US20160238540A1 - Device and Method for Measuring Panes, in Particular Windscreens of Vehicles - Google Patents

Device and Method for Measuring Panes, in Particular Windscreens of Vehicles Download PDF

Info

Publication number
US20160238540A1
US20160238540A1 US15/027,725 US201415027725A US2016238540A1 US 20160238540 A1 US20160238540 A1 US 20160238540A1 US 201415027725 A US201415027725 A US 201415027725A US 2016238540 A1 US2016238540 A1 US 2016238540A1
Authority
US
United States
Prior art keywords
light
pane
light sensor
light beam
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/027,725
Other versions
US9759671B2 (en
Inventor
Bernd Grubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moeller Wedel Optical GmbH
Original Assignee
Moeller Wedel Optical GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moeller Wedel Optical GmbH filed Critical Moeller Wedel Optical GmbH
Assigned to MOLLER-WEDEL OPTICAL GMBH reassignment MOLLER-WEDEL OPTICAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRUBERT, Bernd
Publication of US20160238540A1 publication Critical patent/US20160238540A1/en
Application granted granted Critical
Publication of US9759671B2 publication Critical patent/US9759671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • G01N2021/9586Windscreens

Abstract

The invention relates to a device for measuring panes. The device comprises a light source and a light sensor which are arranged in such a way that a light beam emitted from the light source passes through the pane and impinges on the light sensor. According to the invention, the light beam has a linear polarization, wherein the polarization direction forms an angle of between 50° and 130° with an incidence plane stretching between the axis of the light beam and the pane normal at the point at which the light beam impinges on the pane. The light sensor is dimensioned such that both a primary beam and a secondary beam of the light beam impinge on the light sensor. The invention also relates to a corresponding method. According to the invention, the second beam has an increased brightness, so that it is easier to measure both beams.

Description

    BACKGROUND
  • The invention relates to a device and a method for measuring panes, more particularly windshields of vehicles. The device comprises a light source and a light sensor, which are arranged in such a way that a light beam emanating from the light source passes through the pane and is incident on the light sensor.
  • If a light beam is incident on a pane under an angle of incidence which includes an angle unequal to 0° with the normal of the pane, there may be internal reflection within the pane, by means of which the light beam is split into a primary beam and a secondary beam. An observer peering onto the light source through the pane sees a double image of the light source. A double image arises, in particular, if the pane is wedge-shaped in the relevant region, i.e. if the two outer faces are not parallel to one another, or if the pane is curved at said location.
  • By way of example, in the case of windshields of vehicles, such double images are perceived as bothersome if the light of an approaching vehicle is visible in duplicate form in darkness. It is known to measure windshields in respect of the generation of double images. The double image angle, i.e. the angle included between the primary beam and the secondary beam, is of particular interest. To this end, a light beam is guided through the pane onto a light sensor and the size of the distance between the primary beam and the secondary beam on the light sensor is established.
  • In these measurements, the problem arises that it is not entirely straightforward to measure the primary beam and the secondary beam on a light sensor since the primary beam is regularly many times brighter than the secondary beam.
  • SUMMARY
  • The invention is based on the object of providing a device by means of which the double images generated by a pane can be measured more easily. The object is achieved by the features of claim 1. Advantageous embodiments are specified in the dependent claims.
  • According to the invention, the light beam has a linear polarization, wherein the polarization direction includes an angle of between 50° and 130° with the plane of incidence. The plane of incidence is spanned by the axis of the light beam incident on the pane and the normal of the pane at the location at which the light beam is incident on the pane.
  • At first, a few terms are explained. A light beam can be described as a superposition of a multiplicity of electromagnetic waves, wherein each individual wave has a linear polarization direction that is directed perpendicular to the direction of propagation of the light. The light beam formed by the superposition of the individual waves has a linear polarization if the individual waves of the relevant polarization direction are present in the light beam with a higher intensity than other polarization directions. It would be ideal for the invention if the light beam were to be composed exclusively from individual waves of the relevant linear polarization direction. In practice, this will usually not be realizable, and it will be necessary to make do with the relevant polarization direction being present with a significantly higher intensity than other polarization directions. The pane is transparent such that the light beam can pass therethrough. The pane preferably consists of a material, the refractive index of which is greater than the refractive index of air. The pane is not a component of the device according to the invention.
  • The invention proposes, when measuring the pane, for the linear polarization of the light beam to be aligned in a targeted manner relative to the plane of incidence of the light beam. The plane of incidence is spanned by the axis of the light beam and the normal of the pane at the location at which the light beam is incident on the pane. The normal of the pane denotes the axis that is at right angles to an imaginary tangential plane placed onto the pane at the location at which the light beam is incident. The light source should be arranged in such a way that the light beam does not coincide with the normal of the pane.
  • According to the invention, the polarization direction of the light beam encloses an angle of between 50° and 130° with the plane of incidence. If the light beam impinges on the pane with such a polarization direction, the brightness of the secondary beam increases and it becomes easier to measure the primary beam and the secondary beam. The light sensor is dimensioned such that both the primary beam and the secondary beam of the light beam impinge on the light sensor.
  • The difference in the brightness between the primary beam and the secondary beam is caused by the fact that the primary beam crosses the pane directly while the secondary beam experiences two additional reflections in the interior of the pane. The magnitude of the portion of the reflected light compared to the portion of the transmitted light depends, inter alia, on the polarization direction of the light. In accordance with the invention, the polarization direction of the light is selected in such a way that an increased portion of the light is reflected in the interior of the pane, i.e. contributes to the brightness of the secondary beam. The greatest brightness of the secondary beam is achieved when the polarization direction of the light beam includes an angle of 90° with the plane of incidence. Then, the brightness of the secondary beam is higher by a factor of approximately 2 than in the case of a non-polarized light beam. A relevant increase in the brightness sets in in an angular range between 50° and 130°. Preferably, the angle lies between 70° and 110°, more preferably between 80° and 100°.
  • After the emergence from the pane, the primary beam and the secondary beam are spatially separated from one another in such a way that they can be evaluated separately from one another by means of the light sensor. Depending on the wedge angle and the curvature of the pane, the primary beam and the secondary beam include an angle therebetween, as a consequence of which the distance between the two beams increases with the distance from the pane.
  • The light sensor can have an evaluation unit which automatically establishes the position of the primary beam and of the secondary beam on the light sensor. Such an evaluation unit renders it possible to automate the measurement of the pane overall. It is possible to calculate specific properties of the pane in an automatic manner, for example whether the pane meets certain standards. Appropriate information can be output on a display of the evaluation unit.
  • For the measurement, it is advantageous to use a concentrated light beam, the extent of which across the direction of propagation is small. If the light beam is collimated, the measurement result is independent of the distance between the light source and the pane. By way of example, a collimated light beam can be obtained by virtue of arranging a suitable collimation lens between the light source and the pane. In a preferred embodiment, a laser is used as a light source, said laser emitting a collimated light beam per se.
  • The linear polarization can be obtained by the light beam by virtue of said light beam passing through a suitable polarization filter between the light source and the pane. The polarization filter is transmissive to light with the relevant polarization direction, while other polarization directions are damped or preferably completely suppressed. Additionally or alternatively, use can be made of a light source; by way of example, the use of a He—Ne laser with a suitable linear polarization comes into question.
  • The alignment of the plane of incidence can depend on the position at which the light beam is incident on the pane. In order to be able to adapt the direction of polarization to different planes of incidence, it is advantageous if the polarization filter and/or the light source is/are designed in such a way that the linear polarization direction is adjustable. Preferably, the relevant element is mounted in a manner rotatable about the axis of the light beam.
  • If the primary beam and the secondary beam include an angle therebetween, the distance between the two beams is dependent on the distance at which the pane is measured. Consequently, an exact adjustment of the distance between the pane and the light sensor is generally required in order to be able to draw conclusions about the properties of the pane from the positions of the primary beam and the secondary beam on the light sensor.
  • In an advantageous embodiment, a converging lens through which the primary beam and the secondary beam pass is arranged between the pane and the light sensor. If the light sensor is arranged in the focal plane of the converging lens, the position of primary beam and secondary beam on the light sensor is independent of the distance between the pane and the converging lens. The device can be configured in such a way that the light sensor and the converging lens are components of an analysis instrument, in which the light sensor and the converging lens are held at a fixed distance from one another. Measuring the pane is made easier in this way because the light sensor has the appropriate distance from the converging lens and the distance between the converging lens and the pane does not influence the measurement. Consequently, the relevant adjustment is dispensed with.
  • It is not necessary for the converging lens according to the invention to be an individual lens element. Rather, the same effect can be achieved if the converging lens is a lens system made of a plurality of individual lens elements and the light sensor is arranged in the focal plane of the lens system. The diameter of the converging lens is preferably greater than 30 mm and can, for example, lie between 40 mm and 60 mm. With these dimensions, the converging lens is regularly suitable for capturing both the primary beam and the secondary beam.
  • Even if the polarization direction of the light beam is set according to the invention, the primary beam is still brighter by a multiple than the secondary beam. The brightness of the primary beam can be higher, for example, by a factor of 30, than the brightness of the secondary beam. Typical light sensors ascertain the brightness of the incident beam with a dynamic range of 8 bit at linear resolution. It is possible to distinguish thus between 256 brightness stages. The brightness stages are linear, which means that the brightness difference between 2 neighbouring brightness stages is substantially identical over the entire bandwidth.
  • It is difficult with such a light sensor to measure the primary beam and the secondary beam at the same time, because the brightness difference between the 2 beams substantially covers the entire dynamic range of the light sensor. If the sensitivity of the light sensor is set such that the primary beam corresponds to the uppermost brightness stages, the secondary beam is practically lost in the noise. If the sensitivity is increased such that the secondary beam can be measured definitively, the light sensor is overdriven by the primary beam.
  • For this reason, it is possible within the context of the invention to use a light sensor, the dynamic range of which is greater than 8 bit with linear resolution. In an advantageous embodiment, the dynamic range corresponds to at least 12 bit in the case of a linear resolution. A light sensor with a nonlinear resolution can contribute to increasing the dynamic range. Preferably, the nonlinear resolution is selected in such a way that the brightness distance between two adjacent brightness levels increases with increasing brightness. In a preferred embodiment, the light sensor has a logarithmic resolution. The fact that a light sensor with a logarithmic resolution is generally less suitable for distinguishing between closely adjacent brightness levels is not a relevant disadvantage within the scope of the invention because only two light beams, the brightness levels of which differ significantly, are to be detected.
  • The light sensor preferably has a sensor face covered by a multiplicity of pixels. The resolution according to the invention is preferably provided for the individual pixels.
  • The invention moreover relates to a method for measuring panes. In the method, a light beam is guided through a pane onto a light sensor. According to the invention, the light beam has a linear polarization. The polarization direction encloses an angle of between 50° and 130° with the plane of incidence. The plane of incidence is defined by the axis of the light beam and the pane normal at the location at which the light beam impinges on the pane. The method can be developed with further features which are described in the context of the device according to the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is described in an exemplary manner below on the basis of an advantageous embodiment, with reference being made to the attached drawings. In detail:
  • FIG. 1 shows a schematic illustration of a device according to the invention;
  • FIG. 2 shows a magnified section from FIG. 1 in the case of a pane with a wedge angle;
  • FIG. 3 shows a magnified section from FIG. 1 in the case of a pane with a curve;
  • FIG. 4 shows a magnified sectional illustration along the line A-A in FIG. 1; and
  • FIG. 5 shows a block diagram of an evaluation unit according to the invention.
  • DETAILED DESCRIPTION
  • A device according to the invention in FIG. 1 comprises a light source 14 in the form of a He—Ne laser. The light source 14 emits a collimated light beam 15 in the direction of a windshield 16 of a motor vehicle to be measured. The light beam 15 is incident on the pane 16 at an acute angle. When passing through the pane 16, the light beam is split into a primary beam 17 and a secondary beam 18 which, when leaving the pane 16, include a double image angle δ therebetween.
  • The primary beam 17 and the secondary beam 18 are captured by an analysis instrument 19. The analysis instrument 19 comprises a tube-shaped housing, at the front end of which a converging lens 20 is arranged. The converging lens 20 forms an objective of the analysis instrument 19, through which the primary beam 17 and secondary beam 18 enter into the housing. Arranged at the other end of the housing is a light sensor 21, on which the primary beam 17 and the secondary beam 18 are incident. By way of example, the light sensor 21 can be a CCD camera. The distance between the converging lens 20 and the light sensor 21 corresponds to the focal length of the converging lens 20; i.e., the light sensor 21 is arranged in the focal plane of the converging lens 20. By way of example, the converging lens 20 can have a diameter of 50 mm and a focal length of 300 mm.
  • The primary beam 17 and the secondary beam 18 are incident on the light sensor 21 with a distance d therebetween. Since the light sensor 21 is arranged in the focal plane of the converging lens 20, the distance d is not dependent on the distance between the converging lens 20 and the pane 16. It is therefore not necessary to bring the analysis instrument 19 to an exactly defined distance from the pane 16. The double image angle δ can be established from the distance d according to the following formula:
  • δ = arctan d f d f
  • Here, f denotes the focal length of the converging lens 20. For small angles (less than 0.1 radians), the double image angle δ emerges as approximately the quotient of d and f. From the double image angle δ, it is possible to draw conclusions about the properties of the pane 16, for example about geometric properties in the region in which the light beam 15 passed through the pane 16.
  • In accordance with FIG. 2, the splitting of the light beam 15 into the primary beam 17 and the secondary beam 18 emerges, for example, during the passage of the light beam 15 through a pane 16 which has a wedge angle, i.e. in which the two outer faces are not parallel to one another. In accordance with FIG. 3, a corresponding split into the primary beam 17 and secondary beam 18 emerges when the light beam 15 passes through a curved pane 16. By way of example, it is possible to draw conclusions about the wedge angle or the radius of curvature of the pane 16 from the double image angle δ. Moreover, by way of a comparison with corresponding thresholds, it is possible to determine whether the double image angle δ itself meets the specifications.
  • The light beam 15 coming from the light source 14 spans the plane of incidence with the normal 22 of the pane. The normal 22 of the pane is perpendicular to the pane 16 at the location at which the light beam 15 is incident on the pane 16. In the case of a curved pane 16, the normal 22 of the pane is perpendicular to the tangential plane 23 which is placed against the pane 16 at the relevant location, see FIG. 3.
  • The light beam 15 generated by the light source 14 is collimated and has a linear polarization. The polarization direction 24, which is indicated by two arrows in FIG. 4, is aligned perpendicular to the plane of incidence 15, 22. Compared to a non-polarized light beam, the brightness of the secondary beam 18 is increased by approximately a factor of 2 as a result of the selection of the polarization direction.
  • The light sensor 21 is a matrix sensor which has a matrix made of light-sensitive photodiodes. In each photodiode, the incidence of a light beam releases a number of charge carriers, said number being proportional to the brightness. A brightness level is established on the basis of the number of charge carriers and an assignment between the photodiode and the brightness level is undertaken. In the case of a conventional linear assignment, the number of charge carriers increases linearly from brightness level to brightness level, as a consequence of which the dynamic range of the light sensor 21 is restricted.
  • An increased dynamic range is desired for the device according to the invention, which is why the light sensor 21 has a logarithmic resolution. The number of released charge carriers therefore increases exponentially from brightness level to brightness level. As a result, the light sensor 21 has an increased dynamic range and it is possible to establish both the primary beam 17 and the secondary beam 18 sufficiently accurately with the light sensor 21, even if the primary beam 17 is, for example, brighter than the secondary beam 18 by a factor of 30.
  • In accordance with FIG. 5, the digital values are guided from the light sensor 21 to an evaluation unit 25 and stored in a memory 26 there. A computational module 27 establishes the distance d with which the primary beam 17 and the secondary beam 18 are incident on the light sensor 21 from the values stored in the memory 26. On the basis of the known focal length f of the converging lens 20, the double image angle δ which the primary beam 17 and the secondary beam 18 include when emerging from the pane 16 can be established in a further computational step. A setpoint value for the double image angle δ is stored in a second memory 28. The computational module 27 compares the established value with the value from the memory 28 and outputs information on a display 29 as to whether the pane 16 meets the specifications.

Claims (14)

1. A device for measuring panes, comprising a light source and a light sensor, which are arranged in such a way that a light beam emanating from the light source passes through a pane and is incident on the light sensor, wherein the light beam has a linear polarization and in that a polarization direction of the light beam includes an angle of between 50° and 130° with a plane of incidence, which is defined by an axis of the light beam and a normal of the pane at a location at which the light beam impinges on the pane, and in that the light sensor is dimensioned in such a way that both a primary beam and a secondary beam of the light beam are incident on the light sensor.
2. The device as claimed in claim 1, wherein the polarization direction includes an angle with the plane of incidence which is between 70° and 110°.
3. The device as claimed in claim 1, wherein the light sensor has an evaluation unit which establishes the position of the primary beam and the secondary beam on the light sensor in an automatic manner.
4. The device as claimed in claim 1, wherein the light beam is collimated.
5. The device as claimed in claim 1, wherein the light source is a laser.
6. The device as claimed in claim 1, wherein the linear polarization direction is adjustable.
7. The device as claimed in claim 1, wherein a converging lens through which the light beam passes is arranged between the pane and the light sensor.
8. The device as claimed in claim 7, wherein the light sensor is arranged in a focal plane of the converging lens.
9. The device as claimed in claim 1, wherein a dynamic range of the light sensor is greater than 8 bit.
10. The device as claimed in claim 9, wherein the dynamic range of the light sensor is at least 12 bit.
11. The device as claimed in claim 9, wherein the light sensor has a nonlinear resolution such that a brightness distance between two adjacent brightness levels increases with increasing brightness.
12. The device as claimed in claim 9, wherein the light sensor has a logarithmic resolution.
13. A method for measuring panes comprising the following steps:
a. guiding a linearly polarized light beam through a pane onto a light sensor such that a polarization direction of the light beam encloses an angle of between 50° and 130° with a plane of incidence, wherein the plane of incidence is defined by an axis of the light beam and a normal of the pane at a location at which the light beam impinges on the pane;
b. ascertaining a position of a primary beam on the light sensor;
c. ascertaining a position of a secondary beam on the light sensor.
14. The device as claimed in claim 1, wherein the polarization direction includes an angle with the plane of incidence which is preferably between 80° and 100°.
US15/027,725 2013-10-07 2014-09-25 Device and method for measuring panes, in particular windscreens of vehicles Active US9759671B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202013008910.5 2013-10-07
DE202013008910.5U DE202013008910U1 (en) 2013-10-07 2013-10-07 Device for measuring windows, in particular windshields of vehicles
DE202013008910U 2013-10-07
PCT/EP2014/070534 WO2015052010A1 (en) 2013-10-07 2014-09-25 Device and method for measuring panes, in particular windscreens of vehicles

Publications (2)

Publication Number Publication Date
US20160238540A1 true US20160238540A1 (en) 2016-08-18
US9759671B2 US9759671B2 (en) 2017-09-12

Family

ID=51626032

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/027,725 Active US9759671B2 (en) 2013-10-07 2014-09-25 Device and method for measuring panes, in particular windscreens of vehicles

Country Status (4)

Country Link
US (1) US9759671B2 (en)
EP (1) EP3055683B1 (en)
DE (1) DE202013008910U1 (en)
WO (1) WO2015052010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458968A (en) * 2018-11-30 2019-03-12 陕西迈拓克能源科技有限公司 A kind of cambered surface detecting instrument that can install windshield automatically

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013008909U1 (en) * 2013-10-07 2015-01-09 MÖLLER-WEDEL OPTICAL GmbH Device for measuring windows, in particular windshields of vehicles
JP6502282B2 (en) * 2015-04-24 2019-04-17 富士フイルム株式会社 Detection method and detection system
DE102016114485A1 (en) 2016-08-04 2018-02-08 Isra Surface Vision Gmbh Device and method for determining a double image angle and / or a viewing angle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792930A (en) * 1973-05-31 1974-02-19 Ppg Industries Inc System for determining the nature of optical distortion in glass
US5059023A (en) * 1989-06-23 1991-10-22 The United States Of America As Represented By The Secretary Of The Air Force Angular deviation measurement system
US5146282A (en) * 1990-06-25 1992-09-08 Saint-Gobain Vitrage International Process and device for measuring the optical quality of a glazing
US5726749A (en) * 1996-09-20 1998-03-10 Libbey-Owens-Ford Co. Method and apparatus for inspection and evaluation of angular deviation and distortion defects for transparent sheets
US20100232677A1 (en) * 2006-05-23 2010-09-16 Pilkington Group Limited Glazing inspection method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249823A (en) * 1979-10-16 1981-02-10 The United States Of America As Represented By The Secretary Of The Air Force Windscreen angular deviation measurement device
US4310242A (en) * 1980-04-01 1982-01-12 The United States Of America As Represented By The Secretary Of The Air Force Field test unit for windscreen optical evaluation
JPS59114445A (en) * 1982-12-21 1984-07-02 Yamamura Glass Kk Apparatus for detecting defect of transparent body
DE3728210A1 (en) * 1987-08-24 1989-03-16 Sick Optik Elektronik Erwin OPTICAL SCANNER FOR TRANSPARENT RAILWAY MATERIAL
US4837449A (en) 1988-05-16 1989-06-06 Maltby Jr Robert E Inspecting for matching of paired sheets of transparent material
US5187541A (en) * 1991-07-05 1993-02-16 The United States Of America As Represented By The Secretary Of The Air Force Single beam angular deviation measurement system and method
JP2008008787A (en) * 2006-06-29 2008-01-17 Nireco Corp Inspection method of transparent solid and inspection device of transparency solid
GB0817654D0 (en) 2008-09-26 2008-11-05 Pilkington Automotive Deutschland Gmbh Laminated glazing
EP2253949A1 (en) * 2009-05-22 2010-11-24 Dr. Schenk GmbH Industriemesstechnik Device and method for detecting an optically diverting and/or polarisation-rotating error
BE1019378A3 (en) * 2010-06-17 2012-06-05 Agc Glass Europe ANALYSIS OF DRYING BRANDS.
DE102011003803A1 (en) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Method and device for determining a clarity of a pane of a vehicle
WO2013160105A1 (en) * 2012-04-23 2013-10-31 Saint-Gobain Glass France Method and arrangement for measuring blowing structures of a prestressed disc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792930A (en) * 1973-05-31 1974-02-19 Ppg Industries Inc System for determining the nature of optical distortion in glass
US5059023A (en) * 1989-06-23 1991-10-22 The United States Of America As Represented By The Secretary Of The Air Force Angular deviation measurement system
US5146282A (en) * 1990-06-25 1992-09-08 Saint-Gobain Vitrage International Process and device for measuring the optical quality of a glazing
US5726749A (en) * 1996-09-20 1998-03-10 Libbey-Owens-Ford Co. Method and apparatus for inspection and evaluation of angular deviation and distortion defects for transparent sheets
US20100232677A1 (en) * 2006-05-23 2010-09-16 Pilkington Group Limited Glazing inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458968A (en) * 2018-11-30 2019-03-12 陕西迈拓克能源科技有限公司 A kind of cambered surface detecting instrument that can install windshield automatically

Also Published As

Publication number Publication date
WO2015052010A1 (en) 2015-04-16
DE202013008910U1 (en) 2015-01-09
US9759671B2 (en) 2017-09-12
EP3055683A1 (en) 2016-08-17
EP3055683B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US9759671B2 (en) Device and method for measuring panes, in particular windscreens of vehicles
US7583368B1 (en) Method of enhancing measurement of stress in glass
FR3017210A1 (en) SPECTROMETER AND FLUID ANALYSIS SYSTEM
EP3407049B1 (en) Measuring optical array polarity, power, and loss using a position sensing detector and photodetector-equipped optical testing device
US20160245760A1 (en) Device and Method for Measuring Sheets, More Particularly Windshields of Vehicles
US9395307B2 (en) Device and method for measuring infiltration
HU229699B1 (en) Imaging optical checking device with pinhole camera (reflectometer, polarimeter, ellipsicmeter)
US5880845A (en) Apparatus for measuring the photometric and colorimetrics characteristics of an object
CN102183359B (en) Method and device for detecting collimation of light beams
US10337953B2 (en) Method and apparatus for determining surface data and/or measurement data relating to a surface of an at least partially transparent object
US20140250679A1 (en) Optical inspection apparatus and optical inspection system
US7869034B2 (en) Multi-angle and multi-channel inspecting device
JP2009210457A (en) Spectropolarimetric measurement device
EP2913659B1 (en) Optical system and apparatus for measuring optical quality of a surface
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
JP2002277348A (en) Transmissivity measuring method and device
JP2007139632A (en) Reflectivity measuring instrument and reflectivity measuring method
CN103323758B (en) Day blind ultraviolet imagery formula distance measuring equipment
CN104848805A (en) Double-waveband synthetic light beam detection method and apparatus based on single optical wedge
EP2687838B1 (en) A device for monitoring a quality of moving linear textile material at an operating unit of a textile machine
US9952150B2 (en) Device for measuring the scattering of a sample
KR101535209B1 (en) Self-aligned spectrometer
JP2008026049A (en) Flange focal distance measuring instrument
JP4967639B2 (en) Infrared thickness / orientation meter and infrared thickness / orientation measuring method
US20160238525A1 (en) V-block refractometer

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOLLER-WEDEL OPTICAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRUBERT, BERND;REEL/FRAME:038783/0894

Effective date: 20160509

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4