US20160281190A1 - Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same - Google Patents

Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same Download PDF

Info

Publication number
US20160281190A1
US20160281190A1 US15/173,200 US201615173200A US2016281190A1 US 20160281190 A1 US20160281190 A1 US 20160281190A1 US 201615173200 A US201615173200 A US 201615173200A US 2016281190 A1 US2016281190 A1 US 2016281190A1
Authority
US
United States
Prior art keywords
heat
less
quenching
steel
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/173,200
Inventor
Seung-Man Nam
Hee-Joong Im
Seung-Ha LEE
Dong-Eun Kim
Bo-Ryong Lee
Young-Jin Kim
Man-been Moon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Hysco Co Ltd
Hyundai Steel Co
Original Assignee
Hyundai Hysco Co Ltd
Hyundai Steel Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45614663&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160281190(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hyundai Hysco Co Ltd, Hyundai Steel Co filed Critical Hyundai Hysco Co Ltd
Priority to US15/173,200 priority Critical patent/US20160281190A1/en
Publication of US20160281190A1 publication Critical patent/US20160281190A1/en
Assigned to HYUNDAI HYSCO CO., LTD. reassignment HYUNDAI HYSCO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IM, HEE-JOONG, KIM, DONG-EUN, KIM, YOUNG-JIN, LEE, BO-RYONG, LEE, SEUNG-HA, MOON, MAN-BEEN, NAM, SEUNG-MAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a technology for manufacturing a high strength component using heat-treatment hardening steel, and more particularly, to heat-treatment hardening steel having high strength and crashworthiness after heat treatment and a method for manufacturing a heat-treatment hardening component using the same.
  • Hot stamping is a process of manufacturing a high strength component by quenching to form a martensite microstructure as soon as a material having a tensile strength of about 500 MPa and heated to about 900° C. is formed into a desired shape. Hot stamping may be used to produce high strength components having a tensile strength of 1000 MPa or more.
  • Steel for hot stamping comprises, in terms of % by weight (wt %), C: 0.23%; Si: 0.24%; Mn: 1.2%; Cr: 0.18%; Mo: 0.0025%; Al: 0.03%; Ti 0.035%; B: 0.002% and the balance of Fe and unavoidable impurities.
  • Steel having such a composition may exhibit a tensile strength of 490 MPa to 590 MPa and an elongation of 20% to 30% depending on process conditions.
  • the steel When the steel is heated to about 900° C., the steel may exhibit a tensile strength of 100 MPa to 200 MPa and an elongation of 50% to 60%, allowing easy forming.
  • the formed steel has microstructures approaching full martensite, whereby a finished component has an ultra-high tensile strength of about 1470 MPa.
  • the prepared component may have ultra-high strength and thus does not require a separate reinforcing material to enhance strength.
  • hot stamping can facilitate weight reduction and reduce the number of welds through elimination of components such as a reinforcing material, thereby improving productivity while reducing manufacturing costs.
  • components manufactured by this process have a drawback in that such components have a low elongation of 6% to 7% due to microstructures approaching full martensite, which is advantageous for securing high strength.
  • Such low elongation causes brittleness failure of a component due to insufficient absorption of impact when external impact is applied thereto.
  • Another aspect of the present invention is to provide a method for manufacturing a heat-treatment hardening component using the heat-treatment hardening steel.
  • Si 1% or less
  • Mn 0.5 ⁇ 5%
  • Al 0.1 ⁇ 2.5%
  • Ni 0.01 ⁇ 8%
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1% or less
  • Ni 0.01 ⁇ 8%
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1 ⁇ 2.5%
  • Ni 0.01 ⁇ 8%
  • the steel may have a layer selected from among an Al—Si plated layer, a galvanized layer, and a high temperature oxidation resistant coating layer on a surface thereof.
  • a method for manufacturing a heat-treatment hardening component includes: (a) preparing a blank formed of the heat-treatment hardening steel as described above; (a′) performing primary-forming of the blank through cold working; (b) heating a primary formed body formed in the (a′) performing primary forming; (c) performing secondary-forming and quenching of the heated primary formed body in dies; and (d) performing post-treatment of a secondary formed body formed in the (c) performing secondary-forming and quenching.
  • the heat-treatment hardening steel according to the present invention may provide a high strength, highly tough and highly ductile component having a tensile strength of 1000 MPa or more, a yield strength of 800 MPa or more, and an elongation of 10% or more through hot stamping. Accordingly, the component manufactured by the method according to the present invention may exhibit improved crashworthiness through high strength and excellent impact absorption capabilities.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with another embodiment of the present invention.
  • FIG. 3 shows a microstructure of a specimen prepared in Comparative Example 1.
  • FIG. 4 shows a microstructure of a specimen prepared in Example 1.
  • Heat-treatment hardening steel according to the present invention comprises, by wt %, C: 0.12 ⁇ 0.8%; Cr: 0.01 ⁇ 2%; Mo: 0.2% or less; at least one of titanium (Ti) and niobium (Nb): 0.2% or less; B: 0.0005 ⁇ 0.08%; and Sb: 1.0% or less.
  • the heat-treatment hardening steel satisfies at least one of the following compositions i) to iv):
  • Si 1% or less; Mn: 0.5 ⁇ 5%; Al: 0.1 ⁇ 2.5% and Ni: 0.01 ⁇ 8%;
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1% or less
  • Ni 0.01 ⁇ 8%
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1 ⁇ 2.5%
  • Ni 0.01 ⁇ 8%.
  • the heat-treatment hardening steel also comprises the balance of Fe and unavoidable impurities.
  • Carbon (C) is added to secure strength of steel.
  • carbon serves to stabilize an austenite phase according to the amount of carbon enriched in the austenite phase.
  • carbon is present in an amount of 0.12 wt % to 0.8 wt % based on the total weight of the steel. If the carbon content is less than 0.12 wt %, it is difficult to secure sufficient strength. On the contrary, if the carbon content exceeds 0.8 wt %, the steel can suffer from significant deterioration in toughness and weldability despite increase of strength.
  • Chromium (Cr) improves elongation through stabilization of ferrite crystal grains, and increases strength through stabilization of austenite by increasing the amount of carbon enriched in the austenite phase.
  • chromium is present in an amount of 0.01 wt % to 2 wt % based on the total weight of the steel. If the chromium content is less than 0.01 wt %, the added chromium does not provide sufficient functions thereof. On the contrary, a chromium content of greater than 2 wt % makes it difficult to secure sufficient yield strength after heat treatment, and deteriorates wettability.
  • Molybdenum (Mo) is an effective element for enhancing strength of steel through precipitation strengthening and solid-solution strengthening. However, if the molybdenum content exceeds 0.2 wt %, the steel can suffer from deterioration in processibility.
  • molybdenum is preferably present in an amount of 0.2 wt % or less based on the total weight of the steel.
  • Titanium (Ti) and niobium (Nb) are carbonitride forming elements and sever to enhance strength of steel. However, if the total amount of titanium and niobium exceeds 0.2 wt %, the steel can suffer from deterioration in toughness. Therefore, titanium or niobium is preferably present in a total amount of 0.2 wt % or less based on the total weight of the steel.
  • Boron (B) enhances strength of steel through quenching ability.
  • boron is present in an amount of 0.0005 wt % to 0.08 wt % based on the total weight of the steel. If the boron content is less than 0.0005 wt %, boron does not provide functions thereof. On the contrary, if the boron content exceeds 0.08 wt %, the steel can suffer from significant deterioration in toughness due to excessive increase in quenching ability.
  • Antimony (Sb) enhances coating properties of steel by preventing enrichment of silicon and manganese in grain boundaries. However, if the antimony content exceeds 1%, the steel can suffer from cracking and secondary work embrittlement.
  • antimony is preferably used in an amount of 1% or less based on the total weight of the steel.
  • Si 1% or less; Mn: 0.5 ⁇ 5%; Al: 0.1 ⁇ 2.5% and Ni: 0.01 ⁇ 8%
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1% or less
  • Ni 0.01 ⁇ 8%
  • Si 0.5 ⁇ 3%
  • Mn 1 ⁇ 10%
  • Al 0.1 ⁇ 2.5%
  • Ni 0.01 ⁇ 8%
  • silicon (Si) acts as a deoxidizer and enhances strength of steel through solid-solution strengthening. If the silicon content exceeds the range provided by each of compositions i) to iv), the steel can suffer from deterioration in weldability and coating properties. In addition, in the case of the compositions i), iii) and iv), if the silicon content is less than the proposed range, the steel can suffer from deterioration in weldability.
  • manganese (Mn) enhances strength of steel through austenite stabilization. If the manganese content is less than the proposed range in each of i) ⁇ iv), the effect of stabilizing the austenite phase becomes insufficient. On the contrary, if the manganese content exceeds the range provided by each of compositions i) ⁇ iv), there are problems of deterioration in weldability and toughness.
  • compositions i) to iv) aluminum (Al) serves to prevent hydrogen embrittlement. If the aluminum content is less than the proposed range in each of i) ⁇ iv), the effect provided by addition of aluminum can become insufficient. On the contrary, if the aluminum content exceeds the range provided by each of compositions i) to iv), aluminum forms excess inclusions, thereby deteriorating ductility and toughness of the steel.
  • nickel (Ni) is advantageous in securing strength and toughness of steel. If the nickel content is less than the proposed range in each of compositions ii) to iv), the effect provided by addition of nickel can become insufficient. Conversely, if the nickel content exceeds the range provided by each of compositions ii) to iv), the effects provided by addition of nickel can become saturated, thereby significantly increasing manufacturing costs.
  • the heat-treatment hardening steel having the above composition according to the invention may be produced in forms of hot-rolled steel sheets, hot-rolled plated steel sheets, cold-rolled steel sheets, cold-rolled plated steel sheets, high temperature oxidation resistant coated steel sheets, and the like.
  • the heat-treatment hardening steel according to the present invention may have an Al—Si based coating layer, galvanized layer or high temperature oxidation resistant coating layer on a surface thereof in order to prevent decarburization and oxidation in a hot stamping process for fabrication of components described below.
  • the Al—Si based coating layer and the galvanized layer are generally applied to cold-rolled plated steel sheets, without being limited thereto.
  • the galvanized layer may be formed by various methods such as hot-dip galvanizing, hot-dip galvannealing, electro-galvanizing, and the like.
  • annealing may be performed at a temperature ranging from 650° C. to 850° C. If the annealing temperature is less than 650° C., it is difficult to achieve desired effects such as ductility improvement and the like even by annealing. Conversely, if annealing temperature exceeds 850° C., there is a high possibility of enrichment of silicon, manganese, and the like in grain boundaries even by addition of antimony, thereby causing deterioration in coating properties.
  • the heat-treatment hardening steel having the above composition according to the invention may have a tensile strength of 490 MPa to 980 MPa, a yield strength of 370 MPa to 600 MPa, and an elongation of 20% to 50% according to process conditions, that is, hot rolling, cold rolling, annealing, and the like.
  • process conditions that is, hot rolling, cold rolling, annealing, and the like.
  • heat-treatment hardening steel does not need to have these mechanical properties
  • heat-treatment hardening steel having these mechanical properties is advantageous in forming through hot stamping for fabrication of components.
  • the heat-treatment hardening steel having the above composition and mechanical properties according to the present invention may have a composite microstructure including martensite and retained austenite after heat treatment.
  • the heat-treatment hardening steel having the above composition and mechanical properties according to the present invention may have a tensile strength of 1000 MPa or more, a yield strength of 800 MPa or more, and an elongation of 10% or more after heat treatment, since the retained austenite structure is included in the microstructure even after hot stamping.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with one embodiment of the invention.
  • component may refer to collision members of automobiles, without being limited thereto.
  • the method for manufacturing a heat-treatment hardening component includes preparing a blank (S 110 ), heating the blank (S 120 ), forming/quenching (S 130 ), and post-treatment (S 140 ).
  • a blank is prepared from the heat-treatment hardening steel having the composition according to the present invention.
  • the heat-treatment hardening steel may have a tensile strength of 490 MPa to 980 MPa, a yield strength of 370 MPa to 600 MPa, and an elongation of 20% to 50%.
  • the steel may have an Al—Si based coating layer, a galvanized layer, a high temperature oxidation resistant coating layer or the like formed on the surface thereof.
  • the blank is heated to a temperature suitable for hot stamping. Heating may be performed outside dies which will be used for hot stamping, that is, forming/quenching, and may be performed inside the dies after heating is performed to a predetermined temperature outside the dies.
  • the heating temperature may range from 700° C. to 1100° C. If the heating temperature is less than 700° C., austenite formation becomes insufficient, thereby causing insufficient strength after the operation of forming/quenching (S 130 ). Conversely, if the heating temperature exceeds 1100° C., it is difficult to secure high ductility due to an insufficient fraction of the retained austenite after the operation of forming/quenching (S 130 ), thereby causing deterioration of crashworthiness.
  • Quenching may be performed to a martensite transformation start temperature or less, for example, to a temperature ranging from about 80° C. to about 500° C., in order to secure the martensite fraction.
  • quenching may be performed at a cooling rate of 10° C./sec to 300° C./sec. If the cooling rate is less than 10° C./sec, it is difficult to secure sufficient strength. Conversely, if the quenching rate exceeds 300° C./sec, it is difficult to secure toughness and ductility.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with another embodiment.
  • the method for manufacturing a heat-treatment hardening component includes blank preparation (S 210 ), cold working (S 215 ), heating the blank (S 220 ), forming/quenching (S 230 ), and post treatment (S 240 ).
  • the method further includes cold rolling (S 215 ).
  • cold rolling S 215
  • the blank is subjected to primary forming through cold working.
  • a primary formed body is prepared through forming, trimming, piercing, and the like.
  • post treatment S 240
  • laser processing is performed on a portion of a secondary formed body, which is subjected to secondary forming (S 230 ) through forming/quenching within dies.
  • Table 2 shows mechanical properties of the specimens of Examples 1 to 4 and Comparative Example 1 before and after heat treatment.
  • the specimen of Comparative Example 1 can suffer from brittleness failure due to low yield strength and elongation as compared with tensile strength, whereas the specimens of Examples 1 to 4 can sufficiently absorb the impact due to relatively high yield strength and elongation.
  • Comparative Example 1 included retained martensite in an area fraction of less than 1% even by any measurement methods, and thus had a full martensite microstructure.
  • FIG. 3 shows the microstructure of a specimen prepared in Comparative Example 1
  • FIG. 4 shows the microstructure of a specimen prepared in Example 1.
  • the specimen of Comparative Example 1 had a microstructure approaching full martensite.
  • the specimen of Example 1 includes retained austenite (y) in addition to martensite.
  • the specimen of Comparative Example 1 can have a very low elongation despite very high yield strength, whereas the specimen of Example 1 can have high elongation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed are heat-hardened steel with excellent crashworthiness and a method for manufacturing heat-hardenable parts using the same. The heat-hardened steel according to the invention comprises, based on wt %; C: 0.12-0.8%; Cr: 0.01-2%; Mo: 0.2% or less; B: 0.0005-0.08%; Ca: 0.01 or less; Sb: 1.0% or less; and Ti and/or Nb: 0.2%; and the reminder being Fe and inevitable impurities. In addition, the heat-treatment hardening steel satisfies anyone of following conditions i)-iv), wherein condition i) comprises Si: 0.5-3%; Mn: 1-10% and Al: 0.05-2%; condition ii) comprises Si: 1% or less; Mn: 0.5-5%; Al: 0.1-2.5%; and Ni: 0.01-8%; condition iii) comprises Si: 0.5-3%; Mn: 1-10%; Al: 0.1% or less; and Ni: 0.01-8%; and condition iv) comprises Si: 0.5-3%; Mn: 1-10%; Al: 0.1-2.5%; and Ni: 0.01-8%.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a Divisional Application of U.S. Ser. No. 14/115,516 filed Nov. 4, 2013, which is a National Phase application of No. PCT/KR2011/004785 filed on Jun. 30, 2011 and also which claims the benefit under 35 U.S.C. §119 of Korean Patent Application No. 10-2011-0064159 filed on Jun. 30, 2011 in the Korean Intellectual Property Office, the entirety of which disclosure is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a technology for manufacturing a high strength component using heat-treatment hardening steel, and more particularly, to heat-treatment hardening steel having high strength and crashworthiness after heat treatment and a method for manufacturing a heat-treatment hardening component using the same.
  • BACKGROUND ART
  • Recently, automobile components have been developed to be light in weight and to have high strength for improvement of fuel efficiency.
  • Recently, with the development of techniques for manufacturing automobile components, hot stamping has been developed. Hot stamping is a process of manufacturing a high strength component by quenching to form a martensite microstructure as soon as a material having a tensile strength of about 500 MPa and heated to about 900° C. is formed into a desired shape. Hot stamping may be used to produce high strength components having a tensile strength of 1000 MPa or more.
  • Steel for hot stamping comprises, in terms of % by weight (wt %), C: 0.23%; Si: 0.24%; Mn: 1.2%; Cr: 0.18%; Mo: 0.0025%; Al: 0.03%; Ti 0.035%; B: 0.002% and the balance of Fe and unavoidable impurities.
  • Steel having such a composition may exhibit a tensile strength of 490 MPa to 590 MPa and an elongation of 20% to 30% depending on process conditions. When the steel is heated to about 900° C., the steel may exhibit a tensile strength of 100 MPa to 200 MPa and an elongation of 50% to 60%, allowing easy forming. Then, when the steel is subjected to forming in dies and quenching, the formed steel has microstructures approaching full martensite, whereby a finished component has an ultra-high tensile strength of about 1470 MPa. The prepared component may have ultra-high strength and thus does not require a separate reinforcing material to enhance strength.
  • As such, hot stamping can facilitate weight reduction and reduce the number of welds through elimination of components such as a reinforcing material, thereby improving productivity while reducing manufacturing costs.
  • However, components manufactured by this process have a drawback in that such components have a low elongation of 6% to 7% due to microstructures approaching full martensite, which is advantageous for securing high strength.
  • Such low elongation causes brittleness failure of a component due to insufficient absorption of impact when external impact is applied thereto.
  • DISCLOSURE Technical Problem
  • An aspect of the present invention is to provide heat-treatment hardening steel that exhibits high ductility and toughness together with high strength through adjustment of alloy components after heat treatment, thereby providing improved crashworthiness.
  • Another aspect of the present invention is to provide a method for manufacturing a heat-treatment hardening component using the heat-treatment hardening steel.
  • Technical Solution
  • In accordance with one aspect of the present invention, heat-treatment hardening steel comprises, in terms of % by weight (wt %), C: 0.12˜0.8%; Cr: 0.01˜2%; Mo: 0.2% or less; B: 0.0005˜0.08%; Ca: 0.01 or less; Sb: 1.0% or less; at least one of Ti and Nb: 0.2% or less; components satisfying any one of the following compositions i) to iv); and the balance of Fe and unavoidable impurities.
  • By wt %,
  • i) Si: 0.5˜3%; Mn: 1˜10%; and Al: 0.05˜2%
  • ii) Si: 1% or less; Mn: 0.5˜5%; Al: 0.1˜2.5%; and Ni: 0.01˜8%
  • iii) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1% or less; and Ni: 0.01˜8%
  • iv) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1˜2.5%; and Ni: 0.01˜8%
  • The steel may have a layer selected from among an Al—Si plated layer, a galvanized layer, and a high temperature oxidation resistant coating layer on a surface thereof.
  • In accordance with another aspect of the present invention, a method for manufacturing a heat-treatment hardening component includes: (a) preparing a blank formed of the heat-treatment hardening steel as described above; (b) heating the blank; (c) hot-forming and quenching the heated blank in dies; and (d) performing post-treatment of a formed body formed in the (c) hot-forming and quenching.
  • In accordance with a further aspect of the present invention, a method for manufacturing a heat-treatment hardening component includes: (a) preparing a blank formed of the heat-treatment hardening steel as described above; (a′) performing primary-forming of the blank through cold working; (b) heating a primary formed body formed in the (a′) performing primary forming; (c) performing secondary-forming and quenching of the heated primary formed body in dies; and (d) performing post-treatment of a secondary formed body formed in the (c) performing secondary-forming and quenching.
  • Advantageous Effects
  • The heat-treatment hardening steel according to the present invention may provide a high strength, highly tough and highly ductile component having a tensile strength of 1000 MPa or more, a yield strength of 800 MPa or more, and an elongation of 10% or more through hot stamping. Accordingly, the component manufactured by the method according to the present invention may exhibit improved crashworthiness through high strength and excellent impact absorption capabilities.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with another embodiment of the present invention.
  • FIG. 3 shows a microstructure of a specimen prepared in Comparative Example 1.
  • FIG. 4 shows a microstructure of a specimen prepared in Example 1.
  • BEST MODE
  • The above and other aspects, features, and advantages of the present invention will become apparent from the detailed description of the following embodiments in conjunction with the accompanying drawings.
  • It should be understood that the present invention is not limited to the following embodiments and may be embodied in different ways, and that the embodiments are provided for complete disclosure and thorough understanding of the invention by those skilled in the art. The scope of the present invention will be defined only by the claims.
  • Hereinafter, heat-treatment hardening steel with excellent crashworthiness and a method for manufacturing a heat-treatment hardening component using the same according to the present invention will be described in detail.
  • Heat-Treatment Hardening Steel
  • Heat-treatment hardening steel according to the present invention comprises, by wt %, C: 0.12˜0.8%; Cr: 0.01˜2%; Mo: 0.2% or less; at least one of titanium (Ti) and niobium (Nb): 0.2% or less; B: 0.0005˜0.08%; and Sb: 1.0% or less.
  • In addition, the heat-treatment hardening steel satisfies at least one of the following compositions i) to iv):
  • By wt %,
  • i) Si: 0.5˜3%; Mn: 1˜10% and Al: 0.05˜2%;
  • ii) Si: 1% or less; Mn: 0.5˜5%; Al: 0.1˜2.5% and Ni: 0.01˜8%;
  • iii) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1% or less and Ni: 0.01˜8%; and
  • iv) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1˜2.5% and Ni: 0.01˜8%.
  • The heat-treatment hardening steel also comprises the balance of Fe and unavoidable impurities.
  • Now, the amounts and functions of the respective components included in the heat-treatment hardening steel according to the present invention will be described in more detail.
  • Carbon (C)
  • Carbon (C) is added to secure strength of steel. In addition, carbon serves to stabilize an austenite phase according to the amount of carbon enriched in the austenite phase.
  • Preferably, carbon is present in an amount of 0.12 wt % to 0.8 wt % based on the total weight of the steel. If the carbon content is less than 0.12 wt %, it is difficult to secure sufficient strength. On the contrary, if the carbon content exceeds 0.8 wt %, the steel can suffer from significant deterioration in toughness and weldability despite increase of strength.
  • Chromium (Cr)
  • Chromium (Cr) improves elongation through stabilization of ferrite crystal grains, and increases strength through stabilization of austenite by increasing the amount of carbon enriched in the austenite phase.
  • Preferably, chromium is present in an amount of 0.01 wt % to 2 wt % based on the total weight of the steel. If the chromium content is less than 0.01 wt %, the added chromium does not provide sufficient functions thereof. On the contrary, a chromium content of greater than 2 wt % makes it difficult to secure sufficient yield strength after heat treatment, and deteriorates wettability.
  • Molybdenum (Mo)
  • Molybdenum (Mo) is an effective element for enhancing strength of steel through precipitation strengthening and solid-solution strengthening. However, if the molybdenum content exceeds 0.2 wt %, the steel can suffer from deterioration in processibility.
  • Therefore, molybdenum is preferably present in an amount of 0.2 wt % or less based on the total weight of the steel.
  • Titanium (Ti), Niobium (Nb)
  • Titanium (Ti) and niobium (Nb) are carbonitride forming elements and sever to enhance strength of steel. However, if the total amount of titanium and niobium exceeds 0.2 wt %, the steel can suffer from deterioration in toughness. Therefore, titanium or niobium is preferably present in a total amount of 0.2 wt % or less based on the total weight of the steel.
  • Boron (B)
  • Boron (B) enhances strength of steel through quenching ability. Preferably, boron is present in an amount of 0.0005 wt % to 0.08 wt % based on the total weight of the steel. If the boron content is less than 0.0005 wt %, boron does not provide functions thereof. On the contrary, if the boron content exceeds 0.08 wt %, the steel can suffer from significant deterioration in toughness due to excessive increase in quenching ability.
  • Antimony (Sb)
  • Antimony (Sb) enhances coating properties of steel by preventing enrichment of silicon and manganese in grain boundaries. However, if the antimony content exceeds 1%, the steel can suffer from cracking and secondary work embrittlement.
  • Therefore, antimony is preferably used in an amount of 1% or less based on the total weight of the steel.
  • Silicon (Si), Manganese (Mn), Aluminum (Al), Nickel (Ni)
  • Through studies for long duration, the inventors of the present invention have found that silicon, manganese, aluminum and nickel enhance tensile strength, yield strength and elongation after heat treatment while satisfying at least one of the following compositions i) to iv).
  • By wt %,
  • i) Si: 0.5˜3%; Mn: 1˜10% and Al: 0.05˜2%
  • ii) Si: 1% or less; Mn: 0.5˜5%; Al: 0.1˜2.5% and Ni: 0.01˜8%
  • iii) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1% or less and Ni: 0.01˜8%
  • iv) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1˜2.5% and Ni: 0.01˜8%
  • In compositions i) to iv), silicon (Si) acts as a deoxidizer and enhances strength of steel through solid-solution strengthening. If the silicon content exceeds the range provided by each of compositions i) to iv), the steel can suffer from deterioration in weldability and coating properties. In addition, in the case of the compositions i), iii) and iv), if the silicon content is less than the proposed range, the steel can suffer from deterioration in weldability.
  • In compositions i) to iv), manganese (Mn) enhances strength of steel through austenite stabilization. If the manganese content is less than the proposed range in each of i)˜iv), the effect of stabilizing the austenite phase becomes insufficient. On the contrary, if the manganese content exceeds the range provided by each of compositions i)˜iv), there are problems of deterioration in weldability and toughness.
  • In compositions i) to iv), aluminum (Al) serves to prevent hydrogen embrittlement. If the aluminum content is less than the proposed range in each of i)˜iv), the effect provided by addition of aluminum can become insufficient. On the contrary, if the aluminum content exceeds the range provided by each of compositions i) to iv), aluminum forms excess inclusions, thereby deteriorating ductility and toughness of the steel.
  • In compositions ii) to iv), nickel (Ni) is advantageous in securing strength and toughness of steel. If the nickel content is less than the proposed range in each of compositions ii) to iv), the effect provided by addition of nickel can become insufficient. Conversely, if the nickel content exceeds the range provided by each of compositions ii) to iv), the effects provided by addition of nickel can become saturated, thereby significantly increasing manufacturing costs.
  • The heat-treatment hardening steel having the above composition according to the invention may be produced in forms of hot-rolled steel sheets, hot-rolled plated steel sheets, cold-rolled steel sheets, cold-rolled plated steel sheets, high temperature oxidation resistant coated steel sheets, and the like. Here, the heat-treatment hardening steel according to the present invention may have an Al—Si based coating layer, galvanized layer or high temperature oxidation resistant coating layer on a surface thereof in order to prevent decarburization and oxidation in a hot stamping process for fabrication of components described below. The Al—Si based coating layer and the galvanized layer are generally applied to cold-rolled plated steel sheets, without being limited thereto. In addition, the galvanized layer may be formed by various methods such as hot-dip galvanizing, hot-dip galvannealing, electro-galvanizing, and the like.
  • Here, when the heat-treatment hardening steel according to the present invention is a cold-rolled plated steel sheet, annealing may be performed at a temperature ranging from 650° C. to 850° C. If the annealing temperature is less than 650° C., it is difficult to achieve desired effects such as ductility improvement and the like even by annealing. Conversely, if annealing temperature exceeds 850° C., there is a high possibility of enrichment of silicon, manganese, and the like in grain boundaries even by addition of antimony, thereby causing deterioration in coating properties.
  • On the other hand, the heat-treatment hardening steel having the above composition according to the invention may have a tensile strength of 490 MPa to 980 MPa, a yield strength of 370 MPa to 600 MPa, and an elongation of 20% to 50% according to process conditions, that is, hot rolling, cold rolling, annealing, and the like. Although the heat-treatment hardening steel does not need to have these mechanical properties, heat-treatment hardening steel having these mechanical properties is advantageous in forming through hot stamping for fabrication of components.
  • In addition, the heat-treatment hardening steel having the above composition and mechanical properties according to the present invention may have a composite microstructure including martensite and retained austenite after heat treatment.
  • Further, the heat-treatment hardening steel having the above composition and mechanical properties according to the present invention may have a tensile strength of 1000 MPa or more, a yield strength of 800 MPa or more, and an elongation of 10% or more after heat treatment, since the retained austenite structure is included in the microstructure even after hot stamping.
  • Method of Manufacturing Heat-Treatment Hardening Component
  • FIG. 1 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with one embodiment of the invention.
  • Herein, the term “component” may refer to collision members of automobiles, without being limited thereto.
  • Referring to FIG. 1, the method for manufacturing a heat-treatment hardening component includes preparing a blank (S110), heating the blank (S120), forming/quenching (S130), and post-treatment (S140).
  • In operation of preparing a blank (S110), a blank is prepared from the heat-treatment hardening steel having the composition according to the present invention.
  • As described above, the heat-treatment hardening steel may have a tensile strength of 490 MPa to 980 MPa, a yield strength of 370 MPa to 600 MPa, and an elongation of 20% to 50%. In addition, considering blank heating (S120) and forming/quenching (S130) described hereinafter, the steel may have an Al—Si based coating layer, a galvanized layer, a high temperature oxidation resistant coating layer or the like formed on the surface thereof.
  • Next, in operation of heating the blank (S120), the blank is heated to a temperature suitable for hot stamping. Heating may be performed outside dies which will be used for hot stamping, that is, forming/quenching, and may be performed inside the dies after heating is performed to a predetermined temperature outside the dies.
  • The heating temperature may range from 700° C. to 1100° C. If the heating temperature is less than 700° C., austenite formation becomes insufficient, thereby causing insufficient strength after the operation of forming/quenching (S130). Conversely, if the heating temperature exceeds 1100° C., it is difficult to secure high ductility due to an insufficient fraction of the retained austenite after the operation of forming/quenching (S130), thereby causing deterioration of crashworthiness.
  • Next, in the operation of forming/quenching (S130), the blank heated in the dies is formed into a formed body having a predetermined shape, which in turn is subjected to quenching inside the dies to secure desired properties.
  • Quenching may be performed to a martensite transformation start temperature or less, for example, to a temperature ranging from about 80° C. to about 500° C., in order to secure the martensite fraction. In addition, quenching may be performed at a cooling rate of 10° C./sec to 300° C./sec. If the cooling rate is less than 10° C./sec, it is difficult to secure sufficient strength. Conversely, if the quenching rate exceeds 300° C./sec, it is difficult to secure toughness and ductility.
  • After forming/quenching, the formed body may have a composite microstructure comprising martensite and retained austenite. As a result, the formed body formed through forming/quenching may have a tensile strength of 1000 MPa or more, a tensile strength of 800 MPa or more, and an elongation of 10% or more.
  • In post treatment (S140), the formed body formed through forming/quenching is subjected to laser processing to perform trimming, piercing, and the like.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a heat-treatment hardening component in accordance with another embodiment.
  • Referring to FIG. 2, the method for manufacturing a heat-treatment hardening component includes blank preparation (S210), cold working (S215), heating the blank (S220), forming/quenching (S230), and post treatment (S240).
  • In the embodiment shown in FIG. 2, the method further includes cold rolling (S215). In operation of cold rolling (S215), the blank is subjected to primary forming through cold working. In this case, during primary forming through cold working, a primary formed body is prepared through forming, trimming, piercing, and the like. Thus, in post treatment (S240), laser processing is performed on a portion of a secondary formed body, which is subjected to secondary forming (S230) through forming/quenching within dies.
  • EXAMPLES
  • Next, the present invention will be described in more detail with reference to examples. Here, the following examples are provided for illustration only and should not be construed in any way as limiting the present invention.
  • Descriptions of details apparent to those skilled in the art will be omitted.
  • 1. Preparation of Specimen
  • In order to observe heat-treatment hardening properties of steel according to alloy compositions, specimens of Examples 1 to 4 and Comparative Example 1 having compositions as listed in Table 1 and mechanical properties before heat treatment as listed in Table 2 were heated to 900° C., left for 5 minutes, and cooled to 100° C. at an average cooling rate of 50° C./sec.
  • TABLE 1
    (Unit: wt %)
    C Si Mn Cr Mo Al Ti Nb B Ni Sb
    Comparative 0.229 0.238 1.19 0.183 0.0025 0.03 0.036 0.002
    Example 1
    Example 1 0.3 1.0 7.5 0.3 0.01 1.5 0.05 0.003 0.8
    Example 2 0.3 0.4 3.0 0.3 0.01 2.0 0.05 0.01 0.005 2.0 0.8
    Example 3 0.4 1.5 5.5 0.2 0.01 0.05 0.05 0.05 0.003 3.0 0.8
    Example 4 0.4 1.7 6.0 0.2 0.01 2.0 0.10 0.002 3.0 0.8
  • 2. Mechanical Properties
  • Table 2 shows mechanical properties of the specimens of Examples 1 to 4 and Comparative Example 1 before and after heat treatment.
  • TABLE 2
    Before heat treatment After heat treatment
    Tensile Yield Tensile Yield Fraction of
    strength strength Elongation strength strength Elongation retained
    (MPa) (MPa) (%) (MPa) (MPa) (%) austenite (%)
    Comparative 510 380 25 1470 840 6.0   <1%
    Example 1
    Example 1 515 383 26 1291 1136 15.0  3~5%
    Example 2 520 382 24 1302 1124 14.8  5~15%
    Example 3 710 491 22 1884 1138 15.1 10~40%
    Example 4 723 490 21 1817 1054 14.7 30~60%
  • Referring to Table 2, the specimens of Examples 1 to 4 and Comparative Example 1 exhibited similar mechanical properties before heat treatment.
  • However, after heat treatment, the specimen of Comparative Example 1 had a low elongation of 6% despite very high tensile strength. On the contrary, although the specimens of Examples 1 to 4 had slightly lower tensile strength than the specimens of Comparative Example 1, these specimens had an elongation of about 15% and exhibited relatively high yield strength.
  • Accordingly, upon application of external impact, the specimen of Comparative Example 1 can suffer from brittleness failure due to low yield strength and elongation as compared with tensile strength, whereas the specimens of Examples 1 to 4 can sufficiently absorb the impact due to relatively high yield strength and elongation.
  • In addition, in order to measure the fraction of retained austenite, various tests such as microscopic observation, magnetic measurement, X-ray diffraction analysis, and the like were performed. As a result, although the specimens of Examples 1 to 4 have different values according to the measurement methods, these specimens include retained austenite in an area fraction of at least 1% or more.
  • However, the specimen of Comparative Example 1 included retained martensite in an area fraction of less than 1% even by any measurement methods, and thus had a full martensite microstructure.
  • Difference in physical properties after heat treatment between the specimens of Examples 1 to 4 and Comparative Example 1 can be confirmed through difference in final microstructure.
  • FIG. 3 shows the microstructure of a specimen prepared in Comparative Example 1, and FIG. 4 shows the microstructure of a specimen prepared in Example 1.
  • Referring to FIG. 3, the specimen of Comparative Example 1 had a microstructure approaching full martensite. On the other hand, referring to FIG. 4, it can be seen that the specimen of Example 1 includes retained austenite (y) in addition to martensite.
  • By such microstructures, the specimen of Comparative Example 1 can have a very low elongation despite very high yield strength, whereas the specimen of Example 1 can have high elongation.
  • Although some embodiments have been disclosed herein, it should be understood that these embodiments are provided for illustration only and various modifications, changes, alterations and equivalent embodiments can be made without departing from the scope of the present invention. Therefore, the scope and sprit of the invention should be defined only by the accompanying claims and equivalents thereof.

Claims (8)

1. A method for manufacturing a heat-treatment hardening component, comprising:
(a) preparing a blank formed of heat-treatment hardening steel, the heat-treatment hardening steel comprising: by wt %, C: 0.12˜0.8%, Cr: 0.01˜2%, Mo: 0.2% or less, B: 0.0005˜0.08%, Ca: 0.01 or less, Sb: 1.0% or less, at least one of Ti and Nb: 0.2% or less, components satisfying anyone of the following compositions i) to iv), and the balance of Fe and unavoidable impurities;
By wt %,
i) Si: 0.5˜3%; Mn: 1˜10% and Al: 0.05˜2%
ii) Si: 1% or less; Mn: 0.5˜5%; Al: 0.1˜2.5% and Ni: 0.01˜8%
iii) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1% or less and Ni: 0.01˜8%
iv) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1˜2.5% and Ni: 0.01˜8%,
(b) heating the blank;
(c) hot-forming and quenching the heated blank in dies; and
(d) performing post-treatment of a formed body formed in the (c) hot-forming and quenching.
2. The method according to claim 1, wherein the (b) heating is performed by heating the blank to a temperature of 700° C. to 1100° C.
3. The method according to claim 1, wherein, in the (c) hot-forming and quenching, quenching is performed by cooling the heated blank in the dies at a rate of 10° C./sec to 300° C./sec to a martensite transformation start temperature or less of the heat-treatment hardening steel.
4. The method according to claim 1, wherein the heat-treatment hardening steel has at least one layer selected from an Al—Si based coating layer, a galvanized layer and a high temperature oxidation resistant coating layer on a surface thereof.
5. A method for manufacturing a heat-treatment hardening component, comprising:
(a) preparing a blank formed of heat-treatment hardening steel, the heat-treatment hardening steel comprising:, by wt %, C: 0.12˜0.8%, Cr: 0.01˜2%, Mo: 0.2% or less, B: 0.0005˜0.08%, Ca: 0.01 or less, Sb: 1.0% or less, at least one of Ti and Nb: 0.2% or less, components satisfying anyone of the following compositions i) to iv), and the balance of Fe and unavoidable impurities;
By wt %,
i) Si: 0.5˜3%; Mn: 1˜10% and Al: 0.05˜2%
ii) Si: 1% or less; Mn: 0.5˜5%; Al: 0.1˜2.5% and Ni: 0.01˜8%
iii) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1% or less and Ni: 0.01˜8%
iv) Si: 0.5˜3%; Mn: 1˜10%; Al: 0.1˜2.5% and Ni: 0.01˜8%,
(a′) performing primary-forming of the blank through cold working;
(b) heating a primary formed body formed in the (a′) performing primary forming;
(c) performing secondary-forming and quenching of the heated primary formed body in dies; and
(d) performing post-treatment of a secondary formed body formed in the (c) performing secondary-forming and quenching.
6. The method according to claim 5, wherein the (b) heating is performed by heating the blank to a temperature of 700° C. to 1100° C.
7. The method according to claim 5, wherein, in the (c) performing secondary-forming and quenching, quenching is performed by cooling the heated blank in the dies at a rate of 10° C./sec to 300° C./sec to a martensite transformation start temperature or less of the heat-treatment hardening steel.
8. The method according to claim 5, wherein the heat-treatment hardening steel has at least one layer selected from an Al—Si based coating layer, a galvanized layer and a high temperature oxidation resistant coating layer on a surface thereof.
US15/173,200 2011-06-30 2016-06-03 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same Abandoned US20160281190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/173,200 US20160281190A1 (en) 2011-06-30 2016-06-03 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/KR2011/004785 WO2013002441A1 (en) 2011-06-30 2011-06-30 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
KR1020110064159A KR101108838B1 (en) 2011-06-30 2011-06-30 Quenched steel with excellent crashworthiness and method of manufacturing quenched parts using the quenched steel
KR10-2011-0064159 2011-06-30
US201314115516A 2013-11-04 2013-11-04
US15/173,200 US20160281190A1 (en) 2011-06-30 2016-06-03 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/004785 Division WO2013002441A1 (en) 2011-06-30 2011-06-30 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
US14/115,516 Division US20140083574A1 (en) 2011-06-30 2011-06-30 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same

Publications (1)

Publication Number Publication Date
US20160281190A1 true US20160281190A1 (en) 2016-09-29

Family

ID=45614663

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/115,516 Abandoned US20140083574A1 (en) 2011-06-30 2011-06-30 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
US15/173,200 Abandoned US20160281190A1 (en) 2011-06-30 2016-06-03 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/115,516 Abandoned US20140083574A1 (en) 2011-06-30 2011-06-30 Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same

Country Status (5)

Country Link
US (2) US20140083574A1 (en)
EP (1) EP2728027B1 (en)
KR (1) KR101108838B1 (en)
CN (1) CN103534372B (en)
WO (1) WO2013002441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091825B2 (en) 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011057007B4 (en) * 2011-12-23 2013-09-26 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and motor vehicle component
KR101318060B1 (en) 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
KR101588740B1 (en) 2014-06-18 2016-02-12 현대자동차 주식회사 Device and method for hot stamping
CN104846274B (en) 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 Hot press-formed use steel plate, hot press-formed technique and hot press-formed component
JP6222198B2 (en) * 2015-10-19 2017-11-01 Jfeスチール株式会社 Hot-pressed member and manufacturing method thereof
JP6168118B2 (en) * 2015-10-19 2017-07-26 Jfeスチール株式会社 Hot-pressed member and manufacturing method thereof
CN105369130B (en) 2015-10-27 2017-05-03 天津威尔朗科技有限公司 Multielement alloying high-strength high-abrasion-resistance steel and manufacturing method of hot-rolled plate
KR101696121B1 (en) 2015-12-23 2017-01-13 주식회사 포스코 Al-Fe coated steel sheet having good hydrogen delayed fracture resistance property, anti-delamination property and spot weldability, and HPF parts obtained therefrom
CA3038322A1 (en) * 2016-10-03 2018-04-12 Ak Steel Properties, Inc. High elongation press hardened steel and manufacture of the same
KR101819380B1 (en) 2016-10-25 2018-01-17 주식회사 포스코 High strength high manganese steel having excellent low temperature toughness and method for manufacturing the same
KR102020404B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 Steel sheet having ultra high strength and superior ductility and method of manufacturing the same
EP4308736A1 (en) * 2021-03-17 2024-01-24 Tata Steel IJmuiden B.V. Steel strip, sheet or blank and method for producing a hot-formed part or a heat-treated pre-formed part
CN114858357A (en) * 2022-05-06 2022-08-05 南通泽恒机电制造厂(普通合伙) Micron-sized precision mold sealing performance detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126817A (en) * 2003-09-29 2005-05-19 Jfe Steel Kk Steel part for machine structure having excellent fatigue property and machinability, method for manufacture thereof, and stock for induction hardening
US20090320547A1 (en) * 2006-07-17 2009-12-31 Horton Frank A Hot Stamping Die Apparatus

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853714A (en) * 1994-08-09 1996-02-27 Kobe Steel Ltd Shaft parts for machine structural use excellent in torsional fatigue strength
DE19743802C2 (en) 1996-10-07 2000-09-14 Benteler Werke Ag Method for producing a metallic molded component
AU2002217542B2 (en) * 2000-12-29 2006-09-21 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
JP3809074B2 (en) * 2001-03-30 2006-08-16 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability and method for producing the same
JP4091894B2 (en) * 2003-04-14 2008-05-28 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
JP4608979B2 (en) * 2003-09-29 2011-01-12 Jfeスチール株式会社 Steel materials with excellent fatigue characteristics and steel materials for induction hardening
TWI238197B (en) * 2003-09-29 2005-08-21 Jfe Steel Corp Component for machine and structural purposes, material therefor, and manufacturing method therefor
US20080247900A1 (en) * 2004-07-16 2008-10-09 Jfe Steel Corporation Component for Machine Structure, Method of Producing the Same and Material for Induction Hardening
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening
JP4445365B2 (en) 2004-10-06 2010-04-07 新日本製鐵株式会社 Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5250938B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
JP4956998B2 (en) 2005-05-30 2012-06-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP2007016296A (en) 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
BRPI0804500B1 (en) * 2007-04-18 2018-09-18 Nippon Steel & Sumitomo Metal Corp hot work steel
KR101027250B1 (en) 2008-05-20 2011-04-06 주식회사 포스코 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
JP4766186B2 (en) 2009-08-21 2011-09-07 Jfeスチール株式会社 Hot pressed member, steel plate for hot pressed member, method for manufacturing hot pressed member
DE102010003997A1 (en) 2010-01-04 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Use of a steel alloy
PL2631307T3 (en) 2010-10-22 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for manufacturing steel sheet
KR101033767B1 (en) * 2010-11-03 2011-05-09 현대하이스코 주식회사 Automobile part manufacturing method using quenched steel sheet
EP2719788B1 (en) 2011-06-10 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho Hot press molded article, method for producing same, and thin steel sheet for hot press molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126817A (en) * 2003-09-29 2005-05-19 Jfe Steel Kk Steel part for machine structure having excellent fatigue property and machinability, method for manufacture thereof, and stock for induction hardening
US20090320547A1 (en) * 2006-07-17 2009-12-31 Horton Frank A Hot Stamping Die Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091825B2 (en) 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component

Also Published As

Publication number Publication date
EP2728027A1 (en) 2014-05-07
CN103534372B (en) 2016-02-10
CN103534372A (en) 2014-01-22
EP2728027A4 (en) 2015-07-15
EP2728027B1 (en) 2019-01-16
WO2013002441A1 (en) 2013-01-03
US20140083574A1 (en) 2014-03-27
KR101108838B1 (en) 2012-01-31

Similar Documents

Publication Publication Date Title
US20160281190A1 (en) Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
US10519526B2 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
US9920408B2 (en) Hot stamping product with enhanced toughness and method for manufacturing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP2022160585A (en) Cold-rolled steel sheet and method for manufacturing the same
JP2019505691A (en) Method for producing a high strength steel sheet having improved ductility and formability and the resulting steel sheet
JP6223905B2 (en) High strength galvannealed steel sheet with excellent yield strength and workability
JP2023011853A (en) Cold rolled and heat treated steel sheet and method of manufacturing thereof
TW201323626A (en) Hot-dip galvanized steel sheet and method for producing same
US10907230B2 (en) Ultra high-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
KR20130111402A (en) High-yield-ratio high-strength steel sheet having excellent workability
US11655518B2 (en) Steel material for taylor welded blank and method for manufacturing hot-stamped part using same steel
JP6858253B2 (en) Ultra-high-strength steel sheet with excellent hole expansion and yield ratio and its manufacturing method
US8702875B2 (en) High strength steel sheet with good wettability and manufacturing method thereof
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
KR101166995B1 (en) Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
KR20130027794A (en) Ultra high strength cold-rolled steel sheet and hot dip plated steel sheet with low yield ratio and method of manufacturing the same
JP6472692B2 (en) High-strength steel sheet with excellent formability
US20210180150A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent cold formability, and manufacturing method therefor
JP4506005B2 (en) High strength steel sheet for warm forming and forming method thereof
US20220042130A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same
KR20150112508A (en) High strength cold-rolled steel sheet and method for manufacturing the same
JP2023507956A (en) High-strength steel sheet with excellent workability and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI HYSCO CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAM, SEUNG-MAN;IM, HEE-JOONG;LEE, SEUNG-HA;AND OTHERS;REEL/FRAME:041602/0789

Effective date: 20131028

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION