US20160273790A1 - System for air temperature maintenance with air cleaning feature - Google Patents

System for air temperature maintenance with air cleaning feature Download PDF

Info

Publication number
US20160273790A1
US20160273790A1 US14/663,545 US201514663545A US2016273790A1 US 20160273790 A1 US20160273790 A1 US 20160273790A1 US 201514663545 A US201514663545 A US 201514663545A US 2016273790 A1 US2016273790 A1 US 2016273790A1
Authority
US
United States
Prior art keywords
air
filter
conduit
activated carbon
carbon filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/663,545
Inventor
James Cunningham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/663,545 priority Critical patent/US20160273790A1/en
Publication of US20160273790A1 publication Critical patent/US20160273790A1/en
Priority to US15/420,184 priority patent/US20170184320A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • F24F3/1603
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/158Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • F24F2003/1614
    • F24F2003/1625

Definitions

  • This invention relates to systems for maintaining the air within the interior of a building at a desired temperature, such as forced-air heating systems, air-conditioning systems, and combined forced-air heating and air-conditioning systems (HVAC) systems.
  • HVAC forced-air heating and air-conditioning systems
  • the invention relates particularly to an easily installed apparatus for cleaning the air as it circulates through the system.
  • VOCs airborne volatile organic compounds
  • a carbon filter can be preceded by a fiber filter in an air return duct.
  • the air velocities are such that the contact time is too short for the carbon filter to remove pollutants efficiently.
  • the invention is a simple and easy-to-install, add-on, by-pass carbon filtration system for removing indoor air pollutants, odors, VOCs and other gases, and from residential and commercial buildings.
  • the system is effective in homes and buildings with moderate to high levels of indoor pollutants or odors emanating from various sources, such as new construction materials, cooking, pets, cleaning chemicals, and outdoor environments having high levels of outdoor pollution.
  • the system can be used in commercial buildings such as nail or hair salons, pet stores, and other buildings in which VOCs and other chemicals of various kinds are used, and in any residence or commercial building the interior of which is liable to be contaminated by airborne gases, vapors and odors.
  • the system can also be used in homes or buildings having no noticeable contamination, but in which the residents or inhabitants desire to remove unknown indoor air pollutants in order to be confident that they are breathing clean, healthy, indoor air.
  • air handler means a heating system, an air conditioning system, or a combined heating and air conditioning system.
  • the preferred system utilizes a filter housing that holds a removable, high capacity activated carbon air filter.
  • the filter housing is connected to existing supply and return ducts, using conduit parts lengths of flexible, insulated duct, so that the filter-housing and the flexible conduit parts form a by-pass path allowing a portion of the air that would otherwise flow into the interior of the building to flow through the carbon filter through by-pass path.
  • the system is easily retrofitted to an existing air handler, requiring only a small amount of time and labor.
  • the carbon filter should be changed about every six months.
  • the flow through the carbon filter in the by-pass path in a typical domestic air handling system is approximately 50-70 CFM, which represents an insignificant loss, but is nevertheless enough to filter substantially all of the air in the building many times over between filter changes.
  • the invention is a system for cleaning, and for maintaining a desired temperature in, the air within the interior of a building.
  • the system comprises a first air flow path, a heat exchanger forming a part of the first air flow path, and apparatus, connected to the heat exchanger, for modifying the temperature of the air in the first air flow path.
  • a supply duct which is a part of the first air flow path, is arranged to deliver air from the heat exchanger to the interior of the building.
  • a return duct which is also a part of the first air flow path, is arranged to deliver air from the interior of the building to the heat exchanger.
  • a blower which constitutes part of the system, is arranged to cause air to flow from the return duct, and, through the heat exchanger, to the supply duct.
  • a conduit connected from the supply duct to the return duct, provides a second air flow path that by-passes the first air flow path.
  • An activated carbon filter in this conduit is arranged to filter air flowing through the second air flow path from the supply duct to the return duct.
  • the system preferably includes at least one fiber filter disposed in the first air flow path upstream of the heat exchanger.
  • the conduit preferably comprises a filter-containing unit for containing the activated carbon filter, a first conduit part connecting the filter-containing unit, to the supply duct on one side of said activated carbon filter, and a second conduit part connecting the filter-containing unit to the return duct on an opposite side of said activated carbon filter.
  • the activated carbon filter preferably has an air flow cross-sectional area, larger than the air flow cross-sectional areas of either of the first and second conduit parts.
  • the filter-containing unit has a central filter-containing part, a first tapered transition on one side of the central filter-containing part for connection to the first conduit part and a second tapered transition on an opposite side of the filter-containing part for connection to the second conduit part.
  • the activated carbon filter is removable from the conduit for replacement.
  • the invention enables a high capacity carbon air purification device to be added easily to existing air handling system.
  • the disposition of the carbon filter in a by-pass path eliminates air restrictions, and avoids fouling of the carbon filter by particulate matter, thereby extending its life.
  • Another advantage is ease of installation. Atypical installation of the carbon filter and by-pass conduit in an existing air handling system requires less than one hour. No additional electric wiring is required for installation of the carbon filter.
  • the carbon filter can use blends of activated carbons designed to remove the wide ranges of indoor air pollutants, and can remove the VOCs that cause formicary corrosion and leaks in evaporator coils.
  • FIG. 1 is a schematic diagram of a system, in accordance with the invention, for cleaning, and for controlling the temperature of, the air in the interior of a building;
  • FIG. 2 is an exploded perspective view of the by-pass conduit including the carbon filter and the carbon filter housing.
  • FIG. 1 shows a heating, ventilating and air conditioning (HVAC) unit 10 for a building.
  • HVAC heating, ventilating and air conditioning
  • the HVAC unit includes a blower 12 for circulating air through a heat exchanger 14 .
  • the heat exchanger can be used to heat or cool the air, or both to heat and cool the air, depending on the relationship between the desired temperature and the current air temperature.
  • Air exits the heat exchanger through a supply duct 16 , which can be connected to heat vents throughout the building by a network of branches (not shown). Air is returned to the HVAC unit through a return duct 18 , which is similarly connected to return ports throughout the building by another network of branches.
  • a fiber filter 20 for removal of particulate matter from the circulating air, is disposed in the path of the air flowing into the HVAC unit through the return duct 18 .
  • the return duct, the blower, the heat exchanger, the supply duct, and the interior of the building are all parts of a first air flow path, through which air is circulated by operation of blower 12 .
  • the system described so far is conventional, and typical of a forced air heating, ventilating and air conditioning system in a residential or commercial building. Other arrangements are of course possible in conventional HVAC systems.
  • the heat exchanger can also be designed simply for the purpose of heating, or for cooling, but not both, and in the case of a system designed both for heating and cooling, the heating and cooling parts of the heat exchanger can be separate from each other. In all cases, however, the system will have a heat exchanger, a supply duct, a return duct and a blower.
  • the system includes a conduit 22 , which provides a second air flow path that by-passes the first air flow path composed of the return duct, the supply duct, the blower, the heat exchanger and the building interior.
  • Conduit 22 comprises a filter-containing unit 24 , a first conduit part 26 connecting the filter-containing unit 24 to the supply duct 16 , and a second conduit part 28 connecting the filter-containing unit 24 to the return duct 18 .
  • the filter-containing unit 24 can be made from sheet metal, or any of a variety of other materials. For example, it can be molded from synthetic resin.
  • a removable activated carbon filter 30 is disposed within the filter-containing unit 24 .
  • the conduit parts 26 and 28 which connect the filter-containing unit 24 respectively to the supply and return ducts, are on opposite sides of the activated carbon filter.
  • the activated carbon filter 30 is removable from the filter-containing part 24 for replacement, and has a cross-sectional area through which air can flow that is greater than the internal cross-sectional areas of each of the conduit parts 26 and 28 .
  • a central, filter-containing part 32 of the filter containing unit is made large enough to accommodate the filter 30 , and the filter-containing unit is formed with tapered transitions 34 and 36 , which connect the central part 32 to the respective conduit parts 26 and 28 .
  • the central part 32 has a rectangular opening 38 for insertion and removal of the filter, and a closure 40 , which fits frictionally onto the central, filter-containing part 32 , is provided to close the opening when the filter is in place.
  • closure 40 Various other forms of closures, such as a hinged door, can be used as alternatives to closure 40 .
  • the conduit part 28 is preferably formed from a length of flexible duct 42 , typically having a circular cross-section and an internal diameter of four inches.
  • the length of duct 42 is surrounded by a quantity of glass fiber insulating batting 44 , which is in turn contained within a flexible tubular cover 46 .
  • Conduit part 28 is similarly constructed.
  • the conduit parts are connected to tubular end portions 48 and 50 of the tapered transitions on the filter-containing part 32 , and to the supply and return ducts through adapters 52 and 54 .
  • Resilient wire loops(not shown) can be used to clamp the ends of the flexible ducts to the tubular end portions and adapters, and duct tape can be used to seal the connections.
  • the pressure difference across the filter unit will typically produce a flow in the range from about 50-70 CFM through the filter when the blower is operating, depending on the static pressure within the duct system.
  • the loss in air flow through the building resulting from flow of air through the by-pass path through the carbon filter is not significant. Nevertheless, with good air circulation within each of the individual rooms of a typical family dwelling, substantially all the air in the building will have passed through the filter within a few hours, e.g., 4 to 5 hours, of blower operation.
  • activated carbon can be used in the filter 30 .
  • An activated carbon blend known as “Carbon Z,” a mixture of activated carbon and potassium permanganate (KMnO 4 ), is preferred.
  • Carbon Z is capable of high capacity removal of a wide range of airborne pollutants.
  • the activated carbon component is capable of adsorption of most VOCs and other gases typically found in indoor air.
  • formaldehyde which can be emitted into the air from various sources including building material and furnishings, poses a serious health risk, is not adsorbed well by carbon, but is efficiently removed by potassium permanganate.
  • Various other mixtures of which activated carbon is a principal component can be used in this application.
  • a typical filter in this application can be expected to operate satisfactorily in a 10 ton HVAC system for nine months, depending on the level of airborne contaminants. However, since contaminant levels are unknown, the activated carbon filter should be replaced every six months.

Abstract

In a system for cleaning, and for maintaining a desired temperature in, the air within the interior of a building, an activated carbon filter is disposed in a filter housing forming part of a conduit connected from a supply duct to a return duct. Air flows through the activated carbon filter as a result of the difference between the pressures of the air in the respective ducts, and substantially the entire quantity of air within the building is passed through the carbon filter in a short time.

Description

    FIELD OF THE INVENTION
  • This invention relates to systems for maintaining the air within the interior of a building at a desired temperature, such as forced-air heating systems, air-conditioning systems, and combined forced-air heating and air-conditioning systems (HVAC) systems. The invention relates particularly to an easily installed apparatus for cleaning the air as it circulates through the system.
  • BACKGROUND OF THE INVENTION
  • Many homes and commercial buildings are plagued by indoor pollutants and odors from various sources such as new construction materials, cleaning chemicals, cooking, and pets. Pollutants also enter buildings from the outside, and can be troublesome especially where there are high levels of outdoor pollution. The problem of pollutants and odors can be especially severe in commercial establishments such as nail salons, hair salons, pet stores, and other buildings in which chemicals are used regularly. Even in buildings where there is no noticeable contamination, inhabitants frequently desire clean and healthy indoor air, free from unknown pollutants. In addition, airborne volatile organic compounds (VOCs) are known to cause formicary (“ant tunnel”) corrosion of system components, including corrosion that results in leaks to evaporator coils in air conditioning apparatus.
  • SUMMARY OF THE INVENTION
  • Conventional filters, including fiber filters and electrostatic filters, although effective in removal of airborne particulate matter, are ineffective in the removal of odors and pollutants in gas or vapor form. Carbon filters are capable of adsorption of gas and vapor, but require a relatively long contact time to be effective. Carbon filters have been used to replace and upgrade existing fiber filters, and are sized to fit the openings used for fiber filters in existing ductwork. These carbon filters can remove chemical gases and odors, but, because they replace fiber filters, they must also filter both particulate dust and dirt. Carbon filters quickly become clogged with dirt, and also tend to restrict air flow. Since they cover the entire cross-section of a return duct, they need to allow a large volume of air to pass through them at a high speed. Therefore, the amount of carbon in these filters is limited in order to minimize restriction of air flow. The limitation on the amount of carbon, in turn, limits the filters' adsorption capacity. A carbon filter can be preceded by a fiber filter in an air return duct. However in such an arrangement, and also when a carbon filter is used by itself, the air velocities are such that the contact time is too short for the carbon filter to remove pollutants efficiently.
  • There is a need for a simple and effective apparatus for removal of odors and gaseous and vapor-form pollutants in heating and air conditioning systems. There is also a need of an apparatus that can be added to an existing system without the need for major modifications to the ductwork of that system, and that will not impair the air flow in the system by excessive restriction. This invention answers these needs.
  • Briefly, the invention is a simple and easy-to-install, add-on, by-pass carbon filtration system for removing indoor air pollutants, odors, VOCs and other gases, and from residential and commercial buildings. The system is effective in homes and buildings with moderate to high levels of indoor pollutants or odors emanating from various sources, such as new construction materials, cooking, pets, cleaning chemicals, and outdoor environments having high levels of outdoor pollution. The system can be used in commercial buildings such as nail or hair salons, pet stores, and other buildings in which VOCs and other chemicals of various kinds are used, and in any residence or commercial building the interior of which is liable to be contaminated by airborne gases, vapors and odors. The system can also be used in homes or buildings having no noticeable contamination, but in which the residents or inhabitants desire to remove unknown indoor air pollutants in order to be confident that they are breathing clean, healthy, indoor air.
  • Unless otherwise indicated, the term “air handler” as used herein means a heating system, an air conditioning system, or a combined heating and air conditioning system.
  • The preferred system utilizes a filter housing that holds a removable, high capacity activated carbon air filter. In an air handler system of a building, the filter housing is connected to existing supply and return ducts, using conduit parts lengths of flexible, insulated duct, so that the filter-housing and the flexible conduit parts form a by-pass path allowing a portion of the air that would otherwise flow into the interior of the building to flow through the carbon filter through by-pass path. The system is easily retrofitted to an existing air handler, requiring only a small amount of time and labor.
  • In the operation of the apparatus, whenever the air handler is running, a small fraction of the supply air is diverted through the carbon filter to the return side of the system. Over time, substantially all of air in the building will have passed through the carbon filter, and large quantities of indoor air pollutants will have been removed by the activated carbon. Because of the relatively slow flow of air through the by-pass path in which the carbon filter is situated, the contact time of the air with the activated carbon in the filter is increased, and efficient adsorption of airborne contaminants is achieved. The air that flows through the carbon filter will have been filtered already by the existing particulate air filter or filters in the air handling system. Therefore, the carbon filter will not be readily fouled by dust, which would shorten its life. In an air handling system utilizing the invention, the carbon filter should be changed about every six months. The flow through the carbon filter in the by-pass path in a typical domestic air handling system is approximately 50-70 CFM, which represents an insignificant loss, but is nevertheless enough to filter substantially all of the air in the building many times over between filter changes.
  • In more particular terms, the invention is a system for cleaning, and for maintaining a desired temperature in, the air within the interior of a building.
  • The system comprises a first air flow path, a heat exchanger forming a part of the first air flow path, and apparatus, connected to the heat exchanger, for modifying the temperature of the air in the first air flow path. A supply duct, which is a part of the first air flow path, is arranged to deliver air from the heat exchanger to the interior of the building. A return duct, which is also a part of the first air flow path, is arranged to deliver air from the interior of the building to the heat exchanger.
  • A blower, which constitutes part of the system, is arranged to cause air to flow from the return duct, and, through the heat exchanger, to the supply duct.
  • A conduit, connected from the supply duct to the return duct, provides a second air flow path that by-passes the first air flow path. An activated carbon filter in this conduit is arranged to filter air flowing through the second air flow path from the supply duct to the return duct. As result of a difference between the pressure of air in the supply duct and the pressure of air in the return duct resulting from operation of the blower, a fraction of the air in the interior of the building passes through the activated carbon filter when the blower is operating.
  • The system preferably includes at least one fiber filter disposed in the first air flow path upstream of the heat exchanger.
  • The conduit preferably comprises a filter-containing unit for containing the activated carbon filter, a first conduit part connecting the filter-containing unit, to the supply duct on one side of said activated carbon filter, and a second conduit part connecting the filter-containing unit to the return duct on an opposite side of said activated carbon filter. The activated carbon filter preferably has an air flow cross-sectional area, larger than the air flow cross-sectional areas of either of the first and second conduit parts. In a preferred embodiment, the filter-containing unit has a central filter-containing part, a first tapered transition on one side of the central filter-containing part for connection to the first conduit part and a second tapered transition on an opposite side of the filter-containing part for connection to the second conduit part.
  • Preferably, the activated carbon filter is removable from the conduit for replacement.
  • Among the advantages of the invention are the fact that it enables a high capacity carbon air purification device to be added easily to existing air handling system. In addition, the disposition of the carbon filter in a by-pass path eliminates air restrictions, and avoids fouling of the carbon filter by particulate matter, thereby extending its life.
  • Another advantage is ease of installation. Atypical installation of the carbon filter and by-pass conduit in an existing air handling system requires less than one hour. No additional electric wiring is required for installation of the carbon filter.
  • Finally, the carbon filter can use blends of activated carbons designed to remove the wide ranges of indoor air pollutants, and can remove the VOCs that cause formicary corrosion and leaks in evaporator coils.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a system, in accordance with the invention, for cleaning, and for controlling the temperature of, the air in the interior of a building; and
  • FIG. 2 is an exploded perspective view of the by-pass conduit including the carbon filter and the carbon filter housing.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 shows a heating, ventilating and air conditioning (HVAC) unit 10 for a building. The HVAC unit includes a blower 12 for circulating air through a heat exchanger 14. The heat exchanger can be used to heat or cool the air, or both to heat and cool the air, depending on the relationship between the desired temperature and the current air temperature. Air exits the heat exchanger through a supply duct 16, which can be connected to heat vents throughout the building by a network of branches (not shown). Air is returned to the HVAC unit through a return duct 18, which is similarly connected to return ports throughout the building by another network of branches. A fiber filter 20, for removal of particulate matter from the circulating air, is disposed in the path of the air flowing into the HVAC unit through the return duct 18. Thus, the return duct, the blower, the heat exchanger, the supply duct, and the interior of the building, are all parts of a first air flow path, through which air is circulated by operation of blower 12. The system described so far is conventional, and typical of a forced air heating, ventilating and air conditioning system in a residential or commercial building. Other arrangements are of course possible in conventional HVAC systems. For air can be returned to the HVAC unit through two or more return ducts, each having its own particulate filter, and air can be supplied to the building interior through two or more supply ducts, each being connected to receive air passed through the heat exchanger. The heat exchanger can also be designed simply for the purpose of heating, or for cooling, but not both, and in the case of a system designed both for heating and cooling, the heating and cooling parts of the heat exchanger can be separate from each other. In all cases, however, the system will have a heat exchanger, a supply duct, a return duct and a blower.
  • As shown in FIG. 1, in addition to the conventional components described above, the system includes a conduit 22, which provides a second air flow path that by-passes the first air flow path composed of the return duct, the supply duct, the blower, the heat exchanger and the building interior. Conduit 22 comprises a filter-containing unit 24, a first conduit part 26 connecting the filter-containing unit 24 to the supply duct 16, and a second conduit part 28 connecting the filter-containing unit 24 to the return duct 18. The filter-containing unit 24 can be made from sheet metal, or any of a variety of other materials. For example, it can be molded from synthetic resin.
  • A removable activated carbon filter 30 is disposed within the filter-containing unit 24. Thus, the conduit parts 26 and 28, which connect the filter-containing unit 24 respectively to the supply and return ducts, are on opposite sides of the activated carbon filter.
  • As shown in FIG. 2, the activated carbon filter 30 is removable from the filter-containing part 24 for replacement, and has a cross-sectional area through which air can flow that is greater than the internal cross-sectional areas of each of the conduit parts 26 and 28. A central, filter-containing part 32 of the filter containing unit is made large enough to accommodate the filter 30, and the filter-containing unit is formed with tapered transitions 34 and 36, which connect the central part 32 to the respective conduit parts 26 and 28.
  • The central part 32 has a rectangular opening 38 for insertion and removal of the filter, and a closure 40, which fits frictionally onto the central, filter-containing part 32, is provided to close the opening when the filter is in place. Various other forms of closures, such as a hinged door, can be used as alternatives to closure 40.
  • The conduit part 28 is preferably formed from a length of flexible duct 42, typically having a circular cross-section and an internal diameter of four inches. The length of duct 42 is surrounded by a quantity of glass fiber insulating batting 44, which is in turn contained within a flexible tubular cover 46. Conduit part 28 is similarly constructed. The conduit parts are connected to tubular end portions 48 and 50 of the tapered transitions on the filter-containing part 32, and to the supply and return ducts through adapters 52 and 54. Resilient wire loops(not shown) can be used to clamp the ends of the flexible ducts to the tubular end portions and adapters, and duct tape can be used to seal the connections.
  • In the operation of the apparatus, the pressure difference across the filter unit will typically produce a flow in the range from about 50-70 CFM through the filter when the blower is operating, depending on the static pressure within the duct system. The loss in air flow through the building resulting from flow of air through the by-pass path through the carbon filter is not significant. Nevertheless, with good air circulation within each of the individual rooms of a typical family dwelling, substantially all the air in the building will have passed through the filter within a few hours, e.g., 4 to 5 hours, of blower operation.
  • Various forms of activated carbon can be used in the filter 30. An activated carbon blend, known as “Carbon Z,” a mixture of activated carbon and potassium permanganate (KMnO4), is preferred. Carbon Z is capable of high capacity removal of a wide range of airborne pollutants. The activated carbon component is capable of adsorption of most VOCs and other gases typically found in indoor air. However formaldehyde, which can be emitted into the air from various sources including building material and furnishings, poses a serious health risk, is not adsorbed well by carbon, but is efficiently removed by potassium permanganate. Various other mixtures of which activated carbon is a principal component can be used in this application.
  • A typical filter in this application can be expected to operate satisfactorily in a 10 ton HVAC system for nine months, depending on the level of airborne contaminants. However, since contaminant levels are unknown, the activated carbon filter should be replaced every six months.

Claims (6)

What is claimed is:
1. A system for cleaning, and for maintaining a desired temperature in, the air within the interior of a building, the system comprising an HVAC unit having a supply and a return duct, and a by-pass conduit connected from the supply duct to the return duct for carrying a fraction of the air delivered by the HVAC unit directly through the supply duct to the return duct, said by-pass conduit having a carbon filter disposed therein for removal of contaminants from said air fraction.
2. A system for cleaning, and for maintaining a desired temperature in, the air within the interior of a building, the system comprising:
a first air flow path;
a heat exchanger forming a part of said first air flow path;
apparatus connected to the heat exchanger for modifying the temperature of the air in said first air flow path;
a supply duct forming a part of said first air flow path and arranged to deliver air from the heat exchanger to the interior of said building;
a return duct forming a part of said first air flow path and arranged to deliver air from the interior of said building to the heat exchanger;
a blower arranged to cause air to flow from said return duct, and, through said heat exchanger, to said supply duct;
a conduit, connected from said supply duct to said return duct, said conduit providing a second air flow path that by-passes said first air flow path; and
an activated carbon filter in said conduit, said activated carbon filter being arranged to filter air flowing through said second air flow path from the supply duct to the return duct;
whereby, as a result of a difference between the pressure of air in said supply duct and the pressure of air in said return duct resulting from operation of said blower, a fraction of the air in the interior of said building passes through the activated carbon filter when the blower is operating.
3. The system according to claim 2, including at least one fiber filter disposed in said first air flow path upstream of the heat exchanger.
4. The system according to claim 2, in which said activated carbon filter is removable from said conduit for replacement.
5. The system according to claim 2, in which said conduit comprises a filter-containing unit for containing said activated carbon filter, a first conduit part connecting said filter-containing unit to said supply duct on one side of said activated carbon filter, and a second conduit part connecting said filter-containing unit to said return duct on an opposite side of said activated carbon filter, said activated carbon filter having an air flow cross-sectional area, larger than the air flow cross-sectional areas of either of said first and second conduit parts, and said filter-containing unit having a central filter-containing part, a first tapered transition on one side of said central filter-containing part for connection to said first conduit part and a second tapered transition on an opposite side of said filter-containing part for connection to said second conduit part.
6. The system according to claim 5, in which said activated carbon filter is removable from said central filter-containing part for replacement.
US14/663,545 2015-03-20 2015-03-20 System for air temperature maintenance with air cleaning feature Abandoned US20160273790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/663,545 US20160273790A1 (en) 2015-03-20 2015-03-20 System for air temperature maintenance with air cleaning feature
US15/420,184 US20170184320A1 (en) 2015-03-20 2017-01-31 Process for improving an existing and previously operated air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/663,545 US20160273790A1 (en) 2015-03-20 2015-03-20 System for air temperature maintenance with air cleaning feature

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,184 Division US20170184320A1 (en) 2015-03-20 2017-01-31 Process for improving an existing and previously operated air conditioning system

Publications (1)

Publication Number Publication Date
US20160273790A1 true US20160273790A1 (en) 2016-09-22

Family

ID=56924995

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/663,545 Abandoned US20160273790A1 (en) 2015-03-20 2015-03-20 System for air temperature maintenance with air cleaning feature
US15/420,184 Abandoned US20170184320A1 (en) 2015-03-20 2017-01-31 Process for improving an existing and previously operated air conditioning system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/420,184 Abandoned US20170184320A1 (en) 2015-03-20 2017-01-31 Process for improving an existing and previously operated air conditioning system

Country Status (1)

Country Link
US (2) US20160273790A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683543A (en) * 2019-11-27 2020-01-14 青海民族大学 Biological activated carbon and preparation method thereof
WO2020011672A1 (en) * 2018-07-13 2020-01-16 Sally R Ab Module for treating air, method for treating air, and related systems
WO2020121470A1 (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Filter device
CN112682866A (en) * 2020-12-29 2021-04-20 珠海格力电器股份有限公司 Air conditioning unit and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487363A (en) * 1982-10-14 1984-12-11 Parker Electronics, Inc. Bypass control system to maintain a constant air supply pressure in a HVAC duct system
US5279609A (en) * 1992-10-30 1994-01-18 Milton Meckler Air quality-temperature controlled central conditioner and multi-zone conditioning
US7178545B2 (en) * 2004-01-23 2007-02-20 Abco Consulting, Inc. Modulating bypass control system and method
US20100205990A1 (en) * 2009-02-18 2010-08-19 French Irvin L Integrated portable unit for providing electricity, air-conditioning, and heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487363A (en) * 1982-10-14 1984-12-11 Parker Electronics, Inc. Bypass control system to maintain a constant air supply pressure in a HVAC duct system
US5279609A (en) * 1992-10-30 1994-01-18 Milton Meckler Air quality-temperature controlled central conditioner and multi-zone conditioning
US7178545B2 (en) * 2004-01-23 2007-02-20 Abco Consulting, Inc. Modulating bypass control system and method
US20100205990A1 (en) * 2009-02-18 2010-08-19 French Irvin L Integrated portable unit for providing electricity, air-conditioning, and heating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011672A1 (en) * 2018-07-13 2020-01-16 Sally R Ab Module for treating air, method for treating air, and related systems
WO2020121470A1 (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Filter device
CN110683543A (en) * 2019-11-27 2020-01-14 青海民族大学 Biological activated carbon and preparation method thereof
CN112682866A (en) * 2020-12-29 2021-04-20 珠海格力电器股份有限公司 Air conditioning unit and control method thereof

Also Published As

Publication number Publication date
US20170184320A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US20170184320A1 (en) Process for improving an existing and previously operated air conditioning system
US10913026B2 (en) Method and system for reduction of unwanted gases in indoor air
US6497753B1 (en) Electrostatic air cleaner
US5531801A (en) Liquid spray air purification and controlled humidification apparatus with air quality monitor and controller
US5389120A (en) Heating, ventilation and air conditioning unit with automatically controlled water spray air purification system
US5987908A (en) Self-contained air conditioner with discharge-air filter
US8564924B1 (en) Systems and methods of air treatment using bipolar ionization
US6849107B1 (en) Air filtration system
US20080022705A1 (en) Device and method for managing indoor air quality via filtration and dehumidification
US20210207843A1 (en) An Apparatus for Handling Air and System Thereof
US5531800A (en) Liquid spray air purification and controlled humidification apparatus
US20040159239A1 (en) Multi-phase HVAC filtration system
US20150292755A1 (en) Removable, universal cover for air duct register
US20220203287A1 (en) Switchable filtration system
US11633688B2 (en) HEPA air filtration with an air handling device
EP1583598B1 (en) A filter
EP3480528B1 (en) Air exchanging device
KR20200109528A (en) Ventilator
US11859842B2 (en) Indoor air quality purification system for a heating, ventilation and cooling system of a building
RU2122685C1 (en) Ventilation set incorporating filter performing sound absorbing, flow damping, and filtering functions
KR20120094731A (en) Air cleaner
JPH11201511A (en) Air cleaning system
US11796213B2 (en) Integrated energy recovery base or roof-curb for air-conditioning unit
US20150068710A1 (en) Integral industrial air and conditioning filter assembly
CN113950598A (en) Wall bushing assembly for packaging terminal air conditioner unit

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION