US20160251685A1 - Thioesterases and cells for production of tailored oils - Google Patents

Thioesterases and cells for production of tailored oils Download PDF

Info

Publication number
US20160251685A1
US20160251685A1 US15/062,045 US201615062045A US2016251685A1 US 20160251685 A1 US20160251685 A1 US 20160251685A1 US 201615062045 A US201615062045 A US 201615062045A US 2016251685 A1 US2016251685 A1 US 2016251685A1
Authority
US
United States
Prior art keywords
seq
cuphea
oil
cell
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/062,045
Inventor
George N. RUDENKO
Jason Casolari
Scott Franklin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corbion Biotech Inc
Original Assignee
Solazyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solazyme Inc filed Critical Solazyme Inc
Priority to US15/062,045 priority Critical patent/US20160251685A1/en
Assigned to TERRAVIA HOLDINGS, INC. reassignment TERRAVIA HOLDINGS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SOLAZYME, INC.
Publication of US20160251685A1 publication Critical patent/US20160251685A1/en
Assigned to CORBION BIOTECH, INC. reassignment CORBION BIOTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TERRAVIA HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/02Thioester hydrolases (3.1.2)
    • C12Y301/02014Oleoyl-[acyl-carrier-protein] hydrolase (3.1.2.14), i.e. ACP-thioesterase
    • A23L1/3006
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared

Definitions

  • Certain organisms including plants and some microalgae use a type II fatty acid biosynthetic pathway, characterized by the use of discrete, monofunctional enzymes for fatty acid synthesis.
  • mammals and fungi use a single, large, multifunctional protein.
  • Type II fatty acid biosynthesis typically involves extension of a growing acyl-ACP (acyl-carrier protein) chain by two carbon units followed by cleavage by an acyl-ACP thioesterase.
  • acyl-ACP thioesterases Two main classes of acyl-ACP thioesterases have been identified: (i) those encoded by genes of the FatA class, which tend to hydrolyze oleoyl-ACP into oleate (an 18:1 fatty acid) and ACP, and (ii) those encoded by genes of the FatB class, which liberate C8-C16 fatty acids from corresponding acyl-ACP molecules.
  • FatB genes from various plants have specificities for different acyl chain lengths. As a result, different gene products will produce different fatty acid profiles in plant seeds. See, U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and U.S. Pat. Nos. 5,344,771; 5,304,481. Recently, FatB genes have been cloned into oleaginous microalgae to produce triglycerides with altered fatty acid profiles. See, WO2010/063032, WO2011,150411, and WO2012/106560.
  • nucleic acid having at least 80% sequence identity to any of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76 or any equivalent sequences by virtue of the degeneracy of the genetic code.
  • nucleic acid sequence encoding a protein having at least 80% sequence identity to any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77, or a fragment thereof having acyl-ACP thioesterase activity.
  • the protein can have acyl-ACP thioesterase activity operable to alter the fatty acid profile of an oil produced by a recombinant cell comprising that sequence.
  • a method of producing a recombinant host cell that produces an altered fatty acid profile comprising transforming the cell with any of the nucleic acids mentioned above.
  • the host cell can be a plant cell, a microbial cell, or a microalgal cell.
  • Another embodiment of the invention includes a host cell produced by this method.
  • there is a method for producing an oil or oil-derived product comprising cultivating the host cell and extracting the oil, optionally wherein the cultivation is heterotrophic growth on sugar.
  • a fatty acid, fuel, chemical, or other oil-derived product can be produced from the oil.
  • the oil can have a fatty acid profile comprising at least 20% C8, C10, C12, C14 or C16 fatty acids.
  • the oil is produced by a microalgae and can lack C24-alpha sterols.
  • isolated refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.
  • a “natural oil” or “natural fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride.
  • the natural oil or natural fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells.
  • the terms oil and fat are used interchangeably, except where otherwise noted.
  • an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions.
  • fractionation means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished.
  • natural oil and natural fat encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, that does not substantially change its triglyceride profile.
  • a natural oil can also be a “noninteresterified natural oil”, which means that the natural oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.
  • Exogenous gene shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”.
  • a cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced.
  • the exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed.
  • an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene.
  • An exogenous gene may be present in more than one copy in the cell.
  • An exogenous gene may be maintained in a cell as an insertion into the genome (nuclear or plastid) or as an episomal molecule.
  • “Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.
  • Microalgae are microbial organisms that contain a chloroplast or other plastid, and optionally that are capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis.
  • Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source.
  • Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas , as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types.
  • Microalgae include cells such as Chlorella, Dunaliella , and Prototheca .
  • Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena , and Pyrobotrys .
  • Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.
  • An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement.
  • An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous.
  • a “profile” is the distribution of particular species or triglycerides or fatty acyl groups within the oil.
  • a “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone.
  • Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID).
  • FAME fatty acid methyl ester
  • FAME gas chromatography
  • FAME-GC-FID measurement approximate weight percentages of the fatty acids.
  • Recombinant is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid.
  • recombinant cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell.
  • Recombinant cells can, without limitation, include recombinant nucleic acids that encode a gene product or suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell.
  • RNAi interfering RNA
  • a “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature.
  • Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage.
  • an isolated nucleic acid or an expression vector formed in vitro by ligating DNA molecules that are not normally joined in nature are both considered recombinant for the purposes of this invention.
  • a recombinant nucleic acid Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention.
  • a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.
  • Additional FatB genes encoding thioesterases with varying substrate preferences have been identified from plant seeds. These genes or functional subsequences thereof can be used to engineer organisms to produce fatty acids having a chain-length distribution (fatty acid profile) that is altered from the wild type organism. Specifically, recombinant cells express one or more of the exogenous FatB genes. The fatty acids can be further converted to triglycerides, fatty aldehydes, fatty alcohols and other oleochemicals either synthetically or biosynthetically. In specific embodiments, triglycerides are produced by a host cell expressing the novel FatB gene. A triglyceride-containing natural oil can be recovered from the host cell. The natural oil can be refined, degummed, bleached and/or deodorized. The oil, in its natural or processed form, can be used for foods, chemicals, fuels, cosmetics, plastics, and other uses.
  • the genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell.
  • the genes can be codon optimized for expression in a target host cell.
  • the proteins produced by the genes can be used in vivo or in purified form.
  • RNAi RNAi or hairpin RNA
  • FatB genes found to be useful in producing desired fatty acid profiles in a cell are summarized below in Table 1.
  • Nucleic acids or proteins having the sequence of SEQ ID NOS: 1-78 can be used to alter the fatty acid profile of a recombinant cell.
  • Variant nucleic acids can also be used; e.g, variants having at least 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78.
  • Codon optimization of the genes for a variety of host organisms is contemplated, as is the use of gene fragments.
  • Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 2 and 3, respectively.
  • the first and/or second most preferred Prototheca codons are employed for codon optimization.
  • the invention encompasses a fragment any of the above-described proteins or nucleic acids (including fragments of protein or nucleic acid variants), wherein the protein fragment has acyl-ACP thioesterase activity or the nucleic acid fragment encodes such a protein fragment.
  • the fragment includes a domain of an acyl-ACP thioesterase that mediates a particular function, e.g., a specificity-determining domain.
  • Illustrative fragments can be produced by C-terminal and/or N-terminal truncations and include at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the full-length sequences disclosed herein.
  • percent sequence identity in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection.
  • sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
  • sequence comparison algorithm calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
  • Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters.
  • NCBI BLAST software ncbi.nlm.nih.gov/BLAST/
  • BLAST 2 Sequences Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: ⁇ 2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on.
  • BLAST 2 Sequences Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.
  • percent sequence identity for variants of the nucleic acids or proteins discussed above can be calculated by using the full-length nucleic acid sequence (e.g., one of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78) or full-length amino acid sequence (e.g., one of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77) as the reference sequence and comparing the full-length test sequence to this reference sequence.
  • percent sequence identity for variants of nucleic acid or protein fragment e.g., one of SEQ ID NO
  • the nucleic acids can be in isolated form, or part of a vector or other construct, chromosome or host cell. It has been found that is many cases the full length gene (and protein) is not needed; for example, deletion of some or all of the N-terminal hydrophobic domain (typically an 18 amino acid domain starting with LPDW (SEQ ID NO: 115)) yields a still-functional gene. In addition, fusions of the specificity determining regions of the genes in Table 1 with catalytic domains of other acyl-ACP thioesterases can yield functional genes.
  • the invention encompasses functional fragments (e.g., specificity determining regions) of the disclosed nucleic acid or amino acids fused to heterologous acyl-ACP thioesterase nucleic acid or amino acid sequences, respectively.
  • the host cell can be a single cell or part of a multicellular organism such as a plant.
  • Methods for expressing Fatb genes in a plant are given in U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and U.S. Pat. Nos. 5,344,771; 5,304,481, or can be accomplished using other techniques generally known in plant biotechnology.
  • Engineering of oleaginous microbes including Chlorophyta is disclosed in WO2010/063032, WO2011,150411, and WO2012/106560 and in the examples below.
  • oleaginous host cells include plant cells and microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae.
  • microalgal cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae.
  • Examples of oleaginous microalgae are provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca , a genus comprising obligate heterotrophs.
  • the oleaginous cells can be, for example, capable of producing 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, ⁇ 5%.
  • the oils produced can be low in DHA or EPA fatty acids.
  • the oils can comprise less than 5%, 2%, or 1% DI-IA and/or EPA.
  • the above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose).
  • a sugar e.g., glucose, fructose and/or sucrose
  • the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock.
  • the cells can metabolize xylose from cellulosic feedstocks.
  • the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012.
  • the oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes.
  • some embodiments feature natural oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.
  • the oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell.
  • a raw oil may be obtained from the cells by disrupting the cells and isolating the oil.
  • WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques. For example, oil may be obtained by cultivating, drying and pressing the cells.
  • the oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939.
  • the raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, as animal feed, for human nutrition, or for fertilizer.
  • a fatty acid profile of a triglyceride also referred to as a “triacylglyceride” or “TAG”
  • TAG triacylglyceride
  • the oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell.
  • the stable carbon isotope value ⁇ 13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina).
  • the stable carbon isotope value ⁇ 13C (0/00) of the oils can be related to the ⁇ 13C value of the feedstock used.
  • the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane.
  • the ⁇ 13C (0/00) of the oil is from ⁇ 10 to ⁇ 17 0/00 or from ⁇ 13 to ⁇ 16 0/00.
  • the oils produced according to the above methods in some cases are made using a microalgal host cell.
  • the microalga can be, without limitation, fall in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and ⁇ -sitosterol, when detected by GC-MS.
  • the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24 ⁇ stereochemistry and the absence of C24 ⁇ stereochemistry in the sterols present.
  • the oils produced may contain 22,23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in ⁇ -sitosterol, and/or contain poriferasterol while lacking stigmasterol.
  • the oils may contain significant amounts of ⁇ 7 -poriferasterol.
  • oleaginous cells expressing one or more of the genes of Table 1 can produce an oil with at least 20% of C8, C10, C12, C14 or C16 fatty acids.
  • the level of myristate (C14:0) in the oil is greater than 30%.
  • an oil, triglyceride, fatty acid, or derivative of any of these comprising transforming a cell with any of the nucleic acids discussed herein.
  • the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.
  • oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc).
  • the oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.
  • a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product.
  • residual biomass from heterotrophic algae can be used in such products.
  • the various triglyceride oils can be tailored in for a mixture of midchain and long chain fatty acids in order to adjust parameters such as polarity, solvency, and foam-height of the oils or chemicals made from the oils.
  • Seeds of oleaginous plants were obtained from local grocery stores or requested through USDA ARS National Plant Germplasm System (NPGS) from North Central Regional Plant Introduction Station (NCRIS) or USDA ARS North Central Soil Conservation Research Laboratory (Morris, Mich.). Dry seeds were homogenized in liquid nitrogen to powder, resuspended in cold extraction buffer containing 6-8M Urea and 3M LiCl and left on ice for a few hours to overnight at 4° C. The seed homogenate was passed through NucleoSpin Filters (Macherey-Nagel) by centrifugation at 20,000 g for 20 minutes in the refrigerated microcentrifuge (4° C.).
  • RNA pellets were resuspended in the buffer containing 20 mM Tris HCl, pH7.5, 0.5% SDS, 100 mM NaCl, 25 mM EDTA, 2% PVPP) and RNA was subsequently extracted once with Phenol-Chloroform-Isoamyl Alcohol (25:24:1, v/v) and once with chloroform. RNA was finally precipitated with isopropyl alcohol (0.7 Vol.) in the presence of 150 mM of Na Acetate, pH5.2, washed with 80% ethanol by centrifugation, and dried. RNA samples were treated with Turbo DNAse (Lifetech) and purified further using RNeasy kits (Qiagen) following manufacturers' protocols.
  • RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages.
  • Putative thioesterase-containg cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs have been further verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs.
  • the resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes.
  • RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages and putative thioesterase-containing cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs were verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs.
  • the resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes and to identify sequence variants arising from expression of different gene alleles or diversity of sequences within a population of seeds.
  • the resulting amino acid sequences were subjected to phylogenetic analysis using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) FatB sequences.
  • Transgenic strains were generated via transformation of the base strain Strain A ( Prototheca moriformis , derived from UTEX 1435 by classical mutation and screening for high oil production) with a construct encoding 1 of the 27 FatB thioesterases.
  • the construct pSZ2760 encoding Cinnamomum camphora (Cc) FATB1b is shown as an example, but identical methods were used to generate each of the remaining 26 constructs encoding the different respective thioesterases.
  • Construct pSZ2760 can be written as 6S::CrTUB2:ScSUC2:CvNR::PmAMT3:CcFATB1b:CvNR::6S.
  • the sequence of the transforming DNA is provided in Table 5 (pSZ2760).
  • the relevant restriction sites in the construct from 5′-3′, BspQ1, KpnI, AscI, MfeI, EcoRI, SpeI, XhoI, SacI, BspQ1, respectively, are indicated in lowercase, bold, and underlined.
  • BspQ1 sites delimit the 5′ and 3′ ends of the transforming DNA.
  • Bold, lowercase sequences at the 5′ and 3′ end of the construct represent genomic DNA from UTEX 1435 that target integration to the 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the selection cassette has the C. reinhardtii ⁇ -tubulin promoter driving expression of the S.
  • the promoter is indicated by lowercase, boxed text.
  • the initiator ATG and terminator TGA for ScSUC2 are indicated by bold, uppercase italics, while the coding region is indicated with lowercase italics.
  • the 3′ UTR is indicated by lowercase underlined text.
  • the spacer region between the two cassettes is indicated by upper case text.
  • the second cassette containing the codon optimized CcFATB1b gene (Table 5; pSZ2760) from Cinnamomum camphora is driven by the Prototheca moriformis endogenous AMT3 promoter, and has the Chlorella vulgaris Nitrate Reductase (NR) gene 3′ UTR.
  • the AMT3 promoter is indicated by lowercase, boxed text.
  • the initiator ATG and terminator TGA for the CcFATB1b gene are indicated in bold, uppercase italics, while the coding region is indicated by lowercase italics and the spacer region is indicated by upper case text.
  • the 3′ UTR is indicated by lowercase underlined text. The final construct was sequenced to ensure correct reading frame and targeting sequences.
  • Constructs encoding the identified heterologous FatB genes such as CcFATB1b from pSZ2760 in Table 6, were transformed into Strain A, and selected for the ability to grow on sucrose. Transformations, cell culture, lipid production and fatty acid analysis were all carried out as previously described. After cultivating on sucrose under low nitrogen conditions to accumulate oil, fatty acid profiles were determined by FAME-GC. The top performer from each transformation, as judged by the ability to produce the highest level of midchain fatty acids, is shown in Table 4.
  • CcFATB1b causes an increase in myristate levels from 2% of total fatty acids in the parent, Strain A, to ⁇ 15% in the D1670-13 primary transformant.
  • Other examples include CcFATB4, which exhibits an increase in laurate levels from 0% in Strain A to ⁇ 33%, and ChsFATB3, which exhibits an increase in myristate levels to ⁇ 34%.
  • a complete listing of relevant sequences for the transforming constructs such as the deduced amino acid sequence of the encoded acyl-ACP thioesterase, the native CDS coding sequence, the Prototheca moriformis codon-optimized coding sequence, and the nature of the sequence variants examined, is provided as SEQ ID NOS: 1-78.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 13/837,996, filed on Mar. 15, 2013, issued as U.S. Pat. No. 9,290,749 on Mar. 22, 2016, which is hereby incorporated herein by reference in its entirety for all purposes.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 3, 2013, is named SOLAP019US_SL.txt and is 318,250 bytes in size.
  • BACKGROUND
  • Certain organisms including plants and some microalgae use a type II fatty acid biosynthetic pathway, characterized by the use of discrete, monofunctional enzymes for fatty acid synthesis. In contrast, mammals and fungi use a single, large, multifunctional protein.
  • Type II fatty acid biosynthesis typically involves extension of a growing acyl-ACP (acyl-carrier protein) chain by two carbon units followed by cleavage by an acyl-ACP thioesterase. In plants, two main classes of acyl-ACP thioesterases have been identified: (i) those encoded by genes of the FatA class, which tend to hydrolyze oleoyl-ACP into oleate (an 18:1 fatty acid) and ACP, and (ii) those encoded by genes of the FatB class, which liberate C8-C16 fatty acids from corresponding acyl-ACP molecules.
  • Different FatB genes from various plants have specificities for different acyl chain lengths. As a result, different gene products will produce different fatty acid profiles in plant seeds. See, U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and U.S. Pat. Nos. 5,344,771; 5,304,481. Recently, FatB genes have been cloned into oleaginous microalgae to produce triglycerides with altered fatty acid profiles. See, WO2010/063032, WO2011,150411, and WO2012/106560.
  • SUMMARY
  • In an embodiment of the invention, there is a nucleic acid having at least 80% sequence identity to any of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76 or any equivalent sequences by virtue of the degeneracy of the genetic code.
  • In another embodiment of the invention, there is a nucleic acid sequence encoding a protein having at least 80% sequence identity to any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77, or a fragment thereof having acyl-ACP thioesterase activity. The protein can have acyl-ACP thioesterase activity operable to alter the fatty acid profile of an oil produced by a recombinant cell comprising that sequence.
  • In a further embodiment of the invention there is a method of producing a recombinant host cell that produces an altered fatty acid profile, the method comprising transforming the cell with any of the nucleic acids mentioned above. The host cell can be a plant cell, a microbial cell, or a microalgal cell. Another embodiment of the invention includes a host cell produced by this method.
  • In an embodiment, there is a method for producing an oil or oil-derived product, the method comprising cultivating the host cell and extracting the oil, optionally wherein the cultivation is heterotrophic growth on sugar. Optionally, a fatty acid, fuel, chemical, or other oil-derived product can be produced from the oil. Optionally, the oil can have a fatty acid profile comprising at least 20% C8, C10, C12, C14 or C16 fatty acids. Optionally, the oil is produced by a microalgae and can lack C24-alpha sterols.
  • DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION Definitions
  • As used with respect to nucleic acids, the term “isolated” refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.
  • A “natural oil” or “natural fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the natural oil or natural fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. In connection with a natural oil or natural fat, and as used generally throughout the present disclosure, the terms oil and fat are used interchangeably, except where otherwise noted. Thus, an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term “fractionation” means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms “natural oil” and “natural fat” encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, that does not substantially change its triglyceride profile. A natural oil can also be a “noninteresterified natural oil”, which means that the natural oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.
  • “Exogenous gene” shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”. A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell as an insertion into the genome (nuclear or plastid) or as an episomal molecule.
  • “Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.
  • “Microalgae” are microbial organisms that contain a chloroplast or other plastid, and optionally that are capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.
  • An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous.
  • In connection with a natural oil, a “profile” is the distribution of particular species or triglycerides or fatty acyl groups within the oil. A “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID). The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids.
  • “Recombinant” is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode a gene product or suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell. A “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by ligating DNA molecules that are not normally joined in nature, are both considered recombinant for the purposes of this invention. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention. Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.
  • Thioesterase Sequences
  • Additional FatB genes encoding thioesterases with varying substrate preferences have been identified from plant seeds. These genes or functional subsequences thereof can be used to engineer organisms to produce fatty acids having a chain-length distribution (fatty acid profile) that is altered from the wild type organism. Specifically, recombinant cells express one or more of the exogenous FatB genes. The fatty acids can be further converted to triglycerides, fatty aldehydes, fatty alcohols and other oleochemicals either synthetically or biosynthetically. In specific embodiments, triglycerides are produced by a host cell expressing the novel FatB gene. A triglyceride-containing natural oil can be recovered from the host cell. The natural oil can be refined, degummed, bleached and/or deodorized. The oil, in its natural or processed form, can be used for foods, chemicals, fuels, cosmetics, plastics, and other uses.
  • The genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell. The genes can be codon optimized for expression in a target host cell. The proteins produced by the genes can be used in vivo or in purified form.
  • The gene sequences disclosed can also be used to prepare antisense, or inhibitory RNA (e.g., RNAi or hairpin RNA) to inhibit complementary genes in a plant or other organism.
  • FatB genes found to be useful in producing desired fatty acid profiles in a cell are summarized below in Table 1. Nucleic acids or proteins having the sequence of SEQ ID NOS: 1-78 can be used to alter the fatty acid profile of a recombinant cell. Variant nucleic acids can also be used; e.g, variants having at least 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78. Codon optimization of the genes for a variety of host organisms is contemplated, as is the use of gene fragments. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 2 and 3, respectively. In some embodiments, the first and/or second most preferred Prototheca codons are employed for codon optimization.
  • In embodiments of the invention, there is protein or a nucleic acid encoding a protein having any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77. In an embodiment, there is protein or a nucleic acid encoding a protein having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% sequence identity with any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77. In certain embodiments, the invention encompasses a fragment any of the above-described proteins or nucleic acids (including fragments of protein or nucleic acid variants), wherein the protein fragment has acyl-ACP thioesterase activity or the nucleic acid fragment encodes such a protein fragment. In other embodiments, the fragment includes a domain of an acyl-ACP thioesterase that mediates a particular function, e.g., a specificity-determining domain. Illustrative fragments can be produced by C-terminal and/or N-terminal truncations and include at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the full-length sequences disclosed herein.
  • The term “percent sequence identity,” in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: −2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.
  • In certain embodiments, percent sequence identity for variants of the nucleic acids or proteins discussed above can be calculated by using the full-length nucleic acid sequence (e.g., one of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78) or full-length amino acid sequence (e.g., one of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77) as the reference sequence and comparing the full-length test sequence to this reference sequence. In some embodiments relating to fragments, percent sequence identity for variants of nucleic acid or protein fragments can be calculated over the entire length of the fragment.
  • The nucleic acids can be in isolated form, or part of a vector or other construct, chromosome or host cell. It has been found that is many cases the full length gene (and protein) is not needed; for example, deletion of some or all of the N-terminal hydrophobic domain (typically an 18 amino acid domain starting with LPDW (SEQ ID NO: 115)) yields a still-functional gene. In addition, fusions of the specificity determining regions of the genes in Table 1 with catalytic domains of other acyl-ACP thioesterases can yield functional genes. Thus, in certain embodiments, the invention encompasses functional fragments (e.g., specificity determining regions) of the disclosed nucleic acid or amino acids fused to heterologous acyl-ACP thioesterase nucleic acid or amino acid sequences, respectively.
  • TABLE 1
    FatB genes according to embodiments of the present invention
    Native CDS Prototheca
    nucloetide moriformis
    Sequence Amino Acid sequence (not codon-
    Variant (relative Sequence of codon- optimized
    to dominant CDS (no optimized, no nucleotide
    transcript additional additional sequence
    Species Gene Name idenitified) tags) cloning sites) of CDS
    Cinnamomum CcFATB1b M25L, M322R, SEQ ID NO: 1 SEQ ID NO: 2 SEQ ID
    camphora ΔT367-D368 NO: 3
    Cinnamomum CcFATB4 “wild-type” SEQ ID NO: 4 SEQ ID NO: 5 SEQ ID
    camphora NO: 6
    Cinnamomum CcFATB3 “wild-type” SEQ ID NO: 7 SEQ ID NO: 8 SEQ ID
    camphora NO: 9
    Cuphea ChsFATB1 “wild-type” SEQ ID NO: SEQ ID NO: 11 SEQ ID
    hyssopifolia 10 NO: 12
    Cuphea ChsFATB2 “wild-type” SEQ ID NO: SEQ ID NO: 14 SEQ ID
    hyssopifolia 13 NO: 15
    Cuphea ChsFATB2b +a.a.248-259 SEQ ID NO: SEQ ID NO: 17 SEQ ID
    hyssopifolia 16 NO: 18
    Cuphea ChsFATB3 “wild-type” SEQ ID NO: SEQ ID NO: 20 SEQ ID
    hyssopifolia 19 NO: 21
    Cuphea ChsFATB3b V204I, C239F, SEQ ID NO: SEQ ID NO: 23 SEQ ID
    hyssopifolia E243D, M251V 22 NO: 24
    Cuphea CuPSR23FATB3 “wild-type” SEQ ID NO: SEQ ID NO: 26 SEQ ID
    PSR23 25 NO: 27
    Cuphea CwFATB3 “wild-type” SEQ ID NO: SEQ ID NO: 29 SEQ ID
    wrightii 28 NO: 30
    Cuphea CwFATB4a “wild-type” SEQ ID NO: SEQ ID NO: 32 SEQ ID
    wrightii 31 NO: 33
    Cuphea CwFATB4b “wild-type” SEQ ID NO: SEQ ID NO: 35 SEQ ID
    wrightii 34 NO: 36
    Cuphea CwFATB5 “wild-type” SEQ ID NO: SEQ ID NO: 38 SEQ ID
    wrightii 37 NO: 39
    Cuphea ChtFATB1a “wild-type” SEQ ID NO: SEQ ID NO: 41 SEQ ID
    heterophylla 40 NO: 42
    Cuphea ChtFATB1b P16S, T20P, G94S, SEQ ID NO: SEQ ID NO: 44 SEQ ID
    heterophylla G105W, S293F, 43 NO: 45
    L305F
    Cuphea ChtFATB2b “wild-type” SEQ ID NO: SEQ ID NO: 47 SEQ ID
    heterophylla 46 NO: 48
    Cuphea ChtFATB2a S17P, P21S, T28N, SEQ IDO NO: SEQ ID NO: 50 SEQ ID
    heterophylla L30P, S33L, 49 NO: 51
    G76D, S78P,
    G137W
    Cuphea ChtFATB2c G76D, S78P SEQ ID NO: SEQ ID NO: 53 SEQ ID
    heterophylla 52 NO: 54
    Cuphea ChtFATB2d S21P, T28N, SEQ ID NO: SEQ ID NO: 56 SEQ ID
    heterophylla L30P, S33L, 55 NO: 57
    G76D, R97L,
    H124L, W127L,
    I132S, K258N,
    C303R, E309G,
    K334T, T386A
    Cuphea ChtFATB2e G76D, R97L, SEQ ID NO: SEQ ID NO: 59 SEQ ID
    heterophylla H124L, I132S, 58 NO: 60
    G152S, H165L,
    T211N, K258N,
    C303R, E309G,
    K334T, T386A
    Cuphea ChtFATB2f R97L, H124L, SEQ ID NO: SEQ ID NO: 62 SEQ ID
    heterophylla I132S, G152S, 61 NO: 63
    H165L, T211N
    Cuphea ChtFATB2g A6T, A16V, S17P, SEQ ID NO: SEQ ID NO: 65 SEQ ID
    heterophylla G76D, R97L, 64 NO: 66
    H124L, I132S,
    S143I, G152S,
    A157T, H165L,
    T211N, G414A
    Cuphea ChtFATB3a “wild-type” SEQ ID NO: SEQ ID NO: 68 SEQ ID
    heterophylla 67 NO: 69
    Cuphea ChtFATB3b C67G, H72Q, SEQ ID NO: SEQ ID NO: 71 SEQ ID
    heterophylla L28F, N179I 70 NO: 72
    Cuphea CvisFATB1 published SEQ ID NO: N/A SEQ ID
    viscosissima 73 NO: 74
    Cuphea CvisFATB2 published SEQ ID NO: N/A SEQ ID
    viscosissima 75 NO: 76
    Cuphea CvisFATB3 published SEQ ID NO: N/A SEQ ID
    viscosissima 77 NO: 78
  • TABLE 2
    Preferred codon usage in Prototheca strains
    Ala GCG 345 (0.36) ASN AAT   8 (0.04)
    GCA  66 (0.07) AAC 201 (0.96)
    GCT 101 (0.11)
    GCC 442 (0.46)
    Cys TGT  12 (0.10) Pro CCG 161 (0.29)
    TGC 105 (0.90) CCA  49 (0.09)
    CCT  71 (0.13)
    CCC 267 (0.49)
    Asp GAT  43 (0.12) Gln CAG 226 (0.82)
    GAC 316 (0.88) CAA  48 (0.18)
    Glu GAG 377 (0.96) Arg AGG  33 (0.06)
    GAA  14 (0.04) AGA  14 (0.02)
    CGG 102 (0.18)
    CGA  49 (0.08)
    CGT  51 (0.09)
    CGC 331(0.57)
    Phe TTT  89 (0.29) Ser AGT  16 (0.03)
    TTC 216 (0.71) AGC 123 (0.22)
    TCG 152 (0.28)
    TCA  31 (0.06)
    TCT  55 (0.10)
    TCC 173 (0.31)
    Gly GGG  92 (0.12) Thr ACG 184 (0.38)
    GGA  56 (0.07) ACA  24 (0.05)
    GGT  76 (0.10) ACT  21 (0.05)
    GGC 559 (0.71) ACC 249 (0.52)
    His CAT  42 (0.21) Val GTG 308 (0.50)
    CAC 154 (0.79) GTA   9 (0.01)
    GTT  35 (0.06)
    GTC 262 (0.43)
    Ile ATA   4 (0.01) Trp TGG 107 (1.00)
    ATT  30 (0.08)
    ATC 338 (0.91)
    Lys AAG 284 (0.98) Tyr TAT  10 (0.05)
    AAA   7 (0.02) TAC 180 (0.95)
    Leu TTG  26 (0.04) Stop TGA/TAG/TAA
    TTA   3 (0.00)
    CTG 447 (0.61)
    CTA  20 (0.03)
    CTT  45 (0.06)
    CTC 190 (0.26)
    Met ATG 191 (1.00)
  • TABLE 3
    Preferred codon usage in Chlorellaprotothecoides
    TTC (Phe) TAC (Tyr) TGC (Cys) TGA (Stop)
    TGG (Trp) CCC (Pro) CAC (His) CGC (Arg)
    CTG (Leu) CAG (Gln) ATC (Ile) ACC (Thr)
    GAC (Asp) TCC (Ser) ATG (Met) AAG (Lys)
    GCC (Ala) AAC (Asn) GGC (Gly) GTG (Val)
    GAG (Glu)
  • Host Cells
  • The host cell can be a single cell or part of a multicellular organism such as a plant. Methods for expressing Fatb genes in a plant are given in U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and U.S. Pat. Nos. 5,344,771; 5,304,481, or can be accomplished using other techniques generally known in plant biotechnology. Engineering of oleaginous microbes including Chlorophyta is disclosed in WO2010/063032, WO2011,150411, and WO2012/106560 and in the examples below.
  • Examples of oleaginous host cells include plant cells and microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae. Specific examples of microalgal cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of oleaginous microalgae are provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DI-IA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose). In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012.
  • Oils and Related Products
  • The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature natural oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.
  • The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques. For example, oil may be obtained by cultivating, drying and pressing the cells. The oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939. The raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, as animal feed, for human nutrition, or for fertilizer.
  • Where a fatty acid profile of a triglyceride (also referred to as a “triacylglyceride” or “TAG”) cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell.
  • The stable carbon isotope value δ13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value δ13C (0/00) of the oils can be related to the δ13C value of the feedstock used. In some embodiments, the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the δ13C (0/00) of the oil is from −10 to −17 0/00 or from −13 to −16 0/00.
  • The oils produced according to the above methods in some cases are made using a microalgal host cell. As described above, the microalga can be, without limitation, fall in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and β-sitosterol, when detected by GC-MS. However, it is believed that all sterols produced by Chlorella have C24β stereochemistry. Thus, it is believed that the molecules detected as campesterol, stigmasterol, and β-sitosterol, are actually 22,23-dihydrobrassicasterol, proferasterol and clionasterol, respectively. Thus, the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24β stereochemistry and the absence of C24α stereochemistry in the sterols present. For example, the oils produced may contain 22,23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in β-sitosterol, and/or contain poriferasterol while lacking stigmasterol. Alternately, or in addition, the oils may contain significant amounts of Δ7-poriferasterol.
  • In embodiments of the present invention, oleaginous cells expressing one or more of the genes of Table 1 can produce an oil with at least 20% of C8, C10, C12, C14 or C16 fatty acids. In a specific embodiment, the level of myristate (C14:0) in the oil is greater than 30%.
  • Thus, in embodiments of the invention, there is a process for producing an oil, triglyceride, fatty acid, or derivative of any of these, comprising transforming a cell with any of the nucleic acids discussed herein. In another embodiment, the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.
  • The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc). The oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.
  • After extracting the oil, a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product. For example, residual biomass from heterotrophic algae can be used in such products.
  • The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention. For example, the various triglyceride oils can be tailored in for a mixture of midchain and long chain fatty acids in order to adjust parameters such as polarity, solvency, and foam-height of the oils or chemicals made from the oils.
  • Example 1
  • Sequences of novel plant acyl-ACP thioesterases involved in seed-specific midchain (C8-C16) fatty acid biosynthesis in higher plants were isolated. Seed-specific lipid production genes were isolated through direct interrogation of RNA pools accumulating in oilseeds. Based on phylogenetic analysis, novel enzymes can be classified as members of FatB family of acyl-ACP thioesterases.
  • Seeds of oleaginous plants were obtained from local grocery stores or requested through USDA ARS National Plant Germplasm System (NPGS) from North Central Regional Plant Introduction Station (NCRIS) or USDA ARS North Central Soil Conservation Research Laboratory (Morris, Mich.). Dry seeds were homogenized in liquid nitrogen to powder, resuspended in cold extraction buffer containing 6-8M Urea and 3M LiCl and left on ice for a few hours to overnight at 4° C. The seed homogenate was passed through NucleoSpin Filters (Macherey-Nagel) by centrifugation at 20,000 g for 20 minutes in the refrigerated microcentrifuge (4° C.). The resulting RNA pellets were resuspended in the buffer containing 20 mM Tris HCl, pH7.5, 0.5% SDS, 100 mM NaCl, 25 mM EDTA, 2% PVPP) and RNA was subsequently extracted once with Phenol-Chloroform-Isoamyl Alcohol (25:24:1, v/v) and once with chloroform. RNA was finally precipitated with isopropyl alcohol (0.7 Vol.) in the presence of 150 mM of Na Acetate, pH5.2, washed with 80% ethanol by centrifugation, and dried. RNA samples were treated with Turbo DNAse (Lifetech) and purified further using RNeasy kits (Qiagen) following manufacturers' protocols. The resulting purified RNA samples were converted to pair-end cDNA libraries and subjected to next-generation sequencing (2×100 bp) using Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages. Putative thioesterase-containg cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs have been further verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs. The resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes.
  • To interrogate evolutionary and functional relationship between novel acyl-ACP thioesterases and the members of two existing thioesterase classes (FatA and FatB), we performed a phylogenetic analysis using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) amino acid thioesterase sequences. Novel proteins appear to group with known acyl-ACP FatB thioesterases involved in biosynthesis of C8-C16 fatty acids. Moreover, novel thioesterases appear to cluster into 3 predominant out-groups suggesting distinct functional similarity and evolutionary relatedness among members of each cluster.
  • The amino acid sequences of the FatB genes follow are shown in Table 4.
  • TABLE 4
    Amino acid sequences of FatB genes
    CuPSR23 FATB3 (SEQ ID NO: 25):
    MVVAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAH
    PKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLD
    RKSKRPDMLVDSVGLKCIVRDGLVSRQSFLIRSYEIGADRTASIETLMNHLQETSINHCK
    SLGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASD
    WLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDQKLH
    KFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR
    ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTST
    AKTSNGNSVS
    CuPSR23 FATB3b (SEQ ID NO: 79):
    MVVAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAH
    PKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLD
    RKSKRPDMLVDSVGLKSIVRDGLVSRQSFLIRSYEIGADRTASIETLMNHLQETSINHCKS
    LGLLNDGFGRTPGMCKNDLIWVLTKMQIIVIVNRYPTWGDTVEINTWFSQSGKIGMASD
    WLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDQKLH
    KFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR
    ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTST
    AKTSNGNSAS
    CwFATB3 (SEQ ID NO: 28):
    MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP
    HPKANGSAVSLKSGSLNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD
    RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK
    SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD
    WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR
    ECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST
    CwFATB3a (SEQ ID NO: 28):
    MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP
    HPKANGSAVSLKSGSLNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD
    RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK
    SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD
    WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR
    ECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST
    CwFATB3b (SEQ ID NO: 80):
    MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP
    HPKANGSAVSLKSGSLNTLEDLPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD
    RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK
    SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD
    WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILEKFWRPRSYALSPLNIGGNVE
    GKVW
    CwFATB3c (SEQ ID NO: 81):
    MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP
    HPKANGSAVSLKSGSLNTLEDLPSSPPPRTFLNQLPDWSRLRTAITTVFVATEKQFTRLD
    RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK
    SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD
    WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILEKFWRPRSYALSPLNIGGNVE
    GKVW
    CwFATB4a (SEQ ID NO: 31):
    MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI
    AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR
    RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE
    ESSPGDFF
    CwFATB4a.1 (SEQ ID NO: 82):
    MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI
    AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR
    RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINWVVPSE
    ESSPGDFF
    CwFATB4a.2 (SEQ ID NO: 83):
    MVATAASSAFFPVPSADTSSSRPGKLGNGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGSFKTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI
    AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR
    RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE
    ESSPGDFF
    CwFATB4a.3 (SEQ ID NO: 84):
    MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI
    AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR
    RECGRESVLESLTAVDPSAEGYVSRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE
    ESSPGDFF
    CwFATB4b (SEQ ID NO: 34):
    MVATAASSAFFPVPSADTSSSRPGKLGNGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGSFKTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI
    AGLSSDGFGRTPAMSKRDLIWVVAKMQVMVNRYPAWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPAEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSGEGDGSKFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPS
    EESSPGGDFF
    CwFATB4b.1 (SEQ ID NO: 85):
    MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP
    KINGSSVGLKSGSFKTQEDAPSAPPPRTFrNQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVIVINHLQETALNHVKI
    AGLSSDGFGRTPAMSKRDLIWVVAKMQVMVNRYPAWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK
    LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPAEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSGEGDGSKFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPS
    EESSPGGDFF
    CwFATB5 (SEQ ID NO: 37):
    MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK
    ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI
    FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD
    LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA
    MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND
    LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG
    DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRVV
    RLIF
    CwFATB5a (SEQ ID NO: 86):
    MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK
    ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI
    FQDGFFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD
    LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA
    MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND
    LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG
    DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRVV
    RLIF
    CwFATB5b (SEQ ID NO: 87):
    MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK
    ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI
    FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD
    LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA
    MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND
    LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG
    DRCVYQHLLWLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRV
    VRLIF
    CwFATB5c (SEQ ID NO: 88):
    MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK
    ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI
    FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD
    LIWVVTKIQVEVNRYPIWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA
    MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND
    LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG
    DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGMGWQPFRVV
    RLIF
    CwFATB5.1 (SEQ ID NO: 89):
    MVAAAASSAFFSVPTPGTSPKPGKFRNWPSSLSVPFKPETNHNGGFHIKANASAH
    PKANGSALNLKSGSLETQEDTSLSSPPRTFIKQLPDWSMLLSKITTVFGAAEKQLKRPGM
    LVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFG
    RTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGE
    ILIRATSVWAMMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDRKLYKLNVKTGDSIR
    DGLTPRWNDLDVNQHVNNVKFIGWILKSVPTKVFETQELCGVTLEYRRECGKDSVLES
    VTAMDPAKEGDRSVYQHLLRLEDGADITIGRTEWRPKNAGANEAISSGKTSNGNSAS
    CwFATB5.1a (SEQ ID NO: 90):
    MVAAAASSAFFSVPTPGTSPKPGKFRNWPLSLSVPFKPETNHNGGFHIKANASAH
    PKANGSALNLKSGSLETQEDTSLSSPPRTFIKQLPDWSMLLSKITTVFGAAEKQLKRPGM
    LVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTAKETLMNIFQETSLNHCKSIGLLNDGFG
    RTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGE
    ILIRATSVWAMMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDRKLYKLNVKTGDS1R
    DGLTPRWNDLDVNQHVNNVKFIGWILKSVPTKVFETQELCGVTLEYRRECGKDSVLES
    VTAMDPAKEGDRSVYQHLLRLEDGADITIGRTEWRPKNAGANEAISSGKTSNGNSAS
    CcFATB2b (SEQ ID NO: 91):
    MVTTSLASAYFSMKAVMLAPDGRGIKPRSSGLQVRAGNERNSCKVINGTKVKD
    TEGLKGCSTLQGQSMLDDHFGLHGLVFRRTFAIRCYEVGPDRSTSIMAVMNHLQEAAR
    NHAESLGLLGDGFGETLEMSKRDLIWVVRRTHVAVERYPAWGDTVEVEAWVGASGNT
    GMRRDFLVRDCKTGHILTRCTSVSVMMNMRTRRLSKIPQEVRAEIDPLFIEKVAVKEGEI
    KKLQKLNDSTADYIQGGWTPRWNDLDVNQHVNNIIYVGWIFKSVPDSISENHHLSSITLE
    YRRECIRGNKLQSLTTVCGGSSEAGIICEHLLQLEDGSEVLRARTEWRPKHTDSFQGISER
    FPQQEPHK
    CcFATB3 (SEQ ID NO: 7):
    MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKPASSSGLQVKAN
    AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL
    DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH
    VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG
    MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN
    RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNVKYIGWILESAPGSILESHELSCMTL
    EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS
    ANNSRSILEMPAESL
    CcFATB3b (SEQ ID NO: 92):
    MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKLASSSGLQVKAN
    AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL
    DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH
    VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG
    MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN
    RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNVKYIGWILESAPGSILESHELSCMTL
    EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS
    ANNSRSILEMPAESL
    CcFATB3c (SEQ ID NO: 93):
    MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKPASSSGLQVKAN
    AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL
    DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH
    VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG
    MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN
    RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNAKYIGWILESAPGSILESHELSCMTL
    EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS
    ANNSRSILEMPAESL
    ChtFATB1a (SEQ ID NO: 40):
    MVAAAASSAFFSVPTPGTSTKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR
    TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD
    SIRKGLTPRWNDLDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL
    ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS
    ChtFATB1a.1 (SEQ ID NO: 94):
    MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRHSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLIGDC
    RTGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTG
    DSIRKGLTPRWNDLDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDS
    VLESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGALSTGKTSNGN
    SVS
    ChtFATB1a.2 (SEQ ID NO: 95):
    MVAAAASSAFFSVPTPGTSPKPGNFGNWPSNLSVPFKPESNHNGGFRVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR
    TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD
    SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL
    ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS
    ChtFATB1a.3 (SEQ ID NO: 96):
    MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR
    TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD
    SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL
    ESVTAMDTAKEGDRSINQHLLRLEDGADITIGRTEWRPKNAGVNGAISTGKTSNENSVS
    ChtFATB1a.4 (SEQ ID NO: 97):
    MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWSMLLSKITTVFGAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR
    TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD
    SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL
    ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS
    ChtFATB1b (SEQ ID NO: 43):
    MVAAAASSAFFSVPTSGTSPKPGNFGNWPSSLSVPFKPESSHNGGFQVKANASA
    HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWSMLLSKITTVFWAAERQWKRP
    GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND
    GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR
    TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD
    FIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL
    ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS
    ChtFATB2b (SEQ ID NO: 46):
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTMLD
    RKSKKPDMHVDWFGLEIIVQDGLVFRESFSIRSYEIGADRTASIETLMNHLQDTSLNHCK
    SVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGRN
    WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK
    FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE
    CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK
    TSNGNSVS
    ChtFATB2a (SEQ ID NO: 49):
    MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANAS
    AHPKANGSAVSLKSGSLNTKEDTPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTML
    DRKSKKPDMHVDWFGLEIIVQDWLVFRESFSIRSYEIGADRTASIETLMNHLQDTSLNHC
    KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR
    NWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPLIEDNDRKLH
    KFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRR
    ECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTG
    KTSNGNSVS
    ChtFATB2c (SEQ ID NO: 52):
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTKEDTPSSPPPRTFLNQLPDWNRLRTAITTVFVAAEKQLTML
    DRKSKKPDMHVDWFGLEIIVQDGLVFRESFSIRSYEIGADRTASIETININHLQDTSLNHC
    KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR
    NWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRR
    ECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTG
    KTSNGNSVS
    ChtFATB2d (SEQ ID NO: 55):
    MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANAS
    AHPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTML
    DRKSKRPDMLVDLFGLESIVQDGLVFRESYSIRSYEIGADRTASIETLMNHLQDTSLNHC
    KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR
    NWLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLH
    KFDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR
    ECGRESVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTG
    KTSNGNSVS
    ChtFATB2e (SEQ ID NO: 58):
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTQEDTSSSPPPQTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD
    RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK
    SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN
    WLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK
    FDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRRE
    CGRDSVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGK
    TSNGNSVS
    ChtFATB2f (SEQ ID NO: 61):
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD
    RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK
    SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN
    WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK
    FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE
    CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK
    TSNGNSVS
    ChtFATB2g (SEQ ID NO: 64):
    MVVAATASSAFFPVPVPGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD
    RKSKRPDMLVDWFGLESIVQDGLVFREIYSIRSYEISADRTTSIETVMNLLQETSLNHCKS
    MGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN
    WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK
    FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE
    CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK
    TSNANSVS
    ChtFATB2h (SEQ ID NO: 98):
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA
    HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD
    RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK
    SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN
    WLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK
    FDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESIPTEVLETQELCSLTLEYRREC
    GRESVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGKT
    SNGNSVS
    ChtFATB3a (SEQ ID NO: 67):
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK
    LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG
    ETSPGNS
    ChtFATB3b (SEQ ID NO: 70):
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGFGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLIEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMRR
    DWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWKL
    PKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR
    RECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASGE
    TSPGNS
    ChtFATB3c (SEQ ID NO: 99):
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDRK
    LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSEKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGAIAFG
    ETSPGDS
    ChtFATB3d (SEQ ID NO: 100):
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIKTVMNHLQETALNHVK
    SAGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGM
    RRDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDW
    KLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLE
    YRRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIAS
    GETSPGNS
    ChtFATB3e (SEQ ID NO: 101):
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSGSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK
    LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG
    ETSPGNS
    ChtFATB3f (SEQ ID NO: 102):
    MVATAASSAFFPVPSPDTSSRLGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGSSVSLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMPVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK
    LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSEKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG
    ETSPGNS
    ChtFATB3g (SEQ ID NO: 103):
    MVATAASSAFFPVPSPDTSSRAGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP
    KINGS SVS LKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW
    KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS
    AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR
    RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHEVDSAPVIEDDDWK
    LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY
    RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG
    ETSPGNS
    ChsFATB1 (SEQ ID NO: 10):
    MVATNAAAFSAYTFFLTSPTHGYSSKRLADTQNGYPGTSLKSKSTPPPAAAAAR
    NGALPLLASICKCPKKADGSMQLDSSLVFGFQFYIRSYEVGADQTVSIQTVLNYLQEAAI
    NHVQSAGYFGDSFGATPEMTKRNLIWVITKMQVLVDRYPAWGDVVQVDTWTCSSGKN
    SMQRDWFVRDLKTGDIITRASSVWVLMNRLTRKLSKIPEAVLEEAKLFVMNTAPTVDD
    NRKLPKLDGSSADYVLSGLTPRWSDLDMNQHVNNVKYIAWILESVPQSIPETHKLSAIT
    VEYRRECGKNSVLQSLTNVSGDGITCGNSIIECHHLLQLETGPEILLARTEWISKEPGFRG
    APIQAEKVYNNK
    ChsFATB2 (SEQ ID NO: 13):
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP
    PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD
    WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV
    KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG
    MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD
    RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL
    EYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIA
    SGETSPGDSS
    ChsFatB2b (SEQ ID NO: 16):
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP
    PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD
    WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV
    KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG
    MRRDWLISDCNTGEILTRASSKSQIMLPLHYCSVWVMMNQKTRRLSKIPDEVRHEIEPH
    FVDSAPVIEDDDRKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPE
    VLETQELCSLTLEYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEW
    RPKTAGINGPIASGETSPGDSS
    ChsFatB2c (SEQ ID NO: 104):
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP
    PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD
    WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV
    KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG
    MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD
    RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL
    EYRRECGRESVLESLTAVDPSGKGSGSQFQHLMRLEDGGEIVKGRTEWRPKTAGINGPI
    ASGETSPGDSS
    ChsFatB2d (SEQ ID NO: 105):
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP
    PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD
    WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV
    KSAGLLNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG
    MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD
    RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL
    EYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIA
    SGETSPGDSS
    Chs FATB3 (SEQ ID NO: 19):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST
    GKTSNGNSIS
    ChsFatb3b (SEQ ID NO: 22):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVINAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR
    DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH
    KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRR
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAISTG
    KTSNGNSIS
    ChsFatB3c (SEQ ID NO: 106):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    QECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNS
    IS
    ChsFATB3d (SEQ ID NO: 107):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRSDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST
    GKTSNGNSIS
    ChsFATB3e (SEQ ID NO: 108):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRSDMLMDPFGVDRVVQDGVVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST
    GKTSNGNSIS
    ChsFATB3f (SEQ ID NO: 109):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG,
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST
    GKTSNGNSIS
    ChsFATB3g (SEQ ID NO: 110):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR
    DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH
    KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS
    ChsFATB3h (SEQ ID NO: 111):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRSDMLMDPFGVDRVVQDGVVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR
    DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH
    KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS
    ChsFATB3i (SEQ ID NO: 112):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRICSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG
    RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL
    HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR
    RECGGDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST
    GKTSNGNSIS
    ChsFATB3j (SEQ ID NO: 113):
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA
    RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML
    DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC
    KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR
    DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH
    KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS
  • Example 2
  • In the example below, we detail the effect of expressing plant oilseed transcriptome-derived, heterologous thioesterases in the UTEX1435 (web.biosci.utexas.edu/utex/) strain, Strain A.
  • As in Example 1, RNA was extracted from dried plant seeds and submitted for paired-end sequencing using the Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages and putative thioesterase-containing cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs were verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs. The resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes and to identify sequence variants arising from expression of different gene alleles or diversity of sequences within a population of seeds. The resulting amino acid sequences were subjected to phylogenetic analysis using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) FatB sequences. The thioesterases that clustered with acyl-ACP FatB thioesterases, which are involved in biosynthesis of C8-C16 fatty acids, were pursued.
  • Construction of Transforming Vectors Expressing Acyl-ACP FatB Thioesterases
  • 27 putative acyl-ACP FatB thioesterases from the species Cinnamomum camphora, Cuphea hyssopifolia, Cuphea PSR23, Cuphea wrightii, Cuphea heterophylla, and Cuphea viscosissima were synthesized in a codon-optimized form to reflect Prototheca moriformis (UTEX 1435) codon usage. Of the 27 genes synthesized, 24 were identified by our transcriptome sequencing efforts and the 3 genes from Cuphea viscosissima, were from published sequences in GenBank.
  • Transgenic strains were generated via transformation of the base strain Strain A (Prototheca moriformis, derived from UTEX 1435 by classical mutation and screening for high oil production) with a construct encoding 1 of the 27 FatB thioesterases. The construct pSZ2760 encoding Cinnamomum camphora (Cc) FATB1b is shown as an example, but identical methods were used to generate each of the remaining 26 constructs encoding the different respective thioesterases. Construct pSZ2760 can be written as 6S::CrTUB2:ScSUC2:CvNR::PmAMT3:CcFATB1b:CvNR::6S. The sequence of the transforming DNA is provided in Table 5 (pSZ2760). The relevant restriction sites in the construct from 5′-3′, BspQ1, KpnI, AscI, MfeI, EcoRI, SpeI, XhoI, SacI, BspQ1, respectively, are indicated in lowercase, bold, and underlined. BspQ1 sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences at the 5′ and 3′ end of the construct represent genomic DNA from UTEX 1435 that target integration to the 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the selection cassette has the C. reinhardtii β-tubulin promoter driving expression of the S. cerevisiae gene SUC2 (conferring the ability to grow on sucrose) and the Chlorella vulgaris Nitrate Reductase (NR) gene 3′ UTR. The promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for ScSUC2 are indicated by bold, uppercase italics, while the coding region is indicated with lowercase italics. The 3′ UTR is indicated by lowercase underlined text. The spacer region between the two cassettes is indicated by upper case text. The second cassette containing the codon optimized CcFATB1b gene (Table 5; pSZ2760) from Cinnamomum camphora is driven by the Prototheca moriformis endogenous AMT3 promoter, and has the Chlorella vulgaris Nitrate Reductase (NR) gene 3′ UTR. In this cassette, the AMT3 promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for the CcFATB1b gene are indicated in bold, uppercase italics, while the coding region is indicated by lowercase italics and the spacer region is indicated by upper case text. The 3′ UTR is indicated by lowercase underlined text. The final construct was sequenced to ensure correct reading frame and targeting sequences.
  • TABLE 5
    pSZ2760 Transforming construct (SEQ ID NO: 114)
    Figure US20160251685A1-20160901-C00001
    Figure US20160251685A1-20160901-C00002
    Figure US20160251685A1-20160901-C00003
    Figure US20160251685A1-20160901-C00004
    ctgcaggccttcctgttcctgctggccggcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgca
    cttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacttccagt
    acaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagccc
    atcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttcaacga
    caccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctgga
    cggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtac
    gagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctgg
    aagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggac
    cccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttc
    aacggcacccacttcgaggccucgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaaca
    ccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctc
    ctccatgtccctcgtgcgcaaguctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagcc
    gatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacc
    tgtccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacct
    ctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgg
    gaacagcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaac
    gacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacac
    ctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgacaagttccaggtg
    Figure US20160251685A1-20160901-C00005
    Figure US20160251685A1-20160901-C00006
    Figure US20160251685A1-20160901-C00007
    Figure US20160251685A1-20160901-C00008
    catgaaggccgtgatgctggcccgcgacggccgcggcctgaagccccgctcctccgacctgcagctgcgcgccggcaacgcccaga
    cctccctgaagatgatcaacggcaccaagttctcctacaccgagtccctgaagaagctgcccgactggtccatgctgttcgccgtgatc
    accaccatcttctccgccgccgagaagcagtggaccaacctggagtggaagcccaagcccaaccccccccagctgctggacgacca
    cttcggcccccacggcctggtgttccgccgcaccttcgccatccgctcctacgaggtgggccccgaccgctccacctccatcgtggccgt
    gatgaaccacctgcaggaggccgccctgaaccacgccaagtccgtgggcatcctgggcgacggcttcggcaccaccctggagatgt
    ccaagcgcgacctgatctgggtggtgaagcgcacccacgtggccgtggagcgctaccccgcctggggcgacaccgtggaggtgga
    gtgctgggtgggcgcctccggcaacaacggccgccgccacgacttcctggtgcgcgactgcaagaccggcgagatcctgacccgct
    gcacctccctgtccgtgatgatgaacacccgcacccgccgcctgtccaagatccccgaggaggtgcgcggcgagatcggccccgcct
    tcatcgacaacgtggccgtgaaggacgaggagatcaagaagccccagaagctgaacgactccaccgccgactacatccagggcg
    gcctgaccccccgctggaacgacctggacatcaaccagcacgtgaacaacatcaagtacgtggactggatcctggagaccgtgccc
    gactccatcttcgagtcccaccacatctcctccttcaccatcgagtaccgccgcgagtgcacccgcgactccgtgctgcagtccctgacc
    accgtgtccggcggctcctccgaggccggcctggtgtgcgagcacctgctgcagctggagggcggctccgaggtgctgcgcgccaag
    accgagtggcgccccaagctgtccttccgcggcatctccgtgatccccgccgagtcctccgtgatggactacaaggaccacgacggcg
    Figure US20160251685A1-20160901-C00009
    Figure US20160251685A1-20160901-C00010
  • Constructs encoding the identified heterologous FatB genes, such as CcFATB1b from pSZ2760 in Table 6, were transformed into Strain A, and selected for the ability to grow on sucrose. Transformations, cell culture, lipid production and fatty acid analysis were all carried out as previously described. After cultivating on sucrose under low nitrogen conditions to accumulate oil, fatty acid profiles were determined by FAME-GC. The top performer from each transformation, as judged by the ability to produce the highest level of midchain fatty acids, is shown in Table 4.
  • TABLE 6
    Alteration of Fatty Acid Profiles in S3150 upon Expression of Heterologous FatB Thioesterases
    FA profile of top performer from each transformation
    (%; primary lipid in Strain A background)
    Species Gene Name SZ Plasmid Strain C8:0 C10:0 C12:0
    Cinnamomum camphora CcFATB1b pSZ2760 A; T526; D1670-13 0 0 1
    Cinnamomum camphora CcFATB4 pSZ2756 A; T525; D1666-31 0 1 33
    Cinnamomum camphora CcFATB3 pSZ2755 A; T525; D1665-4 0 0 0
    Cuphea hyssopifolia ChsFATB1 pSZ2778 A; T535; D1689-30 0 0 0
    Cuphea hyssopifolia ChsFATB2 pSZ2796 A; T537; D1700-46 0 0 0
    Cuphea hyssopifolia ChsFATB2b pSZ2792 A; T537; D1696-9 0 0 0
    Cuphea hyssopifolia ChsFATB3 pSZ2797 A; T537; D1701-48 0 0 8
    Cuphea hyssopifolia ChsFATB3b pSZ2795 A; T537; D1699-1 0 0 7
    Cuphea PSR23 CuPSR23FATB3 pSZ2793 A; T537; D1697-13 0 1 0
    Cuphea wrightii CwFATB3 pSZ2751 A; T525; D1661-22 0 2 17
    Cuphea wrightii CwFATB4a pSZ2752 A; T525; D1662-30 0 0 0
    Cuphea wrightii CwFATB4b pSZ2753 A; T525; D1663-29 0 0 0
    Cuphea wrightii CwFATB5 pSZ2754 A; T525; D1664-39 0 0 0
    Cuphea heterophylla ChtFATB1a pSZ2757 A; T525; D1667-19 0 0 5
    Cuphea heterophylla ChtFATB1b pSZ2773 A; T535; D1685-29 0 0 2
    Cuphea heterophylla ChtFATB2b pSZ2780 A; T535; D1691-8 0 0 0
    Cuphea heterophylla ChtFATB2a pSZ2774 A; T537; D1702-24 0 0 0
    Cuphea heterophylla ChtFATB2c pSZ2758 A; T525; D1668-22 0 0 3
    Cuphea heterophylla ChtFATB2d pSZ2759 A; T526; D1669-19 0 0 4
    Cuphea heterophylla ChtFATB2e pSZ2775 A; T535; D1686-23 0 1 2
    Cuphea heterophylla ChtFATB2f pSZ2777 A; T535; D1688- 33 0 0 0
    Cuphea heterophylla ChtFATB2g pSZ2794 A; T537; D1698-19 0 0 0
    Cuphea heterophylla ChtFATB3a pSZ2776 A; T535; D1687-23 0 0 0
    Cuphea heterophylla ChtFATB3b pSZ2779 A; T535; D1690- 31 0 0 0
    Cuphea viscosissima CvisFATB1 pSZ2810 A; T540; D1711-30 0 1 0
    Cuphea viscosissima CvisFATB2 pSZ2817 A; T547; D1718-1 0 0 0
    Cuphea viscosissima CvisFATB3 pSZ2791 A; T537; D1695-1 0 0 0
    A (parent strain): 0 0 0
    FA profile of top performer from each transformation
    (%; primary lipid in Strain A background)
    Species C14:0 C16:0 C18:0 C18:1 C18:2 C18:3α
    Cinnamomum camphora 15 26 2 46 9 1
    Cinnamomum camphora 4 7 2 41 10 1
    Cinnamomum camphora 3 44 3 41 8 0
    Cuphea hyssopifolia 2 22 4 63 8 1
    Cuphea hyssopifolia 6 53 3 32 6 0
    Cuphea hyssopifolia 5 26 2 56 9 1
    Cuphea hyssopifolia 34 27 2 24 5 1
    Cuphea hyssopifolia 29 27 1 28 6 1
    Cuphea PSR23 2 24 3 61 8 1
    Cuphea wrightii 9 19 2 41 8 1
    Cuphea wrightii 4 48 3 36 7 1
    Cuphea wrightii 5 52 3 32 6 1
    Cuphea wrightii 3 27 3 57 7 1
    Cuphea heterophylla 18 27 2 39 7 1
    Cuphea heterophylla 7 27 3 53 8 1
    Cuphea heterophylla 2 25 3 61 8 1
    Cuphea heterophylla 2 27 3 59 6 0
    Cuphea heterophylla 2 23 3 58 7 1
    Cuphea heterophylla 4 23 3 54 9 1
    Cuphea heterophylla 3 24 3 57 8 1
    Cuphea heterophylla 2 28 3 57 8 1
    Cuphea heterophylla 2 22 3 62 9 1
    Cuphea heterophylla 5 47 4 37 7 1
    Cuphea heterophylla 6 49 5 32 7 0
    Cuphea viscosissima 2 24 3 60 8 0
    Cuphea viscosissima 4 51 2 36 6 0
    Cuphea viscosissima 8 28 2 52 8 1
    2 28 3 58 7 0
  • Many of the acyl-ACP FatB thioesterases were found to exhibit midchain activity when expressed in Prototheca moriformis. For example, expression of CcFATB1b causes an increase in myristate levels from 2% of total fatty acids in the parent, Strain A, to ˜15% in the D1670-13 primary transformant. Other examples include CcFATB4, which exhibits an increase in laurate levels from 0% in Strain A to ˜33%, and ChsFATB3, which exhibits an increase in myristate levels to ˜34%. Although some of the acyl-ACP thioesterases did not exhibit dramatic effects on midchain levels in the current incarnation, efforts will likely develop to optimize some of these constructs.
  • Sequences of the Heterologous Acyl-ACP Thioesterases Identified and Transformed into P. moriformis (UTEX 1435)
  • A complete listing of relevant sequences for the transforming constructs, such as the deduced amino acid sequence of the encoded acyl-ACP thioesterase, the native CDS coding sequence, the Prototheca moriformis codon-optimized coding sequence, and the nature of the sequence variants examined, is provided as SEQ ID NOS: 1-78.
  • Sequence Listing
    SEQ ID NO 1:
    Cinnamomum camphora (Cc) FATB1b variant M25L, M322R, AT367-D368 amino
    acid sequence
    MATTSLASAFCSMKAVMLARDGRGLKPRSSDLQLRAGNAQTSLKMINGTKFSYTESLKKLPDWSMLFAVI
    TTIFSAAEKQWTNLEWKPKPNPPQLLDDHFGPHGLVFRRTFAIRSYEVGPDRSTSIVAVMNHLQEAALNH
    AKSVGILGDGFGTTLEMSKRDLIWVVKRTHVAVERYPAWGDTVEVECWVGASGNNGRRHDFLVRDCKTGE
    ILTRCTSLSVMMNTRTRRLSKIPEEVRGEIGPAFIDNVAVKDEEIKKPQKLNDSTADYIQGGLTPRWNDL
    DINQHVNNIKYVDWILETVPDSIFESHHISSFTIEYRRECTRDSVLQSLTTVSGGSSEAGLVCEHLLQLE
    GGSEVLRAKTEWRPKLSFRGISVIPAESSV*
    SEQ ID NO 2:
    Cinnamomum camphora (Cc) FATB1b variant M25L, M322R, 6T367-D368 coding
    DNA sequence
    TTAGCTTCTGCTTTCTGCTCGATGAAAGCTGTAATGTTGGCTCGTGATGGCAGGGGCTTGAAACCCAGGA
    GCAGTGATTTGCAGCTGAGGGCGGGAAATGCACAAACCTCTTTGAAGATGATCAATGGGACCAAGTTCAG
    TTACACAGAGAGCTTGAAAAAGTTGCCTGACTGGAGCATGCTCTTTGCAGTGATCACGACCATCTTTTCG
    GCTGCTGAGAAGCAGTGGACCAATCTAGAGTGGAAGCCGAAGCCGAATCCACCCCAGTTGCTTGATGACC
    ATTTTGGGCCGCATGGGTTAGTTTTCAGGCGCACCTTTGCCATCAGATCGTATGAGGTGGGACCTGACCG
    CTCCACATCTATAGTGGCTGTTATGAATCACTTGCAGGAGGCTGCACTTAATCATGCGAAGAGTGTGGGA
    ATTCTAGGAGATGGATTCGGTACGACGCTAGAGATGAGTAAGAGAGATCTGATATGGGTTGTGAAACGCA
    CGCATGTTGCTGTGGAACGGTACCCTGCTTGGGGTGATACTGTTGAAGTAGAGTGCTGGGTTGGTGCATC
    GGGAAATAATGGCAGGCGCCATGATTTCCTTGTCCGGGACTGCAAAACAGGCGAAATTCTTACAAGATGT
    ACCAGTCTTTCGGTGATGATGAATACAAGGACAAGGAGGTTGTCCAAAATCCCTGAAGAAGTTAGAGGGG
    AGATAGGGCCTGCATTCATTGATAATGTGGCTGTCAAGGACGAGGAAATTAAGAAACCACAGAAGCTCAA
    TGACAGCACTGCAGATTACATCCAAGGAGGATTGACTCCTCGATGGAATGATTTGGATATCAATCAGCAC
    GTTAACAACATCAAATACGTTGACTGGATTCTTGAGACTGTCCCAGACTCAATCTTTGAGAGTCATCATA
    TTTCCAGCTTCACTATTGAATACAGGAGAGAGTGCACGAGGGATAGCGTGCTGCAGTCCCTGACCACTGT
    CTCCGGTGGCTCGTCGGAAGCTGGGTTAGTGTGCGAGCACTTGCTCCAGCTTGAAGGTGGGTCTGAGGTA
    TTGAGGGCAAAAACAGAGTGGAGGCCTAAGCTTAGTTTCAGAGGGATTAGTGTGATACCCGCAGAATCGA
    GTGTCTAA
    SEQ ID NO 3:
    Cinnamomum camphora (Cc) FATB1b variant M25L, M322R, AT367-D368 coding
    DNA sequence codon optimized for Prototheca moriformis
    TTAGCTTCTGCTTTCTGCTCGATGAAAGCTGTAATGTTGGCTCGTGATGGCAGGGGCTTGAAACCCAGGA
    GCAGTGATTTGCAGCTGAGGGCGGGAAATGCACAAACCTCTTTGAAGATGATCAATGGGACCAAGTTCAG
    TTACACAGAGAGCTTGAAAAAGTTGCCTGACTGGAGCATGCTCTTTGCAGTGATCACGACCATCTTTTCG
    GCTGCTGAGAAGCAGTGGACCAATCTAGAGTGGAAGCCGAAGCCGAATCCACCCCAGTTGCTTGATGACC
    ATTTTGGGCCGCATGGGTTAGTTTTCAGGCGCACCTTTGCCATCAGATCGTATGAGGTGGGACCTGACCG
    CTCCACATCTATAGTGGCTGTTATGAATCACTTGCAGGAGGCTGCACTTAATCATGCGAAGAGTGTGGGA
    ATTCTAGGAGATGGATTCGGTACGACGCTAGAGATGAGTAAGAGAGATCTGATATGGGTTGTGAAACGCA
    CGCATGTTGCTGTGGAACGGTACCCTGCTTGGGGTGATACTGTTGAAGTAGAGTGCTGGGTTGGTGCATC
    GGGAAATAATGGCAGGCGCCATGATTTCCTTGTCCGGGACTGCAAAACAGGCGAAATTCTTACAAGATGT
    ACCAGTCTTTCGGTGATGATGAATACAAGGACAAGGAGGTTGTCCAAAATCCCTGAAGAAGTTAGAGGGG
    AGATAGGGCCTGCATTCATTGATAATGTGGCTGTCAAGGACGAGGAAATTAAGAAACCACAGAAGCTCAA
    TGACAGCACTGCAGATTACATCCAAGGAGGATTGACTCCTCGATGGAATGATTTGGATATCAATCAGCAC
    GTTAACAACATCAAATACGTTGACTGGATTCTTGAGACTGTCCCAGACTCAATCTTTGAGAGTCATCATA
    TTTCCAGCTTCACTATTGAATACAGGAGAGAGTGCACGAGGGATAGCGTGCTGCAGTCCCTGACCACTGT
    CTCCGGTGGCTCGTCGGAAGCTGGGTTAGTGTGCGAGCACTTGCTCCAGCTTGAAGGTGGGTCTGAGGTA
    TTGAGGGCAAAAACAGAGTGGAGGCCTAAGCTTAGTTTCAGAGGGATTAGTGTGATACCCGCAGAATCGA
    GTGTCTAA
    SEQ ID NO: 4
    Cinnamomum camphora (Cc) FATB4 amino acid sequence
    MVTTSLASAYFSMKAVMLAPDGRGIKPRSSGLQVRAGNERNSCKVINGTKVKDTEGLKGCSTLQGQSMLD
    DHFGLHGLVFRRTFAIRCYEVGPDRSTSIMAVMNHLQEAARNHAESLGLLGDGFGETLEMSKRDLIWVVR
    RTHVAVERYPAWGDTVEVEAWVGASGNTGMRRDFLVRDCKTGHILTRCTSVSVMMNMRTRRLSKIPQEVR
    AEIDPLFIEKVAVKEGEIKKLQKLNDSTADYIQGGWTPRWNDLDVNQHVNNIIYVGWIFKSVPDSISENH
    HLSSITLEYRRECTRGNKLQSLTTVCGGSSEAGIICEHLLQLEDGSEVLRARTEWRPKHTDSFQGISERF
    PQQEPHK
    SEQ ID NO: 5
    Cinnamomum camphora (Cc) FATB4 coding DNA sequence
    ATGGTCACCACCTCTTTAGCTTCCGCTTACTTCTCGATGAAAGCTGTAATGTTGGCTCCTGACGGCAGGG
    GCATAAAGCCCAGGAGCAGTGGTTTGCAGGTGAGGGCGGGAAATGAACGAAACTCTTGCAAGGTGATCAA
    TGGGACCAAGGTCAAAGACACGGAGGGCTTGAAAGGGTGCAGCACGTTGCAAGGCCAGAGCATGCTTGAT
    GACCATTTTGGTCTGCATGGGCTAGTTTTCAGGCGCACCTTTGCAATCAGATGCTATGAGGTTGGACCTG
    ACCGCTCCACATCCATAATGGCTGTTATGAATCACTTGCAGGAAGCTGCACGTAATCATGCGGAGAGTCT
    GGGACTTCTAGGAGATGGATTCGGTGAGACACTGGAGATGAGTAAGAGAGATCTGATATGGGTTGTGAGA
    CGCACGCATGTTGCTGTGGAACGGTACCCTGCTTGGGGCGATACTGTTGAAGTCGAGGCCTGGGTGGGTG
    CATCAGGTAACACTGGCATGCGCCGCGATTTCCTTGTCCGCGACTGCAAAACTGGCCACATTCTTACAAG
    ATGTACCAGTGTTTCAGTGATGATGAATATGAGGACAAGGAGATTGTCCAAAATTCCCCAAGAAGTTAGA
    GCGGAGATTGACCCTCTTTTCATTGAAAAGGTTGCTGTCAAGGAAGGGGAAATTAAAAAATTACAGAAGT
    TGAATGATAGCACTGCAGATTACATTCAAGGGGGTTGGACTCCTCGATGGAATGATTTGGATGTCAATCA
    GCACGTGAACAATATCATATACGTTGGCTGGATTTTTAAGAGCGTCCCAGACTCTATCTCTGAGAATCAT
    CATCTTTCTAGCATCACTCTCGAATACAGGAGAGAGTGCACAAGGGGCAACAAGCTGCAGTCCCTGACCA
    CTGTTTGTGGTGGCTCGTCGGAAGCTGGGATCATATGTGAGCACCTACTCCAGCTTGAGGATGGGTCTGA
    GGTTTTGAGGGCAAGAACAGAGTGGAGGCCCAAGCACACCGATAGTTTCCAAGGCATTAGTGAGAGATTC
    CCGCAGCAAGAACCGCATAAGTAA
    SEQ ID NO: 6
    Cinnamomum camphora (Cc) FATB4 coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGACCACCTCCCTGGCCTCCGCCTACTTCTCCATGAAGGCCGTGATGCTGGCCCCCGACGGCCGCG
    GCATCAAGCCCCGCTCCTCCGGCCTGCAGGTGCGCGCCGGCAACGAGCGCAACTCCTGCAAGGTGATCAA
    CGGCACCAAGGTGAAGGACACCGAGGGCCTGAAGGGCTGCTCCACCCTGCAGGGCCAGTCCATGCTGGAC
    GACCACTTCGGCCTGCACGGCCTGGTGTTCCGCCGCACCTTCGCCATCCGCTGCTACGAGGTGGGCCCCG
    ACCGCTCCACCTCCATCATGGCCGTGATGAACCACCTGCAGGAGGCCGCCCGCAACCACGCCGAGTCCCT
    GGGCCTGCTGGGCGACGGCTTCGGCGAGACCCTGGAGATGTCCAAGCGCGACCTGATCTGGGTGGTGCGC
    CGCACCCACGTGGCCGTGGAGCGCTACCCCGCCTGGGGCGACACCGTGGAGGTGGAGGCCTGGGTGGGCG
    CCTCCGGCAACACCGGCATGCGCCGCGACTTCCTGGTGCGCGACTGCAAGACCGGCCACATCCTGACCCG
    CTGCACCTCCGTGTCCGTGATGATGAACATGCGCACCCGCCGCCTGTCCAAGATCCCCCAGGAGGTGCGC
    GCCGAGATCGACCCCCTGTTCATCGAGAAGGTGGCCGTGAAGGAGGGCGAGATCAAGAAGCTGCAGAAGC
    TGAACGACTCCACCGCCGACTACATCCAGGGCGGCTGGACCCCCCGCTGGAACGACCTGGACGTGAACCA
    GCACGTGAACAACATCATCTACGTGGGCTGGATCTTCAAGTCCGTGCCCGACTCCATCTCCGAGAACCAC
    CACCTGTCCTCCATCACCCTGGAGTACCGCCGCGAGTGCACCCGCGGCAACAAGCTGCAGTCCCTGACCA
    CCGTGTGCGGCGGCTCCTCCGAGGCCGGCATCATCTGCGAGCACCTGCTGCAGCTGGAGGACGGCTCCGA
    GGTGCTGCGCGCCCGCACCGAGTGGCGCCCCAAGCACACCGACTCCTTCCAGGGCATCTCCGAGCGCTTC
    CCCCAGCAGGAGCCCCACAAGTGA
    SEQ ID NO: 7
    Cinnamomum camphora (Cc) FATB3 amino acid sequence
    MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKPASSSGLQVKANAHASPKINGSKVSTDTL
    KGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNLDWKPRRPDMLADPFGIGRFMQDGLIFR
    QHFAIRSYEIGADRTASIETLMNHLQETALNHVRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPA
    WGDIVEVETWVGASGKNGMRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDV
    AIIEEDNRKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNVKYIGWILESAPGSILESHELSCMTLEYRR
    ECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKSANNSRSILEMPAESL
    SEQ ID NO: 8
    Cinnamomum camphora (Cc) FATB3 coding DNA sequence
    ATGGTTGCCACCGCTGCTGCTTCTGCTTTCTTCCCGGTCGGTGCTCCGGCTACGTCATCTGCAACTTCAG
    CCAAAGCGTCGATGATGCCTGATAATTTGGATGCCAGAGGCATCAAACCGAAGCCGGCTTCGTCCAGCGG
    CTTGCAGGTTAAGGCAAATGCCCATGCCTCTCCCAAGATTAATGGTTCCAAGGTGAGCACGGATACCTTG
    AAGGGGGAAGACACCTTAACTTCCTCGCCCGCCCCACGGACCTTTATCAACCAATTGCCTGACTGGAGCA
    TGTTCCTTGCTGCCATCACAACTATTTTCTTGGCTGCCGAGAAGCAGTGGACGAATCTCGACTGGAAGCC
    CAGAAGACCCGACATGCTTGCTGACCCGTTTGGCATCGGGAGGTTTATGCAGGATGGGCTGATTTTCAGG
    CAGCACTTTGCAATCAGATCTTATGAGATTGGGGCTGATAGAACGGCGTCTATAGAGACTTTAATGAATC
    ACTTGCAGGAGACTGCACTTAATCATGTGAGGAGTGCTGGACTCCTAGGTGATGGATTTGGTGCGACACC
    TGAGATGAGTAGAAGAGATCTGATATGGGTTGTAACACGTATGCAGGTTCTTGTGGACCGCTACCCTGCT
    TGGGGTGATATTGTTGAAGTAGAGACCTGGGTTGGTGCATCTGGAAAAAATGGTATGCGCCGTGATTGGC
    TTGTTCGGGACAGCCAAACTGGTGAAATTCTCACACGAGCTACCAGTGTTTGGGTGATGATGAATAAACG
    GACAAGGCGATTGTCCAAACTTCCTGAAGAAGTTAGAGGGGAAATAGGGCCTTATTTTATAGAAGATGTT
    GCTATCATAGAGGAGGACAACAGGAAACTACAGAAGCTCAATGAAAACACTGCTGATAATGTTCGAAGGG
    GTTTGACTCCTCGCTGGAGTGATCTGGATGTTAATCAGCATGTGAACAATGTCAAATACATTGGTTGGAT
    TCTTGAGAGTGCACCAGGATCCATCTTGGAGAGTCATGAGCTTTCCTGCATGACCCTTGAATACAGGAGA
    GAATGTGGGAAGGACAGTGTGCTGCAGTCAATGACTGCTGTCTCTGGTGGAGGCAGTGCAGCAGGTGGCT
    CACCAGAATCTAGCGTTGAGTGTGACCACTTGCTCCAGCTAGAGAGTGGGCCTGAAGTTGTGAGGGGAAG
    AACCGAGTGGAGGCCCAAGAGTGCTAATAACTCGAGGAGCATCCTGGAGATGCCGGCCGAGAGC
    SEQ ID NO: 9
    Cinnamomum camphora (Cc) FATB4 coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGCCACCGCCGCCGCCTCCGCCTTCTTCCCCGTGGGCGCCCCCGCCACCTCCTCCGCCACCTCCG
    CCAAGGCCTCCATGATGCCCGACAACCTGGACGCCCGCGGCATCAAGCCCAAGCCCGCCTCCTCCTCCGC
    CCTGCAGGTGAAGGCCAACGCCCACGCCTCCCCCAAGATCAACGGCTCCAAGGTGTCCACCGACACCCTG
    AAGGGCGAGGACACCCTGACCTCCTCCCCCGCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCA
    TGTTCCTGGCCGCCATCACCACCATCTTCCTGGCCGCCGAGAAGCAGTGGACCAACCTGGACTGGAAGCC
    CCGCCGCCCCGACATGCTGGCCGACCCCTTCGGCATCGGCCGCTTCATGCAGGACGGCCTGATCTTCCGC
    CAGCACTTCGCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC
    ACCTGCAGGAGACCGCCCTGAACCACGTGCGCTCCGCCGGCCTGCTGGGCGACGGCTTCGGCGCCACCCC
    CGAGATGTCCCGCCGCGACCTGATCTGGGTGGTGACCCGCATGCAGGTGCTGGTGGACCGCTACCCCGCC
    TGGGGCGACATCGTGGAGGTGGAGACCTGGGTGGGCGCCTCCGGCAAGAACGGCATGCGCCGCGACTGGC
    TGGTGCGCGACTCCCAGACCGGCGAGATCCTGACCCGCGCCACCTCCGTGTGGGTGATGATGAACAAGCG
    CACCCGCCGCCTGTCCAAGCTGCCCGAGGAGGTGCGCGGCGAGATCGGCCCCTACTTCATCGAGGACGTG
    GCCATCATCGAGGAGGACAACCGCAAGCTGCAGAAGCTGAACGAGAACACCGCCGACAACGTGCGCCGCG
    GCCTGACCCCCCGCTGGTCCGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCGCCCCCGGCTCCATCCTGGAGTCCCACGAGCTGTCCTGCATGACCCTGGAGTACCGCCGC
    GAGTGCGGCAAGGACTCCGTGCTGCAGTCCATGACCGCCGTGTCCGGCGGCGGCTCCGCCGCCGGCGGCT
    CCCCCGAGTCCTCCGTGGAGTGCGACCACCTGCTGCAGCTGGAGTCCGGCCCCGAGGTGGTGCGCGGCCG
    CACCGAGTGGCGCCCCAAGTCCGCCAACAACTCCCGCTCCATCCTGGAGATGCCCGCCGAGTCCCTGTGA
    SEQ ID NO: 10
    Cuphea hyssopifolia (Chs) FATB1 amino acid sequence
    MVATNAAAFSAYTFFLTSPTHGYSSKRLADTQNGYPGTSLKSKSTPPPAAAAARNGALPLLASICKCPKK
    ADGSMQLDSSLVFGFQFYIRSYEVGADQTVSIQTVLNYLQEAAINHVQSAGYFGDSFGATPEMTKRNLIW
    VITKMQVLVDRYPAWGDVVQVDTWTCSSGKNSMQRDWFVRDLKTGDIITRASSVWVLMNRLTRKLSKIPE
    AVLEEAKLFVMNTAPTVDDNRKLPKLDGSSADYVLSGLTPRWSDLDMNQHVNNVKYIAWILESVPQSIPE
    THKLSAITVEYRRECGKNSVLQSLTNVSGDGITCGNSIIECHHLLQLETGPEILLARTEWISKEPGFRGA
    PIQAEKVYNNK*
    SEQ ID NO: 11
    Cuphea hyssopifolia (Chs) FATB1 coding DNA sequence
    ATGGTTGCCACTAATGCTGCTGCCTTTTCTGCTTATACTTTCTTCCTTACTTCACCAACTCATGGTTACT
    CTTCCAAACGTCTCGCCGATACTCAAAATGGTTATCCGGGTACCTCCTTGAAATCGAAATCCACTCCTCC
    ACCAGCTGCTGCTGCTGCTCGTAACGGTGCATTGCCACTGCTGGCCTCCATCTGCAAATGCCCCAAAAAG
    GCTGATGGGAGTATGCAACTAGACAGCTCCTTGGTCTTCGGGTTTCAATTTTACATTAGATCATATGAAG
    TGGGTGCGGATCAAACCGTGTCAATACAGACAGTACTCAATTACTTACAGGAGGCAGCCATCAATCATGT
    TCAGAGTGCTGGCTATTTTGGTGATAGTTTTGGCGCCACCCCGGAAATGACCAAGAGGAACCTCATCTGG
    GTTATCACTAAGATGCAGGTTTTGGTGGATCGCTATCCCGCTTGGGGCGATGTTGTTCAAGTTGATACAT
    GGACCTGTAGTTCTGGTAAAAACAGCATGCAGCGTGATTGGTTCGTACGGGATCTCAAAACTGGAGATAT
    TATAACAAGAGCCTCGAGCGTGTGGGTGCTGATGAATAGACTCACCAGAAAATTATCAAAAATTCCTGAA
    GCAGTTCTGGAAGAAGCAAAACTTTTTGTGATGAACACTGCCCCCACCGTAGATGACAACAGGAAGCTAC
    CAAAGCTGGATGGCAGCAGTGCTGATTATGTCCTCTCTGGCTTAACTCCTAGATGGAGCGACTTAGATAT
    GAACCAGCATGTCAACAATGTGAAGTACATAGCCTGGATCCTTGAGAGTGTCCCTCAGAGCATACCGGAG
    ACACACAAGCTGTCAGCGATAACCGTGGAGTACAGGAGAGAATGTGGCAAGAACAGCGTCCTCCAGTCTC
    TGACCAACGTCTCCGGGGATGGAATCACATGTGGAAACAGTATTATCGAGTGCCACCATTTGCTTCAACT
    TGAGACTGGCCCAGAGATTCTACTAGCGCGGACGGAGTGGATATCCAAGGAACCTGGGTTCAGGGGAGCT
    CCAATCCAGGCAGAGAAAGTCTACAACAACAAATAA
    SEQ ID NO: 12
    Cuphea hyssopifolia (Chs) FATB1 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCACCAACGCCGCCGCCTTCTCCGCCTACACCTTCTTCCTGACCTCCCCCACCCACGGCTACT
    CCTCCAAGCGCCTGGCCGACACCCAGAACGGCTACCCCGGCACCTCCCTGAAGTCCAAGTCCACCCCCCC
    CCCCGCCGCCGCCGCCGCCCGCAACGGCGCCCTGCCCCTGCTGGCCTCCATCTGCAAGTGCCCCAAGAAG
    GCCGACGGCTCCATGCAGCTGGACTCCTCCCTGGTGTTCGGCTTCCAGTTCTACATCCGCTCCTACGAGG
    TGGGCGCCGACCAGACCGTGTCCATCCAGACCGTGCTGAACTACCTGCAGGAGGCCGCCATCAACCACGT
    GCAGTCCGCCGGCTACTTCGGCGACTCCTTCGGCGCCACCCCCGAGATGACCAAGCGCAACCTGATCTGG
    GTGATCACCAAGATGCAGGTGCTGGTGGACCGCTACCCCGCCTGGGGCGACGTGGTGCAGGTGGACACCT
    GGACCTGCTCCTCCGGCAAGAACTCCATGCAGCGCGACTGGTTCGTGCGCGACCTGAAGACCGGCGACAT
    CATCACCCGCGCCTCCTCCGTGTGGGTGCTGATGAACCGCCTGACCCGCAAGCTGTCCAAGATCCCCGAG
    GCCGTGCTGGAGGAGGCCAACCTGTTCGTGATGAACACCGCCCCCACCGTGGACGACAACCGCAAGCTGC
    CCAAGCTGGACGGCTCCTCCGCCGACTACGTGCTGTCCGGCCTGACCCCCCGCTGGTCCGACCTGGACAT
    GAACCAGCACGTGAACAACGTGAAGTACATCGCCTGGATCCTGGAGTCCGTGCCCCAGTCCATCCCCGAG
    ACCCACAAGCTGTCCGCCATCACCGTGGAGTACCGCCGCGAGTGCGGCAAGAACTCCGTGCTGCAGTCCC
    TGACCAACGTGTCCGGCGACGGCATCACCTGCGGCAACTCCATCATCGAGTGCCACCACCTGCTGCAGCT
    GGAGACCGGCCCCGAGATCCTGCTGGCCCGCACCGAGTGGATCTCCAAGGAGCCCGGCTTCCGCGGCGCC
    CCCATCCAGGCCGAGAAGGTGTACAACAACAAGTGA
    SEQ ID NO: 13
    Cuphea hyssopifolia (Chs) FATB2 amino acid sequence
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAPPKINGSSVGLKSGSLK
    TQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGLGRIVQDGLVFRQ
    NFSIRSYEIGADRTASIETVMNHLQETALNHVKSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTW
    GDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAP
    VIEDDDRKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYRRE
    CGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIASGETSPGDSS*
    SEQ ID NO: 14
    Cuphea hyssopifolia (Chs) FATB2 coding DNA sequence
    ATGGTGGCTACCGCTGCAAGTTCAGCATTCTTCCCTGTGCCGTCCCCCGACGCCTCCTCTAGACCTGGAA
    AGCTCGGCAATGGGTCATCGAGCTTGAGCCCCCTCAAGCCCAAATTGATGGCCAATGGCGGGTTGCAGGT
    TAAGGCAAACGCCAGTGCCCCTCCTAAGATCAATGGTTCTTCGGTCGGTCTAAAGTCCGGCAGTCTCAAG
    ACTCAGGAAGACACTCCTTCGGCGCCTCCTCCCCGGACTTTTATTAACCAGCTGCCTGATTGGAGTATGC
    TTCTTGCTGCAATCACTACTGTCTTCTTGGCAGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACCCAA
    GAGGCCTGACATGCTTGTGGACCCGTTCGGATTGGGAAGGATTGTTCAAGATGGGCTTGTGTTCAGGCAG
    AATTTTTCGATTAGGTCCTATGAAATAGGCGCTGATCGCACTGCGTCTATAGAGACGGTGATGAACCACT
    TGCAGGAAACAGCTCTCAATCATGTTAAGAGTGCTGGGCTTCTTAATGACGGCTTTGGTCGTACTCTTGA
    GATGTATAAAAGGGACCTTATTTGGGTTGTTGCAAAAATGCAGGTCATGGTTAACCGCTATCCTACTTGG
    GGCGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGATTGGCTCA
    TAAGTGATTGCAATACAGGAGAAATTCTTACTAGAGCATCAAGTGTGTGGGTCATGATGAATCAAAAGAC
    AAGAAGATTGTCAAAAATTCCAGATGAGGTTCGACATGAGATAGAGCCTCATTTCGTGGACTCTGCTCCC
    GTCATTGAAGATGATGACCGGAAACTTCCCAAGCTGGATGAGAAGACTGCTGACTCCATCCGCAAGGGTC
    TAACTCCGAAGTGGAATGACTTGGATGTCAATCAGCACGTCAACAACGTGAAGTACATTGGGTGGATTCT
    TGAGAGTACTCCACCAGAAGTTCTGGAGACCCAGGAGTTATGTTCCCTTACCCTGGAATATAGGCGGGAA
    TGCGGAAGGGAGAGCGTGCTGGAGTCCCTCACTGCTGTGGACCCCTCTGGAAAGGGCTCTGGGTCTCAGT
    TCCAGCACCTTCTGCGGCTTGAGGATGGAGGTGAGATTGTGAAGGGGAGAACTGAGTGGCGACCCAAGAC
    TGCAGGAATCAATGGGCCAATAGCATCCGGGGAGACCTCACCTGGAGACTCTTCTTAG
    SEQ ID NO: 15
    Cuphea hyssopifolia (Chs) FATB2 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCCCCGACGCCTCCTCCCGCCCCGGCA
    AGCTGGGCAACGGCTCCTCCTCCCTGTCCCCCCTGAAGCCCAAGCTGATGGCCAACGGCGGCCTGCAGGT
    GAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGGGCCTGAAGTCCGGCTCCCTGAAG
    ACCCAGGAGGACACCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCATGC
    TGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCCCAA
    GCGCCCCGACATGCTGGTGGACCCCTTCGGCCTGGGCCGCATCGTGCAGGACGGCCTGGTGTTCCGCCAG
    AACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACCACC
    TGCAGGAGACCGCCCTGAACCACGTGAAGTCCGCCGGCCTGCTGAACGACGGCTTCGGCCGCACCCTGGA
    GATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACCTGG
    GGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGCTGA
    TCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAAGAC
    CCGCCGCCTGTCCAAGATCCCCGACGAGGTGCGCCACGAGATCGAGCCCCACTTCGTGGACTCCGCCCCC
    GTGATCGAGGACGACGACCGCAAGCTGCCCAAGCTGGACGAGAAGACCGCCGACTCCATCCGCAAGGGCC
    TGACCCCCAAGTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCT
    GGAGTCCACCCCCCCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGCGAG
    TGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGGCAAGGGCTCCGGCTCCCAGT
    TCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGGCCGCACCGAGTGGCGCCCCAAGAC
    CGCCGGCATCAACGGCCCCATCGCCTCCGGCGAGACCTCCCCCGGCGACTCCTCCTGA
    SEQ ID NO: 16
    Cuphea hyssopifolia (Chs) FATB2b +a.a.248-259 variant amino acid
    sequence
    MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAPPKINGSSVGLKSGSLK
    TQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGLGRIVQDGLVFRQ
    NFSIRSYEIGADRTASIETVMNHLQETALNHVKSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTW
    GDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSKSQIMLPLHYCSVWVMMNQKTRRLSKIPDEVR
    HEIEPHFVDSAPVIEDDDRKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQ
    ELCSLTLEYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIASGE
    TSPGDSS*
    SEQ ID NO: 17
    Cuphea hyssopifolia (Chs) FATB2b +a.a.248-259 variant coding DNA
    sequence
    ATGGTGGCTACCGCTGCAAGTTCAGCATTCTTCCCTGTGCCGTCCCCCGACGCCTCCTCTAGACCTGGAA
    AGCTCGGCAATGGGTCATCGAGCTTGAGCCCCCTCAAGCCCAAATTGATGGCCAATGGCGGGTTGCAGGT
    TAAGGCAAACGCCAGTGCCCCTCCTAAGATCAATGGTTCTTCGGTCGGTCTAAAGTCCGGCAGTCTCAAG
    ACTCAGGAAGACACTCCTTCGGCGCCTCCTCCdCGGACTTTTATTAACCAGCTGCCTGATTGGAGTATGC
    TTCTTGCTGCAATCACTACTGTCTTCTTGGCAGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACCCAA
    GAGGCCTGACATGCTTGTGGACCCGTTCGGATTGGGAAGGATTGTTCAAGATGGGCTTGTGTTCAGGCAG
    AATTTTTCGATTAGGTCCTATGAAATAGGCGCTGATCGCACTGCGTCTATAGAGACGGTGATGAACCACT
    TGCAGGAAACAGCTCTCAATCATGTTAAGAGTGCTGGGCTTCTTAATGACGGCTTTGGTCGTACTCTTGA
    GATGTATAAAAGGGACCTTATTTGGGTTGTTGCAAAAATGCAGGTCATGGTTAACCGCTATCCTACTTGG
    GGCGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGATTGGCTCA
    TAAGTGATTGCAATACAGGAGAAATTCTTACTAGAGCATCAAGTAAAAGCCAAATTATGTTACCCTTACA
    TTATTGCAGTGTGTGGGTCATGATGAATCAAAAGACAAGAAGATTGTCAAAAATTCCAGATGAGGTTCGA
    CATGAGATAGAGCCTCATTTCGTGGACTCTGCTCCCGTCATTGAAGATGATGACCGGAAACTTCCCAAGC
    TGGATGAGAAGACTGCTGACTCCATCCGCAAGGGTCTAACTCCGAAGTGGAATGACTTGGATGTCAATCA
    GCACGTCAACAACGTGAAGTACATTGGGTGGATTCTTGAGAGTACTCCACCAGAAGTTCTGGAGACCCAG
    GAGTTATGTTCCCTTACCCTGGAATATAGGCGGGAATGCGGAAGGGAGAGCGTGCTGGAGTCCCTCACTG
    CTGTGGACCCCTCTGGAAAGGGCTCTGGGTCTCAGTTCCAGCACCTTCTGCGGCTTGAGGATGGAGGTGA
    GATTGTGAAGGGGAGAACTGAGTGGCGACCCAAGACTGCAGGAATCAATGGGCCAATAGCATCCGGGGAG
    ACCTCACCTGGAGACTCTTCTTAG
    SEQ ID NO: 18
    Cuphea hyssopifolia (Chs) FATB2b +a.a.248-259 variant coding DNA
    sequence codon optimized for Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCCCCGACGCCTCCTCCCGCCCCGGCA
    AGCTGGGCAACGGCTCCTCCTCCCTGTCCCCCCTGAAGCCCAAGCTGATGGCCAACGGCGGCCTGCAGGT
    GAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGGGCCTGAAGTCCGGCTCCCTGAAG
    ACCCAGGAGGACACCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCATGC
    TGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCCCAA
    GCGCCCCGACATGCTGGTGGACCCCTTCGGCCTGGGCCGCATCGTGCAGGACGGCCTGGTGTTCCGCCAG
    AACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACCACC
    TGCAGGAGACCGCCCTGAACCACGTGAAGTCCGCCGGCCTGCTGAACGACGGCTTCGGCCGCACCCTGGA
    GATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACCTGG
    GGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGCTGA
    TCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCAAGTCCCAGATCATGCTGCCCCTGCA
    CTACTGCTCCGTGTGGGTGATGATGAACCAGAAGACCCGCCGCCTGTCCAAGATCCCCGACGAGGTGCGC
    CACGAGATCGAGCCCCACTTCGTGGACTCCGCCCCCGTGATCGAGGACGACGACCGCAAGCTGCCCAAGC
    TGGACGAGAAGACCGCCGACTCCATCCGCAAGGGCCTGACCCCCAAGTGGAACGACCTGGACGTGAACCA
    GCACGTGAACAACGTGAAGTACATCGGCTGGATCCTGGAGTCCACCCCCCCCGAGGTGCTGGAGACCCAG
    GAGCTGTGCTCCCTGACCCTGGAGTACCGCCGCGAGTGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCG
    CCGTGGACCCCTCCGGCAAGGGCTCCGGCTCCCAGTTCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGA
    GATCGTGAAGGGCCGCACCGAGTGGCGCCCCAAGACCGCCGGCATCAACGGCCCCATCGCCTCCGGCGAG
    ACCTCCCCCGGCGACTCCTCCTGA
    SEQ ID NO: 19
    Cuphea hyssopifolia (Chs) FATB3 amino acid sequence
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASARPKANGSAVSLKSGSL
    DTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTMLDRKSKRPDMLMDPFGVDRVVQDGAVF
    RQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYP
    TWGDTIEVNTWVSESGKTGMGRDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDS
    APVIEDYQKLHKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRR
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAISTGKTSNGNSIS*
    SEQ ID NO: 20
    Cuphea hyssopifolia (Chs) FATB3 coding DNA sequence
    ATGGTGGCTGCCGAAGCAAGTTCTGCACTCTTCTCCGTTCGAACCCCGGGAACCTCCCCTAAACCCGGGA
    AGTTCGGGAATTGGCCAACGAGCTTGAGCGTCCCCTTCAAGTCCAAATCAAACCACAATGGCGGCTTTCA
    GGTTAAGGCAAACGCCAGTGCCCGTCCTAAGGCTAACGGTTCTGCAGTAAGTCTAAAGTCTGGCAGCCTC
    GACACTCAGGAGGACACTTCATCGTCGTCCTCTCCTCCTCGGACTTTCATTAACCAGTTGCCCGACTGGA
    GTATGCTGCTGTCCGCGATCACGACCGTCTTCGTGGCGGCTGAGAAGCAGTGGACGATGCTTGATCGGAA
    ATCTAAGAGGCCCGACATGCTCATGGACCCGTTTGGGGTTGACAGGGTTGTTCAGGATGGGGCTGTGTTC
    AGACAGAGTTTTTCGATTAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGA
    ACATCTTCCAGGAAACATCTCTCAATCATTGTAAGAGTATCGGTCTTCTCAATGACGGCTTTGGTCGTAC
    TCCTGAGATGTGTAAGAGGGACCTCATTTGGGTGGTTACAAAAATGCACGTCGAGGTTAATCGCTATCCT
    ACTTGGGGTGATACTATCGAGGTCAATACTTGGGTCTCCGAGTCGGGGAAAACCGGTATGGGTCGTGATT
    GGCTGATAAGTGATTGTCATACAGGAGAAATTCTAATAAGAGCAACGAGCATGTGTGCTATGATGAATCA
    AAAGACGAGAAGATTCTCAAAATTTCCATATGAGGTTCGACAGGAGTTGGCGCCTCATTTTGTGGACTCT
    GCTCCTGTCATTGAAGACTATCAAAAATTGCACAAGCTTGATGTGAAGACGGGTGATTCCATTTGCAATG
    GCCTAACTCCAAGGTGGAATGACTTGGATGTCAATCAGCACGTTAACAATGTGAAGTACATTGGGTGGAT
    TCTCGAGAGTGTTCCAACGGAAGTTTTCGAGACCCAGGAGCTATGTGGCCTCACCCTTGAGTATAGGCGG
    GAATGCGGAAGGGACAGTGTGCTGGAGTCCGTGACCGCTATGGATCCATCAAAAGAGGGAGACAGATCTC
    TGTACCAGCACCTTCTTCGGCTTGAGGATGGGGCTGATATCGCGAAGGGCAGAACCAAGTGGCGGCCGAA
    GAATGCAGGAACCAATGGGGCAATATCAACAGGAAAGACTTCAAATGGAAACTCGATCTCTTAG
    SEQ ID NO: 21
    Cuphea hyssopifolia (Chs) FATB3 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCGCCGAGGCCTCCTCCGCCCTGTTCTCCGTGCGCACCCCCGGCACCTCCCCCAAGCCCGGCA
    AGTTCGGCAACTGGCCCACCTCCCTGTCCGTGCCCTTCAAGTCCAAGTCCAACCACAACGGCGGCTTCCA
    GGTGAAGGCCAACGCCTCCGCCCGCCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCCCTG
    GACACCCAGGAGGACACCTCCTCCTCCTCCTCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGT
    CCATGCTGCTGTCCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGATGGACCCCTTCGGCGTGGACCGCGTGGTGCAGGACGGCGCCGTGTTC
    CGCCAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACATCTTCCAGGAGACCTCCCTGAACCACTGCAAGTCCATCGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGGTGACCAAGATGCACGTGGAGGTGAACCGCTACCCC
    ACCTGGGGCGACACCATCGAGGTGAACACCTGGGTGTCCGAGTCCGGCAAGACCGGCATGGGCCGCGACT
    GGCTGATCTCCGACTGCCACACCGGCGAGATCCTGATCCGCGCCACCTCCATGTGCGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGTTCCCCTACGAGGTGCGCCAGGAGCTGGCCCCCCACTTCGTGGACTCC
    GCCCCCGTGATCGAGGACTACCAGAAGCTGCACAAGCTGGACGTGAAGACCGGCGACTCCATCTGCAACG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCGTGCCCACCGAGGTGTTCGAGACCCAGGAGCTGTGCGGCCTGACCCTGGAGTACCGCCGC
    GAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGAGGGCGACCGCTCCC
    TGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCGCCAAGGGCCGCACCAAGTGGCGCCCCAA
    GAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCATCTCCTGA
    SEQ ID NO: 22
    Cuphea hyssopifolia (Chs) FATB3b (V204I, C239F, E243D, M251V variant)
    amino acid sequence
    MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASARPKANGSAVSLKSGSL
    DTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTMLDRKSKRPDMLMDPFGVDRVVQDGAVF
    RQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYP
    TWGDTIEVNTWVSESGKTGMGRDWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDS
    APVIEDYQKLHKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRR
    ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAISTGKTSNGNSIS*
    SEQ ID NO: 23
    Cuphea hyssopifolia (Chs) FATB3b (V204I, C239F, E243D, M251V variant)
    coding DNA sequence
    ATGGTGGCTGCCGAAGCAAGTTCTGCACTCTTCTCCGTTCGAACCCCGGGAACCTCCCCTAAACCCGGGA
    AGTTCGGGAATTGGCCAACGAGCTTGAGCGTCCCCTTCAAGTCCAAATCAAACCACAATGGCGGCTTTCA
    GGTTAAGGCAAACGCCAGTGCCCGTCCTAAGGCTAACGGTTCTGCAGTAAGTCTAAAGTCTGGCAGCCTC
    GACACTCAGGAGGACACTTCATCGTCGTCCTCTCCTCCTCGGACTTTCATTAACCAGTTGCCCGACTGGA
    GTATGCTGCTGTCCGCGATCACGACCGTCTTCGTGGCGGCTGAGAAGCAGTGGACGATGCTTGATCGGAA
    ATCTAAGAGGCCCGACATGCTCATGGACCCGTTTGGGGTTGACAGGGTTGTTCAGGATGGGGCTGTGTTC
    AGACAGAGTTTTTCGATTAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGA
    ACATCTTCCAGGAAACATCTCTCAATCATTGTAAGAGTATCGGTCTTCTCAATGACGGCTTTGGTCGTAC
    TCCTGAGATGTGTAAGAGGGACCTCATTTGGGTGGTTACAAAAATGCACATCGAGGTTAATCGCTATCCT
    ACTTGGGGTGATACTATCGAGGTCAATACTTGGGTCTCCGAGTCGGGGAAAACCGGTATGGGTCGTGATT
    GGCTGATAAGTGATTTTCATACAGGAGACATTCTAATAAGAGCAACGAGCGTGTGTGCTATGATGAATCA
    AAAGACGAGAAGATTCTCAAAATTTCCATATGAGGTTCGACAGGAGTTAGCGCCTCATTTTGTGGACTCT
    GCTCCAGTCATTGAAGACTATCAAAAATTGCACAAGCTTGATGTGAAGACGGGTGATTCCATTTGCAATG
    GCCTAACTCCAAGGTGGAATGACTTGGATGTCAATCAGCACGTTAACAATGTGAAGTACATTGGGTGGAT
    TCTCGAGAGTGTTCCAACGGAAGTTTTCGAGACCCAGGAGCTATGTGGCCTCACCCTTGAGTATAGGCGG
    GAATGCGGAAGGGACAGTGTGCTGGAGTCCGTGACCGCTATGGATCCCTCAAAAGAGGGAGACAGATCTC
    TGTACCAGCACCTTCTTCGGCTTGAGGATGGGGCTGATATCGCGAAGGGCAGAACCAAGTGGCGGCCGAA
    GAATGCAGGAACCAATGGGGCAATATCAACAGGAAAGACTTCAAATGGAAACTCGATCTCTTAG
    SEQ ID NO: 24
    Cuphea hyssopifolia (Chs) FATB3b (V204I, C239F, E243D, M251V variant)
    coding DNA sequence codon optimized for Prototheca moriformis
    ATGGTGGCCGCCGAGGCCTCCTCCGCCCTGTTCTCCGTGCGCACCCCCGGCACCTCCCCCAAGCCCGGCA
    AGTTCGGCAACTGGCCCACCTCCCTGTCCGTGCCCTTCAAGTCCAAGTCCAACCACAACGGCGGCTTCCA
    GGTGAAGGCCAACGCCTCCGCCCGCCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCCCTG
    GACACCCAGGAGGACACCTCCTCCTCCTCCTCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGT
    CCATGCTGCTGTCCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGATGGACCCCTTCGGCGTGGACCGCGTGGTGCAGGACGGCGCCGTGTTC
    CGCCAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACATCTTCCAGGAGACCTCCCTGAACCACTGCAAGTCCATCGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGGTGACCAAGATGCACATCGAGGTGAACCGCTACCCC
    ACCTGGGGCGACACCATCGAGGTGAACACCTGGGTGTCCGAGTCCGGCAAGACCGGCATGGGCCGCGACT
    GGCTGATCTCCGACTTCCACACCGGCGACATCCTGATCCGCGCCACCTCCGTGTGCGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGTTCCCCTACGAGGTGCGCCAGGAGCTGGCCCCCCACTTCGTGGACTCC
    GCCCCCGTGATCGAGGACTACCAGAAGCTGCACAAGCTGGACGTGAAGACCGGCGACTCCATCTGCAACG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCGTGCCCACCGAGGTGTTCGAGACCCAGGAGCTGTGCGGCCTGACCCTGGAGTACCGCCGC
    GAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGAGGGCGACCGCTCCC
    TGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCGCCAAGGGCCGCACCAAGTGGCGCCCCAA
    GAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCATCTCCTGA
    SEQ ID NO: 25
    Cuphea PSR23 (Cu) FATB3 amino acid sequence
    MVVAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAHPKANGSAVNLKSGSL
    NTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKCIVRDGLVSR
    QSFLIRSYEIGADRTASIETLMNHLQETSINHCKSLGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPT
    WGDTVEINTWFSQSGKIGMASDWLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSP
    HVIEDNDQKLHKFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR
    ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTSTAKTSNGNSVS*
    SEQ ID NO: 26
    Cuphea PSR23 (Cu) FATB3 coding DNA sequence
    ATGGTGGTGGCTGCAGCAACTTCTGCATTCTTCCCCGTTCCAGCCCCGGGAACCTCCCCTAAACCCGGGA
    AGTCCGGCAACTGGCCATCGAGCTTGAGCCCTACCTTCAAGCCCAAGTCAATCCCCAATGCCGGATTTCA
    GGTTAAGGCAAATGCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAAAGTCTGGCAGCCTC
    AACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCCCGGGCTTTCCTTAACCAGTTGCCTGATTGGAGTA
    TGCTTCTGACTGCAATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTGGACTATGCTTGATAGGAAATC
    TAAGAGGCCTGACATGCTCGTGGACTCGGTTGGGTTGAAGTGTATTGTTCGGGATGGGCTCGTGTCCAGA
    CAGAGTTTTTTGATTAGATCTTATGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGAACC
    ACTTGCAGGAAACATCTATCAATCATTGTAAGAGTTTGGGTCTTCTCAATGACGGCTTTGGTCGTACTCC
    TGGGATGTGTAAAAACGACCTCATTTGGGTGCTTACAAAAATGCAGATCATGGTGAATCGCTACCCAACT
    TGGGGCGATACTGTTGAGATCAATACCTGGTTCTCTCAGTCGGGGAAAATCGGTATGGCTAGCGATTGGC
    TAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCGTGTGGGCTATGATGAATCAAAA
    GACGAGAAGATTCTCAAGACTTCCATACGAGGTTCGCCAGGAGTTAACGCCTCATTTTGTGGACTCTCCT
    CATGTCATTGAAGACAATGATCAGAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTCGCAAGG
    GTCTAACTCCGAGGTGGAACGACTTGGATGTGAATCAGCACGTAAGCAACGTGAAGTACATTGGGTGGAT
    TCTCGAGAGTATGCCAATAGAAGTTTTGGAGACACAGGAGCTATGCTCTCTCACCGTAGAATATAGGCGG
    GAATGCGGAATGGACAGTGTGCTGGAGTCCGTGACTGCTGTGGATCCCTCAGAAAATGGAGGCCGGTCTC
    AGTACAAGCACCTTCTGCGGCTTGAGGATGGGACTGATATCGTGAAGAGCAGAACTGAGTGGCGACCGAA
    GAATGCAGGAACTAACGGGGCGATATCAACATCAACAGCAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 27
    Cuphea PSR23 (Cu) FATB3 coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGTGGCCGCCGCCACCTCCGCCTTCTTCCCCGTGCCCGCCCCCGGCACCTCCbCCAAGCCCGGCA
    AGTCCGGCAACTGGCCCTCCTCCCTGTCCCCCACCTTCAAGCCCAAGTCCATCCCCAACGCCGGCTTCCA
    GGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCGGCTCCCTG
    AACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCA
    TGCTGCTGACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACCGCAAGTC
    CAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCCTGAAGTGCATCGTGCGCGACGGCCTGGTGTCCCGC
    CAGTCCTTCCTGATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC
    ACCTGCAGGAGACCTCCATCAACCACTGCAAGTCCCTGGGCCTGCTGAACGACGGCTTCGGCCGCACCCC
    CGGCATGTGCAAGAACGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCACC
    TGGGGCGACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGCCTCCGACTGGC
    TGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCGTGTGGGCCATGATGAACCAGAA
    GACCCGCCGCTTCTCCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTTCGTGGACTCCCCC
    CACGTGATCGAGGACAACGACCAGAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCCGCAAGG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCGTGGAGTACCGCCGC
    GAGTGCGGCATGGACTCCGTGCTGGAGTCCGTGACCGCCGTGGACCCCTCCGAGAACGGCGGCCGCTCCC
    AGTACAAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCGTGAAGTCCCGCACCGAGTGGCGCCCCAA
    GAACGCCGGCACCAACGGCGCCATCTCCACCTCCACCGCCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 28
    Cuphea wrightii (Cw) FATB3 amino acid sequence
    MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSPHPKANGSAVSLKSGS
    LNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLDRKSKRPDMLVDWFGSETIVQDGLVF
    RERFSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYP
    TWGDTVEINSWFSQSGKIGMGRDWLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYR
    RECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST*
    SEQ ID NO: 29
    Cuphea wrightii (Cw) FATB3 coding DNA sequence
    ATGGTGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCACCTAGAACCACGCCTAAACCCG
    GGAAGTTCGGCAATTGGCCATCGAGCTTGAGCCCGCCCTTCAAGCCCAAGTCAAACCCCAATGGTAGATT
    TCAGGTTAAGGCAAATGTCAGTCCTCATCCTAAGGCTAACGGTTCTGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCTGGAGGACCCTCCGTCGTCCCCTCCTCCTCGGACTTTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCGGACTGCAATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTTCACTAGGCTCGATCGAAA
    ATCTAAGAGGCCTGACATGCTAGTGGACTGGTTTGGGTCAGAGACTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGATTTTtGATCAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAGACGCTGATGA
    ACCACTTGCAGGACACATCTCTGAATCATTGTAAGAGTGTGGGTCTTCTCAATGACGGCTTTGGTCGTAC
    CTCGGAGATGTGTACAAGAGACCTCATTTGGGTGCTTACAAAAATGCAGATCGTGGTGAATCGCTATCCA
    ACTTGGGGCGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCGGGGAAAATCGGTATGGGTCGCGATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTGTAAGAGCAACGAGCGCTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCATGCGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTGGACGCT
    CCTCCTGTCATTGAAGACAATGATCGGAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACTCCGGGGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCTACAGAAGTTTTGGAGACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGTGGAAGGGAAAGTGTGGTAGAGTCCGTGACCTCTATGAATCCCTCAAAAGTTGGAGACCGGT
    CTCAGTACCAACACCTTCTGCGGCTTGAGGATGGGGCTGATATCATGAAGGGCAGAACTGAGTGGAGACC
    AAAGAATGCAGGAACCAACCGGGCGATATCAACATGA
    SEQ ID NO: 30
    Cuphea wrightii (Cw) FATB3 coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCCGCACCACCCCCAAGCCCG
    GCAAGTTCGGCAACTGGCCCTCCTCCCTGTCCCCCCCCTTCAAGCCCAAGTCCAACCCCAACGGCCGCTT
    CCAGGTGAAGGCCAACGTGTCCCCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCTGGAGGACCCCCCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCGCACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTTCACCCGCCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGGTGGACTGGTTCGGCTCCGAGACCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGCGCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACCACCTGCAGGACACCTCCCTGAACCACTGCAAGTCCGTGGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CTCCGAGATGTGCACCCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCGTGGTGAACCGCTACCCC
    ACCTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCGACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGGTGCGCGCCACCTCCGCCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCTGCGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGGCTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCACCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGAGTCCGTGGTGGAGTCCGTGACCTCCATGAACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACCGCGCCATCTCCACCTGA
    SEQ ID NO: 31
    Cuphea wrightii (Cw) FATB4a amino acid sequence
    MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPPKINGSSVGLKSGGF
    KTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGLGSIVQDGLVFR
    QNFSIRSYEIGADRTASIETVMNHLQETALNHVKIAGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPT
    WGDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSA
    PVVEDDDRKLPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYRR
    ECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSEESSPGDFF*
    SEQ ID NO: 32
    Cuphea wrightii (Cw) FATB4a coding DNA sequence
    TTGGTGGCTACCGCTGCAAGTTCTGCATTTTTCCCCGTGCCATCCGCCGACACCTCCTCCTCGAGACCCG
    GAAAGCTCGGCAGTGGACCATCGAGCTTGAGCCCCCTCAAGCCCAAATCGATCCCCAATGGCGGCTTGCA
    GGTTAAGGCAAACGCCAGTG6CCCTCCTAAGATCAATGGTTCCTCGGTCGGTCTAAAGTCGGGCGGTTTC
    AAGACTCAGGAAGACTCTCCTTCGGCCCCTCCTCCGCGGACTTTTATCAACCAGTTGCCTGATTGGAGTA
    TGCTTCTTGCTGCAATCACTACTGTCTTCTTGGCTGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACC
    TAAGAGGCCTGACATGCTCGTGGACCCGTTCGGATTGGGAAGTATTGTTCAGGATGGGCTTGTGTTCAGG
    CAGAATTTTTCAATTAGGTCCTACGAAATAGGCGCCGATCGAACTGCGTCTATAGAGACGGTGATGAACC
    ATTTGCAGGAAACAGCTCTCAATCATGTCAAGATTGCTGGGCTTTCTAATGACGGCTTTGGTCGTACTCC
    TGAGATGTATAAAAGAGACCTTATTTGGGTTGTTGCAAAAATGCAGGTCATGGTTAACCGCTATCCTACT
    TGGGGTGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGACTGGC
    TCATAAGTGATTGCAATACTGGAGAGATTCTTACAAGAGCATCAAGCGTGTGGGTCATGATGAATCAAAA
    GACAAGAAGATTGTCAAAAATTCCAGATGAGGTTCGAAATGAGATAGAGCCTCATTTTGTGGACTCTGCT
    CCCGTCGTTGAAGATGATGATCGGAAACTTCCCAAGCTGGATGAGAACACTGCTGACTCCATCCGCAAGG
    GTCTAACTCCGAGGTGGAATGACTTGGATGTCAATCAGCACGTCAACAACGTGAAGTACATCGGATGGAT
    TCTTGAGAGTACTCCACCAGAAGTTCTGGAGACCCAGGAGTTATGCTCCCTGACCCTGGAATACAGGCGG
    GAATGTGGAAGGGAGAGCGTGCTGGAGTCCCTCACTGCTGTCGACCCGTCTGCAGAGGGCTATGCGTCCC
    GGTTTCAGCACCTTCTGCGGCTTGAGGATGGAGGTGAGATCGTGAAGGCGAGAACTGAGTGGCGACCCAA
    GAATGCTGGAATCAATGGGGTGGTACCATCCGAGGAGTCCTCACCTGGAGACTTCTTTTAG
    SEQ ID NO: 33
    Cuphea wrightii (Cw) FATB4a coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCGCCGACACCTCCTCCTCCCGCCCCG
    GCAAGCTGGGCTCCGGCCCCTCCTCCCTGTCCCCCCTGAAGCCCAAGTCCATCCCCAACGGCGGCCTGCA
    GGTGAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGGGCCTGAAGTCCGGCGGCTTC
    AAGACCCAGGAGGACTCCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCA
    TGCTGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCC
    CAAGCGCCCCGACATGCTGGTGGACCCCTTCGGCCTGGGCTCCATCGTGCAGGACGGCCTGGTGTTCCGC
    CAGAACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACC
    ACCTGCAGGAGACCGCCCTGAACCACGTGAAGATCGCCGGCCTGTCCAACGACGGCTTCGGCCGCACCCC
    CGAGATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACC
    TGGGGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGC
    TGATCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAA
    GACCCGCCGCCTGTCCAAGATCCCCGACGAGGTGCGCAACGAGATCGAGCCCCACTTCGTGGACTCCGCC
    CCCGTGGTGGAGGACGACGACCGCAAGCTGCCCAAGCTGGACGAGAACACCGCCGACTCCATCCGCAAGG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCACCCOCCCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGC
    GAGTGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGCCGAGGGCTACGCCTCCC
    GCTTCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGCCCGCACCGAGTGGCGCCCCAA
    GAACGCCGGCATCAACGGCGTGGTGCCCTCCGAGGAGTCCTCCCCCGGCGACTTCTTCTGA
    SEQ ID NO: 34
    Cuphea wrightii (Cw) FATB4b amino acid sequence
    MVATAASSAFFPVPSADTSSSRPGKLGNGPSSLSPLKPKSIPNGGLQVKANASAPPKINGSSVGLKSGSF
    KTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGLGSIVQDGLVFR
    QNFSIRSYEIGADRTASIETVMNHLQETALNHVKIAGLSSDGFGRTPAMSKRDLIWVVAKMQVMVNRYPA
    WGDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSA
    PVVEDDDRKLPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPAEVLETQELCSLTLEYRR
    ECGRESVLESLTAVDPSGEGDGSKFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSEESSPGGDFF*
    SEQ ID NO: 35
    Cuphea wrightii (Cw) FATB4b coding DNA sequence
    TTGGTGGCTACCGCTGCAAGTTCTGCATTTTTCCCCGTACCATCCGCCGACACCTCCTCATCGAGACCCG
    GAAAGCTCGGCAATGGGCCATCGAGCTTGAGCCCCCTCAAGCCGAAATCGATCCCCAATGGCGGGTTGCA
    GGTTAAGGCAAACGCCAGTGCCCCTCCTAAGATCAATGGTTCCTCGGTCGGTCTGAAGTCGGGCAGTTTC
    AAGACTCAGGAAGACGCTCCTTCGGCCCCTCCTCCTCGGACTTTTATCAACCAGTTGCCTGATTGGAGTA
    TGCTTCTTGCTGCAATCACTACTGTCTTCTTGGCTGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACC
    TAAGAGGCCTGACATGCTTGTCGACCCGTTCGGATTGGGAAGTATTGTTCAGGATGGGCTTGTTTTCAGG
    CAGAATTTCTCGATTAGGTCCTACGAAATAGGCGCTGATCGCACTGCGTCTATAGAGACGGTGATGAACC
    ATTTGCAGGAAACAGCTCTCAATCATGTTAAGATTGCTGGGCTTTCTAGTGATGGCTTTGGTCGTACTCC
    TGCGATGTCTAAACGGGACCTCATTTGGGTTGTTGCGAAAATGCAGGTCATGGTTAACCGCTACCCTGCT
    TGGGGTGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGACTGGC
    TCATAAGTGATTGCAACACTGGAGAGATTCTTACAAGAGCATCAAGCGTGTGGGTCATGATGAATCAAAA
    GACAAGAAGATTGTCAAAAATTCCAGATGAGGTTCGAAATGAGATAGAGCCTCATTTTGTGGACTCTGCG
    CCCGTCGTTGAAGACGATGACCGGAAACTTCCCAAGCTGGATGAGAACACTGCTGACTCCATCCGCAAGG
    GTCTAACTCCGAGGTGGAATGACTTGGATGTCAATCAGCACGTCAACAACGTGAAGTACATTGGGTGGAT
    TCTTGAGAGTACTCCAGCAGAAGTTCTGGAGACCCAGGAATTATGTTCCCTGACCCTGGAATACAGGCGG
    GAATGTGGAAGGGAGAGCGTGCTGGAGTCCCTCACTGCTGTAGATCCGTCTGGAGAGGGCGATGGGTCCA
    AGTTCCAGCACCTTCTGCGGCTTGAGGATGGAGGTGAGATCGTGAAGGCGAGAACTGAGTGGCGACCAAA
    GAATGCTGGAATCAATGGGGTGGTACCATCCGAGGAGTCCTCACCTGGTGGAGACTTCTTTTAA
    SEQ ID NO: 36
    Cuphea wrightii (Cw) FATB4b coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCGCCGACACCTCCTCCTCCCGCCCCG
    GCAAGCTGGGCAACGGCCCCTCCTCCCTGTCCCCCCTGAAGCCCAAGTCCATCCCCAACGGCGGCCTGCA
    GGTGAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGGGCCTGAAGTCCGGCTCCTTC
    AAGACCCAGGAGGACGCCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCA
    TGCTGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCC
    CAAGCGCCCCGACATGCTGGTGGACCCCTTCGGCCTGGGCTCCATCGTGCAGGACGGCCTGGTGTTCCGC
    CAGAACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACC
    ACCTGCAGGAGACCGCCCTGAACCACGTGAAGATCGCCGGCCTGTCCTCCGACGGCTTCGGCCGCACCCC
    CGCCATGTCCAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCGCC
    TGGGGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGC
    TGATCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAA
    GACCCGCCGCCTGTCCAAGATCCCCGACGAGGTGCGCAACGAGATCGAGCCCCACTTCGTGGACTCCGCC
    CCCGTGGTGGAGGACGACGACCGCAAGCTGCCCAAGCTGGACGAGAACACCGCCGACTCCATCCGCAAGG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCACCCCCGCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGC
    GAGTGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGGCGAGGGCGACGGCTCCA
    AGTTCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGCCCGCACCGAGTGGCGCCCCAA
    GAACGCCGGCATCAACGGCGTGGTGCCCTCCGAGGAGTCCTCCCCCGGCGGCGACTTCTTCTGA
    SEQ ID NO: 37
    Cuphea wrightii (Cw) FATB5 amino acid sequence
    MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPKANGSAVNLKSGSLETP
    PRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGVDRTASI
    ETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNG
    MGRDWLISDCRTGEILIRATSVWAMMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGD
    SIRDGLTPRWNDLDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKE
    GDRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRVVRLIF*
    SEQ ID NO: 38
    Cuphea wrightii (Cw) FATB5 coding DNA sequence
    ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCTGTTCCAACCCCGGGAACGCCCCCTAAACCCGGGA
    AGTTCGGTAACTGGCCATCGAGCTTGAGCGTCCCCTTCAAGCCCGACAATGGTGGCTTTCATGTCAAGGC
    AAACGCCAGTGCCCATCCTAAGGCTAATGGTTCTGCGGTAAATCTAAAGTCTGGCAGCCTCGAGACTCCT
    CCTCGGAGTTTCATTAACCAGCTGCCGGACTTGAGTGTGCTTCTGTCCAAAATCACGACTGTCTTCGGGG
    CGGCTGAGAAGCAGTGGAAGAGGCCCGGCATGCTCGTGGAACCGTTTGGGGTTGACAGGATTTTTCAGGA
    TGGTGTTTtTTTCAGACAGAGTTTTTCTATCAGGTCTTACGAAATAGGCGTTGATCGAACAGCCTCGATA
    GAGACACTGATGAACATCTTCCAGGAAACATCTTTGAATCATTGCAAGAGTATCGGTCTTCTCAACGATG
    GCTTTGGTCGTACTCCTGAGATGTGTAAGAGGGACCTCATTTGGGTGGTTACGAAAATTCAGGTCGAGGT
    GAATCGCTATCCTACTTGGGGTGACACTATCGAAGTCAATACTTGGGTCTCGGAGTCGGGGAAAAACGGT
    ATGGGTCGGGATTGGCTGATAAGTGATTGCCGTACTGGAGAGATTCTTATAAGAGCAACGAGCGTGTGGG
    CGATGATGAATCAAAACACGAGAAGATTGTCAAAATTTCCATATGAGGTTCGACAGGAGATAGCGCCTCA
    TTTTGTGGACTCTGCTCCTGTCATTGAAGACGATCAAAAGTTGCAGAAGCTTGATGTGAAGACAGGTGAT
    TCCATTCGCGATGGTCTAACTCCGAGATGGAATGACTTGGATGTCAATCAACACGTTAACAATGTGAAGT
    ACATTGGATGGATTCTCAAGAGTGTTCCAATAGAAGTTTTCGAGACACAGGAGCTATGCGGCGTCACACT
    TGAATATAGGCGGGAATGCGGAAGGGACAGTGTGCTGGAGTCAGTGACCGCTATGGATCCAGCAAAAGAG
    GGAGACCGGTGTGTGTACCAGCACCTTCTTCGGCTTGAGGATGGAGCTGATATCACTATAGGCAGAACCG
    AGTGGCGGCCGAAGAATGCAGGAGCCAATGGTGCAATGTCATCAGGAAAGACTTCAAATGGAAACTGTCT
    CATAGAAGGAAGGGGTTGGCAACCTTTCCGAGTTGTGCGTTTAATTTTCTGA
    SEQ ID NO: 39
    Cuphea wrightii (Cw) FATB5 coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCTCCGTGCCCACCCCCGGCACCCCCCCCAAGCCCGGCA
    AGTTCGGCAACTGGCCCTCCTCCCTGTCCGTGCCCTTCAAGCCCGACAACGGCGGCTTCCACGTGAAGGC
    CAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCGGCTCCCTGGAGACCCCC
    CCCCGCTCCTTCATCAACCAGCTGCCCGACCTGTCCGTGCTGCTGTCCAAGATCACCACCGTGTTCGGCG
    CCGCCGAGAAGCAGTGGAAGCGCCCCGGCATGCTGGTGGAGCCCTTCGGCGTGGACCGCATCTTCCAGGA
    CGGCGTGTTCTTCCGCCAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGTGGACCGCACCGCCTCCATC
    GAGACCCTGATGAACATCTTCCAGGAGACCTCCCTGAACCACTGCAAGTCCATCGGCCTGCTGAACGACG
    GCTTCGGCCQCACCCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGGTGACCAAGATCCAGGTGGAGGT
    GAACCGCTACCCCACCTGGGGCGACACCATCGAGGTGAACACCTGGGTGTCCGAGTCCGGCAAGAACGGC
    ATGGGCCGCGACTGGCTGATCTCCGACTGCCGCACCGGUGAGATCCTGATCCGCGCCACCTCCGTGTGGG
    CCATGATGAACCAGAACACCCGCCGCCTGTCCAAGTTCCCCTACGAGGTGCGCCAGGAGATCGCCCCCCA
    CTTCGTGGACTCCGCCCCCGTGATCGAGGACGACCAGAAGCTGCAGAAGCTGGACGTGAAGACCGGCGAC
    TCCATCCGCGACGGCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGT
    ACATCGGCTGGATCCTGAAGTCCGTGCCCATCGAGGTGTTCGAGACCCAGGAGCTGTGCGGCGTGACCCT
    GGAGTACCGCCGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCGCCAAGGAG
    GGCGACCGCTGCGTGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCACCATCGGCCGCACCG
    AGTGGCGCCCCAAGAACGCCGGCGCCAACGGCGCCATGTCCTCCGGCAAGACCTCCAACGGCAACTGCCT
    GATCGAGGGCCGCGGCTGGCAGCCCTTCCGCGTGGTGCGCCTGATCTTCTGA
    SEQ ID NO: 40
    Cuphea heterophylla (Cht) FATB1a amino acid sequence
    MVAAAASSAFFSVPTPGTSTKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASAHPKANGSAVNLKSGSL
    ETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRPGMLVEPFGVDRIFQDGVFFRQSFSIR
    SYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIE
    VNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDD
    KKLHKLDVKTGDSIRKGLTPRWNDLDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSV
    LESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS*
    SEQ ID NO: 41
    Cuphea heterophylla (Cht) FATB1a coding DNA sequence
    ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCCCGGGAACCTCCACTAAACCCGGGA
    ACTTCGGCAATTGGCCATCGAGCTTGAGCGTCCCCTTCAAGCCCGAATCAAACCACAATGGTGGCTTTCG
    GGTCAAGGCAAACGCCAGTGCTCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAAAGTCTGGCAGCCTC
    GAGACTCAGGAGGACACTTCATCGTCGTCCCCTCCTCCTCGGACTTTTATTAAGCAGTTGCCCGACTGGG
    GTATGCTTCTGTCCAAAATCACGACTGTCTTCGGGGCGGCTGAGAGGCAGTGGAAGAGGCCCGGCATGCT
    TGTGGAACCGTTTGGGGTTGACAGGATTTTTCAGGATGGGGTTTTTTTCAGACAGAGTTTTTCGATCAGG
    TCTTACGAAATAGGCGCTGATCGAACAGCCTCAATAGAGACGCTGATGAACATCTTCCAGGAAACATCTC
    TGAATCATTGTAAGAGTATCGGTCTTCTCAATGACGGCTTTGGTCGTACTCCTGAGATGTGTAAGAGGGA
    CCTCATTTGGGTGGTTACGAAAATTCAGGTCGAGGTGAATCGCTATCCTACTTGGGGTGATACTATTGAG
    GTCAATACTTGGGTCTCAGAGTCGGGGAAAAACGGTATGGGTCGTGATTGGCTGATAAGCGATTGCCGTA
    CCGGAGAAATTCTTATAAGAGCAACGAGCGTGTGGGCTATGATGAATCGAAAGACGAGAAGATTGTCAAA
    ATTTCCATATGAGGTTCGACAGGAGATAGCGCCTCATTTTGTGGACTCTGCTCCTGTCATTGAAGACGAT
    AAAAAATTGCACAAGCTTGATGTTAAGACGGGTGATTCCATTCGCAAGGGTCTAACTCCAAGGTGGAATG
    ACTTGGATGTCAATCAGCACGTTAACAATGTGAAGTACATTGGGTGGATTCTCAAGAGTGTTCCAGCAGA
    AGTTTTCGAGACCCAGGAGCTATGCGGAGTCACCCTTGAGTACAGGCGGGAATGTGGAAGGGACAGTGTG
    CTGGAGTCCGTGACCGCTATGGATACCGCAAAAGAGGGAGACCGGTCTCTGTACCAGCACCTTCTTCGGC
    TTGAGGATGGGGCTGATATCACCATAGGCAGAACCGAGTGGCGGCCGAAGAATGCAGGAGCCAATGGGGC
    AATATCAACAGGAAAGACTTCAAATGAAAACTCTGTCTCTTAG
    SEQ ID NO: 42
    Cuphea heterophylla (Cht) FATB1a coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCTCCGTGCCCACCCCCGGCACCTCCACCAAGCCCGGCA
    ACTTCGGCAACTGGCCCTCCTCCCTGTCCGTGCCCTTCAAGCCCGAGTCCAACCACAACGGCGGCTTCCG
    CGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCGGCTCCCTG
    GAGACCCAGGAGGACACCTCCTCCTCCTCCCCCCCCCCCCGCACCTTCATCAAGCAGCTGCCCGACTGGG
    GCATGCTGCTGTCCAAGATCACCACCGTGTTCGGCGCCGCCGAGCGCCAGTGGAAGCGCCCCGGCATGCT
    GGTGGAGCCCTTCGGCGTGGACCGCATCTTCCAGGACGGCGTGTTCTTCCGCCAGTCCTTCTCCATCCGC
    TCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACATCTTCCAGGAGACCTCCC
    TGAACCACTGCAAGTCCATCGGCCTGCTGAACGACGGCTTCGGCCGCACCCCCGAGATGTGCAAGCGCGA
    CCTGATCTGGGTGGTGACCAAGATCCAGGTGGAGGTGAACCGCTACCCCACCTGGGGCGACACCATCGAG
    GTGAACACCTGGGTGTCCGAGTCCGGCAAGAACGGCATGGGCCGCGACTGGCTGATCTCCGACTGCCGCA
    CCGGCGAGATCCTGATCCGCGCCACCTCCGTGTGGGCCATGATGAACCGCAAGACCCGCCGCCTGTCCAA
    GTTCCCCTACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACTCCGCCCCCGTGATCGAGGACGAC
    AAGAAGCTGCACAAGCTGGACGTGAAGACCGGCGACTCCATCCGCAAGGGCCTGACCCCCCGCTGGAACG
    ACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCTGAAGTCCGTGCCCGCCGA
    GGTGTTCGAGACCCAGGAGCTGTGCGGCGTGACCCTGGAGTACCGCCGCGAGTGCGGCCGCGACTCCGTG
    CTGGAGTCCGTGACCGCCATGGACACCGCCAAGGAGGGCGACCGCTCCCTGTACCAGCACCTGCTGCGCC
    TGGAGGACGGCGCCGACATCACCATCGGCCGCACCGAGTGGCGCCCCAAGAACGCCGGCGCCAACGGCGC
    CATCTCCACCGGCAAGACCTCCAACGAGAACTCCGTGTCCTGA
    SEQ ID NO: 43
    Cuphea heterophylla (Cht) FATB1b (P16S, T20P, G94S, G105W, S293F,
    L305F variant) amino acid sequence
    MVAAAASSAFFSVPTSGTSPKPGNFGNWPSSLSVPFKPESSHNGGFQVKANASAHPKANGSAVNLKSGSL
    ETQEDTSSSSPPPRTFIKQLPDWSMLLSKITTVFWAAERQWKRPGMLVEPFGVDRIFQDGVFFRQSFSIR
    SYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIE
    VNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDD
    KKLHKLDVKTGDFIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSV
    LESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS*
    SEQ ID NO: 44
    Cuphea heterophylla (Cht) FATB1b (P16S, T2OP, G94S, G105W, S293F, L305F
    variant) coding DNA sequence
    ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCTCGGGAACCTCCCCTAAACCCGGGA
    ACTTCGGCAATTGGCCATCGAGCTTGAGCGTCCCCTTCAAGCCCGAATCAAGCCACAATGGTGGCTTTCA
    GGTCAAGGCAAACGCCAGTGCCCATCCTAAGGCTAACGGTTCTGCAGTAAATCTAAAGTCTGGCAGCCTC
    GAGACTCAGGAGGACACTTCATCGTCGTCCCCTCCTCCTCGGACTTTTATTAAGCAGTTGCCCGACTGGA
    GTATGCTTCTGTCCAAAATCACGACTGTCTTCTGGGCGGCTGAGAGGCAGTGGAAGAGGCCCGGCATGCT
    TGTGGAACCGTTTGGGGTTGACAGGATTTTTCAGGATGGGGTTTTTTTCAGACAGAGTTTTTCGATCAGG
    TCTTACGAAATAGGCGCTGATCGAACAGCCTCAATAGAGACGCTGATGAACATCTTCCAGGAAACATCTC
    TGAATCATTGTAAGAGTATCGGTCTTCTCAATGACGGCTTTGGTCGTACTCCTGAGATGTGTAAGAGGGA
    CCTCATTTGGGTGGTTACGAAAATTCAGGTCGAGGTGAATCGCTATCCTACTTGGGGTGATACTATTGAG
    GTCAATACTTGGGTCTCAGAGTCGGGGAAAAACGGTATGGGTCGTGATTGGCTGATAAGCGATTGCCGTA
    CCGGAGAAATTCTTATAAGAGCAACGAGCGTGTGGGCTATGATGAATCGAAAGACGAGAAGATTGTCAAA
    ATTTCCATATGAGGTTCGACAGGAGATAGCGCCTCATTTTGTGGACTCTGCTCCTGTCATTGAAGACGAT
    AAAAAATTGCACAAGCTTGATGTTAAGACGGGTGATTTCATTCGCAAGGGTCTAACTCCAAGGTGGAATG
    ACTTTGATGTCAATCAGCACGTTAACAATGTGAAGTACATTGGGTGGATTCTCAAGAGTGTTCCAGCAGA
    AGTTTTCGAGACCCAGGAGCTATGCGGAGTCACCCTTGAGTATAGGCGGGAATGTGGAAGGGACAGTGTG
    CTGGAGTCCGTGACCGCTATGGATACCGCAAAAGAGGGAGACCGGTCTCTGTACCAGCACCTTCTTCGGC
    TTGAGGATGGGGCTGATATCACCATAGGCAGAACCGAGTGGCGGCCGAAGAATGCAGGAGCCAATGGGGC
    AATATCAACAGGAAAGACTTCAAATGAAAACTCTGTCTCTTAG
    SEQ ID NO: 45
    Cuphea heterophylla (Cht) FATB1b (P16S, T20P, G94S, G105W, S293F,
    L305F variant) coding DNA sequence codon optimized for Prototheca
    moriformis
    ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCTCCGTGCCCACCTCCGGCACCTCCCCCAAGCCCGGCA
    ACTTCGGCAACTGGCCCTCCTCCCTGTCCGTGCCCTTCAAGCCCGAGTCCTCCCACAACGGCGGCTTCCA
    GGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCGGCTCCCTG
    GAGACCCAGGAGGACACCTCCTCCTCCTCCCCCCCCCCCCGCACCTTCATCAAGCAGCTGCCCGACTGGT
    CCATGCTGCTGTCCAAGATCACCACCGTGTTCTGGGCCGCCGAGCGCCAGTGGAAGCGCCCCGGCATGCT
    GGTGGAGCCCTTCGGCGTGGACCGCATCTTCCAGGACGGCGTGTTCTTCCGCCAGTCCTTCTCCATCCGC
    TCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACATCTTCCAGGAGACCTCCC
    TGAACCACTGCAAGTCCATCGGCCTGCTGAACGACGGCTTCGGCCGCACCCCCGAGATGTGCAAGCGCGA
    CCTGATCTGGGTGGTGACCAAGATCCAGGTGGAGGTGAACCGCTACCCCACCTGGGGCGACACCATCGAG
    GTGAACACCTGGGTGTCCGAGTCCGGCAAGAACGGCATGGGCCGCGACTGGCTGATCTCCGACTGCCGCA
    CCGGCGAGATCCTGATCCGCGCCACCTCCGTGTGGGCCATGATGAACCGCAAGACCCGCCGCCTGTCCAA
    GTTCCCCTACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACTCCGCCCCCGTGATCGAGGACGAC
    AAGAAGCTGCACAAGCTGGACGTGAAGACCGGCGACTTCATCCGCAAGGGCCTGACCCCCCGCTGGAACG
    ACTTCGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCTGAAGTCCGTGCCCGCCGA
    GGTGTTCGAGACCCAGGAGCTGTGCGGCGTGACCCTGGAGTACCGCCGCGAGTGCGGCCGCGACTCCGTG
    CTGGAGTCCGTGACCGCCATGGACACCGCCAAGGAGGGCGACCGCTCCCTGTACCAGCACCTGCTGCGCC
    TGGAGGACGGCGCCGACATCACCATCGGCCGCACCGAGTGGCGCCCCAAGAACGCCGGCGCCAACGGCGC
    CATCTCCACCGGCAAGACCTCCAACGAGAACTCCGTGTCCTGA
    SEQ ID NO: 46
    Cuphea heterophylla (Cht) FATB2b amino acid sequence
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASAHPKANGSAVSLKSGS
    LNTQEGTSSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTMLDRKSKKPDMHVDWFGLEIIVQDGLVF
    RESFSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYP
    TWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYR
    RECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 47
    Cuphea heterophylla (Cht) FATB2b coding DNA sequence
    ATGGTGGTGGCTGCTGCAGCAAGCTCTGCATTCTTCCCTGTTCCGGCATCTGGAACCTCCCCTAAACCCG
    GGAAGTTCGGGACTTGGCTATCGAGCTCGAGCCCTTCCTACAAGCCCAAGTCAAACCCCAGTGGTGGATT
    TCAGGTTAAGGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCCGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCAGGAGGGCACTTCGTCGTCCCCTCCTCCTCGGACTTTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCGGACTGCAATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    GTCTAAGAAGCCTGACATGCACGTGGACTGGTTTGGGTTGGAGATTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGTTTTTCGATCAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAAACGTTGATGA
    ACCATTTGCAGGACACATCTTTGAACCATTGTAAGAGTGTGGGTCTTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGTAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCATGGTGAATCGCTATCCA
    ACTTGGGGCGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTGGACGCC
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACACCGGAGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAAAAGAAGTTTTGGACACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGATAGTGTGCTGGAGTCTGTGACCGCTATGGATCCCTCAAAAGTTGGAGACCGAT
    CTCAGTACCAGCACCTTCTGCGGCTTGAAGATGGGACTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCTATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 48
    Cuphea heterophylla (Cht) FATB2b coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCTCCGGCACCTCCCCCAAGCCCG
    GCAAGTTCGGCACCTGGCTGTCCTCCTCCTCCCCCTCCTACAAGCCCAAGTCCAACCCCTCCGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCAGGAGGGCACCTCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCGCACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGAAGCCCGACATGCACGTGGACTGGTTCGGCCTGGAGATCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACCACCTGCAGGACACCTCCCTGAACCACTGCAAGTCCGTGGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCC
    ACCTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGAGTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCAAGGAGGTGCTGGACACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 49
    Cuphea heterophylla (Cht) FATB2a (S17P, P21S, T28N, L30P, S33L, G76D,
    S78P, G137W variant) amino acid sequence
    MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANASAHPKANGSAVSLKSGS
    LNTKEDTPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTMLDRKSKKPDMHVDWFGLEIIVQDWLVF
    RESFSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYP
    TWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDA
    PPLIEDNDRKLHKFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYR
    RECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 50
    Cuphea heterophylla (Cht) FATB2a (S17P, P21S, T28N, L30P, S33L, G76D,
    S78P, G137W variant) coding DNA sequence
    ATGGTGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCACCTGGAACCACGTCTAAACCCG
    GGAAGTTCGGCAATTGGCCATCGAGCTTGAGCCCTTCCTTCAAGCCCAAGTCAAACCCCAATGGTGGATT
    TCAGGTTAAGGCAAATGCCAGCGCTCATCCTAAGGCTAACGGGTCTGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTAAGGAGGACACTCCGTCGTCCCCTCCTCCTCGGACTTTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCGGACTGCAATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    GTCTAAGAAGCCTGACATGCACGTGGACTGGTTTGGGTTGGAGATTATTGTTCAGGATTGGCTCGTGTTC
    AGAGAGAGTTTTTCGATCAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAAACGTTGATGA
    ACCATTTGCAGGACACATCTTTGAACCATTGTAAGAGTGTGGGTCTTCTCAATGACGGCTTTGGTLGTAC
    CCCGGAGATGTGTAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCATGGTGAATCGCTATCCA
    ACTTGCCGCGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCTCCTCATTTTGTGGACGCC
    CCTCCTCTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACACCGGAGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAAAAGAAGTTTTGGACACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGACAGTGTGCTGGAGTCTGTGACCGCTATGGATCCCTCAAAAGTTGGAGACCGAT
    CTCAGTACCAGCACCTTCTGCGGCTTGAAGATGGGACTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCGATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 51
    Cuphea heterophylla (Cht) FATB2a (S17P, P21S, T28N, L30P, S33L, G76D,
    S78P, G137W variant) coding DNA sequence codon optimized for
    Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCGGCACCACCTCCAAGCCCG
    GCAAGTTCGGCAACTGGCCCTCCTCCCTGTCCCCCTCCTTCAAGCCCAAGTCCAACCCCAACGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCAAGGAGGACACCCCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCGCACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGAAGCCCGACATGCACGTGGACTGGTTCGGCCTGGAGATCATCGTGCAGGACTGGCTGGTGTTC
    CGCGAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACCACCTGCAGGACACCTCCCTGAACCACTGCAAGTCCGTGGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCC
    ACCTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCCTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGAGTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCAAGGAGGTGCTGGACACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 52
    Cuphea heterophylla (Cht) FATB2c (G76D, S78P variant) amino acid
    sequence
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASAHPKANGSAVSLKSGS
    LNTKEDTPSSPPPRTFLNQLPDWNRLRTAITTVFVAAEKQLTMLDRKSKKPDMHVDWFGLEIIVQDGLVF
    RESFSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYP
    TWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYR
    RECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 53
    Cuphea heterophylla (Cht) FATB2c (G76D, S78P variant) coding DNA
    sequence
    ATGGTGGTGGCTGCTGCAGCAAGCTCTGCATTCTTCCCTGTTCCGGCATCTGGAACCTCCCCTAAACCCG
    GGAAGTTCGGGACTTGGCTATCGAGCTCGAGCCCTTCCTACAAGCCCAAGTCAAACCCCAGTGGTGGATT
    TCAGGTTAAGGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCCGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTAAGGAGGACACTCCGTCGTCCCCTCCTCCTCGGACTTTCCTTAACCAGTTGCCTGATTGGA
    ATAGGCTTCGGACTGCAATCACGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    GTCTAAGAAGCCTGACATGCACGTGGACTGGTTTGGGTTGGAGATTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGTTTTTCGATCAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAAACGTTGATGA
    ACCATTTGCAGGACACATCTTTGAACCATTGTAAGAGTGTGGGTCTTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGTAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCATGGTGAATCGCTATCCA
    ACTTGGGGCGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTGGACGCC
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACACCGGAGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAAAAGAAGTTTTGGACACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGACAGTGTGCTGGAGTCTGTGACCGCTATGGATCCCTCAAAAGTTGGGGACCGAT
    CTCAGTACCAGCACCTTCTGCGGCTTGAAGATGGGACTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCTATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 54
    Cuphea heterophylla (Cht) FATB2c (G76D, S78P variant) coding DNA
    sequence codon optimized for Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCTCCGGCACCTCCCCCAAGCCCG
    GCAAGTTCGGCACCTGGCTGTCCTCCTCCTCCCCCTCCTACAAGCCCAAGTCCAACCCCTCCGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCAAGGAGGACACCCCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGA
    ACCGCCTGCGCACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGAAGCCCGACATGCACGTGGACTGGTTCGGCCTGGAGATCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACCACCTGCAGGACACCTCCCTGAACCACTGCAAGTCCGTGGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCC
    ACCTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGAGTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCAAGGAGGTGCTGGACACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 55
    Cuphea heterophylla (Cht) FATB2d (S21P, T28N, L30P, S33L, G76D, R97L,
    H124L, W127L, I132S, K258N, C303R, E309G, K334T, T386A variant) amino
    acid sequence
    MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANASAHPKANGSAVSLKSGS
    LNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLDRKSKRPDMLVDLFGLESIVQDGLVF
    RESYSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYP
    TWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYR
    RECGRESVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 56
    Cuphea heterophylla (Cht) FATB2d (S21P, T28N, L30P, S33L, G76D, R97L,
    H124L, W127L, I132S, K258N, C303R, E309G, K334T, T386A variant) coding
    DNA sequence
    ATGGTGGTGGCTGCTGCAGCAAGTTCTGCATTCTTCCCTGTTCCAGCACCTGGAACCACGTCTAAACCCG
    GGAAGTTCGGCAATTGGCCATCGAGCTTGAGCCCTTCCTTCAAGCCCAAGTCAAACCCCAATGGTGGATT
    TCAGGTTAAGGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCTGCGGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCTCGGACATTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCTGACTGCAATCTCGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    ATCTAAGAGGCCTGACATGCTCGTGGACTTGTTTGGGTTGGAGAGTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGTTATTCGATCAGGTCTTACGAAATAGGCGCTGATCGAACAGCCTCTATAGAAACGTTGATGA
    ACCATTTGCAGGACACATCTTTGAACCATTGTAAGAGTGTGGGTCTTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGTAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCATGGTGAATCGCTATCCA
    ACTTGGGGCGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAATACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTTGACGCT
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTCGCA
    AGGGTCTAACTCCGGGGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAACAGAAGTTTTGGAGACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGAAAGTGTGCTGGAGTCCGTGACCGCTATGAATCCCTCAAAAGTTGGAGACCGGT
    CTCAGTACCAGCACCTTCTACGGCTTGAGGATGGGGCTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCGATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 57
    Cuphea heterophylla (Cht) FATB2d (S21P, T28N, L30P, S33L, G76D, R97L,
    H124L, W127L, I132S, K258N, C303R, E309G, K334T, T386A variant) coding
    DNA sequence codon optimized for Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCCCCGGCACCACCTCCAAGCCCG
    GCAAGTTCGGCAACTGGCCCTCCTCCCTGTCCCCCTCCTTCAAGCCCAAGTCCAACCCCAACGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCTGACCGCCATCTCCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGGTGGACCTGTTCGGCCTGGAGTCCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGTCCTACTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGA
    ACCACCTGCAGGACACCTCCCTGAACCACTGCAAGTCCGTGGGCCTGCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCC
    ACCTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACtGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAACACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCCGCA
    AGGGCCTGACCCCCGGCTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCACCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGAGTCCGTGCTGGAGTCCGTGACCGCCATGAACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 58
    Cuphea heterophylla (Cht) FATB2e (G76D, R97L, H124L, I132S, G152S,
    H165L, T211N, K258N, C303R, E309G, K334T, T386A variant) amino acid
    sequence
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASAHPKANGSAVSLKSGS
    LNTQEDTSSSPPPQTFLNQLPDWSRLLTAISTVFVAAEKQLTMLDRKSKRPDMLVDWFGLESIVQDGLVF
    RESYSIRSYEISADRTASIETVMNLLQETSLNHCKSMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYP
    NWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYR
    RECGRDSVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 59
    Cuphea heterophylla (Cht) FATB2e (G76D, R97L, H124L, I132S, G152S,
    H165L, T211N, K258N, C303R, E309G, K334T, T386A variant) coding DNA
    sequence
    ATGGTGGTGGCTGCTGCAGCAAGCTCTGCATTCTTCCCTGTTCCGGCATCTGGAACCTCCCCTAAACCCG
    GGAAGTTCGGGACTTGGCTATCGAGCTCGAGCCCTTCCTACAAGCCCAAGTCAAACCCCAGTGGTGGATT
    TCAGGTTAAGGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCTGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCTCAGACATTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCTGACAGCAATCTCGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    ATCTAAAAGGCCTGACATGCTCGTGGACTGGTTTGGGTTGGAGAGTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGTTATTCGATCAGGTCTTACGAAATAAGCGCTGATCGAACAGCCTCTATAGAGACGGTGATGA
    ACCTCTTGCAGGAAACATCTCTCAATCATTGTAAGAGTATGGGTATTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGCAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCTTGGTGAATCGCTATCCA
    AATTGGGGTGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAATACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTTGACGCT
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTCGCA
    AGGGTCTAACTCCGGGGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAACAGAAGTTTTGGAGACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGACAGTGTGCTGGAGTCCGTGACCGCTATGAATCCCTCAAAAGTTGGAGACCGGT
    CTCAGTACCAGCACCTTCTACGGCTTGAGGATGGGGCTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCGATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 60
    Cuphea heterophylla (Cht) FATB2e (G76D, R97L, H124L, I132S, G152S,
    H165L, T211N, K258N, C303R, E309G, K334T, T386A variant) coding DNA
    sequence codon optimized for Prototheca moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCTCCGGCACCTCCCCCAAGCCCG
    GCAAGTTCGGCACCTGGCTGTCCTCCTCCTCCCCCTCCTACAAGCCCAAGTCCAACCCCTCCGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCAGACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCTGACCGCCATCTCCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGGTGGACTGGTTCGGCCTGGAGTCCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGTCCTACTCCATCCGCTCCTACGAGATCTCCGCCGACCGCACCGCCTCCATCGAGACCGTGATGA
    ACCTGCTGCAGGAGACCTCCCTGAACCACTGCAAGTCCATGGGCATCCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCCTGGTGAACCGCTACCCC
    AACTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAACACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCCGCA
    AGGGCCTGACCCCCGGCTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCACCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGAACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCGCCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 61
    Cuphea heterophylla (Cht) FATB2f (R97L, H124L, I132S, G152S, H165L,
    T211N variant) amino acid sequence
    MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASAHPKANGSAVSLKSGS
    LNTQEGTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLDRKSKRPDMLVDWFGLESIVQDGLVF
    RESYSIRSYEISADRTASIETVMNLLQETSLNHCKSMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYP
    NWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYR
    RECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGKTSNGNSVS*
    SEQ ID NO: 62
    Cuphea heterophylla (Cht) FATB2f (R97L, H124L, I132S, G152S, H165L,
    T211N variant) coding DNA sequence
    ATGGTGGTGGCTGCTGCAGCAAGCTCTGCATTCTTCCCTGTTCCGGCATCTGGAACCTCCCCTAAACCCG
    GGAAGTTCGGGACTTGGCTATCGAGCTCGAGCCCTTCCTACAAGCCCAAGTCAAACCCCAGTGGTGGATT
    TCAGGTTAAAGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCCGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCAGGAGGGCACTTCGTCGTCCCCTCCTCCTCGGACATTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCTGACTGCAATCTCGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    ATCTAAGAGGCCTGACATGCTCGTGGACTGGTTTGGGTTGGAGAGTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGAGTTATTCGATCAGGTCTTACGAAATAAGCGCTGATCGAACAGCCTCTATAGAGACGGTGATGA
    ACCTCTTGCAGGAAACATCTCTCAATCATTGTAAGAGTATGGGTATTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGCAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCTTGGTGAATCGCTATCCA
    AATTGGGGTGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCAAATGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTGGACGCC
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACACCGGAGTGGAACGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAAAAGAAGTTTTGGACACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGACAGTGTGCTGGAGTCTGTGACCGCTATGGATCCCTCAAAAGTTGGAGACCGAT
    CTCAGTACCAGCACCTTCTGCGGCTTGAAGATGGGACTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCGATATCAACAGGAAAGACTTCAAATGGAAACTCGGTCTCTTAG
    SEQ ID NO: 63
    Cuphea heterophylla (Cht) FATB2f (R97L, H124L, I132S, G152S, H165L,
    T211N variant) coding DNA sequence codon optimized for Prototheca
    moriformis
    ATGGTGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCGCCTCCGGCACCTCCCCCAAGCCCG
    GCAAGTTCGGCACCTGGCTGTCCTCCTCCTCCCCCTCCTACAAGCCCAAGTCCAACCCCTCCGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCAGGAGGGCACCTCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCTGACCGCCATCTCCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGGTGGACTGGTTCGGCCTGGAGTCCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGTCCTACTCCATCCGCTCCTACGAGATCTCCGCCGACCGCACCGCCTCCATCGAGACCGTGATGA
    ACCTGCTGCAGGAGACCTCCCTGAACCACTGCAAGTCCATGGGCATCCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCCTGGTGAACCGCTACCCC
    AACTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGAGTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCAAGGAGGTGCTGGACACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGAGTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 64
    Cuphea heterophylla (Cht) FATB2g (A6T, A16V, S17P, G76D, R97L, H124L,
    I132S, S1431, G152S, A157T, H165L, T211N, G414A variant) amino acid
    sequence
    MVVAATASSAFFPVPVPGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASAHPKANGSAVSLKSGS
    LNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLDRKSKRPDMLVDWFGLESIVQDGLVF
    REIYSIRSYEISADRTTSIETVMNLLQETSLNHCKSMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYP
    NWGDTVEINSWFSQSGKIGMGRNWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDA
    PPVIEDNDRKLHKFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYR
    RECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGKTSNANSVS*
    SEQ ID NO: 65
    Cuphea heterophylla (Cht) FATB2g (A6T, A16V, S17P, G76D, R97L, H124L,
    I132S, S1431, G152S, A157T, H165L, T211N, G414A variant) coding DNA
    sequence
    ATGGTGGTGGCTGCTACAGCAAGTTCTGCATTCTTCCCTGTTCCTGTACCTGGAACCTCCCCTAAACCCG
    GAAAGTTCGGGACTTGGCTATCGAGCTCGAGCCCTTCCTACAAGCCCAAGTCAAACCCCAGTGGTGGATT
    TCAGGTTAAGGCAAATGCCAGTGCTCATCCTAAGGCTAACGGTTCTGCAGTAAGTCTAAAGTCTGGCAGC
    CTCAACACTCAGGAGGACACTTCGTCGTCCCCTCCTCCTCGGACATTCCTTAACCAGTTGCCTGATTGGA
    GTAGGCTTCTGACTGCAATCTCGACCGTCTTCGTGGCGGCAGAGAAGCAGTTGACTATGCTCGATCGAAA
    ATCTAAGAGGCCTGACATGCTCGTGGACTGGTTTGGGTTGGAGAGTATTGTTCAGGATGGGCTCGTGTTC
    AGAGAGATTTATTCGATCAGGTCTTACGAAATAAGCGCTGATCGAACAACCTCTATAGAGACGGTGATGA
    ACCTCTTGCAGGAAACATCTCTCAATCATTGTAAGAGTATGGGTATTCTCAATGACGGCTTTGGTCGTAC
    CCCGGAGATGTGCAAAAGGGACCTCATTTGGGTGCTTACAAAAATGCAGATCTTGGTGAATCGCTATCCA
    AATTGGGGTGATACTGTCGAGATCAATAGCTGGTTCTCCCAGTCCGGGAAAATCGGTATGGGTCGCAATT
    GGCTAATAAGTGATTGCAACACAGGAGAAATTCTTATAAGAGCAACGAGCATTTGGGCCATGATGAATCA
    AAAGACGAGAAGATTCTCAAAACTTCCAAACGAGGTTCGCCAGGAGATAGCGCCTCATTTTGTGGACGCC
    CCTCCTGTCATTGAAGACAATGATCGAAAATTGCATAAGTTTGATGTGAAGACTGGTGATTCCATTTGCA
    AGGGTCTAACACCGGAGTGGAATGACTTGGATGTCAATCAGCACGTAAGCAACGTGAAGTACATTGGGTG
    GATTCTCGAGAGTATGCCAAAAGAAGTTTTGGACACCCAGGAGCTATGCTCTCTCACCCTTGAATATAGG
    CGGGAATGCGGAAGGGACAGTGTGCTGGAGTCTGTGACCGCTATGGATCCCTCAAAAGTTGGAGACCGAT
    CTCAGTACCAGCACCTTCTGCGGCTTGAAGATGGGACTGATATCATGAAGGGCAGAACTGAGTGGCGACC
    AAAGAATGCAGGAACCAACGGGGCGATATCAACAGGAAAGACTTCAAATGCAAACTCGGTCTCTTAG
    SEQ ID NO: 66
    Cuphea heterophylla (Cht) FATB2g (A6T, A16V, S17P, G76D, R97L, H124L,
    I132S, S1431, G152S, A157T, H165L, T211N, G414A variant) coding DNA
    sequence codon optimized for Prototheca moriformis
    ATGGTGGTGGCCGCCACCGCCTCCTCCGCCTTCTTCCCCGTGCCCGTGCCCGGCACCTCCCCCAAGCCCG
    GCAAGTTCGGCACCTGGCTGTCCTCCTCCTCCCCCTCCTACAAGCCCAAGTCCAACCCCTCCGGCGGCTT
    CCAGGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGTCCGGCTCC
    CTGAACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCACCTTCCTGAACCAGCTGCCCGACTGGT
    CCCGCCTGCTGACCGCCATCTCCACCGTGTTCGTGGCCGCCGAGAAGCAGCTGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACATGCTGGTGGACTGGTTCGGCCTGGAGTCCATCGTGCAGGACGGCCTGGTGTTC
    CGCGAGATCTACTCCATCCGCTCCTACGAGATCTCCGCCGACCGCACCACCTCCATCGAGACCGTGATGA
    ACCTGCTGCAGGAGACCTCCCTGAACCACTGCAAGTCCATGGGCATCCTGAACGACGGCTTCGGCCGCAC
    CCCCGAGATGTGCAAGCGCGACCTGATCTGGGTGCTGACCAAGATGCAGATCCTGGTGAACCGCTACCCC
    AACTGGGGCGACACCGTGGAGATCAACTCCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGGCCGCAACT
    GGCTGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCATCTGGGCCATGATGAACCA
    GAAGACCCGCCGCTTCTCCAAGCTGCCCAACGAGGTGCGCCAGGAGATCGCCCCCCACTTCGTGGACGCC
    CCCCCCGTGATCGAGGACAACGACCGCAAGCTGCACAAGTTCGACGTGAAGACCGGCGACTCCATCTGCA
    AGGGCCTGACCCCCGAGTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTG
    GATCCTGGAGTCCATGCCCAAGGAGGTGCTGGACACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGC
    CGCGACTGCGGCCGCGACTCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGTGGGCGACCGCT
    CCCAGTACCAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCATGAAGGGCCGCACCGAGTGGCGCCC
    CAAGAACGCCGGCACCAACGGCGCCATCTCCACCGGCAAGACCTCCAACGCCAACTCCGTGTCCTGA
    SEQ ID NO: 67
    Cuphea heterophylla (Cht) FATB3aamino acid sequence
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPPKINGSSVSLKSCSLK
    THEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGLGRIVQDGLVFRQ
    NFSIRSYEIGADRTASIETVMNHLQETALNHVKSAGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTW
    GDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAP
    VIEDDDWKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYRRE
    CGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASGETSPGNS*
    SEQ ID NO: 68
    Cuphea heterophylla (Cht) FATB3a coding DNA sequence
    ATGGTGGCCACCGCTGCAAGTTCTGCATTCTTCCCGGTGCCGTCCCCGGACACCTCCTCTAGACCGGGAA
    AGCTCGGAAATGGGTCATCAAGCTTGAGGCCCCTCAAGCCCAAATTTGTTGCCAATGCTGGGCTGCAGGT
    TAAGGCAAACGCCAGTGCCCCTCCTAAGATCAATGGTTCCTCGGTCAGTCTAAAGTCTTGCAGTCTCAAG
    ACTCATGAAGACACTCCTTCAGCTCCTCCTCCGCGGACTTTTATCAACCAGTTGCCTGATTGGAGCATGC
    TTCTTGCTGCAATCACTACTGTCTTCTTGGCAGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACCAAA
    GAGGCCTGACATGCTTGTGGACCCGTTCGGATTGGGAAGGATTGTTCAGGATGGGCTTGTGTTCAGGCAG
    AATTTTTCGATTAGGTCCTATGAAATAGGCGCTGATCGCACTGCATCCATAGAGACGGTGATGAACCACT
    TGCAGGAAACGGCTCTCAATCATGTTAAGAGTGCGGGGCTTCTTAATGAAGGCTTTGGTCGTACTCCTGA
    GATGTATAAAAGGGACCTTATTTGGGTTGTCGCGAAAATGCAGGTCATGGTTAACCGCTATCCTACTTGG
    GGTGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGATTGGCTCA
    TAAGTGATTGCAATACAGGAGAAATTCTTACAAGGGCATCAAGTGTGTGGGTCATGATGAATCAAAAGAC
    AAGAAAATTGTCAAAGATTCCAGATGAGGTTCGGCATGAGATAGAGCCTCATTTTGTGGACTCTGCTCCC
    GTCATTGAAGACGATGACTGGAAACTTCCCAAGCTGGATGAGAAAACTGCTGACTCCATCCGCAAGGGTC
    TAACTCCGAAGTGGAATGACTTGGATGTCAATCAGCACGTCAACAACGTGAAGTACATTGGGTGGATTCT
    TGAGAGTACTCCACCAGAAGTTCTGGAGACCCAGGAGTTATGTTCCCTTACCCTGGAATACAGGCGGGAA
    TGCGGAAGGGAGAGTGTGCTGGAGTCCCTCACTGCTGTGGACCCCTCTGGAAAGGGCTTTGGGCCCCAGT
    TTCAGCACCTTCTGAGGCTTGAGGATGGAGGTGAGATCGTAAAGGGGAGAACTGAGTGGCGACCCAAGAC
    TGCAGGTATCAATGCCACGATTGCATCTGGGGAGACCTCACCTGGAAACTCTTAG
    SEQ ID NO: 69
    Cuphea heterophylla (Cht) FATB3a coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCCCCGACACCTCCTCCCGCCCCGGCA
    AGCTGGGCAACGGCTCCTCCTCCCTGCGCCCCCTGAAGCCCAAGTTCGTGGCCAACGCCGGCCTGCAGGT
    GAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGTCCCTGAAGTCCTGCTCCCTGAAG
    ACCCACGAGGACACCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCATGC
    TGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCCCAA
    GCGCCCCGACATGCTGGTGGACCCCTTCGGCCTGGGCCGCATCGTGCAGGACGGCCTGGTGTTCCGCCAG
    AACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACCACC
    TGCAGGAGACCGCCCTGAACCACGTGAAGTCCGCCGGCCTGCTGAACGAGGGCTTCGGCCGCACCCCCGA
    GATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACCTGG
    GGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGCTGA
    TCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAAGAC
    CCGCAAGCTGTCCAAGATCCCCGACGAGGTGCGCCACGAGATCGAGCCCCACTTCGTGGACTCCGCCCCC
    GTGATCGAGGACGACGACTGGAAGCTGCCCAAGCTGGACGAGAAGACCGCCGACTCCATCCGCAAGGGCC
    TGACCCCCAAGTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCT
    GGAGTCCACCCCCCCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGCGAG
    TGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGGCAAGGGCTTCGGCCCCCAGT
    TCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGGCCGCACCGAGTGGCGCCCCAAGAC
    CGCCGGCATCAACGGCACCATCGCCTCCGGCGAGACCTCCCCCGGCAACTCCTGA
    SEQ ID NO: 70
    Cuphea heterophylla (Cht) FATB3b (C67G, H72Q, L128F, N1791 variant)
    amino acid sequence
    MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPPKINGSSVSLKSGSLK
    TQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDWKPKRPDMLVDPFGFGRIVQDGLVFRQ
    NFSIRSYEIGADRTASIETVMNHLQETALNHVKSAGLLIEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTW
    GDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAP
    VIEDDDWKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYRRE
    CGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASGETSPGNS*
    SEQ ID NO: 71
    Cuphea heterophylla (Cht) FATB3b (C67G, H72Q, L128F, N179I variant)
    coding DNA sequence
    ATGGTGGCCACCGCTGCAAGTTCTGCATTCTTCCCGGTGCCATCCCCGGACACCTCCTCTAGACCGGGAA
    AGCTCGGAAATGGGTCATCAAGCTTGAGGCCCCTCAAGCCCAAATTTGTTGCCAATGCTGGGCTGCAGGT
    TAAGGCAAACGCCAGTGCCCCTCCTAAGATCAATGGTTCCTCGGTCAGTCTAAAGTCTGGCAGTCTCAAG
    ACTCAGGAAGACACTCCTTCGGCTCCTCCTCCGCGGACTTTTATCAACCAGTTGCCTGATTGGAGCATGC
    TTCTTGCTGCAATCACTACTGTCTTCTTGGCAGCAGAGAAGCAGTGGATGATGCTTGATTGGAAACCAAA
    GAGGCCTGACATGCTTGTGGACCCGTTCGGATTTGGAAGGATTGTTCAGGATGGGCTTGTGTTCAGGCAG
    AATTTTTCGATTAGGTCCTATGAAATAGGCGCTGATCGCACTGCATCTATAGAGACGGTGATGAACCACT
    TGCAGGAAACGGCTCTCAATCATGTTAAGAGTGCGGGGCTTCTTATTGAAGGCTTTGGTCGTACTCCTGA
    GATGTATAAAAGGGACCTTATTTGGGTTGTCGCGAAAATGCAGGTCATGGTTAACCGCTATCCTACTTGG
    GGTGACACGGTTGAAGTGAATACTTGGGTTGCCAAGTCAGGGAAAAATGGTATGCGTCGTGATTGGCTCA
    TAAGTGATTGCAATACAGGAGAAATTCTTACTAGAGCATCAAGTGTGTGGGTCATGATGAATCAAAAGAC
    AAGAAAATTGTCAAAGATTCCAGATGAGGTTCGGCATGAGATAGAGCCTCATTTTGTGGACTCTGCTCCC
    GTCATTGAAGACGATGACTGGAAACTTCCCAAGCTGGATGAGAAAACTGCTGACTCCATCCGCAAGGGTC
    TAACTCCGAAGTGGAATGACTTGGATGTCAATCAGCACGTCAACAACGTGAAGTACATTGGGTGGATTCT
    TGAGAGTACTCCACCAGAAGTTCTGGAGACCCAGGAGTTATGTTCCCTTACCCTGGAATACAGGCGGGAA
    TGCGGAAGGGAGAGTGTGCTGGAGTCCCTCACTGCTGTGGACCCCTCTGGAAAGGGCTTTGGGCCCCAGT
    TTCAGCACCTTCTGAGGCTTGAGGATGGAGGTGAGATCGTAAAGGGGAGAACTGAGTGGCGACCCAAGAC
    TGCAGGTATCAATGGGACGATTGCATCTGGGGAGACCTCACCTGGAAACTCTTAG
    SEQ ID NO: 72
    Cuphea heterophylla (Cht) FATB3b (C67G, H72Q, L128F, N179I variant)
    coding DNA sequence codon optimized for Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCCCCGACACCTCCTCCCGCCCCGGCA
    AGCTGGGCAACGGCTCCTCCTCCCTGCGCCCCCTGAAGCCCAAGTTCGTGGCCAACGCCGGCCTGCAGGT
    GAAGGCCAACGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGTCCCTGAAGTCCGGCTCCCTGAAG
    ACCCAGGAGGACACCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCATGC
    TGCTGGCCGCCATCACCACCGTGTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACTGGAAGCCCAA
    GCGCCCCGACATGCTGGTGGACCCCTTCGGCTTCGGCCGCATCGTGCAGGACGGCCTGGTGTTCCGCCAG
    AACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACCACC
    TGCAGGAGACCGCCCTGAACCACGTGAAGTCCGCCGGCCTGCTGATCGAGGGCTTCGGCCGCACCCCCGA
    GATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACCTGG
    GGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGCTGA
    TCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAAGAC
    CCGCAAGCTGTCCAAGATCCCCGACGAGGTGCGCCACGAGATCGAGCCCCACTTCGTGGACTCCGCCCCC
    GTGATCGAGGACGACGACTGGAAGCTGCCCAAGCTGGACGAGAAGACCGCCGACTCCATCCGCAAGGGCC
    TGACCCCCAAGTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGGCTGGATCCT
    GGAGTCCACCCCCCCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGCGAG
    TGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGGCAAGGGCTTCGGCCCCCAGT
    TCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGGCCGCACCGAGTGGCGCCCCAAGAC
    CGCCGGCATCAACGGCACCATCGCCTCCGGCGAGACCTCCCCCGGCAACTCCTGA
    SEQ ID NO: 73
    Cuphea viscosissima (Cvis) FATB1 amino acid sequence
    MVAAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNGGFQVKANASAHPKANGSAVNLKSGSL
    NTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLDRKSKRPDMLVDSVGLKSIVRDGLVSR
    HSFSIRSYEIGADRTASIETLMNHLQETTINHCKSLGLHNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPT
    WGDTVEINTWFSQSGKIGMASDWLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSP
    HVIEDNDQKLRKFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR
    ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTSTAKTSNGNSVS
    SEQ ID NO: 74
    Cuphea viscosissima (Cvis) FATB1 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGG6CGCCGCCGCCACCTCCGCCTTCTTCCCCGTGCCCGCCCCCGGCACCTCCCCCAAGCCCGGCA
    AGTCCGGCAACTGGCCCTCCTCCCTGTCCCCCACCTTCAAGCCCAAGTCCATCCCCAACGGCGGCTTCCA
    GGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGAACCTGAAGTCCGGCTCCCTG
    AACACCCAGGAGGACACCTCCTCCTCCCCCCCCCCCCGCGCCTTCCTGAACCAGCTGCCCGACTGGTCCA
    TGCTGCTGACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACCGCAAGTC
    CAAGCGCCCCGACATGCTGGTGGACTCCGTGGGCCTGAAGTCCATCGTGCGCGACGGCCTGGTGTCCCGC
    CACTCCTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCCTGATGAACC
    ACCTGCAGGAGACCACCATCAACCACTGCAAGTCCCTGGGCCTGCACAACGACGGCTTCGGCCGCACCCC
    CGGCATGTGCAAGAACGACCTGATCTGGGTGCTGACCAAGATGCAGATCATGGTGAACCGCTACCCCACC
    TGGGGCGACACCGTGGAGATCAACACCTGGTTCTCCCAGTCCGGCAAGATCGGCATGGCCTCCGACTGGC
    TGATCTCCGACTGCAACACCGGCGAGATCCTGATCCGCGCCACCTCCGTGTGGGCCATGATGAACCAGAA
    GACCCGCCGCTTCTCCCGCCTGCCCTACGAGGTGCGCCAGGAGCTGACCCCCCACTTCGTGGACTCCCCC
    CACGTGATCGAGGACAACGACCAGAAGCTGCGCAAGTTCGACGTGAAGACCGGCGACTCCATCCGCAAGG
    GCCTGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGTCCAACGTGAAGTACATCGGCTGGAT
    CCTGGAGTCCATGCCCATCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCGTGGAGTACCGCCGC
    GAGTGCGGCATGGACTCCGTGCTGGAGTCCGTGACCGCCGTGGACCCCTCCGAGAACGGCGGCCGCTCCC
    AGTACAAGCACCTGCTGCGCCTGGAGGACGGCACCGACATCGTGAAGTCCCGCACCGAGTGGCGCCCCAA
    GAACGCCGGCACCAACGGCGCCATCTCCACCTCCACCGCCAAGACCTCCAACGGCAACTCCGTGTCCTGA
    SEQ ID NO: 75
    Cuphea viscosissima (Cvis) FATB2 amino acid sequence
    MVATAASSAFFPVPSADTSSRPGKLGNGPSSFSPLKPKSIPNGGLQVKASASAPPKINGSSVGLKSGGLK
    THDDAPSAPPPRTFINQLPDWSMLLAAITTAFLAAEKQWMMLDRKPKRLDMLEDPFGLGRVVQDGLVFRQ
    NFSIRSYEIGADRTASIETVMNHLQETALNHVKTAGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTW
    GDTVEVNTWVAKSGKNGMRRDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRREIEPHFVDSAP
    VIEDDDRKLPKLDEKSADSIRKGLTPRWNDLDVNQHVNNAKYIGWILESTPPEVLETQELCSLTLEYRRE
    CGRESVLESLTAVDPSGEGYGSQFQHLLRLEDGGEIVKGRTEWRPKNAGINGVVPSEESSPGDYS
    SEQ ID NO: 76
    Cuphea viscosissima (Cvis) FATB2 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCACCGCCGCCTCCTCCGCCTTCTTCCCCGTGCCCTCCGCCGACACCTCCTCCCGCCCCGGCA
    AGCTGGGCAACGGCCCCTCCTCCTTCTCCCCCCTGAAGCCCAAGTCCATCCCCAACGGCGGCCTGCAGGT
    GAAGGCCTCCGCCTCCGCCCCCCCCAAGATCAACGGCTCCTCCGTGGGCCTGAAGTCCGGCGGCCTGAAG
    ACCCACGACGACGCCCCCTCCGCCCCCCCCCCCCGCACCTTCATCAACCAGCTGCCCGACTGGTCCATGC
    TGCTGGCCGCCATCACCACCGCCTTCCTGGCCGCCGAGAAGCAGTGGATGATGCTGGACCGCAAGCCCAA
    GCGCCTGGACATGCTGGAGGACCCCTTCGGCCTGGGCCGCGTGGTGCAGGACGGCCTGGTGTTCCGCCAG
    AACTTCTCCATCCGCTCCTACGAGATCGGCGCCGACCGCACCGCCTCCATCGAGACCGTGATGAACCACC
    TGCAGGAGACCGCCCTGAACCACGTAAGACCGCCGGCCTGTCCAACGACGGCTTCGGCCGCACCCCCGA
    GATGTACAAGCGCGACCTGATCTGGGTGGTGGCCAAGATGCAGGTGATGGTGAACCGCTACCCCACCTGG
    GGCGACACCGTGGAGGTGAACACCTGGGTGGCCAAGTCCGGCAAGAACGGCATGCGCCGCGACTGGCTGA
    TCTCCGACTGCAACACCGGCGAGATCCTGACCCGCGCCTCCTCCGTGTGGGTGATGATGAACCAGAAGAC
    CCGCAAGCTGTCCAAGATCCCCGACGAGGTGCGCCGCGAGATCGAGCCCCACTTCGTGGACTCCGCCCCC
    GTGATCGAGGACGACGACCGCAAGCTGCCCAAGCTGGACGAGAAGTCCGCCGACTCCATCCGCAAGGGCC
    TGACCCCCCGCTGGAACGACCTGGACGTGAACCAGCACGTGAACAACGCCAAGTACATCGGCTGGATCCT
    GGAGTCCACCCCCCCCGAGGTGCTGGAGACCCAGGAGCTGTGCTCCCTGACCCTGGAGTACCGCCGCGAG
    TGCGGCCGCGAGTCCGTGCTGGAGTCCCTGACCGCCGTGGACCCCTCCGGCGAGGGCTACGGCTCCCAGT
    TCCAGCACCTGCTGCGCCTGGAGGACGGCGGCGAGATCGTGAAGGGCCGCACCGAGTGGCGCCCCAAGAA
    CGCCGGCATCAACGGCGTGGTGCCCTCCGAGGAGTCCTCCCCCGGCGACTACTCCTGA
    SEQ ID NO: 77
    Cuphea viscosissima (Cvis) FATB3 amino acid sequence
    MVAAAASSAFFSFPTPGTSPKPGKFGNWPSSLSIPFNPKSNHNGGIQVKANASAHPKANGSAVSLKAGSL
    ETQEDTSSPSPPPRTFISQLPDWSMLVSAITTVFVAAEKQWTMLDRKSKRPDVLVEPFVQDGVSFRQSFS
    IRSYEIGVDRTASIETLMNIFQETSLNHCKSLGLLNDGFGRTPEMCKRDLIWVVTKMQIEVNRYPTWGDT
    IEVTTWVSESGKNGMSRDWLISDCHSGEILIRATSVWAMMNQKTRRLSKIPDEVRQEIVPYFVDSAPVIE
    DDRKLHKLDVKTGDSIRNGLTPRWNDFDVNQHVNNVKYIAWLLKSVPTEVFETQELCGLTLEYRRECRRD
    SVLESVTAMDPSKEGDRSLYQHLLRLENGADIALGRTEWRPKNAGATGAVSTGKTSNGNSVS
    SEQ ID NO: 78
    Cuphea viscosissima (Cvis) FATB3 coding DNA sequence codon optimized
    for Prototheca moriformis
    ATGGTGGCCGCCGCCGCCTCCTCCGCCTTCTTCTCCTTCCCCACCCCCGGCACCTCCCCCAAGCCCGGCA
    AGTTCGGCAACTGGCCCTCCTCCCTGTCCATCCCCTTCAACCCCAAGTCCAACCACAACGGCGGCATCCA
    GGTGAAGGCCAACGCCTCCGCCCACCCCAAGGCCAACGGCTCCGCCGTGTCCCTGAAGGCCGGCTCCCTG
    GAGACCCAGGAGGACACCTCCTCCCCCTCCCCCCCCCCCCGCACCTTCATCTCCCAGCTGCCCGACTGGT
    CCATGCTGGTGTCCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGTGGACCATGCTGGACCGCAA
    GTCCAAGCGCCCCGACGTGCTGGTGGAGCCCTTCGTGCAGGACGGCGTGTCCTTCCGCCAGTCCTTCTCC
    ATCCGCTCCTACGAGATCGGCGTGGACCGCACCGCCTCCATCGAGACCCTGATGAACATCTTCCAGGAGA
    CCTCCCTGAACCACTGCAAGTCCCTGGGCCTGCTGAACGACGGCTTCGGCCGCACCCCCGAGATGTGCAA
    GCGCGACCTGATCTGGGTGGTGACCAAGATGCAGATCGAGGTGAACCGCTACCCCACCTGGGGCGACACC
    ATCGAGGTGACCACCTGGGTGTCCGAGTCCGGCAAGAACGGCATGTCCCGCGACTGGCTGATCTCCGACT
    GCCACTCCGGCGAGATCCTGATCCGCGCCACCTCCGTGTGGGCCATGATGAACCAGAAGACCCGCCGCCT
    GTCCAAGATCCCCGACGAGGTGCGCCAGGAGATCGTGCCCTACTTCGTGGACTCCGCCCCCGTGATCGAG
    GACGACCGCAAGCTGCACAAGCTGGACGTGAAGACCGGCGACTCCATCCGCAACGGCCTGACCCCCCGCT
    GGAACGACTTCGACGTGAACCAGCACGTGAACAACGTGAAGTACATCGCCTGGCTGCTGAAGTCCGTGCC
    CACCGAGGTGTTCGAGACCCAGGAGCTGTGCGGCCTGACCCTGGAGTACCGCCGCGAGTGCCGCCGCGAC
    TCCGTGCTGGAGTCCGTGACCGCCATGGACCCCTCCAAGGAGGGCGACCGCTCCCTGTACCAGCACCTGC
    TGCGCCTGGAGAACGGCGCCGACATCGCCCTGGGCCGCACCGAGTGGCGCCCCAAGAACGCCGGCGCCAC
    CGGCGCCGTGTCCACCGGCAAGACCTCCAACGGCAACTCCGTGTCCTGA

Claims (11)

1. An isolated nucleic acid having at least 80% sequence identity to any of SEQ ID NOS: 21, 27, 30, 69, 72, or 78 or any equivalent sequences by virtue of the degeneracy of the genetic code.
2. An isolated nucleic acid sequence encoding a protein having at least 80% sequence identity to any of SEQ ID NO: 22, 25, 28, 67, 70, or 77, or a fragment thereof having acyl-ACP thioesterase activity.
3. The isolated nucleic acid of claim 2, wherein, the protein has acyl-ACP thioesterase activity operable to alter the fatty acid profile of an oil produced by a recombinant cell comprising that sequence.
4. A method of producing a recombinant cell that produces an altered fatty acid profile, the method comprising transforming the cell with a nucleic acid according to claim 1.
5. A host cell produced by the method of claim 4.
6. The host cell of claim 5, wherein the host cell is selected from a plant cell, a microbial cell, and a microalgal cell.
7. A method for producing an oil or oil-derived product, the method comprising cultivating a host cell of claim 5, and extracting oil produced thereby, optionally wherein the cultivation is heterotrophic growth on sugar.
8. The method of claim 7, further comprising producing a fatty acid, fuel, chemical, or other oil-derived product from the oil.
9. An oil produced by the method of claim 7, optionally having a fatty acid profile comprising at least 20% C14 or C16 fatty acids.
10. An oil-derived product produced by the method of claim 8.
11. The oil of claim 10, wherein the oil is produced by a microalgae and optionally, lacks C24-alpha sterols.
US15/062,045 2013-03-15 2016-03-05 Thioesterases and cells for production of tailored oils Abandoned US20160251685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/062,045 US20160251685A1 (en) 2013-03-15 2016-03-05 Thioesterases and cells for production of tailored oils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/837,996 US9290749B2 (en) 2013-03-15 2013-03-15 Thioesterases and cells for production of tailored oils
US15/062,045 US20160251685A1 (en) 2013-03-15 2016-03-05 Thioesterases and cells for production of tailored oils

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/837,996 Continuation US9290749B2 (en) 2013-03-15 2013-03-15 Thioesterases and cells for production of tailored oils

Publications (1)

Publication Number Publication Date
US20160251685A1 true US20160251685A1 (en) 2016-09-01

Family

ID=51530161

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/837,996 Active 2034-02-27 US9290749B2 (en) 2013-03-15 2013-03-15 Thioesterases and cells for production of tailored oils
US15/062,045 Abandoned US20160251685A1 (en) 2013-03-15 2016-03-05 Thioesterases and cells for production of tailored oils

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/837,996 Active 2034-02-27 US9290749B2 (en) 2013-03-15 2013-03-15 Thioesterases and cells for production of tailored oils

Country Status (1)

Country Link
US (2) US9290749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9765368B2 (en) 2014-07-24 2017-09-19 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US10125382B2 (en) 2014-09-18 2018-11-13 Corbion Biotech, Inc. Acyl-ACP thioesterases and mutants thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
EP3619301A4 (en) 2017-05-05 2021-03-03 Purissima, Inc. Neurotransmitters and methods of making the same

Family Cites Families (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049724A (en) 1973-11-20 1977-09-20 Atlantic Richfield Company Osmium catalyzed organic hydroperoxide hydroxylation of olefinic compounds
US4288378A (en) 1979-05-23 1981-09-08 The Procter & Gamble Company Method of preparing an enriched peanut oil peanut butter stabilizer
US4335156A (en) 1980-09-19 1982-06-15 Nabisco Brands, Inc. Edible fat product
US4584139A (en) 1983-01-31 1986-04-22 Olin Corporation Hydrogenation of long chain olefinic oils with Raney catalyst
DK402583D0 (en) 1983-09-05 1983-09-05 Novo Industri As PROCEDURE FOR THE MANUFACTURING OF AN IMMOBILIZED LIPASE PREPARATION AND APPLICATION
US4940845A (en) 1984-05-30 1990-07-10 Kao Corporation Esterification process of fats and oils and enzymatic preparation to use therein
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4603188A (en) 1985-07-10 1986-07-29 Itoh Seiyu Kabushiki Kaisha Curable urethane composition
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US5091116A (en) 1986-11-26 1992-02-25 Kraft General Foods, Inc. Methods for treatment of edible oils
DK399387D0 (en) 1987-07-31 1987-07-31 Novo Industri As IMMOBILIZED LIPASE AND ITS USE
WO1989002916A1 (en) 1987-09-28 1989-04-06 Novo-Nordisk A/S Method for immobilizing lipase
US5080848A (en) 1988-12-22 1992-01-14 The Proctor & Gamble Company Process for making concentrated surfactant granules
US6680426B2 (en) 1991-01-07 2004-01-20 Auburn University Genetic engineering of plant chloroplasts
US5693507A (en) 1988-09-26 1997-12-02 Auburn University Genetic engineering of plant chloroplasts
DE3836447C2 (en) 1988-10-26 1994-02-03 Stockhausen Chem Fab Gmbh Process for obtaining highly sulfated fatty acids, hydroxy fatty acids or oxyalkylated hydroxy fatty acids
DK638688D0 (en) 1988-11-16 1988-11-16 Novo Industri As PARTICULAR IMMOBILIZED LIPASE PREPARATION, PROCEDURE FOR PREPARING IT AND USING THEREOF
US5434278A (en) 1989-09-20 1995-07-18 Nabisco, Inc. Synthesis of acetoglyceride fats
US5258197A (en) 1989-09-20 1993-11-02 Nabisco, Inc. Reduced calorie triglyceride mixtures
US5391383A (en) 1989-09-20 1995-02-21 Nabisco, Inc. Edible spray oil
WO1991009924A1 (en) 1989-12-29 1991-07-11 The Procter & Gamble Company Ultra mild surfactant with good lather
US4992189A (en) 1990-02-07 1991-02-12 Mobil Oil Corporation Lubricants and lube additives from hydroxylation and esterification of lower alkene oligomers
US7053267B2 (en) * 1990-03-16 2006-05-30 Calgene Llc Plant seed oils
US5298421A (en) 1990-04-26 1994-03-29 Calgene, Inc. Plant medium-chain-preferring acyl-ACP thioesterases and related methods
US5512482A (en) 1990-04-26 1996-04-30 Calgene, Inc. Plant thioesterases
US5344771A (en) 1990-04-26 1994-09-06 Calgene, Inc. Plant thiosterases
US6483008B1 (en) 1990-08-15 2002-11-19 Calgene Llc Methods for producing plants with elevated oleic acid content
US6022577A (en) 1990-12-07 2000-02-08 Nabisco Technology Company High stearic acid soybean oil blends
US5945585A (en) 1990-12-20 1999-08-31 E. I. Du Pont De Nemours And Company Specific for palmitoyl, stearoyl and oleoyl-alp thioesters nucleic acid fragments encoding acyl-acp thiosesterase enzymes and the use of these fragments in altering plant oil composition
US5530186A (en) 1990-12-20 1996-06-25 E. I. Du Pont De Nemours And Company Nucleotide sequences of soybean acyl-ACP thioesterase genes
MY107920A (en) 1990-12-27 1996-06-29 Kao Corp Process for producing alcohol
JPH0699337B2 (en) 1990-12-27 1994-12-07 花王株式会社 Alcohol production method
US5380894A (en) 1991-03-01 1995-01-10 The United States Of America As Represented By The Secretary Of Agriculture Production of hydroxy fatty acids and estolide intermediates
US5346724A (en) 1991-04-12 1994-09-13 Nippon Oil Company, Ltd. Oil and fat composition for lubricating food processing machines and use thereof
US5639790A (en) 1991-05-21 1997-06-17 Calgene, Inc. Plant medium-chain thioesterases
US5455167A (en) 1991-05-21 1995-10-03 Calgene Inc. Medium-chain thioesterases in plants
US5268192A (en) 1991-07-16 1993-12-07 Nabisco, Inc. Low calorie nut products and process of making
TW211523B (en) 1992-06-29 1993-08-21 Amerchol Corp Hydroxylated milk glycerides
US5298637A (en) 1992-10-22 1994-03-29 Arco Chemical Technology, L.P. Process for producing a reduced calorie lipid composition
US5850022A (en) 1992-10-30 1998-12-15 Calgene, Inc. Production of myristate in plant cells
US5654495A (en) 1992-10-30 1997-08-05 Calgene, Inc. Production of myristate in plant cells
WO1995013390A2 (en) 1993-11-10 1995-05-18 Calgene, Inc. Plant acyl acp thioesterase sequences
US5807893A (en) 1993-11-18 1998-09-15 Voelker; Toni Alois Plant thioesterases and use for modification of fatty acid composition in plant seed oils
US5458795A (en) 1994-01-28 1995-10-17 The Lubrizol Corporation Oils thickened with estolides of hydroxy-containing triglycerides
US5427704A (en) 1994-01-28 1995-06-27 The Lubrizol Corporation Triglyceride oils thickened with estolides of hydroxy-containing triglycerides
US5451332A (en) 1994-01-28 1995-09-19 The Lubrizol Corporation Estolides of hydroxy-containing triglycerides that contain a performance additive
JP3670284B2 (en) 1994-02-21 2005-07-13 ノボザイムス アクティーゼルスカブ Method for producing immobilized enzyme preparation and use of immobilized enzyme preparation
US5506201A (en) 1994-04-29 1996-04-09 International Flavors & Fragrances Inc. Formulation of a fat surfactant vehicle containing a fragrance
JP3375726B2 (en) 1994-05-18 2003-02-10 雪印乳業株式会社 Edible fats and oils and fat mixtures
US6113971A (en) 1994-07-25 2000-09-05 Elmaleh; David R. Olive oil butter
PL179737B1 (en) 1994-08-16 2000-10-31 Drfrische Gmbh Method of obtaining water-insoluble natural products from mixtures by centrifuging them
AU3677995A (en) 1994-10-20 1996-05-15 Procter & Gamble Company, The Personal treatment compositions and/or cosmetic compositions containing enduring perfume
US5475160A (en) 1994-11-07 1995-12-12 Shell Oil Company Process for the direct hydrogenation of triglycerides
DE19503062A1 (en) 1995-02-01 1996-08-08 Henkel Kgaa Use of alkoxylation products of epoxidized fatty substances as defoamers
US6150512A (en) 1995-05-15 2000-11-21 Yuan; Ling Engineering plant thioesterases and disclosure of plant thioesterases having novel substrate specificity
US5942479A (en) 1995-05-27 1999-08-24 The Proctor & Gamble Company Aqueous personal cleansing composition with a dispersed oil phase comprising two specifically defined oil components
WO1996039476A1 (en) 1995-06-06 1996-12-12 Agro Management Group, Inc. Vegetable based biodegradable liquid lubricants
US6004923A (en) 1995-10-27 1999-12-21 Basf Aktiengesellschaft Fatty acid derivatives and their use as surfactants in detergents and cleaners
US6086903A (en) 1996-02-26 2000-07-11 The Proctor & Gamble Company Personal treatment compositions and/or cosmetic compositions containing enduring perfume
US6027900A (en) 1996-04-12 2000-02-22 Carnegie Institution Of Washington Methods and tools for transformation of eukaryotic algae
US6342208B1 (en) 1996-08-02 2002-01-29 Plum Kerni Produktion A/S Oil-in-water emulsion containing C10-C24 fatty acid derivatives for treating skin of mammals
WO1998006731A1 (en) 1996-08-08 1998-02-19 The Procter & Gamble Company Polyol polyester synthesis
US5885440A (en) 1996-10-01 1999-03-23 Uop Llc Hydrocracking process with integrated effluent hydrotreating zone
US6465642B1 (en) 1997-02-07 2002-10-15 The Procter & Gamble Company Lower alkyl ester recycling in polyol fatty acid polyester synthesis
DE19710152C2 (en) 1997-03-12 1999-04-22 Henkel Kgaa Process for the preparation of anionic surfactant granules
US6395965B1 (en) 1997-03-21 2002-05-28 Restoragen, Inc. Plant containing a gene construct comprising a chlorella virus promoter and a lac operator
WO1998050569A2 (en) 1997-05-05 1998-11-12 Dow Agrosciences Llc Nucleotide sequences of maize oleoyl-acp thioesterase and palmitoyl-acp thioesterase genes and their use in the modification of fatty acid content of oil
US6407044B2 (en) 1998-01-28 2002-06-18 The Proctor & Gamble Company Aerosol personal cleansing emulsion compositions which contain low vapor pressure propellants
US6468955B1 (en) 1998-05-01 2002-10-22 The Proctor & Gamble Company Laundry detergent and/or fabric care compositions comprising a modified enzyme
US6051539A (en) 1998-07-02 2000-04-18 Cargill, Inc. Process for modifying unsaturated triacylglycerol oils resulting products and uses thereof
US6020509A (en) 1998-12-22 2000-02-01 Condea Vista Company Method for producing surfactant compositions
US6630066B2 (en) 1999-01-08 2003-10-07 Chevron U.S.A. Inc. Hydrocracking and hydrotreating separate refinery streams
US6278006B1 (en) 1999-01-19 2001-08-21 Cargill, Incorporated Transesterified oils
WO2000061740A1 (en) 1999-04-10 2000-10-19 Maxygen, Inc. Modified lipid production
CN1360637A (en) 1999-04-12 2002-07-24 孟山都技术有限责任公司 Transgenic plants contg. altered levels of sterol compounds and tocopherols
US6320101B1 (en) 1999-06-14 2001-11-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Enhancing inorganic carbon fixation by photosynthetic organisms
AU5764800A (en) 1999-07-01 2001-01-22 Johnson & Johnson Consumer Companies, Inc. Cleansing compositions
US6217746B1 (en) 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process
DE10000978A1 (en) 2000-01-12 2001-07-26 Gvs Ges Fuer Erwerb Und Verwer Process for increasing the level of fatty acids in plants and microorganisms
US6391815B1 (en) 2000-01-18 2002-05-21 Süd-Chemie Inc. Combination sulphur adsorbent and hydrogenation catalyst for edible oils
KR101180462B1 (en) 2000-01-19 2012-09-06 마텍 바이오싸이언스스 코포레이션 Solventless extraction process
US6268517B1 (en) 2000-05-09 2001-07-31 Condea Vista Company Method for producing surfactant compositions
ATE367430T1 (en) 2000-05-11 2007-08-15 Procter & Gamble HIGHLY CONCENTRATED LAUNDRY SOFTENER COMPOSITIONS AND AGENTS CONTAINING SAME
US20020178467A1 (en) 2000-05-12 2002-11-28 Katayoon Dehesh Plastid transit peptide sequences for efficient plastid targeting
MY122480A (en) 2000-05-29 2006-04-29 Premium Vegetable Oils Sdn Bhd Trans free hard structural fat for margarine blend and spreads
WO2002008403A2 (en) 2000-07-25 2002-01-31 Calgene Llc Nucleic acid sequences encoding beta-ketoacyl-acp synthase and uses thereof
FR2814064B1 (en) 2000-09-20 2005-06-17 Oreal WASHING COMPOSITION COMPRISING ALUMINUM OXIDE PARTICLES, AT LEAST ONE CONDITIONING AGENT AND AT LEAST ONE DETERGENT SURFACTANT
US6596155B1 (en) 2000-09-26 2003-07-22 Uop Llc Hydrocracking process
US6538169B1 (en) 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
AU2065502A (en) 2000-11-21 2002-06-03 Unilever Plc Edible spread containing a natural fat phase
US7081567B2 (en) 2000-12-03 2006-07-25 Lexun Xue Transgenic dunaliella salina as a bioreactor
ES2385597T3 (en) 2000-12-21 2012-07-27 Aarhuskarlshamn Denmark A/S Procedure for the preparation of fractions of vegetable oil rich in unsaponifiable, non-toxic, high melting point
JP4823430B2 (en) 2001-03-28 2011-11-24 花王株式会社 Surfactant composition
FR2824266B1 (en) 2001-05-04 2005-11-18 Oreal COSMETIC COMPOSITION FOR CARE OR MAKE-UP OF KERATIN MATERIALS COMPRISING AN ESTER WITH AROMATIC GROUP AND A PHOTOPROTECTIVE AGENT AND USES
US6503285B1 (en) 2001-05-11 2003-01-07 Cargill, Inc. Triacylglycerol based candle wax
US6596768B2 (en) 2001-05-22 2003-07-22 Church & Dwight Co., Inc. Unsaturated lipid-enriched feedstock for ruminants
US6398707B1 (en) 2001-05-31 2002-06-04 Wen-Teng Wu Method of preparing lower alkyl fatty acids esters and in particular biodiesel
US6706659B2 (en) 2001-08-29 2004-03-16 Uop Llc High-activity isomerization catalyst and process
CA2472099A1 (en) 2002-01-03 2003-07-24 Archer-Daniels-Midland Company Polyunsaturated fatty acids as part of reactive structures for latex paints: thickeners, surfactants and dispersants
US6590113B1 (en) 2002-03-26 2003-07-08 Ronald T. Sleeter Process for treating oils containing antioxidant compounds
CA2486059C (en) 2002-05-14 2011-07-12 Chemical Specialties, Inc. Water repellent compositions for wood preservatives
US6818589B1 (en) 2002-06-18 2004-11-16 Uop Llc Isomerization catalyst and processes
MXPA05000195A (en) 2002-06-21 2005-04-08 Monsanto Technology Llc Thioesterase-related nucleic acid sequences and methods.
US7232935B2 (en) 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US7041866B1 (en) 2002-10-08 2006-05-09 Uop Llc Solid-acid isomerization catalyst and process
FI116627B (en) 2002-11-01 2006-01-13 Danisco A method for regulating the fatty acid chain composition of triglycerides and their use
US7135290B2 (en) 2003-04-12 2006-11-14 Solazyme, Inc. Methods and compositions for evolving hydrogenase genes
US7268276B2 (en) 2002-11-18 2007-09-11 Monsanto Technology Llc Production of increased oil and protein in plants by the disruption of the phenylpropanoid pathway
EP1581577B1 (en) 2003-01-08 2007-10-17 Texas Tech University Castor oil/epoxidized soybean oil based elastomeric compositions
CN1926079A (en) 2003-11-13 2007-03-07 耐思特石油公司 Process for the hydrogenation of olefins
EP1699930A2 (en) 2003-12-23 2006-09-13 BASF Plant Science GmbH Sugar and lipid metabolism regulators in plants vi
EP1640437A1 (en) 2004-09-28 2006-03-29 Neste Oil Oyj Production of fuel components
GB0421937D0 (en) 2004-10-02 2004-11-03 Univ York Acyl CoA synthetases
US7550286B2 (en) 2004-11-04 2009-06-23 E. I. Du Pont De Nemours And Company Docosahexaenoic acid producing strains of Yarrowia lipolytica
US7238277B2 (en) 2004-12-16 2007-07-03 Chevron U.S.A. Inc. High conversion hydroprocessing
ES2356086T5 (en) 2005-01-14 2021-03-04 Neste Oyj Procedure for the production of hydrocarbons
US7288685B2 (en) 2005-05-19 2007-10-30 Uop Llc Production of olefins from biorenewable feedstocks
FI1741767T4 (en) 2005-07-04 2023-04-25 Process for the manufacture of diesel range hydrocarbons
HUE025942T2 (en) 2005-07-04 2016-05-30 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
EP1795576B1 (en) 2005-12-12 2014-05-21 Neste Oil Oyj Process for the manufacture of hydrocarbons
US9109170B2 (en) 2006-02-02 2015-08-18 Reg Biofuels, Llc Biodiesel cold filtration process
TW200813222A (en) 2006-03-15 2008-03-16 Martek Biosciences Corp Polyunsaturated fatty acid production in heterologous organisms using PUFA polyketide synthase systems
EP2679687B1 (en) 2006-06-28 2020-08-19 Cibus Europe B.V. Fatty acid blends and uses therefor
SG10201509864QA (en) 2007-06-01 2015-12-30 Solazyme Inc Production of oil in microorganisms
SI2167667T1 (en) 2007-07-09 2016-03-31 Bayer Cropscience Nv Brassica plant comprising mutant fatty acyl-acp thioesterase alleles
WO2009036385A2 (en) 2007-09-12 2009-03-19 Kuehnle Agrosystems, Inc. Expression of nucleic acid sequences for production of biofuels and other products in algae and cyanobacteria
US8048654B2 (en) 2010-06-09 2011-11-01 Joule Unlimited Technologies, Inc. Methods and compositions for the recombinant biosynthesis of fatty acids and esters
AU2009231810A1 (en) 2008-03-31 2009-10-08 Kuehnle Agrosystems, Inc. Nuclear based expression of genes for production of biofuels and process co-products in algae
WO2010019813A2 (en) 2008-08-13 2010-02-18 Sapphire Energy, Inc. Production of fatty actds by genetically modified photosynthetic organisms
KR101840354B1 (en) 2008-10-07 2018-03-20 알이지 라이프 사이언시스, 엘엘씨 Method and compositions for producing fatty aldehydes
US7935515B2 (en) 2008-11-28 2011-05-03 Solazyme, Inc. Recombinant microalgae cells producing novel oils
ES2730713T3 (en) 2008-12-23 2019-11-12 Reg Life Sciences Llc Methods and compositions related to thioesterase enzymes
ES2745989T3 (en) 2009-04-14 2020-03-04 Corbion Biotech Inc Microbial lipid extraction and separation methods
WO2011008565A1 (en) 2009-06-29 2011-01-20 Synthetic Genomics, Inc. Acyl-acp thioesterase genes and uses therefor
WO2011038134A1 (en) 2009-09-25 2011-03-31 Ls9, Inc. Production of fatty acid derivatives
SG10201408475VA (en) 2009-12-18 2015-01-29 Cargill Inc Brassica plants yielding oils with a low total saturated fatty acid content
US8980613B2 (en) 2010-04-06 2015-03-17 Matrix Genetics, Llc Modified photosynthetic microorganisms for producing lipids
JP5868962B2 (en) 2010-05-28 2016-02-24 ソラザイム, インコーポレイテッドSolazyme Inc Oils for specific uses produced from recombinant heterotrophic microorganisms
CA3024641A1 (en) 2010-11-03 2012-05-10 Corbion Biotech, Inc. Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods
EP2655615A4 (en) 2010-12-23 2014-04-23 Exxonmobil Res & Eng Co Prokaryotic acyl-acp thioesterases for producing fatty acids in genetically engineered microorganisms
US9249436B2 (en) 2011-02-02 2016-02-02 Solazyme, Inc. Tailored oils produced from recombinant oleaginous microorganisms
KR20140033378A (en) 2011-05-06 2014-03-18 솔라짐, 인코포레이티드 Genetically engineered microorganisms that metabolize xylose
ES2744868T3 (en) 2012-04-18 2020-02-26 Corbion Biotech Inc Custom-made oils
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
BR112015023192A8 (en) 2013-03-15 2018-01-02 Solazyme Inc THIOESTERASES AND CELLS FOR THE PRODUCTION OF PERSONALIZED OILS
SG10201802834YA (en) 2013-10-04 2018-05-30 Terravia Holdings Inc Tailored oils

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
US10557114B2 (en) 2013-03-15 2020-02-11 Corbion Biotech, Inc. Thioesterases and cells for production of tailored oils
US9765368B2 (en) 2014-07-24 2017-09-19 Terravia Holdings, Inc. Variant thioesterases and methods of use
US10246728B2 (en) 2014-07-24 2019-04-02 Corbion Biotech, Inc. Variant thioesterases and methods of use
US10570428B2 (en) 2014-07-24 2020-02-25 Corbion Biotech, Inc. Variant thioesterases and methods of use
US10760106B2 (en) 2014-07-24 2020-09-01 Corbion Biotech, Inc. Variant thioesterases and methods of use
US10125382B2 (en) 2014-09-18 2018-11-13 Corbion Biotech, Inc. Acyl-ACP thioesterases and mutants thereof

Also Published As

Publication number Publication date
US9290749B2 (en) 2016-03-22
US20140275586A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US10316299B2 (en) Ketoacyl ACP synthase genes and uses thereof
US10557114B2 (en) Thioesterases and cells for production of tailored oils
US10125382B2 (en) Acyl-ACP thioesterases and mutants thereof
US20200392470A1 (en) Novel acyltransferases, variant thioesterases, and uses thereof
US20190002934A1 (en) Tailored oils
AU2014236763B2 (en) Thioesterases and cells for production of tailored oils
Barka et al. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum
US20160251685A1 (en) Thioesterases and cells for production of tailored oils
Chi et al. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.)
KR20150001830A (en) Tailored oils
US8940514B2 (en) Thioesterase and a method of producing fatty acids or lipids using the thioesterase
US10865421B2 (en) Acyltransferases and methods of using
CA3060515A1 (en) Novel acyltransferases, variant thioesterases, and uses thereof
JP2016034258A (en) Production method for lipid using diacylglycerol acyl transferase
US20160046968A1 (en) Novel strain secreting fatty acids by phospholipase and method for producing fatty acids using it

Legal Events

Date Code Title Description
AS Assignment

Owner name: TERRAVIA HOLDINGS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:SOLAZYME, INC.;REEL/FRAME:038794/0867

Effective date: 20160509

AS Assignment

Owner name: CORBION BIOTECH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TERRAVIA HOLDINGS, INC.;REEL/FRAME:044424/0211

Effective date: 20170928

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION