US20160279137A1 - Finafloxacin suspension compositions - Google Patents
Finafloxacin suspension compositions Download PDFInfo
- Publication number
- US20160279137A1 US20160279137A1 US15/172,223 US201615172223A US2016279137A1 US 20160279137 A1 US20160279137 A1 US 20160279137A1 US 201615172223 A US201615172223 A US 201615172223A US 2016279137 A1 US2016279137 A1 US 2016279137A1
- Authority
- US
- United States
- Prior art keywords
- finafloxacin
- composition according
- composition
- compositions
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 126
- FYMHQCNFKNMJAV-HOTGVXAUSA-N finafloxacin Chemical compound C12=C(C#N)C(N3C[C@@H]4OCCN[C@H]4C3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 FYMHQCNFKNMJAV-HOTGVXAUSA-N 0.000 title claims abstract description 110
- 229960002839 finafloxacin Drugs 0.000 title claims abstract description 104
- 239000000725 suspension Substances 0.000 title abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000012458 free base Substances 0.000 claims abstract description 22
- 208000015181 infectious disease Diseases 0.000 claims abstract description 21
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical group [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 22
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 11
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 10
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 10
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 8
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 8
- 208000026231 acute otitis externa Diseases 0.000 claims description 6
- 229960003957 dexamethasone Drugs 0.000 claims description 6
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000000375 suspending agent Substances 0.000 claims description 5
- 229940061102 topical suspension Drugs 0.000 claims description 3
- 208000022760 infectious otitis media Diseases 0.000 claims description 2
- 159000000003 magnesium salts Chemical group 0.000 claims description 2
- 230000000845 anti-microbial effect Effects 0.000 abstract description 12
- 238000011282 treatment Methods 0.000 abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- 235000002639 sodium chloride Nutrition 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 10
- 229960001180 norfloxacin Drugs 0.000 description 10
- 229960000686 benzalkonium chloride Drugs 0.000 description 9
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 239000000546 pharmaceutical excipient Substances 0.000 description 9
- 239000008213 purified water Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 229940124307 fluoroquinolone Drugs 0.000 description 8
- 229920001664 tyloxapol Polymers 0.000 description 8
- MDYZKJNTKZIUSK-UHFFFAOYSA-N tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 8
- 229960004224 tyloxapol Drugs 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- -1 derivatives Chemical class 0.000 description 7
- 210000001508 eye Anatomy 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- CQMSQUOHWYYEKM-MOGJOVFKSA-N 7-[(4as,7as)-3,4,4a,5,7,7a-hexahydro-2h-pyrrolo[3,4-b][1,4]oxazin-6-yl]-8-cyano-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid;hydrochloride Chemical compound Cl.C12=C(C#N)C(N3C[C@@H]4OCCN[C@H]4C3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 CQMSQUOHWYYEKM-MOGJOVFKSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000003027 ear inner Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000011285 therapeutic regimen Methods 0.000 description 3
- 210000003454 tympanic membrane Anatomy 0.000 description 3
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- MITFXPHMIHQXPI-UHFFFAOYSA-N Oraflex Chemical compound N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 2
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000009635 antibiotic susceptibility testing Methods 0.000 description 2
- 238000011203 antimicrobial therapy Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 229960003405 ciprofloxacin Drugs 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 210000000613 ear canal Anatomy 0.000 description 2
- 210000000959 ear middle Anatomy 0.000 description 2
- 229960005293 etodolac Drugs 0.000 description 2
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229960001699 ofloxacin Drugs 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 2
- 201000009890 sinusitis Diseases 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DYWNLSQWJMTVGJ-UHFFFAOYSA-N (1-hydroxy-1-phenylpropan-2-yl)azanium;chloride Chemical compound Cl.CC(N)C(O)C1=CC=CC=C1 DYWNLSQWJMTVGJ-UHFFFAOYSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- IPUJXWMHZRFSAT-UHFFFAOYSA-N 1-cyclopentyl-3-ethyl-6-(2-methylphenyl)-4,5-dihydropyrazolo[3,4-c]pyridin-7-one Chemical compound C1CN(C=2C(=CC=CC=2)C)C(=O)C2=C1C(CC)=NN2C1CCCC1 IPUJXWMHZRFSAT-UHFFFAOYSA-N 0.000 description 1
- FZWBNHMXJMCXLU-UHFFFAOYSA-N 2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexanal Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OCC(O)C(O)C(O)C(O)C=O)O1 FZWBNHMXJMCXLU-UHFFFAOYSA-N 0.000 description 1
- IOJUJUOXKXMJNF-UHFFFAOYSA-N 2-acetyloxybenzoic acid [3-(nitrooxymethyl)phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC1=CC=CC(CO[N+]([O-])=O)=C1 IOJUJUOXKXMJNF-UHFFFAOYSA-N 0.000 description 1
- JVTIXNMXDLQEJE-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate 2-octanoyloxypropyl octanoate Chemical compound C(CCCCCCC)(=O)OCC(C)OC(CCCCCCC)=O.C(=O)(CCCCCCCCC)OCC(C)OC(=O)CCCCCCCCC JVTIXNMXDLQEJE-UHFFFAOYSA-N 0.000 description 1
- AWRGBOKANQBIBM-UHFFFAOYSA-N 4-ethynyl-3-[3-fluoro-4-[(2-methylimidazo[4,5-c]pyridin-1-yl)methyl]benzoyl]-n,n-dimethylindole-1-carboxamide;hydrochloride Chemical compound Cl.C12=C(C#C)C=CC=C2N(C(=O)N(C)C)C=C1C(=O)C(C=C1F)=CC=C1CN1C2=CC=NC=C2N=C1C AWRGBOKANQBIBM-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- NMXIZJLIYYDNJG-UHFFFAOYSA-N 4-nitrooxybutyl 5-amino-2-hydroxybenzoate Chemical compound NC1=CC=C(O)C(C(=O)OCCCCO[N+]([O-])=O)=C1 NMXIZJLIYYDNJG-UHFFFAOYSA-N 0.000 description 1
- JEQVYSUCZLYBRQ-LBPRGKRZSA-N 7,8,9,10-tetrahydro-6-(2-chlorophenyl)-9-(cyclopropylcarbonyl)-1,4-dimethyl-(s)-4h-pyrido(4',3':4,5)thieno(3,2-f)(1,2,4)triazolo(4,3-a)(1,4)diazepine Chemical compound N([C@H](C1=NN=C(C)N1C=1SC=2C3)C)=C(C=4C(=CC=CC=4)Cl)C=1C=2CCN3C(=O)C1CC1 JEQVYSUCZLYBRQ-LBPRGKRZSA-N 0.000 description 1
- QSXXLDDWVCEBFP-UHFFFAOYSA-N 7-(ethoxymethyl)-1-(5-hydroxy-5-methylhexyl)-3-methylpurine-2,6-dione Chemical compound CN1C(=O)N(CCCCC(C)(C)O)C(=O)C2=C1N=CN2COCC QSXXLDDWVCEBFP-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020852 Hypertonia Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- JGPJQFOROWSRRS-UHFFFAOYSA-N LSM-2613 Chemical compound S1C=2N3C(C)=NN=C3CN=C(C=3C(=CC=CC=3)Cl)C=2C=C1CCC(=O)N1CCOCC1 JGPJQFOROWSRRS-UHFFFAOYSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- KTDZCOWXCWUPEO-UHFFFAOYSA-N NS-398 Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1CCCCC1 KTDZCOWXCWUPEO-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- MKRNVBXERAPZOP-UHFFFAOYSA-N Starch acetate Chemical compound O1C(CO)C(OC)C(O)C(O)C1OCC1C(OC2C(C(O)C(OC)C(CO)O2)OC(C)=O)C(O)C(O)C(OC2C(OC(C)C(O)C2O)CO)O1 MKRNVBXERAPZOP-UHFFFAOYSA-N 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- IXRMFSBOHHRXSS-YPMTVOEDSA-N [(2r)-3-[(1-ethylpyridin-1-ium-2-yl)methyl-(2-methoxybenzoyl)carbamoyl]oxy-2-methoxypropyl] 4-(octadecylcarbamoyloxy)piperidine-1-carboxylate;chloride Chemical compound [Cl-].C1CC(OC(=O)NCCCCCCCCCCCCCCCCCC)CCN1C(=O)OC[C@@H](OC)COC(=O)N(C(=O)C=1C(=CC=CC=1)OC)CC1=CC=CC=[N+]1CC IXRMFSBOHHRXSS-YPMTVOEDSA-N 0.000 description 1
- YPFLFUJKZDAXRA-UHFFFAOYSA-N [3-(carbamoylamino)-2-(2,4-dichlorobenzoyl)-1-benzofuran-6-yl] methanesulfonate Chemical compound O1C2=CC(OS(=O)(=O)C)=CC=C2C(NC(N)=O)=C1C(=O)C1=CC=C(Cl)C=C1Cl YPFLFUJKZDAXRA-UHFFFAOYSA-N 0.000 description 1
- NKIONDJYXPXFFL-JSSVAETHSA-M [3-[(3r)-7-[1-(dimethylcarbamoyl)-6-(4-fluorophenyl)indole-3-carbonyl]-1,3-dihydropyrrolo[1,2-c][1,3]thiazol-3-yl]pyridin-1-ium-1-yl]methyl acetate;chloride Chemical compound [Cl-].C1([C@@H]2N3C=CC(=C3CS2)C(=O)C2=CN(C3=CC(=CC=C32)C=2C=CC(F)=CC=2)C(=O)N(C)C)=CC=C[N+](COC(C)=O)=C1 NKIONDJYXPXFFL-JSSVAETHSA-M 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- SOYCMDCMZDHQFP-UHFFFAOYSA-N amfenac Chemical compound NC1=C(CC(O)=O)C=CC=C1C(=O)C1=CC=CC=C1 SOYCMDCMZDHQFP-UHFFFAOYSA-N 0.000 description 1
- 229950008930 amfenac Drugs 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 229950001852 apafant Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- 229960005430 benoxaprofen Drugs 0.000 description 1
- 229960001716 benzalkonium Drugs 0.000 description 1
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical compound CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960004217 benzyl alcohol Drugs 0.000 description 1
- FWYVRZOREBYLCY-UHFFFAOYSA-N bepafant Chemical compound C1C=2SC=3N4C(C)=NN=C4CN=C(C=4C(=CC=CC=4)Cl)C=3C=2CC1C(=O)N1CCOCC1 FWYVRZOREBYLCY-UHFFFAOYSA-N 0.000 description 1
- 229950000500 bepafant Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 208000010217 blepharitis Diseases 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229960003655 bromfenac Drugs 0.000 description 1
- ZBPLOVFIXSTCRZ-UHFFFAOYSA-N bromfenac Chemical compound NC1=C(CC(O)=O)C=CC=C1C(=O)C1=CC=C(Br)C=C1 ZBPLOVFIXSTCRZ-UHFFFAOYSA-N 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229940049638 carbomer homopolymer type c Drugs 0.000 description 1
- 229940043234 carbomer-940 Drugs 0.000 description 1
- 229940031663 carbomer-974p Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- CFBUZOUXXHZCFB-OYOVHJISSA-N chembl511115 Chemical compound COC1=CC=C([C@@]2(CC[C@H](CC2)C(O)=O)C#N)C=C1OC1CCCC1 CFBUZOUXXHZCFB-OYOVHJISSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- KSPYMJJKQMWWNB-UHFFFAOYSA-N cipamfylline Chemical compound O=C1N(CC2CC2)C(=O)C=2NC(N)=NC=2N1CC1CC1 KSPYMJJKQMWWNB-UHFFFAOYSA-N 0.000 description 1
- 229950002405 cipamfylline Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 201000007717 corneal ulcer Diseases 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- PCCPERGCFKIYIS-AWEZNQCLSA-N daxalipram Chemical compound C1=C(OC)C(OCCC)=CC([C@@]2(C)OC(=O)NC2)=C1 PCCPERGCFKIYIS-AWEZNQCLSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229940119743 dextran 70 Drugs 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- ODRYSCQFUGFOSU-SSEXGKCCSA-N ethyl (4r)-4-(2-chlorophenyl)-6-methyl-2-[4-(2-methylimidazo[4,5-c]pyridin-1-yl)phenyl]-5-(pyridin-2-ylcarbamoyl)-1,4-dihydropyridine-3-carboxylate Chemical compound C1([C@@H]2C(=C(C)NC(=C2C(=O)OCC)C=2C=CC(=CC=2)N2C3=CC=NC=C3N=C2C)C(=O)NC=2N=CC=CC=2)=CC=CC=C1Cl ODRYSCQFUGFOSU-SSEXGKCCSA-N 0.000 description 1
- 210000002388 eustachian tube Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- STTRYQAGHGJXJJ-LICLKQGHSA-N filaminast Chemical compound COC1=CC=C(C(\C)=N\OC(N)=O)C=C1OC1CCCC1 STTRYQAGHGJXJJ-LICLKQGHSA-N 0.000 description 1
- 229950006884 filaminast Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229960000676 flunisolide Drugs 0.000 description 1
- 229960001048 fluorometholone Drugs 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229940083094 guanine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 238000011554 guinea pig model Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000008025 hordeolum Diseases 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229960001798 loteprednol Drugs 0.000 description 1
- YPZVAYHNBBHPTO-MXRBDKCISA-N loteprednol Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)OCCl)[C@@H]4[C@@H]3CCC2=C1 YPZVAYHNBBHPTO-MXRBDKCISA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229940013798 meclofenamate Drugs 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 229950008547 minopafant Drugs 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229950005105 modipafant Drugs 0.000 description 1
- 229960001664 mometasone Drugs 0.000 description 1
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 description 1
- VVBFISAUNSXQGZ-UHFFFAOYSA-N n,n-dimethyl-n'-(pyridin-3-ylmethyl)-n'-[4-[2,4,6-tri(propan-2-yl)phenyl]-1,3-thiazol-2-yl]ethane-1,2-diamine Chemical compound CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1C1=CSC(N(CCN(C)C)CC=2C=NC=CC=2)=N1 VVBFISAUNSXQGZ-UHFFFAOYSA-N 0.000 description 1
- GFUNPHNHBVCVHW-FQEVSTJZSA-N n-[(2s)-1-ethoxy-4-methylpentan-2-yl]-n-methyl-4-[(2-methylimidazo[4,5-c]pyridin-1-yl)methyl]benzenesulfonamide Chemical compound C1=CC(S(=O)(=O)N(C)[C@@H](CC(C)C)COCC)=CC=C1CN1C2=CC=NC=C2N=C1C GFUNPHNHBVCVHW-FQEVSTJZSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229960001002 nepafenac Drugs 0.000 description 1
- QEFAQIPZVLVERP-UHFFFAOYSA-N nepafenac Chemical compound NC(=O)CC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1N QEFAQIPZVLVERP-UHFFFAOYSA-N 0.000 description 1
- DLWSRGHNJVLJAH-UHFFFAOYSA-N nitroflurbiprofen Chemical compound FC1=CC(C(C(=O)OCCCCO[N+]([O-])=O)C)=CC=C1C1=CC=CC=C1 DLWSRGHNJVLJAH-UHFFFAOYSA-N 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229950001149 nupafant Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- CNDQSXOVEQXJOE-UHFFFAOYSA-N oxyphenbutazone hydrate Chemical compound O.O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 CNDQSXOVEQXJOE-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000007971 pharmaceutical suspension Substances 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- VUXSPDNLYQTOSY-UHFFFAOYSA-N phenylmercuric borate Chemical compound OB(O)O[Hg]C1=CC=CC=C1 VUXSPDNLYQTOSY-UHFFFAOYSA-N 0.000 description 1
- 229960000247 phenylmercuric borate Drugs 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- RRRUXBQSQLKHEL-UHFFFAOYSA-N piclamilast Chemical compound COC1=CC=C(C(=O)NC=2C(=CN=CC=2Cl)Cl)C=C1OC1CCCC1 RRRUXBQSQLKHEL-UHFFFAOYSA-N 0.000 description 1
- 229950005184 piclamilast Drugs 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 229960001487 rimexolone Drugs 0.000 description 1
- QTTRZHGPGKRAFB-OOKHYKNYSA-N rimexolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CC)(C)[C@@]1(C)C[C@@H]2O QTTRZHGPGKRAFB-OOKHYKNYSA-N 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- MNDBXUUTURYVHR-UHFFFAOYSA-N roflumilast Chemical compound FC(F)OC1=CC=C(C(=O)NC=2C(=CN=CC=2Cl)Cl)C=C1OCC1CC1 MNDBXUUTURYVHR-UHFFFAOYSA-N 0.000 description 1
- 229960002586 roflumilast Drugs 0.000 description 1
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 1
- 229950005741 rolipram Drugs 0.000 description 1
- DDJKTQDAEYPACV-UHFFFAOYSA-N setipafant Chemical compound C1=CC(OC)=CC=C1NC(=O)N1CC(SC=2N3C(C)=NN=C3CN=C(C3=2)C=2C(=CC=CC=2)Cl)=C3CC1 DDJKTQDAEYPACV-UHFFFAOYSA-N 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- SRWFBFUYENBCGF-UHFFFAOYSA-M sodium;chloride;hydrochloride Chemical compound [Na+].Cl.[Cl-] SRWFBFUYENBCGF-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002294 steroidal antiinflammatory agent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 229960002871 tenoxicam Drugs 0.000 description 1
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229960004906 thiomersal Drugs 0.000 description 1
- NBOMNTLFRHMDEZ-UHFFFAOYSA-N thiosalicylic acid Chemical compound OC(=O)C1=CC=CC=C1S NBOMNTLFRHMDEZ-UHFFFAOYSA-N 0.000 description 1
- 229940103494 thiosalicylic acid Drugs 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- 229950011536 torbafylline Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5383—1,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0046—Ear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- the present invention generally relates to suspension compositions comprising a fluoroquinolone.
- the present invention specifically relates to suspension compositions comprising finafloxacin or a finafloxacin derivative.
- Quinolone antibiotics are known to have desirable broad-spectrum antimicrobial properties.
- quinolone compounds for use in the treatment of ophthalmic, otic, and nasal conditions are disclosed in U.S. Pat. No. 6,716,830, the entire contents of which are incorporated by reference herein.
- quinolone antibiotics For use in pharmaceutical therapeutics, quinolone antibiotics must be formulated as stable, efficacious compositions. Unstable compositions can precipitate particulate matter when stored for a period of time, or can experience degradation of the active pharmaceutical ingredient or an excipient. Such compositions are unlikely to be approved by regulatory agencies due to safety concerns and other considerations.
- Finafloxacin is a broad-spectrum fluoroquinolone that has been previously disclosed in U.S. patent application Ser. No. 12/829,973 for the treatment of ophthalmic, otic, and nasal infection. Finafloxacin antimicrobial activity peaks at pH ranges between 5 and 6. However, aqueous solutions of finafloxacin with this pH were found to have precipitates form in stability studies. Accordingly, new compositions of finafloxacin with better stability characteristics are needed.
- the present invention relates to suspension compositions comprising finafloxacin or a pharmaceutically acceptable salt, derivative, enantiomer, or hydrate thereof.
- Such finafloxacin compositions are for the treatment of microbial infection, including ophthalmic, otic, and nasal infections.
- finafloxacin has the greatest antimicrobial efficacy at low pH.
- solution compositions of finafloxacin suffered from low solubility and stability at the optimum pH, often producing undesired precipitates.
- the present invention provides stable, efficacious finafloxacin suspension compositions.
- Preferred finafloxacin suspensions have a soluble fraction of finafloxacin greater than 0.05% w/v and have a ratio of suspended to soluble finafloxacin between 18 to 1 and 1 to 1.
- An embodiment of the present invention is a method for treating an infected tissue comprising treating the infected tissue with a topical suspension composition comprising finafloxacin.
- a topical suspension composition comprising finafloxacin.
- dosing of the topical suspension is used to treat the infected tissue.
- Suspension formulations of the present invention are particularly useful in low frequency dosing regimens as the high soluble fraction of finafloxacin can provide immediate antimicrobial activity while the suspended fraction dissolves over time to provide extended duration of action.
- a particularly preferred finafloxacin free base suspension composition comprises finafloxacin free base form A, which is stable at elevated temperatures used to heat sterilize such compositions.
- Preferred suspensions also comprise a solubilizer such as a divalent cation species to increase the soluble finafloxacin fraction in the composition.
- FIG. 1 illustrates the x-ray diffraction pattern of the form A crystalline form of finafloxacin free base
- FIG. 2 illustrates overlay x-ray diffraction patterns of form B and form C of finafloxacin free base.
- compositions of the invention are particularly directed toward treating mammalian and human subjects having or at risk of having a microbial tissue infection.
- Microbial tissue infections that may be treated or prevented in accord with the method of the present invention are referred to in J. P. Sanford et al., “The Sanford Guide to Antimicrobial Therapy 2007” 37 th Edition (Antimicrobial Therapy, Inc.).
- Particular microbial tissue infections that may be treatable by embodiments of the present invention include those infections caused by bacteria, protozoa, fungi, yeast, spores, and parasites.
- the present invention is also particularly directed to antimicrobial suspension compositions for and methods of treating ophthalmic, otic, and nasal/sinus infections.
- the suspension compositions of the present invention comprise finafloxacin or a pharmaceutically acceptable salt, derivative, enantiomer, or hydrate thereof.
- Finafloxacin (8-cyano-1-cyclopropyl-6-fluoro-7-[(4aS, 7aS)-hexahydropyrrolo [3,4-b]-1,4-oxazin-6(2H)-yl]-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid) has the following structure:
- a preferred form of finafloxacin for use in embodiments of the present invention is finafloxacin free base. At least three polymorphs of the finafloxacin free base have been identified (forms A, B, and C). Substantially pure finafloxacin free base form A is utilized in preferred embodiments, as it was discovered to be the most stable at high temperatures such as those encountered during heat sterilization.
- the crystalline form of finafloxacin free base form A has an X-ray diffraction spectrum substantially the same as the X-ray powder diffraction spectrum shown in FIG. 1 .
- the X-ray powder diffraction spectrums of form B and form C of finafloxacin free base are shown in FIG. 2 .
- the term “substantially pure” with reference to a particular polymorphic form means that the polymorphic form includes less than 10%, preferably less than 5%, more preferably less than 3%, most preferably less than 1% by weight of any other physical forms of the compound.
- the term “essentially the same” with reference to X-ray diffraction peak positions means that the typical peak position and intensity variability are taken into account.
- the peak positions (20) will show some inter-apparatus variability, typically as much as 0.2°.
- relative peak intensities will show inter-apparatus variability as well as variability due to degree of crystallinity, preferred orientation, prepared sample surface, and other factors known to those skilled in the art, and should be taken as qualitative measure only.
- finafloxacin is intended to encompass finafloxacin and its pharmaceutically acceptable salts, derivatives, enantiomers, or hydrates.
- pharmaceutically acceptable is art-recognized and refers to compositions, polymers and other materials and/or dosage forms which are suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio as determined by one of ordinary skill in the art.
- Finafloxacin and derivatives thereof can be synthesized according to the methods described in U.S. Pat. No. 6,133,260 to Matzke et al., the contents of which are herein incorporated by reference in their entirety.
- Finafloxacin free base form A is generated by treating finafloxacin hydrochloride with a hydroxide salt and then heating in water prior to drying. Finafloxacin form A may also be obtained in the solid state from finafloxacin free base form B with heat and/or vacuum drying. Furthermore, in the drug product compounding process, finafloxacin free base form A can be similarly be obtained from finafloxacin free base form B by heating in the aqueous phase.
- Suspension compositions of the present invention generally comprise finafloxacin at a concentration of 0.001 w/v % or greater.
- a composition of the present invention comprises finafloxacin at a concentration of 0.15 to 2.0 w/v %.
- a composition of the present invention comprises finafloxacin at a concentration of 0.20 to 1.0 w/v %, and in another preferred embodiment comprises finafloxacin at a concentration of 0.25 to 0.60 w/v %.
- concentrations listed refer to the total quantity of finafloxacin by weight in the suspension composition and include finafloxacin dissolved in the solution fraction and the particulate finafloxacin in the suspension fraction of the composition.
- the ratio of suspended finafloxacin to solubilized finafloxacin in the suspension composition may vary, but is typically between 18:1 and 1:1. In a preferred embodiment, the ratio is between 8:1 and 1:1. In a more preferred embodiment, the ratio is 4:1 to 2:1.
- the soluble finafloxacin concentration of the suspensions may vary, but is typically greater than 0.05 w/v %. In a preferred embodiment, the soluble finafloxacin concentration is greater than 0.075 w/v %, and in a most preferred embodiment, the soluble finafloxacin concentration is greater than 0.1 w/v %. In certain preferred embodiments, a high soluble fraction is maintained in a stable suspension having a preferred pH of 5.6 to 6.5 and a most preferred pH of 5.8 to 6.2 and a concentration of solubilizer (such as magnesium chloride) of 0.02 to 0.1 w/v %. Suspensions with a pH outside this range often have undesirable polymorph changes or particulate growth as shown in Example 10 below.
- finafloxacin suspensions are comprised substantially of finafloxacin free base form A (e.g., greater than 95% form A preferred; greater than 99% form A particularly preferred), and maintain this polymorphic form for a time period sufficient to meet stability standards (e.g., 12 months or greater in preferred embodiments, 12 months to 18 months in other embodiments, or 6 months to 18 months in yet other embodiments) at room temperature (15-25° C.).
- stability standards e.g., 12 months or greater in preferred embodiments, 12 months to 18 months in other embodiments, or 6 months to 18 months in yet other embodiments
- solubilizers can be added to the suspension compositions to increase the amount of dissolved finafloxacin.
- divalent cations such as magnesium and calcium can be used in preferred embodiments.
- the concentration of such divalent cations can vary but is generally between 0.98 and 4.9 mM. In a preferred embodiment, the concentration of the divalent cation is between 2.0 and 3.9 mM, and in a most preferred embodiment the divalent cation concentration is between 2.5 and 3.4 mM.
- a particularly preferred solubilizer is magnesium salt such as magnesium chloride, magnesium acetate and magnesium oxide.
- a particularly preferred salt of magnesium is magnesium chloride. While the concentration of magnesium chloride may vary, a concentration of 0.02 to 0.10 w/v % is preferred, a concentration of 0.04 to 0.08 w/v % is more preferred, and a concentration of 0.05 to 0.07 is particularly preferred.
- Suspension compositions of the present invention are prepared using a buffering system that maintains the composition at a pH of about 5.6 to 7.
- Preferred finafloxacin compositions have a pH of 5.6 to 6.5, and particularly preferred compositions have a pH of 5.8 to 6.2.
- Milling agents to produce uniform finafloxacin particle sizes are also utilized in certain embodiments of the present invention.
- tyloxapol is used as a milling agent to produce finafloxacin mean volume particle sizes of less than 10 ⁇ m, and in a most preferred embodiment, less than 5 ⁇ m.
- Suspending agents may also be used in certain embodiments to maintain a uniform suspension.
- Suspension uniformity can be measured by pouring a formulation into a 50 mL graduated cylinder at 25° C. and measuring the clear and unclear portions of the formulation over time as the formulation settles. Uniformity is the ratio (expressed as a percentage) of unclear formulation in the graduated cylinder.
- such agents can maintain substantially uniform finafloxacin suspensions (i.e., with 95% or greater unclear suspended formulation) for a period greater than 4 hours, and in a most preferred embodiment greater than 8 hours.
- the suspending agent is hydroxyethylcellulose (HEC) at a concentration of 0.1 to 0.3 w/v %, and most preferably HEC at a concentration of 0.2 percent.
- HEC hydroxyethylcellulose
- Finafloxacin suspensions of the present invention can be redispersed with shaking at 25° C. in less than 30 s in a preferred embodiment and less than 15s in a most preferred embodiment.
- Certain embodiments of the present invention are particularly useful for treating ophthalmic tissue infections.
- ophthalmic conditions that may be treated using compositions and methods of the present invention include conjunctivitis, keratitis, blepharitis, dacyrocystitis, hordeolum and corneal ulcers.
- the methods and compositions of the invention may also be used prophylactically in various ophthalmic surgical procedures that create a risk of infection.
- Otic and nasal/sinus tissue infections may also be treated by embodiments of the present invention.
- otic conditions that may be treated with compositions and methods of the present invention include acute otitis externa and otitis media (where the tympanic membrane has ruptured or tympanostomy tubes have been implanted).
- nasal/sinus conditions that may be treated with compositions and methods of the present invention include rhinitis, sinusitis, nasal carriage and situations where the nasal or sinus tissues are affected by surgery.
- Embodiments of the present invention may also be used prophylactically to prevent infection of a tissue by an infectious agent.
- a tissue at risk of infection is contacted with a composition of the present invention.
- compositions of the present invention are administered once a day.
- the compositions of the present invention may also be formulated for administration at any frequency of administration, including once a week, once every 5 days, once every 3 days, once every 2 days, twice a day, three times a day, four times a day, five times a day, six times a day, eight times a day, every hour, or any greater frequency.
- Such dosing frequency is also maintained for a varying duration of time depending on the therapeutic regimen.
- the duration of a particular therapeutic regimen may vary from one-time dosing to a regimen that extends for weeks.
- compositions thereof are known in the art.
- pharmaceutically effective amount is an art-recognized term, and refers to an amount of an agent that, when incorporated into a pharmaceutical composition of the present invention, produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment.
- the effective amount may vary depending on such factors as the disease or infectious agent being treated, the particular composition being administered, or the severity of the disease or infection agent.
- compositions of the present invention optionally comprise one or more excipients.
- excipients commonly used in pharmaceutical compositions include, but are not limited to, tonicity agents, preservatives, chelating agents, buffering agents, surfactants and antioxidants.
- Other excipients comprise solubilizing agents, stabilizing agents, comfort-enhancing agents, polymers, emollients, pH-adjusting agents and/or lubricants.
- excipients may be used in compositions of the present invention including water, mixtures of water and water-miscible solvents, such as C1-C7-alkanols, vegetable oils or mineral oils comprising from 0.5 to 5% non-toxic water-soluble polymers, natural products, such as alginates, pectins, tragacanth, karaya gum, xanthan gum, carrageenin, agar and acacia, starch derivatives, such as starch acetate and hydroxypropyl starch, and also other synthetic products such as polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxide, preferably cross-linked polyacrylic acid and mixtures of these products.
- the concentration of the excipient(s) are, typically, from 0.01 to 100 times the concentration of finafloxacin and the excipient(s) are selected on the basis of their inertness towards finafloxacin.
- Suitable tonicity-adjusting agents include, but are not limited to, mannitol, sodium chloride, glycerin, sorbitol and the like.
- Suitable buffering agents include, but are not limited to, phosphates, borates, acetates and the like.
- Suitable surfactants include, but are not limited to, ionic and nonionic surfactants, though nonionic surfactants are preferred, RLM 100, POE 20 cetylstearyl ethers such as Procol® CS20 and poloxamers such as Pluronic® F68.
- Suitable antioxidants include, but are not limited to, sulfites, ascorbates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT).
- compositions set forth herein may comprise one or more preservatives.
- preservatives include p-hydroxybenzoic acid ester, alkyl-mercury salts of thiosalicylic acid, such as thiomersal, phenylmercuric nitrate, phenylmercuric acetate, phenylmercuric borate, sodium perborate, sodium chlorite, parabens such as methylparaben or propylparaben, alcohols such as chlorobutanol, benzyl alcohol or phenyl ethanol, guanidine derivatives such as polyhexamethylene biguanide, sodium perborate, or sorbic acid.
- the composition may be self-preserved that no preservation agent is required.
- a suspension composition is preserved to meet European Pharmacopoeia (Ph. Eur) standards with a benzalkonium chloride (BAC) concentration of 0.004 to 0.012 w/v %, with a most preferred BAC concentration of 0.005 w/v %.
- BAC benzalkonium chloride
- compositions may be used that comprise excipients suitable for aerosol formation using nebulizers or other such devices well known to those of skill in the art.
- compositions of the present invention are ophthalmically suitable for application to a subject's eyes.
- compositions that include finafloxacin will be formulated for topical application to the eye in aqueous suspension in the form of drops.
- aqueous typically denotes an aqueous composition wherein the excipient is >50%, more preferably >75% and in particular >90% by weight water.
- These drops may be delivered from a single dose ampoule which may preferably be sterile and thus render bacteriostatic components of the composition unnecessary.
- the drops may be delivered from a multi-dose bottle which may preferably comprise a device which extracts any preservative from the composition as it is delivered, such devices being known in the art.
- components of the invention may be delivered to the eye as a concentrated gel or a similar vehicle, or as dissolvable inserts that are placed beneath the eyelids. In yet other aspects, components of the invention may be delivered to the eye as ointment, water-in-oil and oil-in-water emulsions.
- compositions are preferably isotonic, or slightly hypotonic in order to combat any hypertonicity of tears caused by evaporation and/or disease. This may require a tonicity agent to bring the osmolality of the composition to a level at or near 210-420 milliosmoles per kilogram (mOsm/kg).
- the compositions of the present invention generally have an osmolality in the range of 220-420 mOsm/kg, and preferably have an osmolality in the range of 260-330 mOsm/kg.
- finafloxacin is formulated in a composition that comprises one or more tear substitutes.
- tear substitutes include, but are not limited to: monomeric polyols, such as, glycerol, propylene glycol, and ethylene glycol; polymeric polyols such as polyethylene glycol; cellulose esters such hydroxypropylmethyl cellulose, carboxy methylcellulose sodium and hydroxy propylcellulose; dextrans such as dextran 70; vinyl polymers, such as polyvinyl alcohol; and carbomers, such as carbomer 934P, carbomer 941, carbomer 940 and carbomer 974P. Certain compositions of the present invention may be used with contact lenses or other ophthalmic products.
- compositions set forth herein have a viscosity of 0.5-100 cps, preferably 0.5-50 cps, and most preferably 1-20 cps. This relatively low viscosity insures that the product is comfortable, does not cause blurring, and is easily processed during manufacturing, transfer and filling operations.
- administration to a subject of a pharmaceutically effective amount of a composition that includes finafloxacin may be by any method known to those of ordinary skill in the art.
- the composition may be administered locally, topically, intradermally, intralesionally, intranasally, subcutaneously, orally, by inhalation, by injection, by localized perfusion bathing target cells directly, via a catheter, or via lavage.
- the composition is administered topically to an ocular surface.
- ophthalmic administration it is contemplated that all local routes to the eye may be used, including topical, subconjunctival, periocular, retrobulbar, subtenon, intraocular, subretinal, posterior juxtascleral, and suprachoroidal administration.
- compositions of the present invention may also comprise an anti-inflammatory agent.
- the compositions of the present invention may also contain one or more anti-inflammatory agents.
- the anti-inflammatory agents utilized in the present invention are broadly classified as steroidal or non-steroidal.
- the preferred steroidal anti-inflammatory agents are glucocorticoids.
- Glucocorticoids for ophthalmic, otic, or nasal use include dexamethasone, loteprednol, rimexolone, prednisolone, fluorometholone, hydrocortisone, mometasone, fluticasone, beclomethasone, flunisolide, triamcinolone and budesonide.
- Non-steroidal anti-inflammatory agents include, but are not limited to, prostaglandin H synthetase inhibitors (Cox I or Cox II), also referred to as cyclooxygenase type I and type II inhibitors, such as diclofenac, flurbiprofen, ketorolac, suprofen, nepafenac, amfenac, indomethacin, naproxen, ibuprofen, bromfenac, ketoprofen, meclofenamate, piroxicam, sulindac, mefanamic acid, diflusinal, oxaprozin, tolmetin, fenoprofen, benoxaprofen, nabumetome, etodolac, phenylbutazone, aspirin, oxyphenbutazone, NCX-4016, HCT-1026, NCX-284, NCX-456, tenoxicam and carprofen; cyclooxygenase
- the concentrations of the anti-inflammatory agents contained in the compositions of the present invention will vary based on the agent or agents selected and the type of inflammation being treated. The concentrations will be sufficient to reduce inflammation in the targeted ophthalmic, otic or nasal tissues following topical application of the compositions to those tissues. Such an amount is referred to herein as “an anti-inflammatory effective amount”.
- the compositions of the present invention will typically contain one or more anti-inflammatory agents in an amount of from about 0.01 to about 2.0 w/v %, preferably from 0.05 to 1.0 w/v %, and most preferably 0.05 to 0.2 w/v %.
- the anti-inflammatory compound is dexamethasone at a concentration of 0.1 w/v %.
- the composition may be delivered directly to the ear canal (for example: topical otic drops or ointments; slow release devices in the ear or implanted adjacent to the ear).
- Local administration routes include otic intramuscular, intratympanic cavity and intracochlear injection routes for the compositions.
- certain compositions of the invention may be formulated in intraotic inserts or implant devices.
- delivery of the compositions can be accomplished by endoscopic assisted (including laser-assisted endoscopy to make the incision into the tympanic membrane) injection into the tympanic cavity as set forth, for example, in Tsue et al., Amer. J.
- Local administration can also be achieved by injection through the tympanic membrane using a fine (EMG recording) needle, through use of an indwelling catheter placed through a myringotomy incision, and injection or infusion through the Eustachian tube by means of a small tubal catheter.
- EMG recording fine (EMG recording) needle
- compositions can be administered to the inner ear by placement of gelfoam or similar absorbent and adherent product soaked with the compositions against the window membrane of the middle/inner ear or adjacent structure with due discretion and caution by a skilled clinician.
- Various other devices can be used to deliver the compositions to the affected ear compartment; for example, via catheter or as exemplified in U.S. Pat. No. 5,476,446 which provides a multi-functional apparatus specifically designed for use in treating and/or diagnosing the inner ear of the human subject. Also see U.S. Pat. No. 6,653,279 for other devices for this purpose.
- compositions of the present invention may be prepared by conventional methods of preparing aqueous pharmaceutical suspension compositions, including sizing the drug using known sizing techniques, such as ball-milling. For example, a slurry containing finafloxacin, a milling agent such as tyloxopol and milling beads is tumbled for a time sufficient to obtain drug of desired particle sizes. The sizing beads are then separated from the slurry and the slurry is added to the remaining aqueous ingredients. Preferably, however, the compositions of the present invention are made in a specific manner. According to the preferred method, finafloxacin is first added to a mixture of 1% tyloxopol in purified water with beads.
- the mixture is heated in an autoclave to sterilize the mixture (and to ensure conversion of the finafloxacin to the polymorph form A).
- the slurry is milled in aseptic conditions to preferably produce finafloxacin particles smaller than 10 ⁇ m mean volume. Following removal of the milling beads, the finafloxacin slurry is mixed with the remainder of the suspension components and pH adjusted.
- compositions described herein for the treatment of nasal infection can be via a number of methods known to those of skill in the art.
- such compositions can be administered in droplet form or by aerosol formation.
- a finafloxacin solution composition at pH 5.8 and 7.3 was compared to ciprofloxacin and ofloxacin compositions using standard in vitro antimicrobial susceptibility tests (M07-08 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition (January 2009, Clinical and Laboratory Standards Institute), herein incorporated by reference).
- Minimum inhibitory concentrations (MIC 50 ) were determined using organisms commonly found in otic and ophthalmic infections. The MIC 50 was the lowest concentration of antibiotic that prevented growth of the test organism, as determined visually by a lack of turbidity.
- finafloxacin At acidic pH, finafloxacin generally had greater activity against both Gram-positive and Gram-negative organisms than the fluoroquinolones ciprofloxacin and ofloxacin, both of which are used for the treatment of otic infections. Higher activity under acidic conditions is important for an otic formulation since a low pH formulation is preferred to slow bacterial and fungal growth, as well as the fact the pH environment of the external ear canal is ⁇ pH 6.
- Finafloxacin test compositions (0.045 to 0.3% total finafloxacin) were evaluated in a guinea pig model of acute otitis externa (AOE) using Pseudomonas aeruginosa .
- Guinea pig ears were slightly abraded and 200 p1 of bacterial culture (10 8 CFU) of P. aeruginosa were instilled into each ear. Ears were lavaged with saline and plated onto Pseudomonas isolation media.
- TABLE 6 summarizes the results of these studies.
- a soluble fraction of 0.05 w/v % finafloxacin was required to achieve sterilization of all ears.
- Compositions 9, 17, and 18 had a soluble fraction greater than 0.05 w/v %, but had a lower total concentration of finafloxacin (0.075, 0.075, and 0.1 w/v %, respectively).
- Formulation 1 with a pH of 5.5, was determined to not meet stability requirements due to the formation of needle-like particles of finafloxacin hydrochloride salt after 2 weeks. However, formulations 2 and 3 with pH of 6.0 and 6.2, respectively, did not exhibit finafloxacin hydrochloride particulate formation during the study. Other formulations of the present invention were tested (e.g., Example 1 above), and did not exhibit the finafloxacin hydrochloride particulate formation found at lower pH.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Ophthalmology & Optometry (AREA)
- Dispersion Chemistry (AREA)
- Otolaryngology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention relates to methods for treating an ophthalmic, otic, or nasal infection comprising treating the infected tissue with a suspension composition comprising finafloxacin or a finafloxacin derivative. The present invention also relates to antimicrobial compositions comprising finafloxacin free base or a finafloxacin derivative. The compositions are suitable for the treatment of ophthalmic, otic, or nasal infections.
Description
- The present invention generally relates to suspension compositions comprising a fluoroquinolone. The present invention specifically relates to suspension compositions comprising finafloxacin or a finafloxacin derivative.
- Quinolone antibiotics are known to have desirable broad-spectrum antimicrobial properties. For example, quinolone compounds for use in the treatment of ophthalmic, otic, and nasal conditions are disclosed in U.S. Pat. No. 6,716,830, the entire contents of which are incorporated by reference herein.
- For use in pharmaceutical therapeutics, quinolone antibiotics must be formulated as stable, efficacious compositions. Unstable compositions can precipitate particulate matter when stored for a period of time, or can experience degradation of the active pharmaceutical ingredient or an excipient. Such compositions are unlikely to be approved by regulatory agencies due to safety concerns and other considerations.
- Finafloxacin is a broad-spectrum fluoroquinolone that has been previously disclosed in U.S. patent application Ser. No. 12/829,973 for the treatment of ophthalmic, otic, and nasal infection. Finafloxacin antimicrobial activity peaks at pH ranges between 5 and 6. However, aqueous solutions of finafloxacin with this pH were found to have precipitates form in stability studies. Accordingly, new compositions of finafloxacin with better stability characteristics are needed.
- The present invention relates to suspension compositions comprising finafloxacin or a pharmaceutically acceptable salt, derivative, enantiomer, or hydrate thereof. Such finafloxacin compositions are for the treatment of microbial infection, including ophthalmic, otic, and nasal infections.
- As noted above, finafloxacin has the greatest antimicrobial efficacy at low pH. However, solution compositions of finafloxacin suffered from low solubility and stability at the optimum pH, often producing undesired precipitates. The present invention provides stable, efficacious finafloxacin suspension compositions. Preferred finafloxacin suspensions have a soluble fraction of finafloxacin greater than 0.05% w/v and have a ratio of suspended to soluble finafloxacin between 18 to 1 and 1 to 1.
- An embodiment of the present invention is a method for treating an infected tissue comprising treating the infected tissue with a topical suspension composition comprising finafloxacin. In a preferred embodiment, once a day dosing of the topical suspension is used to treat the infected tissue. Suspension formulations of the present invention are particularly useful in low frequency dosing regimens as the high soluble fraction of finafloxacin can provide immediate antimicrobial activity while the suspended fraction dissolves over time to provide extended duration of action.
- Yet another embodiment of the present invention relates to suspension compositions comprising finafloxacin free base. A particularly preferred finafloxacin free base suspension composition comprises finafloxacin free base form A, which is stable at elevated temperatures used to heat sterilize such compositions. Preferred suspensions also comprise a solubilizer such as a divalent cation species to increase the soluble finafloxacin fraction in the composition.
- The foregoing brief summary broadly describes the features and technical advantages of certain embodiments of the present invention. Additional features and technical advantages will be described in the detailed description of the invention that follows. Novel features which are believed to be characteristic of the invention will be better understood from the detailed description of the invention when considered in connection with any accompanying figures. However, figures provided herein are intended to help illustrate the invention or assist with developing an understanding of the invention, and are not intended to be definitions of the invention's scope.
- A more complete understanding of the present invention and the advantages thereof may be acquired by referring to the following description, taken in conjunction with the figures of the accompanying drawing in which like reference numbers indicate like features and wherein:
-
FIG. 1 illustrates the x-ray diffraction pattern of the form A crystalline form of finafloxacin free base; and -
FIG. 2 illustrates overlay x-ray diffraction patterns of form B and form C of finafloxacin free base. - The compositions of the invention are particularly directed toward treating mammalian and human subjects having or at risk of having a microbial tissue infection. Microbial tissue infections that may be treated or prevented in accord with the method of the present invention are referred to in J. P. Sanford et al., “The Sanford Guide to Antimicrobial Therapy 2007” 37th Edition (Antimicrobial Therapy, Inc.). Particular microbial tissue infections that may be treatable by embodiments of the present invention include those infections caused by bacteria, protozoa, fungi, yeast, spores, and parasites. The present invention is also particularly directed to antimicrobial suspension compositions for and methods of treating ophthalmic, otic, and nasal/sinus infections.
- The suspension compositions of the present invention comprise finafloxacin or a pharmaceutically acceptable salt, derivative, enantiomer, or hydrate thereof. Finafloxacin (8-cyano-1-cyclopropyl-6-fluoro-7-[(4aS, 7aS)-hexahydropyrrolo [3,4-b]-1,4-oxazin-6(2H)-yl]-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid) has the following structure:
- A preferred form of finafloxacin for use in embodiments of the present invention is finafloxacin free base. At least three polymorphs of the finafloxacin free base have been identified (forms A, B, and C). Substantially pure finafloxacin free base form A is utilized in preferred embodiments, as it was discovered to be the most stable at high temperatures such as those encountered during heat sterilization. The crystalline form of finafloxacin free base form A has an X-ray diffraction spectrum substantially the same as the X-ray powder diffraction spectrum shown in
FIG. 1 . The X-ray powder diffraction spectrums of form B and form C of finafloxacin free base are shown inFIG. 2 . - As used herein, the term “substantially pure” with reference to a particular polymorphic form means that the polymorphic form includes less than 10%, preferably less than 5%, more preferably less than 3%, most preferably less than 1% by weight of any other physical forms of the compound.
- As used herein, the term “essentially the same” with reference to X-ray diffraction peak positions means that the typical peak position and intensity variability are taken into account. For example, one skilled in the art will appreciate that the peak positions (20) will show some inter-apparatus variability, typically as much as 0.2°. Further, one skilled in the art will appreciate that relative peak intensities will show inter-apparatus variability as well as variability due to degree of crystallinity, preferred orientation, prepared sample surface, and other factors known to those skilled in the art, and should be taken as qualitative measure only.
- Diasteromerically and enantiomerically pure finafloxacin is also preferred for use in embodiments of the present invention. As used herein, the term “finafloxacin” is intended to encompass finafloxacin and its pharmaceutically acceptable salts, derivatives, enantiomers, or hydrates. The phrase “pharmaceutically acceptable” is art-recognized and refers to compositions, polymers and other materials and/or dosage forms which are suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio as determined by one of ordinary skill in the art.
- Finafloxacin and derivatives thereof can be synthesized according to the methods described in U.S. Pat. No. 6,133,260 to Matzke et al., the contents of which are herein incorporated by reference in their entirety. Finafloxacin free base form A is generated by treating finafloxacin hydrochloride with a hydroxide salt and then heating in water prior to drying. Finafloxacin form A may also be obtained in the solid state from finafloxacin free base form B with heat and/or vacuum drying. Furthermore, in the drug product compounding process, finafloxacin free base form A can be similarly be obtained from finafloxacin free base form B by heating in the aqueous phase.
- Suspension compositions of the present invention generally comprise finafloxacin at a concentration of 0.001 w/v % or greater. In a preferred embodiment, a composition of the present invention comprises finafloxacin at a concentration of 0.15 to 2.0 w/v %. In a more preferred embodiment, a composition of the present invention comprises finafloxacin at a concentration of 0.20 to 1.0 w/v %, and in another preferred embodiment comprises finafloxacin at a concentration of 0.25 to 0.60 w/v %. The concentrations listed refer to the total quantity of finafloxacin by weight in the suspension composition and include finafloxacin dissolved in the solution fraction and the particulate finafloxacin in the suspension fraction of the composition.
- The ratio of suspended finafloxacin to solubilized finafloxacin in the suspension composition may vary, but is typically between 18:1 and 1:1. In a preferred embodiment, the ratio is between 8:1 and 1:1. In a more preferred embodiment, the ratio is 4:1 to 2:1.
- The soluble finafloxacin concentration of the suspensions may vary, but is typically greater than 0.05 w/v %. In a preferred embodiment, the soluble finafloxacin concentration is greater than 0.075 w/v %, and in a most preferred embodiment, the soluble finafloxacin concentration is greater than 0.1 w/v %. In certain preferred embodiments, a high soluble fraction is maintained in a stable suspension having a preferred pH of 5.6 to 6.5 and a most preferred pH of 5.8 to 6.2 and a concentration of solubilizer (such as magnesium chloride) of 0.02 to 0.1 w/v %. Suspensions with a pH outside this range often have undesirable polymorph changes or particulate growth as shown in Example 10 below. In a preferred embodiment of the present invention, finafloxacin suspensions are comprised substantially of finafloxacin free base form A (e.g., greater than 95% form A preferred; greater than 99% form A particularly preferred), and maintain this polymorphic form for a time period sufficient to meet stability standards (e.g., 12 months or greater in preferred embodiments, 12 months to 18 months in other embodiments, or 6 months to 18 months in yet other embodiments) at room temperature (15-25° C.).
- It is generally desirable to maximize the soluble finafloxacin concentration, and solubilizers can be added to the suspension compositions to increase the amount of dissolved finafloxacin. While solubilizers known in the art can be used, divalent cations such as magnesium and calcium can be used in preferred embodiments. The concentration of such divalent cations can vary but is generally between 0.98 and 4.9 mM. In a preferred embodiment, the concentration of the divalent cation is between 2.0 and 3.9 mM, and in a most preferred embodiment the divalent cation concentration is between 2.5 and 3.4 mM. A particularly preferred solubilizer is magnesium salt such as magnesium chloride, magnesium acetate and magnesium oxide. A particularly preferred salt of magnesium is magnesium chloride. While the concentration of magnesium chloride may vary, a concentration of 0.02 to 0.10 w/v % is preferred, a concentration of 0.04 to 0.08 w/v % is more preferred, and a concentration of 0.05 to 0.07 is particularly preferred.
- Suspension compositions of the present invention are prepared using a buffering system that maintains the composition at a pH of about 5.6 to 7. Preferred finafloxacin compositions have a pH of 5.6 to 6.5, and particularly preferred compositions have a pH of 5.8 to 6.2.
- Milling agents to produce uniform finafloxacin particle sizes are also utilized in certain embodiments of the present invention. In a preferred embodiment, tyloxapol is used as a milling agent to produce finafloxacin mean volume particle sizes of less than 10 μm, and in a most preferred embodiment, less than 5 μm.
- Suspending agents may also be used in certain embodiments to maintain a uniform suspension. Suspension uniformity can be measured by pouring a formulation into a 50 mL graduated cylinder at 25° C. and measuring the clear and unclear portions of the formulation over time as the formulation settles. Uniformity is the ratio (expressed as a percentage) of unclear formulation in the graduated cylinder. In preferred embodiments, such agents can maintain substantially uniform finafloxacin suspensions (i.e., with 95% or greater unclear suspended formulation) for a period greater than 4 hours, and in a most preferred embodiment greater than 8 hours. In a preferred embodiment, the suspending agent is hydroxyethylcellulose (HEC) at a concentration of 0.1 to 0.3 w/v %, and most preferably HEC at a concentration of 0.2 percent.
- Finafloxacin suspensions of the present invention can be redispersed with shaking at 25° C. in less than 30 s in a preferred embodiment and less than 15s in a most preferred embodiment.
- Certain embodiments of the present invention are particularly useful for treating ophthalmic tissue infections. Examples of ophthalmic conditions that may be treated using compositions and methods of the present invention include conjunctivitis, keratitis, blepharitis, dacyrocystitis, hordeolum and corneal ulcers. The methods and compositions of the invention may also be used prophylactically in various ophthalmic surgical procedures that create a risk of infection.
- Otic and nasal/sinus tissue infections may also be treated by embodiments of the present invention. Examples of otic conditions that may be treated with compositions and methods of the present invention include acute otitis externa and otitis media (where the tympanic membrane has ruptured or tympanostomy tubes have been implanted). Examples of nasal/sinus conditions that may be treated with compositions and methods of the present invention include rhinitis, sinusitis, nasal carriage and situations where the nasal or sinus tissues are affected by surgery.
- Embodiments of the present invention may also be used prophylactically to prevent infection of a tissue by an infectious agent. In such embodiments, a tissue at risk of infection is contacted with a composition of the present invention.
- In particular embodiments, a composition of the present invention is administered once a day. However, the compositions of the present invention may also be formulated for administration at any frequency of administration, including once a week, once every 5 days, once every 3 days, once every 2 days, twice a day, three times a day, four times a day, five times a day, six times a day, eight times a day, every hour, or any greater frequency. Such dosing frequency is also maintained for a varying duration of time depending on the therapeutic regimen. The duration of a particular therapeutic regimen may vary from one-time dosing to a regimen that extends for weeks. One of ordinary skill in the art would be familiar with determining a therapeutic regimen for a specific indication that incorporates a pharmaceutically effective amount of finafloxacin or a composition thereof. The phrase “pharmaceutically effective amount” is an art-recognized term, and refers to an amount of an agent that, when incorporated into a pharmaceutical composition of the present invention, produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment. The effective amount may vary depending on such factors as the disease or infectious agent being treated, the particular composition being administered, or the severity of the disease or infection agent.
- In addition to finafloxacin, the compositions of the present invention optionally comprise one or more excipients. Excipients commonly used in pharmaceutical compositions include, but are not limited to, tonicity agents, preservatives, chelating agents, buffering agents, surfactants and antioxidants. Other excipients comprise solubilizing agents, stabilizing agents, comfort-enhancing agents, polymers, emollients, pH-adjusting agents and/or lubricants. Any of a variety of excipients may be used in compositions of the present invention including water, mixtures of water and water-miscible solvents, such as C1-C7-alkanols, vegetable oils or mineral oils comprising from 0.5 to 5% non-toxic water-soluble polymers, natural products, such as alginates, pectins, tragacanth, karaya gum, xanthan gum, carrageenin, agar and acacia, starch derivatives, such as starch acetate and hydroxypropyl starch, and also other synthetic products such as polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxide, preferably cross-linked polyacrylic acid and mixtures of these products. In preferred embodiments, the concentration of the excipient(s) are, typically, from 0.01 to 100 times the concentration of finafloxacin and the excipient(s) are selected on the basis of their inertness towards finafloxacin.
- Suitable tonicity-adjusting agents include, but are not limited to, mannitol, sodium chloride, glycerin, sorbitol and the like. Suitable buffering agents include, but are not limited to, phosphates, borates, acetates and the like. Suitable surfactants include, but are not limited to, ionic and nonionic surfactants, though nonionic surfactants are preferred, RLM 100,
POE 20 cetylstearyl ethers such as Procol® CS20 and poloxamers such as Pluronic® F68. Suitable antioxidants include, but are not limited to, sulfites, ascorbates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). - The compositions set forth herein may comprise one or more preservatives. Examples of such preservatives include p-hydroxybenzoic acid ester, alkyl-mercury salts of thiosalicylic acid, such as thiomersal, phenylmercuric nitrate, phenylmercuric acetate, phenylmercuric borate, sodium perborate, sodium chlorite, parabens such as methylparaben or propylparaben, alcohols such as chlorobutanol, benzyl alcohol or phenyl ethanol, guanidine derivatives such as polyhexamethylene biguanide, sodium perborate, or sorbic acid. In certain embodiments, the composition may be self-preserved that no preservation agent is required. In preferred embodiments, a suspension composition is preserved to meet European Pharmacopoeia (Ph. Eur) standards with a benzalkonium chloride (BAC) concentration of 0.004 to 0.012 w/v %, with a most preferred BAC concentration of 0.005 w/v %.
- For use in sinus applications, compositions may be used that comprise excipients suitable for aerosol formation using nebulizers or other such devices well known to those of skill in the art.
- Some compositions of the present invention are ophthalmically suitable for application to a subject's eyes. In preferred aspects, compositions that include finafloxacin will be formulated for topical application to the eye in aqueous suspension in the form of drops. The term “aqueous” typically denotes an aqueous composition wherein the excipient is >50%, more preferably >75% and in particular >90% by weight water. These drops may be delivered from a single dose ampoule which may preferably be sterile and thus render bacteriostatic components of the composition unnecessary. Alternatively, the drops may be delivered from a multi-dose bottle which may preferably comprise a device which extracts any preservative from the composition as it is delivered, such devices being known in the art.
- In other aspects, components of the invention may be delivered to the eye as a concentrated gel or a similar vehicle, or as dissolvable inserts that are placed beneath the eyelids. In yet other aspects, components of the invention may be delivered to the eye as ointment, water-in-oil and oil-in-water emulsions.
- For topical compositions to the eye, the compositions are preferably isotonic, or slightly hypotonic in order to combat any hypertonicity of tears caused by evaporation and/or disease. This may require a tonicity agent to bring the osmolality of the composition to a level at or near 210-420 milliosmoles per kilogram (mOsm/kg). The compositions of the present invention generally have an osmolality in the range of 220-420 mOsm/kg, and preferably have an osmolality in the range of 260-330 mOsm/kg.
- In certain embodiments, finafloxacin is formulated in a composition that comprises one or more tear substitutes. A variety of tear substitutes are known in the art and include, but are not limited to: monomeric polyols, such as, glycerol, propylene glycol, and ethylene glycol; polymeric polyols such as polyethylene glycol; cellulose esters such hydroxypropylmethyl cellulose, carboxy methylcellulose sodium and hydroxy propylcellulose; dextrans such as dextran 70; vinyl polymers, such as polyvinyl alcohol; and carbomers, such as carbomer 934P, carbomer 941, carbomer 940 and carbomer 974P. Certain compositions of the present invention may be used with contact lenses or other ophthalmic products.
- In some embodiments, the compositions set forth herein have a viscosity of 0.5-100 cps, preferably 0.5-50 cps, and most preferably 1-20 cps. This relatively low viscosity insures that the product is comfortable, does not cause blurring, and is easily processed during manufacturing, transfer and filling operations.
- In the methods set forth herein, administration to a subject of a pharmaceutically effective amount of a composition that includes finafloxacin may be by any method known to those of ordinary skill in the art. For example, the composition may be administered locally, topically, intradermally, intralesionally, intranasally, subcutaneously, orally, by inhalation, by injection, by localized perfusion bathing target cells directly, via a catheter, or via lavage.
- In particular embodiments, the composition is administered topically to an ocular surface. Regarding ophthalmic administration, it is contemplated that all local routes to the eye may be used, including topical, subconjunctival, periocular, retrobulbar, subtenon, intraocular, subretinal, posterior juxtascleral, and suprachoroidal administration.
- The compositions of the present invention may also comprise an anti-inflammatory agent. The compositions of the present invention may also contain one or more anti-inflammatory agents. The anti-inflammatory agents utilized in the present invention are broadly classified as steroidal or non-steroidal. The preferred steroidal anti-inflammatory agents are glucocorticoids. Glucocorticoids for ophthalmic, otic, or nasal use include dexamethasone, loteprednol, rimexolone, prednisolone, fluorometholone, hydrocortisone, mometasone, fluticasone, beclomethasone, flunisolide, triamcinolone and budesonide.
- Non-steroidal anti-inflammatory agents include, but are not limited to, prostaglandin H synthetase inhibitors (Cox I or Cox II), also referred to as cyclooxygenase type I and type II inhibitors, such as diclofenac, flurbiprofen, ketorolac, suprofen, nepafenac, amfenac, indomethacin, naproxen, ibuprofen, bromfenac, ketoprofen, meclofenamate, piroxicam, sulindac, mefanamic acid, diflusinal, oxaprozin, tolmetin, fenoprofen, benoxaprofen, nabumetome, etodolac, phenylbutazone, aspirin, oxyphenbutazone, NCX-4016, HCT-1026, NCX-284, NCX-456, tenoxicam and carprofen; cyclooxygenase type II selective inhibitors, such as NS-398, vioxx, celecoxib, P54, etodolac, L-804600 and S-33516; PAF antagonists, such as SR-27417, A-137491, ABT-299, apafant, bepafant, minopafant, E-6123, BN-50727, nupafant and modipafant; PDE IV inhibitors, such as ariflo, torbafylline, rolipram, filaminast, piclamilast, cipamfylline, CG-1088, V-11294A, CT-2820, PD-168787, CP-293121, DWP-205297, CP-220629, SH-636, BAY-19-8004, and roflumilast; inhibitors of cytokine production, such as inhibitors of the NF.kappa.B transcription factor; or other anti-inflammatory agents known to those skilled in the art.
- The concentrations of the anti-inflammatory agents contained in the compositions of the present invention will vary based on the agent or agents selected and the type of inflammation being treated. The concentrations will be sufficient to reduce inflammation in the targeted ophthalmic, otic or nasal tissues following topical application of the compositions to those tissues. Such an amount is referred to herein as “an anti-inflammatory effective amount”. The compositions of the present invention will typically contain one or more anti-inflammatory agents in an amount of from about 0.01 to about 2.0 w/v %, preferably from 0.05 to 1.0 w/v %, and most preferably 0.05 to 0.2 w/v %. In a particularly preferred embodiment, the anti-inflammatory compound is dexamethasone at a concentration of 0.1 w/v %.
- Various otic administration techniques are also contemplated. In particular embodiments, the composition may be delivered directly to the ear canal (for example: topical otic drops or ointments; slow release devices in the ear or implanted adjacent to the ear). Local administration routes include otic intramuscular, intratympanic cavity and intracochlear injection routes for the compositions. It is further contemplated that certain compositions of the invention may be formulated in intraotic inserts or implant devices. For instance, delivery of the compositions can be accomplished by endoscopic assisted (including laser-assisted endoscopy to make the incision into the tympanic membrane) injection into the tympanic cavity as set forth, for example, in Tsue et al., Amer. J. Otolaryngology, Vol. 16(3):158-164, 1995; Silverstein et al., Ear Nose Throat, Vol. 76:674-678, 1997; Silverstein et al., Otolaryngol Head Neck Surg, Vol. 120:649-655, 1999. Local administration can also be achieved by injection through the tympanic membrane using a fine (EMG recording) needle, through use of an indwelling catheter placed through a myringotomy incision, and injection or infusion through the Eustachian tube by means of a small tubal catheter. Furthermore, the compositions can be administered to the inner ear by placement of gelfoam or similar absorbent and adherent product soaked with the compositions against the window membrane of the middle/inner ear or adjacent structure with due discretion and caution by a skilled clinician. Various other devices can be used to deliver the compositions to the affected ear compartment; for example, via catheter or as exemplified in U.S. Pat. No. 5,476,446 which provides a multi-functional apparatus specifically designed for use in treating and/or diagnosing the inner ear of the human subject. Also see U.S. Pat. No. 6,653,279 for other devices for this purpose.
- The compositions of the present invention may be prepared by conventional methods of preparing aqueous pharmaceutical suspension compositions, including sizing the drug using known sizing techniques, such as ball-milling. For example, a slurry containing finafloxacin, a milling agent such as tyloxopol and milling beads is tumbled for a time sufficient to obtain drug of desired particle sizes. The sizing beads are then separated from the slurry and the slurry is added to the remaining aqueous ingredients. Preferably, however, the compositions of the present invention are made in a specific manner. According to the preferred method, finafloxacin is first added to a mixture of 1% tyloxopol in purified water with beads. The mixture is heated in an autoclave to sterilize the mixture (and to ensure conversion of the finafloxacin to the polymorph form A). The slurry is milled in aseptic conditions to preferably produce finafloxacin particles smaller than 10 μm mean volume. Following removal of the milling beads, the finafloxacin slurry is mixed with the remainder of the suspension components and pH adjusted.
- Administration of the compositions described herein for the treatment of nasal infection can be via a number of methods known to those of skill in the art. For example, such compositions can be administered in droplet form or by aerosol formation.
- Examples 1-7 below were prepared according to embodiments of the present invention.
-
-
Ingredient % w/v Finafloxacin 0.1 to 1.0 Tyloxapol 0.01 Hydroxyethylcellulose 0.2 Sodium chloride 0.86 Magnesium chloride 0.06 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 6 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin 0.1 to 1.0 Lactic Acid 0.18 Glycerin 2.4 Boric Acid 0.3 Tromethamine Adjust pH to 6 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin Free Base 0.3 Tyloxapol 0.01 Hydroxyethylcellulose 0.2 Sodium chloride 0.86 Magnesium chloride 0.12 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 5.8 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin Free Base 0.3 Tyloxapol 0.01 Hydroxyethylcellulose 0.2 Sodium chloride 0.86 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 6.0 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin 0.3 Tyloxapol 0.01 Hydroxyethylcellulose 0.2 Sodium chloride 0.86 Magnesium chloride 0.06 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 6 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin 0.3 Dexamethasone 0.1 Tyloxapol 0.05 Hydroxyethylcellulose 0.2 Sodium chloride 0.86 Magnesium chloride 0.06 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 6 Purified Water q.s. 100% -
-
Ingredient % w/v Finafloxacin 0.3 Dexamethasone 0.1 Tyloxapol 0.05 Carboxymethylcellulose 0.5 Sodium chloride 0.86 Magnesium chloride 0.06 Benzalkonium chloride 0.005 Sodium hydroxide Adjust pH to 6 Purified Water q.s. 100% - A finafloxacin solution composition at pH 5.8 and 7.3 was compared to ciprofloxacin and ofloxacin compositions using standard in vitro antimicrobial susceptibility tests (M07-08 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition (January 2009, Clinical and Laboratory Standards Institute), herein incorporated by reference). Minimum inhibitory concentrations (MIC50) were determined using organisms commonly found in otic and ophthalmic infections. The MIC50 was the lowest concentration of antibiotic that prevented growth of the test organism, as determined visually by a lack of turbidity.
- The results of the experiment are presented below in TABLES 1-5. At acidic pH, finafloxacin generally had greater activity against both Gram-positive and Gram-negative organisms than the fluoroquinolones ciprofloxacin and ofloxacin, both of which are used for the treatment of otic infections. Higher activity under acidic conditions is important for an otic formulation since a low pH formulation is preferred to slow bacterial and fungal growth, as well as the fact the pH environment of the external ear canal is ˜pH 6.
-
TABLE 1 Antimicrobial Profiles of Finafloxacin and Comparator Fluoroquinolones against Ciprofloxacin-Resistant S. aureus pH 5.8 pH 7.3 Cipro- Oflox- Cipro- Oflox- Fina. floxacin acin Fina. floxacin acin Isolates 12 12 12 12 12 12 MIC90 8 >256 >512 16 128 256 MIC50 4 128 64 16 128 32 Range 0.5-8 16->256 16->512 2-16 4-128 2-256 -
TABLE 2 Antimicrobial Profiles of Finafloxacin and Comparator Fluoroquinolones against Ciprofloxacin-Susceptible S. aureus pH 5.8 pH 7.3 Cipro- Oflox- Cipro- Oflox- Fina. floxacin acin Fina. floxacin acin Isolates 8 8 8 8 8 8 MIC90 N/A N/A N/A N/A N/A N/A MIC50 0.016 1 1 0.125 0.25 0.25 Range 0.008- 0.5- 0.5- 0.016- 0.125- 0.125- 0.125 0.4 64 0.25 1 0.5 -
TABLE 3 Antimicrobial Profiles of Finafloxacin and Comparator Fluoroquinolones against Ciprofloxacin-Resistant P. aeruginosa pH 5.8 pH 7.3 Cipro- Oflox- Cipro- Oflox- Fina. floxacin acin Fina. floxacin acin Isolates 11 11 11 11 11 11 MIC90 512 >512 >512 >512 512 >512 MIC50 16 64 256 512 16 64 Range 2-512 8->512 64->512 8->512 4-512 8->512 -
TABLE 4 Antimicrobial Profiles of Finafloxacin and Comparator Fluoroquinolones against Ciprofloxacin-Susceptible P. aeruginosa pH 5.8 pH 7.3 Cipro- Oflox- Cipro- Oflox- Fina. floxacin acin Fina. floxacin acin Isolates 14 14 14 14 14 14 MIC90 4 8 32 16 2 4 MIC50 1 1 4 4 0.5 2 Range 0.25-4 0.125-8 1-32 2-16 0.063-2 1-4 -
TABLE 5 Antimicrobial Profiles of Finafloxacin and Comparator Fluoroquinolones against E. coli pH 5.8 pH 7.3 Cipro- Oflox- Cipro- Oflox- Fina. floxacin acin Fina. floxacin acin Isolates 10 10 10 10 10 10 MIC90 8 >1024 512 64 128 16 MIC50 4 256 512 32 16 16 Range 0.0078- 0.063- 0.25- 0.008- ≦0.008- 0.016- 8 0 > 1024 512 64 128 16 - Finafloxacin test compositions (0.045 to 0.3% total finafloxacin) were evaluated in a guinea pig model of acute otitis externa (AOE) using Pseudomonas aeruginosa. Guinea pig ears were slightly abraded and 200 p1 of bacterial culture (108 CFU) of P. aeruginosa were instilled into each ear. Ears were lavaged with saline and plated onto Pseudomonas isolation media. TABLE 6 summarizes the results of these studies. Generally, a soluble fraction of 0.05 w/v % finafloxacin was required to achieve sterilization of all ears. Compositions 9, 17, and 18 had a soluble fraction greater than 0.05 w/v %, but had a lower total concentration of finafloxacin (0.075, 0.075, and 0.1 w/v %, respectively).
-
TABLE 6 In vivo Efficacy Summary Total Finafloxacin Ears Soluble Finafloxacin as free base Composition Sterilized (w/v %) (w/v %) 1 4/4 0.059 0.3 2 2/4 0.044 0.3 3 2/4 0.047 0.3 4 2/4 0.044 0.3 5 4/4 0.055 0.3 6 4/4 0.093 0.3 7 4/4 0.147 0.3 8 0/4 0.045 0.045 9 2/4 0.075 0.075 10 4/4 0.15 0.015 11 4/4 0.035 0.3 12 4/4 0.088 0.3 13 4/4 0.156 0.3 14 4/4 0.034 0.3 15 4/4 0.089 0.3 16 4/4 0.157 0.3 17 0/4 0.075 0.075 18 2/4 0.10 0.1 19 4/4 0.15 0.15 20 4/4 0.12 0.3 21 4/4 0.03 0.3 22 4/4 0.14 0.3 23 4/4 0.15 0.3 24 4/4 0.075 0.15 25 4/4 0.11 0.15 - Exploratory stability studies were conducted to physical and chemical stability characteristics of formulations of the present invention. The formulations studied are listed in Table 7 below.
-
Ingredient 1 (w/v %) 2 (w/v %) 3 (w/v %) Finafloxacin 0.3 0.3 0.3 Tyloxapol 0.01 0.02 0.01 Magnesium chloride 0.12 0.12 0.08 Hydroxyethyl 0.2 0.2 0.2 cellulose Sodium chloride 0.86 0.86 0.86 Benzalkonium 0.005 0.005 0.005 chloride Sodium chloride and/ pH to 5.5 pH to 6.0 pH to 6.2 or hydrochloric acid Purified water QS 100% QS 100% QS 100% -
Formulation 1, with a pH of 5.5, was determined to not meet stability requirements due to the formation of needle-like particles of finafloxacin hydrochloride salt after 2 weeks. However,formulations - The present invention and its embodiments have been described in detail. However, the scope of the present invention is not intended to be limited to the particular embodiments of any process, manufacture, composition of matter, compounds, means, methods, and/or steps described in the specification. Various modifications, substitutions, and variations can be made to the disclosed material without departing from the spirit and/or essential characteristics of the present invention. Accordingly, one of ordinary skill in the art will readily appreciate from the disclosure that later modifications, substitutions, and/or variations performing substantially the same function or achieving substantially the same result as embodiments described herein may be utilized according to such related embodiments of the present invention. Thus, the following claims are intended to encompass within their scope modifications, substitutions, and variations to processes, manufactures, compositions of matter, compounds, means, methods, and/or steps disclosed herein.
Claims (17)
1. A topical suspension composition comprising finafloxacin, a solubilizer, and a suspending agent, and wherein said finafloxacin is finafloxacin free base.
2. A composition according to claim 1 , said composition having a ratio of suspended to solubilized finafloxacin between 18:1 and 1:1.
3. A composition according to claim 1 , wherein the soluble concentration of finafloxacin is greater than 0.05 w/v %.
4. A composition according to claim 1 , wherein said finafloxacin is finafloxacin free base at a concentration of 0.15 to 2.0 w/v %.
5. A composition according to claim 1 , wherein said finafloxacin is finafloxacin free base form A.
6. A composition according to claim 1 comprising finafloxacin or a pharmaceutically acceptable salt thereof at a concentration of 0.15 to 2.0 w/v %.
7. A composition according to claim 1 , said composition having a pH of 5.8 to 6.2.
8. A composition according to claim 1 , wherein said solubilizer is magnesium salt at a concentration of 0.98 to 4.9 mM.
9. A composition according to claim 1 , wherein said solubilizer is magnesium chloride at a concentration of 0.05 to 0.07 w/v %.
10. A composition according to claim 1 wherein said suspending agent is hydroxyethylcellulose.
11. A composition according to claim 10 , wherein said suspending agent is hydroxyethylcellulose at a concentration of 0.1 to 0.3 w/v %, and wherein said composition maintains substantial uniformity for greater than 8 hours at 25° C.
12. A composition according to claim 1 , further comprising an anti-inflammatory agent.
13. A composition according to claim 12 , wherein said anti-inflammatory agent is dexamethasone.
14. A composition according to claim 13 , wherein said composition comprises dexamethasone at a concentration of 0.05 to 1.0 w/v %.
15. A method for treating an ophthalmic, otic, or nasal infection comprising:
treating the infection with a pharmaceutically effective amount of a composition according to claim 1 .
16. A method according to claim 15 wherein said infection is acute otitis externa or acute otitis media with tympanostomy tubes.
17. A method according to claim 15 , said method comprising instilling the composition into the affected tissue once a day.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/172,223 US20160279137A1 (en) | 2012-12-06 | 2016-06-03 | Finafloxacin suspension compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261734268P | 2012-12-06 | 2012-12-06 | |
US14/086,651 US9504691B2 (en) | 2012-12-06 | 2013-11-21 | Finafloxacin suspension compositions |
US15/172,223 US20160279137A1 (en) | 2012-12-06 | 2016-06-03 | Finafloxacin suspension compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/086,651 Continuation US9504691B2 (en) | 2012-12-06 | 2013-11-21 | Finafloxacin suspension compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160279137A1 true US20160279137A1 (en) | 2016-09-29 |
Family
ID=50881613
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/086,651 Active US9504691B2 (en) | 2012-12-06 | 2013-11-21 | Finafloxacin suspension compositions |
US15/172,223 Abandoned US20160279137A1 (en) | 2012-12-06 | 2016-06-03 | Finafloxacin suspension compositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/086,651 Active US9504691B2 (en) | 2012-12-06 | 2013-11-21 | Finafloxacin suspension compositions |
Country Status (17)
Country | Link |
---|---|
US (2) | US9504691B2 (en) |
EP (1) | EP2928475B1 (en) |
JP (1) | JP5980440B2 (en) |
KR (1) | KR102175743B1 (en) |
CN (2) | CN109908081A (en) |
AR (1) | AR093813A1 (en) |
AU (1) | AU2013356488B2 (en) |
BR (1) | BR112015010927B1 (en) |
CA (1) | CA2888641C (en) |
CL (1) | CL2015001500A1 (en) |
ES (1) | ES2784653T3 (en) |
MX (1) | MX2015007182A (en) |
PH (1) | PH12015501230A1 (en) |
RU (1) | RU2693476C2 (en) |
UA (1) | UA115454C2 (en) |
WO (1) | WO2014088838A1 (en) |
ZA (1) | ZA201503102B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014115951A1 (en) | 2014-11-03 | 2016-05-04 | Merlion Pharmaceuticals Pte Ltd. | Compositions containing finafloxacin and tris |
DE102015100068A1 (en) * | 2015-01-06 | 2016-07-07 | Merlion Pharmaceuticals Pte Ltd. | FINAFLOXACIN FOR USE IN THE TREATMENT OF HARNWAY INFECTIONS |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011003091A1 (en) * | 2009-07-02 | 2011-01-06 | Alcon Research, Ltd. | Compositions comprising finafloxacin and methods for treating ophthalmic, otic, or nasal infections |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2832535B2 (en) * | 1989-04-04 | 1998-12-09 | 富山化学工業株式会社 | Method for solubilizing quinolone carboxylic acid or its salt |
US5750564A (en) | 1995-09-12 | 1998-05-12 | Hellberg; Mark | Anti-oxidant esters of non-steroidal anti-inflammatory agents |
DE19652239A1 (en) * | 1996-12-16 | 1998-06-18 | Bayer Ag | Use of 7- (2-oxa-5,8-diazabicyclo [4.3.0] non-8-yl) -quinolone and naphthyridonecarboxylic acid derivatives for the therapy of Helicobacter pylori infections and the associated gastroduodenal diseases |
AR020661A1 (en) * | 1998-09-30 | 2002-05-22 | Alcon Lab Inc | A PHARMACEUTICAL COMPOSITION TOPICA OFTALMICA, OTICA OR NASAL AND THE USE OF THE SAME FOR THE MANUFACTURE OF A MEDICINAL PRODUCT |
US6509327B1 (en) * | 1998-09-30 | 2003-01-21 | Alcon Manufacturing, Ltd. | Compositions and methods for treating otic, ophthalmic and nasal infections |
US6685958B2 (en) | 2001-04-25 | 2004-02-03 | Insite Vision Incorporated | Quinolone carboxylic acid compositions and related methods of treatment |
HU230396B1 (en) * | 2000-06-28 | 2016-04-28 | Smithkline Beecham Plc | Wet milling process |
WO2004006959A1 (en) * | 2002-07-16 | 2004-01-22 | Elan Pharma International, Ltd | Liquid dosage compositions of stable nanoparticulate active agents |
EP1534313B1 (en) * | 2002-07-30 | 2012-10-17 | Omeros Corporation | Ophthalmologic irrigation solutions and method |
CA2516429A1 (en) * | 2003-02-21 | 2004-10-14 | Sun Pharmaceutical Industries Limited | Stable ophthalmic formulation containing an antibiotic and a corticosteroid |
EP1761607B1 (en) * | 2004-06-16 | 2010-10-20 | Colour Ltd. | Method for producing beta-copper phthalocyanine blue pigments and use thereof |
US8158152B2 (en) * | 2005-11-18 | 2012-04-17 | Scidose Llc | Lyophilization process and products obtained thereby |
BRPI0907511A2 (en) * | 2008-02-15 | 2015-07-21 | Alcon Res Ltd | Topical ophthalmic pharmaceutical composition comprising fluoroquinolone derivatives for ophthalmic applications and use thereof |
WO2010011942A1 (en) | 2008-07-25 | 2010-01-28 | Cox Raleigh L | A switch and switch actuator |
RU2401831C2 (en) * | 2008-12-15 | 2010-10-20 | Алла Хем, Ллс | Medication, reducing desire for alcohol, pharmaceutical composition and methods of its obtaining, medication and treatment method |
JP2010265261A (en) * | 2009-04-17 | 2010-11-25 | Santen Pharmaceut Co Ltd | Levocabastine suspension type eye lotion |
FR2950353B1 (en) | 2009-09-18 | 2012-01-13 | Commissariat Energie Atomique | METHOD FOR IMPROVING FRICTION RESISTANCE PROPERTIES. |
-
2013
- 2013-11-21 US US14/086,651 patent/US9504691B2/en active Active
- 2013-11-22 AU AU2013356488A patent/AU2013356488B2/en active Active
- 2013-11-22 ES ES13860388T patent/ES2784653T3/en active Active
- 2013-11-22 RU RU2015126799A patent/RU2693476C2/en active
- 2013-11-22 KR KR1020157010635A patent/KR102175743B1/en active IP Right Grant
- 2013-11-22 CA CA2888641A patent/CA2888641C/en active Active
- 2013-11-22 CN CN201910172748.2A patent/CN109908081A/en active Pending
- 2013-11-22 UA UAA201504366A patent/UA115454C2/en unknown
- 2013-11-22 BR BR112015010927-6A patent/BR112015010927B1/en active IP Right Grant
- 2013-11-22 CN CN201380063156.8A patent/CN104869999A/en active Pending
- 2013-11-22 WO PCT/US2013/071397 patent/WO2014088838A1/en active Application Filing
- 2013-11-22 EP EP13860388.1A patent/EP2928475B1/en active Active
- 2013-11-22 MX MX2015007182A patent/MX2015007182A/en unknown
- 2013-11-22 JP JP2015543163A patent/JP5980440B2/en active Active
- 2013-12-05 AR ARP130104513A patent/AR093813A1/en unknown
-
2015
- 2015-05-06 ZA ZA2015/03102A patent/ZA201503102B/en unknown
- 2015-06-01 PH PH12015501230A patent/PH12015501230A1/en unknown
- 2015-06-03 CL CL2015001500A patent/CL2015001500A1/en unknown
-
2016
- 2016-06-03 US US15/172,223 patent/US20160279137A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011003091A1 (en) * | 2009-07-02 | 2011-01-06 | Alcon Research, Ltd. | Compositions comprising finafloxacin and methods for treating ophthalmic, otic, or nasal infections |
Also Published As
Publication number | Publication date |
---|---|
EP2928475A1 (en) | 2015-10-14 |
ZA201503102B (en) | 2016-11-30 |
EP2928475B1 (en) | 2020-03-04 |
ES2784653T3 (en) | 2020-09-29 |
BR112015010927B1 (en) | 2022-05-10 |
KR102175743B1 (en) | 2020-11-06 |
EP2928475A4 (en) | 2016-05-11 |
PH12015501230A1 (en) | 2015-08-17 |
CN109908081A (en) | 2019-06-21 |
BR112015010927A2 (en) | 2017-07-11 |
CL2015001500A1 (en) | 2015-08-28 |
MX2015007182A (en) | 2015-10-12 |
US20140162990A1 (en) | 2014-06-12 |
CN104869999A (en) | 2015-08-26 |
AR093813A1 (en) | 2015-06-24 |
JP2016500079A (en) | 2016-01-07 |
RU2015126799A (en) | 2017-01-13 |
UA115454C2 (en) | 2017-11-10 |
US9504691B2 (en) | 2016-11-29 |
AU2013356488B2 (en) | 2018-04-26 |
KR20150090045A (en) | 2015-08-05 |
AU2013356488A1 (en) | 2015-04-23 |
CA2888641A1 (en) | 2014-06-12 |
CA2888641C (en) | 2021-02-23 |
RU2693476C2 (en) | 2019-07-03 |
WO2014088838A1 (en) | 2014-06-12 |
JP5980440B2 (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9993483B2 (en) | Compositions and methods for treating ophthalmic, octic, or nasal infections | |
JP5563041B2 (en) | Antibiotic composition for eye, ear and nose treatment | |
US20160279137A1 (en) | Finafloxacin suspension compositions | |
EP2139519A1 (en) | N-halogenated amino acid formulations with anti-inflammatory compounds | |
US20170333441A1 (en) | Compositions for treating microbial infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERLION PHARMACEUTICALS, PTE., LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCON RESEARCH LTD.;REEL/FRAME:047460/0377 Effective date: 20180828 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |