US20160272661A1 - Purified phosphatidylcholine product made by a process employing magnetic nanoparticles - Google Patents

Purified phosphatidylcholine product made by a process employing magnetic nanoparticles Download PDF

Info

Publication number
US20160272661A1
US20160272661A1 US15/168,171 US201615168171A US2016272661A1 US 20160272661 A1 US20160272661 A1 US 20160272661A1 US 201615168171 A US201615168171 A US 201615168171A US 2016272661 A1 US2016272661 A1 US 2016272661A1
Authority
US
United States
Prior art keywords
purified phosphatidylcholine
magnetic nanoparticles
hydroxyapatite
purified
phosphatides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/168,171
Inventor
Ghassem Amoabediny
Sedigheh Khosrovaninia
Mehdi Khoobi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/168,171 priority Critical patent/US20160272661A1/en
Publication of US20160272661A1 publication Critical patent/US20160272661A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • C07F9/103Extraction or purification by physical or chemical treatment of natural phosphatides; Preparation of compositions containing phosphatides of unknown structure

Definitions

  • the present invention is a divisional of U.S. Ser. No. 14/614,148, filed Feb. 4, 2015, now, U.S. Pat. No. 9,353,137, entitled “Method for Separation and Purification of Phosphatidylcholine Employing Magnetic Nanoparticles and Compositions So Produced,” which claims priority from U.S. Provisional Patent Application Ser. No. 61/936,875, filed Feb. 7, 2014, entitled “Method for Separation and Purification of Phosphatidylcholine Based on Magnetic Nanoparticles,” the subject matters of which are incorporated by reference herein in their entirety.
  • lecithin is used to refer to a complex mixture of phosphatides that include various classes of compounds based on differences in the polar groups of molecular structures, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatic acid (PA) and other substances, such as triglycerides, carbohydrates, etc.
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • PI phosphatidylinositol
  • PA phosphatic acid
  • lecithin is often regarded as referring to phosphatidylcholine or PC.
  • lecithin is applied herein, and the various names for specific phosphatides, such as PC, PE, etc., will be used.
  • Phosphatidylcholine is used extensively in the pharmaceutical industry, and highly pure PC is quite important for this industry. Recognition of the unique properties and possible uses of individual phosphatide components of lecithin, particularly PC, and the adverse effects in some applications containing contaminating non-choline phosphatides in PC-enriched fractions, have stimulated the search for improved methodologies for PC purification from lecithin.
  • U.S. Pat. No. 3,544,605 describes a process to obtain highly-purified PC with a high content of essential fatty acids, which is free of, or heavily depleted in, cephalins, from plant lecithin by adsorption of the phosphatides on aluminum oxide and extraction with alcohol.
  • the crude oil-containing phosphatide is first dissolved in ethyl acetate or a di-chlorinated hydrocarbon having 1 to 4 carbon atoms or a mixture of solvents (without prior de-oiling).
  • the solution is then treated, with stirring, with at least a five-fold amount of aluminum oxide relative to the content of raw phosphatide, or may be carried out by adding the solution to an aluminum oxide column (instead of stirring therewith).
  • the highly-purified, oil-free PC is liberated with alcohol from the separated aluminum oxide.
  • German Pat. No. 1,053,299 sets forth a process for obtaining natural choline phosphoric acid diglycerid esters, which are free of colamin, by using an aluminum oxide column chromatography treatment.
  • an alcoholic extract of the previously de-oiled raw phosphatide, with the prior removal of oil, is achieved by repeated extraction with acetone.
  • U.S. Pat. No. 4,235,793 describes a process where raw lecithin is first extracted with alcohol. The resulting two phases are separated and the alcohol-rich upper phase is treated with aluminum oxide adsorbent. Elution of the adsorbent with an alcohol leads to an oily phosphatidylcholine, free of cephalin.
  • U.S. Pat. No. 4,443,378 is related to a method for the separation of acylated phospholipids. This process involves chromatography on a silicic acid gel in a lower alkanol containing 1 to 4 carbon atoms.
  • U.S. Pat. No. 4,452,743 is related to a method for the separation of oil and/or phosphatidylethanolamine from alcohol-soluble, phosphatidylcholine products containing the same. This process also involves chromatography on a silicic acid gel in a lower alkanol containing 1 to 4 carbon atoms.
  • PC becoming the primary functional ingredient of liposomes, where stable liposomes are formed with high-PC preparations.
  • 80 to 100% purity PC is required, rendering all of the aforesaid prior art techniques discussed herein inadequate.
  • a magnetic solid-phase extraction (SPE) method has been developed and applied for bio-separation and chemical analyses by many researchers.
  • SPE magnetic solid-phase extraction
  • paramagnetic sorbents are dispersed in solution to adsorb the targets, and then collected by an external magnet for elution, which greatly simplifies the SPE procedure.
  • magnetite Fe 3 O 4
  • the magnetic nanoparticles as employed in the present invention, may be used alone, coated or complexed with one or more special-functional ligands that enhance the selectivity or the affinity of target molecules to the nanoparticles.
  • the magnetic particles are mixed with the solutions containing the impurities for a sufficient period, allowing the magnetic particles to form a complex or conjugate with the target.
  • extraction could be performed by an external magnetic field of sufficient strength.
  • the liquid portion, free of the nanoparticles and the bound target, is then separated from the portion of the solution containing the nanoparticles.
  • the nanoparticles, complexed or conjugated with the target are regenerated by subjecting them to conditions which result in the release of the target from the nanoparticles, thereby freeing them for further use.
  • the released target is collected for use in any further processing.
  • the regenerated nanoparticles are thus suitable for reuse in the above described process.
  • lecithin was removed from natural lipids by precipitation in a ketone solvent, such as acetone.
  • Phosphatidylcholine is then solubilized in an alcohol solvent, preferably ethanol. Final purification was achieved by adsorption of non-choline phosphatide on functionalized magnetic nanoparticles.
  • the nanoparticles are mixed with the ethanolic solution of lecithin, which mainly contains PE, PC and small quantities of PI, which permits binding of the phosphatides, except phosphatidylcholine, to the functionalized particles. Under low magnetic fields (about 1 Tesla), the molecules bound with the magnetic nanoparticles are attracted and separated by using external magnets.
  • the process disclosed within the present invention is simple, efficient, rapid and entails inexpensive instruments compared to the referent prior art.
  • the process of the present invention readily permits the achievement of purities greater than 87%, making the teachings of the instant invention useful for the aforementioned liposome PC purity requirements and other uses.
  • the process of the present invention eliminates the use of column chromatography for the purification of PC.
  • the present invention is instead based in one embodiment on multiple extractions performed sequentially using acetone or supercritical CO 2 , ethanol and adsorption impurities on magnetic nanoparticles.
  • HGMS high gradient magnetic separation
  • magnetic filter magnetic solid phase extraction column
  • FIG. 1 generally illustrates the manufacture or creation of magnetic nanoparticles, and then the cross-linking of the generated nanoparticles to hydroxyapatite (HAP), a construct which is used pursuant to the teachings of the present invention;
  • HAP hydroxyapatite
  • FIGS. 2A and 2B depict two images, where a) illustrates a transmission electron microscopy (TEM) image of Fe 3 O 4 , and b) illustrates a scanning electron microscope (SEM) image of magnetic nanoparticles coated with hydroxyapatite pursuant to the principles of the present invention.
  • TEM transmission electron microscopy
  • SEM scanning electron microscope
  • FIGS. 3A, 3B and 3C depict three images for Fourier transform infrared spectroscopy (FT-IR) spectra of a) Fe 3 O 4 , b) magnetic nanoparticles coated with hydroxyapatite, and c) the admixture after adsorption of phosphatides by the magnetic nanoparticles, with various inflection or peak points identified, each pursuant to the teachings of the present invention.
  • FT-IR Fourier transform infrared spectroscopy
  • Nanotechnology combined with magnetic separations have already drawn enormous attention in areas as diverse as biosensors, magnetic targeted drug delivery, novel diagnostic devices, cell separations, as well as other health-related applications.
  • the present invention is principally based on separation by magnetic adsorbent.
  • Iron-containing nanoparticles are the preferred magnetic nanomaterial for such applications since they are non-toxic and have already been approved by the U.S. Food and Drug Administration as a contrast MRI agent.
  • Central to the success of magnetic nanoparticles is the maneuverability of magnetic nanoparticles by applying magnetic fields that overcome opposing forces, such as Brownian motions, viscous drag and sedimentation.
  • An advantage of magnetic sorbents is that they may be recovered from the system without filtration, with the help of an external magnetic field. Selective removal of target compounds from complex matrixes can thus be obtained, such as where certain special functional ligands with affinity for target molecules are bounded onto the magnetic nanoparticles.
  • the present invention relates to methods of using such magnetic nanoparticles for selectively removing non-choline phosphatides of interest to produce a purified phosphatidylcholine, especially for pharmaceutical applications.
  • Magnetic nanoparticles may be synthesized by various known techniques and methods, where paramagnetic nanoparticles are preferred, and super-paramagnetic nanoparticles are most preferred herein.
  • An exemplary technique for the construction or manufacture of iron-containing nanoparticles with a hydroxyapatite coating is shown in FIG. 1 of the DRAWINGS, which generally demonstrates steps for the building of a magnetically-inducible iron core from iron molecules, such as magnetite, and the subsequent covering or coating of the iron core with hydroxyapatite, as illustrated, to form the aforementioned hydroxyapatite (HAP) coated magnetic nanoparticles (MNP).
  • HAP hydroxyapatite coated magnetic nanoparticles
  • the nanoparticles can be synthesized using a known methodology for the thermal decomposition of a metal precursor: thermal decomposition in the presence of a stabilizing ligand as a surfactant, and co-precipitation with or without a stabilizing ligand as a surfactant.
  • a co-precipitation method used can be seen in the first Example discussed in more detail hereinbelow. This method can also be used in the presence of a stabilizing ligand surfactant.
  • Reaction conditions are selected to produce particles in a size range of from about 1 to 500 nm, preferably from about 1 to 50 nm, most preferably from about 1 to 20 nm.
  • the nanoparticles are preferably mono-dispersed after synthesis to facilitate further processing and maintain a high surface area to volume ratio.
  • the addition of surfactants that are surface active agents facilitates such dispersion.
  • the magnetic nanoparticles may be used as such, or surface functionalized with a coating.
  • the magnetic nanoparticles may be coated to enhance specificity and/or affinity to the specific target.
  • a starting material for the present invention is lecithin.
  • Lecithins are commercially available in a wide variety of products. For example, mixtures with vegetable oil, fractionated forms that are enriched in particular phosphatides, chemically modified forms, etc.
  • the preferred source material for the present invention is soybean lecithin. It should, of course, be understood, however, that any suitable, commercially-available source of lecithin can be used in practicing the principles of the instant invention.
  • the source materials so obtained can be treated with any known methods to remove extraneous substances which might hinder the purification, such as proteins, carbohydrates, and triglycerides.
  • raw gum lecithin is precipitated with cold acetone.
  • the amount of solvent employed is generally in the range of about 5:1 in volume of solvent (ml) to weight of lecithin (gram). It is understood that for this separation that phosphatides are insoluble in acetone, while the oils are soluble in acetone, thus allowing extraction of the oils from the insoluble phosphatides. It should also be understood that such an extraction could be carried out by using supercritical CO 2 instead of acetone to remove the oils and pigments.
  • Acetone is then added to the raw gum lecithin at room temperature and stirred for 4 hours.
  • the acetone insoluble fraction was allowed to cool down to about 0 to 5° C. and maintained at that temperature for about 1 hour with stirring. Then it was filtered with suction in a Buchner funnel. The acetone insoluble fraction was then dried under reduced pressure and low temperature in a freeze drier for about 24 hours.
  • phosphatides When phosphatides are extracted or isolated from main origin (bio-membranes), polymorphism can occur, which refers to the formation of diverse structures (bilayer, micelle, non-bilayer). Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-bilayer phases in phosphatides. The formation of non-lamellar phases in phosphatides is not completely understood, but it is significant that this amphiphilic molecule is capable of doing so. Also, ethanol can be fractionated phosphatidylcholine and phosphatidylinositol because of their dissimilar solubility in ethanol. Phosphatidylcholine, however, is relatively more soluble in ethanol than is phosphatidylinositol.
  • the acetone insoluble is dissolved in ethanol (99%) with an ethanol/acetone insoluble ratio of about 6:1.
  • the solution is stirred for about 10 minutes at room temperature, and then centrifuged at about 10,000 rpm for about 10 minutes.
  • the ethanol-soluble fraction was combined and stored at about 0° C. for solid phase extraction.
  • hydroxyapatite was used as a surface functionalized coating for adsorption of non-choline phosphatides onto magnetic nanoparticles, such as generally illustrated and described in connection with FIG. 1 .
  • a co-precipitation method was used to synthesize super-paramagnetic iron oxide nanoparticles, whereby a solution of FeCl 2 and FeCl 3 were mixed in water and added to about 25% NH 4 OH. A black precipitate is formed immediately, and the reaction is left to react for about 1 hour at room temperature to about 37° C.
  • Nanoparticles are decanted, where a permanent magnet or centrifugation is used to separate the nanoparticles. The nanoparticles were washed 3 to 5 times by deionized water. No stabilizers were used for the solution, and the nanoparticles were bare.
  • the bare magnetic nanoparticles are characterized by the aforementioned scanning electron microscope (SEM) and transmission electron microscopy (TEM) imaging.
  • the average size could be distinguished about 20 nm for bare magnetic particles, as shown in FIG. 2A of the DRAWINGS.
  • the modification by hydroxyapatite led to the increased the size.
  • the dimension of the hydroxyapatite-coated magnetic nanoparticle (MNP) is less than about 70 nm with an almost spherical and uniform morphology, as illustrated in FIG. 2B of the DRAWINGS.
  • FIG. 3 of the DRAWINGS are three images of Fourier transform infrared spectroscopy (FT-IR) spectra.
  • the FT-IR studies shown in FIG. 3 have been performed in the range of 400 to 4000/cm ⁇ 1 for identification of various functional groups.
  • FIG. 3A there is shown a spectra for Fe 3 O 4 , identifying the inflection or peaks corresponding to the Fe 3 O 4 such as in the iron core or magnetite, as depicted in FIG. 1 .
  • FIG. 3B illustrates the spectra for the aforementioned magnetic nanoparticles coated with hydroxyapatite, identifying the inflection or low points corresponding thereto.
  • FIG. 3C illustrates the spectra for the resultant admixture of the HA-coated iron core after adsorption of phosphatides by the magnetic nanoparticles, with various inflection or peaks identified.
  • the FT-IR spectra of the resultant admixture shows several major peaks, located, for example, at 3,425.9; 2,925.3; 2,854.4 (with 82.551% transmittance); 1,728.2 (with 91.243% transmittance); 1,638.4; 1,456.3 (with 90.631% transmittance); 1,422.1; 1,034.5; 602.7; 567.1 and 469.0 cm ⁇ 1 .
  • the quantity of nanoparticles per liter of solution from which the target is to be removed depends upon the amount of the target in the solution.
  • the quantity of nanoparticles to be used is also a function of the amount of target present in the solution.
  • the quantity of nanoparticles should be at least about 0.05 gr for about 10 mg/l phosphatides.
  • the ethanolic solution lecithin is mixed with hydroxyapatite-coated magnetic nanoparticles at temperature of from about 20° C. to 60° C., preferably at a temperature of about 30° C. to 40° C. for a period of from about 10 to 60 minutes.
  • the liquid portion is collected and dried under an inert gas such as Argon.
  • lecithin is blended with dry acetone (about 1:5) at room temperature, cooled down to about 0 to 5° C. for about 1 hour and then filtered with suction in a Buchner funnel.
  • the filtrate cake is again blended, as above, and the filter cake is dried under reduced pressure and low temperature in a rotary vacuum evaporator.
  • the residue was fractionated with ethanol (99%) in an ethanol/de-oiled gum ratio of about 6:1 to produce the aforementioned soluble (ES) and insoluble (EI) fractions.
  • the ES fraction was combined and stored at about 0° C. for the aforesaid solid-phase extraction (SPE) progress.
  • SPE solid-phase extraction
  • 0.86 g of FeCl 2 .4H 2 O and 2.36 g of FeCl 3 .6H 2 O were dissolved under Argon in about 40 ml of deionized water with vigorous stirring (about 1,000 rpm). The resulting solution was added drop wise to a 25% NH4OH solution (about 10 mL).
  • 0.2 gr nanoparticles sorbents were dispersed into an ethanolic lecithin solution by 10 mg/ml concentration for about 1 min with a probe sonicator (ultrasonic liquid processor), and immediately mixed with moderate agitation for about 20 min at about 38° C. and at pH 6.5, and then magnetic nanoparticles were separated by applying an external magnet. Finally, the supernatant was dried under Argon gas for phosphatides analysis, which indicated that a purity of phoshatidylcholine at 87% was reached. It should be understood that the technique of the instant invention can be employed multiple times for better separation and extraction of the phosphatidylcholine. Accordingly, high purities of about 85-100% are possible, where ranges of purity of 85-90, 85-95, 90-95, 90-100 are possible dependent on the conditions employed and the number of iterations.

Abstract

A process for separation and purification of phosphatides, especially phosphatidylcholine, from vegetable lecithins, comprising deoiling with acetone, dissolved in alcoholic solvent and then treated with magnetic nanoparticles as sorbent, in order to adsorb non-choline phosphatides, and the purified phosphatidylcholine-rich composition derived therefrom.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present invention is a divisional of U.S. Ser. No. 14/614,148, filed Feb. 4, 2015, now, U.S. Pat. No. 9,353,137, entitled “Method for Separation and Purification of Phosphatidylcholine Employing Magnetic Nanoparticles and Compositions So Produced,” which claims priority from U.S. Provisional Patent Application Ser. No. 61/936,875, filed Feb. 7, 2014, entitled “Method for Separation and Purification of Phosphatidylcholine Based on Magnetic Nanoparticles,” the subject matters of which are incorporated by reference herein in their entirety.
  • SPONSORSHIP STATEMENT
  • This application has been sponsored by the Iranian Nanotechnology Initiative Council, the School of Chemical Engineering, College of Engineering, University of Tehran, and the Research Center for New Technologies in Life Science Engineering, University of Tehran, all of which do not have any rights in this application.
  • BACKGROUND OF THE INVENTION
  • In the fats and oils industry, the term “lecithin” is used to refer to a complex mixture of phosphatides that include various classes of compounds based on differences in the polar groups of molecular structures, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatic acid (PA) and other substances, such as triglycerides, carbohydrates, etc. In the scientific literature, “lecithin” is often regarded as referring to phosphatidylcholine or PC. The industry use of the term lecithin is applied herein, and the various names for specific phosphatides, such as PC, PE, etc., will be used.
  • Phosphatidylcholine is used extensively in the pharmaceutical industry, and highly pure PC is quite important for this industry. Recognition of the unique properties and possible uses of individual phosphatide components of lecithin, particularly PC, and the adverse effects in some applications containing contaminating non-choline phosphatides in PC-enriched fractions, have stimulated the search for improved methodologies for PC purification from lecithin.
  • There are many known methods for obtaining highly-purified phosphatidylcholines from various raw materials. For example, Swiss Pat. No. 561,088 and U.S. Pat. No. 2,945,869 set forth purification processes of soya phosphatidylcholine, which are to be used as emulsifiers for intravenous applications. Alcoholic solutions of previously de-oiled raw phosphatides are treated with Al2O3, MgO and/or activated carbon in order to make these solutions free of cephalins, and especially to reduce, as far as possible, the inositol-containing phosphatides, which have been found to lower the blood pressure in cats when introduced intravenously. However, this procedure always first required removal of the oil from the commercially-available, crude phosphatide prior to the preparation of the alcoholic solutions, which will only lead to a reduction in the cephalin content, regardless of the absorbent being used. The results for such processes demonstrate product purities not exceeding 70%. Accordingly, the complete removal of the cephalin cannot be accomplished by this method.
  • U.S. Pat. No. 3,544,605 describes a process to obtain highly-purified PC with a high content of essential fatty acids, which is free of, or heavily depleted in, cephalins, from plant lecithin by adsorption of the phosphatides on aluminum oxide and extraction with alcohol. In this process, the crude oil-containing phosphatide is first dissolved in ethyl acetate or a di-chlorinated hydrocarbon having 1 to 4 carbon atoms or a mixture of solvents (without prior de-oiling). The solution is then treated, with stirring, with at least a five-fold amount of aluminum oxide relative to the content of raw phosphatide, or may be carried out by adding the solution to an aluminum oxide column (instead of stirring therewith). Finally, the highly-purified, oil-free PC is liberated with alcohol from the separated aluminum oxide.
  • German Pat. No. 1,053,299 sets forth a process for obtaining natural choline phosphoric acid diglycerid esters, which are free of colamin, by using an aluminum oxide column chromatography treatment. Here again, an alcoholic extract of the previously de-oiled raw phosphatide, with the prior removal of oil, is achieved by repeated extraction with acetone.
  • U.S. Pat. No. 4,235,793 describes a process where raw lecithin is first extracted with alcohol. The resulting two phases are separated and the alcohol-rich upper phase is treated with aluminum oxide adsorbent. Elution of the adsorbent with an alcohol leads to an oily phosphatidylcholine, free of cephalin.
  • U.S. Pat. No. 4,443,378 is related to a method for the separation of acylated phospholipids. This process involves chromatography on a silicic acid gel in a lower alkanol containing 1 to 4 carbon atoms.
  • Finally, U.S. Pat. No. 4,452,743 is related to a method for the separation of oil and/or phosphatidylethanolamine from alcohol-soluble, phosphatidylcholine products containing the same. This process also involves chromatography on a silicic acid gel in a lower alkanol containing 1 to 4 carbon atoms.
  • Recently, one of the most important uses of PC involves PC becoming the primary functional ingredient of liposomes, where stable liposomes are formed with high-PC preparations. In order to obtain the best liposomes, 80 to 100% purity PC is required, rendering all of the aforesaid prior art techniques discussed herein inadequate.
  • Today, column chromatography is considered more appropriate for industrial purification of phosphatides. Chromatographic means are, however, generally slow and costly. On large scales especially, the large quantity of column packing required and the high associated instrumentation costs limit the use of column chromatography to the separation and purification of only the most valuable and expensive compounds. To reduce this cost, many researches have done a great deal of the work, but the results have not been satisfactory.
  • Therefore, it is an objective of the instant invention to provide more economical approaches and methods for the purification of phosphatidylcholine, and generate purer forms of phosphatidylcholine and like compositions using the aforesaid improved techniques and approaches.
  • These and many other objects are met in various embodiments of the present invention, offering significant advantages over the known prior art.
  • SUMMARY OF THE INVENTION
  • In accordance with the foregoing and other objectives, set forth herein is a description of an improved process for removing non-choline phosphatides to facilitate obtaining a more purified phosphatidylcholine product, and the products so produced. The product can be obtained efficiently even when starting with a raw soybean gum (lecithin). In addition, in the present invention Fe3O4 magnetic nanoparticles coated with hydroxyapatite are used as sorbents to fractionate phosphatides, especially for purifying phosphatidylcholine from a mixture of phosphatides.
  • A magnetic solid-phase extraction (SPE) method has been developed and applied for bio-separation and chemical analyses by many researchers. In this method, paramagnetic sorbents are dispersed in solution to adsorb the targets, and then collected by an external magnet for elution, which greatly simplifies the SPE procedure. Among different kinds of magnetic nanoparticles, magnetite (Fe3O4) has developed into an interesting and useful advanced material due to its unique physical and chemical properties.
  • The magnetic nanoparticles, as employed in the present invention, may be used alone, coated or complexed with one or more special-functional ligands that enhance the selectivity or the affinity of target molecules to the nanoparticles.
  • In one disclosed embodiment of a process of the present invention, the magnetic particles are mixed with the solutions containing the impurities for a sufficient period, allowing the magnetic particles to form a complex or conjugate with the target.
  • Subsequent to the intended separation, extraction could be performed by an external magnetic field of sufficient strength. The liquid portion, free of the nanoparticles and the bound target, is then separated from the portion of the solution containing the nanoparticles.
  • The nanoparticles, complexed or conjugated with the target, are regenerated by subjecting them to conditions which result in the release of the target from the nanoparticles, thereby freeing them for further use.
  • Where the target itself is a valuable molecule, the released target is collected for use in any further processing. The regenerated nanoparticles are thus suitable for reuse in the above described process.
  • In a preferred embodiment of the present invention, lecithin was removed from natural lipids by precipitation in a ketone solvent, such as acetone.
  • Phosphatidylcholine is then solubilized in an alcohol solvent, preferably ethanol. Final purification was achieved by adsorption of non-choline phosphatide on functionalized magnetic nanoparticles.
  • The nanoparticles are mixed with the ethanolic solution of lecithin, which mainly contains PE, PC and small quantities of PI, which permits binding of the phosphatides, except phosphatidylcholine, to the functionalized particles. Under low magnetic fields (about 1 Tesla), the molecules bound with the magnetic nanoparticles are attracted and separated by using external magnets.
  • The process disclosed within the present invention is simple, efficient, rapid and entails inexpensive instruments compared to the referent prior art. The process of the present invention readily permits the achievement of purities greater than 87%, making the teachings of the instant invention useful for the aforementioned liposome PC purity requirements and other uses.
  • Additionally, the process of the present invention eliminates the use of column chromatography for the purification of PC. The present invention is instead based in one embodiment on multiple extractions performed sequentially using acetone or supercritical CO2, ethanol and adsorption impurities on magnetic nanoparticles.
  • Furthermore, other equipment, such as a high gradient magnetic separation (HGMS) system, magnetic filter or magnetic solid phase extraction column, can be employed herein. These are state-of-the-art unit operations currently used throughout the industry. Economic estimations show that the costs for the methods conducted pursuant to the present invention are less than those for the aforementioned chromatographic methods, making the instant invention quite cost-effective in operations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the present invention, it is believed that the invention will be better understood from the following description taken in conjunction with the accompanying DRAWINGS, where like reference numerals designate like structural and other elements, in which:
  • FIG. 1 generally illustrates the manufacture or creation of magnetic nanoparticles, and then the cross-linking of the generated nanoparticles to hydroxyapatite (HAP), a construct which is used pursuant to the teachings of the present invention;
  • FIGS. 2A and 2B depict two images, where a) illustrates a transmission electron microscopy (TEM) image of Fe3O4, and b) illustrates a scanning electron microscope (SEM) image of magnetic nanoparticles coated with hydroxyapatite pursuant to the principles of the present invention; and
  • FIGS. 3A, 3B and 3C depict three images for Fourier transform infrared spectroscopy (FT-IR) spectra of a) Fe3O4, b) magnetic nanoparticles coated with hydroxyapatite, and c) the admixture after adsorption of phosphatides by the magnetic nanoparticles, with various inflection or peak points identified, each pursuant to the teachings of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description is presented to enable any person skilled in the art to make and use the invention. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required to practice the invention. Descriptions of specific applications are provided only as representative examples. Various modifications to the preferred embodiments will be readily apparent to one skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the scope of the invention. The present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest possible scope consistent with the principles and features disclosed herein.
  • Nanotechnology combined with magnetic separations have already drawn enormous attention in areas as diverse as biosensors, magnetic targeted drug delivery, novel diagnostic devices, cell separations, as well as other health-related applications. The present invention is principally based on separation by magnetic adsorbent.
  • Iron-containing nanoparticles are the preferred magnetic nanomaterial for such applications since they are non-toxic and have already been approved by the U.S. Food and Drug Administration as a contrast MRI agent. Central to the success of magnetic nanoparticles is the maneuverability of magnetic nanoparticles by applying magnetic fields that overcome opposing forces, such as Brownian motions, viscous drag and sedimentation. An advantage of magnetic sorbents is that they may be recovered from the system without filtration, with the help of an external magnetic field. Selective removal of target compounds from complex matrixes can thus be obtained, such as where certain special functional ligands with affinity for target molecules are bounded onto the magnetic nanoparticles. The present invention relates to methods of using such magnetic nanoparticles for selectively removing non-choline phosphatides of interest to produce a purified phosphatidylcholine, especially for pharmaceutical applications.
  • Magnetic nanoparticles may be synthesized by various known techniques and methods, where paramagnetic nanoparticles are preferred, and super-paramagnetic nanoparticles are most preferred herein. An exemplary technique for the construction or manufacture of iron-containing nanoparticles with a hydroxyapatite coating is shown in FIG. 1 of the DRAWINGS, which generally demonstrates steps for the building of a magnetically-inducible iron core from iron molecules, such as magnetite, and the subsequent covering or coating of the iron core with hydroxyapatite, as illustrated, to form the aforementioned hydroxyapatite (HAP) coated magnetic nanoparticles (MNP).
  • The nanoparticles can be synthesized using a known methodology for the thermal decomposition of a metal precursor: thermal decomposition in the presence of a stabilizing ligand as a surfactant, and co-precipitation with or without a stabilizing ligand as a surfactant.
  • A co-precipitation method used can be seen in the first Example discussed in more detail hereinbelow. This method can also be used in the presence of a stabilizing ligand surfactant.
  • Reaction conditions are selected to produce particles in a size range of from about 1 to 500 nm, preferably from about 1 to 50 nm, most preferably from about 1 to 20 nm.
  • The nanoparticles are preferably mono-dispersed after synthesis to facilitate further processing and maintain a high surface area to volume ratio. The addition of surfactants that are surface active agents facilitates such dispersion.
  • The magnetic nanoparticles may be used as such, or surface functionalized with a coating. The magnetic nanoparticles may be coated to enhance specificity and/or affinity to the specific target.
  • A starting material for the present invention is lecithin. Lecithins are commercially available in a wide variety of products. For example, mixtures with vegetable oil, fractionated forms that are enriched in particular phosphatides, chemically modified forms, etc. The preferred source material for the present invention is soybean lecithin. It should, of course, be understood, however, that any suitable, commercially-available source of lecithin can be used in practicing the principles of the instant invention.
  • The source materials so obtained can be treated with any known methods to remove extraneous substances which might hinder the purification, such as proteins, carbohydrates, and triglycerides. Then, as a first step in processing, raw gum lecithin is precipitated with cold acetone. The amount of solvent employed is generally in the range of about 5:1 in volume of solvent (ml) to weight of lecithin (gram). It is understood that for this separation that phosphatides are insoluble in acetone, while the oils are soluble in acetone, thus allowing extraction of the oils from the insoluble phosphatides. It should also be understood that such an extraction could be carried out by using supercritical CO2 instead of acetone to remove the oils and pigments.
  • Acetone is then added to the raw gum lecithin at room temperature and stirred for 4 hours. The acetone insoluble fraction was allowed to cool down to about 0 to 5° C. and maintained at that temperature for about 1 hour with stirring. Then it was filtered with suction in a Buchner funnel. The acetone insoluble fraction was then dried under reduced pressure and low temperature in a freeze drier for about 24 hours.
  • When phosphatides are extracted or isolated from main origin (bio-membranes), polymorphism can occur, which refers to the formation of diverse structures (bilayer, micelle, non-bilayer). Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-bilayer phases in phosphatides. The formation of non-lamellar phases in phosphatides is not completely understood, but it is significant that this amphiphilic molecule is capable of doing so. Also, ethanol can be fractionated phosphatidylcholine and phosphatidylinositol because of their dissimilar solubility in ethanol. Phosphatidylcholine, however, is relatively more soluble in ethanol than is phosphatidylinositol.
  • To prepare the ethanol-soluble fraction, the acetone insoluble is dissolved in ethanol (99%) with an ethanol/acetone insoluble ratio of about 6:1. The solution is stirred for about 10 minutes at room temperature, and then centrifuged at about 10,000 rpm for about 10 minutes. The ethanol-soluble fraction was combined and stored at about 0° C. for solid phase extraction.
  • Since the phosphatides have similar structures, with slight differences in their polar head groups, choosing a suitable coating to act as the sorbent is important and challenging. Therefore, the Applicants herein tested a coating with a network of positive and negative ions to investigate the absorption through ion interaction. In certain embodiments, hydroxyapatite was used as a surface functionalized coating for adsorption of non-choline phosphatides onto magnetic nanoparticles, such as generally illustrated and described in connection with FIG. 1.
  • A co-precipitation method was used to synthesize super-paramagnetic iron oxide nanoparticles, whereby a solution of FeCl2 and FeCl3 were mixed in water and added to about 25% NH4OH. A black precipitate is formed immediately, and the reaction is left to react for about 1 hour at room temperature to about 37° C. Nanoparticles are decanted, where a permanent magnet or centrifugation is used to separate the nanoparticles. The nanoparticles were washed 3 to 5 times by deionized water. No stabilizers were used for the solution, and the nanoparticles were bare. The bare magnetic nanoparticles are characterized by the aforementioned scanning electron microscope (SEM) and transmission electron microscopy (TEM) imaging.
  • Co-precipitation synthesis equation: Fe2++2Fe3++8OH→Fe3O4+4H2O.
  • The average size could be distinguished about 20 nm for bare magnetic particles, as shown in FIG. 2A of the DRAWINGS. The modification by hydroxyapatite led to the increased the size. According to the SEM image, the dimension of the hydroxyapatite-coated magnetic nanoparticle (MNP) is less than about 70 nm with an almost spherical and uniform morphology, as illustrated in FIG. 2B of the DRAWINGS.
  • It should be understood that the mechanism for the adsorption of phosphatides by sorbents is complicated, and also has been described as a “mixed-mode” ion exchange. The mechanism involves nonspecific interactions between positively-charged calcium ions and negatively-charged phosphate ions on the stationary-phase hydroxyapatite with phospholipid negatively-charged carboxyl groups and positively-charged amino groups. Therefore, the expected phosphatidylethanolamine and phosphatidylinositol interacted with the hydroxyapatite.
  • Shown in FIG. 3 of the DRAWINGS are three images of Fourier transform infrared spectroscopy (FT-IR) spectra. The FT-IR studies shown in FIG. 3 have been performed in the range of 400 to 4000/cm−1 for identification of various functional groups. With reference to FIG. 3A, there is shown a spectra for Fe3O4, identifying the inflection or peaks corresponding to the Fe3O4 such as in the iron core or magnetite, as depicted in FIG. 1. Similarly, FIG. 3B illustrates the spectra for the aforementioned magnetic nanoparticles coated with hydroxyapatite, identifying the inflection or low points corresponding thereto.
  • Finally, FIG. 3C illustrates the spectra for the resultant admixture of the HA-coated iron core after adsorption of phosphatides by the magnetic nanoparticles, with various inflection or peaks identified. Indeed, the FT-IR spectra of the resultant admixture shows several major peaks, located, for example, at 3,425.9; 2,925.3; 2,854.4 (with 82.551% transmittance); 1,728.2 (with 91.243% transmittance); 1,638.4; 1,456.3 (with 90.631% transmittance); 1,422.1; 1,034.5; 602.7; 567.1 and 469.0 cm−1.
  • It should, of course, be understood that the quantity of nanoparticles per liter of solution from which the target is to be removed depends upon the amount of the target in the solution.
  • It will be understood by these versed in the separation arts that the quantity of nanoparticles to be used is also a function of the amount of target present in the solution. Where a solution is diluted, the quantity of nanoparticles should be at least about 0.05 gr for about 10 mg/l phosphatides.
  • In one embodiment of the present invention removing non-choline phosphatides from lecithin is quite useful. Therefore, the ethanolic solution lecithin is mixed with hydroxyapatite-coated magnetic nanoparticles at temperature of from about 20° C. to 60° C., preferably at a temperature of about 30° C. to 40° C. for a period of from about 10 to 60 minutes. After applying an external magnet, the liquid portion is collected and dried under an inert gas such as Argon.
  • EXAMPLES Phospholipids Sample Preparation
  • In the first set of experiments, lecithin is blended with dry acetone (about 1:5) at room temperature, cooled down to about 0 to 5° C. for about 1 hour and then filtered with suction in a Buchner funnel. The filtrate cake is again blended, as above, and the filter cake is dried under reduced pressure and low temperature in a rotary vacuum evaporator. The residue was fractionated with ethanol (99%) in an ethanol/de-oiled gum ratio of about 6:1 to produce the aforementioned soluble (ES) and insoluble (EI) fractions. The ES fraction was combined and stored at about 0° C. for the aforesaid solid-phase extraction (SPE) progress.
  • Synthesis of the Nanoparticles
  • A complete precipitation of Fe3O4 is achieved under alkaline conditions, while maintaining a molar ratio of Fe2+: Fe3+=1:2 under a non-oxidizing environment. To obtain 1 g of Fe3O4 precipitate, 0.86 g of FeCl2.4H2O and 2.36 g of FeCl3.6H2O were dissolved under Argon in about 40 ml of deionized water with vigorous stirring (about 1,000 rpm). The resulting solution was added drop wise to a 25% NH4OH solution (about 10 mL). After about 15 min, 100 mL of Ca(NO3)2·4H2O (33.7 mmol) and (NH4)2HPO4 (20 mmol) solutions adjusted to pH 11 were added drop wise to the obtained precipitate over about 30 min with mechanical stirring. The resultant milky solution was heated to about 90° C. After about 2 hours, the mixture was cooled to room temperature and aged overnight. The dark brown precipitate formed was filtered, washed repeatedly with deionized water, and dried under vacuum at about 70° C. temperature.
  • Magnetic Spe Procedure
  • 0.2 gr nanoparticles sorbents were dispersed into an ethanolic lecithin solution by 10 mg/ml concentration for about 1 min with a probe sonicator (ultrasonic liquid processor), and immediately mixed with moderate agitation for about 20 min at about 38° C. and at pH 6.5, and then magnetic nanoparticles were separated by applying an external magnet. Finally, the supernatant was dried under Argon gas for phosphatides analysis, which indicated that a purity of phoshatidylcholine at 87% was reached. It should be understood that the technique of the instant invention can be employed multiple times for better separation and extraction of the phosphatidylcholine. Accordingly, high purities of about 85-100% are possible, where ranges of purity of 85-90, 85-95, 90-95, 90-100 are possible dependent on the conditions employed and the number of iterations.
  • While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in detail, it is not the intention of the Applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the breadth or scope of the applicant's concept. Furthermore, although the present invention has been described in connection with a number of exemplary embodiments and implementations, the present invention is not so limited but rather covers various modifications and equivalent arrangements, which fall within the purview of the appended claims.

Claims (21)

What is claimed is:
1. A purified phosphatidylcholine produced by a process comprising:
mixing a plurality of magnetic nanoparticles coated with hydroxyapatite into a phosphatide mixture, said phosphatide mixture containing phosphatidylcholine and non-choline phosphatides, said hydroxyapatite on said magnetic nanoparticles adsorbing said non-choline phosphatides;
applying a magnetic field to the resultant solution; and
separating, after application of said magnetic field, the magnetic nanoparticles coated with hydroxyapatite with the adsorbed non-choline phosphatides from the resultant solution,
whereby said process does not involve chromatographic solid phase extraction.
2. The purified phosphatidylcholine according to claim 1, wherein said phosphatide mixture is derived from a lecithin-containing material, said lecithin-containing material precipitated from a natural lipids solution using a ketone solvent.
3. The purified phosphatidylcholine according to claim 2, wherein said ketone solvent is acetone.
4. The purified phosphatidylcholine according to claim 2, wherein said precipitated lecithin-containing material is solubilized in an alcohol solvent, resulting in said phosphatide mixture.
5. The purified phosphatidylcholine according to claim 4, wherein said alcohol solvent is ethanol.
6. The purified phosphatidylcholine according to claim 2, wherein said lecithin-containing material comprises soybean gum.
7. The purified phosphatidylcholine according to claim 1, wherein, during said mixing, non-choline phosphatides are adsorbed by said magnetic nanoparticles coated with hydroxyapatite.
8. The purified phosphatidylcholine according to claim 1, wherein, during said mixing, cationic phosphatides in said phosphatide mixture are adsorbed onto said magnetic nanoparticles containing the hydroxyapatite.
9. The purified phosphatidylcholine according to claim 1, wherein said hydroxyapatite on said magnetic nanoparticles contains a coating of an amine.
10. The purified phosphatidylcholine according to claim 9, wherein said amine is selected from the group consisting of phosphatidylethanolamines, primary amines, polyamine, and combinations thereof.
11. The purified phosphatidylcholine according to claim 9, wherein the amine-coated hydroxyapatite in the adsorbent constitutes about 60 percent to about 95 percent of the adsorbent by weight.
12. The purified phosphatidylcholine according to claim 1, wherein a solid phase of said plurality of magnetic nanoparticles coated with hydroxyapatite is selected from the group consisting of apatite powder, apatite nanoparticles, magnetic nanoparticles coated by apatite, and combinations thereof.
13. The purified phosphatidylcholine according to claim 1, wherein the hydroxyapatite in the adsorbent constitutes about 40 percent to about 95 percent of the adsorbent by weight.
14. The purified phosphatidylcholine according to claim 1, the process further comprising:
eluting the adsorbed non-choline phosphatides from the resultant solution,
whereby purified phosphatidylcholine remains.
15. The purified phosphatidylcholine according to claim 1, the process further comprising:
extracting, after said separating, a supernatant from the resultant solution.
16. The purified phosphatidylcholine according to claim 15, the process further comprising:
drying said supernatant under Argon.
17. The purified phosphatidylcholine according to claim 1, the process further comprising:
decoupling, after said separating, the magnetic nanoparticles coated with hydroxyapatite from the adsorbed non-choline phosphatides, and
separating and recovering the magnetic nanoparticles,
thereby regenerating the magnetic nanoparticles for further use.
18. The purified phosphatidylcholine according to claim 17, the process further comprising:
extracting a phosphatide from the decoupled non-choline phosphatides.
19. The purified phosphatidylcholine according to claim 1, wherein said purified phosphatidylcholine obtained by said process has a purity of at least about 85%.
20. The purified phosphatidylcholine according to claim 19, wherein said purified phosphatidylcholine obtained by said process has a purity in a range selected from the group consisting of 85-90, 85-95, 85-100, 90-95, 90-100, and 95-100.
21. The purified phosphatidylcholine according to claim 19, wherein said purified phosphatidylcholine obtained by said process is part of a liposome.
US15/168,171 2014-02-07 2016-05-30 Purified phosphatidylcholine product made by a process employing magnetic nanoparticles Abandoned US20160272661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/168,171 US20160272661A1 (en) 2014-02-07 2016-05-30 Purified phosphatidylcholine product made by a process employing magnetic nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461936875P 2014-02-07 2014-02-07
US14/614,148 US9353137B2 (en) 2014-02-07 2015-02-04 Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced
US15/168,171 US20160272661A1 (en) 2014-02-07 2016-05-30 Purified phosphatidylcholine product made by a process employing magnetic nanoparticles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/614,148 Continuation US9353137B2 (en) 2014-02-07 2015-02-04 Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced

Publications (1)

Publication Number Publication Date
US20160272661A1 true US20160272661A1 (en) 2016-09-22

Family

ID=53774366

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/614,148 Expired - Fee Related US9353137B2 (en) 2014-02-07 2015-02-04 Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced
US15/168,171 Abandoned US20160272661A1 (en) 2014-02-07 2016-05-30 Purified phosphatidylcholine product made by a process employing magnetic nanoparticles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/614,148 Expired - Fee Related US9353137B2 (en) 2014-02-07 2015-02-04 Method for separation and purification of phosphatidylcholine employing magnetic nanoparticles and compositions so produced

Country Status (1)

Country Link
US (2) US9353137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909789A (en) * 2020-08-04 2020-11-10 大连工业大学 Method for separating phospholipid from edible oil based on aminated magnetic hollow composite material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394850A (en) * 2012-02-16 2015-03-04 布莱特赛德创新有限公司 Dietary and nutritional compositions and methods of use
CN105642222B (en) * 2016-02-29 2017-12-15 衡阳师范学院 A kind of preparation method and applications of the recyclable adsorbent of magnetic
CN106632458B (en) * 2016-11-22 2018-05-29 成都新柯力化工科技有限公司 A kind of method for extracting egg yolk lecithin
CN108927113B (en) * 2018-05-22 2021-05-18 福州大学 Nano-hydroxyapatite functionalized solid phase extraction monolithic column
CN111257443B (en) * 2020-01-19 2023-09-22 广东省生物工程研究所(广州甘蔗糖业研究所) Method for detecting sudan red dye in fruit and vegetable juice

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814111A (en) * 1984-02-13 1989-03-21 Air Products And Chemicals, Inc. Process for purification of phospholipids
US4983327A (en) * 1984-12-17 1991-01-08 A. Nattermann & Cie Gmbh Process for isolating a phosphatidylcholine free of other phospholipids in the starting material
US5429823A (en) * 1986-11-28 1995-07-04 The Liposome Company, Inc. Phospholipid composition and liposomes made therefrom
US5453523A (en) * 1993-06-16 1995-09-26 Emulsion Technology, Inc. Process for obtaining highly purified phosphatidylcholine
US5776486A (en) * 1993-05-28 1998-07-07 Aphios Corporation Methods and apparatus for making liposomes containing hydrophobic drugs

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1053299A (en) 1911-06-03 1913-02-18 Chester L Hill Brake-liner fabric and process of making same.
US2945869A (en) 1956-04-30 1960-07-19 Upjohn Co Phosphatide emulsifying agent and process of preparing same
DE1617679A1 (en) 1967-08-21 1971-03-18 Nattermann A & Cie Process for the production of highly purified phosphatidylcholine
IT953586B (en) 1972-03-31 1973-08-10 Monter Spa PROCEDURE AND RELATED EQUIPMENT FOR THE PROTECTIVE COATING WITH RESIN POWDER PAINTS AND THOUSANDS OF RING CAVITY IN PARTICULAR OF THE CAVITY EXISTING BETWEEN THE RIM AND DISC OF A WHEEL FOR MOTOR VEHICLES
DE2718797B2 (en) * 1977-04-27 1979-10-04 A. Nattermann & Cie Gmbh, 5000 Koeln Process for the production of highly purified phosphatidylcholines containing oil
DE3047012A1 (en) 1980-12-13 1982-07-22 A. Nattermann & Cie GmbH, 5000 Köln METHOD FOR SEPARATING ACYLATED PHOSPHOLIPID FROM THESE CONTAINING PHOSPHATIDYLCHOLINE PRODUCTS
DE3047011A1 (en) 1980-12-13 1982-07-22 A. Nattermann & Cie GmbH, 5000 Köln METHOD FOR SEPARATING OIL AND / OR PHOSPHATIDYLETHANOLAMINE FROM THESE ALCOHOL-SOLUBLE PHOSPHATIDYLCHOLINE PRODUCTS CONTAINING IT
US4714571A (en) * 1984-02-13 1987-12-22 The Liposome Company, Inc. Process for purification of phospholipids
CN101703917A (en) * 2009-11-25 2010-05-12 湖南大学 Magnetic nano hydroxyapatite adsorbent, preparation and application thereof
IT1401487B1 (en) * 2010-07-29 2013-07-26 Consiglio Nazionale Ricerche INTRINSICALLY MAGNETIC HYDROXYAPATITIS
CN103254226B (en) * 2013-05-08 2016-02-03 浙江大学 A kind of method of ADSORPTION IN A FIXED BED method separation and purification Yelkin TTS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814111A (en) * 1984-02-13 1989-03-21 Air Products And Chemicals, Inc. Process for purification of phospholipids
US4983327A (en) * 1984-12-17 1991-01-08 A. Nattermann & Cie Gmbh Process for isolating a phosphatidylcholine free of other phospholipids in the starting material
US5429823A (en) * 1986-11-28 1995-07-04 The Liposome Company, Inc. Phospholipid composition and liposomes made therefrom
US5776486A (en) * 1993-05-28 1998-07-07 Aphios Corporation Methods and apparatus for making liposomes containing hydrophobic drugs
US5453523A (en) * 1993-06-16 1995-09-26 Emulsion Technology, Inc. Process for obtaining highly purified phosphatidylcholine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
American Lecithin Company, 2000 - 2008, About Soy Phospholipids, 4 pages *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909789A (en) * 2020-08-04 2020-11-10 大连工业大学 Method for separating phospholipid from edible oil based on aminated magnetic hollow composite material

Also Published As

Publication number Publication date
US9353137B2 (en) 2016-05-31
US20150225429A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
US20160272661A1 (en) Purified phosphatidylcholine product made by a process employing magnetic nanoparticles
Abarca-Cabrera et al. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles
CN104525128B (en) A kind of super-paramagnetism nano microballoon Fe3O4@SiO2@PSA, the preparation method and its usage of PSA modifications
Zhao et al. The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research
Basly et al. Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents
Okoli et al. Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification
Gao et al. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein
Shen et al. Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation-assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats
Shen et al. Graphene oxide–Fe 3 O 4 nanocomposite for combination of dual-drug chemotherapy with photothermal therapy
JP5185539B2 (en) Method for producing sphingomyelin and plasmalogen-type glycerophospholipid
Meng et al. A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH 2) for solid-phase extraction of RNA
Blin et al. Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol
Chen et al. Preparation of anionic polyelectrolyte modified magnetic nanoparticles for rapid and efficient separation of lysozyme from egg white
JPH0244318B2 (en)
CN108176384B (en) Magnetic nanosphere of grafted arginine polymer brush as well as preparation method and application of magnetic nanosphere
JPH0244316B2 (en)
JP2987682B2 (en) Concentration of acidic phospholipids
JPH08511547A (en) Method for obtaining highly purified phosphatidylcholine
WO2007077240A2 (en) Functionalised nanoparticles, their production and use
Cong et al. Imidazolium-dysprosium-based magnetic NanoGUMBOS for isolation of hemoglobin
JP4156228B2 (en) Purification method of phosphatidylserine
JP2008545420A (en) Process for the preparation and isolation of phosphatides
CN112250706B (en) Method for extracting and purifying phospholipid from clams
WO2011037094A1 (en) Method of separation
JP2002531572A (en) Manufacturing process of deoiled phosphatide

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION