US20160238708A1 - Posture Detecting Device And Data Acquiring Device - Google Patents

Posture Detecting Device And Data Acquiring Device Download PDF

Info

Publication number
US20160238708A1
US20160238708A1 US15/019,393 US201615019393A US2016238708A1 US 20160238708 A1 US20160238708 A1 US 20160238708A1 US 201615019393 A US201615019393 A US 201615019393A US 2016238708 A1 US2016238708 A1 US 2016238708A1
Authority
US
United States
Prior art keywords
unit
distance measuring
optical axis
tilt
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/019,393
Other versions
US10048377B2 (en
Inventor
Fumio Ohtomo
Kaoru Kumagai
Kazuki Osaragi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Assigned to KABUSHIKI KAISHA TOPCON reassignment KABUSHIKI KAISHA TOPCON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAGAI, KAORU, OHTOMO, FUMIO, OSARAGI, KAZUKI
Publication of US20160238708A1 publication Critical patent/US20160238708A1/en
Application granted granted Critical
Publication of US10048377B2 publication Critical patent/US10048377B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/008Active optical surveying means combined with inclination sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/066Electric or photoelectric indication or reading means optical

Definitions

  • the present invention relates to a posture detecting device provided on a data acquiring device such as a surveying instrument, an image acquiring device and the like, requiring a posture detection and a data acquiring device provided with the posture detecting device.
  • a tilt sensor As the data acquiring device for detecting a posture of the surveying instrument, for instance, for detecting a tilting with respect to the horizontal, a tilt sensor is known, for instance. Although the tilt sensor can detect the horizontal with high accuracy, responsiveness is poor and several seconds are required until the tilt sensor becomes stable. Further, in the tilt sensor, a measurement range is small, and a large tilting cannot be measured.
  • an acceleration sensor is known as a sensor capable of detecting a tilting with high responsiveness. Although a detection range is wider than the tilt sensor, detection accuracy is poor, and in order to set as an absolute reference such as the horizontal or the like, the detection accuracy does not satisfy a surveying level.
  • a posture detecting device has a limited range of detection of a tilt angle, and in all postures such as a case where the device is vertical or inverse or the like, the tilt angle cannot be detected.
  • a posture detecting device comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates a posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal.
  • the tilt detecting unit comprises a first tilt sensor for detecting the horizontal with high accuracy and a second tilt sensor for detecting the tilting in a wider range and with a response at a higher speed than the first tilt sensor, wherein the second tilt sensor detects the tilting from the horizontal as detected by the first tilt sensor and wherein the first arithmetic processing unit is configured to calculate the posture of the outer frame based on a detection signal from the second tilt sensor.
  • a data acquiring device comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprising the posture detecting device, a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle
  • the data acquiring device further comprises a second arithmetic processing unit and an image pickup device having an image pickup optical axis in parallel and having a known relation with the projection optical axis, wherein the second arithmetic processing unit is configured so as to acquire an image with a three-dimensional data by associating a distance measuring result obtained by the distance measuring unit with the image acquired by the image pickup device.
  • the posture detecting device comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates an posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal.
  • a tilt detection exceeding a measurement range of the tilt detecting unit can be performed and a posture detection can be performed in all postures.
  • the tilt detecting unit comprises a first tilt sensor for detecting the horizontal with high accuracy and a second tilt sensor for detecting the tilting in a wider range and with a response at a higher speed than the first tilt sensor, wherein the second tilt sensor detects the tilting from the horizontal as detected by the first tilt sensor and wherein the first arithmetic processing unit is configured to calculate the posture of the outer frame based on a detection signal from the second tilt sensor.
  • the data acquiring device comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprising the posture detecting device, a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle
  • the data acquiring device further comprises a second arithmetic processing unit and an image pickup device having an image pickup optical axis in parallel and having a known relation with the projection optical axis, wherein the second arithmetic processing unit is configured so as to acquire an image with a three-dimensional data by associating a distance measuring result obtained by the distance measuring unit with the image acquired by the image pickup device.
  • FIG. 1 is a schematical drawing of a posture detecting device according to an embodiment of the present invention.
  • FIG. 2 is a schematical block diagram of the posture detecting device.
  • FIG. 3 is a schematical drawing of a data acquiring device according to an embodiment of the present invention.
  • FIG. 4 is an arrow diagram A of FIG. 3 .
  • FIG. 5A , FIG. 5B , and FIG. 5C are drawings to explain an operation of first and second optical axis deflecting units.
  • FIG. 6A and FIG. 6B are explanatory drawing for explaining a relation between an acquired image and a scanning locus.
  • FIG. 7 is a schematical drawing to show an essential part of another embodiment.
  • FIG. 1 and FIG. 2 are schematical drawings of a posture detecting device 19 according to the embodiment of the present invention.
  • an inner frame 53 with a rectangular frame shape is provided inside an outer frame 51 with a rectangular frame shape, and inside the inner frame 53 , a tilt detecting unit 56 is provided.
  • FIG. 1 from an upper surface and a lower surface of the inner frame 53 , vertical shafts 54 and 54 are protruded, and the vertical shafts 54 and 54 are rotatably fitted with bearings 52 and 52 as provided on the outer frame 51 .
  • the vertical shafts 54 and 54 have a vertical axis, and the inner frame 53 is capable of rotating freely by 360° around the vertical shafts 54 and 54 as the center.
  • the tilt detecting unit 56 is supported by a horizontal shaft 55 , and both end portions of the horizontal shaft 55 is rotatably fitted with bearings 57 and 57 provided on the inner frame 53 .
  • the horizontal shaft 55 has a horizontal axis perpendicular to the vertical axis, and the tilt detecting unit 56 is capable of rotating freely by 360° around the horizontal shaft 55 as the center.
  • the tilt detecting unit 56 is rotatably supported in two axial directions with respect to the outer frame 51 , and a mechanism rotatably supporting the inner frame 53 and a mechanism rotatably supporting the tilt detecting unit 56 make up a gimbal mechanism.
  • the tilt detecting unit 56 is supported via the gimbal mechanism with respect to the outer frame 51 , and further, since there is no mechanism restricting the rotation of the inner frame 53 , the tilt detecting unit 56 is configured to be freely rotatable in all directions with respect to the outer frame 51 .
  • a first driven gear 58 is fixed to the lower vertical shaft 54 , and a first driving gear 59 meshes with the first driven gear 58 .
  • a first motor 61 is provided on a lower surface of the outer frame 51 , and the first driving gear 59 is fixed to an output shaft of the first motor 61 .
  • a first encoder 62 is provided, and the first encoder 62 is configured so as to detect a rotation angle of the inner frame 53 with respect to the outer frame 51 .
  • a second driven gear 63 is fixed, and with the second driven gear 63 , a second driving gear 64 meshes. Further, on a side left side in the figure) of the inner frame 53 , a second motor 65 is provided, and the second driving gear 64 is fixed to an output shaft of the second motor 65 .
  • a second encoder 66 is provided, and the second encoder 66 is configure so as to detect the rotation angle of the tilt detecting unit 56 with respect to the inner frame 53 .
  • the first encoder 62 and the second encoder 66 are electrically connected to a first arithmetic processing unit 68 .
  • the tilt detecting unit 56 has a first tilt sensor 71 and a second tilt sensor 72 , and the first tilt sensor 71 and the second tilt sensor 72 are electrically connected to the first arithmetic processing unit 68 .
  • the posture detecting device 19 further comprises a storage unit 73 and an input/output control unit 74 in addition to the first encoder 62 , the second encoder 66 , the first tilt sensor 71 , the second tilt sensor 72 , the first arithmetic processing unit 68 , the first motor 61 and the second motor 65 .
  • a program such as programs including a calculation program for a posture detection and the like, and data such as calculation data and the like are stored.
  • the input/output control unit 74 drives the first motor 61 and the second motor 65 based on a control instruction output from the first arithmetic processing unit 68 and outputs a result of a tilt detection calculated by the first arithmetic processing unit 68 .
  • the first tilt sensor 71 is for detecting the horizontal with high accuracy, for instance, a tilt detector in which a detection light incidents to a horizontal liquid surface and the horizontal is detected according to a change of a reflection angle of the reflected light, or a bubble tube which detects a tilting according to a positional change of sealed air bubbles.
  • the second tilt sensor 72 is for detecting a tilt change with high responsiveness, for instance, an acceleration sensor.
  • Both the first tilt sensor 71 and the second tilt sensor 72 can individually detect a tilting in the two axial directions, which are a rotating direction (a tilting direction) detected by the first encoder 62 and a rotating direction (a tilting direction) detected by the second encoder 66 .
  • the first arithmetic processing unit 68 calculates a tilt angle and a tilting direction based on detection results from the first tilt sensor 71 and the second tilt sensor 72 , and further, calculates a rotation angle of the first encoder 62 and a rotation angle of the second encoder 66 corresponding to the tilt angle and the tilting direction.
  • the posture detecting device 19 is set such that the first tilt sensor 71 detects the horizontal, and further, is set such that an output of the first encoder 62 and an output of the second encoder 66 both indicate a reference position (rotation angle at 0°).
  • the posture detecting device 19 is provided on an installation-type surveying instrument, for instance.
  • the first tilt sensor 71 When the posture detecting device 19 is tilted, the first tilt sensor 71 outputs a signal corresponding to a tilting.
  • the first arithmetic processing unit 68 calculates a tilt angle and a tilting direction based on the signal from the first tilt sensor 71 and further calculates rotation amounts of the first motor 61 and the second motor 65 in order to make the tilt angle and the tilting direction 0 based on a calculation result and outputs a driving command for driving the first motor 61 and the second motor 65 by the rotation amounts via the input/output control unit 74 .
  • the first motor 61 and the second motor 65 By driving of the first motor 61 and the second motor 65 , the first motor 61 and the second motor 65 are driven so as to be tilted oppositely to the calculated tilt angle and the tilting direction, driving amounts (the rotation angles) of the motors are detected by the first encoder 62 and the second encoder 66 respectively, and when the rotation angles reach the calculation results, the drivings of the first motor 61 and the second motor 65 are stopped.
  • the rotations of the first motor 61 and the second motor 65 are slightly adjusted so that the first tilt sensor 71 detects the horizontal.
  • the tilt detection unit 56 is controlled to the horizontal.
  • the tilt angles and the tilting directions by which the inner frame 53 and the tilt detecting unit 56 are tilted by the first motor 61 and the second motor 65 , are acquired based on the rotation angles as detected by the first encoder 62 and the second encoder 66 .
  • the first arithmetic processing unit 68 calculates the tilt angle and the tilting direction of the posture detecting device 19 based on the detection results of the first encoder 62 and the second encoder 66 when the first tilt sensor 71 detects the horizontal.
  • the calculation result indicates the posture after the posture detecting device 19 is tilted.
  • the first arithmetic processing unit 68 outputs the calculated tilt angle and the tilting direction to an outside as a detection signal of the posture detecting device 19 .
  • the posture detecting device 19 Under such condition that the posture detecting device 19 is carried, the posture of the posture detecting device 19 changes every moment. Therefore, the posture detection is performed based on the detection result of the second tilt sensor 72 with high responsiveness.
  • the control is so executed that a horizontal condition is detected by the first tilt sensor 71 , a posture change after that is obtained by the second tilt sensor 72 with high responsiveness, and the posture detection is performed based on the detection result from the second tilt sensor 72 , the tilting and the tilting direction of the posture detecting device 19 can be detected in real time.
  • the tilt detecting unit 56 and the inner frame 53 can both rotate by 360° or more. That is, no matter what posture the posture detecting device 19 takes (even in a case where the posture detecting device 19 is upside down, for instance), the posture detection in all directions can be performed.
  • the posture detection can be performed in a wide range and in all postures.
  • the posture detection is performed based on the detection result of the second tilt sensor 72 , the second tilt sensor 72 has poorer detection accuracy than the first tilt sensor 71 in general.
  • the posture detection with high accuracy can be performed based on the detection result of the second tilt sensor 72 only.
  • the motor is driven so that the tilt angle becomes 0, and further, the driving of the motor is continued until the first tilt sensor 71 detects the horizontal. If a deviation occurs between a value of the encoder when the first tilt sensor 71 detects the horizontal, that is, an actual tilt angle and the tilt angle as detected by the second tilt sensor 72 , the tilt angle of the second tilt sensor 72 can be calibrated based on the deviation.
  • the tilt angle detected by the second tilt sensor 72 can be calibrated. Thereby, accuracy of the posture detection with high responsiveness by the second tilt sensor 72 can be improved.
  • the posture detecting device 19 according to the present invention can be applied to various devices. Particularly, the posture detecting device is useful if the posture detecting device is applied to a portable type device of which the posture is not stable.
  • the posture detecting device 19 in a portable type image acquiring device, for instance, a tilting of the image acquiring device during the image pickup can be detected, and the acquired image can be easily converted to the horizontal posture.
  • the data acquiring device comprising the posture detecting device 19 according to the present invention by referring to FIG. 3 to FIG. 7 .
  • a device acquiring a data with an image is shown below.
  • reference numeral 1 denotes a surveying instrument
  • reference numeral 2 denotes an image pickup device
  • reference numeral 3 denotes a case for accommodating the surveying instrument 1 and the image pickup device 2 .
  • the surveying instrument 1 and the image pickup device 2 integrally make up a data acquiring device 4 .
  • the case 3 may be installed on a tripod or may be portable (handheld).
  • the surveying instrument 1 has a distance measuring light projecting unit 5 , a light receiving unit 6 , a distance measuring unit 7 , a second arithmetic processing unit 8 , a projecting direction detecting unit 9 , a display unit 10 and a posture detecting device 19 .
  • the distance measuring light projecting unit 5 has a projection optical axis 11 , a light emitting element, for instance, a laser diode (LD) 12 is provided on the projection optical axis 11 , and further, a projecting lens 13 and a first optical axis deflecting unit 14 are disposed on the projection optical axis 11 .
  • a light emitting element for instance, a laser diode (LD) 12 is provided on the projection optical axis 11
  • a projecting lens 13 and a first optical axis deflecting unit 14 are disposed on the projection optical axis 11 .
  • first optical prisms 15 a and 15 b are provided on the projection optical axis 11 , and each of the first optical prisms 15 a and 15 b is arranged rotatably around the projection optical axis 11 independently and individually.
  • the first optical prisms 15 a and 15 b deflect an optical axis of the distance measuring light projected from the projecting lens 13 in an arbitrary direction by controlling rotating directions, rotating amounts and rotating speeds of the first optical prisms 15 a and 15 b.
  • Materials of the first optical prisms 15 a and 15 b are preferably optical glass and the first optical prisms 15 a and 15 b are manufactured with high accuracy so as to have a same and known refractive index.
  • a luminous flux can be deflected to a predetermined direction without diffusing the distance measuring light, and further, an occurrence of distortion of a cross-section of a luminous flux or the like can be prevented, which enables a highly accurate distance measurement, and further, enables a long distance measurement.
  • Outer shapes of the first optical prisms 15 a and 15 b are circular with the projection optical axis 11 as the center respectively, a first ring gear 16 a is fitted with an outer periphery of the first optical prism 15 a and a first ring gear 16 b is fitted with an outer periphery of the first optical prism 15 b.
  • a first driving gear 17 a meshes with the first ring gear 16 a .
  • the first driving gear 17 a is fixed to an output shaft of a first motor 18 a .
  • a first driving gear 17 b meshes with the first ring gear 16 b and the first driving gear 17 b is fixed to an output shaft of a first motor 18 b .
  • the first motors 18 a and 18 b are electrically connected to the second arithmetic processing unit 8 .
  • the first motors 18 a and 18 b are motors capable of detecting a rotation angle or motors which rotate corresponding to a driving input value, for instance, a pulse motor is used.
  • a rotation detector for detecting a rotating amount of the motor such as an encoder or the like, for example, may be used for detecting the rotating amount of the motor.
  • the projecting direction detecting unit 9 counts driving pulses input to the first motors 18 a and 18 b and detects the rotation angles of the first motors 18 a and 18 b or detects the rotation angles of the first motors 18 a and 18 b based on signals from the encoders. Further, the projecting direction detecting unit 9 calculates rotation positions of the first optical prisms 15 a and 15 b based on the rotation angles of the first motors 18 a and 18 b , calculates deflection angle and a projecting direction of the distance measuring light based on the refractive indexes and the rotation positions of the first optical prisms 15 a and 15 b , and a calculation result is inputted to the second arithmetic processing unit 8 .
  • the first driving gear 17 a and the first motor 18 a are shown on an upper side of the first ring gear 16 a , but actually, the first driving gears 17 a and 17 b are provided at positions not interfering with a visual field of the image pickup device 2 as described later, at sides of the first ring gear 16 a and 16 b as shown in FIG. 4 , for instance.
  • the projecting lens 13 , the first optical prisms 15 a and 15 b or the like make up a projection optical system 20 .
  • the light receiving unit 6 receives a reflected distance measuring light from an object.
  • the light receiving unit 6 has a light receiving optical axis 21 and the light receiving optical axis 21 is in parallel with the projection optical axis 11 .
  • a photodetection element 22 for instance, a photodiode (PD) is provided, and the photodetection element 22 receives the reflected distance measuring light and produces a photodetection signal. Further, on an objective side of the light receiving optical axis 21 , a light receiving lens 23 and a second optical axis deflecting unit 24 are disposed.
  • a photodetection element 22 for instance, a photodiode (PD) is provided, and the photodetection element 22 receives the reflected distance measuring light and produces a photodetection signal.
  • a light receiving lens 23 and a second optical axis deflecting unit 24 are disposed on an objective side of the light receiving optical axis 21 .
  • the second optical axis deflecting unit 24 has a pair of second optical prisms 25 a and 25 b on the light receiving optical axis 21 which are overlapped each other and arranged in parallel.
  • a Fresnel prism is preferably used respectively in order to reduce a size of the instrument.
  • the Fresnel prism used as the second optical prisms 25 a and 25 b is composed of a large number of prism elements 26 formed in parallel with each other and has a plate shape. Each of the prism elements 26 has the same optical characteristics and each of the prism elements 26 has the same refractive index and deflection angle as the first optical prisms 15 a and 15 b.
  • the Fresnel prism may be manufactured by an optical glass but may be molded by an optical plastic material. By molding the Fresnel prism by the optical plastic material, a low cost Fresnel prism can be manufactured.
  • Each of the second optical prisms 25 a and 25 b is arranged in such a manner that each of the second optical prism 25 a and 25 b rotates with the light receiving optical axis 21 as the center individually.
  • the second optical prisms 25 a and 25 b deflect an optical axis of the reflected distance measuring light as entered in an arbitrary direction by controlling rotating directions, rotating amounts and rotating speeds of the second optical prisms 25 a and 25 b.
  • Outer shapes of the second optical prisms 25 a and 25 b are circles with the light receiving optical axis 21 as the center, respectively, and taking an expansion of the reflected distance measuring light into consideration, diameters of the second optical prisms 25 a and 25 b are larger than the diameters of the first optical prisms 15 a and 15 b so that a sufficient light amount can be obtained.
  • a second ring gear 27 a is fitted with an outer periphery of the second optical prism 25 a and a second ring gear 27 b is fitted with an outer periphery of the second optical prism 25 b.
  • a second driving gear 28 a meshes with the second ring gear 27 a , and the second driving gear 28 a is fixed to an output shaft of a second motor 29 a .
  • a second driving gear 28 b meshes with the second ring gear 27 b , and the second driving gear 28 b is fixed to an output shaft of a second motor 29 b .
  • the second motors 29 a and 29 b are electrically connected to the second arithmetic processing unit 8 .
  • the second motors 29 a and 29 b similarly to the first motors 18 a and 18 b , motors capable of detecting a rotation angle or motors which rotate corresponding to a driving input value, for instance, a pulse motor is used.
  • a rotation detector for detecting a rotating amount (rotation angle) of the motor such as an encoder or the like, for example, may be used for detecting the rotating amount of the motor.
  • the rotating amounts of the second motors 29 a and 29 b are detected and a synchronization control with the first motors 18 a and 18 b is carried out by the second arithmetic processing unit 8 .
  • the second driving gears 28 a and 28 b and the second motors 29 a and 29 b are provided at positions not interfering with the distance measuring light projecting unit 5 , for instance, on a lower side of the second ring gears 27 a and 27 b.
  • the second optical prisms 25 a and 25 b , the light receiving lens 23 , or the like, make up a light receiving optical system 30 .
  • the distance measuring unit 7 controls the light emitting element 12 and emits a laser beam as the distance measuring light.
  • the reflected distance measuring light reflected from an object to be measured enters through the second optical prisms 25 a and 25 b and the light receiving lens 23 and is received by the photodetection element 22 .
  • the photodetection element 22 sends the photodetection signal to the distance measuring unit 7 and the distance measuring unit 7 performs distance measurement of a measuring point (a point where the distance measuring light is projected) based on the photodetection signal from the photodetection element 22 .
  • the second arithmetic processing unit 8 is configured by an input/output control unit, an arithmetic unit (CPU), a storage unit, or the like.
  • the storage unit stores programs such as a distance measuring program for controlling a distance measuring operation, a control program for controlling drivings of the first motors 18 a and 18 b and the second motors 29 a and 29 b , an image display program for displaying an image data, a distance measuring data, or the like, on the display unit 10 , or the like, and further, in the storage unit, measurement results of the distance measuring data, the image data, or the like, are stored.
  • the posture detecting device 19 detects a posture with respect to the projection optical axis 11 of the distance measuring unit 7 and a posture (a tilt angle and a tilting direction) with respect to the horizontal of the data acquiring device 4 .
  • a detection result is inputted to the second arithmetic processing unit 8 .
  • the image pickup device 2 has a wide-angle camera 35 and a narrow-angle camera 36 , the wide-angle camera 35 has a wide-field angle, for instance 30°, while the narrow-angle camera 36 has a field angle narrower than the field angle of the wide-angle camera 35 , for instance 5°. Further, it is preferable that the field angle of the narrow-angle camera 36 is equal to or slightly larger than a range to acquire a point cloud data (to be described later) obtained by the distance measuring light projecting unit 5 .
  • image pickup elements of the wide-angle camera 35 and the narrow-angle camera 36 are a CCD or a CMOS sensor which are an aggregate of pixels, and it is so arranged that a position of each pixel on an image element can be specified.
  • the position of each pixel is specified by a coordinate system with an optical axis of each camera as an origin point.
  • the optical axis of the wide-angle camera 35 and the optical axis of the narrow-angle camera 36 are both parallel to the projection optical axis 11 , and further, the optical axis of the wide-angle camera 35 , the optical axis of the narrow-angle camera 36 and the projection optical axis 11 are in a known relation.
  • FIG. 5A the second optical prisms 25 a and 25 b are shown as single prisms, respectively. Further, the first optical prisms 15 a and 15 b and the second optical prisms 25 a and 25 b as shown in FIG. 5A are in a state in which maximum deflection angles can be obtained.
  • the minimum deflection angle is a position where either one of the first optical prisms 15 a and 15 b and either one of the second optical prisms 25 a and 25 b are rotated by 180°, the deflection angle becomes 0°, and an optical axis of the laser beam as projected becomes parallel with the projection optical axis 11 .
  • a distance measuring light is emitted from the light emitting element 12 , the distance measuring light is turned to a parallel luminous flux by the projecting lens 13 and projected toward an object to be measured or a measurement target area through the first optical axis deflecting unit 14 (the first optical prisms 15 a and 15 b ).
  • the distance measuring light is deflected to a direction as required and projected by the first optical prisms 15 a and 15 b.
  • the reflected distance measuring light as reflected by the object to be measured or by the measurement target area is incident through the second optical axis deflecting unit 24 and is focused to the photodetection element 22 by the light receiving lens 23 .
  • the optical axis of the reflected distance measuring light is deflected by the second optical prisms 25 a and 25 b so as to coincide with the light receiving optical axis 21 ( FIG. 5A ).
  • the rotation positions, the rotating directions and the rotating speeds of the first optical prisms 15 a and 15 b and the second optical prisms 25 a and 25 b are synchronously controlled so that the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 have the same deflection angles at all times.
  • first motor 18 a and the second motor 29 a are synchronously controlled by the second arithmetic processing unit 8 so that the first optical prism 15 a and the second optical prism 25 a are deflected in the same direction at all times.
  • first motor 18 b and the second motor 29 b are synchronously controlled by the second arithmetic processing unit 8 so that the first optical prism 15 b and the second optical prism 25 b are deflected in the same direction at all times.
  • the deflecting direction and the deflection angle of distance measuring light to be projected can be arbitrarily deflected.
  • the distance measuring light can be scanned by the locus of the circle.
  • the second optical axis deflecting unit 24 rotates in the same direction at the same speed in synchronization with the first optical axis deflecting unit 14 .
  • FIG. 5B illustrates a case in which the first optical prism 15 a and the first optical prism 15 b are relatively rotated.
  • a deflecting direction of the optical axis as deflected by the first optical prism 15 a is a deflection “A”
  • the deflecting direction of the optical axis as deflected by the first optical prism 15 b is a deflection “B”
  • the deflection of the optical axis by the first optical prisms 15 a and 15 b becomes a synthetic deflection “C” as an angle difference 9 between the first optical prisms 15 a and 15 b.
  • the scanning locus of the distance measuring light is made in a radial direction (scanning in the radial direction) with the projection optical axis 11 as the center or in a horizontal direction or in a vertical direction or the like, and various scanning states can be obtained.
  • the distance measurement can be performed with respect to a specific measuring point. Further, by executing the distance measurement while deflecting the deflection angles of the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 , that is, by executing the distance measurement while scanning the distance measuring light, the point cloud data can be acquired.
  • the projection directional angle of each distance measuring light can be detected by the rotation angles of the first motors 18 a and 18 b , and by associating the projection directional angle with the distance measurement data, the three-dimensional point cloud data can be acquired.
  • a tilting of the projection optical axis 11 with respect to the horizontal can be detected by the posture detecting device 19 .
  • the point cloud data is corrected based on the tilting detected by the posture detecting device 19 and the point cloud data with high accuracy can be acquired. Therefore, even in a case where the data acquiring device 4 does not have a leveling function and cannot be installed horizontally, the point cloud data with high accuracy can be acquired.
  • the three-dimensional data is acquired and the image data can also be acquired.
  • the image pickup device 2 has the wide-angle camera 35 and the narrow-angle camera 36 .
  • the wide-angle camera 35 is primarily used for observation, and a wide-angle image acquired by the wide-angle camera 35 is displayed on the display unit 10 .
  • a measuring operator searches an object to be measured from an image displayed on the display unit 10 or selects the object to be measured.
  • the data acquiring device 4 is directed so that the object to be measured is captured by the narrow-angle camera 36 .
  • a narrow-angle image acquired by the narrow-angle camera 36 is displayed on the display unit 10 .
  • the display of the wide-angle image by the wide-angle camera 35 and the display of the narrow-angle image by the narrow-angle camera 36 may be switched.
  • the display unit 10 may be divided and display the narrow-angle image by the narrow-angle camera 36 on a divided portion or a window may be provided to display the narrow-angle image on the window.
  • the measuring operator can visually specify the measurement range easily.
  • the second arithmetic processing unit 8 can match the image center with the projection optical axis 11 on the narrow-angle image by the narrow-angle camera 36 . Further, by detecting the projection angle of the distance measuring light, the second arithmetic processing unit 8 can specify a measuring point on the image based on the projection angle. Therefore, an association between the three-dimensional data of the measuring point and the narrow-angle image can be performed easily, and the narrow-angle image as acquired by the narrow-angle camera 36 can be turned to an image with the three-dimensional data.
  • FIG. 6A and FIG. 6B show a relation between an image acquired by the narrow-angle camera 36 and an acquiring of the point cloud data.
  • FIG. 6A shows a case in which the distance measuring light is scanned in a concentric and multi-circular form
  • FIG. 6B shows a case in which the distance measuring light is reciprocally scanned linearly.
  • reference numeral 37 denotes a scanning locus and the measuring points are positioned on the scanning locus.
  • the wide-angle image acquired by the wide-angle camera 35 is made the measurement range
  • the narrow-angle images acquired by the narrow-angle camera 36 are fitted into the wide-angle images like a patchwork and hence the measurement can be performed without a waste or without leaving an unmeasured portion.
  • the data acquiring device 4 in the present embodiment comprises the posture detecting device 19 .
  • the posture detecting device 19 is for detecting a posture of the data acquiring device 4 with respect to the horizontal, that is, a tilt angle and a tilting direction of the projection optical axis 11 .
  • the data acquiring device 4 is installed via a tripod, based on the detection result of the posture detecting device 19 , the data acquiring device 4 is installed horizontally and the measurement can be performed under a condition where the data acquiring device 4 is horizontal. Therefore, a correcting operation such as correcting of a measured value by considering the tilting of the data acquiring device 4 , or the like, is no longer needed.
  • the posture of the data acquiring device 4 when measurement is performed is detected by the posture detecting device 19 , and the second arithmetic processing unit 8 corrects the measured value based on the tilt angle and the tilting direction as detected.
  • the second optical prisms 25 a and 25 b are made of the Fresnel prisms, but if there is a room, the second optical prisms 25 a and 25 b may be constituted by a single prism, respectively.
  • FIG. 7 shows another embodiment.
  • the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 in the embodiment as described above are integrated as an optical axis deflecting unit 40 . It is to be noted that in FIG. 7 , what are equivalent to components as shown in FIG. 3 are referred by the same symbol.
  • a first reflection mirror 41 as a deflecting optical member is provided on a projection optical axis 11 of a distance measuring light projecting unit 5 .
  • a second reflection mirror 42 as the deflecting optical member is faced with the first reflection mirror 41 and disposed on a light receiving optical axis 21 .
  • the first reflection mirror 41 and the second reflection mirror 42 are set with a positional relation so that the projection optical axis 11 as deflected by the first reflection mirror 41 and the second reflection mirror 42 coincides with a light receiving optical axis 21 of a light receiving unit 6 .
  • the first reflection mirror 41 and the second reflection mirror 42 make up the projection optical axis deflecting unit.
  • a size of the second reflection mirror 42 will suffice if the size is enough to reflect a distance measuring light. Therefore, since a luminous flux diameter of the distance measuring light is smaller, the size of the second reflection mirror 42 may be smaller. Since a luminous flux diameter of the reflected measuring light is larger, a light amount of the reflected distance measuring light as intercepted by the second reflection mirror 42 is small and does not exert influence on the distance measurement.
  • the optical axis deflecting unit 40 has circular-shaped combined optical prisms 43 a and 43 b disposed in parallel on the light receiving optical axis 21 .
  • the combined optical prism 43 a is composed of a second optical prism 25 a and a first optical prism 15 a.
  • the second optical prism 25 a is a Fresnel prism in which a large number of prism elements 26 are formed, and at a central portion of the Fresnel prism, the prism element 26 is cut out circularly, the first optical prism 15 a is provided at the central portion, and the second optical prism 25 a and the first optical prism 15 a are integrated. Further, the directions of the prism elements 26 of the first optical prism 15 a and the second optical prism 25 a are coincided with each other.
  • the first optical prism 15 a and the second optical prism 25 a are made of an optical plastic material and may be integrally molded by molding or it may be so designed that the second optical prism 25 a is molded and a prism (the first optical prism 15 a ) manufactured by an optical glass is attached to the second optical prism 25 a.
  • a distance measuring light emitted from a light emitting element 12 turned to a parallel luminous flux by a projecting lens 13 and is deflected by the first reflection mirror 41 and the second reflection mirror 42 so as to be projected along the light receiving optical axis 21 .
  • the distance measuring light passes through the central portion of the combined optical prisms 43 a and 43 b , that is, the first optical prisms 15 a and 15 b , the distance measuring light is deflected to a direction as required and an angle as required, and projected.
  • the reflected distance measuring light as reflected by the object to be measured passes through the second optical prisms 25 a and 25 b portions of the combined optical prisms 43 a and 43 b , is deflected so as to be in parallel with the light receiving optical axis 21 , received by the photodetection element 22 and distance measurement is performed based on the light receiving result of the photodetection element 22 .
  • motors used in a deflecting unit can be only the second motors 29 a and 29 b and controlling of the motors are also simplified.
  • a point cloud data can be easily acquired by a simple structure. Further, in a case where an image is to be acquired at the same time, since an optical axis of an image pickup device coincides with a distance measuring optical axis (or in a parallel and known relation), association between the image and the point cloud data can be performed easily and the image with a three-dimensional data can be acquired easily.
  • the posture detecting device by comprising the posture detecting device according to the present invention, a correction and a modification of a tilting can be performed easily, and it becomes possible to acquire a data with high accuracy under such the condition that the posture detecting device is carried. Further, in the posture detecting device according to the present invention, since there is no limitation on the detection range of the tilt angle and it is possible to detect all directions and all postures, even in a case where the posture detecting device is equipped on a flying vehicle of which the posture is largely changed, the posture can be accurately detected, and a correction of the acquired data is also easy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention provides a posture detecting device, which comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates a posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a posture detecting device provided on a data acquiring device such as a surveying instrument, an image acquiring device and the like, requiring a posture detection and a data acquiring device provided with the posture detecting device.
  • As the data acquiring device for detecting a posture of the surveying instrument, for instance, for detecting a tilting with respect to the horizontal, a tilt sensor is known, for instance. Although the tilt sensor can detect the horizontal with high accuracy, responsiveness is poor and several seconds are required until the tilt sensor becomes stable. Further, in the tilt sensor, a measurement range is small, and a large tilting cannot be measured.
  • Further, as a sensor capable of detecting a tilting with high responsiveness, an acceleration sensor is known. Although a detection range is wider than the tilt sensor, detection accuracy is poor, and in order to set as an absolute reference such as the horizontal or the like, the detection accuracy does not satisfy a surveying level.
  • Further, in the conventional type, a posture detecting device has a limited range of detection of a tilt angle, and in all postures such as a case where the device is vertical or inverse or the like, the tilt angle cannot be detected.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a posture detecting device capable of detecting a tilt angle in all postures and a data acquiring device comprising the posture detecting device and capable of acquiring a data in all postures.
  • To attain the object as described above, a posture detecting device according to the present invention comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates a posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal.
  • Further, in the posture detecting device according to the present invention, the tilt detecting unit comprises a first tilt sensor for detecting the horizontal with high accuracy and a second tilt sensor for detecting the tilting in a wider range and with a response at a higher speed than the first tilt sensor, wherein the second tilt sensor detects the tilting from the horizontal as detected by the first tilt sensor and wherein the first arithmetic processing unit is configured to calculate the posture of the outer frame based on a detection signal from the second tilt sensor.
  • Further, a data acquiring device according to the present invention comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprising the posture detecting device, a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle and a deflecting direction by the first optical axis deflecting unit, wherein it is so arranged that the distance measuring light is projected through the first optical axis deflecting unit and the reflected distance measuring light is received by the photodetection element through the second optical axis deflecting unit, and a three-dimensional data of a measuring point is obtained based on a distance measuring result of the distance measuring unit and a detection result of the projecting direction detecting unit, and the three-dimensional data is corrected based on the result detected by the posture detecting unit.
  • Furthermore, the data acquiring device according to the present invention further comprises a second arithmetic processing unit and an image pickup device having an image pickup optical axis in parallel and having a known relation with the projection optical axis, wherein the second arithmetic processing unit is configured so as to acquire an image with a three-dimensional data by associating a distance measuring result obtained by the distance measuring unit with the image acquired by the image pickup device.
  • According to the present invention, the posture detecting device comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates an posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal. As a result, a tilt detection exceeding a measurement range of the tilt detecting unit can be performed and a posture detection can be performed in all postures.
  • Further, according to the present invention, in the posture detecting device, the tilt detecting unit comprises a first tilt sensor for detecting the horizontal with high accuracy and a second tilt sensor for detecting the tilting in a wider range and with a response at a higher speed than the first tilt sensor, wherein the second tilt sensor detects the tilting from the horizontal as detected by the first tilt sensor and wherein the first arithmetic processing unit is configured to calculate the posture of the outer frame based on a detection signal from the second tilt sensor. As a result, the posture detection with the response at a higher speed can be performed, installing on the moving body with many posture changes can be made, and further, the posture detection with high accuracy can be performed even under such condition that the posture detecting device is carried.
  • Further, according to the present invention, the data acquiring device comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprising the posture detecting device, a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle and a deflecting direction by the first optical axis deflecting unit, wherein it is so arranged that the distance measuring light is projected through the first optical axis deflecting unit and the reflected distance measuring light is received by the photodetection element through the second optical axis deflecting unit and a three-dimensional data of a measuring point is obtained based on a distance measuring result of the distance measuring unit and a detection result of the projecting direction detecting unit, and the three-dimensional data is corrected based on the result detected by the posture detecting unit. As a result, a highly accurate three-dimensional data as corrected the posture at an arbitrary measurement point can be acquired with a simple configuration.
  • Furthermore, according to the present invention, the data acquiring device further comprises a second arithmetic processing unit and an image pickup device having an image pickup optical axis in parallel and having a known relation with the projection optical axis, wherein the second arithmetic processing unit is configured so as to acquire an image with a three-dimensional data by associating a distance measuring result obtained by the distance measuring unit with the image acquired by the image pickup device. As a result, an image with a high accurate three-dimensional data as corrected the posture at the arbitrary measurement point at the data acquisition can be acquired.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematical drawing of a posture detecting device according to an embodiment of the present invention.
  • FIG. 2 is a schematical block diagram of the posture detecting device.
  • FIG. 3 is a schematical drawing of a data acquiring device according to an embodiment of the present invention.
  • FIG. 4 is an arrow diagram A of FIG. 3.
  • FIG. 5A, FIG. 5B, and FIG. 5C are drawings to explain an operation of first and second optical axis deflecting units.
  • FIG. 6A and FIG. 6B are explanatory drawing for explaining a relation between an acquired image and a scanning locus.
  • FIG. 7 is a schematical drawing to show an essential part of another embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A description will be given below on an embodiment of the present invention by referring to the attached drawings.
  • FIG. 1 and FIG. 2 are schematical drawings of a posture detecting device 19 according to the embodiment of the present invention.
  • Inside an outer frame 51 with a rectangular frame shape, an inner frame 53 with a rectangular frame shape is provided, and inside the inner frame 53, a tilt detecting unit 56 is provided.
  • In FIG. 1, from an upper surface and a lower surface of the inner frame 53, vertical shafts 54 and 54 are protruded, and the vertical shafts 54 and 54 are rotatably fitted with bearings 52 and 52 as provided on the outer frame 51. The vertical shafts 54 and 54 have a vertical axis, and the inner frame 53 is capable of rotating freely by 360° around the vertical shafts 54 and 54 as the center.
  • The tilt detecting unit 56 is supported by a horizontal shaft 55, and both end portions of the horizontal shaft 55 is rotatably fitted with bearings 57 and 57 provided on the inner frame 53. The horizontal shaft 55 has a horizontal axis perpendicular to the vertical axis, and the tilt detecting unit 56 is capable of rotating freely by 360° around the horizontal shaft 55 as the center.
  • The tilt detecting unit 56 is rotatably supported in two axial directions with respect to the outer frame 51, and a mechanism rotatably supporting the inner frame 53 and a mechanism rotatably supporting the tilt detecting unit 56 make up a gimbal mechanism. The tilt detecting unit 56 is supported via the gimbal mechanism with respect to the outer frame 51, and further, since there is no mechanism restricting the rotation of the inner frame 53, the tilt detecting unit 56 is configured to be freely rotatable in all directions with respect to the outer frame 51.
  • On one of the vertical shafts 54 and 54, for instance, a first driven gear 58 is fixed to the lower vertical shaft 54, and a first driving gear 59 meshes with the first driven gear 58. Further, a first motor 61 is provided on a lower surface of the outer frame 51, and the first driving gear 59 is fixed to an output shaft of the first motor 61.
  • On the other of the vertical shafts 54 and 54, a first encoder 62 is provided, and the first encoder 62 is configured so as to detect a rotation angle of the inner frame 53 with respect to the outer frame 51.
  • To one end portion of the horizontal shaft 55, a second driven gear 63 is fixed, and with the second driven gear 63, a second driving gear 64 meshes. Further, on a side left side in the figure) of the inner frame 53, a second motor 65 is provided, and the second driving gear 64 is fixed to an output shaft of the second motor 65.
  • On the other end portion of the horizontal shaft 55, a second encoder 66 is provided, and the second encoder 66 is configure so as to detect the rotation angle of the tilt detecting unit 56 with respect to the inner frame 53.
  • The first encoder 62 and the second encoder 66 are electrically connected to a first arithmetic processing unit 68.
  • The tilt detecting unit 56 has a first tilt sensor 71 and a second tilt sensor 72, and the first tilt sensor 71 and the second tilt sensor 72 are electrically connected to the first arithmetic processing unit 68.
  • Further description will be given on the posture detecting device 19 by referring to FIG. 2.
  • The posture detecting device 19 further comprises a storage unit 73 and an input/output control unit 74 in addition to the first encoder 62, the second encoder 66, the first tilt sensor 71, the second tilt sensor 72, the first arithmetic processing unit 68, the first motor 61 and the second motor 65.
  • In the storage unit 73, a program such as programs including a calculation program for a posture detection and the like, and data such as calculation data and the like are stored.
  • The input/output control unit 74 drives the first motor 61 and the second motor 65 based on a control instruction output from the first arithmetic processing unit 68 and outputs a result of a tilt detection calculated by the first arithmetic processing unit 68.
  • The first tilt sensor 71 is for detecting the horizontal with high accuracy, for instance, a tilt detector in which a detection light incidents to a horizontal liquid surface and the horizontal is detected according to a change of a reflection angle of the reflected light, or a bubble tube which detects a tilting according to a positional change of sealed air bubbles. Further, the second tilt sensor 72 is for detecting a tilt change with high responsiveness, for instance, an acceleration sensor.
  • Both the first tilt sensor 71 and the second tilt sensor 72 can individually detect a tilting in the two axial directions, which are a rotating direction (a tilting direction) detected by the first encoder 62 and a rotating direction (a tilting direction) detected by the second encoder 66.
  • The first arithmetic processing unit 68 calculates a tilt angle and a tilting direction based on detection results from the first tilt sensor 71 and the second tilt sensor 72, and further, calculates a rotation angle of the first encoder 62 and a rotation angle of the second encoder 66 corresponding to the tilt angle and the tilting direction.
  • In a case where the outer frame 51 is installed horizontally, the posture detecting device 19 is set such that the first tilt sensor 71 detects the horizontal, and further, is set such that an output of the first encoder 62 and an output of the second encoder 66 both indicate a reference position (rotation angle at 0°).
  • A description will be given below on an operation of the posture detecting device 19.
  • First, a description will be given below on a case where a tilting is detected with high accuracy.
  • As the case where a tilting is detected with high accuracy, there is a case where the posture detecting device 19 is provided on an installation-type surveying instrument, for instance.
  • When the posture detecting device 19 is tilted, the first tilt sensor 71 outputs a signal corresponding to a tilting.
  • The first arithmetic processing unit 68 calculates a tilt angle and a tilting direction based on the signal from the first tilt sensor 71 and further calculates rotation amounts of the first motor 61 and the second motor 65 in order to make the tilt angle and the tilting direction 0 based on a calculation result and outputs a driving command for driving the first motor 61 and the second motor 65 by the rotation amounts via the input/output control unit 74.
  • By driving of the first motor 61 and the second motor 65, the first motor 61 and the second motor 65 are driven so as to be tilted oppositely to the calculated tilt angle and the tilting direction, driving amounts (the rotation angles) of the motors are detected by the first encoder 62 and the second encoder 66 respectively, and when the rotation angles reach the calculation results, the drivings of the first motor 61 and the second motor 65 are stopped.
  • Further, the rotations of the first motor 61 and the second motor 65 are slightly adjusted so that the first tilt sensor 71 detects the horizontal.
  • In this state, under the condition where the outer frame 51 is tilted, the tilt detection unit 56 is controlled to the horizontal.
  • Therefore, in order to make the tilt detecting unit 56 horizontal, the tilt angles and the tilting directions, by which the inner frame 53 and the tilt detecting unit 56 are tilted by the first motor 61 and the second motor 65, are acquired based on the rotation angles as detected by the first encoder 62 and the second encoder 66.
  • The first arithmetic processing unit 68 calculates the tilt angle and the tilting direction of the posture detecting device 19 based on the detection results of the first encoder 62 and the second encoder 66 when the first tilt sensor 71 detects the horizontal. The calculation result indicates the posture after the posture detecting device 19 is tilted.
  • The first arithmetic processing unit 68 outputs the calculated tilt angle and the tilting direction to an outside as a detection signal of the posture detecting device 19.
  • Next, a description will be given on an operation of the posture detecting device 19 in a case where the posture detecting device 19 is provided on a device as carried and acquires a data under such condition that the posture detecting device 19 is carried.
  • Under such condition that the posture detecting device 19 is carried, the posture of the posture detecting device 19 changes every moment. Therefore, the posture detection is performed based on the detection result of the second tilt sensor 72 with high responsiveness.
  • First, if the control is so executed that a horizontal condition is detected by the first tilt sensor 71, a posture change after that is obtained by the second tilt sensor 72 with high responsiveness, and the posture detection is performed based on the detection result from the second tilt sensor 72, the tilting and the tilting direction of the posture detecting device 19 can be detected in real time.
  • Further, as a structure shown in FIG. 1, there is nothing which restricts rotations of the tilt detecting unit 56 and the inner frame 53, and the tilt detecting unit 56 and the inner frame 53 can both rotate by 360° or more. That is, no matter what posture the posture detecting device 19 takes (even in a case where the posture detecting device 19 is upside down, for instance), the posture detection in all directions can be performed.
  • Therefore, there is no limitation of the measurement range of the tilt sensor, and the posture detection can be performed in a wide range and in all postures.
  • In a case where high responsiveness is required, although the posture detection is performed based on the detection result of the second tilt sensor 72, the second tilt sensor 72 has poorer detection accuracy than the first tilt sensor 71 in general.
  • In the present embodiment, by comprising the first tilt sensor 71 with high accuracy and the second tilt sensor 72 with high responsiveness, the posture detection with high accuracy can be performed based on the detection result of the second tilt sensor 72 only.
  • Further, based on the tilt angle as detected by the second tilt sensor 72, the motor is driven so that the tilt angle becomes 0, and further, the driving of the motor is continued until the first tilt sensor 71 detects the horizontal. If a deviation occurs between a value of the encoder when the first tilt sensor 71 detects the horizontal, that is, an actual tilt angle and the tilt angle as detected by the second tilt sensor 72, the tilt angle of the second tilt sensor 72 can be calibrated based on the deviation.
  • Therefore, by obtaining a relation between the detected tilt angle of the second tilt sensor 72 and the tilt angle which is obtained based on the horizontal detection by the first tilt sensor 71 and the detection result of the encoder in advance, the tilt angle detected by the second tilt sensor 72 can be calibrated. Thereby, accuracy of the posture detection with high responsiveness by the second tilt sensor 72 can be improved.
  • The posture detecting device 19 according to the present invention can be applied to various devices. Particularly, the posture detecting device is useful if the posture detecting device is applied to a portable type device of which the posture is not stable.
  • By providing the posture detecting device 19 in a portable type image acquiring device, for instance, a tilting of the image acquiring device during the image pickup can be detected, and the acquired image can be easily converted to the horizontal posture.
  • Next, a description will be given below on an example of the data acquiring device comprising the posture detecting device 19 according to the present invention by referring to FIG. 3 to FIG. 7. As an example of the data acquiring device, a device acquiring a data with an image is shown below.
  • In FIG. 3, reference numeral 1 denotes a surveying instrument, reference numeral 2 denotes an image pickup device and reference numeral 3 denotes a case for accommodating the surveying instrument 1 and the image pickup device 2. The surveying instrument 1 and the image pickup device 2 integrally make up a data acquiring device 4. The case 3 may be installed on a tripod or may be portable (handheld).
  • First, a description will be given on the surveying instrument 1.
  • The surveying instrument 1 has a distance measuring light projecting unit 5, a light receiving unit 6, a distance measuring unit 7, a second arithmetic processing unit 8, a projecting direction detecting unit 9, a display unit 10 and a posture detecting device 19.
  • The distance measuring light projecting unit 5 has a projection optical axis 11, a light emitting element, for instance, a laser diode (LD) 12 is provided on the projection optical axis 11, and further, a projecting lens 13 and a first optical axis deflecting unit 14 are disposed on the projection optical axis 11.
  • Further, a description will be given on the first optical axis deflecting unit 14.
  • On the projection optical axis 11, two first optical prisms 15 a and 15 b are provided, and each of the first optical prisms 15 a and 15 b is arranged rotatably around the projection optical axis 11 independently and individually. As to be descried later, the first optical prisms 15 a and 15 b deflect an optical axis of the distance measuring light projected from the projecting lens 13 in an arbitrary direction by controlling rotating directions, rotating amounts and rotating speeds of the first optical prisms 15 a and 15 b.
  • Materials of the first optical prisms 15 a and 15 b are preferably optical glass and the first optical prisms 15 a and 15 b are manufactured with high accuracy so as to have a same and known refractive index. By manufacturing the first optical prisms 15 a and 15 b with high accuracy, a luminous flux can be deflected to a predetermined direction without diffusing the distance measuring light, and further, an occurrence of distortion of a cross-section of a luminous flux or the like can be prevented, which enables a highly accurate distance measurement, and further, enables a long distance measurement.
  • Outer shapes of the first optical prisms 15 a and 15 b are circular with the projection optical axis 11 as the center respectively, a first ring gear 16 a is fitted with an outer periphery of the first optical prism 15 a and a first ring gear 16 b is fitted with an outer periphery of the first optical prism 15 b.
  • A first driving gear 17 a meshes with the first ring gear 16 a. The first driving gear 17 a is fixed to an output shaft of a first motor 18 a. Similarly, a first driving gear 17 b meshes with the first ring gear 16 b and the first driving gear 17 b is fixed to an output shaft of a first motor 18 b. The first motors 18 a and 18 b are electrically connected to the second arithmetic processing unit 8.
  • The first motors 18 a and 18 b are motors capable of detecting a rotation angle or motors which rotate corresponding to a driving input value, for instance, a pulse motor is used. Alternatively, a rotation detector for detecting a rotating amount of the motor such as an encoder or the like, for example, may be used for detecting the rotating amount of the motor.
  • The projecting direction detecting unit 9 counts driving pulses input to the first motors 18 a and 18 b and detects the rotation angles of the first motors 18 a and 18 b or detects the rotation angles of the first motors 18 a and 18 b based on signals from the encoders. Further, the projecting direction detecting unit 9 calculates rotation positions of the first optical prisms 15 a and 15 b based on the rotation angles of the first motors 18 a and 18 b, calculates deflection angle and a projecting direction of the distance measuring light based on the refractive indexes and the rotation positions of the first optical prisms 15 a and 15 b, and a calculation result is inputted to the second arithmetic processing unit 8.
  • In FIG. 3, the first driving gear 17 a and the first motor 18 a are shown on an upper side of the first ring gear 16 a, but actually, the first driving gears 17 a and 17 b are provided at positions not interfering with a visual field of the image pickup device 2 as described later, at sides of the first ring gear 16 a and 16 b as shown in FIG. 4, for instance.
  • The projecting lens 13, the first optical prisms 15 a and 15 b or the like make up a projection optical system 20.
  • A description will be given on the light receiving unit 6. The light receiving unit 6 receives a reflected distance measuring light from an object. The light receiving unit 6 has a light receiving optical axis 21 and the light receiving optical axis 21 is in parallel with the projection optical axis 11.
  • On the light receiving optical axis 21, a photodetection element 22, for instance, a photodiode (PD) is provided, and the photodetection element 22 receives the reflected distance measuring light and produces a photodetection signal. Further, on an objective side of the light receiving optical axis 21, a light receiving lens 23 and a second optical axis deflecting unit 24 are disposed.
  • The second optical axis deflecting unit 24 has a pair of second optical prisms 25 a and 25 b on the light receiving optical axis 21 which are overlapped each other and arranged in parallel. As for the second optical prisms 25 a and 25 b, a Fresnel prism is preferably used respectively in order to reduce a size of the instrument.
  • The Fresnel prism used as the second optical prisms 25 a and 25 b is composed of a large number of prism elements 26 formed in parallel with each other and has a plate shape. Each of the prism elements 26 has the same optical characteristics and each of the prism elements 26 has the same refractive index and deflection angle as the first optical prisms 15 a and 15 b.
  • The Fresnel prism may be manufactured by an optical glass but may be molded by an optical plastic material. By molding the Fresnel prism by the optical plastic material, a low cost Fresnel prism can be manufactured.
  • Each of the second optical prisms 25 a and 25 b is arranged in such a manner that each of the second optical prism 25 a and 25 b rotates with the light receiving optical axis 21 as the center individually. Similarly to the first optical prisms 15 a and 15 b, the second optical prisms 25 a and 25 b deflect an optical axis of the reflected distance measuring light as entered in an arbitrary direction by controlling rotating directions, rotating amounts and rotating speeds of the second optical prisms 25 a and 25 b.
  • Outer shapes of the second optical prisms 25 a and 25 b are circles with the light receiving optical axis 21 as the center, respectively, and taking an expansion of the reflected distance measuring light into consideration, diameters of the second optical prisms 25 a and 25 b are larger than the diameters of the first optical prisms 15 a and 15 b so that a sufficient light amount can be obtained.
  • A second ring gear 27 a is fitted with an outer periphery of the second optical prism 25 a and a second ring gear 27 b is fitted with an outer periphery of the second optical prism 25 b.
  • A second driving gear 28 a meshes with the second ring gear 27 a, and the second driving gear 28 a is fixed to an output shaft of a second motor 29 a. A second driving gear 28 b meshes with the second ring gear 27 b, and the second driving gear 28 b is fixed to an output shaft of a second motor 29 b. The second motors 29 a and 29 b are electrically connected to the second arithmetic processing unit 8.
  • As the second motors 29 a and 29 b, similarly to the first motors 18 a and 18 b, motors capable of detecting a rotation angle or motors which rotate corresponding to a driving input value, for instance, a pulse motor is used. Alternatively, a rotation detector for detecting a rotating amount (rotation angle) of the motor such as an encoder or the like, for example, may be used for detecting the rotating amount of the motor. The rotating amounts of the second motors 29 a and 29 b are detected and a synchronization control with the first motors 18 a and 18 b is carried out by the second arithmetic processing unit 8.
  • The second driving gears 28 a and 28 b and the second motors 29 a and 29 b are provided at positions not interfering with the distance measuring light projecting unit 5, for instance, on a lower side of the second ring gears 27 a and 27 b.
  • The second optical prisms 25 a and 25 b, the light receiving lens 23, or the like, make up a light receiving optical system 30.
  • The distance measuring unit 7 controls the light emitting element 12 and emits a laser beam as the distance measuring light. The reflected distance measuring light reflected from an object to be measured enters through the second optical prisms 25 a and 25 b and the light receiving lens 23 and is received by the photodetection element 22. The photodetection element 22 sends the photodetection signal to the distance measuring unit 7 and the distance measuring unit 7 performs distance measurement of a measuring point (a point where the distance measuring light is projected) based on the photodetection signal from the photodetection element 22.
  • The second arithmetic processing unit 8 is configured by an input/output control unit, an arithmetic unit (CPU), a storage unit, or the like. The storage unit stores programs such as a distance measuring program for controlling a distance measuring operation, a control program for controlling drivings of the first motors 18 a and 18 b and the second motors 29 a and 29 b, an image display program for displaying an image data, a distance measuring data, or the like, on the display unit 10, or the like, and further, in the storage unit, measurement results of the distance measuring data, the image data, or the like, are stored.
  • The posture detecting device 19 detects a posture with respect to the projection optical axis 11 of the distance measuring unit 7 and a posture (a tilt angle and a tilting direction) with respect to the horizontal of the data acquiring device 4. A detection result is inputted to the second arithmetic processing unit 8.
  • The image pickup device 2 has a wide-angle camera 35 and a narrow-angle camera 36, the wide-angle camera 35 has a wide-field angle, for instance 30°, while the narrow-angle camera 36 has a field angle narrower than the field angle of the wide-angle camera 35, for instance 5°. Further, it is preferable that the field angle of the narrow-angle camera 36 is equal to or slightly larger than a range to acquire a point cloud data (to be described later) obtained by the distance measuring light projecting unit 5.
  • Further, image pickup elements of the wide-angle camera 35 and the narrow-angle camera 36 are a CCD or a CMOS sensor which are an aggregate of pixels, and it is so arranged that a position of each pixel on an image element can be specified. For instance, the position of each pixel is specified by a coordinate system with an optical axis of each camera as an origin point.
  • The optical axis of the wide-angle camera 35 and the optical axis of the narrow-angle camera 36 are both parallel to the projection optical axis 11, and further, the optical axis of the wide-angle camera 35, the optical axis of the narrow-angle camera 36 and the projection optical axis 11 are in a known relation.
  • First, a description will be given on a measurement operation by the surveying instrument 1 by referring to FIG. 5A and FIG. 5B. To simplify the explanation, in FIG. 5A, the second optical prisms 25 a and 25 b are shown as single prisms, respectively. Further, the first optical prisms 15 a and 15 b and the second optical prisms 25 a and 25 b as shown in FIG. 5A are in a state in which maximum deflection angles can be obtained. Further, the minimum deflection angle is a position where either one of the first optical prisms 15 a and 15 b and either one of the second optical prisms 25 a and 25 b are rotated by 180°, the deflection angle becomes 0°, and an optical axis of the laser beam as projected becomes parallel with the projection optical axis 11.
  • A distance measuring light is emitted from the light emitting element 12, the distance measuring light is turned to a parallel luminous flux by the projecting lens 13 and projected toward an object to be measured or a measurement target area through the first optical axis deflecting unit 14 (the first optical prisms 15 a and 15 b). Here, by passing through the first optical axis deflecting unit 14, the distance measuring light is deflected to a direction as required and projected by the first optical prisms 15 a and 15 b.
  • The reflected distance measuring light as reflected by the object to be measured or by the measurement target area is incident through the second optical axis deflecting unit 24 and is focused to the photodetection element 22 by the light receiving lens 23.
  • Since the reflected distance measuring light passes through the second optical axis deflecting unit 24, the optical axis of the reflected distance measuring light is deflected by the second optical prisms 25 a and 25 b so as to coincide with the light receiving optical axis 21 (FIG. 5A).
  • That is, the rotation positions, the rotating directions and the rotating speeds of the first optical prisms 15 a and 15 b and the second optical prisms 25 a and 25 b are synchronously controlled so that the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 have the same deflection angles at all times.
  • Specifically, the first motor 18 a and the second motor 29 a are synchronously controlled by the second arithmetic processing unit 8 so that the first optical prism 15 a and the second optical prism 25 a are deflected in the same direction at all times. Further, the first motor 18 b and the second motor 29 b are synchronously controlled by the second arithmetic processing unit 8 so that the first optical prism 15 b and the second optical prism 25 b are deflected in the same direction at all times.
  • Further, by a combination of the rotation positions of the first optical prism 15 a and the first optical prism 15 b, the deflecting direction and the deflection angle of distance measuring light to be projected can be arbitrarily deflected.
  • Further, under a condition where a positional relation between the first optical prism 15 a and the first optical prism 15 b is fixed (under a condition where the deflection angles obtained by the first optical prism 15 a and the first optical prism 15 b are fixed), by rotating the first optical prism 15 a and the first optical prism 15 b integrally, a locus drawn by the distance measuring light passing through the first optical axis deflecting unit 14 becomes a circle with the projection optical axis 11 as the center.
  • Therefore, by rotating the first optical axis deflecting unit 14 while emitting the laser beam from the light emitting element 12, the distance measuring light can be scanned by the locus of the circle.
  • It is to be noted that in this case also, it is needless to say that the second optical axis deflecting unit 24 rotates in the same direction at the same speed in synchronization with the first optical axis deflecting unit 14.
  • Next, FIG. 5B illustrates a case in which the first optical prism 15 a and the first optical prism 15 b are relatively rotated. Assuming that a deflecting direction of the optical axis as deflected by the first optical prism 15 a is a deflection “A” and the deflecting direction of the optical axis as deflected by the first optical prism 15 b is a deflection “B”, the deflection of the optical axis by the first optical prisms 15 a and 15 b becomes a synthetic deflection “C” as an angle difference 9 between the first optical prisms 15 a and 15 b.
  • Therefore, each time the angle difference 8 is changed, by rotating the first optical axis deflecting unit 14 once, the distance measuring light can be scanned linearly.
  • Further, as illustrated in FIG. 5C, when the first optical prism 15 b is rotated at a rotating speed lower than the rotating speed of the first optical prism 15 a, since the distance measuring light is rotated while the angle difference 8 is gradually increased, the scanning locus of the distance measuring light becomes a spiral form.
  • Furthermore, by controlling the rotating direction and the rotating speed of the first optical prism 15 a and the first optical prism 15 b individually, the scanning locus of the distance measuring light is made in a radial direction (scanning in the radial direction) with the projection optical axis 11 as the center or in a horizontal direction or in a vertical direction or the like, and various scanning states can be obtained.
  • As a mode of measurement, by performing a distance measurement by fixing the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 per each deflection angle as required, the distance measurement can be performed with respect to a specific measuring point. Further, by executing the distance measurement while deflecting the deflection angles of the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24, that is, by executing the distance measurement while scanning the distance measuring light, the point cloud data can be acquired.
  • Further, the projection directional angle of each distance measuring light can be detected by the rotation angles of the first motors 18 a and 18 b, and by associating the projection directional angle with the distance measurement data, the three-dimensional point cloud data can be acquired.
  • Further, a tilting of the projection optical axis 11 with respect to the horizontal can be detected by the posture detecting device 19. The point cloud data is corrected based on the tilting detected by the posture detecting device 19 and the point cloud data with high accuracy can be acquired. Therefore, even in a case where the data acquiring device 4 does not have a leveling function and cannot be installed horizontally, the point cloud data with high accuracy can be acquired.
  • Next, the three-dimensional data is acquired and the image data can also be acquired.
  • As described above, the image pickup device 2 has the wide-angle camera 35 and the narrow-angle camera 36.
  • The wide-angle camera 35 is primarily used for observation, and a wide-angle image acquired by the wide-angle camera 35 is displayed on the display unit 10.
  • A measuring operator searches an object to be measured from an image displayed on the display unit 10 or selects the object to be measured.
  • When the object to be measured is selected, the data acquiring device 4 is directed so that the object to be measured is captured by the narrow-angle camera 36. A narrow-angle image acquired by the narrow-angle camera 36 is displayed on the display unit 10. As a display method, the display of the wide-angle image by the wide-angle camera 35 and the display of the narrow-angle image by the narrow-angle camera 36 may be switched. Alternatively, the display unit 10 may be divided and display the narrow-angle image by the narrow-angle camera 36 on a divided portion or a window may be provided to display the narrow-angle image on the window.
  • Since the narrow-angle image acquired by the narrow-angle camera 36 is equal to or approximately equal to a measurement range of the surveying instrument 1, the measuring operator can visually specify the measurement range easily.
  • Further, since the projection optical axis 11 and the optical axis of the narrow-angle camera 36 are parallel, and both the optical axes are in a known relation, the second arithmetic processing unit 8 can match the image center with the projection optical axis 11 on the narrow-angle image by the narrow-angle camera 36. Further, by detecting the projection angle of the distance measuring light, the second arithmetic processing unit 8 can specify a measuring point on the image based on the projection angle. Therefore, an association between the three-dimensional data of the measuring point and the narrow-angle image can be performed easily, and the narrow-angle image as acquired by the narrow-angle camera 36 can be turned to an image with the three-dimensional data.
  • FIG. 6A and FIG. 6B show a relation between an image acquired by the narrow-angle camera 36 and an acquiring of the point cloud data. FIG. 6A shows a case in which the distance measuring light is scanned in a concentric and multi-circular form and FIG. 6B shows a case in which the distance measuring light is reciprocally scanned linearly. In the figure, reference numeral 37 denotes a scanning locus and the measuring points are positioned on the scanning locus.
  • Further, in a case where the measurement of a wide range is executed, the wide-angle image acquired by the wide-angle camera 35 is made the measurement range, the narrow-angle images acquired by the narrow-angle camera 36 are fitted into the wide-angle images like a patchwork and hence the measurement can be performed without a waste or without leaving an unmeasured portion.
  • Further, the data acquiring device 4 in the present embodiment comprises the posture detecting device 19.
  • The posture detecting device 19 is for detecting a posture of the data acquiring device 4 with respect to the horizontal, that is, a tilt angle and a tilting direction of the projection optical axis 11. In a case where the data acquiring device 4 is installed via a tripod, based on the detection result of the posture detecting device 19, the data acquiring device 4 is installed horizontally and the measurement can be performed under a condition where the data acquiring device 4 is horizontal. Therefore, a correcting operation such as correcting of a measured value by considering the tilting of the data acquiring device 4, or the like, is no longer needed.
  • In a case where the data acquiring device 4 is used under a carried condition (a handheld condition), the posture of the data acquiring device 4, when measurement is performed is detected by the posture detecting device 19, and the second arithmetic processing unit 8 corrects the measured value based on the tilt angle and the tilting direction as detected.
  • Thereby, even under a condition close to a camera shake, the measurement as corrected with high accuracy becomes possible.
  • In the embodiment as described above, the second optical prisms 25 a and 25 b are made of the Fresnel prisms, but if there is a room, the second optical prisms 25 a and 25 b may be constituted by a single prism, respectively.
  • FIG. 7 shows another embodiment.
  • In the another embodiment, the first optical axis deflecting unit 14 and the second optical axis deflecting unit 24 in the embodiment as described above are integrated as an optical axis deflecting unit 40. It is to be noted that in FIG. 7, what are equivalent to components as shown in FIG. 3 are referred by the same symbol.
  • A first reflection mirror 41 as a deflecting optical member is provided on a projection optical axis 11 of a distance measuring light projecting unit 5. Further, a second reflection mirror 42 as the deflecting optical member is faced with the first reflection mirror 41 and disposed on a light receiving optical axis 21. Further, the first reflection mirror 41 and the second reflection mirror 42 are set with a positional relation so that the projection optical axis 11 as deflected by the first reflection mirror 41 and the second reflection mirror 42 coincides with a light receiving optical axis 21 of a light receiving unit 6. The first reflection mirror 41 and the second reflection mirror 42 make up the projection optical axis deflecting unit.
  • It is to be noted that a size of the second reflection mirror 42 will suffice if the size is enough to reflect a distance measuring light. Therefore, since a luminous flux diameter of the distance measuring light is smaller, the size of the second reflection mirror 42 may be smaller. Since a luminous flux diameter of the reflected measuring light is larger, a light amount of the reflected distance measuring light as intercepted by the second reflection mirror 42 is small and does not exert influence on the distance measurement.
  • The optical axis deflecting unit 40 has circular-shaped combined optical prisms 43 a and 43 b disposed in parallel on the light receiving optical axis 21.
  • Since the combined optical prisms 43 a and 43 b have similar structure, a description will be given below on the combined optical prism 43 a.
  • The combined optical prism 43 a is composed of a second optical prism 25 a and a first optical prism 15 a.
  • The second optical prism 25 a is a Fresnel prism in which a large number of prism elements 26 are formed, and at a central portion of the Fresnel prism, the prism element 26 is cut out circularly, the first optical prism 15 a is provided at the central portion, and the second optical prism 25 a and the first optical prism 15 a are integrated. Further, the directions of the prism elements 26 of the first optical prism 15 a and the second optical prism 25 a are coincided with each other.
  • The first optical prism 15 a and the second optical prism 25 a are made of an optical plastic material and may be integrally molded by molding or it may be so designed that the second optical prism 25 a is molded and a prism (the first optical prism 15 a) manufactured by an optical glass is attached to the second optical prism 25 a.
  • A distance measuring light emitted from a light emitting element 12 turned to a parallel luminous flux by a projecting lens 13 and is deflected by the first reflection mirror 41 and the second reflection mirror 42 so as to be projected along the light receiving optical axis 21.
  • Since the distance measuring light passes through the central portion of the combined optical prisms 43 a and 43 b, that is, the first optical prisms 15 a and 15 b, the distance measuring light is deflected to a direction as required and an angle as required, and projected.
  • Further, the reflected distance measuring light as reflected by the object to be measured passes through the second optical prisms 25 a and 25 b portions of the combined optical prisms 43 a and 43 b, is deflected so as to be in parallel with the light receiving optical axis 21, received by the photodetection element 22 and distance measurement is performed based on the light receiving result of the photodetection element 22.
  • In this another embodiment, since the first optical axis deflecting unit 14 is omitted, the structure is further simplified.
  • Further, motors used in a deflecting unit can be only the second motors 29 a and 29 b and controlling of the motors are also simplified.
  • As described above, in the data acquiring device according to the present invention, a point cloud data can be easily acquired by a simple structure. Further, in a case where an image is to be acquired at the same time, since an optical axis of an image pickup device coincides with a distance measuring optical axis (or in a parallel and known relation), association between the image and the point cloud data can be performed easily and the image with a three-dimensional data can be acquired easily.
  • Further, by comprising the posture detecting device according to the present invention, a correction and a modification of a tilting can be performed easily, and it becomes possible to acquire a data with high accuracy under such the condition that the posture detecting device is carried. Further, in the posture detecting device according to the present invention, since there is no limitation on the detection range of the tilt angle and it is possible to detect all directions and all postures, even in a case where the posture detecting device is equipped on a flying vehicle of which the posture is largely changed, the posture can be accurately detected, and a correction of the acquired data is also easy.

Claims (4)

1. A posture detecting device comprising; a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of said shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling said motor based on a detection result from said tilt detecting unit, wherein said first arithmetic processing unit drives said motors so that said tilt detecting unit detects the horizontal based on a signal from said tilt detecting unit when said outer frame is tilted and calculates a posture of said outer frame based on outputs of said encoders when said tilt detecting unit detects the horizontal.
2. The posture detecting device according to claim 1, wherein said tilt detecting unit comprises a first tilt sensor for detecting the horizontal with high accuracy and a second tilt sensor for detecting the tilting in a wider range and with a response at a higher speed than said first tilt sensor, wherein said second tilt sensor detects the tilting from the horizontal as detected by said first tilt sensor and wherein said first arithmetic processing unit is configured to calculate the posture of said outer frame based on a detection signal from said second tilt sensor.
3. A data acquiring device comprising; a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting said distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from said photodetection element, further comprising said posture detecting device according to claim 1 or 2, a first optical axis deflecting unit disposed on a projection optical axis of said distance measuring light for deflecting an optical axis of said distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as said first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle and a deflecting direction by said first optical axis deflecting unit, wherein it is so arranged that said distance measuring light is projected through said first optical axis deflecting unit and said reflected distance measuring light is received by said photodetection element through said second optical axis deflecting unit and a three-dimensional data of a measuring point is obtained based on a distance measuring result of said distance measuring unit and a detection result of said projecting direction detecting unit, and said three-dimensional data is corrected based on the result detected by said posture detecting unit.
4. The data acquiring device according to claim 3, further comprising a second arithmetic processing unit and an image pickup device having an image pickup optical axis in parallel and having a known relation with said projection optical axis, wherein said second arithmetic processing unit is configured so as to acquire an image with a three-dimensional data by associating a distance measuring result obtained by said distance measuring unit with the image acquired by said image pickup device.
US15/019,393 2015-02-16 2016-02-09 Posture detecting device and data acquiring device Active 2036-12-04 US10048377B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-027483 2015-02-16
JP2015027483A JP6541365B2 (en) 2015-02-16 2015-02-16 Posture detection device and data acquisition device

Publications (2)

Publication Number Publication Date
US20160238708A1 true US20160238708A1 (en) 2016-08-18
US10048377B2 US10048377B2 (en) 2018-08-14

Family

ID=55357927

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/019,393 Active 2036-12-04 US10048377B2 (en) 2015-02-16 2016-02-09 Posture detecting device and data acquiring device

Country Status (4)

Country Link
US (1) US10048377B2 (en)
EP (1) EP3056857B1 (en)
JP (1) JP6541365B2 (en)
CN (1) CN105890578B (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897436B2 (en) 2016-06-01 2018-02-20 Topcon Corporation Measuring instrument and surveying system
US10088307B2 (en) 2015-02-16 2018-10-02 Kabushiki Kaisha Topcon Surveying instrument and three-dimensional camera
EP3401639A1 (en) * 2017-05-10 2018-11-14 Topcon Corporation Surveying system
EP3401638A3 (en) * 2017-05-10 2019-02-06 Topcon Corporation Surveying system
US10324183B2 (en) 2016-09-16 2019-06-18 Topcon Corporation UAV measuring apparatus and UAV measuring system
US10520307B2 (en) 2016-02-08 2019-12-31 Topcon Corporation Surveying instrument
US10605600B2 (en) 2017-08-28 2020-03-31 Topcon Corporation Surveying system
US10634795B2 (en) 2017-01-31 2020-04-28 Topcon Corporation Rover and rover measuring system
US10767991B2 (en) 2016-10-17 2020-09-08 Topcon Corporation Laser scanner
US10800344B2 (en) 2016-11-25 2020-10-13 Topcon Corporation Aerial photogrammetric device and aerial photogrammetric method
US10809360B2 (en) 2017-03-31 2020-10-20 Topcon Corporation Laser scanner
US10816665B2 (en) 2017-02-07 2020-10-27 Topcon Corporation Surveying system
US10823823B2 (en) 2017-02-13 2020-11-03 Topcon Corporation Measuring instrument
US10982957B2 (en) 2017-08-25 2021-04-20 Topcon Corporation Surveying system
US10983196B2 (en) 2017-07-06 2021-04-20 Topcon Corporation Laser scanner and surveying system
US11029154B2 (en) 2017-05-12 2021-06-08 Topcon Corporation Deflecting device and surveying instrument
US11035936B2 (en) 2017-06-28 2021-06-15 Topcon Corporation Deflecting device and surveying instrument
US11193765B2 (en) 2018-12-11 2021-12-07 Topcon Corporation Surveying instrument and photogrammetric method
US11293754B2 (en) 2019-04-02 2022-04-05 Topcon Corporation Surveying instrument
US11333496B2 (en) 2018-05-01 2022-05-17 Topcon Corporation Surveying instrument
US11333764B2 (en) * 2018-02-01 2022-05-17 Topcon Corporation Survey system
US11385052B2 (en) 2019-04-15 2022-07-12 Topcon Corporation Surveying instrument
US11402207B2 (en) 2017-12-19 2022-08-02 Topcon Corporation Surveying instrument
US11402206B2 (en) 2018-09-25 2022-08-02 Topcon Corporation Surveying instrument and surveying instrument system
US11402506B2 (en) 2017-09-25 2022-08-02 Topcon Corporation Laser measuring method and laser measuring instrument
US11415414B2 (en) 2018-05-24 2022-08-16 Topcon Corporation Surveying instrument
US11421989B2 (en) 2019-06-10 2022-08-23 Topcon Corporation Surveying instrument
US11460299B2 (en) * 2017-09-20 2022-10-04 Topcon Corporation Survey system
US11500096B2 (en) 2018-10-25 2022-11-15 Topcon Corporation Surveying instrument
US11506759B2 (en) 2017-11-17 2022-11-22 Topcon Corporation Surveying instrument and surveying instrument system
US11512957B2 (en) 2019-06-10 2022-11-29 Topcon Corporation Surveying instrument
US11536568B2 (en) 2018-09-06 2022-12-27 Topcon Corporation Target instrument and surveying system
US11598637B2 (en) 2018-09-12 2023-03-07 Topcon Corporation Surveying instrument
US11598874B2 (en) 2020-03-18 2023-03-07 Topcon Corporation Surveying instrument and surveying instrument system
US11598854B2 (en) * 2018-05-10 2023-03-07 Topcon Corporation Surveying system
US11698254B2 (en) 2019-09-25 2023-07-11 Topcon Corporation Surveying instrument having wavelength dispersion compensation prisms and surveying instrument system
US11940274B2 (en) 2019-10-16 2024-03-26 Topcon Corporation Tilt detecting device and surveying instrument
US12123543B2 (en) 2021-03-26 2024-10-22 Topcon Corporation Inclination sensor and data acquisition device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560596B2 (en) 2015-11-18 2019-08-14 株式会社トプコン Surveying equipment
JP6777987B2 (en) * 2015-12-10 2020-10-28 株式会社トプコン measuring device
JP6830375B2 (en) * 2017-02-24 2021-02-17 株式会社トプコン Gimbal device, attitude detector, surveying device, surveying pole, and flying vehicle
JP6850174B2 (en) * 2017-03-24 2021-03-31 株式会社トプコン Measuring device, surveying system
WO2018185893A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Unmeasured area extraction device, work guidance device, and work guidance method
JP6913422B2 (en) * 2017-07-06 2021-08-04 株式会社トプコン Surveying system
JP6877845B2 (en) * 2017-09-22 2021-05-26 株式会社トプコン Laser scanner measurement value correction method and equipment for that
JP7032845B2 (en) 2018-03-28 2022-03-09 株式会社トプコン Surveying device
CN109029398B (en) * 2018-08-20 2021-01-05 安徽棋然建筑科技有限公司 Supporting device of engineering measurement equipment in building construction
WO2020050121A1 (en) * 2018-09-03 2020-03-12 倉敷紡績株式会社 Working position determining method for strip-shaped object, robot control method, working position determining device for strip-shaped object, strip-shaped object handling system, three-dimensional measuring method for strip-shaped object, and three-dimensional measuring device for strip-shaped object
FR3090125B1 (en) * 2018-12-18 2021-02-26 Thales Sa Compact lidar system
JP7202242B2 (en) 2019-04-02 2023-01-11 株式会社トプコン surveying equipment
JP2021167736A (en) 2020-04-09 2021-10-21 株式会社トプコン Inclination sensor and data acquisition device
JP7464449B2 (en) 2020-06-08 2024-04-09 株式会社トプコン Surveying equipment and systems
JP2022054848A (en) 2020-09-28 2022-04-07 株式会社トプコン Tracking method, laser scanner, and tracking program
JP2022084096A (en) 2020-11-26 2022-06-07 株式会社トプコン Surveying device, surveying method and surveying program
JP7536666B2 (en) 2021-01-19 2024-08-20 株式会社トプコン Surveying Equipment
CN114137590B (en) * 2021-11-25 2024-05-28 西安应用光学研究所 Target positioning method based on north reference correction of orthogonal shafting leveling device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049217A (en) * 1983-08-29 1985-03-18 Tech Res & Dev Inst Of Japan Def Agency Inertial navigation system based upon earth axis reference and north indicating reference
JPS60165629A (en) * 1984-02-09 1985-08-28 Senaa Kk Still picture photographing device
US5249046A (en) 1992-03-30 1993-09-28 Kaman Aerospace Corporation Method and apparatus for three dimensional range resolving imaging
JP3582918B2 (en) * 1995-02-14 2004-10-27 株式会社トプコン Laser surveying machine
IL155859A0 (en) 2003-05-12 2004-08-31 Elop Electrooptics Ind Ltd Optical unit and system for steering a light beam
DE102005000048A1 (en) * 2005-04-29 2006-11-02 Hilti Ag Tiltable construction laser
JP4944462B2 (en) 2006-03-14 2012-05-30 株式会社トプコン Geographic data collection device
JP5057734B2 (en) * 2006-09-25 2012-10-24 株式会社トプコン Surveying method, surveying system, and surveying data processing program
US7697125B2 (en) * 2007-05-11 2010-04-13 Rosemount Aerospace Inc. Scanning ladar with adjustable operational parameters
JP4996371B2 (en) 2007-07-02 2012-08-08 株式会社トプコン Automatic leveling device for surveying instruments
JP5145013B2 (en) * 2007-11-01 2013-02-13 株式会社トプコン Surveying instrument
JP5145029B2 (en) * 2007-12-27 2013-02-13 株式会社トプコン Surveyor and survey correction method
WO2009155924A1 (en) 2008-06-27 2009-12-30 Danmarks Tekniske Universitet Rotating prism scanning device and method for scanning
NO332432B1 (en) * 2008-08-12 2012-09-17 Kongsberg Seatex As System for detection and imaging of objects in the trajectory of marine vessels
JP5560054B2 (en) * 2010-01-22 2014-07-23 株式会社トプコン Tilt detection device and laser surveying instrument
EP2469294A1 (en) 2010-12-23 2012-06-27 André Borowski 2D/3D real-time imager and corresponding imaging methods
JP2013044739A (en) * 2011-08-19 2013-03-04 Geotech:Kk Inclination change measuring sensor network device and inclination change measuring sensor network system
JP5968626B2 (en) 2012-01-11 2016-08-10 株式会社トプコン Attachment device and total station
JP2013207415A (en) * 2012-03-27 2013-10-07 Osaka City Univ Imaging system and imaging method
EP2856240A4 (en) 2012-04-26 2016-03-02 Neptec Design Group Ltd High speed 360 degree scanning lidar head
JP6616077B2 (en) 2015-02-16 2019-12-04 株式会社トプコン Measuring device and 3D camera
JP6680553B2 (en) 2016-02-08 2020-04-15 株式会社トプコン Surveying equipment

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088307B2 (en) 2015-02-16 2018-10-02 Kabushiki Kaisha Topcon Surveying instrument and three-dimensional camera
US10309774B2 (en) 2015-02-16 2019-06-04 Kabushiki Kaisha Topcon Surveying instrument and three-dimensional camera
US10520307B2 (en) 2016-02-08 2019-12-31 Topcon Corporation Surveying instrument
US10048063B2 (en) 2016-06-01 2018-08-14 Topcon Corporation Measuring instrument and surveying system
US9897436B2 (en) 2016-06-01 2018-02-20 Topcon Corporation Measuring instrument and surveying system
US10324183B2 (en) 2016-09-16 2019-06-18 Topcon Corporation UAV measuring apparatus and UAV measuring system
US10767991B2 (en) 2016-10-17 2020-09-08 Topcon Corporation Laser scanner
US10800344B2 (en) 2016-11-25 2020-10-13 Topcon Corporation Aerial photogrammetric device and aerial photogrammetric method
US10634795B2 (en) 2017-01-31 2020-04-28 Topcon Corporation Rover and rover measuring system
US10816665B2 (en) 2017-02-07 2020-10-27 Topcon Corporation Surveying system
US10823823B2 (en) 2017-02-13 2020-11-03 Topcon Corporation Measuring instrument
US10809360B2 (en) 2017-03-31 2020-10-20 Topcon Corporation Laser scanner
EP3872453A1 (en) * 2017-05-10 2021-09-01 Topcon Corporation Surveying system
EP3401639A1 (en) * 2017-05-10 2018-11-14 Topcon Corporation Surveying system
EP3401638A3 (en) * 2017-05-10 2019-02-06 Topcon Corporation Surveying system
US20180329041A1 (en) * 2017-05-10 2018-11-15 Topcon Corporation Surveying System
US10895632B2 (en) * 2017-05-10 2021-01-19 Topcon Corporation Surveying system
US10921430B2 (en) 2017-05-10 2021-02-16 Topcon Corporation Surveying system
US11029154B2 (en) 2017-05-12 2021-06-08 Topcon Corporation Deflecting device and surveying instrument
US11035936B2 (en) 2017-06-28 2021-06-15 Topcon Corporation Deflecting device and surveying instrument
US10983196B2 (en) 2017-07-06 2021-04-20 Topcon Corporation Laser scanner and surveying system
US10982957B2 (en) 2017-08-25 2021-04-20 Topcon Corporation Surveying system
US10605600B2 (en) 2017-08-28 2020-03-31 Topcon Corporation Surveying system
US11460299B2 (en) * 2017-09-20 2022-10-04 Topcon Corporation Survey system
US11402506B2 (en) 2017-09-25 2022-08-02 Topcon Corporation Laser measuring method and laser measuring instrument
US11506759B2 (en) 2017-11-17 2022-11-22 Topcon Corporation Surveying instrument and surveying instrument system
US11402207B2 (en) 2017-12-19 2022-08-02 Topcon Corporation Surveying instrument
US11333764B2 (en) * 2018-02-01 2022-05-17 Topcon Corporation Survey system
US11333496B2 (en) 2018-05-01 2022-05-17 Topcon Corporation Surveying instrument
US11598854B2 (en) * 2018-05-10 2023-03-07 Topcon Corporation Surveying system
US11415414B2 (en) 2018-05-24 2022-08-16 Topcon Corporation Surveying instrument
US11536568B2 (en) 2018-09-06 2022-12-27 Topcon Corporation Target instrument and surveying system
US11598637B2 (en) 2018-09-12 2023-03-07 Topcon Corporation Surveying instrument
US11402206B2 (en) 2018-09-25 2022-08-02 Topcon Corporation Surveying instrument and surveying instrument system
US11500096B2 (en) 2018-10-25 2022-11-15 Topcon Corporation Surveying instrument
US11193765B2 (en) 2018-12-11 2021-12-07 Topcon Corporation Surveying instrument and photogrammetric method
US11293754B2 (en) 2019-04-02 2022-04-05 Topcon Corporation Surveying instrument
US11385052B2 (en) 2019-04-15 2022-07-12 Topcon Corporation Surveying instrument
US11421989B2 (en) 2019-06-10 2022-08-23 Topcon Corporation Surveying instrument
US11512957B2 (en) 2019-06-10 2022-11-29 Topcon Corporation Surveying instrument
US11698254B2 (en) 2019-09-25 2023-07-11 Topcon Corporation Surveying instrument having wavelength dispersion compensation prisms and surveying instrument system
US11940274B2 (en) 2019-10-16 2024-03-26 Topcon Corporation Tilt detecting device and surveying instrument
US11598874B2 (en) 2020-03-18 2023-03-07 Topcon Corporation Surveying instrument and surveying instrument system
US12123543B2 (en) 2021-03-26 2024-10-22 Topcon Corporation Inclination sensor and data acquisition device

Also Published As

Publication number Publication date
EP3056857B1 (en) 2019-09-25
US10048377B2 (en) 2018-08-14
CN105890578B (en) 2020-07-03
JP2016151423A (en) 2016-08-22
CN105890578A (en) 2016-08-24
JP6541365B2 (en) 2019-07-10
EP3056857A1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
US10048377B2 (en) Posture detecting device and data acquiring device
US10309774B2 (en) Surveying instrument and three-dimensional camera
US10823558B2 (en) Surveying instrument
US10185026B2 (en) Measuring instrument
US11150346B2 (en) Measuring method and laser scanner
US10767991B2 (en) Laser scanner
US10921430B2 (en) Surveying system
US10809360B2 (en) Laser scanner
US10520307B2 (en) Surveying instrument
US11536568B2 (en) Target instrument and surveying system
US10823823B2 (en) Measuring instrument
US10564265B2 (en) Measurement device and measurement method
EP3358299A1 (en) Surveying system

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOPCON, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHTOMO, FUMIO;KUMAGAI, KAORU;OSARAGI, KAZUKI;REEL/FRAME:037710/0323

Effective date: 20160115

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4