US20160239085A1 - Force indication of a boundary - Google Patents

Force indication of a boundary Download PDF

Info

Publication number
US20160239085A1
US20160239085A1 US14/625,379 US201514625379A US2016239085A1 US 20160239085 A1 US20160239085 A1 US 20160239085A1 US 201514625379 A US201514625379 A US 201514625379A US 2016239085 A1 US2016239085 A1 US 2016239085A1
Authority
US
United States
Prior art keywords
boundary
attention area
detecting
feedback device
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/625,379
Inventor
Ming Qian
Scott Edwards Kelso
John Weldon Nicholson
Steven Richard Perrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Singapore Pte Ltd
Original Assignee
Lenovo Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo Singapore Pte Ltd filed Critical Lenovo Singapore Pte Ltd
Priority to US14/625,379 priority Critical patent/US20160239085A1/en
Assigned to LENOVO (SINGAPORE) PTE. LTD. reassignment LENOVO (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELSO, SCOTT EDWARDS, NICHOLSON, JOHN WELDON, PERRIN, STEVEN RICHARD, QIAN, MING
Publication of US20160239085A1 publication Critical patent/US20160239085A1/en
Priority to US15/480,144 priority patent/US10289200B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04812Interaction techniques based on cursor appearance or behaviour, e.g. being affected by the presence of displayed objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI

Definitions

  • the subject matter disclosed herein relates to force indication and more particularly relates to force indication of a boundary.
  • Electronic devices provide a virtual space for users to interact with data. While interacting with an electronic device, a user's attention area may cross a boundary for the virtual space.
  • An apparatus for force identification of a boundary includes a display, a feedback device, a processor, and a memory.
  • the memory stores code executable by the processor.
  • the code detects an attention area on the display intersecting a boundary of the display.
  • the code provides a force indication through the feedback device in response to detecting the attention area intersecting the boundary.
  • a method and computer program product also perform the functions of the apparatus.
  • FIG. 1A is a schematic block diagram illustrating one embodiment of a force indication system
  • FIG. 1B is a schematic block diagram illustrating one embodiment of a force indication system with embedded feedback device
  • FIG. 1C is a schematic block diagram illustrating one embodiment of a force indication system with a feedback device embedded in a wearable item
  • FIG. 1D is a schematic block diagram illustrating one embodiment of a force indication system with the feedback device and pointing device embedded in a wearable item;
  • FIG. 1E is a perspective drawing illustrating one embodiment of a mouse pointing device
  • FIG. 1F is a perspective drawing illustrating one embodiment of an electronic pen pointing device
  • FIG. 1G is a perspective drawing illustrating one embodiment of a bracelet wearable item
  • FIG. 1H is a side view drawing illustrating one embodiment of a shoe wearable item
  • FIG. 2A is a schematic block diagram illustrating one embodiment of display data
  • FIG. 2B is a schematic block diagram illustrating one embodiment of boundary data
  • FIG. 3A is a drawing illustrating one embodiment of boundaries
  • FIG. 3B is a drawing illustrating one alternate embodiment of boundaries
  • FIG. 3C is a wave form illustrating one embodiment of an asymmetric signal
  • FIG. 3D is a drawing illustrating one embodiment of a force indication
  • FIG. 4 is a schematic block diagram illustrating one embodiment of a computer
  • FIG. 5 is a schematic flow chart diagram illustrating one embodiment of a force indication method.
  • embodiments may be embodied as a system, method or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, comprise one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the “C” programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions of the code for implementing the specified logical function(s).
  • FIG. 1A is a schematic block diagram illustrating one embodiment of a force indication system 100 .
  • the system 100 includes a display 105 , an electronic device 120 , a feedback device 115 , and a pointing device 110 .
  • the system 100 provides a force indication in response to detecting an attention area intersecting a boundary as will be described hereafter.
  • the display 105 may be a touch screen display, a monitor, a projected image, or the like.
  • the electronic device 120 may be a computer that is embedded in the display 105 .
  • the electronic device 120 may be a computer that communicates with the display 105 .
  • the electronic device 120 is a computer workstation, a laptop computer, a tablet computer, a mobile telephone, a server, or the like.
  • the feedback device 115 may provide a force indication as will be described hereafter.
  • the feedback device 115 may be a tactile actuator.
  • the feedback device 115 may be selected from the group consisting of a piezoelectric actuator, a thermal actuator, and a mechanical actuator.
  • the pointing device 110 may be a mouse, an electronic pen, an eye tracking device, a motion detector, a video camera, a thermal sensor, or combinations thereof.
  • the pointing device 110 may identify an attention area relative to the display 105 and communicate an attention area position 130 to the electronic device 120 .
  • the electronic device 120 may generate a display signal 135 in response to the attention area position 130 and other inputs for the display 105 .
  • the display 105 may show the attention area.
  • the attention area may be a cursor or other indicator on the display 105 .
  • the display 105 may reflect the attention area.
  • a visual field of view may be modified to reflect the attention area.
  • the attention area may be a cursor on display 105 .
  • the cursor may be generated by the pointing device 110 .
  • the attention area may be a visual area of interest on the display 105 .
  • the attention area may be a portion of the display 105 in a user's line of sight.
  • the pointing device 110 may track the user's line of sight to generate the attention area.
  • the attention area is a physical position of the pointing device 110 .
  • the attention area may be a physical position of an electronic pen, a wearable item, or the like.
  • the attention area may be a physical position of the user.
  • the user may employ gestures and/or motion to interact with the electronic device 120 .
  • the attention area may be a position of the user's hand as detected by a video camera pointing device 110 .
  • the attention area is a virtual position of the user.
  • the attention area may be a virtual position in the simulation.
  • the display 105 may have one or more boundaries.
  • the boundary may be an edge of the display. Alternatively, the boundary may be a limit of a virtual simulation.
  • a user While interacting with the pointing device 110 , a user may generate an attention area that intersects a boundary of the display 105 . Intersecting the boundary may include one or more of approaching within a boundary buffer distance of the boundary, crossing the boundary, and/or being located on the boundary.
  • Intersecting the boundary may diminish the user's ability to interact with the attention area and/or the display 105 .
  • the user may be unable to enter data when an attention area such as the cursor intersects a boundary of the display 105 .
  • the user may be unable to interact with a simulation when an attention area intersects with the boundary of the display 105 .
  • the embodiments described herein detect the attention area on the display 105 intersecting the boundary of the display 105 .
  • the embodiments provide a force indication through the feedback device 115 in response to detecting the attention area intersecting the boundary. As a result, the user is warned of the attention area intersecting the boundary.
  • the electronic device 120 communicates a boundary warning signal 125 to the feedback device 115 .
  • the feedback device 115 may provide the force indication in response to the boundary warning signal 125 .
  • the boundary warning signal 125 may be a command to provide the force indication.
  • the boundary warning signal 125 may be an asymmetric signal that is applied to the feedback device 115 as will be described hereafter.
  • FIG. 1B is a schematic block diagram illustrating one embodiment of a force indication system 100 with embedded feedback device 115 .
  • the feedback device 115 is embedded in the pointing device 110 .
  • the pointing device 110 may generate the attention area while the feedback device 115 provides the force indication when the attention area intersects the boundary.
  • FIG. 1C is a schematic block diagram illustrating one embodiment of a force indication system 100 with the feedback device 115 embedded in a wearable item 140 .
  • the wearable item 140 may be clothing, shoes, a watch, a bracelet, a headband, or the like.
  • Multiple feedback devices 115 may be embedded in multiple wearable items 140 .
  • FIG. 1D is a schematic block diagram illustrating one embodiment of a force indication system 100 with the feedback device 115 and pointing device 110 embedded in a wearable item 140 .
  • the wearable item 140 may be clothing, shoes, a watch, a bracelet, a headband, or the like.
  • the pointing device 110 also allows the wearable item 140 to generate the attention area.
  • Multiple feedback devices 115 may be embedded in multiple wearable items 140 .
  • FIG. 1E is a perspective drawing illustrating one embodiment of a mouse pointing device 110 .
  • the mouse pointing device 110 may generate the attention area position 130 .
  • the feedback device 115 may be embedded in the mouse pointing device 110 .
  • FIG. 1F is a perspective drawing illustrating one embodiment of an electronic pen pointing device 110 .
  • the electronic pen pointing device 110 may interact with the display 105 to generate the attention area position 130 .
  • the feedback device 115 may be embedded in the electronic pen pointing device 110 .
  • FIG. 1G is a perspective drawing illustrating one embodiment of a bracelet wearable item 140 .
  • a motion of the bracelet wearable item 140 may generate the attention area position 130 .
  • the feedback device 115 may be embedded in the bracelet wearable item 140 .
  • the feedback device 115 may be a thermal actuator that is activated to provide the force indication.
  • the feedback device 115 may be piezoelectric actuator that is activated to provide the force indication.
  • FIG. 1H is a side view drawing illustrating one embodiment of a shoe wearable item 140 .
  • a motion of the shoe wearable item 140 may generate the attention area position 130 .
  • the feedback device 115 may be a mechanical actuator that is activated to provide the force indication.
  • the feedback device 115 may be a tactile actuator.
  • the feedback device 115 stiffens the shoe wearable item 140 using the tactile actuator to provide the force indication.
  • FIG. 2A is a schematic block diagram illustrating one embodiment of display data 200 .
  • the display data 200 may describe boundaries for the display 105 .
  • the display data 200 maybe organized as a data structure in a memory.
  • the display data 200 includes boundary data 205 for one or more boundaries as will be described hereafter.
  • the boundary data 205 describes boundary locations and criteria for intersecting the boundary as will be described hereafter.
  • the display data 200 may include a default force indication 210 .
  • the default force indication 210 may specify the provision of the force indication.
  • the default force indication 210 may be used if no boundary specific force indication is defined.
  • FIG. 2B is a schematic block diagram illustrating one embodiment of the boundary data 205 .
  • the boundary data 205 maybe organized as a data structure in the memory.
  • the boundary data 205 includes a boundary identifier 235 , a boundary geometry 215 , a boundary buffer distance 220 , a boundary directionality 225 , and a boundary force indication 230 .
  • the boundary identifier 235 may uniquely identify a boundary.
  • the boundary identifier 235 may be a label such as “top.”
  • the boundary geometry 215 may specify a physical and/or virtual location of the boundary.
  • the boundary geometry 215 may specify the virtual location of the boundary relative to pixels of the display 105 .
  • the boundary geometry 215 may specify a physical location of the boundary within a room.
  • the attention area may intersect the boundary if the attention area crosses the boundary as specified by the boundary geometry 215 .
  • the attention area may intersect the boundary if the attention area is located on the boundary as specified by the boundary geometry 215 .
  • the boundary buffer distance 220 may specify a distance from the boundary geometry 215 .
  • the boundary buffer distance 220 may be measured in pixels, centimeters, inches, or the like.
  • the attention area may intersect the boundary if the attention area approaches within the boundary buffer distance 220 of the boundary as specified by the boundary geometry 215 .
  • the boundary directionality 225 may specify which directions of the attention area intersecting the boundary result in providing the force indication.
  • the boundary directionality 215 indicates that the force indication is provided when the attention area intersects the boundary from inside the boundaries of the display 105 .
  • the boundary directionality 215 may indicate that the force indication is not provided when the attention area intersects the boundary from inside the boundaries of the display 105 .
  • the boundary directionality 215 may indicate that the force indication is provided when the attention area intersects the boundary from outside the boundaries of the display 105 .
  • the boundary directionality 215 may indicate that the force indication is not provided when the attention area intersects the boundary from outside the boundaries of the display 105 .
  • the boundary directionality 215 may indicate that the force indication should be provided when the attention area intersects the boundary from either direction.
  • the boundary force indication 230 specifies the force indication that is provided in response to detecting the attention area intersecting the boundary.
  • the boundary force indication 230 may specify a magnitude of the force indication.
  • the boundary force indication 230 may specify a direction of the force indication.
  • the boundary directionality 215 may modify the boundary force indication 230 .
  • the boundary force indication 230 may specify a first direction of the force indication when the attention area intersects the boundary from inside the boundaries of the display 105 .
  • the boundary force indication 230 may specify a second opposing direction of the force indication when the attention area intersects the boundary from outside the boundaries of the display 105 .
  • the boundary force indication 230 specifies the type of force indication.
  • the boundary force indication 230 may specify providing the force indication from an asymmetric signal applied to the feedback device 115 when the attention area intersects the boundary from inside the boundaries of the display 105 .
  • the boundary force indication 230 may specify providing the force indication by stiffening the wearable item 140 when the attention area intersects the boundary from outside the boundaries of the display 105 .
  • FIG. 3A is a drawing illustrating one embodiment of boundaries 300 on the display 105 .
  • the display 105 is depicted.
  • the display 105 includes a boundary 300 .
  • the boundary 300 is the edge of the display 105 .
  • the boundary 300 may be a virtual limit of the simulation depicted within the display 105 .
  • a boundary buffer 315 is also shown.
  • the boundary buffer 315 is the boundary buffer distance 220 from the boundary 300 .
  • Intersection directionalities 320 are also shown.
  • a first intersection directionality 320 a of crossing from inside the boundaries 300 to outside the boundaries 300 is shown.
  • a second intersection directionality 320 b of crossing from outside the boundaries 300 to inside of the boundaries 300 is also shown.
  • a plurality of attention areas 325 is also depicted.
  • the display 105 may show only one attention area 325 .
  • the display 105 may show two or more attention areas 325 .
  • multiple attention areas 325 are shown on the display.
  • a first attention area 325 a is shown with the center of the first attention area 325 a on the boundary 300 .
  • An attention area 325 c is shown with the center of the third attention area 325 c having crossed over the boundary 300 .
  • the center of the attention area 325 must be on and/or cross over the boundary 300 for an intersection of the attention area 325 with the boundary 300 .
  • an edge of the attention area 325 d has crossed over the boundary 300 .
  • the edge of the attention area 325 crossing the boundary 300 may be an intersection of the attention area 325 with the boundary 300 .
  • the edge of the attention area 325 crossing the boundary 300 while the center of the attention area 325 does not cross the boundary 300 is not an intersection of the attention area 325 with the boundary 300 .
  • a second attention area 325 b is shown with the center of the second attention area 325 b having crossed the boundary buffer 315 .
  • a fifth attention area 325 e is shown with the center of the fifth attention area 325 e not having crossed the boundary buffer 315 but an edge of the fifth attention area 325 e having crossed the boundary buffer 315 .
  • the center of the attention area 325 must cross the boundary buffer 315 for the attention area 325 to intersect the boundary 300 .
  • the edge of the attention area 325 must cross the boundary buffer 315 for the attention area 325 to intersect the boundary 300 .
  • FIG. 3B is a drawing illustrating one alternate embodiment of boundaries 300 on the display 105 .
  • two graphical user interface (GUI) windows 350 are shown.
  • the edge of each window 350 is a boundary 300 .
  • edges of elements within a window 350 may be boundaries 300 .
  • an edge of a menu bar may be a boundary 300 .
  • FIG. 3C is a wave form illustrating one embodiment of an asymmetric signal 305 .
  • the asymmetric signal 305 may be asymmetric relative to a reference value 310 .
  • the asymmetric signal 305 may drive an actuator to provide the force indication.
  • the effect of the asymmetric signal 305 on the actuator is to generate the simulated force in a direction as the force indication.
  • a user may perceive a force, although the force indication may not produce a net force in any direction, but instead may produce forces that sum to zero force over time.
  • FIG. 3D is a drawing illustrating one embodiment of a force indication 330 .
  • a feedback device 115 embodied in an electronic pen pointing device 110 generates the force indication 330 .
  • the force indication 330 may be in response to the asymmetric signal 305 being applied to an actuator of the feedback device 115 .
  • FIG. 4 is a schematic block diagram illustrating one embodiment of a computer 400 .
  • the computer 400 may be embodied in the electronic device 120 .
  • the computer 400 includes a processor 405 , a memory 410 , and communication hardware 415 .
  • the memory 410 may be a semiconductor storage device, a hard disk drive, an optical storage device, a micromechanical storage device, or combinations thereof.
  • the memory 410 may store code.
  • the processor 405 may execute the code.
  • the communication hardware 415 may communicate with other devices.
  • FIG. 5 is a schematic flow chart diagram illustrating one embodiment of a force indication method 500 .
  • the method 500 may provide a force indication in response to the attention area 325 intersecting the boundary 300 .
  • the method 500 may be performed by the electronic device 120 , the display 105 , the feedback device 115 , pointing device 110 or combinations thereof.
  • the method 500 may further be performed in whole or in part by the processor 405 and/or by computer readable storage medium such as the memory 310 storing code that is executed by the processor 405 .
  • the method 500 starts, and in one embodiment, the code positions 505 the attention area 325 at a physical location and/or logical location of the display 105 .
  • the pointing device 110 communicates the attention area position 130 to the electronic device 120 .
  • the code may calculate the attention area 325 and the electronic device 120 may communicate the display signal 135 specifying the attention area 325 .
  • the code may further detect 510 the attention area 325 on the display 105 intersecting a boundary 300 of the display 105 .
  • detecting 510 intersecting the boundary 300 comprises one or more of detecting the attention area 325 approaching within a boundary buffer distance 220 of the boundary 300 , detecting 510 the attention area 325 crossing the boundary 300 , and detecting 510 the attention area 325 being located on the boundary 300 .
  • the feedback device 115 only detects 510 the attention area 325 intersecting the boundary 300 if the intersection directionality 320 of the intersection of the attention area 325 and the boundary 300 is specified by the boundary directionality 225 .
  • the feedback device 115 may not provide the force indication 330 for and intersection directionality 320 b from outside to inside the boundary 300 if the boundary directionality 225 does not specify outside to inside directionality.
  • the code continues to position 505 the attention area 325 . If the attention area 325 intersects the boundary 300 , the code provides 515 the force indication 330 through the feedback device 115 in response to detecting 510 the attention area 325 intersecting the boundary 300 and the method 500 ends.
  • the embodiments provide feedback to the user when the attention area 325 moves near or outside of the boundaries 300 of the display 105 . As a result, the user may correct the positioning of the attention area 325 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

For force identification of a boundary, code detects an attention area on a display intersecting a boundary of the display. In addition the code provides a force indication through a feedback device in response to detecting the attention area intersecting the boundary.

Description

    FIELD
  • The subject matter disclosed herein relates to force indication and more particularly relates to force indication of a boundary.
  • BACKGROUND Description of the Related Art
  • Electronic devices provide a virtual space for users to interact with data. While interacting with an electronic device, a user's attention area may cross a boundary for the virtual space.
  • BRIEF SUMMARY
  • An apparatus for force identification of a boundary is disclosed. The apparatus includes a display, a feedback device, a processor, and a memory. The memory stores code executable by the processor. The code detects an attention area on the display intersecting a boundary of the display. In addition the code provides a force indication through the feedback device in response to detecting the attention area intersecting the boundary. A method and computer program product also perform the functions of the apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
  • FIG. 1A is a schematic block diagram illustrating one embodiment of a force indication system;
  • FIG. 1B is a schematic block diagram illustrating one embodiment of a force indication system with embedded feedback device;
  • FIG. 1C is a schematic block diagram illustrating one embodiment of a force indication system with a feedback device embedded in a wearable item;
  • FIG. 1D is a schematic block diagram illustrating one embodiment of a force indication system with the feedback device and pointing device embedded in a wearable item;
  • FIG. 1E is a perspective drawing illustrating one embodiment of a mouse pointing device;
  • FIG. 1F is a perspective drawing illustrating one embodiment of an electronic pen pointing device;
  • FIG. 1G is a perspective drawing illustrating one embodiment of a bracelet wearable item;
  • FIG. 1H is a side view drawing illustrating one embodiment of a shoe wearable item;
  • FIG. 2A is a schematic block diagram illustrating one embodiment of display data;
  • FIG. 2B is a schematic block diagram illustrating one embodiment of boundary data;
  • FIG. 3A is a drawing illustrating one embodiment of boundaries;
  • FIG. 3B is a drawing illustrating one alternate embodiment of boundaries;
  • FIG. 3C is a wave form illustrating one embodiment of an asymmetric signal;
  • FIG. 3D is a drawing illustrating one embodiment of a force indication;
  • FIG. 4 is a schematic block diagram illustrating one embodiment of a computer; and
  • FIG. 5 is a schematic flow chart diagram illustrating one embodiment of a force indication method.
  • DETAILED DESCRIPTION
  • As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, method or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • Many of the functional units described in this specification have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, comprise one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • Indeed, a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
  • Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the “C” programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including,” “comprising,” “having,” and variations thereof mean “including but not limited to,” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a,” “an,” and “the” also refer to “one or more” unless expressly specified otherwise.
  • Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
  • Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. These code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions of the code for implementing the specified logical function(s).
  • It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
  • Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
  • The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
  • FIG. 1A is a schematic block diagram illustrating one embodiment of a force indication system 100. In the depicted embodiment, the system 100 includes a display 105, an electronic device 120, a feedback device 115, and a pointing device 110. The system 100 provides a force indication in response to detecting an attention area intersecting a boundary as will be described hereafter.
  • The display 105 may be a touch screen display, a monitor, a projected image, or the like. The electronic device 120 may be a computer that is embedded in the display 105. Alternatively, the electronic device 120 may be a computer that communicates with the display 105. In a certain embodiment, the electronic device 120 is a computer workstation, a laptop computer, a tablet computer, a mobile telephone, a server, or the like.
  • The feedback device 115 may provide a force indication as will be described hereafter. The feedback device 115 may be a tactile actuator. Alternatively, the feedback device 115 may be selected from the group consisting of a piezoelectric actuator, a thermal actuator, and a mechanical actuator.
  • The pointing device 110 may be a mouse, an electronic pen, an eye tracking device, a motion detector, a video camera, a thermal sensor, or combinations thereof. The pointing device 110 may identify an attention area relative to the display 105 and communicate an attention area position 130 to the electronic device 120.
  • The electronic device 120 may generate a display signal 135 in response to the attention area position 130 and other inputs for the display 105. The display 105 may show the attention area. For example, the attention area may be a cursor or other indicator on the display 105. Alternatively, the display 105 may reflect the attention area. For example, a visual field of view may be modified to reflect the attention area.
  • The attention area may be a cursor on display 105. The cursor may be generated by the pointing device 110. Alternatively, the attention area may be a visual area of interest on the display 105. For example, the attention area may be a portion of the display 105 in a user's line of sight. The pointing device 110 may track the user's line of sight to generate the attention area.
  • In a certain embodiment, the attention area is a physical position of the pointing device 110. For example, the attention area may be a physical position of an electronic pen, a wearable item, or the like.
  • Alternatively, the attention area may be a physical position of the user. For example, the user may employ gestures and/or motion to interact with the electronic device 120. The attention area may be a position of the user's hand as detected by a video camera pointing device 110. In one embodiment, the attention area is a virtual position of the user. For example, the attention area may be a virtual position in the simulation.
  • The display 105 may have one or more boundaries. The boundary may be an edge of the display. Alternatively, the boundary may be a limit of a virtual simulation. While interacting with the pointing device 110, a user may generate an attention area that intersects a boundary of the display 105. Intersecting the boundary may include one or more of approaching within a boundary buffer distance of the boundary, crossing the boundary, and/or being located on the boundary.
  • Intersecting the boundary may diminish the user's ability to interact with the attention area and/or the display 105. For example, the user may be unable to enter data when an attention area such as the cursor intersects a boundary of the display 105. Alternatively, the user may be unable to interact with a simulation when an attention area intersects with the boundary of the display 105.
  • The embodiments described herein detect the attention area on the display 105 intersecting the boundary of the display 105. In addition, the embodiments provide a force indication through the feedback device 115 in response to detecting the attention area intersecting the boundary. As a result, the user is warned of the attention area intersecting the boundary.
  • In one embodiment, the electronic device 120 communicates a boundary warning signal 125 to the feedback device 115. The feedback device 115 may provide the force indication in response to the boundary warning signal 125. The boundary warning signal 125 may be a command to provide the force indication. Alternatively, the boundary warning signal 125 may be an asymmetric signal that is applied to the feedback device 115 as will be described hereafter.
  • FIG. 1B is a schematic block diagram illustrating one embodiment of a force indication system 100 with embedded feedback device 115. In the depicted embodiment, the feedback device 115 is embedded in the pointing device 110. The pointing device 110 may generate the attention area while the feedback device 115 provides the force indication when the attention area intersects the boundary.
  • FIG. 1C is a schematic block diagram illustrating one embodiment of a force indication system 100 with the feedback device 115 embedded in a wearable item 140. The wearable item 140 may be clothing, shoes, a watch, a bracelet, a headband, or the like. Multiple feedback devices 115 may be embedded in multiple wearable items 140.
  • FIG. 1D is a schematic block diagram illustrating one embodiment of a force indication system 100 with the feedback device 115 and pointing device 110 embedded in a wearable item 140. The wearable item 140 may be clothing, shoes, a watch, a bracelet, a headband, or the like. The pointing device 110 also allows the wearable item 140 to generate the attention area. Multiple feedback devices 115 may be embedded in multiple wearable items 140.
  • FIG. 1E is a perspective drawing illustrating one embodiment of a mouse pointing device 110. The mouse pointing device 110 may generate the attention area position 130. In addition, the feedback device 115 may be embedded in the mouse pointing device 110.
  • FIG. 1F is a perspective drawing illustrating one embodiment of an electronic pen pointing device 110. The electronic pen pointing device 110 may interact with the display 105 to generate the attention area position 130. The feedback device 115 may be embedded in the electronic pen pointing device 110.
  • FIG. 1G is a perspective drawing illustrating one embodiment of a bracelet wearable item 140. A motion of the bracelet wearable item 140 may generate the attention area position 130. The feedback device 115 may be embedded in the bracelet wearable item 140. For example, the feedback device 115 may be a thermal actuator that is activated to provide the force indication. Alternatively, the feedback device 115 may be piezoelectric actuator that is activated to provide the force indication.
  • FIG. 1H is a side view drawing illustrating one embodiment of a shoe wearable item 140. A motion of the shoe wearable item 140 may generate the attention area position 130. For example, the feedback device 115 may be a mechanical actuator that is activated to provide the force indication. Alternatively, the feedback device 115 may be a tactile actuator. In one embodiment, the feedback device 115 stiffens the shoe wearable item 140 using the tactile actuator to provide the force indication.
  • FIG. 2A is a schematic block diagram illustrating one embodiment of display data 200. The display data 200 may describe boundaries for the display 105. The display data 200 maybe organized as a data structure in a memory. In the depicted embodiment, the display data 200 includes boundary data 205 for one or more boundaries as will be described hereafter. The boundary data 205 describes boundary locations and criteria for intersecting the boundary as will be described hereafter.
  • In addition, the display data 200 may include a default force indication 210. The default force indication 210 may specify the provision of the force indication. The default force indication 210 may be used if no boundary specific force indication is defined.
  • FIG. 2B is a schematic block diagram illustrating one embodiment of the boundary data 205. The boundary data 205 maybe organized as a data structure in the memory. In the depicted embodiment, the boundary data 205 includes a boundary identifier 235, a boundary geometry 215, a boundary buffer distance 220, a boundary directionality 225, and a boundary force indication 230.
  • The boundary identifier 235 may uniquely identify a boundary. The boundary identifier 235 may be a label such as “top.”
  • The boundary geometry 215 may specify a physical and/or virtual location of the boundary. For example, the boundary geometry 215 may specify the virtual location of the boundary relative to pixels of the display 105. Alternatively, the boundary geometry 215 may specify a physical location of the boundary within a room. The attention area may intersect the boundary if the attention area crosses the boundary as specified by the boundary geometry 215. Alternatively, the attention area may intersect the boundary if the attention area is located on the boundary as specified by the boundary geometry 215.
  • The boundary buffer distance 220 may specify a distance from the boundary geometry 215. The boundary buffer distance 220 may be measured in pixels, centimeters, inches, or the like. The attention area may intersect the boundary if the attention area approaches within the boundary buffer distance 220 of the boundary as specified by the boundary geometry 215.
  • The boundary directionality 225 may specify which directions of the attention area intersecting the boundary result in providing the force indication. In one embodiment, the boundary directionality 215 indicates that the force indication is provided when the attention area intersects the boundary from inside the boundaries of the display 105. Alternatively, the boundary directionality 215 may indicate that the force indication is not provided when the attention area intersects the boundary from inside the boundaries of the display 105.
  • In addition, the boundary directionality 215 may indicate that the force indication is provided when the attention area intersects the boundary from outside the boundaries of the display 105. Alternatively, the boundary directionality 215 may indicate that the force indication is not provided when the attention area intersects the boundary from outside the boundaries of the display 105. In one embodiment, the boundary directionality 215 may indicate that the force indication should be provided when the attention area intersects the boundary from either direction.
  • The boundary force indication 230 specifies the force indication that is provided in response to detecting the attention area intersecting the boundary. The boundary force indication 230 may specify a magnitude of the force indication. In addition, the boundary force indication 230 may specify a direction of the force indication. In one embodiment, the boundary directionality 215 may modify the boundary force indication 230. For example, the boundary force indication 230 may specify a first direction of the force indication when the attention area intersects the boundary from inside the boundaries of the display 105. In addition, the boundary force indication 230 may specify a second opposing direction of the force indication when the attention area intersects the boundary from outside the boundaries of the display 105.
  • In one embodiment, the boundary force indication 230 specifies the type of force indication. For example, the boundary force indication 230 may specify providing the force indication from an asymmetric signal applied to the feedback device 115 when the attention area intersects the boundary from inside the boundaries of the display 105. In addition, the boundary force indication 230 may specify providing the force indication by stiffening the wearable item 140 when the attention area intersects the boundary from outside the boundaries of the display 105.
  • FIG. 3A is a drawing illustrating one embodiment of boundaries 300 on the display 105. The display 105 is depicted. The display 105 includes a boundary 300. In the depicted embodiment, the boundary 300 is the edge of the display 105. Alternatively, the boundary 300 may be a virtual limit of the simulation depicted within the display 105.
  • A boundary buffer 315 is also shown. The boundary buffer 315 is the boundary buffer distance 220 from the boundary 300. Intersection directionalities 320 are also shown. A first intersection directionality 320 a of crossing from inside the boundaries 300 to outside the boundaries 300 is shown. A second intersection directionality 320 b of crossing from outside the boundaries 300 to inside of the boundaries 300 is also shown.
  • A plurality of attention areas 325 is also depicted. The display 105 may show only one attention area 325. Alternatively, the display 105 may show two or more attention areas 325. For comparison purposes, multiple attention areas 325 are shown on the display.
  • A first attention area 325 a is shown with the center of the first attention area 325 a on the boundary 300. An attention area 325 c is shown with the center of the third attention area 325 c having crossed over the boundary 300. In one embodiment, the center of the attention area 325 must be on and/or cross over the boundary 300 for an intersection of the attention area 325 with the boundary 300.
  • In a certain embodiment, as illustrated by a fourth attention area 325 d, an edge of the attention area 325 d has crossed over the boundary 300. The edge of the attention area 325 crossing the boundary 300 may be an intersection of the attention area 325 with the boundary 300. Alternatively, the edge of the attention area 325 crossing the boundary 300 while the center of the attention area 325 does not cross the boundary 300 is not an intersection of the attention area 325 with the boundary 300.
  • A second attention area 325 b is shown with the center of the second attention area 325 b having crossed the boundary buffer 315. A fifth attention area 325 e is shown with the center of the fifth attention area 325 e not having crossed the boundary buffer 315 but an edge of the fifth attention area 325 e having crossed the boundary buffer 315. In one embodiment, the center of the attention area 325 must cross the boundary buffer 315 for the attention area 325 to intersect the boundary 300. Alternatively, the edge of the attention area 325 must cross the boundary buffer 315 for the attention area 325 to intersect the boundary 300.
  • FIG. 3B is a drawing illustrating one alternate embodiment of boundaries 300 on the display 105. In the depicted embodiment, two graphical user interface (GUI) windows 350 are shown. In one embodiment, the edge of each window 350 is a boundary 300.
  • Alternatively, edges of elements within a window 350 may be boundaries 300. For example, an edge of a menu bar may be a boundary 300.
  • FIG. 3C is a wave form illustrating one embodiment of an asymmetric signal 305. The asymmetric signal 305 may be asymmetric relative to a reference value 310. The asymmetric signal 305 may drive an actuator to provide the force indication.
  • In one embodiment, the effect of the asymmetric signal 305 on the actuator is to generate the simulated force in a direction as the force indication. A user may perceive a force, although the force indication may not produce a net force in any direction, but instead may produce forces that sum to zero force over time.
  • FIG. 3D is a drawing illustrating one embodiment of a force indication 330. In the depicted embodiment, a feedback device 115 embodied in an electronic pen pointing device 110 generates the force indication 330. The force indication 330 may be in response to the asymmetric signal 305 being applied to an actuator of the feedback device 115.
  • FIG. 4 is a schematic block diagram illustrating one embodiment of a computer 400. The computer 400 may be embodied in the electronic device 120. In the depicted embodiment, the computer 400 includes a processor 405, a memory 410, and communication hardware 415. The memory 410 may be a semiconductor storage device, a hard disk drive, an optical storage device, a micromechanical storage device, or combinations thereof. The memory 410 may store code. The processor 405 may execute the code. The communication hardware 415 may communicate with other devices.
  • FIG. 5 is a schematic flow chart diagram illustrating one embodiment of a force indication method 500. The method 500 may provide a force indication in response to the attention area 325 intersecting the boundary 300. The method 500 may be performed by the electronic device 120, the display 105, the feedback device 115, pointing device 110 or combinations thereof. The method 500 may further be performed in whole or in part by the processor 405 and/or by computer readable storage medium such as the memory 310 storing code that is executed by the processor 405.
  • The method 500 starts, and in one embodiment, the code positions 505 the attention area 325 at a physical location and/or logical location of the display 105. In one embodiment, the pointing device 110 communicates the attention area position 130 to the electronic device 120. The code may calculate the attention area 325 and the electronic device 120 may communicate the display signal 135 specifying the attention area 325.
  • The code may further detect 510 the attention area 325 on the display 105 intersecting a boundary 300 of the display 105. In one embodiment, detecting 510 intersecting the boundary 300 comprises one or more of detecting the attention area 325 approaching within a boundary buffer distance 220 of the boundary 300, detecting 510 the attention area 325 crossing the boundary 300, and detecting 510 the attention area 325 being located on the boundary 300.
  • In one embodiment, the feedback device 115 only detects 510 the attention area 325 intersecting the boundary 300 if the intersection directionality 320 of the intersection of the attention area 325 and the boundary 300 is specified by the boundary directionality 225. For example, the feedback device 115 may not provide the force indication 330 for and intersection directionality 320 b from outside to inside the boundary 300 if the boundary directionality 225 does not specify outside to inside directionality.
  • If the attention area 325 does not intersect a boundary 300, the code continues to position 505 the attention area 325. If the attention area 325 intersects the boundary 300, the code provides 515 the force indication 330 through the feedback device 115 in response to detecting 510 the attention area 325 intersecting the boundary 300 and the method 500 ends.
  • By detecting the attention area 325 intersecting the boundary 300 of the display 105 and providing the force indication 330 to the feedback device 115 in response to detecting the attention area 325 intersecting the boundary 300, the embodiments provide feedback to the user when the attention area 325 moves near or outside of the boundaries 300 of the display 105. As a result, the user may correct the positioning of the attention area 325.
  • Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (20)

What is claimed is:
1. An apparatus comprising:
a display;
a feedback device;
a processor;
a memory that stores code executable by the processor, the code comprising:
code that detects an attention area on the display intersecting a boundary of the display; and
code that provides a force indication through the feedback device in response to detecting the attention area intersecting the boundary.
2. The apparatus of claim 1, wherein the attention area is one or more of a cursor, a visual area of interest, a pointing device physical position, a pointing device virtual position, and a user position.
3. The apparatus of claim 1, wherein the feedback device is embodied in a pointing device that generates the attention area.
4. The apparatus of claim 1, wherein detecting intersecting the boundary comprises one or more of detecting approaching within a boundary buffer distance of the boundary, detecting crossing the boundary, and detecting being located on the boundary.
5. The apparatus of claim 1, wherein the force indication comprises an asymmetric signal applied to the feedback device.
6. The apparatus of claim 1, wherein the feedback device is a tactile actuator.
7. The apparatus of claim 1, wherein the feedback device is embodied in a wearable item and the feedback device provides the force indication by stiffening the wearable item.
8. The apparatus of claim 1, wherein the feedback device is selected from the group consisting of a piezoelectric actuator, a thermal actuator, and a mechanical actuator.
9. A method comprising:
detecting, by use of a processor, an attention area on a display intersecting a boundary of the display; and
providing a tactile indication through a feedback device in response to detecting the attention area intersecting the boundary.
10. The method of claim 9, wherein the attention area is one or more of a cursor, a visual area of interest, a pointing device physical position, a pointing device virtual position, and a user position.
11. The method of claim 9, wherein the feedback device is embodied in a pointing device that generates the attention area.
12. The method of claim 9, wherein detecting intersecting the boundary comprises one or more of detecting approaching within a boundary buffer distance of the boundary, detecting crossing the boundary, and detecting being located on the boundary.
13. The method of claim 9, wherein the force indication comprises an asymmetric signal applied to the feedback device.
14. The method of claim 9, wherein the feedback device is a tactile actuator.
15. The method of claim 9, wherein the feedback device is embodied in a wearable item and the feedback device provides the force indication by stiffening the wearable item.
16. A program product comprising a computer readable storage medium that stores code executable by a processor, the executable code comprising code to perform:
detecting an attention area on a display intersecting a boundary of the display; and
providing a tactile indication through a feedback device in response to detecting the attention area intersecting the boundary.
17. The program product of claim 16, wherein the attention area is one or more of a cursor, a visual area of interest, a pointing device physical position, a pointing device virtual position, and a user position.
18. The program product of claim 16, wherein the feedback device is embodied in a pointing device that generates the attention area.
19. The program product of claim 16, wherein detecting intersecting the boundary comprises one or more of detecting approaching within a boundary buffer distance of the boundary, detecting crossing the boundary, and detecting being located on the boundary.
20. The program product of claim 16, wherein the force indication comprises an asymmetric signal applied to the feedback device.
US14/625,379 2015-02-18 2015-02-18 Force indication of a boundary Abandoned US20160239085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/625,379 US20160239085A1 (en) 2015-02-18 2015-02-18 Force indication of a boundary
US15/480,144 US10289200B2 (en) 2015-02-18 2017-04-05 Force indication of a boundary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/625,379 US20160239085A1 (en) 2015-02-18 2015-02-18 Force indication of a boundary

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/480,144 Continuation US10289200B2 (en) 2015-02-18 2017-04-05 Force indication of a boundary

Publications (1)

Publication Number Publication Date
US20160239085A1 true US20160239085A1 (en) 2016-08-18

Family

ID=56621173

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/625,379 Abandoned US20160239085A1 (en) 2015-02-18 2015-02-18 Force indication of a boundary
US15/480,144 Active US10289200B2 (en) 2015-02-18 2017-04-05 Force indication of a boundary

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/480,144 Active US10289200B2 (en) 2015-02-18 2017-04-05 Force indication of a boundary

Country Status (1)

Country Link
US (2) US20160239085A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321869A1 (en) * 2016-11-07 2018-05-16 Rockwell Automation Technologies, Inc. Tag based location
CN113095208A (en) * 2021-04-08 2021-07-09 吉林工商学院 Attention observation and reminding system applied to college English teaching classroom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177918A (en) * 1989-12-07 1991-08-01 Mitsubishi Electric Corp Cursor control system
US5929840A (en) * 1994-03-04 1999-07-27 Microsoft Corporation System and method for computer cursor control
US5973689A (en) * 1996-10-30 1999-10-26 U.S. Philips Corporation Cursor control with user feedback mechanism
US20150074564A1 (en) * 2013-09-10 2015-03-12 Lenovo (Singapore) Pte. Ltd. Feedback for cursor location in multiple monitor device contexts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519661C2 (en) 1996-02-23 2003-03-25 Immersion Corp Pointing devices and method for marking graphic details on a display with sensory feedback upon finding said detail
US6243078B1 (en) 1998-06-23 2001-06-05 Immersion Corporation Pointing device with forced feedback button
JP3949912B2 (en) 2000-08-08 2007-07-25 株式会社エヌ・ティ・ティ・ドコモ Portable electronic device, electronic device, vibration generator, notification method by vibration and notification control method
US6803907B2 (en) * 2001-10-04 2004-10-12 Inventec Corporation Wireless beam-pen pointing device
US8633916B2 (en) 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
WO2012125924A2 (en) * 2011-03-17 2012-09-20 Coactive Drive Corporation Asymmetric and general vibration waveforms from multiple synchronized vibration actuators
US9367136B2 (en) * 2013-04-12 2016-06-14 Microsoft Technology Licensing, Llc Holographic object feedback
JP2015028690A (en) * 2013-07-30 2015-02-12 ソニー株式会社 Information processing device, information processing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177918A (en) * 1989-12-07 1991-08-01 Mitsubishi Electric Corp Cursor control system
US5929840A (en) * 1994-03-04 1999-07-27 Microsoft Corporation System and method for computer cursor control
US5973689A (en) * 1996-10-30 1999-10-26 U.S. Philips Corporation Cursor control with user feedback mechanism
US20150074564A1 (en) * 2013-09-10 2015-03-12 Lenovo (Singapore) Pte. Ltd. Feedback for cursor location in multiple monitor device contexts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321869A1 (en) * 2016-11-07 2018-05-16 Rockwell Automation Technologies, Inc. Tag based location
CN108062492A (en) * 2016-11-07 2018-05-22 罗克韦尔自动化技术公司 Positioning based on label
US10032053B2 (en) 2016-11-07 2018-07-24 Rockwell Automation Technologies, Inc. Tag based location
US10395072B2 (en) 2016-11-07 2019-08-27 Rockwell Automation Technologies, Inc. Tag based location
US10846492B2 (en) 2016-11-07 2020-11-24 Rockwell Automation Technologies, Inc. Tag based location
CN113743141A (en) * 2016-11-07 2021-12-03 罗克韦尔自动化技术公司 Method and electronic device based on label positioning
CN113095208A (en) * 2021-04-08 2021-07-09 吉林工商学院 Attention observation and reminding system applied to college English teaching classroom

Also Published As

Publication number Publication date
US10289200B2 (en) 2019-05-14
US20170205884A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US10473479B2 (en) Method for providing map information and electronic device for supporing the same
EP3015956B1 (en) Method and apparatus for controlling screen display on electronic devices
KR102297330B1 (en) Method for controlling display and an electronic device thereof
KR102032662B1 (en) Human-computer interaction with scene space monitoring
US10572104B2 (en) Electronic device for executing a plurality of applications and method for controlling the electronic device
US20140282239A1 (en) Selecting a touch screen hot spot
KR20150023702A (en) User interface interaction for transparent head-mounted displays
US8884988B1 (en) Portable device displaying an augmented reality image and method of controlling therefor
US9483112B2 (en) Eye tracking in remote desktop client
US20110199517A1 (en) Method of showing video on a touch-sensitive display
KR20230163328A (en) Electronic apparatus and operating method thereof
US9891713B2 (en) User input processing method and apparatus using vision sensor
US10289200B2 (en) Force indication of a boundary
US10627895B2 (en) Providing a virtual control
US9733732B2 (en) Generating a virtual eraser area
US10996924B2 (en) Drawing attention to a graphical element on a display
CN108140401B (en) Accessing video clips
US10754523B2 (en) Resizing of images with respect to a single point of convergence or divergence during zooming operations in a user interface
CN107533343B (en) Electronic device including rotating member and display method thereof
US9727778B2 (en) System and method for guided continuous body tracking for complex interaction
US20150169153A1 (en) Enhancing a viewing area around a cursor
US10372202B1 (en) Positioning a cursor on a display monitor based on a user's eye-gaze position
EP2894545A1 (en) Method and apparatus for processing inputs in an electronic device
AU2015309688B2 (en) Methods and systems for positioning and controlling sound images in three-dimensional space
US11094212B2 (en) Sharing signal segments of physical graph

Legal Events

Date Code Title Description
AS Assignment

Owner name: LENOVO (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QIAN, MING;KELSO, SCOTT EDWARDS;NICHOLSON, JOHN WELDON;AND OTHERS;REEL/FRAME:035051/0686

Effective date: 20150213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION