US20160228175A1 - Ablation system with blood leakage minimization and tissue protective capabilities - Google Patents

Ablation system with blood leakage minimization and tissue protective capabilities Download PDF

Info

Publication number
US20160228175A1
US20160228175A1 US15/010,865 US201615010865A US2016228175A1 US 20160228175 A1 US20160228175 A1 US 20160228175A1 US 201615010865 A US201615010865 A US 201615010865A US 2016228175 A1 US2016228175 A1 US 2016228175A1
Authority
US
United States
Prior art keywords
tissue
ablation
fluid
bladder
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/010,865
Inventor
John W. Sliwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Atrial Fibrillation Division Inc
Original Assignee
St Jude Medical Atrial Fibrillation Division Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical Atrial Fibrillation Division Inc filed Critical St Jude Medical Atrial Fibrillation Division Inc
Priority to US15/010,865 priority Critical patent/US20160228175A1/en
Publication of US20160228175A1 publication Critical patent/US20160228175A1/en
Assigned to ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC. reassignment ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SLIWA, JOHN W.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/0409Specification of type of protection measures
    • A61B2090/0418Compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/0481Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against EM radiation, e.g. microwave

Definitions

  • the present invention relates generally to medical systems for performing therapeutic functions, such as, for example, ablation procedures. More particularly, the present invention relates to an ablation system that includes blood leakage minimization and/or tissue protective capabilities.
  • ablating tools it is known to use minimally invasive surgical devices or ablating tools to perform ablation procedures in, for example, the heart. For instance, in treating a condition known as atrial fibrillation, it is known to advance an ablating tool through the vasculature of a patient to a desired location, and to then thermally ablate tissue within, for example, an ostium (OS) connecting a pulmonary vein to the heart, or to ablate the tissue within the heart surrounding the OS.
  • OS ostium
  • a catheter-based ablating device such as that or those described in U.S. Pat. No. 6,635,054 entitled “Thermal Treatment Methods and Apparatus with Focused Energy Application,” U.S. Patent Publication No. 2004/0176757 entitled “Cardiac Ablation Devices,” and International Publication No. WO 2005/102199 entitled “Ablation Devices with Sensor Structures.”
  • These known devices generally include, among other components, an elongate shaft having a proximal end, a distal end, and a longitudinal axis extending therebetween.
  • the devices further include an ablation element mounted at or near the distal end of the elongate shaft.
  • the ablation element comprises a pair of inflatable balloons that share a common wall therebetween, with one of the balloons being disposed proximally of the other balloon.
  • the balloons are configured to have a collapsed condition and an expanded condition, and are configured such that one is liquid or fluid inflated and one is gas inflated.
  • the ablation element further includes an ultrasound transducer mounted or otherwise disposed within the distally disposed balloon that is configured to emit high intensity ultrasonic waves radially outwardly into the liquid or fluid within the balloon with respect to the longitudinal axis of the elongate shaft.
  • the ultrasonic waves have the strength and intensity to burn or ablate tissue after they are reflectively focused forward (more distally onto the OS interior) by the reflectively curved fluid/gas interface defined, in part, by the common wall shared by the two overlying balloons.
  • an ablating device In operation, once such an ablating device is positioned in a desired location within the patient's anatomy (e.g., in a pulmonary vein OS), the balloons are respectively inflated with saline (inner balloon) and carbon dioxide gas (outer balloon).
  • the ultrasound transducer is then selectively activated to emit ablating energy (e.g., intense ultrasonic waves).
  • ablating energy e.g., intense ultrasonic waves.
  • the ultrasound transducer which is typically cylindrical, emits the ultrasonic waves in radial directions into the fluid-filled balloon, the waves are reflected and redirected (focused) forward by the common reflective interface wall between the two balloons, and re-directed forward of the balloons and focused to define, for example, a focused ring-like ablation region in the circumferential interior OS annular wall.
  • Such radial or circumferential ablating devices provide an efficient and effective means by which to simultaneously circumferentially ablate myocardial tissue around the OS of the pulmonary vein.
  • multiple pulmonary ostia are ablated separately and sequentially with the same device as it is moved and placed in each OS needing ablation.
  • one function of the balloons of the ablating device when the ablation element is inserted within an orifice or OS and inflated, is to serve as a blood flow barrier to seal the interface between the balloons and the inner annular wall of the orifice or OS, thereby temporarily preventing blood flow past the balloons through the OS. If the blood flow is not stopped substantially completely around all 360 degrees, then the residual blood flow may prevent thermal lesioning due to unwanted cooling of target tissues.
  • the balloons are manufactured and then inflated, they are manufactured and inflated to be rotationally symmetric (bodies of revolution) because it is the most manufacturable approach and does not require any rotational device alignment to target tissues.
  • the orifices or ostia within which the device, and the ablation element thereof, in particular, is to be inserted are not typically rotationally symmetric, but rather oftentimes are irregular and have a more oval or oblong shape with, for example, as much as a 3:1 aspect ratio.
  • a sealed (to blood flow) interface between the balloon(s) and OS cannot be created, and as a result, cooling blood may leak past the balloons across the interface where ablative heating is to take place.
  • the blood leaks past the balloon(s) it undesirably serves to cool the surface of the tissue over which it flows, and does so in a non-uniform manner that cannot be easily corrected or compensated for.
  • Another drawback in known endocardial catheter pulmonary vein ostia ablation systems relates to the monitoring, maintenance, and/or control of the temperature in non-targeted tissue proximate the targeted ablation site during the ablation procedure.
  • non-targeted tissue must not be damaged during the ablation procedure. More particularly, when certain heart tissue is being ablated, the energy emitted from the ablating device may be strong enough or generate a high enough temperature to cause tissue necrosis in non-targeted tissue.
  • portions of the esophagus are located proximate the heart and if an endocardial ablation site is near the esophagus the ablation energy itself, or heat generated by it and conducted away from the target, can potentially cause the nearby esophageal tissue to experience cell death.
  • thermocouples or thermistor-based sensors that are passed either blindly or with the assistance of imaging or visualization systems (e.g., fluoroscopic, impedance-based, MRI, etc.) down the throat on an expandable member configured to monitor the temperature of the esophageal tissue and detect undesirable energy transfer to the esophagus.
  • imaging or visualization systems e.g., fluoroscopic, impedance-based, MRI, etc.
  • Such a technique may require the use of a dense macroscopic thermistor array, which may result in a disposable temperature monitoring device being cost-prohibitive or large.
  • such a technique may cause challenges with respect to the accuracy of the placement of the sensor(s), and it may be difficult to detect loss-of-contact between the sensor and the non-targeted tissue to be protected, or to sense the actual positioning of the sensor relative to the non-targeted tissue. Further, without using one or more imaging means, it is exceedingly difficult to locate a single protective thermocouple directly opposite or in the field of energy delivery of the ablating device. If such difficulty is compensated for by providing a thermocouple or thermistor array of larger area, another issue is presented, that being obtaining good thermal contact to the esophageal interior.
  • thermocouple using fluoroscopy still cannot guarantee proper thermal contact to the esophagus, or thermal wetted contact to the esophagus (i.e., a wet contact which stays wet and thermally sinking during an ablation procedure so as prevent the corresponding tissue from drying out and overheating).
  • the present disclosure is directed to an ablation system and its constituent components that include blood leakage minimization and tissue protective capabilities during an ablation procedure.
  • the system includes an ablating device configured to be inserted into the anatomy of a patient and to deliver ablating energy to a target-tissue ablation site.
  • the system further includes a protective probe.
  • the protective probe is configured for insertion into the anatomy of a patient and to be positioned in close proximity to a region of non-targeted tissue proximate the ablation site such as on the opposite side of the region of non-targeted tissue from the ablating device or collateral to the targeted ablation site.
  • the ablating device comprises an elongate shaft having a proximal end and a distal end.
  • the ablating device further includes a handle mounted to the elongate shaft at the proximal end thereof.
  • the ablating device still further includes an ablation element mounted to the elongate shaft at the distal end.
  • the ablation element includes an ultrasound transducer and at least one inflatable balloon surrounding the ultrasound transducer.
  • the balloon includes an inner surface and an outer surface, and has a layer of shape-conforming gel disposed on at least a portion of the outer surface.
  • the probe in one exemplary embodiment, includes an elongate shaft having proximal and distal ends, and a longitudinal axis extending from the proximal end to the distal end of the shaft.
  • the probe further includes a handle disposed at the proximal end of the shaft, and a tissue protecting apparatus disposed at the distal end of the shaft.
  • the tissue protecting apparatus extends from a point on the shaft at or near the distal end thereof a predetermined distance along the longitudinal axis of the shaft toward the proximal end of the shaft.
  • the tissue protecting apparatus is configured to protect non-targeted tissue in the region of non-targeted tissue from receiving unintended ablation energy intentionally targeted at nearby opposed, collateral, or upbeam targeted tissue, such as, for example, ablation energy delivered to tissue opposite the region of non-targeted tissue from the tissue protecting apparatus.
  • an apparatus for use in monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate the region of non-targeted tissue includes a probe configured to be inserted into the anatomy of a patient, and includes a proximal end and distal end.
  • the apparatus further comprises a temperature monitoring apparatus associated with the probe, at least a portion of which is disposed at or near the distal end thereof.
  • the temperature monitoring apparatus has a field of view and is configured to generate an image of the tissue disposed within the field of view, and to detect temperatures in the imaged tissue.
  • a method of monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate the region of non-targeted tissue comprises a first step of providing a protective probe including a temperature monitoring apparatus having a field of view, wherein the probe and at least a portion of the temperature monitoring apparatus is configured to be inserted into the anatomy of a patient.
  • the method includes a second step of thermally or thermographically imaging tissue within the field of view of the temperature monitoring apparatus and disposed within the non-targeted region of tissue.
  • the method includes a third step of detecting at least one temperature of the imaged tissue, which, in an exemplary embodiment, is the maximum temperature in the imaged tissue.
  • FIG. 1 illustrates a diagrammatic view of an exemplary embodiment of a system for performing an ablation procedure, and for monitoring and/or managing the temperature generated proximate an ablation site during the ablation procedure, in accordance with the present teachings.
  • FIG. 2 is a partial cross-section view of an exemplary embodiment of an ablation element of an ablating device of the system illustrated in FIG. 1 , wherein balloons of the ablating device are inflated.
  • FIG. 3 is a partial cross-section diagrammatic view of an exemplary embodiment of a protective probe of a temperature monitoring and/or management subsystem of the system illustrated in FIG. 1 , wherein the probe is disposed within the esophagus of a patient and includes a tissue protecting apparatus disposed at or near the distal end thereof
  • FIG. 4 is a schematic view of an exemplary embodiment of the tissue protecting apparatus illustrated in FIG. 3 .
  • FIG. 5 is a cross-section view of an exemplary embodiment of the tissue protecting apparatus of FIG. 3 including fluid delivery lumens and corresponding outlets disposed therein.
  • FIG. 6 is partial cross-section diagrammatic view of another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1 , wherein the probe is disposed within the esophagus of a patient, and further wherein the ablating device of the ablation system includes an acoustic transducer mounted thereon.
  • FIG. 7 is partial cross-section diagrammatic view of yet another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1 , wherein the probe is disposed within the esophagus of a patient, and further wherein an acoustic transducer is mounted at the distal end of the probe.
  • FIG. 8 is partial cross-section diagrammatic view of yet still another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1 , wherein the probe is disposed within the esophagus of a patient, and further wherein a thermal imaging chip is mounted at the distal end of the probe;
  • FIG. 9 is a graphical representation of a thermographic map generated by the thermal imaging chip illustrated in FIG. 8 ;
  • FIG. 10 is a flow diagram of an exemplary method of monitoring the temperature in a region of non-targeted tissue during an ablation procedure being performed on targeted tissue disposed proximate the desired region of non-targeted tissue.
  • FIG. 1 illustrates an exemplary embodiment of a system 10 for performing ablation procedures and for monitoring, managing, and/or controlling the temperature in non-targeted tissue proximate an ablation site during the ablation procedure, in accordance with the present disclosure.
  • the system 10 includes an ablation subsystem 12 , a temperature monitoring and management subsystem 14 , and, in an exemplary embodiment, a system controller 16 connected to each of the ablation subsystem 12 and the temperature monitoring and management subsystem 14 .
  • a system controller 16 connected to each of the ablation subsystem 12 and the temperature monitoring and management subsystem 14 .
  • the ablation subsystem 12 includes an ablating device 18 , comprised, in part, of at least one ablation element 30 coupled to an elongate and typically flexible shaft 20 having a proximal end 22 , a distal end 24 , and a longitudinal axis 26 extending from the proximal end 22 through the distal end 24 .
  • the ablating device 18 further includes a handle 28 coupled to the elongate shaft 20 at the proximal end 22 thereof, and the at least one ablation element 30 is mounted to the elongate shaft 20 at or near the distal end 24 thereof. While it should be understood that the ablating device 18 may include one or more ablation elements 30 , and that ablating devices 18 having more than one ablation elements 30 are within the spirit and scope of the present disclosure, for ease of description purposes only the description below will be limited to an embodiment wherein the ablating device 18 includes a single ablation element 30 .
  • the flexible elongate shaft 20 may be formed of any number of materials, such as, for example and without limitation, PEBAX®, Nylon, and polyurethane.
  • the elongate shaft 20 is constructed of, or incorporates, a metal wire braid, as is known in the art.
  • the elongate shaft 20 further includes at least one, and typically multiple, inner passageways or lumens 32 disposed therein (shown in FIG. 2 ).
  • the lumens 32 extend longitudinally along an axial portion of the shaft 20 from the proximal end 22 to the distal end 24 , and are configured to have one or more components of the ablating device 18 disposed therein, such as, for example and without limitation, pull wires, planarity wires, fluid irrigation or drainage lumens, lead wires for the ablation element 30 , a rotation wire, or, as will be described in greater detail below, components required for inflating and deflating balloons with, for example, fluid, gas, and/or extruding gels, associated with the ablating device 18 , and the ablation element 30 , in particular.
  • components of the ablating device 18 disposed therein, such as, for example and without limitation, pull wires, planarity wires, fluid irrigation or drainage lumens, lead wires for the ablation element 30 , a rotation wire, or, as will be described in greater detail below, components required for inflating and deflating balloons with, for example, fluid, gas, and/or ex
  • the handle 28 of the ablating device 18 is disposed at the proximal end 22 of the elongate shaft 20 .
  • the handle 28 is operative to, among other things, effect movement of the shaft 20 (i.e., steer the ablating device 18 ), and/or selectively manipulate the distal end 24 of the elongate shaft 20 to position the distal end 24 , and therefore, the at least one ablation element 30 , in a desired location when the ablating device 18 is disposed within a patient.
  • one or more pull wire(s) are coupled to and between both the distal end 24 of the elongate shaft 20 and an actuator(s) 34 located on the handle 28 .
  • the corresponding pull wire(s) is caused to be pushed and pulled, for example, to effect movement, such as bending deflection, of the distal end 24 of the elongate shaft 20 .
  • movement such as bending deflection
  • the present invention is not meant to be so limited. Rather, those of ordinary skill in the art will appreciate that other methodologies or techniques of steering and/or manipulating ablating devices exist that remain within the spirit and scope of the present invention.
  • other components may also be disposed within the handle 28 .
  • electrical matching circuits to electrically impedance-match the components of the ablation element 30 to an ablation energy generator or power source, or other components of the ablation subsystem 12 may be disposed within the handle 28 .
  • the ablation element 30 and the energy generator can be configured to deliver one or more types of ablation energy (e.g., high intensity focused ultrasound, or HIFU, radiofrequency, laser, microwave and the like).
  • the ablation element 30 of the ablating device 18 will now be described.
  • the ablation element 30 includes a pair of inflatable balloons 36 , 38 , and an ultrasound transducer or emitter 40 (hereinafter “ultrasound transducer 40 ” or “transducer 40 ”) mounted within one of the balloons (i.e., the distally disposed fluid-filled balloon 38 , for example).
  • the transducer 40 may take the form of tubular or cylindrically-shaped ultrasound transducer formed of a piezoelectric material (e.g., piezoceramic, for example) which radiates ultrasound in radial directions around all 360 degrees. If, as will be described below, the transducer 40 is rotatable about the axis 26 during ablation, it may comprise a full cylinder or an angular sector of a cylinder.
  • a piezoelectric material e.g., piezoceramic, for example
  • the balloons 36 , 38 When the balloons 36 , 38 are deflated or in a collapsed condition, they form a small and compact unit that is substantially flush with the outer surface of the elongate shaft 20 , or at least forming a low profile therewith, so as to allow the ablating device 18 to be easily inserted into and removed from a patient's body.
  • the ablating device 18 may be inserted into and removed from a patient's body via a sheath or introducer (not shown).
  • the balloon 38 when in an inflated state, the balloon 38 is positioned distally or forward relative to the balloon 36 .
  • the two balloons 36 , 38 share an acoustically reflective common wall or balloon-wall interface 42 that, in the inflated state, essentially forms a parabolic surface with, as will be described below, fluid on one side and gas on the other side.
  • the common wall 42 comprises a single layer of material such that the wall is integral with each balloon 36 , 38 and therefore is truly shared by the balloons 36 , 38 .
  • FIG. 1 such as that illustrated in FIG.
  • the wall 42 comprises two layers of material that are fused or otherwise joined together to form a single wall (i.e., each balloon 36 , 38 has a wall, and the walls are fused or joined together to form a single wall).
  • the common wall 42 is formed by the respective walls of the balloons 36 , 38 abutting each other to form a single wall.
  • the balloon 38 is inflated with an acoustically-transmissive fluid or flowable material, such as, for example, liquid saline or gel, while the balloon 36 is inflated with a gas, such as, for example, biocompatible carbon dioxide (CO 2 ).
  • a gas such as, for example, biocompatible carbon dioxide (CO 2 ).
  • the fluid/gas interface acts as an acoustic mirror, and so by shaping the common wall 42 as, for example, a parabola, the ultrasound waves emitted from the transducer 40 are reflected and focused (reflectively focused) into an annular lesion target region in the wall of the OS (the target tissue), as is illustrated in FIG. 2 .
  • a practitioner inserts the distal portion 24 of the elongate shaft 20 , and therefore, the ablation element 30 with its balloons deflated or in a collapsed condition, into an incision in a patient's body, for example.
  • the practitioner may then advance the device through the patient's vasculature until it reaches a desired location (e.g., an ablation site within the heart, such as, for example, an orifice or OS connecting a pulmonary vein with the left atrial chamber of the heart).
  • the desired location may be within the OS, or, alternatively, may be a location external to the OS.
  • the balloons are inflated, as will be described in greater detail below, and the ablation procedure can be carried out.
  • the balloons 36 , 38 may be inflated and then advanced into the OS, rather than being inflated within the OS.
  • the gas-filled balloon 36 is coupled with, and configured to be inflated by, a gas source 44 (shown in FIG. 1 ). More particularly, one of the lumens 32 disposed within the elongate shaft 20 is configured to be an inflation lumen (hereinafter “lumen 32 1 ”) and is further configured to couple the balloon 36 to the gas source 44 that supplies gas, such as, for example, carbon dioxide, under pressure to the balloon 36 . Accordingly, when the gas source 44 is activated, the balloon 36 inflates. Typically, a controlled gas pressure will be maintained in the balloon 36 to maintain a controlled balloon firmness.
  • the fluid-filled balloon 38 is coupled with, and configured to be inflated by, a fluid or liquid source 46 (shown in FIG. 1 ). More particularly, one of the lumens 32 disposed within the elongate shaft 20 other than the inflation lumen 32 1 associated with the balloon 36 is configured to be an inflation lumen (hereinafter “lumen 32 2 ”) and is further configured to couple the balloon 38 to the fluid source 46 that supplies fluid, such as, for example, isotonic saline solution, to the balloon 38 . Accordingly, when the liquid source 46 is activated, the balloon 38 inflates. As with the gas in the balloon 36 , the fluid in the balloon 38 will typically be pressurized to a desired level to maintain a controlled balloon firmness. The gas and fluid pressurization levels, although not necessarily equal in magnitude, are chosen to assure full distended inflation of the balloons 36 , 38 yet be below the burst pressures of the respective balloons.
  • the gas and fluid in the respective balloons 36 , 38 must be drained or otherwise removed or expelled from the balloons 36 , 38 .
  • the lumens 32 through which the gas and fluid were delivered to the balloons 36 , 38 also serve the purpose of providing a path through which the gas and the fluid in the balloons 36 , 38 is returned to the respective gas/fluid sources 44 , 46 , or otherwise drained or expelled.
  • the respective lumens 32 may be selectively coupled with a suction source, vent, or drain to cause or allow the gas/fluid in the balloons 36 , 38 to exit the balloons 36 , 38 .
  • separate drainage lumens may be provided within the elongate shaft 20 to carry out the above described functionality.
  • the gas-filled balloon 36 and the fluid-filled balloon 38 share the common wall 42 .
  • the common wall 42 acts as an acoustic reflecting and focusing mirror capable of reflecting ultrasonic waves emitted by the transducer 40 . It is primarily the fluid/gas acoustic impedance discontinuity that provides this efficient acoustic reflection capability and the thin balloon wall 42 physically maintains the fluid/gas interface.
  • the fluid/gas interface substantially provides the acoustically reflective capability, it should be understood that both the material of the balloon and its thickness do have a small, but nonzero, effect on reflectivity, particularly when it is thin as inflated.
  • the ultrasound transducer 40 is mounted to the distal portion of the elongate shaft 20 at or near distal end 24 thereof, for example, and within the balloon 38 . It should be noted, however that in other exemplary embodiments that remain within the spirit and scope of the present invention, the transducer 40 may be mounted to structure within the balloon 38 other than the elongate shaft 20 . Additionally, the transducer 40 may be positioned within the balloon 38 at a number of locations, including, for example, at the back (proximal region) of the balloon 38 close to or abutting the common wall 42 .
  • the ultrasound transducer 40 comprises a tubular cylindrical emitter and the balloons 36 , 38 are in an inflated state
  • the ultrasound transducer 40 uniformly emits acoustical energy from its cylindrical outer surfaces around the 360 degrees of that outer surface directed toward the shaped mirror fluid/gas interface (i.e., common wall 42 ).
  • the transducer 40 may be driven in a lower frequency “breathing” mode, or in a higher frequency “wall thickness” mode, and/or in harmonics of these.
  • the transducer 40 may further include overlying matching layers (not shown) or interior back materials (not shown).
  • the transducer 40 may further be “pinged” such that, using the pulse-echo approach, the lesion and/or thickness or depths thereof may be assessed.
  • the transducer 40 is electrically connected to an energy or ablation power source 48 by electrical leads or wires (not shown) that are disposed within one or more of the lumens 32 in the elongate shaft 20 , and that extend through to the proximal end 22 thereof.
  • the ablation power source 48 When the ablation power source 48 is activated, the transducer 40 emits ultrasonic waves 50 along various paths in radial direction relative to the longitudinal axis 26 (i.e., toward the common wall 42 between and defined by the balloons 36 , 38 ).
  • the acoustic waves 50 impinge upon the reflective fluid/gas interface (i.e., the common wall 42 ), they are reflected as illustrated in FIG.
  • the transducer 40 may be omnidirectional and/or rotatable relative to the balloons 36 , 38 about the axis 26 . Rotation allows for circumferentially uniform energy exposure (lesioning extent) despite having some circumferential non-uniformity of the circumferential output of the transducer 40 . Accordingly, by rotating the transducer 40 , any angular non-uniformity of acoustic output will be rotated such that all tissue target points on the OS receive the integrated same time-power treatment.
  • rotating the transducer 40 allows use of a less-uniform transducer.
  • other transducers such as, for example, a directional transducer (emitting less than 360 degrees at a given moment), whether cylindrical or not, may be used.
  • a rotation wire (not shown) coupled with the transducer 40 and manually driven from a control on the handle 28 , or driven by a motor, may be employed to cause the transducer to rotate.
  • one or both of the balloons 36 , 38 are configured and operative to serve other purposes. More particularly, when inserted into an orifice or OS between a vein and the heart, for example, and inflated (or inserted already inflated), the balloons 36 , 38 are intended to serve as a barrier to blood flow through the orifice or OS, and/or to generally center the transducer 40 in the OS.
  • one disadvantage with known ablating devices is that when inflated, the balloons of the device are rotationally symmetric.
  • most orifices or ostia into which the device is inserted are not rotationally symmetric, but rather are irregular and/or have an oval or other similar non-round shape. Accordingly, when the device is inserted into the oval-shaped orifice and the rotationally symmetric balloons are inflated, a sealed blood flow between the balloons and the adjacent surface of the orifice or OS cannot be achieved, or at least cannot be achieved without potentially damaging force being applied to the OS. Because the interface is not sufficiently sealed, blood may be permitted to leak through any balloon-OS gaps, which may act to cool the local surface of the orifice or OS that is being ablated. When the tissue is cooled by the blood flow, it counteracts the ablation procedure, thereby preventing surface and/or somewhat deeper lesioning. Therefore, one aspect of the present invention is directed to the elimination, or at least the substantial reduction, of blood leakage cooling experienced in these ablating devices.
  • one exemplary embodiment of the ablating device 18 with blood leakage minimization capability operative to eliminate, or at least substantially prohibit, blood flow leakage past the balloon(s) 36 , 38 in the balloon/OS interface is illustrated.
  • a gel 52 such as, for example, a low-flow or pressure formable gel, which acts as a conformable or deformable gasket material to stop blood flow in non-round ostia.
  • the gel 52 may comprise one of many different known types of biocompatible implantable gels.
  • One gel, provided for exemplary purposes only, is that available from MacroMed, Inc. under the trademark ReGel®.
  • Another exemplary gel that may be used is that available from Mebiol, Inc. under the name “Mebiol Gel.”
  • the latter exemplary gel hardens upon exposure to a sufficient amount of heat, and softens upon subsequent cooling.
  • the gel can be fabricated of a biocompatible and bio-absorbable material as well. It will be appreciated by those of ordinary skill in the art that any number of gels could be used, and thus, the invention is not limited to those specifically identified above.
  • the gel is acoustically transparent and so it will not block or substantially impede ablative energy emitted by the ablating device, such as, for example, high-intensity focused ultrasound (HIFU) ablating devices.
  • HIFU high-intensity focused ultrasound
  • the gel is of a type such that it will not boil or bubble below about 100° C.
  • gels are typically network polymers which are water or solvent based
  • the term “gel” as used in accordance with the present disclosure is intended to include any material whose flow resistance can prevent it from being displaced or washed way by blood pressure and blood flow. Therefore, the gel may be prepositioned on the outer surface of one or both of the balloons 36 , 38 , or might be extruded from the balloon, but in any event, will have a viscosity high enough that it resists the blood flow forces while allowing for physical conformance to non-round OS geometries.
  • the outer surface of the balloon 36 that has the gel 52 disposed thereon.
  • the gel 52 is disposed on the outer surface of the balloon 38 , or at the interface between the two balloons 36 , 38 .
  • the gel 52 is configured to act as a blood flow-seal between the balloon(s) 36 , 38 and the interior surface of an orifice or OS into which the ablating device 18 is inserted.
  • the gel 52 fills gaps between the outer surfaces of the balloons 36 , 38 and the interior and/or face surfaces of the orifice or OS to inhibit blood flow therebetween.
  • the gel 52 may or may not further stiffen (i.e., upon exposure to heat or cooling), however, in an exemplary embodiment, the gel has a fixed viscosity sufficient to conform yet still block blood flow.
  • At least a portion of the outer surface of one or both of the balloons 36 , 38 is coated with a layer of the gel 52 prior to the ablating device 18 , and the distal portion of the elongate shaft 20 , in particular, being inserted into a patient's body.
  • the gel 52 is already disposed on either the entire outer surface of the balloon(s) 36 , 38 , or a portion(s) thereof.
  • the ostia or OS are pre-coated with the gel.
  • a separate gel application tool possibly including a gel extruding permeable balloon
  • the ablating device 18 itself may have the capability to apply the gel to the surface of the OS as by pressurized extrusion out of one or more orifices.
  • the ablating device 18 is configured such that the gel 52 is distributed onto at least a portion of the outer surface of the balloon(s) 36 , 38 after the balloon(s) are inflated rather than prior to insertion into the patient's body.
  • the balloon 38 may be inflated with a gel.
  • the balloon 38 is configured and constructed of a gel-permeable material to ooze or leak the gel therefrom and into the balloon/OS interface gaps.
  • the balloon may include one or more perforations or outlets (not shown) therein to allow gel in the balloon to flow out of the balloon when a modest amount of pressure is applied to the gel (when the pressure is removed, the gel stops flowing).
  • Such gel gasket extrusion may take place as part of the balloon inflation process.
  • the gel would serve not only the blood leakage minimization function, but to also act with the gas used to inflate the balloon 36 as the fluid/gas mirror.
  • One exemplary type of gel that is suitable to serve this dual function is a sufficiently acoustically transparent water-based gel.
  • a dedicated gel distribution lumen may deliver gel to the interstitial space between the two balloons 36 , 38 through a port (not shown) within the shaft 20 .
  • the gel will be pushed out to the periphery, and therefore, onto the surface(s) of the balloon(s) 36 , 38 .
  • the gel 52 may be held in or on the balloon(s)/OS interface in a number of ways.
  • the gel 52 is configured to solidify or stiffen when sufficiently heated.
  • the gel 52 may be heated in any number of ways, such as, for example and without limitation, by the heat generated by the ablation procedure being performed proximate to the location of the gel 52 , by the gel 52 being exposed to body temperature of the patient, or by separate and distinct heat source.
  • heated saline maybe delivered to or circulated within the balloon 38
  • a resistive wire may be disposed within the balloon 38
  • a heated gas may be delivered to or circulated within the balloon 36 , and the like.
  • an exemplary temperature may be, for example and without limitation, 39° C., which is slightly higher than body temperature.
  • an exemplary temperature may be, for example and without limitation, 39° C., which is slightly higher than body temperature.
  • the relative amounts of the two constituent type A and B block copolymers may set such that the gel stiffens at a particular desired temperature.
  • the gel 52 solidifies or stiffens when sufficiently cooled.
  • any means by which the gel may be cooled may be used, such as, for example and without limitation, an artificial cooling means.
  • the ablation element 18 may include a cooling or heat-extracting device (not shown) configured to sufficiently cool the gel 52 to cause it to solidify or stiffen.
  • cooled saline or some other cryogenic or cold fluid may be delivered to or circulated within the balloon 38
  • a cooled gas may be delivered to or circulated within the balloon 36 , and the like.
  • biocompatible gels which will not substantially flow during an ablation procedure under modest blood flow pressure (i.e., the gel is thick and viscous or thixotropic enough to physically maintain its position and form during the ablation procedure) may be used for the purposes described above.
  • the gel may be left in the patient's body for immediate or gradual dissolution or biodegradation after the ablation procedure is completed.
  • One way to leave the gel within the body is to leave it on the OS interior in “molded” form for gradual surface-wise dissolution.
  • the gel may be reflowed or re-liquefied after the completion of the ablation procedure to ensure that no solid or semi-solid lumps of gel are left in the circulatory system for any period of time.
  • ablating devices In addition to, and independent of, the blood leakage concerns described above, another drawback to known ablating devices is that it oftentimes proves difficult to reliably monitor temperature and/or sufficiently cool non-targeted regions of tissue proximate an ablation site during the performance of an ablation procedure.
  • One such non-targeted region of tissue which is provided for exemplary and illustrative purposes only, is esophageal tissue disposed close to the heart.
  • ablating energy is directed to a region of the heart by an ablating device, such as, for example and without limitation, any endocardially-delivered ablating device including radio frequency (RF), microwave, cryogenic, and ultrasound-based devices
  • the ablating energy may have sufficient strength and intensity to pass through and outward of the heart and be applied to non-targeted tissue in the esophagus that is located on the other side of the ablated tissue from the ablating device.
  • RF radio frequency
  • the ablating energy may have sufficient strength and intensity to pass through and outward of the heart and be applied to non-targeted tissue in the esophagus that is located on the other side of the ablated tissue from the ablating device.
  • the ablating energy itself does not directly penetrate that far, if a large hotspot is developed at the target site, then the non-targeted tissue may be overheated simply due to proximity.
  • another aspect of the present invention is directed to the improved monitoring, management, and/or control of temperature rise or energy delivery in non-targeted tissue regions proximate an ablation site.
  • the temperature monitoring and management subsystem 14 of system 10 includes a protective probe 100 , a fluid source 102 , and an actuator 104 .
  • the probe 100 includes an elongate shaft 106 , a handle 108 , and a tissue protecting apparatus 110 .
  • the elongate shaft 106 has a proximal end 112 , a distal end 114 , and a longitudinal axis 116 extending from the proximal end 112 through the distal end 114 .
  • the handle 108 is disposed at the proximal end 112 and, as described above with respect to the handle 28 , may be configured, among other things, to steer or manipulate portions of the probe 100 as it is inserted into the anatomy of a patient, such as, for example, the esophagus.
  • the probe 100 is directly inserted into the esophagus such as through the mouth or sinus.
  • the probe 100 is introduced into the esophagus through an introducer-lumen already in place.
  • the tissue protecting apparatus 110 of the probe 100 is disposed at or near the distal end 114 of the elongate shaft 106 .
  • the tissue protecting apparatus 110 comprises a wetted heat sink (hereinafter “heat sink 110 ”).
  • heat sink as used herein is intended to mean an element or structure having the capability of (i) carrying away heat deposited in the esophagus wall tissue by an OS ablator element(s) being used inside the heart of the patient, and/or (ii) cooling or pre-cooling the esophageal tissue that is to be protected. In either instance, this may be accomplished by either contacting the tissue or causing cooling fluid to be dispensed onto the tissue.
  • the heat sink 110 is disposed at the distal end 114 of the elongate shaft 106 and extends therefrom a predetermined distance along the longitudinal axis 116 toward the proximal end 112 of the elongate shaft 106 .
  • the heat sink 110 comprises an inflatable balloon, membrane, or bladder 118 (collectively “bladder 118 ”).
  • the bladder 118 has a collapsed or deflated condition, and an expanded or inflated condition. In the collapsed condition, the bladder 118 provides a low profile distal portion to probe 100 , which is easily passed down the throat.
  • the bladder 118 is formed of an elastomeric material to assure that no folds occur upon inflation of the bladder 118 .
  • the bladder may be pleated or folded upon itself when in the deflated condition, but configured to be inflated to a point ridding it of the folds or pleats at a diameter less than that of the esophagus such that when seated upon the esophagus during further inflation, not pleats or folds exist.
  • the bladder 118 is configured to be inflated with a biocompatible fluid.
  • the bladder 118 may be inflated with gas, air, gel, liquid or other suitable medium, including nutritious and/or therapeutic constituent elements or components.
  • the bladder 118 is inflated with liquid saline, but the present invention is not meant to be limited to saline.
  • the fluid also serves as the coolant or heat transfer medium for either drawing heat away from, or for cooling or pre-cooling esophageal tissue.
  • the fluid e.g., saline or another type of thermally conductive fluid, for example
  • the fluid may be kept inside and/or circulated within the bladder 118 such that heat in the tissue that the bladder 118 contacts (when, for example, the bladder 118 is inflated against esophageal tissue) is transferred to the fluid via thermal conducting through the thin bladder wall.
  • the bladder 118 may have perforations, microscopic holes, pores, outlets, permeation paths, and the like therein configured to allow the fluid in the bladder 118 to be leaked, weeped, sprayed, or otherwise dispensed therefrom upon the tissue to be protected in order to cool or pre-cool the tissue.
  • the fluid may be pre-cooled below body temperature such that esophageal tissue is actually sub-cooled below natural body temperatures.
  • the bladder 118 is connected to, or otherwise coupled with, an inflation or filling lumen 119 disposed within the elongate shaft 106 (shown in FIG. 3 , for example).
  • the inflation lumen 119 is disposed between, and coupled to, each of the bladder 118 and the fluid source 102 of the subsystem 14 to allow the bladder 118 to be inflated.
  • the fluid source 102 is configured to supply fluid, such as, for example, various saline solutions, distilled water, deionized water, or other forms of biocompatible water to the bladder 118 .
  • the shaft 106 of the probe 100 includes one or more openings or ports 120 therein to allow fluid in the lumen 119 to flow into the bladder 118 .
  • the distal end of the shaft 106 is open, thereby defining opening 120 .
  • the shaft 106 may have one or more lateral openings or ports 120 in the wall thereof to allow fluid to flow into the bladder 118 .
  • the subsystem 14 further includes the actuator 104 , such as, for example and without limitation, a flow-volume controller, a pressure controller, or both.
  • the actuator 104 is disposed between the inflation lumen 119 and the fluid source 102 , and is configured to control the supply of fluid to the bladder 118 , and therefore, the inflation of the bladder 118 .
  • the actuator 104 is further configured to control the amount of fluid distributed from the bladder 118 .
  • the actuator 104 may be mounted on or otherwise associated with the handle 108 of the probe 100 , or may be separate and distinct from the probe 100 .
  • the cooling fluid supplied to the bladder 118 by the fluid source 102 is circulated between the bladder 118 and the fluid source 102 .
  • the probe 100 may further include a return or drainage lumen 121 (referred to hereinafter as “return lumen 121 ” and which may comprise lumen 119 or a separate and distinct lumen) disposed within the elongate shaft 106 to allow fluid to flow from the bladder 118 back to the fluid source 102 or to some other drain external to the patient.
  • return lumen 121 referred to hereinafter as “return lumen 121 ” and which may comprise lumen 119 or a separate and distinct lumen
  • This allows, for example, fluid to be circulated through the system to facilitate the replacement of warmer fluid with cooler (i.e., pre-cooled) fluid, for example.
  • cooler i.e., pre-cooled
  • the return lumen 121 may also provide a means by which the bladder 118 may be emptied or deflated once the ablation procedure is concluded or the heat sink 110 /bladder 118 is no longer needed (i.e., the actuator 104 may shut off the flow through the inflation lumen 119 and/or apply suction to the return lumen 121 , thereby causing the fluid to be drained from the bladder 118 through the return lumen 121 ).
  • Such a return lumen 121 could also be used in the same manner in an embodiment that does not include circulation of the fluid during use of the probe 100 , but rather simply allows for the deflation of the bladder 118 .
  • the shaft 106 of the probe 100 includes one or more openings or ports 122 therein to allow fluid in the bladder 118 to flow into the lumen 121 .
  • the distal end of the shaft 106 is open, thereby defining opening 122 .
  • the shaft 106 may have one or more lateral openings or ports 122 in the wall thereof to allow fluid to flow into the lumen 121 .
  • the bladder 118 is inflated or filled so as to contact the inner surfaces of the passageway within which the probe 100 is inserted (e.g., the inner wall of the esophagus).
  • the bladder 118 and the fluid therein is configured to spread and transfer the heat from the tissue to and through the surface of the bladder 118 and into the fluid in the bladder 118 to quell any hotspots (see reference numeral 123 in FIG. 3 , for example) in the region of non-targeted tissue in contact with the probe 100 .
  • the outer surface of the bladder 118 is coated with a thermally conductive material, such as, for example, a metallic thin-film material and/or a hydrophilic hydrogel.
  • the bladder 118 comprises a thin-walled unmetallized (bare) balloon with internally circulating (or at least convecting locally) fluid.
  • the wall of the bladder 118 is so thin (on the order of 15-40 microns, for example) that only a very small thermal gradient of a couple of degrees Celsius can be maintained across it.
  • the tissue cannot get any hotter than 2° C. above the bladder circulating fluid despite unintended ablation heating (presuming intimate wetted contact between the bladder 118 and the tissue).
  • the exterior surface of the bladder 118 is hydrophilic or wettable such that the bladder/tissue interface is well-coupled thermally.
  • a number of techniques may be used to ensure that the outer surface of the bladder 118 stays wetted.
  • the wall of the bladder 118 may include fluid-weeping or spray perforations or holes therein, or be fluid permeable, to assure its outer surface and surrounding tissue stay wetted.
  • the outer surface of the bladder 118 may be gel coated to assure wetted contact between the tissue and bladder 118 , and therefore, the heat sink 110 .
  • the bladder 118 is configured to weep fluid therefrom in order to maintain saturation of the gel coating the surface of the bladder 118 .
  • the protective probe 100 and the heat sink 110 thereof, in particular, may be further configured to force-cool the tissue by flushing the tissue with fluid from the bladder 118 and/or from the fluid source 102 .
  • This force-cooling may be done prior to the commencement of an ablation procedure (i.e., pre-cooling the tissue), during the procedure, or a combination of the two. This may be accomplished in a number of ways.
  • a plurality of perforations or holes 124 are formed in the wall of the bladder 118 .
  • the holes 124 permit the fluid within the bladder 118 to flow therefrom and onto the outer surface of the bladder 118 and/or the tissue proximate thereto. Obviously, the larger the holes, the more fluid will be dispensed from the bladder 118 .
  • the bladder 118 is configured to allow fluid to be sprayed therefrom and onto the surrounding tissue in an aerosol or steam-spray fashion.
  • the bladder 118 need not be designed to fit snugly against the esophageal wall and, in an exemplary embodiment, may be left hanging loosely in the esophagus.
  • One means by which this may be done is to force air or gas into the bladder 118 causing the fluid in the bladder 118 to be dispensed or “sprayed” therefrom.
  • an air-delivery lumen may be provided that extends from an air or gas source to the bladder 118 .
  • the air-delivery lumen may be the fluid delivery lumen 119 or, alternatively, may comprise a separate and distinct lumen.
  • the air source When activated, the air source sends a stream of air to the bladder 118 with enough force to cause the fluid therein to spray out of, for example, the holes 124 .
  • the bladder 118 includes one or more outlets 126 therein that are coupled to a fluid source, such as, for example, fluid source 102 , through one or more fluid delivery lumens, such as, for example, lumen 119 .
  • fluid when the fluid source 102 is activated, fluid is delivered directly to the outlet(s) 126 by the corresponding lumen(s) and is dispensed from the outlet to surrounding tissue. It will be appreciated that this particular embodiment may find application in embodiments of the probe 100 wherein the bladder 118 is inflated with gas or fluid.
  • the bladder 118 is constructed of a fluid-permeable polymer that is configured to weep a film of fluid onto the outer surface of the bladder 118 when the bladder 118 is filled with fluid.
  • the polymer material may comprise, for example and without limitation, a porous urethane or a porous PEBAX®. It will be understood that the term “porous” as used herein is intended to mean permeable to fluid due to the presence of one or more apertures or holes, regardless of how or when the holes we formed in the bladder 118 (e.g., during manufacture of the bladder, or post manufacture by laser drilling or punching operations).
  • the bladder is configured to contact the wall of the esophagus and to expel or distribute fluid or gel onto the outer surface of the bladder 118 and/or surrounding esophageal tissue (or in an embodiment wherein the bladder 118 is pre-coated with a gel, for example), it may be desirable to maintain wetted contact between the bladder 118 and the tissue. Wetted contact assures low-resistance heat transfer across the bladder/tissue interface, and therefore, provides good heat-sinking capabilities. By distributing fluid and/or gel onto the outer surface of the bladder 118 and/or the surrounding tissue (or pre-coating the bladder 118 with gel), drying out of the interface as a result of the heat produced during the ablation procedure is substantially prevented.
  • the bladder 118 may have folds, pleats, or creases as inflated against the wall of the esophagus.
  • the bladder 118 may have folds, pleats, or creases as inflated against the wall of the esophagus.
  • cooling fluid is dispensed from the bladder 118 onto the surrounding tissue, it may be that a certain margin of tolerance is permitted with respect to the positioning of the heat sink 110 directly opposite the ablating device 18 , and the ablation element 30 thereof, in particular. It will be understood and appreciated that in some or all of these embodiments, the fluid dispensed from the bladder 118 will flow down the walls of the esophagus (presuming vertical orientation) protecting regions of non-targeted tissue even below the heat sink 110 , and the bladder 118 thereof, in particular. The patient may also be oriented with gravity in a manner to assure that it is the heart-facing portion of the esophagus that is wetted by the fluid.
  • the bladder 118 is configured to be many times larger in area than the size of the potential thermal esophageal fistula, and therefore, only crude accuracy in placement is required.
  • one or more tracking or visualization elements can be coupled thereto or therein.
  • one or more magnets, coils or electrodes can be utilized that are MRI-, radio- or fluoro-opaque, or responsive or capable of being visualized with an impedance-based system such as the EnSite NavXTM system commercially available from St. Jude Medical, Inc.
  • a fluoroscopic contrast-bearing fluid may be distributed within or onto the outer surface of the bladder 118 to allow for fluoroscopic imaging of the bladder 118 to assist in bladder 118 placement.
  • each of the above-described embodiments may be used to cool the tissue during the performance of an ablation procedure, or to pre-cool the non-targeted tissue in the region proximate to or wherein an ablation procedure is to be performed.
  • the bladder 118 may be used to cool the tissue with the fluid from the bladder 118 a certain amount, such as, for example, 5-20° C. below natural body (esophagus) temperature. This provides even more temperature safety margin before a thermal fistula can be formed.
  • the esophagus may be thermally protected by abutting the bladder 118 against the esophagus wall, and/or by spraying, leaking, weeping or otherwise dispensing fluid from the bladder 118 and onto the surrounding tissue from a distance of zero to several millimeters between the bladder and the tissue. Therefore, it will be further understood and appreciated that the bladder may or may not physically touch the tissue in order to protect the tissue.
  • a means for ensuring the probe 100 , and the tissue protecting apparatus 110 thereof, in particular, is positioned in close proximity to the ablation site, and therefore, the ablation element 30 of the ablating device 18 , is provided.
  • the tissue protecting apparatus 110 does perform a heat sinking function
  • the degree of wetted or acoustic contact between the heat sink 110 and the tissue may also be determined. This locating and/or degree of contact functionality ensures that the tissue protecting apparatus 110 is positioned in an area in which hotspots are most likely to be generated, and it may be carried out in a number of ways.
  • known imaging systems or modalities that allow the user of the system 10 to visually determine where the probe 100 is positioned, and to then confirm whether it is in an acceptable location, may be employed.
  • One such imaging modality which is provided for exemplary purposes only and not meant to be limiting in nature, is fluoroscopy. Fluoroscopy provides a real-time image of a region of interest of a patient's anatomy and medical devices disposed therein, and therefore, is a good imaging system for real-time probe location detection/confirmation.
  • markers such as radio opaque markers or other markers well known in the art, may be placed in or on the probe 100 and the tissue protecting apparatus 110 , in particular, to allow for them to be visualized or imaged by the fluoroscopic imaging system.
  • the tissue protecting apparatus includes a fluid-inflatable bladder
  • the fluid within the bladder 118 may contain a fluoroscopic contrast agent or other imaging-modality contrast agent to allow the bladder 118 to be visualized using fluoroscopy or another imaging modality.
  • the material of the bladder 118 may itself be fluoroscopically visible. In any instance, this allows for the verification of bladder placement and inflation.
  • an acoustic transducer 128 electrically connected to circuitry associated with the system 10 such as, for example the ablating subsystem 12 , the temperature monitoring and management subsystem 14 , or the system controller 16 , is mounted or otherwise disposed on the ablating device 18 in close proximity to the ablation element 30 .
  • a processor 130 is also provided, which may be part of either the ablation subsystem 12 , the temperature monitoring and management subsystem 14 , or, as illustrated in FIG. 1 , the system controller 16 , and is electrically connected to the transducer 128 .
  • the acoustic transducer 128 is configured to emit acoustic waves directed toward the ablation site, and therefore, in the direction of where the distal portion of the probe 100 should be located, to ping the probe 100 , and preferably, the tissue protecting apparatus 110 thereof, in particular.
  • the acoustic transducer 128 is further configured to receive a pulse-echo reflection of the signal and to communicate that signal to the processor 130 .
  • the processor 130 can determine whether the probe 100 is properly positioned and/or whether there is a high degree of wetted or acoustic contact between the probe 100 and the tissue using methods well known in the art (e.g., a large reflection is indicative of an air-filled esophagus without the probe 100 (e.g., the bladder 118 ), and a much smaller reflection is indicative of the wet-coupled presence of the probe 100 (e.g., the bladder 118 ).
  • a large reflection is indicative of an air-filled esophagus without the probe 100 (e.g., the bladder 118 )
  • a much smaller reflection is indicative of the wet-coupled presence of the probe 100 (e.g., the bladder 118 ).
  • a microbubble contrast agent such as, for example, a liposome-based material, may be put in the inflating fluid such that it can be acoustically recognized as a large reflector). This indication can then be provided to the practitioner performing the ablation procedure either audibly or visually, such as, for example, on a display monitor or through an audio indicator.
  • the ablator may be configured to acoustically detect, in a pinging mode similar to that described above, the acoustical/thermal contact of the opposed tissue protecting apparatus 110 and the tissue.
  • the subsystem 14 includes an acoustic transducer 132 coupled with or mounted to the probe 100 , preferably at the distal end 114 thereof (as opposed to the transducer being mounted to the ablating device).
  • a processor 134 is further provided and electrically connected to the transducer 132 .
  • the processor 134 may be part of the subsystem 14 , or in other exemplary embodiments, part of the ablation subsystem 12 or the system controller 16 (as is illustrated in FIG. 1 ).
  • the acoustic transducer 132 is configured to emit acoustic waves in the perceived direction of the ablation site, and therefore, in the direction of where the ablating device 18 , and the ablation element 30 thereof, in particular, should be located, to ping or bounce low power energy off of the ablating device 18 .
  • the acoustic transducer 132 is further configured to receive a pulse-echo reflection of the signal and to communicate that signal to the processor 134 .
  • the processor 134 can determine whether the probe 100 is properly positioned relative to the ablating device 18 using methods well known in the art (e.g., a weak return signal indicative of the ablating device 18 not being present, while a strong return signal indicative of proper, or at least close, placement of the probe 100 relative to the ablating device 18 ). This indication can then be provided to the practitioner performing the ablation procedure audibly and/or visually, for example.
  • This particular embodiment provides the advantage that the “coupling” (e.g., thermal coupling) between the ablating device 18 and the probe 100 can be monitored throughout the performance of an ablation procedure without disrupting the operation of the ablating device 18 .
  • the subsystem 14 further includes a temperature monitoring apparatus at least a portion of which is coupled, mounted, otherwise disposed within or on the probe 100 at or near the distal end thereof.
  • the temperature monitoring apparatus includes a thermal imaging chip 136 that is mounted to the probe 100 proximate the distal end thereof.
  • the temperature monitoring apparatus comprises the thermal imaging chip 136 as well as an imaging fiber bundle electrically connected to said thermal imaging chip 136 . In such an embodiment, a portion of the imaging fiber bundle is disposed proximate the distal end of the probe 100 .
  • the temperature monitoring apparatus e.g., the thermal imaging chip 136 , for example
  • the thermal imaging chip 136 has a field of view 138 and is configured to generate an image or images of the tissue, such as, for example, esophageal tissue, disposed within the field of view 138 .
  • the thermal imaging chip 136 is an infrared imaging chip, such as, for example, a mid-IR or long-IR wavelength infrared imaging chip, and is further configured to visually detect temperatures of the imaged tissue.
  • the tissue protecting apparatus 110 i.e., the inflatable bladder and components thereof
  • the tissue protecting apparatus 110 does not dispense fluid as described above, and, if the tissue protecting apparatus 110 includes an inflatable component, it may or may not be inflated with fluid. In another exemplary embodiment, however, wherein the tissue protecting apparatus 110 includes an inflatable bladder, such as, for example, bladder 118 , in addition to stabilizing the position of the probe 100 , the bladder 118 may be inflated with, and/or configured to dispense, fluid therefrom as described above. It will be understood by those having ordinary skill in the art that when using infrared thermography, such as, for example, those techniques identified above, it is the nearest surface of the tissue or surface of the fluid-covering the tissue that is being visualized or imaged.
  • the temperature monitoring apparatus may be disposed within the fluid in the bladder 118 . Accordingly, in such an embodiment, the fluid used to inflate and/or cool the tissue must be an infrared transparent (as opposed to opaque) fluid such that thermography works even through the fluid, and the temperature monitoring apparatus can look through or from within the fluid.
  • the thermal imaging chip 136 may have a lens or window 140 , and the lens 140 may be warmed in order to prevent it from fogging so as to maximize the resolution and contrast of the images. Further, the thermal imaging chip 136 may include a protective covering (not shown) in case the thermal imaging chip 136 comes into contact with tissue.
  • the temperature monitoring apparatus is configured to determine the highest temperature in the imaged tissue, and to communicate the same to a processor 142 (shown in FIG. 1 ) or other circuitry associated with subsystem 14 (or the ablation subsystem 12 or the system controller 16 ).
  • the processor 142 is configured, at least in part, to compare the determined highest temperature or a too-rapid time rate of change measured surface temperature with a predetermined threshold temperature or rate of change, and to provide the practitioner performing the ablation procedure an audible and or visual warning if the measured highest temperature approaches or reaches the predetermined threshold (e.g., a temperature at or near the highest temperature at which burning or damage to the esophageal tissue is not expected to occur, or a predetermined rate of change threshold).
  • the subsystem 14 may further include an alarm system controllable by, for example, the processor 142 , to provide an audible and/or haptic warning that the threshold has been met or is being approached, and/or a display monitor 144 (best shown in FIG.
  • the processor 142 controllable by, for example, the processor 142 , to display the imaged tissue, as well as a visual warning that the threshold has been met or is being approached.
  • This information may be further communicated to the system controller 16 , for example, or to ablation subsystem 12 , which may then cause the ablating device 18 to be turned “off” or turned “down” in order to prevent or mitigate burning in the esophageal tissue, for example, or to take other corrective or mitigating actions.
  • the detected thermal hotspot may also be used to predict the temperature trajectory and have the system undertake preventative or warning actions, and/or to control the ablative energy level.
  • low energy may be delivered by the ablating device 18 for purposes of estimating how hot the esophageal tissue will get at higher ablation energy.
  • the predetermined temperature/rate of change threshold may be adjustable so as to allow for the adjustment of the sensitivity of the system.
  • the subsystem 14 may include a conventional user input device electrically coupled to, and configured for communication with, the processor 142 to allow for the adjustment of the threshold.
  • the processor 142 may be preprogrammed with an initial threshold, and then reprogrammed to adjust the threshold, or may be programmable.
  • the predetermined threshold may be a preprogrammed and fixed value that may not be adjusted.
  • the thermal imaging chip 136 and/or other circuitry of the temperature monitoring apparatus or subsystem 14 , such as, for example and without limitation, the processor 142 , may be configured to generate a thermographic map 146 of the imaged tissue (best shown in FIG. 9 ).
  • the thermographic map 146 depicts the temperature of various areas of the imaged tissue.
  • the display monitor 144 may be configured to display and/or store a temporal representation of the generated thermographic map 146 .
  • the thermographic map may be color coded by temperature, or may provide other indicators of the respective detected and depicted temperatures.
  • the temperature monitoring apparatus may also include an imaging fiber bundle that is electrically connected to the thermal imaging chip 136 .
  • the imaging fiber bundle is inserted into the patient's body. Because the imaging fiber bundle is electrically connected to the thermal imaging chip 136 , the thermal imaging chip 136 is optically coupled to the interior anatomical site with the image fiber bundle.
  • the imaging chip 136 may be disposed, for example, within the probe 100 , in the handle 108 thereof, or elsewhere within the temperature management and monitoring subsystem 14 .
  • the probe 100 may only include the temperature monitoring apparatus disposed at the distal end 114 thereof. In such an embodiment, the description set forth above relating to the temperature monitoring apparatus and its functionality applies here with equal force, and therefore, will not be repeated. Additionally, it will be appreciated that while in one exemplary embodiment, the probe 100 may be passed down the throat of the patient by itself, in another exemplary embodiment the probe 100 may be used in conjunction with a sheath.
  • thermal imaging chip 136 Advantages offered by the use of the thermal imaging chip 136 include the ability to display the entire temperature map of the imaged tissue without having to perform any interpolation, which is required in physical thermistor arrays. Additionally, there are generally no loss-of-contact issues as the chip provides a visual image as opposed to taking measurements of the surface of the tissue itself. Finally, a wide view of a passageway, such as, for example, the esophagus can be achieved without having to move the probe once it is properly positioned.
  • a probe including a temperature monitoring apparatus with a field of view 138 is provided.
  • tissue within the field of view 138 and also disposed within the desired region of tissue is imaged by the temperature monitoring apparatus (e.g., the imaging chip 136 ).
  • the temperature monitoring apparatus e.g., the imaging chip 136
  • at least one temperature within the imaged tissue is determined.
  • step 152 comprises detecting the highest temperature in the imaged tissue, and fourth step 154 comprises initiating a warning if the detected highest temperature exceeds a predetermined threshold.
  • a warning may be provided if the temperature is approaching the threshold temperature or if it is anticipated that the temperature threshold will be exceeded.
  • step 152 comprises determining a rate of change of the temperature in the tissue, and fourth step 154 comprises initiating a warning if the determined rate of change exceeds a predetermined threshold.
  • a warning may be provided if the rate of change is approaching the threshold or if it is anticipated that the threshold will be exceeded.
  • a step 155 includes throttling or gating the ablation energy being applied by the ablating device to reduce or stop the application of ablation energy.
  • step 152 comprises detecting a plurality of temperatures in the imaged tissue, and a subsequent step 156 includes generating a thermographic map corresponding to the detected plurality of temperatures.
  • the generated thermographic map is displayed on a display monitor and/or stored in a storage medium.
  • a system for performing an ablation procedure comprising: an ablation subsystem including a thermal ablation device configured to be inserted into the anatomy of a patient and to deliver thermally heating ablating energy to a target ablation site; and a temperature monitoring and management subsystem including a protective probe configured to be inserted into the anatomy of said patient and positioned in close proximity to a region of non-targeted tissue proximate said targeted ablation site at a second site to be protected from said nearby ablation, said probe including a heat sink comprising a balloon, membrane or bladder (collectively referred to as “bladder”) disposed at a distal portion of said probe and configured to be inflated or flushed with a cooling or heat-extracting fluid; and a fluid source configured to be coupled to said bladder and to supply fluid to said bladder; said heat sink of said temperature monitoring and management subsystem configured to transfer or remove heat generated or deposited in tissue in said region of non-targeted tissue by said ablating device such that it is not ablated.
  • the bladder may also be
  • tissue in said region of non-targeted tissue is also pre-cooled below its natural body temperature by said bladder or heat sink thereby providing additional protection from unintended ablation.
  • said ablating device is configured to be inserted into the heart of a patient and said probe is configured to be inserted into the esophagus of said patient, and wherein the target ablation site is an endocardial tissue in a heart wall, and said second site is a nearby esophageal portion.
  • RF radio frequency
  • microwave microwave
  • laser laser
  • the system of example (1) further comprising a system controller electrically connected to said ablation subsystem and said temperature monitoring and management subsystem.
  • the system of example (1) further comprising a temperature monitor or temperature controller which is capable of at-least detecting a temperature of a tissue, a heat sink or a heat sinking fluid.
  • said bladder includes a plurality of microscopic holes or permeable paths therein to allow fluid in said bladder to flow or permeate out of said bladder to the outer surface of the bladder.
  • said bladder is constructed of a water permeable polymer configured to weep a film of fluid onto the outer surface of said bladder when said bladder is filled with fluid.
  • said bladder includes at least one outlet therein configured to allow fluid to be sprayed, sheeted or dripped therefrom upon or across a protectable tissue surface.
  • said ablating device includes an acoustic transducer mounted thereon, said acoustic transducer electrically connected to a processor, and further wherein said acoustic transducer and said processor are configured to determine a location and/or a degree-of-contact of said probe relative to esophageal tissue.
  • acoustic transducer configured to transmit an acoustic signal and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by said probe, said processor configured to process said transmitted and received acoustic signals and to determine said relative location of said probe or how well said probe is acoustically and therefore thermally coupled to the esophagus.
  • a low acoustic reflection is indicative of a good thermally conducting wetted interface between the bladder and the tissue.
  • said probe further includes an acoustic transducer mounted thereon, said acoustic transducer electrically connected to a processor, and further wherein said acoustic transducer and said processor are configured to determine a location of said probe relative to said region of non-targeted tissue.
  • acoustic transducer configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by tissue in said region of non-targeted tissue, said processor configured to process said transmitted and received acoustic signals to determine said relative location of said probe.
  • said probe further includes an thermal imaging chip mounted thereon, said thermal imaging chip having a field of view and configured to generate a thermal image of tissue in said region of non-targeted tissue that is disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • thermographic map corresponding said imaged tissue.
  • thermographic map The system of example (18), further comprising a display monitor electrically connected to said imaging chip and configured to display said thermographic map.
  • thermal imaging chip is configured to detect the highest temperature in said imaged tissue or in a fluid film on said tissue.
  • a system for monitoring temperature in a region of non-targeted tissue not to be ablated during an ablation procedure performed on tissue proximate said region of non-targeted tissue comprising a probe including an elongate shaft having a proximal end, a distal end, and an inflation or filling lumen disposed therein, said elongate shaft defining a longitudinal axis extending from said proximal end through said distal end; a handle disposed at said distal end; and a heat sink, wherein said heat sink comprises a bladder disposed at said distal end of said elongate shaft and extending therefrom a predetermined distance along said longitudinal axis of said elongate shaft toward said proximal end of said elongate shaft, wherein said bladder is configured to be filled with a fluid; a fluid source, wherein said inflation or filling lumen of said elongate shaft is coupled between and to each of said fluid source and said bladder, and said fluid source is configured to supply fluid to said bladder through said inflation
  • said bladder includes at least one outlet therein configured to allow fluid to be sprayed, sheeted or dripped therefrom across the surface of a protectable tissue.
  • said heat sink further includes a return lumen disposed between, and in fluid communication with, said bladder and said fluid source, said return lumen configured to return fluid from said bladder to said fluid source or to a patient-external drain.
  • the ablation device in this example may be a HIFU ablation device wherein the HIFU ablation and pinging are both done by the same transducer.
  • acoustic transducer configured to transmit an acoustic signal and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by said probe, said processor configured to process said transmitted and received acoustic signals and to determine said relative location of said probe or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • example (22) further comprising an acoustic transducer mounted to said elongate shaft of said probe proximate said distal end thereof and electrically connected to a processor, said ultrasound transducer and said processor configured to determine a location of said probe relative to said region of non-targeted tissue or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • acoustic transducer configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by tissue in said region of non-targeted tissue, said processor configured to process said transmitted and received acoustic signals to determine said relative location of said probe or to determine a degree of coupling between said probe and said tissue.
  • thermo imaging chip mounted to said elongate shaft of said probe proximate said distal end thereof, said thermal imaging chip having a field of view and configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • thermographic map corresponding said imaged tissue.
  • thermographic map The system of example (35), further comprising a display monitor connected to said thermal imaging chip and configured to display said thermographic map.
  • thermal imaging chip or supportive software analyzing the image is configured to detect the highest temperature in said imaged tissue.
  • An apparatus for use in monitoring and/or managing temperature in a region of non-targeted tissue during an ablation procedure performed proximate said region of non-targeted tissue comprising an elongate shaft having a proximal end, a distal end, and an inflation lumen disposed therein, said elongate shaft defining a longitudinal axis extending from said proximal end through said distal end; a handle disposed at said proximal end; a heat sink, wherein said heat sink assembly comprises a bladder disposed at said distal end of said elongate shaft and extending therefrom a predetermined distance along said longitudinal axis of said elongate shaft toward said proximal end of said elongate shaft, said bladder coupled with said inflating lumen and configured to be filled with a heat-transfer or cooling fluid supplied by a fluid source to which said bladder is coupled; and an actuator or valve configured to cause said bladder to be at least partially filled or emptied of fluid and preferably to also weep or spray fluid
  • said bladder includes a plurality of microscopic holes, pores, or permeable paths therein to allow fluid in said bladder to flow out of said bladder at least to the outer surface of the bladder.
  • said bladder is constructed of a water permeable polymer configured to weep or permeate a film of fluid on or onto the outer surface of said bladder when said bladder is filled with fluid.
  • said bladder includes at least one outlet or orifice therein configured to allow fluid to be sprayed, sheeted or dripped therefrom.
  • said heat sink further includes a return lumen disposed between, and in fluid communication with, said bladder and said fluid source, said return lumen configured to return fluid from said bladder to said fluid source or to a patient-external drain.
  • acoustic transducer is configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal
  • said processor is configured to process said transmitted and received acoustic signals to determine said relative location of said apparatus or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • thermo imaging chip mounted to said elongate shaft proximate said distal end thereof, said thermal imaging chip having a field of view and configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • thermographic map corresponding said imaged tissue.
  • thermo imaging chip or supportive software is configured to detect the highest temperature in said imaged tissue.
  • An apparatus for use in monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate said region of non-targeted tissue comprising: a probe having a proximal end and a distal end; and an infrared thermal imaging chip mounted to said probe proximate said distal end thereof; wherein said thermal imaging chip has a field of view and is configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, and further wherein said imaging chip, or supportive software working with the image, is configured to detect temperatures of said imaged tissue.
  • thermographic map corresponding said imaged tissue.
  • thermographic map The apparatus of example (54), further comprising a display monitor connected to said thermal imaging chip and configured to display said thermographic map.
  • thermo imaging chip or software used to analyze the image is configured to detect the highest temperature in said imaged tissue.
  • said probe further comprises an inflatable clamp mounted thereon to stabilize a position of said thermal imaging chip when inflated to provide a desired line-of-sight for said imaging chip.
  • imaging chip is a CCD chip which may optionally also have visible-wavelength imaging capabilities.
  • imaging chip is a CMOS chip which may optionally also have visible-wavelength imaging capabilities.
  • a method of monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate said region of non-targeted tissue comprising: providing a probe including an infrared thermal imaging chip having a field of view; imaging tissue within said field of view of said thermal imaging chip and disposed within said region of non-targeted tissue; and detecting at least one temperature of said imaged tissue.
  • thermographic map corresponding to said detected plurality of temperatures.
  • thermographic map on a display monitor.
  • An ablating device comprising an elongate shaft having a proximal end and a distal end; a handle mounted to said elongate shaft at said proximal end thereof; and an ablation element mounted to said elongate shaft at said distal end, said ablation element including an ultrasound transducer and at least one inflatable balloon surrounding said ultrasound transducer, and wherein said balloon having an inner surface and an outer surface, and said balloon further having a layer of semisolid gel or hydrophilic coating disposed on at least a portion of said outer surface at-least during ablative operation.
  • the gel or hydrophilic coating allowing for an external balloon surface to provide a reliable flow-seal against blood flow during an ablation procedure.
  • said balloon further includes at least one port disposed therein configured to distribute said gel or coating material onto said at least a portion of said outer surface of said balloon.
  • a method of ablating pulmonary vein ostia or any portion of a myocardium while thermally protecting a nearby esophagus from ablation comprising: a thermal ablation device operable from within the heart to ablate one or more ostia, myocardial tissues, or portions thereof; a heat sinking protective probe insertable down an esophagus to thermally couple to esophageal tissues to be protected from ablation taking place nearby in the heart; wherein at least one of (a) the heat sinking probe pre-cools the protectable esophageal tissues thereby providing increased thermal margin for ablation protection of those protected tissues; and (b) the heat sinking probe acts to sink away heat for potential undesirable hotspots developed in the esophagus by the nearby thermal ablator.
  • the transducer of the ablation element may be rotated during an ablation procedure to counteract an angular non-uniformity of the transducer output via rotational averaging. This is particularly applicable to a non-uniform 360 degree piezotube which benefits from rotation or to a sector transducer of less than 360 degrees which must be rotated.
  • any and all directional references are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention.
  • Joinder references e.g., attached, coupled, connected, mounted and the like
  • Joinder references are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected/coupled and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the invention as defined in the appended claims.

Abstract

An ablation system is provided that includes an ablating device and a probe. The probe is configured to be positioned in close proximity to a region of non-targeted tissue proximate an ablation site of targeted tissue. The probe includes an elongate shaft having proximal and distal ends, with a handle disposed at the proximal end thereof and a tissue protecting apparatus disposed at the distal end thereof. The ablating device includes an elongate shaft having proximal and distal ends, with a handle mounted at the proximal end thereof and an ablation element mounted at the distal end thereof. The ablation element includes an ultrasound transducer and an inflatable balloon surrounding the ultrasound transducer. The balloon includes a layer of gel disposed on its outer surface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/648,797, filed 29 Dec. 2009 (the '797 application), which claims the benefit of U.S. provisional application No. 61/141,379 filed Dec. 30, 2008 (the '379 application). The '797 application and the '379 application are both hereby incorporated by reference as though fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • a. Field of the Invention
  • The present invention relates generally to medical systems for performing therapeutic functions, such as, for example, ablation procedures. More particularly, the present invention relates to an ablation system that includes blood leakage minimization and/or tissue protective capabilities.
  • b. Background Art
  • It is known to use minimally invasive surgical devices or ablating tools to perform ablation procedures in, for example, the heart. For instance, in treating a condition known as atrial fibrillation, it is known to advance an ablating tool through the vasculature of a patient to a desired location, and to then thermally ablate tissue within, for example, an ostium (OS) connecting a pulmonary vein to the heart, or to ablate the tissue within the heart surrounding the OS.
  • One example of a type of tool known in the art to perform such procedures is a catheter-based ablating device such as that or those described in U.S. Pat. No. 6,635,054 entitled “Thermal Treatment Methods and Apparatus with Focused Energy Application,” U.S. Patent Publication No. 2004/0176757 entitled “Cardiac Ablation Devices,” and International Publication No. WO 2005/102199 entitled “Ablation Devices with Sensor Structures.” These known devices generally include, among other components, an elongate shaft having a proximal end, a distal end, and a longitudinal axis extending therebetween. The devices further include an ablation element mounted at or near the distal end of the elongate shaft. In at least one such device, the ablation element comprises a pair of inflatable balloons that share a common wall therebetween, with one of the balloons being disposed proximally of the other balloon. The balloons are configured to have a collapsed condition and an expanded condition, and are configured such that one is liquid or fluid inflated and one is gas inflated. The ablation element further includes an ultrasound transducer mounted or otherwise disposed within the distally disposed balloon that is configured to emit high intensity ultrasonic waves radially outwardly into the liquid or fluid within the balloon with respect to the longitudinal axis of the elongate shaft. The ultrasonic waves have the strength and intensity to burn or ablate tissue after they are reflectively focused forward (more distally onto the OS interior) by the reflectively curved fluid/gas interface defined, in part, by the common wall shared by the two overlying balloons.
  • In operation, once such an ablating device is positioned in a desired location within the patient's anatomy (e.g., in a pulmonary vein OS), the balloons are respectively inflated with saline (inner balloon) and carbon dioxide gas (outer balloon). The ultrasound transducer is then selectively activated to emit ablating energy (e.g., intense ultrasonic waves). When the ultrasound transducer, which is typically cylindrical, emits the ultrasonic waves in radial directions into the fluid-filled balloon, the waves are reflected and redirected (focused) forward by the common reflective interface wall between the two balloons, and re-directed forward of the balloons and focused to define, for example, a focused ring-like ablation region in the circumferential interior OS annular wall. Such radial or circumferential ablating devices provide an efficient and effective means by which to simultaneously circumferentially ablate myocardial tissue around the OS of the pulmonary vein. Typically, multiple pulmonary ostia are ablated separately and sequentially with the same device as it is moved and placed in each OS needing ablation.
  • However, these known devices are not without their drawbacks. For instance, one function of the balloons of the ablating device, when the ablation element is inserted within an orifice or OS and inflated, is to serve as a blood flow barrier to seal the interface between the balloons and the inner annular wall of the orifice or OS, thereby temporarily preventing blood flow past the balloons through the OS. If the blood flow is not stopped substantially completely around all 360 degrees, then the residual blood flow may prevent thermal lesioning due to unwanted cooling of target tissues. However, when the balloons are manufactured and then inflated, they are manufactured and inflated to be rotationally symmetric (bodies of revolution) because it is the most manufacturable approach and does not require any rotational device alignment to target tissues. Conversely, the orifices or ostia within which the device, and the ablation element thereof, in particular, is to be inserted are not typically rotationally symmetric, but rather oftentimes are irregular and have a more oval or oblong shape with, for example, as much as a 3:1 aspect ratio. As such, when the balloons are inflated in an oval-shaped or irregular orifice, a sealed (to blood flow) interface between the balloon(s) and OS cannot be created, and as a result, cooling blood may leak past the balloons across the interface where ablative heating is to take place. When the blood leaks past the balloon(s), it undesirably serves to cool the surface of the tissue over which it flows, and does so in a non-uniform manner that cannot be easily corrected or compensated for. This is undesirable as these unintended cooled areas of tissue cannot be sufficiently continuously ablated or burned because they are being cooled by the blood, therefore, surface lesions cannot be controllably formed. Accordingly, the quality and adequacy of the ablation procedure may be substantially reduced, or require additional ablating procedures to be performed in order to complete the desired continuous ablation lesion of the targeted tissue.
  • Another drawback in known endocardial catheter pulmonary vein ostia ablation systems relates to the monitoring, maintenance, and/or control of the temperature in non-targeted tissue proximate the targeted ablation site during the ablation procedure. Such non-targeted tissue must not be damaged during the ablation procedure. More particularly, when certain heart tissue is being ablated, the energy emitted from the ablating device may be strong enough or generate a high enough temperature to cause tissue necrosis in non-targeted tissue. For example, portions of the esophagus are located proximate the heart and if an endocardial ablation site is near the esophagus the ablation energy itself, or heat generated by it and conducted away from the target, can potentially cause the nearby esophageal tissue to experience cell death.
  • Conventional suggested methods of addressing this concern include the use of one or more thermocouples or thermistor-based sensors that are passed either blindly or with the assistance of imaging or visualization systems (e.g., fluoroscopic, impedance-based, MRI, etc.) down the throat on an expandable member configured to monitor the temperature of the esophageal tissue and detect undesirable energy transfer to the esophagus. Such a technique may require the use of a dense macroscopic thermistor array, which may result in a disposable temperature monitoring device being cost-prohibitive or large. Additionally, such a technique may cause challenges with respect to the accuracy of the placement of the sensor(s), and it may be difficult to detect loss-of-contact between the sensor and the non-targeted tissue to be protected, or to sense the actual positioning of the sensor relative to the non-targeted tissue. Further, without using one or more imaging means, it is exceedingly difficult to locate a single protective thermocouple directly opposite or in the field of energy delivery of the ablating device. If such difficulty is compensated for by providing a thermocouple or thermistor array of larger area, another issue is presented, that being obtaining good thermal contact to the esophageal interior. Finally, apparent proper placement of the monitoring thermocouple using fluoroscopy still cannot guarantee proper thermal contact to the esophagus, or thermal wetted contact to the esophagus (i.e., a wet contact which stays wet and thermally sinking during an ablation procedure so as prevent the corresponding tissue from drying out and overheating).
  • Accordingly, there is a need for an ablation tool or system that will minimize and/or eliminate one or more of the above-identified deficiencies.
  • BRIEF SUMMARY OF THE INVENTION
  • The present disclosure is directed to an ablation system and its constituent components that include blood leakage minimization and tissue protective capabilities during an ablation procedure. The system according to the present teachings includes an ablating device configured to be inserted into the anatomy of a patient and to deliver ablating energy to a target-tissue ablation site. The system further includes a protective probe. The protective probe is configured for insertion into the anatomy of a patient and to be positioned in close proximity to a region of non-targeted tissue proximate the ablation site such as on the opposite side of the region of non-targeted tissue from the ablating device or collateral to the targeted ablation site.
  • In one exemplary embodiment, the ablating device comprises an elongate shaft having a proximal end and a distal end. The ablating device further includes a handle mounted to the elongate shaft at the proximal end thereof. The ablating device still further includes an ablation element mounted to the elongate shaft at the distal end. The ablation element includes an ultrasound transducer and at least one inflatable balloon surrounding the ultrasound transducer. The balloon includes an inner surface and an outer surface, and has a layer of shape-conforming gel disposed on at least a portion of the outer surface.
  • In one exemplary embodiment, the probe includes an elongate shaft having proximal and distal ends, and a longitudinal axis extending from the proximal end to the distal end of the shaft. The probe further includes a handle disposed at the proximal end of the shaft, and a tissue protecting apparatus disposed at the distal end of the shaft. The tissue protecting apparatus extends from a point on the shaft at or near the distal end thereof a predetermined distance along the longitudinal axis of the shaft toward the proximal end of the shaft. The tissue protecting apparatus is configured to protect non-targeted tissue in the region of non-targeted tissue from receiving unintended ablation energy intentionally targeted at nearby opposed, collateral, or upbeam targeted tissue, such as, for example, ablation energy delivered to tissue opposite the region of non-targeted tissue from the tissue protecting apparatus.
  • In accordance with another aspect of the present disclosure, an apparatus for use in monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate the region of non-targeted tissue is provided. The apparatus includes a probe configured to be inserted into the anatomy of a patient, and includes a proximal end and distal end. The apparatus further comprises a temperature monitoring apparatus associated with the probe, at least a portion of which is disposed at or near the distal end thereof. The temperature monitoring apparatus has a field of view and is configured to generate an image of the tissue disposed within the field of view, and to detect temperatures in the imaged tissue.
  • In accordance with yet another aspect of the present disclosure, a method of monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate the region of non-targeted tissue is provided. The method comprises a first step of providing a protective probe including a temperature monitoring apparatus having a field of view, wherein the probe and at least a portion of the temperature monitoring apparatus is configured to be inserted into the anatomy of a patient. The method includes a second step of thermally or thermographically imaging tissue within the field of view of the temperature monitoring apparatus and disposed within the non-targeted region of tissue. The method includes a third step of detecting at least one temperature of the imaged tissue, which, in an exemplary embodiment, is the maximum temperature in the imaged tissue.
  • The foregoing and other aspects, features, details, utilities, and advantages of the present teachings will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a diagrammatic view of an exemplary embodiment of a system for performing an ablation procedure, and for monitoring and/or managing the temperature generated proximate an ablation site during the ablation procedure, in accordance with the present teachings.
  • FIG. 2 is a partial cross-section view of an exemplary embodiment of an ablation element of an ablating device of the system illustrated in FIG. 1, wherein balloons of the ablating device are inflated.
  • FIG. 3 is a partial cross-section diagrammatic view of an exemplary embodiment of a protective probe of a temperature monitoring and/or management subsystem of the system illustrated in FIG. 1, wherein the probe is disposed within the esophagus of a patient and includes a tissue protecting apparatus disposed at or near the distal end thereof
  • FIG. 4 is a schematic view of an exemplary embodiment of the tissue protecting apparatus illustrated in FIG. 3.
  • FIG. 5 is a cross-section view of an exemplary embodiment of the tissue protecting apparatus of FIG. 3 including fluid delivery lumens and corresponding outlets disposed therein.
  • FIG. 6 is partial cross-section diagrammatic view of another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1, wherein the probe is disposed within the esophagus of a patient, and further wherein the ablating device of the ablation system includes an acoustic transducer mounted thereon.
  • FIG. 7 is partial cross-section diagrammatic view of yet another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1, wherein the probe is disposed within the esophagus of a patient, and further wherein an acoustic transducer is mounted at the distal end of the probe.
  • FIG. 8 is partial cross-section diagrammatic view of yet still another exemplary embodiment of the probe of the temperature monitoring and/or management subsystem of the system illustrated in FIG. 1, wherein the probe is disposed within the esophagus of a patient, and further wherein a thermal imaging chip is mounted at the distal end of the probe;
  • FIG. 9 is a graphical representation of a thermographic map generated by the thermal imaging chip illustrated in FIG. 8; and
  • FIG. 10 is a flow diagram of an exemplary method of monitoring the temperature in a region of non-targeted tissue during an ablation procedure being performed on targeted tissue disposed proximate the desired region of non-targeted tissue.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings wherein like reference numerals are used to identify identical components in the various views, FIG. 1 illustrates an exemplary embodiment of a system 10 for performing ablation procedures and for monitoring, managing, and/or controlling the temperature in non-targeted tissue proximate an ablation site during the ablation procedure, in accordance with the present disclosure. The system 10 includes an ablation subsystem 12, a temperature monitoring and management subsystem 14, and, in an exemplary embodiment, a system controller 16 connected to each of the ablation subsystem 12 and the temperature monitoring and management subsystem 14. As is generally known in the art, (see, for example, U.S. Pat. No. 6,635,054 entitled “Thermal Treatment Methods and Apparatus with Focused Energy Application,” U.S. Patent Publication No. 2004/0176757 entitled “Cardiac Ablation Devices,” and International Publication No. WO 2005/102199 entitled “Ablation Devices with Sensor Structures”, the disclosures of which are hereby incorporated by reference in their entireties), in an exemplary embodiment, the ablation subsystem 12 includes an ablating device 18, comprised, in part, of at least one ablation element 30 coupled to an elongate and typically flexible shaft 20 having a proximal end 22, a distal end 24, and a longitudinal axis 26 extending from the proximal end 22 through the distal end 24. As will be described in greater detail below, the ablating device 18 further includes a handle 28 coupled to the elongate shaft 20 at the proximal end 22 thereof, and the at least one ablation element 30 is mounted to the elongate shaft 20 at or near the distal end 24 thereof. While it should be understood that the ablating device 18 may include one or more ablation elements 30, and that ablating devices 18 having more than one ablation elements 30 are within the spirit and scope of the present disclosure, for ease of description purposes only the description below will be limited to an embodiment wherein the ablating device 18 includes a single ablation element 30.
  • The flexible elongate shaft 20 may be formed of any number of materials, such as, for example and without limitation, PEBAX®, Nylon, and polyurethane. In another exemplary embodiment, the elongate shaft 20 is constructed of, or incorporates, a metal wire braid, as is known in the art. The elongate shaft 20 further includes at least one, and typically multiple, inner passageways or lumens 32 disposed therein (shown in FIG. 2). The lumens 32 extend longitudinally along an axial portion of the shaft 20 from the proximal end 22 to the distal end 24, and are configured to have one or more components of the ablating device 18 disposed therein, such as, for example and without limitation, pull wires, planarity wires, fluid irrigation or drainage lumens, lead wires for the ablation element 30, a rotation wire, or, as will be described in greater detail below, components required for inflating and deflating balloons with, for example, fluid, gas, and/or extruding gels, associated with the ablating device 18, and the ablation element 30, in particular.
  • As briefly described above, the handle 28 of the ablating device 18 is disposed at the proximal end 22 of the elongate shaft 20. The handle 28 is operative to, among other things, effect movement of the shaft 20 (i.e., steer the ablating device 18), and/or selectively manipulate the distal end 24 of the elongate shaft 20 to position the distal end 24, and therefore, the at least one ablation element 30, in a desired location when the ablating device 18 is disposed within a patient. More particularly, in one embodiment provided for exemplary purposes only, one or more pull wire(s) (not shown) are coupled to and between both the distal end 24 of the elongate shaft 20 and an actuator(s) 34 located on the handle 28. As the actuator 34 is manipulated, the corresponding pull wire(s) is caused to be pushed and pulled, for example, to effect movement, such as bending deflection, of the distal end 24 of the elongate shaft 20. It should be noted, however, that while only this particular method or technique of steering or effecting movement of the elongate shaft 20, and/or the distal end 24 thereof, is described in detail herein, the present invention is not meant to be so limited. Rather, those of ordinary skill in the art will appreciate that other methodologies or techniques of steering and/or manipulating ablating devices exist that remain within the spirit and scope of the present invention. In addition to actuator 34, other components may also be disposed within the handle 28. For example, electrical matching circuits to electrically impedance-match the components of the ablation element 30 to an ablation energy generator or power source, or other components of the ablation subsystem 12, for example, may be disposed within the handle 28. The ablation element 30 and the energy generator can be configured to deliver one or more types of ablation energy (e.g., high intensity focused ultrasound, or HIFU, radiofrequency, laser, microwave and the like).
  • With reference to FIG. 2, the ablation element 30 of the ablating device 18 will now be described. In an exemplary embodiment wherein the ablation element 30 is configured to deliver ultrasound energy to target tissue, the ablation element 30 includes a pair of inflatable balloons 36,38, and an ultrasound transducer or emitter 40 (hereinafter “ultrasound transducer 40” or “transducer 40”) mounted within one of the balloons (i.e., the distally disposed fluid-filled balloon 38, for example). In an exemplary embodiment, the transducer 40 may take the form of tubular or cylindrically-shaped ultrasound transducer formed of a piezoelectric material (e.g., piezoceramic, for example) which radiates ultrasound in radial directions around all 360 degrees. If, as will be described below, the transducer 40 is rotatable about the axis 26 during ablation, it may comprise a full cylinder or an angular sector of a cylinder. When the balloons 36,38 are deflated or in a collapsed condition, they form a small and compact unit that is substantially flush with the outer surface of the elongate shaft 20, or at least forming a low profile therewith, so as to allow the ablating device 18 to be easily inserted into and removed from a patient's body. Alternatively, the ablating device 18 may be inserted into and removed from a patient's body via a sheath or introducer (not shown).
  • As illustrated in FIG. 2, when in an inflated state, the balloon 38 is positioned distally or forward relative to the balloon 36. The two balloons 36,38 share an acoustically reflective common wall or balloon-wall interface 42 that, in the inflated state, essentially forms a parabolic surface with, as will be described below, fluid on one side and gas on the other side. In an exemplary embodiment, the common wall 42 comprises a single layer of material such that the wall is integral with each balloon 36,38 and therefore is truly shared by the balloons 36,38. In another exemplary embodiment, such as that illustrated in FIG. 2, the wall 42 comprises two layers of material that are fused or otherwise joined together to form a single wall (i.e., each balloon 36,38 has a wall, and the walls are fused or joined together to form a single wall). In yet still another embodiment, the common wall 42 is formed by the respective walls of the balloons 36,38 abutting each other to form a single wall.
  • As will be described in greater detail below, in an exemplary embodiment, the balloon 38 is inflated with an acoustically-transmissive fluid or flowable material, such as, for example, liquid saline or gel, while the balloon 36 is inflated with a gas, such as, for example, biocompatible carbon dioxide (CO2). Accordingly, when the balloons are in an inflated state, the common wall 42 has saline on one side (i.e., inside balloon 38) and gas on the other side (i.e., inside balloon 36). As such, the fluid/gas interface acts as an acoustic mirror, and so by shaping the common wall 42 as, for example, a parabola, the ultrasound waves emitted from the transducer 40 are reflected and focused (reflectively focused) into an annular lesion target region in the wall of the OS (the target tissue), as is illustrated in FIG. 2.
  • Accordingly, in operation, a practitioner inserts the distal portion 24 of the elongate shaft 20, and therefore, the ablation element 30 with its balloons deflated or in a collapsed condition, into an incision in a patient's body, for example. The practitioner may then advance the device through the patient's vasculature until it reaches a desired location (e.g., an ablation site within the heart, such as, for example, an orifice or OS connecting a pulmonary vein with the left atrial chamber of the heart). The desired location may be within the OS, or, alternatively, may be a location external to the OS. Once the desired location is reached, the balloons are inflated, as will be described in greater detail below, and the ablation procedure can be carried out. In the instance where the desired location is external to the OS, the balloons 36,38 may be inflated and then advanced into the OS, rather than being inflated within the OS.
  • In an exemplary embodiment, the gas-filled balloon 36 is coupled with, and configured to be inflated by, a gas source 44 (shown in FIG. 1). More particularly, one of the lumens 32 disposed within the elongate shaft 20 is configured to be an inflation lumen (hereinafter “lumen 32 1”) and is further configured to couple the balloon 36 to the gas source 44 that supplies gas, such as, for example, carbon dioxide, under pressure to the balloon 36. Accordingly, when the gas source 44 is activated, the balloon 36 inflates. Typically, a controlled gas pressure will be maintained in the balloon 36 to maintain a controlled balloon firmness.
  • Conversely, in an exemplary embodiment, the fluid-filled balloon 38 is coupled with, and configured to be inflated by, a fluid or liquid source 46 (shown in FIG. 1). More particularly, one of the lumens 32 disposed within the elongate shaft 20 other than the inflation lumen 32 1 associated with the balloon 36 is configured to be an inflation lumen (hereinafter “lumen 32 2”) and is further configured to couple the balloon 38 to the fluid source 46 that supplies fluid, such as, for example, isotonic saline solution, to the balloon 38. Accordingly, when the liquid source 46 is activated, the balloon 38 inflates. As with the gas in the balloon 36, the fluid in the balloon 38 will typically be pressurized to a desired level to maintain a controlled balloon firmness. The gas and fluid pressurization levels, although not necessarily equal in magnitude, are chosen to assure full distended inflation of the balloons 36,38 yet be below the burst pressures of the respective balloons.
  • Additionally, when the balloons 36,38 each transition from an inflated to a deflated states, the gas and fluid in the respective balloons 36,38 must be drained or otherwise removed or expelled from the balloons 36,38. In an exemplary embodiment, the lumens 32 through which the gas and fluid were delivered to the balloons 36,38 also serve the purpose of providing a path through which the gas and the fluid in the balloons 36,38 is returned to the respective gas/ fluid sources 44,46, or otherwise drained or expelled. In such an instance, the respective lumens 32 may be selectively coupled with a suction source, vent, or drain to cause or allow the gas/fluid in the balloons 36,38 to exit the balloons 36,38. Alternatively, separate drainage lumens (not shown) may be provided within the elongate shaft 20 to carry out the above described functionality.
  • As can be seen in FIG. 2, and as was described above, the gas-filled balloon 36 and the fluid-filled balloon 38 share the common wall 42. As was also briefly described above, when the balloons 36,38 are inflated, the common wall 42 acts as an acoustic reflecting and focusing mirror capable of reflecting ultrasonic waves emitted by the transducer 40. It is primarily the fluid/gas acoustic impedance discontinuity that provides this efficient acoustic reflection capability and the thin balloon wall 42 physically maintains the fluid/gas interface. However, while the fluid/gas interface substantially provides the acoustically reflective capability, it should be understood that both the material of the balloon and its thickness do have a small, but nonzero, effect on reflectivity, particularly when it is thin as inflated.
  • With continued reference to FIG. 2, in an exemplary embodiment, the ultrasound transducer 40 is mounted to the distal portion of the elongate shaft 20 at or near distal end 24 thereof, for example, and within the balloon 38. It should be noted, however that in other exemplary embodiments that remain within the spirit and scope of the present invention, the transducer 40 may be mounted to structure within the balloon 38 other than the elongate shaft 20. Additionally, the transducer 40 may be positioned within the balloon 38 at a number of locations, including, for example, at the back (proximal region) of the balloon 38 close to or abutting the common wall 42.
  • In an exemplary embodiment wherein the ultrasound transducer 40 comprises a tubular cylindrical emitter and the balloons 36,38 are in an inflated state, the ultrasound transducer 40 uniformly emits acoustical energy from its cylindrical outer surfaces around the 360 degrees of that outer surface directed toward the shaped mirror fluid/gas interface (i.e., common wall 42). It will be appreciated by those having ordinary skill in the art that the transducer 40 may be driven in a lower frequency “breathing” mode, or in a higher frequency “wall thickness” mode, and/or in harmonics of these. The transducer 40 may further include overlying matching layers (not shown) or interior back materials (not shown). The transducer 40 may further be “pinged” such that, using the pulse-echo approach, the lesion and/or thickness or depths thereof may be assessed.
  • As illustrated in FIG. 1, the transducer 40 is electrically connected to an energy or ablation power source 48 by electrical leads or wires (not shown) that are disposed within one or more of the lumens 32 in the elongate shaft 20, and that extend through to the proximal end 22 thereof. When the ablation power source 48 is activated, the transducer 40 emits ultrasonic waves 50 along various paths in radial direction relative to the longitudinal axis 26 (i.e., toward the common wall 42 between and defined by the balloons 36,38). As shown in FIG. 2, and as briefly described above, as the acoustic waves 50 impinge upon the reflective fluid/gas interface (i.e., the common wall 42), they are reflected as illustrated in FIG. 2 and simultaneously focused into a ring-like ablation region. The focused ablation region permits the efficient and effective ablation of targeted myocardial tissue, for example. It should be noted that, as is generally known in the art, the transducer 40 may be omnidirectional and/or rotatable relative to the balloons 36,38 about the axis 26. Rotation allows for circumferentially uniform energy exposure (lesioning extent) despite having some circumferential non-uniformity of the circumferential output of the transducer 40. Accordingly, by rotating the transducer 40, any angular non-uniformity of acoustic output will be rotated such that all tissue target points on the OS receive the integrated same time-power treatment. Therefore, rotating the transducer 40 allows use of a less-uniform transducer. Alternatively, using rotation, other transducers, such as, for example, a directional transducer (emitting less than 360 degrees at a given moment), whether cylindrical or not, may be used. In an embodiment wherein the transducer 40 is rotated, a rotation wire (not shown) coupled with the transducer 40 and manually driven from a control on the handle 28, or driven by a motor, may be employed to cause the transducer to rotate.
  • In addition to serving to cooperatively form the reflectively focusing surface for the ultrasonic waves emitted by the transducer 40, one or both of the balloons 36,38 are configured and operative to serve other purposes. More particularly, when inserted into an orifice or OS between a vein and the heart, for example, and inflated (or inserted already inflated), the balloons 36,38 are intended to serve as a barrier to blood flow through the orifice or OS, and/or to generally center the transducer 40 in the OS. However, one disadvantage with known ablating devices is that when inflated, the balloons of the device are rotationally symmetric. However, most orifices or ostia into which the device is inserted are not rotationally symmetric, but rather are irregular and/or have an oval or other similar non-round shape. Accordingly, when the device is inserted into the oval-shaped orifice and the rotationally symmetric balloons are inflated, a sealed blood flow between the balloons and the adjacent surface of the orifice or OS cannot be achieved, or at least cannot be achieved without potentially damaging force being applied to the OS. Because the interface is not sufficiently sealed, blood may be permitted to leak through any balloon-OS gaps, which may act to cool the local surface of the orifice or OS that is being ablated. When the tissue is cooled by the blood flow, it counteracts the ablation procedure, thereby preventing surface and/or somewhat deeper lesioning. Therefore, one aspect of the present invention is directed to the elimination, or at least the substantial reduction, of blood leakage cooling experienced in these ablating devices.
  • Accordingly, with reference to FIG. 2, one exemplary embodiment of the ablating device 18 with blood leakage minimization capability operative to eliminate, or at least substantially prohibit, blood flow leakage past the balloon(s) 36,38 in the balloon/OS interface is illustrated. In this exemplary embodiment, at least a portion of the outer surface of one or both of the balloons 36,38 is coated with a gel 52, such as, for example, a low-flow or pressure formable gel, which acts as a conformable or deformable gasket material to stop blood flow in non-round ostia. The gel 52 may comprise one of many different known types of biocompatible implantable gels. One gel, provided for exemplary purposes only, is that available from MacroMed, Inc. under the trademark ReGel®. Another exemplary gel that may be used is that available from Mebiol, Inc. under the name “Mebiol Gel.” The latter exemplary gel hardens upon exposure to a sufficient amount of heat, and softens upon subsequent cooling. The gel can be fabricated of a biocompatible and bio-absorbable material as well. It will be appreciated by those of ordinary skill in the art that any number of gels could be used, and thus, the invention is not limited to those specifically identified above. In an exemplary embodiment, the gel is acoustically transparent and so it will not block or substantially impede ablative energy emitted by the ablating device, such as, for example, high-intensity focused ultrasound (HIFU) ablating devices. Additionally, in an exemplary embodiment, the gel is of a type such that it will not boil or bubble below about 100° C. Those having ordinary skill in the art will appreciate that while gels are typically network polymers which are water or solvent based, the term “gel” as used in accordance with the present disclosure is intended to include any material whose flow resistance can prevent it from being displaced or washed way by blood pressure and blood flow. Therefore, the gel may be prepositioned on the outer surface of one or both of the balloons 36,38, or might be extruded from the balloon, but in any event, will have a viscosity high enough that it resists the blood flow forces while allowing for physical conformance to non-round OS geometries.
  • As illustrated in FIG. 2, in one exemplary embodiment, it is the outer surface of the balloon 36 that has the gel 52 disposed thereon. In other exemplary embodiments, however, in addition to or instead of the gel 52 being disposed on the outer surface of the balloon 36, the gel 52 is disposed on the outer surface of the balloon 38, or at the interface between the two balloons 36,38. The gel 52 is configured to act as a blood flow-seal between the balloon(s) 36,38 and the interior surface of an orifice or OS into which the ablating device 18 is inserted. In other words, the gel 52 fills gaps between the outer surfaces of the balloons 36,38 and the interior and/or face surfaces of the orifice or OS to inhibit blood flow therebetween. Once the gaps are filled, the gel 52 may or may not further stiffen (i.e., upon exposure to heat or cooling), however, in an exemplary embodiment, the gel has a fixed viscosity sufficient to conform yet still block blood flow.
  • In an exemplary embodiment, at least a portion of the outer surface of one or both of the balloons 36,38 is coated with a layer of the gel 52 prior to the ablating device 18, and the distal portion of the elongate shaft 20, in particular, being inserted into a patient's body. In such an embodiment, when the balloons 36,38 are inflated, the gel 52 is already disposed on either the entire outer surface of the balloon(s) 36,38, or a portion(s) thereof. In an alternative embodiment, rather than pre-coating the surface of the balloon(s) 36,38 with the gel 52, the ostia or OS are pre-coated with the gel. In such an embodiment, a separate gel application tool (possibly including a gel extruding permeable balloon) may be used to coat the OS. In another exemplary embodiment, the ablating device 18 itself may have the capability to apply the gel to the surface of the OS as by pressurized extrusion out of one or more orifices.
  • In another exemplary embodiment wherein the balloon(s) 36,38 are coated with the gel 52, the ablating device 18 is configured such that the gel 52 is distributed onto at least a portion of the outer surface of the balloon(s) 36,38 after the balloon(s) are inflated rather than prior to insertion into the patient's body. In an exemplary embodiment, rather than the balloon 38 being inflated with a liquid such as saline, the balloon 38 may be inflated with a gel. In such an embodiment, the balloon 38 is configured and constructed of a gel-permeable material to ooze or leak the gel therefrom and into the balloon/OS interface gaps. Alternatively, the balloon may include one or more perforations or outlets (not shown) therein to allow gel in the balloon to flow out of the balloon when a modest amount of pressure is applied to the gel (when the pressure is removed, the gel stops flowing). Such gel gasket extrusion may take place as part of the balloon inflation process. Accordingly, in this embodiment the gel would serve not only the blood leakage minimization function, but to also act with the gas used to inflate the balloon 36 as the fluid/gas mirror. One exemplary type of gel that is suitable to serve this dual function is a sufficiently acoustically transparent water-based gel. In another exemplary embodiment wherein the common wall 42 comprises the walls of each of the balloons 36,38 abutting each other to form a single wall (as opposed to a single layer or two fused layers), a dedicated gel distribution lumen (not shown) may deliver gel to the interstitial space between the two balloons 36,38 through a port (not shown) within the shaft 20. As a result of capillary action, the gel will be pushed out to the periphery, and therefore, onto the surface(s) of the balloon(s) 36,38.
  • The gel 52 may be held in or on the balloon(s)/OS interface in a number of ways. In an exemplary embodiment, the gel 52 is configured to solidify or stiffen when sufficiently heated. The gel 52 may be heated in any number of ways, such as, for example and without limitation, by the heat generated by the ablation procedure being performed proximate to the location of the gel 52, by the gel 52 being exposed to body temperature of the patient, or by separate and distinct heat source. For example, and without limitation, heated saline maybe delivered to or circulated within the balloon 38, a resistive wire may be disposed within the balloon 38, a heated gas may be delivered to or circulated within the balloon 36, and the like. It will be appreciated that the particular temperature required to stiffen the gel will be dependent upon the gel used, however, an exemplary temperature may be, for example and without limitation, 39° C., which is slightly higher than body temperature. For illustrative, not limiting, purposes, in an embodiment wherein a gel such as ReGel® described above is used, the relative amounts of the two constituent type A and B block copolymers may set such that the gel stiffens at a particular desired temperature.
  • In another exemplary embodiment, rather than solidifying or stiffening when exposed to heat, the gel 52 solidifies or stiffens when sufficiently cooled. In such an embodiment, any means by which the gel may be cooled may be used, such as, for example and without limitation, an artificial cooling means. In such embodiment, the ablation element 18 may include a cooling or heat-extracting device (not shown) configured to sufficiently cool the gel 52 to cause it to solidify or stiffen. For example, and without limitation, cooled saline or some other cryogenic or cold fluid may be delivered to or circulated within the balloon 38, a cooled gas may be delivered to or circulated within the balloon 36, and the like.
  • Notwithstanding the description above, it will be appreciated by those having ordinary skill in the art that any number of biocompatible gels which will not substantially flow during an ablation procedure under modest blood flow pressure (i.e., the gel is thick and viscous or thixotropic enough to physically maintain its position and form during the ablation procedure) may be used for the purposes described above. In any instance, depending on the particular gel used, the gel may be left in the patient's body for immediate or gradual dissolution or biodegradation after the ablation procedure is completed. One way to leave the gel within the body is to leave it on the OS interior in “molded” form for gradual surface-wise dissolution. Alternatively, using temperature manipulation (by removing heat, and/or otherwise heating or cooling the gel), the gel may be reflowed or re-liquefied after the completion of the ablation procedure to ensure that no solid or semi-solid lumps of gel are left in the circulatory system for any period of time.
  • In addition to, and independent of, the blood leakage concerns described above, another drawback to known ablating devices is that it oftentimes proves difficult to reliably monitor temperature and/or sufficiently cool non-targeted regions of tissue proximate an ablation site during the performance of an ablation procedure. One such non-targeted region of tissue, which is provided for exemplary and illustrative purposes only, is esophageal tissue disposed close to the heart. More particularly, as ablating energy is directed to a region of the heart by an ablating device, such as, for example and without limitation, any endocardially-delivered ablating device including radio frequency (RF), microwave, cryogenic, and ultrasound-based devices, the ablating energy may have sufficient strength and intensity to pass through and outward of the heart and be applied to non-targeted tissue in the esophagus that is located on the other side of the ablated tissue from the ablating device. Likewise, even if the ablating energy itself does not directly penetrate that far, if a large hotspot is developed at the target site, then the non-targeted tissue may be overheated simply due to proximity. In either instance, this may cause the temperature in the esophageal tissue to rise, thereby forming “hotspots” that may potentially cause cell death within or on the esophagus. The burning of this tissue may cause severe damage to the esophagus. Therefore, another aspect of the present invention is directed to the improved monitoring, management, and/or control of temperature rise or energy delivery in non-targeted tissue regions proximate an ablation site.
  • Accordingly, with reference to FIGS. 1 and 3-10, the temperature monitoring and management subsystem 14 of system 10 will now be described. In an exemplary embodiment, the temperature monitoring and management subsystem 14 includes a protective probe 100, a fluid source 102, and an actuator 104.
  • With continued reference to FIGS. 1 and 3-10, the probe 100 includes an elongate shaft 106, a handle 108, and a tissue protecting apparatus 110. As with the shaft 20 described above, the elongate shaft 106 has a proximal end 112, a distal end 114, and a longitudinal axis 116 extending from the proximal end 112 through the distal end 114. The handle 108 is disposed at the proximal end 112 and, as described above with respect to the handle 28, may be configured, among other things, to steer or manipulate portions of the probe 100 as it is inserted into the anatomy of a patient, such as, for example, the esophagus. In an exemplary embodiment, the probe 100 is directly inserted into the esophagus such as through the mouth or sinus. However, in another exemplary embodiment, the probe 100 is introduced into the esophagus through an introducer-lumen already in place. The tissue protecting apparatus 110 of the probe 100 is disposed at or near the distal end 114 of the elongate shaft 106.
  • In an exemplary embodiment, the tissue protecting apparatus 110 comprises a wetted heat sink (hereinafter “heat sink 110”). It should be noted that the term “heat sink” as used herein is intended to mean an element or structure having the capability of (i) carrying away heat deposited in the esophagus wall tissue by an OS ablator element(s) being used inside the heart of the patient, and/or (ii) cooling or pre-cooling the esophageal tissue that is to be protected. In either instance, this may be accomplished by either contacting the tissue or causing cooling fluid to be dispensed onto the tissue. The heat sink 110 is disposed at the distal end 114 of the elongate shaft 106 and extends therefrom a predetermined distance along the longitudinal axis 116 toward the proximal end 112 of the elongate shaft 106.
  • In one exemplary embodiment, the heat sink 110 comprises an inflatable balloon, membrane, or bladder 118 (collectively “bladder 118”). The bladder 118 has a collapsed or deflated condition, and an expanded or inflated condition. In the collapsed condition, the bladder 118 provides a low profile distal portion to probe 100, which is easily passed down the throat. In an exemplary embodiment, the bladder 118 is formed of an elastomeric material to assure that no folds occur upon inflation of the bladder 118. In another exemplary embodiment, the bladder may be pleated or folded upon itself when in the deflated condition, but configured to be inflated to a point ridding it of the folds or pleats at a diameter less than that of the esophagus such that when seated upon the esophagus during further inflation, not pleats or folds exist.
  • In an exemplary embodiment, the bladder 118 is configured to be inflated with a biocompatible fluid. However, in other exemplary embodiments the bladder 118 may be inflated with gas, air, gel, liquid or other suitable medium, including nutritious and/or therapeutic constituent elements or components. In the exemplary embodiment described hereinafter, the bladder 118 is inflated with liquid saline, but the present invention is not meant to be limited to saline. In addition to inflating the bladder 118, the fluid also serves as the coolant or heat transfer medium for either drawing heat away from, or for cooling or pre-cooling esophageal tissue. More particularly, and as will be described in greater detail below, the fluid (e.g., saline or another type of thermally conductive fluid, for example) may be kept inside and/or circulated within the bladder 118 such that heat in the tissue that the bladder 118 contacts (when, for example, the bladder 118 is inflated against esophageal tissue) is transferred to the fluid via thermal conducting through the thin bladder wall.
  • In addition, or alternatively, the bladder 118 may have perforations, microscopic holes, pores, outlets, permeation paths, and the like therein configured to allow the fluid in the bladder 118 to be leaked, weeped, sprayed, or otherwise dispensed therefrom upon the tissue to be protected in order to cool or pre-cool the tissue. In an exemplary embodiment, the fluid may be pre-cooled below body temperature such that esophageal tissue is actually sub-cooled below natural body temperatures.
  • Accordingly, in such an embodiment, the bladder 118 is connected to, or otherwise coupled with, an inflation or filling lumen 119 disposed within the elongate shaft 106 (shown in FIG. 3, for example). The inflation lumen 119 is disposed between, and coupled to, each of the bladder 118 and the fluid source 102 of the subsystem 14 to allow the bladder 118 to be inflated. In an exemplary embodiment, the fluid source 102 is configured to supply fluid, such as, for example, various saline solutions, distilled water, deionized water, or other forms of biocompatible water to the bladder 118. If water is to be ingested down the esophagus, a water composition similar to drinking water may be used (e.g., frozen, partially frozen, and/or at a reduced temperature) and may include flavorants or, as mentioned above, nutritious and/or therapeutic constituent elements or components that are delivered or circulated therethrough. Accordingly, as illustrated in FIGS. 3 and 6-8, the shaft 106 of the probe 100 includes one or more openings or ports 120 therein to allow fluid in the lumen 119 to flow into the bladder 118. In one exemplary embodiment, the distal end of the shaft 106 is open, thereby defining opening 120. In addition, or in the alternative, the shaft 106 may have one or more lateral openings or ports 120 in the wall thereof to allow fluid to flow into the bladder 118.
  • As briefly described above, in an exemplary embodiment, the subsystem 14 further includes the actuator 104, such as, for example and without limitation, a flow-volume controller, a pressure controller, or both. The actuator 104 is disposed between the inflation lumen 119 and the fluid source 102, and is configured to control the supply of fluid to the bladder 118, and therefore, the inflation of the bladder 118. In an exemplary embodiment, the actuator 104 is further configured to control the amount of fluid distributed from the bladder 118. The actuator 104 may be mounted on or otherwise associated with the handle 108 of the probe 100, or may be separate and distinct from the probe 100.
  • In an exemplary embodiment, the cooling fluid supplied to the bladder 118 by the fluid source 102 is circulated between the bladder 118 and the fluid source 102. More particularly, in an exemplary embodiment illustrated, for example, in FIG. 3, the probe 100 may further include a return or drainage lumen 121 (referred to hereinafter as “return lumen 121” and which may comprise lumen 119 or a separate and distinct lumen) disposed within the elongate shaft 106 to allow fluid to flow from the bladder 118 back to the fluid source 102 or to some other drain external to the patient. This allows, for example, fluid to be circulated through the system to facilitate the replacement of warmer fluid with cooler (i.e., pre-cooled) fluid, for example. In addition, it allows for much higher convective heat transfer from potential undesired esophageal-tissue hotspots.
  • In addition to aiding in the circulation (flow) of the fluid into the bladder 118, the return lumen 121 may also provide a means by which the bladder 118 may be emptied or deflated once the ablation procedure is concluded or the heat sink 110/bladder 118 is no longer needed (i.e., the actuator 104 may shut off the flow through the inflation lumen 119 and/or apply suction to the return lumen 121, thereby causing the fluid to be drained from the bladder 118 through the return lumen 121). Such a return lumen 121 could also be used in the same manner in an embodiment that does not include circulation of the fluid during use of the probe 100, but rather simply allows for the deflation of the bladder 118. In any event, the shaft 106 of the probe 100 includes one or more openings or ports 122 therein to allow fluid in the bladder 118 to flow into the lumen 121. In one exemplary embodiment, the distal end of the shaft 106 is open, thereby defining opening 122. In addition, or in the alternative, the shaft 106 may have one or more lateral openings or ports 122 in the wall thereof to allow fluid to flow into the lumen 121.
  • Accordingly, in operation, and in accordance with one exemplary embodiment, once the probe 100, and the distal portion thereof, in particular, is inserted and appropriately positioned within the patient's body (e.g., opposite the ablation element 30), the bladder 118 is inflated or filled so as to contact the inner surfaces of the passageway within which the probe 100 is inserted (e.g., the inner wall of the esophagus). The bladder 118 and the fluid therein is configured to spread and transfer the heat from the tissue to and through the surface of the bladder 118 and into the fluid in the bladder 118 to quell any hotspots (see reference numeral 123 in FIG. 3, for example) in the region of non-targeted tissue in contact with the probe 100.
  • In order to better distribute the heat from the non-targeted tissue about the surface of the bladder 118, and thus, better transfer the heat away from the tissue, in an exemplary embodiment the outer surface of the bladder 118 is coated with a thermally conductive material, such as, for example, a metallic thin-film material and/or a hydrophilic hydrogel.
  • In another exemplary embodiment, the bladder 118 comprises a thin-walled unmetallized (bare) balloon with internally circulating (or at least convecting locally) fluid. In such an embodiment, the wall of the bladder 118 is so thin (on the order of 15-40 microns, for example) that only a very small thermal gradient of a couple of degrees Celsius can be maintained across it. For example, in an exemplary embodiment provided for illustrative purposes only, the tissue cannot get any hotter than 2° C. above the bladder circulating fluid despite unintended ablation heating (presuming intimate wetted contact between the bladder 118 and the tissue). As has been or will be described elsewhere herein, in an exemplary embodiment, the exterior surface of the bladder 118 is hydrophilic or wettable such that the bladder/tissue interface is well-coupled thermally. A number of techniques may be used to ensure that the outer surface of the bladder 118 stays wetted. For example, and as will be described in greater detail below, the wall of the bladder 118 may include fluid-weeping or spray perforations or holes therein, or be fluid permeable, to assure its outer surface and surrounding tissue stay wetted. In addition, or alternatively, the outer surface of the bladder 118 may be gel coated to assure wetted contact between the tissue and bladder 118, and therefore, the heat sink 110. In an exemplary embodiment, the bladder 118 is configured to weep fluid therefrom in order to maintain saturation of the gel coating the surface of the bladder 118.
  • In an exemplary embodiment, the protective probe 100, and the heat sink 110 thereof, in particular, may be further configured to force-cool the tissue by flushing the tissue with fluid from the bladder 118 and/or from the fluid source 102. This force-cooling may be done prior to the commencement of an ablation procedure (i.e., pre-cooling the tissue), during the procedure, or a combination of the two. This may be accomplished in a number of ways. In one exemplary embodiment illustrated, for example, in FIG. 4, a plurality of perforations or holes 124 are formed in the wall of the bladder 118. The holes 124 permit the fluid within the bladder 118 to flow therefrom and onto the outer surface of the bladder 118 and/or the tissue proximate thereto. Obviously, the larger the holes, the more fluid will be dispensed from the bladder 118.
  • In another exemplary embodiment, the bladder 118 is configured to allow fluid to be sprayed therefrom and onto the surrounding tissue in an aerosol or steam-spray fashion. In this embodiment, the bladder 118 need not be designed to fit snugly against the esophageal wall and, in an exemplary embodiment, may be left hanging loosely in the esophagus. One means by which this may be done is to force air or gas into the bladder 118 causing the fluid in the bladder 118 to be dispensed or “sprayed” therefrom. Accordingly, an air-delivery lumen may be provided that extends from an air or gas source to the bladder 118. In an exemplary embodiment, the air-delivery lumen may be the fluid delivery lumen 119 or, alternatively, may comprise a separate and distinct lumen. When activated, the air source sends a stream of air to the bladder 118 with enough force to cause the fluid therein to spray out of, for example, the holes 124. In another exemplary embodiment, illustrated, for example, in FIG. 5, the bladder 118 includes one or more outlets 126 therein that are coupled to a fluid source, such as, for example, fluid source 102, through one or more fluid delivery lumens, such as, for example, lumen 119. In such an embodiment, when the fluid source 102 is activated, fluid is delivered directly to the outlet(s) 126 by the corresponding lumen(s) and is dispensed from the outlet to surrounding tissue. It will be appreciated that this particular embodiment may find application in embodiments of the probe 100 wherein the bladder 118 is inflated with gas or fluid.
  • In yet another exemplary embodiment, the bladder 118 is constructed of a fluid-permeable polymer that is configured to weep a film of fluid onto the outer surface of the bladder 118 when the bladder 118 is filled with fluid. In an exemplary embodiment, the polymer material may comprise, for example and without limitation, a porous urethane or a porous PEBAX®. It will be understood that the term “porous” as used herein is intended to mean permeable to fluid due to the presence of one or more apertures or holes, regardless of how or when the holes we formed in the bladder 118 (e.g., during manufacture of the bladder, or post manufacture by laser drilling or punching operations).
  • In any of the embodiments described above in which the bladder is configured to contact the wall of the esophagus and to expel or distribute fluid or gel onto the outer surface of the bladder 118 and/or surrounding esophageal tissue (or in an embodiment wherein the bladder 118 is pre-coated with a gel, for example), it may be desirable to maintain wetted contact between the bladder 118 and the tissue. Wetted contact assures low-resistance heat transfer across the bladder/tissue interface, and therefore, provides good heat-sinking capabilities. By distributing fluid and/or gel onto the outer surface of the bladder 118 and/or the surrounding tissue (or pre-coating the bladder 118 with gel), drying out of the interface as a result of the heat produced during the ablation procedure is substantially prevented. Additionally, in certain instances the bladder 118 may have folds, pleats, or creases as inflated against the wall of the esophagus. By distributing fluid or gel from the bladder 118, or by pre-coating the bladder with a gel, gaps between the bladder and the tissue caused by the folds, pleats, or creases can be filled to preserve thermal conductivity.
  • In each of these embodiments, because cooling fluid is dispensed from the bladder 118 onto the surrounding tissue, it may be that a certain margin of tolerance is permitted with respect to the positioning of the heat sink 110 directly opposite the ablating device 18, and the ablation element 30 thereof, in particular. It will be understood and appreciated that in some or all of these embodiments, the fluid dispensed from the bladder 118 will flow down the walls of the esophagus (presuming vertical orientation) protecting regions of non-targeted tissue even below the heat sink 110, and the bladder 118 thereof, in particular. The patient may also be oriented with gravity in a manner to assure that it is the heart-facing portion of the esophagus that is wetted by the fluid. Additionally, in an exemplary embodiment, the bladder 118 is configured to be many times larger in area than the size of the potential thermal esophageal fistula, and therefore, only crude accuracy in placement is required. However, in order to aid accuracy of placement of the bladder 118 (and/or the balloons 36,38 discussed above) one or more tracking or visualization elements can be coupled thereto or therein. For example, one or more magnets, coils or electrodes can be utilized that are MRI-, radio- or fluoro-opaque, or responsive or capable of being visualized with an impedance-based system such as the EnSite NavX™ system commercially available from St. Jude Medical, Inc. Additionally, a fluoroscopic contrast-bearing fluid may be distributed within or onto the outer surface of the bladder 118 to allow for fluoroscopic imaging of the bladder 118 to assist in bladder 118 placement.
  • As briefly described above, each of the above-described embodiments may be used to cool the tissue during the performance of an ablation procedure, or to pre-cool the non-targeted tissue in the region proximate to or wherein an ablation procedure is to be performed. In the latter instance, the bladder 118 may be used to cool the tissue with the fluid from the bladder 118 a certain amount, such as, for example, 5-20° C. below natural body (esophagus) temperature. This provides even more temperature safety margin before a thermal fistula can be formed.
  • Accordingly, in view of the above, it will be understood and appreciated that the esophagus, or at least portions thereof, may be thermally protected by abutting the bladder 118 against the esophagus wall, and/or by spraying, leaking, weeping or otherwise dispensing fluid from the bladder 118 and onto the surrounding tissue from a distance of zero to several millimeters between the bladder and the tissue. Therefore, it will be further understood and appreciated that the bladder may or may not physically touch the tissue in order to protect the tissue.
  • Turning now to FIGS. 6-8, in an exemplary embodiment, a means for ensuring the probe 100, and the tissue protecting apparatus 110 thereof, in particular, is positioned in close proximity to the ablation site, and therefore, the ablation element 30 of the ablating device 18, is provided. In an exemplary embodiment wherein the tissue protecting apparatus 110 does perform a heat sinking function, the degree of wetted or acoustic contact between the heat sink 110 and the tissue may also be determined. This locating and/or degree of contact functionality ensures that the tissue protecting apparatus 110 is positioned in an area in which hotspots are most likely to be generated, and it may be carried out in a number of ways.
  • In an exemplary embodiment, known imaging systems or modalities that allow the user of the system 10 to visually determine where the probe 100 is positioned, and to then confirm whether it is in an acceptable location, may be employed. One such imaging modality, which is provided for exemplary purposes only and not meant to be limiting in nature, is fluoroscopy. Fluoroscopy provides a real-time image of a region of interest of a patient's anatomy and medical devices disposed therein, and therefore, is a good imaging system for real-time probe location detection/confirmation. In an embodiment of the system 10 employing fluoroscopy, markers, such as radio opaque markers or other markers well known in the art, may be placed in or on the probe 100 and the tissue protecting apparatus 110, in particular, to allow for them to be visualized or imaged by the fluoroscopic imaging system. Alternatively, in an embodiment wherein the tissue protecting apparatus includes a fluid-inflatable bladder, the fluid within the bladder 118 may contain a fluoroscopic contrast agent or other imaging-modality contrast agent to allow the bladder 118 to be visualized using fluoroscopy or another imaging modality. Additionally, or alternatively, the material of the bladder 118 may itself be fluoroscopically visible. In any instance, this allows for the verification of bladder placement and inflation.
  • In another exemplary embodiment illustrated in FIG. 6, an acoustic transducer 128 electrically connected to circuitry associated with the system 10, such as, for example the ablating subsystem 12, the temperature monitoring and management subsystem 14, or the system controller 16, is mounted or otherwise disposed on the ablating device 18 in close proximity to the ablation element 30. In an exemplary embodiment, a processor 130 is also provided, which may be part of either the ablation subsystem 12, the temperature monitoring and management subsystem 14, or, as illustrated in FIG. 1, the system controller 16, and is electrically connected to the transducer 128.
  • The acoustic transducer 128 is configured to emit acoustic waves directed toward the ablation site, and therefore, in the direction of where the distal portion of the probe 100 should be located, to ping the probe 100, and preferably, the tissue protecting apparatus 110 thereof, in particular. The acoustic transducer 128 is further configured to receive a pulse-echo reflection of the signal and to communicate that signal to the processor 130. From the sent and received signals, the processor 130 can determine whether the probe 100 is properly positioned and/or whether there is a high degree of wetted or acoustic contact between the probe 100 and the tissue using methods well known in the art (e.g., a large reflection is indicative of an air-filled esophagus without the probe 100 (e.g., the bladder 118), and a much smaller reflection is indicative of the wet-coupled presence of the probe 100 (e.g., the bladder 118). Additionally, or alternatively, in an embodiment including the inflatable bladder 118, a microbubble contrast agent, such as, for example, a liposome-based material, may be put in the inflating fluid such that it can be acoustically recognized as a large reflector). This indication can then be provided to the practitioner performing the ablation procedure either audibly or visually, such as, for example, on a display monitor or through an audio indicator.
  • Additionally, or alternatively, in an exemplary embodiment wherein one or more focused ultrasonic ablators (e.g., HIFU ablator) is employed by the ablating subsystem 12, the ablator may be configured to acoustically detect, in a pinging mode similar to that described above, the acoustical/thermal contact of the opposed tissue protecting apparatus 110 and the tissue.
  • In still another exemplary embodiment illustrated, for example, in FIG. 7, the subsystem 14 includes an acoustic transducer 132 coupled with or mounted to the probe 100, preferably at the distal end 114 thereof (as opposed to the transducer being mounted to the ablating device). In an exemplary embodiment, a processor 134 is further provided and electrically connected to the transducer 132. The processor 134 may be part of the subsystem 14, or in other exemplary embodiments, part of the ablation subsystem 12 or the system controller 16 (as is illustrated in FIG. 1). The acoustic transducer 132 is configured to emit acoustic waves in the perceived direction of the ablation site, and therefore, in the direction of where the ablating device 18, and the ablation element 30 thereof, in particular, should be located, to ping or bounce low power energy off of the ablating device 18. The acoustic transducer 132 is further configured to receive a pulse-echo reflection of the signal and to communicate that signal to the processor 134. From the sent and received signals, the processor 134 can determine whether the probe 100 is properly positioned relative to the ablating device 18 using methods well known in the art (e.g., a weak return signal indicative of the ablating device 18 not being present, while a strong return signal indicative of proper, or at least close, placement of the probe 100 relative to the ablating device 18). This indication can then be provided to the practitioner performing the ablation procedure audibly and/or visually, for example. This particular embodiment provides the advantage that the “coupling” (e.g., thermal coupling) between the ablating device 18 and the probe 100 can be monitored throughout the performance of an ablation procedure without disrupting the operation of the ablating device 18.
  • In yet still another exemplary embodiment illustrated in FIG. 8, the subsystem 14 further includes a temperature monitoring apparatus at least a portion of which is coupled, mounted, otherwise disposed within or on the probe 100 at or near the distal end thereof. In an exemplary embodiment, the temperature monitoring apparatus includes a thermal imaging chip 136 that is mounted to the probe 100 proximate the distal end thereof. In another exemplary embodiment described below, the temperature monitoring apparatus comprises the thermal imaging chip 136 as well as an imaging fiber bundle electrically connected to said thermal imaging chip 136. In such an embodiment, a portion of the imaging fiber bundle is disposed proximate the distal end of the probe 100. In either embodiment, the temperature monitoring apparatus (e.g., the thermal imaging chip 136, for example) has a field of view 138 and is configured to generate an image or images of the tissue, such as, for example, esophageal tissue, disposed within the field of view 138. In an exemplary embodiment, the thermal imaging chip 136 is an infrared imaging chip, such as, for example, a mid-IR or long-IR wavelength infrared imaging chip, and is further configured to visually detect temperatures of the imaged tissue. In the illustrated embodiment, the tissue protecting apparatus 110 (i.e., the inflatable bladder and components thereof), is configured to act as a clamp of sorts to stabilize the position of the probe 100 to provide a desired line-of-sight for the thermal imaging chip 136.
  • In one exemplary embodiment, the tissue protecting apparatus 110 does not dispense fluid as described above, and, if the tissue protecting apparatus 110 includes an inflatable component, it may or may not be inflated with fluid. In another exemplary embodiment, however, wherein the tissue protecting apparatus 110 includes an inflatable bladder, such as, for example, bladder 118, in addition to stabilizing the position of the probe 100, the bladder 118 may be inflated with, and/or configured to dispense, fluid therefrom as described above. It will be understood by those having ordinary skill in the art that when using infrared thermography, such as, for example, those techniques identified above, it is the nearest surface of the tissue or surface of the fluid-covering the tissue that is being visualized or imaged. The surface temperature is thus being measured and not the potentially much hotter interstitial tissue of the targeted tissue, or for that matter, the non-targeted tissue. Additionally, in certain embodiments, the temperature monitoring apparatus, or at least a portion thereof, may be disposed within the fluid in the bladder 118. Accordingly, in such an embodiment, the fluid used to inflate and/or cool the tissue must be an infrared transparent (as opposed to opaque) fluid such that thermography works even through the fluid, and the temperature monitoring apparatus can look through or from within the fluid.
  • Additionally, in an exemplary embodiment, the thermal imaging chip 136 may have a lens or window 140, and the lens 140 may be warmed in order to prevent it from fogging so as to maximize the resolution and contrast of the images. Further, the thermal imaging chip 136 may include a protective covering (not shown) in case the thermal imaging chip 136 comes into contact with tissue.
  • In one exemplary embodiment, using known techniques, the temperature monitoring apparatus is configured to determine the highest temperature in the imaged tissue, and to communicate the same to a processor 142 (shown in FIG. 1) or other circuitry associated with subsystem 14 (or the ablation subsystem 12 or the system controller 16). The processor 142 is configured, at least in part, to compare the determined highest temperature or a too-rapid time rate of change measured surface temperature with a predetermined threshold temperature or rate of change, and to provide the practitioner performing the ablation procedure an audible and or visual warning if the measured highest temperature approaches or reaches the predetermined threshold (e.g., a temperature at or near the highest temperature at which burning or damage to the esophageal tissue is not expected to occur, or a predetermined rate of change threshold). For example, the subsystem 14 may further include an alarm system controllable by, for example, the processor 142, to provide an audible and/or haptic warning that the threshold has been met or is being approached, and/or a display monitor 144 (best shown in FIG. 1) controllable by, for example, the processor 142, to display the imaged tissue, as well as a visual warning that the threshold has been met or is being approached. This information may be further communicated to the system controller 16, for example, or to ablation subsystem 12, which may then cause the ablating device 18 to be turned “off” or turned “down” in order to prevent or mitigate burning in the esophageal tissue, for example, or to take other corrective or mitigating actions. The detected thermal hotspot may also be used to predict the temperature trajectory and have the system undertake preventative or warning actions, and/or to control the ablative energy level. In an exemplary embodiment, low energy may be delivered by the ablating device 18 for purposes of estimating how hot the esophageal tissue will get at higher ablation energy.
  • In an exemplary embodiment, the predetermined temperature/rate of change threshold may be adjustable so as to allow for the adjustment of the sensitivity of the system. In such an embodiment, the subsystem 14 may include a conventional user input device electrically coupled to, and configured for communication with, the processor 142 to allow for the adjustment of the threshold. Accordingly, in such an embodiment, the processor 142 may be preprogrammed with an initial threshold, and then reprogrammed to adjust the threshold, or may be programmable. Alternatively, the predetermined threshold may be a preprogrammed and fixed value that may not be adjusted.
  • In another exemplary embodiment, the thermal imaging chip 136, and/or other circuitry of the temperature monitoring apparatus or subsystem 14, such as, for example and without limitation, the processor 142, may be configured to generate a thermographic map 146 of the imaged tissue (best shown in FIG. 9). The thermographic map 146 depicts the temperature of various areas of the imaged tissue. In such an embodiment, the display monitor 144 may be configured to display and/or store a temporal representation of the generated thermographic map 146. The thermographic map may be color coded by temperature, or may provide other indicators of the respective detected and depicted temperatures.
  • As briefly described above, in addition to the thermal imaging chip 136, in an exemplary embodiment the temperature monitoring apparatus may also include an imaging fiber bundle that is electrically connected to the thermal imaging chip 136. In such an embodiment, rather than or in addition to the imaging chip 136 being inserted into the patient's anatomy, the imaging fiber bundle is inserted into the patient's body. Because the imaging fiber bundle is electrically connected to the thermal imaging chip 136, the thermal imaging chip 136 is optically coupled to the interior anatomical site with the image fiber bundle. In this embodiment, the imaging chip 136 may be disposed, for example, within the probe 100, in the handle 108 thereof, or elsewhere within the temperature management and monitoring subsystem 14.
  • In another exemplary embodiment, rather than incorporating both the tissue protecting apparatus 110 and the temperature monitoring apparatus, the probe 100 may only include the temperature monitoring apparatus disposed at the distal end 114 thereof. In such an embodiment, the description set forth above relating to the temperature monitoring apparatus and its functionality applies here with equal force, and therefore, will not be repeated. Additionally, it will be appreciated that while in one exemplary embodiment, the probe 100 may be passed down the throat of the patient by itself, in another exemplary embodiment the probe 100 may be used in conjunction with a sheath.
  • Advantages offered by the use of the thermal imaging chip 136 include the ability to display the entire temperature map of the imaged tissue without having to perform any interpolation, which is required in physical thermistor arrays. Additionally, there are generally no loss-of-contact issues as the chip provides a visual image as opposed to taking measurements of the surface of the tissue itself. Finally, a wide view of a passageway, such as, for example, the esophagus can be achieved without having to move the probe once it is properly positioned.
  • With reference to FIG. 10, an exemplary method of monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate the non-targeted region of tissue will be described. In a first step 148, a probe including a temperature monitoring apparatus with a field of view 138 is provided. In a second step 150, tissue within the field of view 138 and also disposed within the desired region of tissue is imaged by the temperature monitoring apparatus (e.g., the imaging chip 136). In a third step 152, at least one temperature within the imaged tissue is determined. In an exemplary embodiment, step 152 comprises detecting the highest temperature in the imaged tissue, and fourth step 154 comprises initiating a warning if the detected highest temperature exceeds a predetermined threshold. Alternatively, a warning may be provided if the temperature is approaching the threshold temperature or if it is anticipated that the temperature threshold will be exceeded. In another exemplary embodiment, step 152 comprises determining a rate of change of the temperature in the tissue, and fourth step 154 comprises initiating a warning if the determined rate of change exceeds a predetermined threshold. Alternatively, a warning may be provided if the rate of change is approaching the threshold or if it is anticipated that the threshold will be exceeded. Still further, other actions in addition to, or instead of, providing a warning may be carried out. For example, a step 155 includes throttling or gating the ablation energy being applied by the ablating device to reduce or stop the application of ablation energy.
  • In another exemplary embodiment, step 152 comprises detecting a plurality of temperatures in the imaged tissue, and a subsequent step 156 includes generating a thermographic map corresponding to the detected plurality of temperatures. In a still further subsequent step 158, the generated thermographic map is displayed on a display monitor and/or stored in a storage medium.
  • The following examples of various embodiments of the invention, and/or further and other aspects of the invention, are provided for illustrative purposes and are not meant to be limiting in nature.
  • Example (1)
  • A system for performing an ablation procedure, comprising: an ablation subsystem including a thermal ablation device configured to be inserted into the anatomy of a patient and to deliver thermally heating ablating energy to a target ablation site; and a temperature monitoring and management subsystem including a protective probe configured to be inserted into the anatomy of said patient and positioned in close proximity to a region of non-targeted tissue proximate said targeted ablation site at a second site to be protected from said nearby ablation, said probe including a heat sink comprising a balloon, membrane or bladder (collectively referred to as “bladder”) disposed at a distal portion of said probe and configured to be inflated or flushed with a cooling or heat-extracting fluid; and a fluid source configured to be coupled to said bladder and to supply fluid to said bladder; said heat sink of said temperature monitoring and management subsystem configured to transfer or remove heat generated or deposited in tissue in said region of non-targeted tissue by said ablating device such that it is not ablated. The bladder may also be coated with a hydrophilic gel or coating.
  • Example (2)
  • The system of example (1) wherein tissue in said region of non-targeted tissue is also pre-cooled below its natural body temperature by said bladder or heat sink thereby providing additional protection from unintended ablation.
  • Example (3)
  • The system of example (1) wherein said ablating device is configured to be inserted into the heart of a patient and said probe is configured to be inserted into the esophagus of said patient, and wherein the target ablation site is an endocardial tissue in a heart wall, and said second site is a nearby esophageal portion.
  • Example (4)
  • The system of example (3) wherein the ablating device is meant to ablate at least a portion of a pulmonary artery or ostium thereof.
  • Example (5)
  • The system of example (1) wherein the ablating device utilizes any one or more of radio frequency (RF), microwave, laser, or ultrasound ablation energy.
  • Example (6)
  • The system of example (1), further comprising a system controller electrically connected to said ablation subsystem and said temperature monitoring and management subsystem.
  • Example (7)
  • The system of example (1) further comprising a temperature monitor or temperature controller which is capable of at-least detecting a temperature of a tissue, a heat sink or a heat sinking fluid.
  • Example (8)
  • The system of example (1) wherein said bladder has an outer surface and said outer surface is lined with a thin film metallic material and/or a hydophilic coating.
  • Example (9)
  • The system of example (1) wherein said bladder includes a plurality of microscopic holes or permeable paths therein to allow fluid in said bladder to flow or permeate out of said bladder to the outer surface of the bladder.
  • Example (10)
  • The system of example (1) wherein said bladder is constructed of a water permeable polymer configured to weep a film of fluid onto the outer surface of said bladder when said bladder is filled with fluid.
  • Example (11)
  • The system of example (1) wherein said bladder is designed to be hydrophilic or water-wettable regardless of whether fluid is delivered to the bladder surface from the bladder interior.
  • Example (12)
  • The apparatus of example (1) wherein said bladder includes at least one outlet therein configured to allow fluid to be sprayed, sheeted or dripped therefrom upon or across a protectable tissue surface.
  • Example (13)
  • The system of example (1) wherein said ablating device includes an acoustic transducer mounted thereon, said acoustic transducer electrically connected to a processor, and further wherein said acoustic transducer and said processor are configured to determine a location and/or a degree-of-contact of said probe relative to esophageal tissue.
  • Example (14)
  • The system of example (13) wherein said acoustic transducer is configured to transmit an acoustic signal and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by said probe, said processor configured to process said transmitted and received acoustic signals and to determine said relative location of said probe or how well said probe is acoustically and therefore thermally coupled to the esophagus. A low acoustic reflection is indicative of a good thermally conducting wetted interface between the bladder and the tissue.
  • Example (15)
  • The system of example (1) wherein said probe further includes an acoustic transducer mounted thereon, said acoustic transducer electrically connected to a processor, and further wherein said acoustic transducer and said processor are configured to determine a location of said probe relative to said region of non-targeted tissue.
  • Example (16)
  • The system of example (15) wherein said acoustic transducer is configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by tissue in said region of non-targeted tissue, said processor configured to process said transmitted and received acoustic signals to determine said relative location of said probe.
  • Example (17)
  • The system of example (1) wherein said probe further includes an thermal imaging chip mounted thereon, said thermal imaging chip having a field of view and configured to generate a thermal image of tissue in said region of non-targeted tissue that is disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • Example (18)
  • The system of example (17) wherein said thermal imaging chip is configured to generate a thermographic map corresponding said imaged tissue.
  • Example (19)
  • The system of example (18), further comprising a display monitor electrically connected to said imaging chip and configured to display said thermographic map.
  • Example (20)
  • The system of example (17) wherein said thermal imaging chip is configured to detect the highest temperature in said imaged tissue or in a fluid film on said tissue.
  • Example (21)
  • The system of example (17) wherein said bladder is operative to act as a clamp to stabilize a position of said imaging chip to provide a desired line-of-sight for said imaging chip.
  • Example (22)
  • A system for monitoring temperature in a region of non-targeted tissue not to be ablated during an ablation procedure performed on tissue proximate said region of non-targeted tissue, comprising a probe including an elongate shaft having a proximal end, a distal end, and an inflation or filling lumen disposed therein, said elongate shaft defining a longitudinal axis extending from said proximal end through said distal end; a handle disposed at said distal end; and a heat sink, wherein said heat sink comprises a bladder disposed at said distal end of said elongate shaft and extending therefrom a predetermined distance along said longitudinal axis of said elongate shaft toward said proximal end of said elongate shaft, wherein said bladder is configured to be filled with a fluid; a fluid source, wherein said inflation or filling lumen of said elongate shaft is coupled between and to each of said fluid source and said bladder, and said fluid source is configured to supply fluid to said bladder through said inflation or filling lumen; and an actuator configured to cause said balloon to be filled, emptied, flushed with fresh replacement fluid through its interior, or to emit fluid from at least one orifice or pore in its surface.
  • Example (23)
  • The system of example (22) wherein said actuator is mounted on or in said handle of said probe.
  • Example (24)
  • The system of example (22) wherein said actuator is associated with said fluid source.
  • Example (25)
  • The system of example (22) wherein said bladder has an outer surface and said outer surface is lined with a thin film metallic material and/or has a hydrophilic coating thereon.
  • Example (26)
  • The system of example (22) wherein said bladder includes a plurality of microscopic holes, pores, or permeable paths therein to allow fluid in said bladder to flow out of said bladder.
  • Example (27)
  • The system of example (22) wherein said bladder is constructed of a water permeable polymer configured to weep a film of fluid on the outer surface of said bladder when said bladder is filled with fluid.
  • Example (28)
  • The apparatus of example (22) wherein said bladder includes at least one outlet therein configured to allow fluid to be sprayed, sheeted or dripped therefrom across the surface of a protectable tissue.
  • Example (29)
  • The system of example (22) wherein said heat sink further includes a return lumen disposed between, and in fluid communication with, said bladder and said fluid source, said return lumen configured to return fluid from said bladder to said fluid source or to a patient-external drain.
  • Example (30)
  • The system of example (22), further comprising an acoustic transducer mounted on an ablating device performing said ablation procedure, said acoustic transducer electrically connected to a processor, and said acoustic transducer and said processor configured to determine a location of said probe relative to said ablating device or to determine a degree of wetted or acoustic coupling between said probe and said tissue. The ablation device in this example may be a HIFU ablation device wherein the HIFU ablation and pinging are both done by the same transducer.
  • Example (31)
  • The system of example (30) wherein said acoustic transducer is configured to transmit an acoustic signal and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by said probe, said processor configured to process said transmitted and received acoustic signals and to determine said relative location of said probe or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • Example (32)
  • The system of example (22), further comprising an acoustic transducer mounted to said elongate shaft of said probe proximate said distal end thereof and electrically connected to a processor, said ultrasound transducer and said processor configured to determine a location of said probe relative to said region of non-targeted tissue or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • Example (33)
  • The system of example (22) wherein said acoustic transducer is configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal reflected by tissue in said region of non-targeted tissue, said processor configured to process said transmitted and received acoustic signals to determine said relative location of said probe or to determine a degree of coupling between said probe and said tissue.
  • Example (34)
  • The system of example (22), further comprising an thermal imaging chip mounted to said elongate shaft of said probe proximate said distal end thereof, said thermal imaging chip having a field of view and configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • Example (35)
  • The system of example (34) wherein said imaging chip is configured to generate a thermographic map corresponding said imaged tissue.
  • Example (36)
  • The system of example (35), further comprising a display monitor connected to said thermal imaging chip and configured to display said thermographic map.
  • Example (37)
  • The system of example (34) wherein said thermal imaging chip or supportive software analyzing the image is configured to detect the highest temperature in said imaged tissue.
  • Example (38)
  • The system of example (34) wherein said bladder is operative to act as a clamp to stabilize a position of said thermal imaging chip to provide a desired line-of-sight for said imaging chip.
  • Example (39)
  • An apparatus for use in monitoring and/or managing temperature in a region of non-targeted tissue during an ablation procedure performed proximate said region of non-targeted tissue, comprising an elongate shaft having a proximal end, a distal end, and an inflation lumen disposed therein, said elongate shaft defining a longitudinal axis extending from said proximal end through said distal end; a handle disposed at said proximal end; a heat sink, wherein said heat sink assembly comprises a bladder disposed at said distal end of said elongate shaft and extending therefrom a predetermined distance along said longitudinal axis of said elongate shaft toward said proximal end of said elongate shaft, said bladder coupled with said inflating lumen and configured to be filled with a heat-transfer or cooling fluid supplied by a fluid source to which said bladder is coupled; and an actuator or valve configured to cause said bladder to be at least partially filled or emptied of fluid and preferably to also weep or spray fluid from its surface upon or across tissue.
  • Example (40)
  • The apparatus of example (39) wherein said bladder has an outer surface and said outer surface is lined with a thin film metallic material and/or a hydrophilic coating.
  • Example (41)
  • The apparatus of example (39) wherein said bladder includes a plurality of microscopic holes, pores, or permeable paths therein to allow fluid in said bladder to flow out of said bladder at least to the outer surface of the bladder.
  • Example (42)
  • The apparatus of example (39) wherein said bladder is constructed of a water permeable polymer configured to weep or permeate a film of fluid on or onto the outer surface of said bladder when said bladder is filled with fluid.
  • Example (43)
  • The apparatus of example (39) wherein said bladder includes at least one outlet or orifice therein configured to allow fluid to be sprayed, sheeted or dripped therefrom.
  • Example (44)
  • The apparatus of example (39) wherein said heat sink further includes a return lumen disposed between, and in fluid communication with, said bladder and said fluid source, said return lumen configured to return fluid from said bladder to said fluid source or to a patient-external drain.
  • Example (45)
  • The apparatus of example (39), further comprising an acoustic transducer mounted to said elongate shaft proximate said distal end thereof and electrically connected to a processor, said ultrasound transducer and said processor configured to determine a location of said apparatus relative to said region of non-targeted tissue or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • Example (46)
  • The apparatus of example (45) wherein said acoustic transducer is configured to transmit an acoustic signal toward said region of non-targeted tissue and to receive a reflected acoustic signal corresponding to said transmitted acoustic signal, and said processor is configured to process said transmitted and received acoustic signals to determine said relative location of said apparatus or to determine a degree of wetted or acoustic coupling between said probe and said tissue.
  • Example (47)
  • The apparatus of example (39), further comprising a thermal imaging chip mounted to said elongate shaft proximate said distal end thereof, said thermal imaging chip having a field of view and configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, said imaging chip further configured to detect temperatures of said imaged tissue.
  • Example (48)
  • The apparatus of example (47) wherein said thermal imaging chip is configured to generate a thermographic map corresponding said imaged tissue.
  • Example (49)
  • The apparatus of example (47) wherein said thermal imaging chip or supportive software is configured to detect the highest temperature in said imaged tissue.
  • Example (50)
  • The apparatus of example (47) wherein said bladder is operative to act as a clamp to stabilize a position of said imaging chip to provide a desired line-of-sight for said imaging chip.
  • Example (51)
  • An apparatus for use in monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate said region of non-targeted tissue, comprising: a probe having a proximal end and a distal end; and an infrared thermal imaging chip mounted to said probe proximate said distal end thereof; wherein said thermal imaging chip has a field of view and is configured to generate an image of tissue in said region of non-targeted tissue disposed within said field of view, and further wherein said imaging chip, or supportive software working with the image, is configured to detect temperatures of said imaged tissue.
  • Example (52)
  • The apparatus of example (51) wherein at least a portion of said probe containing said thermal imaging chip is configured to be disposed within the body of a patient.
  • Example (53)
  • The apparatus of example (51) wherein at least a portion of said probe containing said thermal imaging chip is configured to be disposed outside of the body of a patient.
  • Example (54)
  • The apparatus of example (51) wherein said thermal imaging chip is configured to generate a thermographic map corresponding said imaged tissue.
  • Example (55)
  • The apparatus of example (54), further comprising a display monitor connected to said thermal imaging chip and configured to display said thermographic map.
  • Example (56)
  • The apparatus of example (51) wherein said thermal imaging chip or software used to analyze the image is configured to detect the highest temperature in said imaged tissue.
  • Example (57)
  • The apparatus of example (51), wherein said probe further comprises an inflatable clamp mounted thereon to stabilize a position of said thermal imaging chip when inflated to provide a desired line-of-sight for said imaging chip.
  • Example (58)
  • The apparatus of example (51) wherein said imaging chip is a CCD chip which may optionally also have visible-wavelength imaging capabilities.
  • Example (59)
  • The apparatus of example (51) wherein said imaging chip is a CMOS chip which may optionally also have visible-wavelength imaging capabilities.
  • Example (60)
  • A method of monitoring temperature in a region of non-targeted tissue during an ablation procedure performed on targeted tissue proximate said region of non-targeted tissue, said method comprising: providing a probe including an infrared thermal imaging chip having a field of view; imaging tissue within said field of view of said thermal imaging chip and disposed within said region of non-targeted tissue; and detecting at least one temperature of said imaged tissue.
  • Example (61)
  • The method of example (60) wherein said detecting step comprises detecting the highest temperature in said imaged tissue.
  • Example (62)
  • The method of example (61), further comprising the step of initiating a warning or throttling/gating ablation power if said detected highest temperature exceeds or is anticipated to exceed a predetermined threshold.
  • Example (63)
  • The method of example (60) wherein said detecting step comprises detecting a plurality of temperatures in said imaged tissue.
  • Example (64)
  • The method of example (63), further comprising the step of generating a thermographic map corresponding to said detected plurality of temperatures.
  • Example (65)
  • The method of example (64), further comprising the step of displaying said thermographic map on a display monitor.
  • Example (66)
  • An ablating device, comprising an elongate shaft having a proximal end and a distal end; a handle mounted to said elongate shaft at said proximal end thereof; and an ablation element mounted to said elongate shaft at said distal end, said ablation element including an ultrasound transducer and at least one inflatable balloon surrounding said ultrasound transducer, and wherein said balloon having an inner surface and an outer surface, and said balloon further having a layer of semisolid gel or hydrophilic coating disposed on at least a portion of said outer surface at-least during ablative operation. The gel or hydrophilic coating allowing for an external balloon surface to provide a reliable flow-seal against blood flow during an ablation procedure.
  • Example (67)
  • The ablation device of example (66) wherein said gel or coating is configured to become more solid or less flowable when heated or while warmed.
  • Example (68)
  • The ablation device of example (67) wherein said gel or coating is configured to become more flowable or more liquid-like when cooled from at least one higher temperature to at least one lower temperature.
  • Example (69)
  • The ablation device of example (67), further comprising a heating or cooling device configured to apply or remove heat to/from said gel or coating in order to change its degree of solidity or flowability.
  • Example (70)
  • The ablation device of example (66) wherein the gel or coating is introduced into the device as a flowable liquid, is thermally rendered semisolid or poorly flowable during ablation, and is thereupon thermally rendered again flowable after ablation.
  • Example (71)
  • The ablation device of example (66) wherein said at least a portion of said outer surface of said balloon is coated with said gel or hydrophilic coating material prior to said elongate shaft being inserted into a patient, and/or by passage of gel or coating material from inside the balloon through the balloon wall to the outer balloon surface.
  • Example (72)
  • The ablation device of example (71) wherein said gel or coating material is distributed onto said at least a portion of said outer surface of said balloon after said balloon is inflated.
  • Example (73)
  • The ablation device of example (72) wherein said balloon further includes at least one port disposed therein configured to distribute said gel or coating material onto said at least a portion of said outer surface of said balloon.
  • Example (74)
  • The ablation device of example (73), further comprising a gel or coating distribution lumen disposed in said elongate shaft and extending from said proximal end to said distal end, said lumen being coupled to said port and configured to communicate said liquefying gel or coating material from a source to said port.
  • Example (75)
  • A method of ablating pulmonary vein ostia or any portion of a myocardium while thermally protecting a nearby esophagus from ablation comprising: a thermal ablation device operable from within the heart to ablate one or more ostia, myocardial tissues, or portions thereof; a heat sinking protective probe insertable down an esophagus to thermally couple to esophageal tissues to be protected from ablation taking place nearby in the heart; wherein at least one of (a) the heat sinking probe pre-cools the protectable esophageal tissues thereby providing increased thermal margin for ablation protection of those protected tissues; and (b) the heat sinking probe acts to sink away heat for potential undesirable hotspots developed in the esophagus by the nearby thermal ablator.
  • Example (76)
  • The method of example (75) wherein any one or more of: (a) the heat sinking probe utilizes a thermally conductive fluid or utilizes a circulated fluid; (b) the heat sinking probe utilizes a fluid inflatable balloon, membrane or bladder; (c) the heat sinking probe is inflated at least partially against interior esophageal tissues; (d) the heat sinking probe is rendered hydrophilic or water wettable on its external surface during manufacturing or during use; (e) the thermal ablator is any one of an RF, microwave, laser, cryogenic or ultrasonic ablator; and (f) the heat sinking probe sprays, weeps, sheets, or drips fluid across or upon an esophageal tissue to be protected.
  • Example (77)
  • In any of the above examples, the transducer of the ablation element may be rotated during an ablation procedure to counteract an angular non-uniformity of the transducer output via rotational averaging. This is particularly applicable to a non-uniform 360 degree piezotube which benefits from rotation or to a sector transducer of less than 360 degrees which must be rotated.
  • Although only certain embodiments of this invention have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. For example, various types of gel and many different gel dispensing techniques may be used to prevent blood leakage during an ablation procedure, and the gel may be distributed onto the outer surface of one or more of the balloon(s) in a number of ways. Further, the heat sink of the temperature monitoring and management subsystem may be inflated, and also cool proximate tissue, in any number of ways. Still further, the determination of the location of the probe of the temperature monitoring subsystem may be accomplished using various other methodologies or techniques. Additionally, any and all directional references (e.g., up, down, left, right) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Joinder references (e.g., attached, coupled, connected, mounted and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected/coupled and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the invention as defined in the appended claims.

Claims (23)

1. (canceled)
2. A system for performing an ablation procedure, comprising:
a tissue protecting apparatus configured to:
be inserted into an anatomy configured to protect tissue in a region of non-targeted tissue from unintended ablation from an ablating device; and
move a portion of tissue away from an ablation site, wherein the tissue protecting apparatus comprises a first shape for positioning the tissue protecting apparatus proximate the portion of tissue and a second shape for moving the portion of tissue, wherein the second shape moves the portion of tissue away from the ablation site; and
a control unit configured to change the tissue protecting apparatus from the first shape to the second shape.
3. The system of claim 2, wherein the tissue protecting apparatus comprises a balloon.
4. The system of claim 2, wherein the tissue protecting apparatus comprises a heat sink configured to reduce heat in a region of the tissue that is not targeted for the ablation procedure.
5. The system of claim 2, wherein the control unit is an electronic control unit.
6. The system of claim 3, wherein the first shape is a collapsed configuration and the second shape is an expanded configuration.
7. The system of claim 6, wherein the second shape is configured to expand in at least one direction.
8. The system of claim 7, wherein the at least one direction causes the portion of tissue to move away from the ablation site.
9. The system of claim 8, wherein the second shape is an irregular shape to promote movement of the portion of tissue in the at least one direction away from the ablation site.
10. The system of claim 4, further comprising a fluid source, the fluid source configured to be coupled to a heat sink through a fluid distribution lumen, wherein the fluid source is configured to supply fluid to the heat sink through the fluid distribution lumen.
11. The system of claim 10, wherein the heat sink comprises one or more fluid outlets configured to allow fluid to exit the heat sink in a region of non-targeted tissue.
12. The system of claim 2, wherein the portion of tissue comprises a portion of an esophagus.
13. A system for performing an ablation procedure, comprising:
a tissue protecting apparatus configured to be inserted into an anatomy configured to protect tissue in a region of non-targeted tissue from unintended ablation from an ablating device; and
a sensor located inside the tissue protecting apparatus.
14. The system of claim 13, wherein the sensor comprises at least one of an ultrasound transducer, a temperature monitoring apparatus and a coupling sensor.
15. The system of claim 14, wherein the ultrasound transducer comprises one or more of a piezoelectric transducer and a rotatable transducer.
16. The system of claim 14, wherein the temperature monitoring apparatus is a thermal imaging chip.
17. The system of claim 14, wherein the temperature monitoring apparatus comprises a thermal imaging chip.
18. The system of claim 14 further comprising an electronic control unit in communication with the coupling sensor to determine contact and a degree of coupling between the tissue protecting apparatus and tissue in the region of non-targeted tissue that is proximate an ablation site
19. A system for performing an ablation procedure, comprising:
a tissue protecting apparatus configured to move a portion of tissue away from an ablation site, wherein the tissue protecting apparatus comprises a first shape, wherein the first shape is configured to enable maneuvering of the tissue protecting apparatus proximate the portion of tissue, and a second shape configured to move the portion of tissue, wherein the second shape moves the portion of tissue away from the ablation site;
a sensor located inside the tissue protecting apparatus; and
a control unit to control the change of the tissue protecting apparatus from the first shape to the second shape.
20. The system of claim 19, wherein the one or more sensors are at least one of an ultrasound transducer, a temperature monitoring apparatus and a coupling sensor, wherein the coupling sensor detects contact and a degree of coupling between the ablating device and tissue at the ablation site.
21. The system of claim 20, wherein the ultrasound transducer one or more of a piezoelectric transducer and a rotatable transducer.
22. The system of claim 20, wherein the temperature monitoring apparatus is a thermal imaging chip.
23. The system of claim 19, further comprising an ablating device configured to be inserted into an anatomy of a patient and to delivery ablating energy to an ablation site having targeted tissue;
US15/010,865 2008-12-30 2016-01-29 Ablation system with blood leakage minimization and tissue protective capabilities Abandoned US20160228175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/010,865 US20160228175A1 (en) 2008-12-30 2016-01-29 Ablation system with blood leakage minimization and tissue protective capabilities

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14137908P 2008-12-30 2008-12-30
US12/648,797 US9352174B2 (en) 2008-12-30 2009-12-29 Ablation system with blood leakage minimization and tissue protective capabilities
US15/010,865 US20160228175A1 (en) 2008-12-30 2016-01-29 Ablation system with blood leakage minimization and tissue protective capabilities

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/648,797 Division US9352174B2 (en) 2008-12-30 2009-12-29 Ablation system with blood leakage minimization and tissue protective capabilities

Publications (1)

Publication Number Publication Date
US20160228175A1 true US20160228175A1 (en) 2016-08-11

Family

ID=42285783

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/648,797 Active 2035-04-02 US9352174B2 (en) 2008-12-30 2009-12-29 Ablation system with blood leakage minimization and tissue protective capabilities
US15/010,865 Abandoned US20160228175A1 (en) 2008-12-30 2016-01-29 Ablation system with blood leakage minimization and tissue protective capabilities

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/648,797 Active 2035-04-02 US9352174B2 (en) 2008-12-30 2009-12-29 Ablation system with blood leakage minimization and tissue protective capabilities

Country Status (1)

Country Link
US (2) US9352174B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180055575A1 (en) * 2016-09-01 2018-03-01 Covidien Lp Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
US10105178B2 (en) 2015-09-30 2018-10-23 Fiab S.P.A. Esophageal probe with the temperature change speed detection system
WO2019168816A1 (en) * 2018-02-27 2019-09-06 Kusumoto Walter Ultrasound thermometry for esophageal or other tissue protection during ablation
US20230099253A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052947A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052945A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052941A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical system for delivering energy to tissue in an anatomic space and monitoring a tissue parameter in a different anatomic space

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
DE202004021946U1 (en) 2003-09-12 2013-05-29 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
WO2007140331A2 (en) 2006-05-25 2007-12-06 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
ES2560006T3 (en) 2006-10-18 2016-02-17 Vessix Vascular, Inc. Induction of desirable temperature effects on body tissue
JP5559539B2 (en) 2006-10-18 2014-07-23 べシックス・バスキュラー・インコーポレイテッド System that induces desirable temperature effects on body tissue
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
EP2355737B1 (en) 2008-11-17 2021-08-11 Boston Scientific Scimed, Inc. Selective accumulation of energy without knowledge of tissue topography
US9622909B2 (en) 2009-02-26 2017-04-18 Advanced Cooling Therapy, Inc. Devices and methods for controlling patient temperature
US9301871B2 (en) 2009-02-26 2016-04-05 Advanced Cooling Therapy, Inc. Devices and methods for controlling patient temperature
DE102009057924A1 (en) * 2009-12-11 2011-06-16 Siemens Aktiengesellschaft Monitoring method and monitoring device for monitoring a medical procedure, in particular a vascular surgery operation
JP2013523318A (en) 2010-04-09 2013-06-17 べシックス・バスキュラー・インコーポレイテッド Power generation and control equipment for tissue treatment
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8956346B2 (en) 2010-05-14 2015-02-17 Rainbow Medical, Ltd. Reflectance-facilitated ultrasound treatment and monitoring
US8617150B2 (en) 2010-05-14 2013-12-31 Liat Tsoref Reflectance-facilitated ultrasound treatment
US9242122B2 (en) 2010-05-14 2016-01-26 Liat Tsoref Reflectance-facilitated ultrasound treatment and monitoring
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US8696581B2 (en) 2010-10-18 2014-04-15 CardioSonic Ltd. Ultrasound transducer and uses thereof
WO2012052926A2 (en) 2010-10-18 2012-04-26 CardioSonic Ltd. Tissue treatment
US9028417B2 (en) 2010-10-18 2015-05-12 CardioSonic Ltd. Ultrasound emission element
US9566456B2 (en) * 2010-10-18 2017-02-14 CardioSonic Ltd. Ultrasound transceiver and cooling thereof
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
AU2011332014B2 (en) * 2010-11-27 2016-12-22 Securus Medical Group, Inc. Ablation and temperature measurement devices
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012099974A2 (en) 2011-01-19 2012-07-26 Fractyl Laboratories, Inc. Devices and methods for the treatment of tissue
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US8869612B2 (en) 2011-03-08 2014-10-28 Baxter International Inc. Non-invasive radio frequency liquid level and volume detection system using phase shift
US9579150B2 (en) * 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
CN103517731B (en) 2011-04-08 2016-08-31 柯惠有限合伙公司 For removing iontophoresis formula drug delivery system and the method for renal sympathetic nerve and iontophoresis formula drug delivery
WO2013106036A2 (en) * 2011-04-08 2013-07-18 Preston Manwaring Impedance matching circuit
TW201242570A (en) 2011-04-25 2012-11-01 Medtronic Ardian Luxembourg Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US20130090649A1 (en) * 2011-10-11 2013-04-11 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
WO2013055815A1 (en) 2011-10-11 2013-04-18 Boston Scientific Scimed, Inc. Off -wall electrode device for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
CN108095821B (en) 2011-11-08 2021-05-25 波士顿科学西美德公司 Orifice renal nerve ablation
WO2013074661A2 (en) * 2011-11-14 2013-05-23 Boston Scientific Scimed, Inc. Integrated ultrasound ablation and imaging device and related methods
EP2779929A1 (en) 2011-11-15 2014-09-24 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
CA2859989C (en) 2011-12-23 2020-03-24 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9707414B2 (en) 2012-02-14 2017-07-18 Rainbow Medical Ltd. Reflectance-facilitated ultrasound treatment and monitoring
EP2814409B1 (en) * 2012-02-14 2017-05-24 Rainbow Medical Ltd. Reflectance-facilitated ultrasound treatment and monitoring
IL296643A (en) * 2012-02-27 2022-11-01 Fractyl Health Inc Heat ablation systems, devices and methods for the treatment of tissue
WO2013157011A2 (en) 2012-04-18 2013-10-24 CardioSonic Ltd. Tissue treatment
AU2013249043B2 (en) 2012-04-19 2017-04-27 Fractyl Health, Inc. Tissue expansion devices, system and methods
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
EP3714826A1 (en) 2012-07-30 2020-09-30 Fractyl Laboratories, Inc. Electrical energy ablation systems and devices for the treatment of tissue
EP2882362B1 (en) * 2012-08-09 2024-01-03 Fractyl Health, Inc. Ablation systems, devices and methods for the treatment of tissue
WO2014032016A1 (en) 2012-08-24 2014-02-27 Boston Scientific Scimed, Inc. Intravascular catheter with a balloon comprising separate microporous regions
CN104780859B (en) 2012-09-17 2017-07-25 波士顿科学西美德公司 Self-positioning electrode system and method for renal regulation
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
EP2903626A4 (en) 2012-10-05 2016-10-19 Fractyl Lab Inc Methods, systems and devices for performing multiple treatments on a patient
CN104869930B (en) 2012-10-10 2020-12-25 波士顿科学国际有限公司 Renal neuromodulation apparatus and methods
CN104902836B (en) 2012-11-05 2017-08-08 毕达哥拉斯医疗有限公司 Controlled tissue melts
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
EP2945556A4 (en) 2013-01-17 2016-08-31 Virender K Sharma Method and apparatus for tissue ablation
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US20140276714A1 (en) * 2013-03-15 2014-09-18 Boston Scientific Scimed, Inc. Active infusion sheath for ultrasound ablation catheter
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
AU2014237950B2 (en) 2013-03-15 2017-04-13 Boston Scientific Scimed, Inc. Control unit for use with electrode pads and a method for estimating an electrical leakage
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
EP4233991A1 (en) 2013-03-15 2023-08-30 Medtronic Ardian Luxembourg S.à.r.l. Controlled neuromodulation systems
WO2014188430A2 (en) 2013-05-23 2014-11-27 CardioSonic Ltd. Devices and methods for renal denervation and assessment thereof
EP3003461B1 (en) 2013-06-04 2019-05-01 Fractyl Laboratories, Inc. Systems and devices for reducing the luminal surface area of the gastrointestinal tract
JP2016524949A (en) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation having a rotatable shaft
JP2016523147A (en) 2013-06-21 2016-08-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Renal denervation balloon catheter with a riding-type electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
CN105377169B (en) 2013-07-11 2019-04-19 波士顿科学国际有限公司 Device and method for neuromodulation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
CN105473093B (en) 2013-08-22 2019-02-05 波士顿科学国际有限公司 Flexible circuit with the improved adhesion strength to renal nerve modulation sacculus
CN105555218B (en) 2013-09-04 2019-01-15 波士顿科学国际有限公司 With radio frequency (RF) foley's tube rinsed with cooling capacity
EP3043733A1 (en) 2013-09-13 2016-07-20 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
JP5781250B1 (en) * 2013-10-11 2015-09-16 オリンパス株式会社 Endoscope system
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
AU2014334574B2 (en) 2013-10-15 2017-07-06 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
EP3060153A1 (en) 2013-10-25 2016-08-31 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
JP6603660B2 (en) 2013-11-22 2019-11-06 フラクティル ラボラトリーズ インコーポレイテッド System, device and method for generating treatment constraints in the gastrointestinal tract
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
WO2015108666A2 (en) * 2014-01-14 2015-07-23 St. Jude Medical, Cardiology Division, Inc. Sensor-bearing tip and medical device including the same
CN106572881B (en) 2014-02-04 2019-07-26 波士顿科学国际有限公司 Substitution of the heat sensor on bipolar electrode is placed
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US10959774B2 (en) 2014-03-24 2021-03-30 Fractyl Laboratories, Inc. Injectate delivery devices, systems and methods
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
EP3169260B1 (en) 2014-07-16 2019-09-25 Fractyl Laboratories, Inc. System for treating diabetes and related diseases and disorders
US11185367B2 (en) 2014-07-16 2021-11-30 Fractyl Health, Inc. Methods and systems for treating diabetes and related diseases and disorders
US9844641B2 (en) 2014-07-16 2017-12-19 Fractyl Laboratories, Inc. Systems, devices and methods for performing medical procedures in the intestine
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
WO2017120330A1 (en) * 2016-01-05 2017-07-13 Cardiofocus, Inc. Ablation system with automated sweeping ablation energy element
WO2017199240A2 (en) 2016-05-18 2017-11-23 Pythagoras Medical Ltd. Helical catheter
CN114191067A (en) * 2016-05-19 2022-03-18 圣安娜技术有限公司 Integrated cooled ablation catheter
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
CN110621345A (en) 2017-03-20 2019-12-27 索尼维有限公司 Pulmonary hypertension treatment
AU2018315484A1 (en) * 2017-08-10 2020-02-27 Boston Scientific Medical Device Limited Heat exchange and temperature sensing device and method of use
WO2019140451A1 (en) 2018-01-15 2019-07-18 Cardiofocus, Inc. Ablation system with automated ablation energy element
CA3102080A1 (en) 2018-06-01 2019-12-05 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
EP3628266B1 (en) * 2018-09-28 2020-10-21 Ivoclar Vivadent AG Bacteria removal laser
EP4225188A1 (en) * 2021-09-29 2023-08-16 Cilag GmbH International Surgical devices, systems, and methods for control of one visualization with another

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840031A (en) * 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US20020017306A1 (en) * 1996-10-22 2002-02-14 Epicor, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US20020045811A1 (en) * 1985-03-22 2002-04-18 Carter Kittrell Laser ablation process and apparatus
US20020096183A1 (en) * 1993-02-22 2002-07-25 Stevens John H. Method and apparatus for thoracoscopic intracardiac procedures
US20020107511A1 (en) * 2000-05-03 2002-08-08 Collins Russell F. Apparatus and methods for mapping and ablation in electrophysiology procedures
US20040181139A1 (en) * 2001-04-27 2004-09-16 Falwell Gary S. Method and apparatus for three dimensional mapping of electrical activity in blood vessels and ablation of electrical pathways identified by the three dimension map
US20060020263A1 (en) * 2004-06-02 2006-01-26 Rothstein Paul T Clamping ablation tool and method
US20060106375A1 (en) * 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback
US20070208329A1 (en) * 2004-12-10 2007-09-06 Jim Ward Ablative treatment of atrial fibrillation via the coronary sinus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60109444T2 (en) * 2000-06-13 2006-04-13 Atrionix, Inc., Irwindale SURGICAL ABLATION PROBE FOR FORMING A RINGED LESION
US6635054B2 (en) 2000-07-13 2003-10-21 Transurgical, Inc. Thermal treatment methods and apparatus with focused energy application
US7591818B2 (en) * 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
EP1596746B1 (en) 2003-02-20 2016-10-19 ReCor Medical, Inc. Ultrasonic ablation devices
KR101193709B1 (en) 2004-04-19 2012-10-23 프로리듬, 인크. Ablation devices with sensor structures
US8798761B2 (en) * 2008-06-27 2014-08-05 Cardiac Pacemakers, Inc. Systems and methods of monitoring the acoustic coupling of medical devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020045811A1 (en) * 1985-03-22 2002-04-18 Carter Kittrell Laser ablation process and apparatus
US20020096183A1 (en) * 1993-02-22 2002-07-25 Stevens John H. Method and apparatus for thoracoscopic intracardiac procedures
US5840031A (en) * 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US20020017306A1 (en) * 1996-10-22 2002-02-14 Epicor, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US20020107511A1 (en) * 2000-05-03 2002-08-08 Collins Russell F. Apparatus and methods for mapping and ablation in electrophysiology procedures
US20040181139A1 (en) * 2001-04-27 2004-09-16 Falwell Gary S. Method and apparatus for three dimensional mapping of electrical activity in blood vessels and ablation of electrical pathways identified by the three dimension map
US20060020263A1 (en) * 2004-06-02 2006-01-26 Rothstein Paul T Clamping ablation tool and method
US20060106375A1 (en) * 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback
US20070208329A1 (en) * 2004-12-10 2007-09-06 Jim Ward Ablative treatment of atrial fibrillation via the coronary sinus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105178B2 (en) 2015-09-30 2018-10-23 Fiab S.P.A. Esophageal probe with the temperature change speed detection system
US20180055575A1 (en) * 2016-09-01 2018-03-01 Covidien Lp Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
US10939963B2 (en) * 2016-09-01 2021-03-09 Covidien Lp Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
US11622815B2 (en) 2016-09-01 2023-04-11 Covidien Lp Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
WO2019168816A1 (en) * 2018-02-27 2019-09-06 Kusumoto Walter Ultrasound thermometry for esophageal or other tissue protection during ablation
US11406451B2 (en) 2018-02-27 2022-08-09 Walter Kusumoto Ultrasound thermometry for esophageal or other tissue protection during ablation
US20230099253A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052947A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052945A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods for control of one visualization with another
WO2023052941A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical system for delivering energy to tissue in an anatomic space and monitoring a tissue parameter in a different anatomic space

Also Published As

Publication number Publication date
US9352174B2 (en) 2016-05-31
US20100168624A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US9352174B2 (en) Ablation system with blood leakage minimization and tissue protective capabilities
US11141209B2 (en) Feedback system for cryoablation of cardiac tissue
US20200246070A1 (en) Visual electrode ablation systems
US6673066B2 (en) Apparatus and method to diagnose and treat vulnerable plaque
CN106413610B (en) Shape-changing ablation balloon
US6640120B1 (en) Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
ES2287002T3 (en) HEADSET ABLATION INSTRUMENT WITH BALL AND DETECTOR.
CN113015495A (en) Heating steam ablation system and method for treating heart disease
AU2015268771A1 (en) Balloon for ablation around pulmonary veins
EP2512329B1 (en) Vein occlusion devices for catheter-based ablation
CN110573100B (en) Therapeutic device with multifunctional sensing element and method of use
JP2014508547A (en) Ablation and temperature measurement equipment
ES2241868T3 (en) MEDICAL DEVICE WITH SENSOR THAT COOPERS WITH A DILATABLE MEMBER.
AU2019207630B2 (en) Device for monitoring temperatures within and adjacent to body lumens
CA2834749C (en) Compliant sleeves coupled with wire structures for cryoablation
JP2011526190A (en) Method and device for monitoring tissue resection
CN107205651B (en) Use of temperature profiles to determine pulmonary vein and other vessel occlusions following cold saline injection
US20210267673A1 (en) Catheter ultrasound transducer container
US20120283713A1 (en) Compliant sleeves coupled with wire structures for cryoablation
JP7282883B2 (en) Cryoballoon with gas direction control
WO2007010073A2 (en) Apparatus and method for the thermal protection of the oesophagus

Legal Events

Date Code Title Description
AS Assignment

Owner name: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, IN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SLIWA, JOHN W.;REEL/FRAME:042572/0941

Effective date: 20100804

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE