase proteins including CRP and serum amyloid A. Consistent with the role of CXCL9/CXCL10 in attracting immune cells to the site of infection, CXCR3+CD4 T cells are reduced in the blood of early acute Lyme disease (p=0.01) and the decrease correlates with chemokine levels (p=0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations.
- Patient Cohort.
- The serum and PBMC samples used have been generated as part of a prospective cohort study with age- and sex-matched controls enrolled from 2008-2013. This study included a well-defined cohort of patients with acute Lyme disease enrolled from a Lyme endemic area of the mid-Atlantic United States. Only patients with untreated, confirmed early Lyme disease manifesting an active EM skin lesion at the time of enrollment, as defined by CDC case criteria were eligible [6,11,14]. Patients with a history of prior Lyme disease or the presence of confounding preexisting medical conditions associated with prolonged fatigue, pain or neurocognitive symptoms were excluded [45]. Controls were non-hospitalized age- and sex-matched and had no prior history of Lyme disease or any exclusionary medical conditions including lack of inflammatory disorders. The enrolled Lyme disease patients were followed from the time of acute infection longitudinally for a period of 2 years for a total of 7 study visits. The matched controls were followed for 2 years across 4 study visits. At each study visit, extensive clinical data and biological specimens were collected (see below).
- Clinical Data Assessment.
- At the pre-treatment study visit, a standard Complete Blood Count (CBC) and Comprehensive Metabolic Panel (CMP) were drawn and performed at an internal laboratory. In addition to these clinical tests, an additional SST tube was drawn to be sent to an outside, commercial laboratory for Lyme serology testing. Serology results were determined following the CDC's two-tier testing algorithm measuring both IgM and IgG, with time of symptom onset being determined by a structured interview with the patient at the pre-treatment study visit [6,11,14]. For those patients who were negative according to the two-tier serology at the first study visit, a subsequent serology was drawn at the second study visit after antibiotic treatment and sent to the same commercial laboratory for testing.
- At each study visit, patients were given a physical exam, a structured interview of twenty signs and symptoms of disease, and underwent a blood draw. At the first visit, a measurement of the EM was taken and recorded.
- Cytokine/Chemokine Assays.
- We performed multiplex analysis of 58 cytokines/chemokines and 7 acute phase markers using the Bio-Plex™ bead array system as recommended by the manufacturer and using previously described optimized assay protocols [46-49]. Data processing was performed using Bio-Plex manager software version 4.4.1 and serum concentrations were interpolated from standard curves for each respective cytokine. This protocol and data generated were MAIME compliant and were deposited in the Gene Expression Omnibus Repository (accession number GSE55815).
- Flow Cytometry.
- Peripheral blood mononuclear cells (PBMCs) were isolated from fresh heparinized blood using Ficoll Hypaque. Monoclonal antibody reagents specific for CD3 (UCHT1), CD4 (RPA-T4), CD8 (SK1) and CXCR3 (IC6) were purchased from Becton Dickenson. PBMCs were first incubated with unlabeled human IgG to block nonspecific binding followed by incubation with fluorescent tagged monoclonal reagents. PBMCs were washed and polychromatic flow cytometry performed using a FACSAria instrument (Becton Dickinson, San Jose, Calif.). Lymphocytes were gated using forward and side scatter and the data analyzed using FlowJo software (Tree Star).
- Statistical Analysis.
- For descriptive analyses of the multiplex biomarker data as continuous variables, data was analyzed using the log of the “ratio to average”. The log of the ratio to average was calculated by setting all values less than 1 pg/mL to 1 pg/mL, and then calculating the
log base 2 of [(value)/(average value in the cohort)]. The “ratio to average” values were input into SAM (Significance Analysis of Microarrays Version 4.0) [50]. The SAM output was sorted based on false discovery rates (FDRs, represented by the q value) in order to identify mediators with the greatest differences in levels between patient subgroups. We used hierarchical clustering software Cluster 3.0 to arrange the SAM results according to similarities among mediator levels, with no markers weighted inFIG. 1A , and with weighting of CCL19 and Serum Amyloid A was used in the clustering forFIG. 1B . The clustered results were displayed using Java Treeview (Version 1.1.5r2). - Categorical variables were analyzed using Fisher's Exact or Chi-square statistics. A standard ANOVA or unpaired t-test was used on two or more group comparisons for continuous variables. Pearson correlations were used for linear comparisons. For longitudinal continuous variables, a repeated measures ANOVA was performed. All statistical calculations were performed with SPSS software (IBM Corporation v 21).
- Ethics Statement.
- All human subject studies in this manuscript were reviewed and approved by the Johns Hopkins School of Medicine Institutional Review Board (protocol NA 00011170). All subjects recruited in the study were adults and all were provided written informed consent.
- Identification of a Cytokine/Chemokine Signature Associated with Acute Lyme Disease.
- We have conducted a prospective cohort study of acute Lyme disease and post-treatment events (see Table 1). All patients enrolled in the study have untreated early Lyme disease that meets the Infectious Disease Society of America (IDSA) criteria for diagnosis [6,11,14]. Using samples collected from this cohort we employed a bead-based multiplex cytokine assay to measure the levels of 58 immune mediators and 7 acute phase proteins in the serum of patients with untreated early (acute) Lyme and matched controls. Displayed in
FIG. 1A is a heat map of those mediators significantly elevated (q,0.1%) in early acute Lyme disease at the initial pre-treatment visit compared to controls. Most notable are elevated levels of several T cell chemokines (CCL19, CXCL9, CXCL10), acute phase inflammatory markers (CRP and serum amyloid A), several IL-1 cytokine family members (IL-1ra, IL-18, IL-33), inflammatory cytokines TNF-a and IL-6 and the T cell cytokine IL-2. Collectively, these cytokines and chemokines generate a novel signature that clearly distinguishes acute Lyme patients from normal controls. - Displayed in
FIG. 1B is an unsupervised hierarchical clustering of the serum mediator profiles of the same early acute Lyme disease at the initial pre-treatment visit and control patients. This analysis allows us to distinguish two patient clusters of acute Lyme disease patients. One group termed mediator-high, displayed elevated levels of the T cell chemokines and inflammatory markers during acute infection described above. A second group of Lyme disease patients (mediator-low) displayed mediator levels that result in their clustering among normal control samples. Since all patients met IDSA guidelines for acute Lyme disease, the mediator-low group represents a subset of Lyme patients that did not exhibit significant elevations in inflammatory mediators in blood. - Acute Lyme Disease Patient Defined Subgroups have Distinct Clinical Features.
- Based on immune mediator levels during acute infection, two subgroups of Lyme patients could be distinguished. Table 2 presents a comparison of these two groups for a range of clinical outcomes. No differences in demographics, duration of illness or the distribution of single versus multiple erythema migrans lesions were noted between the two groups. However, significant differences were noted in the number of symptoms (p,0.005), absolute lymphocyte levels (p=0.002), liver enzyme tests (p=0.027) and the presence of detectable anti-Borrelia antibodies (p=0.021). Lyme disease patients displaying high mediator levels at the initial pre-treatment visit (acute disease) had higher rates of seroconversion, but also had greater rates of lymphopenia and elevated liver enzyme.
- T Cell Chemokine Levels are Selectively Elevated in the Acute Phase of Lyme Disease.
- A striking feature of the cytokine/chemokine profile was the upregulation of T cell specific mediators. Displayed in
FIGS. 4A-D are the measured levels of the chemokines CXCL9 (MIG), CXCL10 (IP-10), CCL19 and CXCL8 (IL-8) in sera obtained from patients at the time of their initial diagnosis of acute Lyme disease (pre-treatment), 4 weeks following diagnosis and treatment (post-treatment) and matched controls. The T cell chemoattractants CXCL9, CXCL10 and CCL19 were significantly elevated in serum during the acute infection but largely returned to normal levels following treatment, resolution of the erythema migrans and recovery. Levels of CXCL9, CXCL10 and CCL19 were completely concordant with one another (Table 3). In contrast, the neutrophil chemotactic factor CXCL8 was not elevated during acute infection or at other observed time points (FIG. 2D ). Furthermore, the measured levels of CCL11 (eotaxin-1), CXCL1 (GROa), CCL2 (MCP-1), CCL7 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP1b), CCL5 (RANTES) and CXCL12 (SDF-1a) were not significantly different as compared to the levels in matched controls (data not shown). Therefore in acute Lyme disease there appears to be a selective and coordinate elevation of T cell chemo-attractants. - Innate Serum Inflammatory Markers are Up-Regulated During the Acute Lyme Disease.
- As revealed in the global serum profiling shown in
FIG. 1 , the cytokine IL-6 and the innate immune acute phase factors C-reactive protein (CRP) and serum amyloid A (SAA) are elevated during acute Lyme disease. A more detailed analysis of the levels over time is presented inFIG. 3 . Increased levels of CRP (p=0.0091), SAA p,0.0005) and IL-6 (p=0.0282) were seen during the acute phase. CRP and SAA levels returned to normal control levels following treatment and remained so throughout the follow-up period. IL-6 levels remained elevated and only returned to normal levels months after infection and treatment. As is the case for the T cell chemokines, serum CRP and SAA significantly correlated with one another (Table 3, p=0.016). Surprisingly, IL-6, a known inducer of CRP and SAA did not correlate with these acute phase proteins (p=0.09 and 0.54 respectively, Table 3). - Chemokine and Inflammatory Markers: Correlation with Liver Function Abnormalities.
- T cell chemokine levels in acute Lyme patient sera, while clearly elevated, did show heterogeneity with a subset displaying levels similar to controls (
FIGS. 4A-C ). A similar case can be made for the inflammatory biomarkers CRP and serum amyloid A (FIG. 3 ). This heterogeneity suggests that individual chemokine and/or inflammatory markers may correlate with clinical parameters. - The erythema migrans (EM) lesion is the primary site of inflammation in acute Lyme disease and it can vary in size as well as number. This lesion is characterized as the site of active bacterial growth and the accumulation of immune inflammatory cells that is dominated by T cells [9,15,16]. The chemokines CXCL9 and CXCL10 were present at high levels within the EM lesion likely produced by fibroblasts and endothelial cells in an interferon-c dependent manner [15-17]. Based on this we reasoned that the levels of CXCL9 and/or CXCL10 might correlate either with the size or degree of dissemination of the EM lesion. Within the Lyme cohort, a significant proportion of patients had disseminated lesions and the size of the lesions was varied (Table 1). Surprisingly, when we compared these variables with the levels of serum CXCL9 and CXCL10 there was no statistical association (data not shown).
- Previous studies have also described changes in liver enzyme levels during acute Lyme disease [18,19]. This pattern is also observed in the current cohort of Lyme disease patients (Table 1). When we compared the levels of serum CXCL9/CXCL10 among the acute Lyme patients with high liver enzyme levels, there was a significant association of high CXCL9/CXCL10 and CCL19 levels with elevated liver enzymes in the acute phase of Lyme disease (
FIG. 4 ). - The finding that liver enzymes and acute inflammatory markers were elevated in acute Lyme disease suggested that there these two markers may be related. As shown in
FIG. 5 , CRP and SSA but not IL-6 (data not shown) levels correlated with liver enzyme levels. - High T Cell Chemokine Levels are Associated with Seroconversion.
- In this patient cohort, 35.7% of Lyme patients failed to test positive either at diagnosis or through seroconversion following antibiotic treatment (Table 1). This is consistent with previous studies that demonstrated that a significant fraction of Lyme patients that exhibit EM along with other symptoms of infection do not seroconvert when assayed by the current two-tiered testing [11,12]. When we examined whether various elevated mediator levels could be correlated with seroconversion status, a significant association was observed with elevated CXCL9 and CXCL10 but not CCL19 levels (Table 4). When other clinical parameters such as duration of illness or size/dissemination of EM lesions (data not shown) were analyzed, there was no association with seroconversion status.
- CXCR3 Expressing T Cells are Decreased in Lyme Disease and Co-Relate with CXCL9/CXCL10 Levels.
- The chemokines CXCL9 and CXCL10 bind to a common receptor CXCR3 expressed largely on T cells [20]. We reasoned that high serum levels of these chemokines may drive T cells into inflamed tissues and as a result levels of CXCR3 expressing T cells may be altered during acute Lyme disease. Levels of CXCR3+CD4 T cells were determined by polychromatic flow cytometry (
FIG. 6A ), and found to be significantly lower in the blood of patients with acute Lyme disease versus controls (FIG. 6B ). In addition, serum levels of CXCL10 (FIG. 6C ) and CXCL9 (data not shown) were inversely related to the frequency of CXCR3+CD4+T cells in the peripheral circulation. - Utilizing a multiplex-based assay for 65 immune and inflammatory mediators, a clear coordinated cytokine/chemokine signature was identified that distinguished patients with acute Lyme disease from normal non-inflammatory controls. Furthermore, variation in this signature allowed us to define at least two groups of Lyme disease patients with clear differences in the levels of key mediators. Interestingly, these subgroups of Lyme patients had distinct disease characteristics including number of symptoms, lymphopenia, elevated liver function and rate of seroconversion. At this time we cannot determine if this signature is acute Lyme specific or more reflects a general inflammatory signature. However, a similar analysis of serum from patients with Rheumatoid Arthritis identified a distinct cytokine signature that included Eotaxin, Il-12p40 and Rantes, mediators that were not elevated in our Lyme disease cohort (46-49).
- CXCL9, CXCL10 and CCL19 are three prominent chemokines that were elevated in our cohort of acute Lyme disease patients. All three mediators are coordinately elevated and return to baseline control levels following treatment and resolution of the EM. Previous work has shown elevated levels of CXCL9 and CXCL10 within the EM skin lesion and in the sera of patients with early acute Lyme disease, as well as in the synovial fluid and tissue of patients with Lyme arthritis [16,17,21-23]. Similar to our observations, the levels of serum CXCL9 and CXCL10 can vary among acute Lyme disease patients and levels correlate with severity of disease [23]. Elevated levels of CXCL9 and CXCL10 are found in a number of Th1 driven immune inflammatory settings including autoimmune disorders and viral, bacterial and protozoan infections [20,24,25].
- The chemokines CXCL9 and CXCL10 are produced by macrophages and non-immune cells within inflamed tissues in an interferon-dependent manner. These chemokines bind to the chemokine receptor CXCR3 expressed largely on antigen activated T cells [20]. The primary site of inflammation and bacterial replication in early acute Lyme disease is thought to be the skin EM lesion. Previous work has shown that this site expresses high levels of CXCL9 and CXCL10 and CXCR3+T cells [15,17]. Our finding that high levels of serum CXCL9 and CXCL10 levels are associated with lymphopenia and correlate with lower levels of blood CXCR3+T cells supports a model where infection—induced tissue inflammation and chemokine production drives the recruitment of activated effector T cells from the blood into the site of infection. Therefore it was surprising when we observed no correlation of CXCL9 or CXCL10 levels with the size or extent of the EM. Interestingly, high levels of CXCL9 and CXCL10 were closely related with the extent of liver involvement as measured by blood liver enzyme levels. In mouse models, the liver is a well-defined site for B. burgdorferi dissemination [26]. Also, liver function can vary among acute Lyme patients [18,27,28]. These observations suggest that B. burgdorferi induced liver involvement can, in part, be driving the serum levels of CXCL9 and CXCL10. Consistent with this is the finding that CXCL9 and CXCL10 recruits T cells in chronic liver diseases and that CXCR3+ effector T cells accumulate in the liver of B. burgdorferi infected mice [26,29]. Interestingly, CXCL10 levels correlate with severe liver damage levels in hepatitis-C infected patients [30,31]. Whether this is the case for Lyme disease requires further study.
- To our knowledge this is the first observation that the serum levels of the chemokine CCL19 is elevated in acute Lyme disease. Previous work has shown an increase in the cerebrospinal fluid (CSF) in subjects with Lyme neuroborreliosis where CXCL19, along with CXCL13, is proposed to play a role in B cell recruitment [32]. CCL19 is a ligand for CCR7 and plays an important role in the homing of B and T lymphocytes and dendritic cells to the lymph node to facilitate cellular interactions essential for the generation of an effective immune response [33,34]. The coordinated elevation of CXCL9, CXCL10 and CCL19 in acute Lyme disease is consistent with an ongoing host immune response in the draining lymph nodes accompanied by the generation of Borrelia-reactive effector T cells and their migration into the site of infection. These conditions would be predicted favor the generation of an effective antibody response and, indeed seroconversion is significantly associated with elevated levels of CXCL9 and CXCL10.
- The detection of a subgroup of acute Lyme patients that display low levels of immune mediators in the blood (mediator-low) could represent a set of immunologically hyporesponsive individuals or patients that have immunologically cleared the infection for which inflammation has subsided. The finding that both mediator groups have similar duration of illness and identical erythema migrans presentation together with the observation that the mediator—low group is also enriched for seronegative patients argues against but does not fully exclude the latter possibility. Of note the mediator low group is heterogeneous in how Lyme patients cluster with controls suggesting that indeed there may be multiple mechanisms underlying the mediator low group. The failure to seroconvert is a well-known feature of antibiotic treated early Lyme disease but the underlying cause is not understood [11,12]. It is also unlikely that the non-seroconverting Lyme disease patients were missed due to a delayed response because in the study design patients with a seronegative test result at diagnosis were re-tested following treatment and remained negative. This argues that the mediator low group represents a subgroup of Lyme patients that develop a diminished immune response that leads, in some cases, to poor antibody production.
- In a well-developed inbred mouse model, infection with B. burgdorferi led to disrupted germinal center formation, delays in the generation of long lived plasma cells and a weak, largely IgM antibody responses [35]. It was proposed that this outcome may be part of a B. burgdorferi evasion strategy to delay or avoid clearance. Although this was not tested in the above model, it is possible that B. burgdorferi strains may vary in evasive capabilities and be capable of stimulating a range of antibody responses. It is reasonable to speculate that the seronegative subjects within the mediator-low group may have been infected with a highly evasive B. burgdorferi strain. This is supported by the finding that chemokine (CXCL9 and CXCL10) and cytokine levels can vary in Lyme disease patients depending on the genotype of the infecting B. burgdorferi [21]. Alternatively, and perhaps more likely, the host genetic environment may play a role as TLR-1 polymorphisms are linked to chemokine (CXCL9 and CXCL10) and cytokine levels [23].
- CRP is a short pentraxin produced by the liver and functions as a fluid phase pattern recognition molecule [36]. SAA is a serum lipoprotein that can recognize bacteria by interacting with outer membrane proteins [37,38]. CRP and SAA are synthesized by hepatocytes and IL-6 has been identified as a strong stimulator of CRP and SAA production [36,37,39,40]. Infection with B. burgdorferi clearly stimulates the coordinated production CRP and SAA along with IL-6 during the acute stage of Lyme disease. Therefore it was surprising that the levels of serum CRP and SAA reactants correlate poorly with serum IL-6. This implies that IL-6 independent events may be driving production. Alternatively, the increases in CRP, and SAA could reflect the localized production of IL-6 in the liver, possibly as a site of infection, inflammation and/or tissue injury in the early acute Lyme phase [41]. This latter scenario is supported by the association of SAA and CRP levels with elevated serum liver enzymes (
FIG. 5A ). - The finding that IL-6 levels remain elevated in some patients through the latter stages of Lyme disease was surprising. This suggests that in a subset of patient diagnosed with acute Lyme individuals, following treatment, there is an ongoing inflammatory event driving IL-6 production. The liver is likely not the site of inflammation as CRP and SAA levels return to normal post-treatment. One possibility is that there is residual antigen or infection in some treated Lyme disease patients but this is a controversial area. Evidence from mouse and primate models supports either the persistence of live bacteria or antigens after antibiotic treatment following Lyme borreliosis [42-44]. Convincing validation of these studies in the human setting is not available. Nevertheless, our observations suggest that there is an ongoing process that is selectively driving IL-6 production, the mechanistic basis of this awaits further study. Future studies need to examine if there is any relationship of persistently elevated IL-6 levels or other inflammatory markers with long-term outcomes such as PTLDS.
- The analysis of chemokine and cytokine levels in the serum of Lyme disease patients has allowed us to define at least two subsets of Lyme patients which have distinct disease phenotypes differing in number of symptoms, extent of liver involvement, lymphocyte levels and seroconversion status. It is possible that the inflammatory mediator profiles identified may prove valuable as biomarkers of Lyme disease activity. Moreover, these chemokines likely identify immune pathways that are involved in the resolution of Lyme disease and as such may be potential therapeutic targets.
-
TABLE 1 Cohort Characteristics. Controls Cases (n = 44) (n = 23) Demographics Sex Male 56.8% 43.5% Female 43.2% 56.5% Age 49.41 ± 16.241 56.22 ± 12.645 (20-75) (22-73) Race White 95.5% 95.7% Black 2.3% 2.3% Other 2.3% 2.3% Education* 15.91 ± 2.675 17.74 ± 2.435 (11-21) (12-21) Clinical Characteristics** Serogroup Non-converter 35.7% Converter 26.2% Positive at 38.1% diagnosis Lesion type Single 65.9% Disseminated 34.1% Area (cm2) of 96.73 ± 98.96 primary lesion (11.78-466.63) Liver enzyme tests Normal 56.8% Elevated 43.2% Lymphopenia status Normal 59.1% Lymphopenic 40.99% * = Statistically different between cases and controls (p = 0.008), but not clinically significant. ** = Early Lyme disease cohort only, these characteristics do not apply to control participants. dol:10.1371/journal.pone.0093243.t001 -
TABLE 2 Acute Lyme Disease patient subsets defined by circulating mediators versus clinical phenotypes. Acute Lyme Mediator High Acute Lyme Mediator Low n = 27 mean (SD) n = 17 mean (SD) Significance Sex Male 44% 41.2% NS Female 55.6% 28.8% Lymphocyte number 1.07 (0.41) ×103 μl 1.58 (0.63) ×103 μl p = 0.002 Lymphopenia Status Lymphopenic 70.4% 29.4% p = 0.013 Non-lymphopenic 29.6% 70.6% Liver Enzyme Groupa High liver enzyme 61.5% 23.5% p = 0.027 Normal liver emzyme 38.5% 76.5% Serologyb Seropositive 77.8% 40% p = 0.021 Seronegative 22.2% 60% EM Presentation Single Lesion 66.7% 64.7% NS Disseminated Lesions 33.3% 35.7% Number Symptoms Pre- 8.45 (3.45) 4.15 (1.95) p < 0.0005 treatment Illness Duration (days) 6.89 (4.48) 12.59 (11.65) NS Table 2 shows group differences based on the heat map generated using SAM (see FIG. 1). No demographic differences between groups were seen. Categorical variables were compared using Fisher's Exact tests, while continuous variables were compared using unpaired t-tests. Lymphocyte values given are mean (standard deviation), while other values given are a percentage of the respective subset. Number of symptoms pre-treatment is defined as the number of symptoms reported by the patient during structured interview by the principle investigator (JNA) or stude staff (LAC). Illness duration is defined as the period of time between first sign or symptom of disease and presentation for treatment and enrollment in the study. aAcute Lyme Mediator High n = 26, Acute Lyme Mediator Low n = 17; bAcute Lyme Mediator High n = 27, Acute Lyme Mediator Low n = 15; dol:10.1371/journal.pone.0093243.t002 -
TABLE 3 Correlation Analysis of Key Mediators. Mediators R value Significance CXCL9 vs. CXCL10 0.690 p < 0.0005 CCL19 vs. CXCL10 0.629 p < 0.0005 CCL19 vs. CXCL9 0.725 p < 0.0005 CRP vs. SAA 0.373 0.016 IL-6 vs. CRP 0.268 NS IL-6 vs. SAA 0.094 NS Table 3 shows the relationship between acute, pre-treatment levels of key immune mediators of early Lyme disease as discussed in this paper. Pearson correlations were used for all analyses. A significant correlation can be seen between CXCL10, CXCL9 and CCL19. CRP shows a significant positive correlation with Serum Smyloid A (SAA). IL-6 does not correlate with either CRP or SAA. dol:10.1371/journal.pone.0093243.t003 -
TABLE 4 Serostatus versus T Cell Chemokine Levels. Serology Serology Negative Positive Significance CXCL10 < 800 pg/mL 13 10 p = 0.003 CXCL10 ≧ 800 pg/ mL 2 17 CXCL9 < 350 pg/ mL 11 7 p = 0.004 CXCL9 ≧ 350 pg/ mL 4 20 CCL19 < 200 pg/ mL 11 15 NS CCL19 ≧ 200 pg/ mL 4 12 Cutoffs in early Lyme disease cases were created for CHCL10, CXCL9, and CCL19 based on being higher or lower than controls. The columns show differences between those who are sero-positive at either time of diagnosis or immediately following treatment and those who are negative at both time points for these three biomarkers. CXCL10 and CXCL9 show differences in the association between those who are sero-positive and sero-negative (p = 0.003 and p = 0.004, respectively). There is no statistical difference in the association between serogroups for CCL19. dol:10.1371/journal.pone.0093243.t004 -
- 1. (2013) Notice to readers: final 2012 reports of nationally notifiable infectious diseases. MMWR Morb Mortal Wkly Rep 62: 669-682.
- 2. (2007) Lyme disease—United States, 2003-2005. MMWR Morb Mortal Wkly Rep 56: 573-576.
- 3. (2000) Healthy People 2010: Understanding and Improving health. In: USDHHS, editor. 2nd ed: U.S. Government Printing Office.
- 4. Coyle B S, Strickland G T, Liang Y Y, Pena C, McCarter R, et al. (1996) The public health impact of Lyme disease in Maryland. J Infect Dis 173: 1260-1262.
- 5. Campbell G L, Fritz C L, Fish D, Nowakowski J, Nadelman R B, et al. (1998) Estimation of the incidence of Lyme disease. Am J Epidemiol 148: 1018-1026.
- 6. Wormser G P, Dattwyler R J, Shapiro E D, Halperin J J, Steere A C, et al. (2006) The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43: 1089-1134.
- 7. Steere A C (2001) Lyme disease. N Engl J Med 345: 115-125.
- 8. Steere A C, Sikand V K (2003) The presenting manifestations of Lyme disease and the outcomes of treatment. N Engl J Med 348: 2472-2474.
- 9. Dandache P, Nadelman R B (2008) Erythema migrans. Infect Dis Clin North Am 22: 235-260, vi.
- 10. Duray P H (1989) Histopathology of clinical phases of human Lyme disease. Rheum Dis Clin North Am 15: 691-710.
- 11. Wormser G P (2006) Clinical practice. Early Lyme disease. N Engl J Med 354: 2794-2801.
- 12. Aucott J, Morrison C, Munoz B, Rowe P C, Schwarzwalder A, et al. (2009) Diagnostic challenges of early Lyme disease: lessons from a community case series. BMC Infect Dis 9: 79.
- 13. Steere A C, Glickstein L (2004) Elucidation of Lyme arthritis. Nat Rev Immunol 4: 143-152.
- 14. (1997) Case Definitions for Infectious Conditions Under Public Health Surveillance. Morb Mortal Wkly Rep 46: 1-55.
- 15. Salazar J C, Pope C D, Sellati T J, Feder H M Jr., Kiely T G, et al. (2003) Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. J Immunol 171: 2660-2670.
- 16. Mullegger R R, Means T K, Shin J J, Lee M, Jones K L, et al. (2007) Chemokine signatures in the skin disorders of Lyme borreliosis in Europe: predominance of CXCL9 and CXCL10 in erythema migrans and acrodermatitis and CXCL13 in lymphocytoma. Infect Immun 75: 4621-4628.
- 17. Jones K L, Muellegger R R, Means T K, Lee M, Glickstein L J, et al. (2008) Higher mRNA levels of chemokines and cytokines associated with macrophage activation in erythema migrans skin lesions in patients from the United States than in patients from Austria with Lyme borreliosis. Clin Infect Dis 46: 85-92.
- 18. Horowitz H W, Dworkin B, Forseter G, Nadelman R B, Connolly C, et al. (1996) Liver function in early Lyme disease. Hepatology 23: 1412-1417.
- 19. Kazakoff M A, Sinusas K, Macchia C (1993) Liver function test abnormalities in early Lyme disease. Arch Fam Med 2: 409-413.
- 20. Groom J R, Luster A D (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89: 207-215.
- 21. Strle K, Jones K L, Drouin E E, Li X, Steere A C (2011) Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease. Am J Pathol 178: 2726-2739.
- 22. Shin J J, Glickstein L J, Steere A C (2007) High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory lyme arthritis. Arthritis Rheum 56: 1325-1335.
- 23. Strle K, Shin J J, Glickstein L J, Steere A C (2012) Association of a Toll-
like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum 64: 1497-1507. - 24. Lee E Y, Lee Z H, Song Y W (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8: 379-383.
- 25. Liu M, Guo S, Hibbert J M, Jain V, Singh N, et al. (2011) CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 22: 121-130.
- 26. Lee W Y, Moriarty T J, Wong C H, Zhou H, Strieter R M, et al. (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11: 295-302.
- 27. Zanchi A C, Gingold A R, Theise N D, Min A D (2007) Necrotizing granulomatous hepatitis as an unusual manifestation of Lyme disease. Dig Dis Sci 52: 2629-2632.
- 28. Zaidi S A, Singer C (2002) Gastrointestinal and hepatic manifestations of tickborne diseases in the United States. Clin Infect Dis 34: 1206-1212.
- 29. Borchers A T, Shimoda S, Bowlus C, Keen C L, Gershwin M E (2009) Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 31: 309-322.
- 30. Roe B, Coughlan S, Hassan J, Grogan A, Farrell G, et al. (2007) Elevated serum levels of interferon-gamma-inducible protein-10 in patients coinfected with hepatitis C virus and HIV. J Infect Dis 196: 1053-1057. Bauer J W, Baechler E C, Petri M, Batliwalla F M, Crawford D, Ortmann W A, Espe K J, Li W, Patel D D, Gregersen P K, Behrens T W: Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006:e491.
- 31. Lagging M, Romero A I, Westin J, Norkrans G, Dhillon A P, et al. (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with
HCV genotype 1 infection. Hepatology 44: 1617-1625. - 32. Rupprecht T A, Plate A, Adam M, Wick M, Kastenbauer S, et al. (2009) The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation 6: 42.
- 33. Forster R, Davalos-Misslitz A C, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8: 362-371.
- 34. Moschovakis G L, Forster R (2012) Multifaceted activities of CCR7 regulate Tcell homeostasis in health and disease. Eur J Immunol 42: 1949-1955.
- 35. Hastey C J, Elsner R A, Barthold S W, Baumgarth N (2012) Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection. J Immunol 188: 5612-5622.
- 36. Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28: 157-183.
- 37. Uhlar C M, Whitehead A S (1999) Serum amyloid A, the major vertebrate acutephase reactant. Eur J Biochem 265: 501-523.
- 38. Shah C, Hari-Dass R, Raynes J G (2006) Serum amyloid A is an innate immune opsonin for Gram-negative bacteria. Blood 108: 1751-1757.
- 39. Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2: 346-353.
- 40. Bode J G, Albrecht U, Haussinger D, Heinrich P C, Schaper F (2012) Hepatic acute phase proteins—regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kappaB-dependent signaling. Eur J Cell Biol 91: 496-505.
- 41. Manfredi A A, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A (2008) Pentraxins, humoral innate immunity and tissue injury. Curr Opin Immunol 20: 538-544.
- 42. Embers M E, Barthold S W, Borda J T, Bowers L, Doyle L, et al. (2012) Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE 7: e29914.
- 43. Hodzic E, Feng S, Holden K, Freet K J, Barthold S W (2008) Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52: 1728-1736.
- 44. Bockenstedt L K, Gonzalez D G, Haberman A M, Belperron A A (2012) Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 122: 2652-2660.
- 45. Wormser G P, Nadelman R B, Dattwyler R J, Dennis D T, Shapiro E D, et al. (2000) Practice guidelines for the treatment of Lyme disease. The Infectious Diseases Society of America. Clin Infect Dis 31 Suppl 1: 1-14.
- 46. Deane K D, O'Donnell C I, Hueber W, Majka D S, Lazar A A, et al. (2010) The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum 62: 3161-3172.
- 47. Lindstrom T M, Robinson W H (2010) Biomarkers for rheumatoid arthritis: making it personal. Scand J Clin Lab Invest Suppl 242: 79-84.
- 48. Chandra P E, Sokolove J, Hipp B G, Lindstrom T M, Elder J T, et al. (2011) Novel multiplex technology for diagnostic characterization of rheumatoid arthritis. Arthritis Res Ther 13: R102.
- 49. Hughes-Austin J M, Deane K D, Derber L A, Kolfenbach J R, Zerbe G {dot over (O)}, et al. (2013) Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis 72: 901-907.
- 50. Tusher V G, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116-5121.
- Objectives:
- Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere. Approximately 10% of optimally treated patients develop persistent symptoms of unknown pathophysiology lasting six months or longer that negatively affect life functioning, known as post-treatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate the association between clinical symptoms and a panel of immune mediators during and following treatment of early Lyme disease.
- Methods:
- Seventy-six patients with the erythema migrans rash were treated and followed at 5 time points over 1 year. At each visit, patients underwent a clinical evaluation, completed standardized surveys, and serum samples were drawn for measurement of 65 acute phase cytokines and chemokines. Patient values were compared across three clinical outcome groups and compared to control sample values.
- Results:
- Elevated levels of the T-cell chemokine CCL19 were associated with functionally significant, persistent symptoms at six and/or twelve months after diagnosis and treatment. A CCL19 cutoff of >115 pg/mL at one month post-treatment generated a sensitivity and specificity over 80%, and a relative risk of 13.25 for identifying those who would develop PTLDS at a later visit.
- Conclusions:
- The origin of persistently elevated CCL19 levels among PTLDS patients is unknown; however, we speculate that it may reflect an ongoing, immune-driven reaction at sites distal to secondary lymphoid tissue. The ability to identify a potential immunologic risk factor for PTLDS provides the opportunity to better understand the pathophysiology of PTLDS and to develop early interventions.
- Patient Description.
- Seventy-six patients with EM of greater than 5 cm were enrolled in a one-year prospective cohort study. Patients with a previous history of Lyme disease, or preexisting, confounding medical conditions associated with prolonged fatigue, pain, or neurocognitive symptoms were excluded. Cases were enrolled at time of acute infection, treated with three weeks of oral doxycycline, and seen regularly over the course of one year, for a total of six study visits (pre-treatment baseline, three weeks later following treatment, one month post-treatment, three months post-treatment, six months post-treatment, and one year post-treatment). Extensive clinical and biological specimen data were collected at each study visit. Twenty-six healthy, seronegative controls with no clinical history of Lyme disease were also enrolled. To control for random variability within the control group, samples were taken at two
study visits 6 months apart and an average generated for each control participant. This study was approved by the Johns Hopkins Medicine Institutional Review Board. Informed consent was obtained from all patients prior to enrollment. - An operationalized definition of PTLDS that includes both persistent symptoms and functional impact [23] was retrospectively applied to all patients at the six month and one year follow-up visits. Briefly, this definition requires the presence of at least one of: new-onset or worsening fatigue, new-onset musculoskeletal pain in at least three areas of the body, and cognitive complaints of difficulty finding words, focusing, concentrating, or memory impairment.[23] It also requires a composite T-score less than 45 (a half standard deviation below the normative mean) on the SF-36.[23] Extended follow-up revealed a subset of patients who do not meet this definition at the six-month visit, but do meet the definition if applied at one year. Therefore, in order to capture all PTLDS patients, we applied an expanded version of this definition by extending the time to include the one-year visit.
- Cytokine Detection.
- The Bio-Plex™ bead array system, and manufacturer recommended, previously described protocols[24] were employed to perform multiplex analysis of fifty-eight cytokines and chemokines, and nine acute phase markers. However, due to inter-batch variation three were dropped, resulting in six acute phase markers. Data processing was completed using Bio-Plex™ manager software (version 5.0). Data normalization between two run batches was achieved by setting all values less than 1 pg/mL to 1 pg/mL, calculating the 10% trimmed mean of each batch, and then multiplying by a factor to equalize the trimmed mean values. The protocol and data generated were MAIME compliant and were deposited in the Gene Expression Omnibus Repository. The cytokines, chemokines and inflammatory markers measured were described in a recent publication[21] and are listed in Table 5. Microarray data will be submitted to a public repository.
- Statistical Analyses.
- Group comparisons were performed using nonparametric Wilcoxon rank sum or Kruskal-Wallis tests for continuous variables, while chi-square or Fisher's exact tests were used for dichotomous variables. Negative binomial regression was used for number of symptoms. All statistical calculations were performed with SAS 9.3 (SAS Institute, Cary, N.C.). Relative risks and associated confidence intervals were calculated by hand using the standard formulas.
- For descriptive analyses of the multiplex data, values were analyzed using the “ratio to average,” logged. For subgroup comparisons, “ratio to average” values were analyzed by SAM (Significance Analysis of Microarrays Version 4.0) [22] and sorted based on false discovery rates (FDRs, represented by the q value) to identify cytokine or acute phase proteins with the greatest differences between patient subgroups. Hierarchical clustering software Cluster 3.0 was used to arrange results, which were displayed using Java Treeview (Version 1.1.5r2).
- Cohort Characteristics.
- Table 5 shows demographic characteristics of our sample of 76 early Lyme patients and 26 healthy controls. There were no statistically significant differences between the total sample of Lyme patients and controls on any of the demographic variables examined, with the exception of years of education which was borderline significant (p=0.05). The PTLDS definition [23] was applied to our cohort of 76 Lyme patients. Eleven (14.5%) met criteria at either six or twelve months (PTLDS group), 29 (38.2%) met the symptom but not the functional impact criteria (Symptom group), and 36 (47.3%) reported neither new symptoms nor decreased daily function and were considered returned to their pre-morbid health (Return to Health group). There were no statistically significant differences found by group on any of the demographic variables examined (Table 5). Similarly, the three clinical outcome groups (PTLDS, Symptoms, and Return to Health) did not differ significantly on any of the clinical variables measured at baseline (Table 6). However, at the 3-month, 6-month, and 1 year follow-up visits, significant differences were found in number of reported symptoms among the PTLDS and Symptom groups compared to the Return to Health group.
- Immune Mediator Analysis.
- Analysis using SAM showed evidence that among the 65 mediators examined (see Table 7 for a complete list), CCL19 remained consistently elevated in the sera of patients with PTLDS at multiple time points after antibiotic treatment.
FIG. 7a shows that only CCL19 and CRP levels were significantly different in PTLDS patients compared to controls at 6 months following treatment completion, at the time of group status determination. When previous visits were examined, we found that only CCL19 levels were significantly different between the PTLDS group compared to controls at 3 months post-treatment (FIG. 7b ). Therefore, we focused the remaining analyses presented in this paper on CCL19 levels. - CC119 Levels in Post-Treatment Lyme Disease Syndrome.
-
FIG. 8 shows the median CCL19 levels over time by clinical outcome group. At the time of acute infection, the three Lyme-exposed groups had similar serum CCL19 levels, and all were significantly different from controls (p<0.01 for each). However, at the end of treatment three weeks later, the median serum CCL19 level of the PTLDS group remained significantly different from control group levels while the Symptom and Return to Health groups did not. The persistent elevations in CCL19 level among PTLDS patients were found at each of the subsequent follow-up visits compared to controls (p<0.05 at each). - To determine if PTLDS outcome status at 6 months post-treatment could be predicted at earlier study visits, we selected a cutoff of 2 standard deviations above the control group mean (182 pg/mL). Using this cutoff, Lyme patients with a CCL19 level ≧182 pg/mL at the end of three weeks of treatment had a 6.83 (95% CI: 2.35-17.29) times greater risk of meeting criteria for PTLDS at 6 months. Similarly, Lyme patients with a CCL19 level of ≧182 pg/
mL 1 month after the end of treatment had a 7.5 (95% CI: 3.07-18.33) times increased risk. - Clinical Predictors of CCL19 Level.
- The demographic and clinical variables in Tables 5 and 6 (including outcome group) were examined in separate univariate analyses, and four were found to be associated with higher CCL19 level at the baseline visit; a higher number of reported symptoms, female sex, presence of disseminated lesions, and seropositivity. Table 8 shows results of a multiple linear regression using these four variables as predictors of CCL19 level. Disseminated EM lesions was found to be a non-significant predictor and was removed from the final model (Model 2: F=10.51, p<0.0001, adjusted R2=0.28).
- This analysis was repeated at the six month follow-up visit to determine if these variables remained predictive of CCL19 level at a later time point (Table 8). While female sex remained significantly associated with CCL19 level in univariate analysis, number of reported symptoms and seropositivity were replaced by duration of illness prior to treatment and outcome status in the model. The effect of female sex was found to be non-significant in multivariate analysis however, and was dropped from the final model (Model 2: F=8.84, p=0.0004, adjusted R2=0.18).
-
TABLE 5 Demographic Characteristics of Lyme Disease Subgroups and Controlsa Lyme Disease Patients Return to Healthy PTLDS Symptoms Health Total Controls (n = 11) (n = 29) (n = 36) (n = 76) (n = 26) Female Sex 72.7% 43.5% 41.7% 48.7% 53.9% Age 43 54 53 53 57 (29-53) (46-66) (34-62) (38-63) (46-66) [20-64] [20-75] [20-77] [20-77] [22-73] Non-Hispanic, 81.8% 96.6% 94.4% 93.4% 88.5% White Years of 16 16 16 16 18 Education (12-18) (15-18) (16-19) (15-18) (16-20) [11-21] [12-21] [12-21] [11-21] [12-26] Household 80 125 100 100 125 Income, Thousandsb (334-110) (93-150) (70- (75-150) (78- 150) 165) [27-250] [50-500] [33-500] [27-500] [50-350] aData are n(%) for categorical variables, median (IQR) [Range] for continuous and count variables. bEleven participants missing income data; 2 from PTLDS group, 3 from Symptoms group, 4 from Return to Health group, 2 from Control group. -
TABLE 6 Clinical Characteristics of Lyme Disease Subgroupsa Return to PTLDS Symptoms Health Total (n = 11) (n = 29) (n = 36) (n = 76) p Physician-Documented EM 100.0% 100.0% 100.0% 100.0% NS Disseminated Lesions Present 9.1% 34.5% 36.1% 31.6% NS Time from first symptom to 6 7 5 7 NS initiation of treatment, days (3-10) (5-10) (3-14) (4-11) [3-42] [1-35] [2-35] [1-42] Sero-positiveb 45.5% 74.1% 72.2% 68.9% NS 54.6% 25.9% 27.8% 31.1% Number of Symptoms Pre-Treatment 12 10 9 9 NS Baseline (10-15) (6-16) (6-12) (6-14) [4-19] [0-22] [1-17] [0-22] Post-Treatment 17 13 10 11 NS Follow-Upc (8-21) (8-18) (8-12) (8-17) [4-24] [4-24] [3-24] [3-24] 1-Month Follow-Upd 10 3 4 4 NS (2-14) (1-7) (0-6) (1-8) [0-24] [0-22] [0-15] [0-24] 3-Month Follow-Upe,f 7** 3 1 2 0.005 (2-12) (1-6) (0-3) (1-6) [1-22] [0-21] [0-15] [0-22] 6-Month Follow-Upf 6** 4** 2 3 0.0003 (3-9) (3-7) (0-3) (1-6) [1-23] [0-19] [0-10] [0-23] 1-Year Follow-Upf,g 13*** 4*** 1 3 0.0001 (8-19) (3-10) (0-3) (0-8) [6-34] [0-16] [0-12] [0-34] aData are n(%) for categorical variables, median (IQR) [Range] for continuous and count variables. bInterpreted according to CDC guidelines for two-tier ELISA and reflex WB (IgG/IgM) testing. Two symptom group participants missing complete two-tier serologic data cOne patient missing symptom data from Symptoms group dThree patients missing symptoms data; 1 from Symptoms group, 2 from Return to Health group eTwo patients missing symptom data from Return to Health group fIn post-hoc analysis; *p ≦ 0.05, **p ≦ 0.01 and ***p ≦ 0.001 for comparison to Return to Health Group gOne patient missing symptom data from PTLDS group -
TABLE 7 Cytokines, Chemokines, and Inflammatory Markers Measured Using the Bio-Plex ™ Bead Array System Growth factors b-NGF, FGF basic, HGF, PDGF-bb, SCGF-b, VEGF Chemokines CCL17, CCL19, CTACK, Eotaxin, GROa, IP-10, MCP-1(MCAF), MCP-3, MIG, MIP-1a, MIP-1b, RANTES, SDF-1a Cytokines G-CSF, GM-CSF, IFN-a2, IFN-g, IL-10, IL-12(p70), IL-12p40, IL- 13, IL-15, IL-16, IL-17A, IL-17F, IL-18, IL-1a, IL-1B, IL-1ra, IL-2, IL-21, IL-22, IL-23, IL-25, IL-2Ra, IL-3, IL-31, IL-33, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, LIF, M-CSF, MIF, sCD40L, SCF, TNF-a, TNF-b, TRAIL Acute phase proteins CRP, ferritin, fibrinogen, procalcitonin, serum amyloid A and tissue plasminogen activator -
TABLE 8 Regression Results for CCL19 Level at Acute Illness and Six Months Post-Treatment Pre-treatment (n = 76) Six-months post-treatment (n = 74) Model 1aModel 2Model 1Model 2Intercept 14.05 16.39 59.20 62.64 (42.95) (42.85) (11.85) (11.22) Sex (1 = Female) 133.07 135.64 12.62 d (31.99)*** (31.85)*** (13.75) Number of reported 6.52 6.55 c c symptoms (2.92)* (2.92)* Pre-treatment two-tier 101.43 111.23 c c serology (1 = positive) (35.97)** (34.43)** Erythema migrans rash 32.73 d c c (1 = multiple) (34.53) Time from first symptom c c 2.08 2.26 to treatment, days (0.89)* (0.87)* Outcome groupb c c 25.61 27.26 (1 = Symptoms, 2 = PTLDS) (9.34)** (9.16)** R-squared 0.32 0.31 0.21 0.20 Adjusted R-Squared 0.28 0.28 0.18 0.18 aPresented as parameter estimate (standard error). bDefined as PTLDS, Symptom, and Return to Health Groups. cNot significant in univariate analyses dRemoved from model 2 *p ≦ 0.05, **p ≦ 0.01, ***p ≦ 0.001 - In this study, the specific molecular finding of elevations in the T-cell chemokine CCL19 both immediately following treatment and at six and twelve months post-treatment is associated with functionally significant, persistent symptoms at six and twelve months after treatment of acute Lyme disease, and that it distinguishes those with PTLDS from those without functionally significant symptoms. While CCL19 levels were elevated in most Lyme disease patients at the time of diagnosis, they frequently remained elevated immediately after completion of antibiotic therapy among those with the later clinical phenotype of PTLDS, as identified by structured questionnaires and validated instruments. Individuals with early Lyme disease who are ideally treated have a greater than 7-fold higher risk of developing PTLDS by six or twelve months post-treatment if their CCL19 level is higher than 182 pg/ml at one month post-treatment. Lyme disease patients who return to normal health or have symptoms without associated functional impact show a pattern of initial CCL19 elevation followed by a return to control levels after treatment, suggesting that CCL19 is specifically linked to PTLDS and is not a feature of mild subjective symptoms.
- In a previous study, we examined serum levels of sixty-five immune mediators among forty-four patients with acute Lyme disease and identified a clear associated signature relative to normal controls, including increased CXCL9, CXCL10, and CCL19.[21] In the current study, we confirm the relevance of CCL19 during acute infection but also in the immediate and later post-treatment phase in an expanded cohort of seventy-six patients. CCL19 (and the related chemokine CCL21) is largely produced by reticular stromal cells localized to secondary lymphoid tissues and functions to attract and position CCR7+ T cells, B cells, and dendritic cells to establish an optimal microenvironment for immune response generation.[26,27] The expression of CCL19 is thought to be constitutive, but activated dendritic cells produce high levels of CCL19 in order to increase immune cell trafficking in secondary lymphoid organs during active immune responses. This is likely responsible for the elevated levels of CCL19 and other immune mediators seen during acute Lyme disease.[21] Consistent with this, in the mouse model of Lyme disease, CCL19 mRNA expression is increased in the lymph nodes of acutely infected mice.[28] Elevated levels of CCL19 have also been observed during states of immune-mediated inflammation including HIV infection, systemic lupus erythematosus, and rheumatoid arthritis.[29-32]
- The origin of persistent CCL19 levels among PTLDS patients is less clear, as patients do not display signs of ongoing immune-mediated processes, such as joint synovitis. Interestingly, high CCL19 expression has been found at sites of localized immune-driven reactions where ectopic lymphoid cell accumulation occurs, including the liver during chronic hepatitis C infection, the synovium in rheumatoid arthritis, the salivary glands in Sjogren's syndrome, and in spinal fluid from patients with central nervous system inflammation, including that induced by Lyme neuroborreliosis.[33-39] Based on this, we speculate that elevated CCL19 levels may reflect an ongoing, immune-driven reaction at sites distal to secondary lymphoid tissue. The observation that patients with PTLDS are defined by musculoskeletal pain, behavioral, and neurological symptoms, suggests that the central nervous system may be a site for ectopic immune activity in PTLDS.
- It has recently been reported that serum IL-23 levels are elevated during acute disease in patients that develop PTLDS, and proposed that Th-17 mediated immune responses may play a role in PTLDS.[40] While we have not directly addressed the role of the Th-17 effector pathways in our longitudinal cohort, it has been previously shown that CCL19, along with IL-23, drive the development of pathogenic Th-17 cells in a murine model of encephalomyelitis.[41] Therefore CCL19 and IL-23 may identify an informative immune pathway.
- Our findings raise the question of whether symptoms such as fatigue, cognitive complaints and mood changes [42, 43] may be related to a cytokine/chemokine effect, as has been hypothesized in other illnesses such as hepatitis-associated fatigue[44] and multiple sclerosis-associated depression.[45] If so, a range of disease management approaches may be helpful to patients and physicians. Medications used to treat depression may decrease cytokine levels and have been hypothesized to reverse symptoms induced by interferon alpha administration.[46] The impact of short-term antibiotic retreatment in this high-risk group has yet to be formally tested, although it has been employed in antibiotic treatment trials of early Lyme disease and may be widely applied in clinical practice.[25, 47]
- Previous studies have indicated that initial severity of illness may be predictive of persistent symptoms, suggesting that the biology of early infection may contain information related to long-term outcomes.[14] We extend this observation to molecular findings in the early post-treatment period as well, as post-treatment CCL19 elevations predicted long-term illness outcomes at six and twelve months. Furthermore, we found that CCL19 levels at one month post-treatment were more strongly predictive than those measured at treatment completion. This suggests that a heightened immune-mediated response in the immediate post-treatment period is linked to longer-term symptom persistence.
- There is strong evidence supporting the efficacy of behavioral interventions for pain and fatigue management[48, 49] and cognitive rehabilitation[50] in a variety of medical populations that may be applicable to patients with PTLDS. When such targeted symptom management and/or psychological interventions are offered early in the recovery process, individuals with early Lyme disease may have a chance to learn how to adapt and adjust to persistent symptoms, thus helping to reduce interference with daily life functioning and possibly stave off emotional adjustment issues. Classifying immunologic risk factors associated with the development of PTLDS may provide opportunities to identify those at risk earlier than the current six month proposed case definition[11] and to provide closer follow up, education, and early pharmacologic and behavioral interventions.
- Clearly, the relationship between PTLDS and elevated CCL19 needs to be validated. Study criteria limiting enrollment to those patients with EM and excluding those with pre-existing conditions marked by subjective symptoms similar to PTLDS (such as fibromyalgia, chronic fatigue syndrome, or depression) may limit generalizability. Further, a different Borrelia species is associated with Eurasian Lyme disease; therefore our results need to be tested in other geographic populations. Despite these limitations, the current study offers a foundational finding on how the immunologic response may contribute to clinical observations, and identifies early post-treatment elevations of CCL19 levels as a potential risk factor for PTLDS. This presents an opportunity not only to better understand the pathophysiology of PTLDS, but also to design early interventions for disease management. For example, patients found to have persistent elevation in CCL19 after an initial standard course of antibiotic therapy (typically 2-3 weeks) may be candidates for repeat or extended courses of additional antibiotics.
- The current study identifies early post-treatment elevated CCL19 as a potential risk factor for PTLDS. The origin of persistently elevated CCL19 levels among PTLDS patients is unknown; however, we speculate that it may reflect an ongoing, immune-driven reaction at sites distal to secondary lymphoid tissue. The ability to identify a potential immunologic risk factor for PTLDS provides the opportunity to better understand the pathophysiology of PTLDS, identify those at risk, and to develop early interventions to improve long term outcomes.
-
- 1. Stanek G, Wormser G P, Gray J, Strle F: Lyme borreliosis. Lancet 2012, 379:461-473.
- 2. Hinckley A F, Connally N P, Meek J I, Johnson B J, Kemperman M M, Feldman K A, White J L, Mead P S: Lyme Disease Testing by Large Commercial Laboratories in the United States. Clin Infect Dis 2014.
- 3. Tugwell P, Dennis D T, Weinstein A, Wells G, Shea B, Nichol G, Hayward R, Lightfoot R, Baker P, Steere A C: Laboratory evaluation in the diagnosis of Lyme disease. Ann Intern Med 1997, 127:1109-23.
- 4. Brownstein J S, Holford T R, Fish D: Effect of Climate Change on Lyme Disease Risk in North America. Ecohealth 2005, 2:38-46.
- 5. Wormser G P: Early Lyme Disease. N Engl J Med 2006, 354:2794-2801.
- 6. Eshoo M W, Crowder C C, Rebman A W, Rounds M a, Matthews H E, Picuri J M, Soloski M J, Ecker D J, Schutzer S E, Aucott J N: Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease. PLoS One 2012, 7:e36825.
- 7. Liveris D, Schwartz I, McKenna D, Nowakowski J, Nadelman R, Demarco J, Iyer R, Bittker S, Cooper D, Holmgren D, Wormser G P: Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn Microbiol Infect Dis 2012, 73:243-245.
- 8. Imai D M, Feng S, Hodzic E, Barthold S W: Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection. Lab Investig 2013, 93:900-10.
- 9. Steere A C, Schoen R T, Taylor E: The clinical evolution of Lyme arthritis. Ann Intern Med 1987, 107:725-731.
- 10. Strle K, Shin J J, Glickstein L J, Steere A C: Association of a Toll-
like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum 2012, 64:1497-507. - 11. Wormser G P, Dattwyler R J, Shapiro E D, Halperin J J, Steere A C, Klempner M S, Krause P J, Bakken J S, Strle F, Stanek G, Bockenstedt L, Fish D, Dumler J S, Nadelman R B: The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2006, 43:1089-1134.
- 12. Aucott J N, Rebman A W, Crowder L a, Kortte K B: Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: is there something here? Qual Life Res 2013, 22:75-84.
- 13. Shadick N A, Phillips C B, Logigian E L, Steere A C, Kaplan R F, Berardi V P, Duray P H, Larson M G, Wright E A, Ginsburg K S, Katz J N, Liang M H: The long-term clinical outcomes of Lyme disease. A population-based retrospective cohort study. Ann Intern Med 1994, 121:560-567.
- 14. Nowakowski J, Nadelman R B, Sell R, McKenna D, Cavaliere L F, Holmgren D, Gaidici A, Wormser G P: Long-term follow-up of patients with culture-confirmed Lyme disease. Am J Med 2003, 115:91-96.
- 15. Kalish R A, Kaplan R F, Taylor E, Jones-Woodward L, Workman K, Steere A C: Evaluation of study patients with Lyme disease, 10-20-year follow-up. J Infect Dis 2001, 183:453-460.
- 16. Shapiro E D, Dattwyler R, Nadelman R B, Wormser G P: Response to meta-analysis of Lyme borreliosis symptoms. Int J Epidemiol 2005, 34:1437-9; author reply 1440-3.
- 17. Embers M E, Barthold S W, Borda J T, Bowers L, Doyle L, Hodzic E, Jacobs M B, HasenkampfNR, Martin D S, Narasimhan S, Phillippi-Falkenstein K M, Purcell J E, Ratterree M S, Philipp M T: Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 2012, 7:e29914.
- 18. Bockenstedt L K, Gonzalez D G, Haberman A M, Belperron A A: Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 2012, 122:2652-60.
- 19. Shen S, Shin J J, Strle K, McHugh G, Li X, Glickstein L J, Drouin E E, Steere A C: Treg cell numbers and function in patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis. Arthritis Rheum 2010, 62:2127-37.
- 20. Chandra A, Wormser G P, Klempner M S, Trevino R P, Crow M K, Latov N, Alaedini A: Anti-neural antibody reactivity in patients with a history of Lyme borreliosis and persistent symptoms. Brain Behav Immun 2010, 24:1018-1024.
- 21. Soloski M, Crowder L, Lahey L, Wagner C, Robinson W, Aucott J, (in press): Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity. PLoS One 2014.
- 22. Tusher V G, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98:5116-21.
- 23. Aucott J N, Crowder L A, Kortte K B: Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int J Infect Dis 2013, 17:e443-9.
- 24. Deane K D, O'Donnell C I, Hueber W, Majka D S, Lazar A A, Derber L A, Gilliland W R, Edison J D, Norris J M, Robinson W H, Holers V M: The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum 2010, 62:3161-72.
- 25. Nadelman R B, Luger S W, Frank E, Wisniewski M, Collins J J, Wormser G P: Comparison of cefuroxime axetil and doxycycline in the treatment of early Lyme disease. Ann Intern Med 1992, 117:273-80.
- 26. Förster R, Davalos-Misslitz A C, Rot A: CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008, 8:362-71.
- 27. Comerford I, Harata-Lee Y, Bunting M D, Gregor C, Kara E E, McColl S R: A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev 2013, 24:269-83.
- 28. Hastey C J, Ochoa J, Olsen K J, Barthold S W, Baumgarth N: MyD88-and TRIF-Independent Induction of Type I Interferon Drives Naive B Cell Accumulation but Not Loss of Lymph Node Architecture in Lyme Disease. Infect Immun 2014, 82:1548-58.
- 29. Bauer J W, Petri M, Batliwalla F M, Koeuth T, Wilson J, Slattery C, Panoskaltsis-Mortari A, Gregersen P K, Behrens T W, Baechler E C: Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 2009, 60:3098-107.
- 30. Bauer J W, Baechler E C, Petri M, Batliwalla F M, Crawford D, Ortmann W A, Espe K J, Li W, Patel D D, Gregersen P K, Behrens T W: Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006:e491.
- 31. Sellam J, Rouanet S, Hendel-Chavez H, Miceli-Richard C, Combe B, Sibilia J, Le Loet X, Tebib J, Jourdan R, Dougados M, Taoufik Y, Mariette X: CCL19, a B cell chemokine, is related to the decrease of blood memory B cells and predicts the clinical response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2013, 65:2253-61.
- 32. Fontaine J, Poudrier J, Roger M: Short communication: persistence of high blood levels of the chemokines CCL2, CCL19, and CCL20 during the course of HIV infection. AIDS Res Hum Retroviruses 2011, 27:655-7.
- 33. Heydtmann M, Hardie D, Shields P L, Faint J, Buckley C D, Campbell J J, Salmon M, Adams D H: Detailed analysis of intrahepatic CD8 T cells in the normal and hepatitis C-infected liver reveals differences in specific populations of memory cells with distinct homing phenotypes. J Immunol 2006, 177:729-38.
- 34. Rupprecht T A, Plate A, Adam M, Wick M, Kastenbauer S, Schmidt C, Klein M, Pfister H-W, Koedel U: The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation 2009, 6:42.
- 35. Kowarik M C, Cepok S, Sellner J, Grummel V, Weber M S, Korn T, Berthele A, Hemmer B: CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation 2012, 9:93.
- 36. Bombardieri M, Pitzalis C: Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren's syndrome: at the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr Pharm Biotechnol 2012, 13:1989-96.
- 37. Pickens S R, Chamberlain N D, Volin M V, Pope R M, Mandelin A M, Shahrara S: Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum 2011, 63:914-22.
- 38. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003, 13:38-51.
- 39. Timmer T C G, Baltus B, Vondenhoff M, Huizinga T W J, Tak P P, Verweij C L, Mebius R E, van der Pouw Kraan T C T M: Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum 2007, 56:2492-502.
- 40. Strle K, Stupica D, Drouin E E, Steere A C, Strle F: Elevated levels of IL-23 in a subset of patients with post-lyme disease symptoms following erythema migrans. Clin Infect Dis 2014, 58:372-80.
- 41. Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T: CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol 2009, 183:2513-21.
- 42. Kaplan R F, Meadows M E, Vincent L C, Logigian E L, Steere A C: Memory impairment and depression in patients with Lyme encephalopathy: comparison with fibromyalgia and nonpsychotically depressed patients. Neurology 1992, 42:1263-7.
- 43. Hassett A L, Radvanski D C, Buyske S, Savage S V, Gara M, Escobar J I, Sigal L H: Role of psychiatric comorbidity in chronic Lyme disease. Arthritis Rheum 2008, 59:1742-1749.
- 44. Thompson M E, Barkhuizen A: Fibromyalgia, hepatitis C infection, and the cytokine connection. Curr Pain Headache Rep 2003, 7:342-7.
- 45. Pucak M L, Carroll KAL, Kerr D A, Kaplin A I: Neuropsychiatric manifestations of depression in multiple sclerosis: neuroinflammatory, neuroendocrine, and neurotrophic mechanisms in the pathogenesis of immune-mediated depression. Dialogues Clin Neurosci 2007, 9:125-39.
- 46. Capuron L, Gumnick J F, Musselman D L, Lawson D H, Reemsnyder A, Nemeroff C B, Miller A H: Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 2002, 26:643-52.
- 47. Massarotti E M, Luger S W, Rahn D W, Messner R P, Wong J B, Johnson R C, Steere a C: Treatment of early Lyme disease. Am J Med 1992, 92:396-403.
- 48. Staud R: Treatment of fibromyalgia and its symptoms. Expert Opin Pharmacother 2007, 8:1629-42.
- 49. Stanos S, Houle T T: Multidisciplinary and interdisciplinary management of chronic pain. Phys Med Rehabil Clin N Am 2006, 17:435-50, vii.
- 50. Cicerone K D, Langenbahn D M, Braden C, Malec J F, Kalmar K, Fraas M, Felicetti T, Laatsch L, Harley J P, Bergquist T, Azulay J, Cantor J, Ashman T: Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011:519-30.
Claims (7)
1. A method for treating a patient likely to develop post-treatment Lyme disease syndrome (PTLDS) and who is currently undergoing a first course of antibiotic treatment for Lyme disease comprising the step of prescribing or administering a second course of antibiotic treatment to a patient who is determined to have an increased level of CCL19 as compared to a control after completing a first course of antibiotics for Lyme disease.
2. The method of claim 1 , wherein the second course of antibiotics comprises an antibiotic that is different from the first course of antibiotics.
3. A method for treating a patient likely to develop PTLDS comprising the steps of:
(a) obtaining a biological sample from a patient being treated for Lyme disease with a first course of antibiotics;
(b) measuring the level of CCL19 in the sample; and
(c) prescribing or administering a second course of antibiotic treatment to a patient having an increased level of CCL19 as compared to a control.
4. A method comprising the steps of:
(a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and
(b) generating a report comprising the measured CCL19 level.
5. The method of claim 4 , wherein the report further comprises standard or control levels of CCL19 for comparison.
6. The method of claim 5 , wherein the report further comprises a treatment recommendation based on the measure level of CCL19.
7. A method comprising the steps of:
(a) measuring the level of CCL19 in a serum sample obtained from a patient undergoing a first antibiotic treatment for Lyme disease; and
(b) recommending a second course of antibiotic treatment to treat or prevent PTLDS if the measure level of CCL19 is statistically significantly increased as compared to a reference or control.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/131,063 US20160305956A1 (en) | 2015-04-16 | 2016-04-18 | Elevated ccl19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
US16/058,316 US10481165B2 (en) | 2015-04-16 | 2018-08-08 | Elevated CCL19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562148332P | 2015-04-16 | 2015-04-16 | |
US15/131,063 US20160305956A1 (en) | 2015-04-16 | 2016-04-18 | Elevated ccl19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/058,316 Division US10481165B2 (en) | 2015-04-16 | 2018-08-08 | Elevated CCL19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160305956A1 true US20160305956A1 (en) | 2016-10-20 |
Family
ID=57128782
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/131,063 Abandoned US20160305956A1 (en) | 2015-04-16 | 2016-04-18 | Elevated ccl19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
US16/058,316 Active US10481165B2 (en) | 2015-04-16 | 2018-08-08 | Elevated CCL19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/058,316 Active US10481165B2 (en) | 2015-04-16 | 2018-08-08 | Elevated CCL19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy |
Country Status (1)
Country | Link |
---|---|
US (2) | US20160305956A1 (en) |
-
2016
- 2016-04-18 US US15/131,063 patent/US20160305956A1/en not_active Abandoned
-
2018
- 2018-08-08 US US16/058,316 patent/US10481165B2/en active Active
Non-Patent Citations (1)
Title |
---|
Rupprecht et al., "The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis," Journal of Neuroinflammation 2009, 6:42. * |
Also Published As
Publication number | Publication date |
---|---|
US10481165B2 (en) | 2019-11-19 |
US20190178893A1 (en) | 2019-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11499982B2 (en) | Multi-protein biomarker assay for brain injury detection and outcome | |
US10408847B2 (en) | Tuberculosis biomarkers and uses thereof | |
EP3100051B1 (en) | Biomarkers | |
EP1322960B2 (en) | Allergen-microarray assay | |
JP6337020B2 (en) | Methods for measuring acute respiratory distress syndrome (ARDS) related biomarkers, methods for monitoring the progression and treatment of ARDS in patients | |
JP2022522480A (en) | Electrochemiluminescent labeled probe for use in immunoassays, method of using the probe and kit containing the probe | |
CN109337974B (en) | Reagent for detecting psoriasis diagnosis marker and application thereof | |
US20140147863A1 (en) | Methods and devices for diagnosing alzheimers disease | |
Sims et al. | Insights into adult atopic dermatitis heterogeneity derived from circulating biomarker profiling in patients with moderate‐to‐severe disease | |
Litteljohn et al. | Cytokines as potential biomarkers for Parkinson’s disease: a multiplex approach | |
US20220397528A1 (en) | Systems and methods for rapid, sensitive multiplex immunoassays | |
Huang et al. | Cytokine antibody arrays in biomarker discovery and validation | |
WO2015164617A1 (en) | Tuberculosis biomarkers in urine and uses thereof | |
Kato et al. | Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model | |
Kamali-Moghaddam et al. | Sensitive detection of Aβ protofibrils by proximity ligation-relevance for Alzheimer's disease | |
US10481165B2 (en) | Elevated CCL19 after completion of therapy for acute lyme disease identifies patients at risk for development of post-treatment lyme disease syndrome who will benefit from further antibiotic therapy | |
Turčić et al. | Higher MRI lesion load in multiple sclerosis is related to the N-glycosylation changes of cerebrospinal fluid immunoglobulin G | |
Pitru et al. | Expression of vascular adhesion protein-1 and thrombospondin-1 in gingival crevicular fluid of patients with periodontitis and non-alcoholic fatty liver disease | |
WO2018199709A2 (en) | Biomarker composition for diagnosis of systemic lupus erythematosus comprising aimp1 and method for diagnosing systemic lupus erythematosus using same | |
US20250180571A1 (en) | Methods for Sample Quality Assessment | |
Pandey et al. | Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis | |
CN116042806B (en) | Application of biomarker in diagnosis of Cronkhite-Canada syndrome | |
US20250231198A1 (en) | Methods for Sample Quality Assessment | |
US20250154592A1 (en) | Methods and Compositions for Evaluating Biomarkers in Salivary Exosomes and Evaluating Cognitive Fatigue | |
US20150338399A1 (en) | Methods for diagnosing and monitoring disease by directly quantifying disease modified biomolecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE JOHNS HOPKINS UNIVERSITY, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AUCOTT, JOHN N.;SOLOSKI, MARK J.;REEL/FRAME:040585/0964 Effective date: 20160630 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |