US20160228042A9 - Method and/or system for multicompartment analyte monitoring - Google Patents

Method and/or system for multicompartment analyte monitoring Download PDF

Info

Publication number
US20160228042A9
US20160228042A9 US13/657,642 US201213657642A US2016228042A9 US 20160228042 A9 US20160228042 A9 US 20160228042A9 US 201213657642 A US201213657642 A US 201213657642A US 2016228042 A9 US2016228042 A9 US 2016228042A9
Authority
US
United States
Prior art keywords
analyte
concentration
physiological compartment
glucose
latency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/657,642
Other versions
US20130102866A1 (en
US9907491B2 (en
Inventor
Xiaolong Li
Brian T. Kannard
Rajiv Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Minimed Inc
Original Assignee
Medtronic Minimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/282,096 external-priority patent/US8882665B2/en
Priority claimed from US13/365,406 external-priority patent/US8870763B2/en
Application filed by Medtronic Minimed Inc filed Critical Medtronic Minimed Inc
Priority to US13/657,642 priority Critical patent/US9907491B2/en
Assigned to MEDTRONIC MINIMED, INC. reassignment MEDTRONIC MINIMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANNARD, BRIAN T., LI, XIAOLONG
Publication of US20130102866A1 publication Critical patent/US20130102866A1/en
Publication of US20160228042A9 publication Critical patent/US20160228042A9/en
Assigned to MEDTRONIC MINIMED, INC. reassignment MEDTRONIC MINIMED, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTIES PREVIOUSLY RECORDED ON REEL 029169 FRAME 550. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: KANNARD, BRIAN T., SHAH, RAJIV, LI, XIAOLONG
Application granted granted Critical
Publication of US9907491B2 publication Critical patent/US9907491B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles
    • A61B5/6849Needles in combination with a needle set
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure

Definitions

  • Subject matter disclosed herein relates to monitoring a concentration of an analyte in a physiological compartment.
  • the pancreas of a normal healthy person produces and releases insulin into the blood stream in response to elevated blood plasma glucose levels.
  • Beta cells which reside in the pancreas, produce and secrete insulin into the blood stream as it is needed. If ⁇ -cells become incapacitated or die, a condition known as Type 1 diabetes mellitus (or in some cases, if ⁇ -cells produce insufficient quantities of insulin, a condition known as Type 2 diabetes), then insulin may be provided to a body from another source to maintain life or health.444
  • External infusion pumps are typically provided to control a rate of insulin infusion based, at least in part, on blood glucose measurements obtained from metered blood glucose samples (e.g., finger stick samples) or from processing signals received from a blood glucose sensor attached to a patient to provide sensor glucose measurements.
  • blood glucose measurements obtained from metered blood glucose samples (e.g., finger stick samples) or from processing signals received from a blood glucose sensor attached to a patient to provide sensor glucose measurements.
  • a patient's blood glucose level may be continuously monitored to reduce a frequency of obtaining metered blood glucose sample measurements from finger sticks and the like.
  • measurements of blood glucose concentration obtained from processing signals from blood glucose sensors may not be as accurate or reliable as blood glucose sample measurements obtained from finger stick samples, for example.
  • parameters used for processing blood glucose sensors for obtaining blood glucose measurements may be calibrated from time to time using metered blood glucose sample measurements as reference measurements obtained from finger sticks and the like.
  • example embodiments may relate to methods, systems, apparatuses, and/or articles.
  • particular example embodiments may be directed to an article comprising a storage medium including machine-readable instructions stored thereon which, if executed by a special purpose computing device and/or processor, may be directed to enable the special purpose computing device/processor to execute at least a portion of described method(s) according to one or more particular implementations.
  • a sensor may be adapted to generate one or more signals responsive to a measured blood glucose concentration in a body while a special purpose computing device/processor may be adapted to perform at least a portion of described method(s) according to one or more particular implementations based upon one or more signals generated by the sensor.
  • FIG. 1 is a front view of example devices located on a body in accordance with an embodiment.
  • FIG. 2( a ) is a perspective view of an example glucose sensor system for use in accordance with an embodiment.
  • FIG. 2( b ) is a side cross-sectional view of a glucose sensor system of FIG. 2( a ) for an embodiment.
  • FIG. 2( c ) is a perspective view of an example sensor set of a glucose sensor system of FIG. 2( a ) for an embodiment.
  • FIG. 2( d ) is a side cross-sectional view of a sensor set of FIG. 2( c ) for an embodiment.
  • FIG. 3 is a cross sectional view of an example sensing end of a sensor set of FIG. 2( d ) for an embodiment.
  • FIG. 4 is a top view of an example infusion device with a reservoir door in an open position, for use according to an embodiment.
  • FIG. 5 is a side view of an example infusion set with an insertion needle pulled out, for use according to an embodiment.
  • FIG. 6 is a cross-sectional view of an example sensor set and an example infusion set attached to a body in accordance with an embodiment.
  • FIG. 7 is a flow diagram of a process for compensating for a latency in estimating a concentration of an analyte in a physiological compartment, according to an embodiment.
  • FIG. 8 is a flow diagram of a process for compensating for a latency in estimating a concentration of an analyte in physiological compartment according to an alternative embodiment.
  • FIG. 9 is a diagram illustrating attenuation of blood glucose in interstitial fluid from cellular uptake according to an embodiment.
  • FIGS. 10-12 are plots of sensor signal measurements and observations of a blood glucose concentration according to an embodiment.
  • blood-glucose measurements may be obtained from a blood glucose sensor in any one of several different specific applications such as, for example, aiding in the application of insulin therapies in a hospital environment, controlling infusion of insulin in a patient-operated insulin infusion systems, just to name a few examples.
  • a blood glucose sensor may be employed as part of a system to control infusion of insulin so as to control/maintain a patient's blood glucose within a target range, thus reducing a risk that the patient's blood glucose level transitions to dangerous extreme levels in the absence of action from the patient or treating attendant.
  • example systems as described herein may be implemented in a hospital environment to monitor or control levels of glucose in a patient.
  • a caretaker or attendant may be tasked with interacting with a patient's glycemic management system to, for example: enter blood-glucose reference measurements into control equipment to calibrate blood glucose measurements obtained from glucose sensors, make manual adjustments to devices, and/or make changes to therapies, just to name a few examples.
  • a patient or other non-medical professional may be responsible for interacting with a closed-loop system to, for example, provide updated measurements of blood-glucose concentration obtained from blood glucose reference samples or the like.
  • a glucose sensor may be inserted into a patient's subcutaneous tissue to observe a concentration or level of glucose present in the interstitial fluid. Based, at least in part, on a concentration of level of glucose observed to be present in interstitial fluid, a level or concentration of glucose present in blood plasma may be estimated or measured.
  • Glucose entering the blood by, for example, digestion of a meal, etc. may not substantially affect a glucose level or concentration in interstitial fluid until after a physiological delay or latency. If a blood glucose level in a patient is rapidly rising or falling, estimates of blood glucose level or concentration based upon a blood glucose level or concentration observed in interstitial fluid from a glucose sensor may be inaccurate.
  • a delay or latency in transportation of an analyte between first and second physiological compartments may be modeled.
  • a metabolic decay in an analyte in connection with transportation between physiological compartments may also be modeled.
  • a process for estimating a concentration of the analyte in the first physiological compartment based, at least in part, on measurements of a concentration of the analyte in a second physiological compartment may compensate for the modeled delay.
  • a process for estimating a concentration may also compensate for a modeled metabolic decay in an analyte.
  • a delay or latency in the transportation of glucose from blood to interstitial fluid may be modeled.
  • a process for estimating a concentration of blood glucose based, at least in part, on an observed concentration of glucose in interstitial fluid may then compensate for this delay.
  • a process for estimating a concentration of glucose in blood from an observed concentration of glucose in interstitial fluid may also compensate for a metabolic decay of glucose.
  • compensating for this delay or decay may reduce inaccuracies in estimating blood glucose which is rapidly rising or falling.
  • implementations may be directed to estimating a concentration of analytes in a physiological compartment other than glucose such as, for example, low-density lipoprotein, amino acids, just to provide a couple of examples.
  • other implementations may be directed to modeling a delay or latency in transportation of an analyte between physiological compartments, and/or metabolic decay of an analyte in physiological compartments, other than blood stream and interstitial fluid.
  • other embodiments may be directed to modeling a delay, latency or decay in connection with gastric transport or nasal transport.
  • FIGS. 1 through 5 illustrate example glucose control systems in accordance with certain embodiments. Such glucose control systems may be used, for example, in controlling a patient's glucose level about a target range as discussed above. It should be understood, however, that these are merely examples of particular systems that may be used for controlling a patient's glucose level about a target range and that claimed subject matter is not limited in this respect.
  • FIG. 1 is a front view of example devices located on a body in accordance with certain embodiments.
  • FIGS. 2( a )-2( d ) and 3 show different views and portions of an example glucose sensor system for use in accordance with certain embodiments enabling continuous monitoring of a patient's blood glucose level.
  • FIG. 4 is a top view of an example optional infusion device with a reservoir door in an open position in accordance with certain embodiments.
  • FIG. 5 is a side view of an example infusion set with an insertion needle pulled out in accordance with certain embodiments.
  • Particular example embodiments may include a sensor 26 , a sensor set 28 , a telemetered characteristic monitor 30 , a sensor cable 32 , an infusion device 34 , an infusion tube 36 , and an infusion set 38 , any or all of which may be worn on a body 20 of a user or patient, as shown in FIG. 1 .
  • telemetered characteristic monitor 30 may include a monitor housing 31 that supports a printed circuit board 33 , battery or batteries 35 , antenna (not shown), a sensor cable connector (not shown), and so forth.
  • a sensing end 40 of sensor 26 may have exposed electrodes 42 that may be inserted through skin 46 into a subcutaneous tissue 44 of a user's body 20 , as shown in FIGS. 2 d and 3 . Electrodes 42 may be in contact with interstitial fluid (ISF) that is usually present throughout subcutaneous tissue 44 .
  • ISF interstitial fluid
  • Sensor 26 may be held in place by sensor set 28 , which may be adhesively secured to a user's skin 46 , as shown in FIGS. 2( c ) and 2( d ) .
  • Sensor set 28 may provide for a connector end 27 of sensor 26 to connect to a first end 29 of sensor cable 32 .
  • a second end 37 of sensor cable 32 may connect to monitor housing 31 .
  • Batteries 35 that may be included in monitor housing 31 provide power for sensor 26 and electrical components 39 on printed circuit board 33 .
  • Electrical components 39 may sample a sensor signal current (ISIG, not shown) and store the sampled digital sensor values (DSIG) in a memory.
  • Digital sensor values DSIG may be periodically transmitted from a memory to a controller 12 , which may be included in an infusion device.
  • a controller 12 may process digital sensor values DSIG and generate commands for infusion device 34 .
  • Infusion device 34 may respond to commands and actuate a plunger 48 that forces insulin out of a reservoir 50 that is located inside an infusion device 34 .
  • glucose may also be infused from a reservoir responsive to commands using a similar and/or analogous device (not shown).
  • glucose may be administered to a patient orally.
  • controller 12 may collect and maintain a log or history of continuous measurements of a patient's blood glucose level to, for example, allow for characterization of a patient's glycemic trends.
  • a history of continuous blood glucose sensor measurements may enable prediction of a patient's blood glucose level at some time in the future.
  • a connector tip 54 of reservoir 50 may extend through infusion device housing 52 , and a first end 51 of infusion tube 36 may be attached to connector tip 54 .
  • a second end 53 of infusion tube 36 may connect to infusion set 38 (e.g., of FIGS. 1 and 5 ).
  • insulin may be forced through infusion tube 36 into infusion set 38 and into a body of a patient.
  • Infusion set 38 may be adhesively attached to a user's skin 46 .
  • a cannula 56 may extend through skin 46 and terminate in subcutaneous tissue 44 to complete fluid communication between a reservoir 50 (e.g., of FIG. 4 ) and subcutaneous tissue 44 of a user's body 16 .
  • particular implementations may employ a closed-loop system as part of a hospital-based glucose management system.
  • insulin therapy during intensive care has been shown to dramatically improve wound healing and reduce blood stream infections, renal failure, and polyneuropathy mortality, irrespective of whether subjects previously had diabetes (See, e.g., Van den Berghe G. et al. NEJM 345: 1359-67, 2001)
  • particular example implementations may be used in a hospital setting to control a blood glucose level of a patient in intensive care.
  • IV hookup may be implanted into a patient's arm while the patient is in an intensive care setting (e.g., ICU)
  • an intensive care setting e.g., ICU
  • IV catheters that are directly connected to a patient's vascular system for purposes of quickly delivering IV fluids, may also be used to facilitate blood sampling and direct infusion of substances (e.g., insulin, glucose, glucagon, etc.) into an intra-vascular space.
  • FIG. 6 is a cross-sectional view of an example sensor set and an example infusion set that is attached to a body in accordance with an embodiment.
  • a physiological delay or latency may arise while glucose transitions between blood plasma 420 and interstitial fluid (ISF).
  • ISF interstitial fluid
  • This example delay may be represented by a circled double-headed arrow 422 .
  • a sensor may be inserted into subcutaneous tissue 44 of body 20 such that electrode(s) 42 (e.g., of FIGS. 3 and 4 ) near a tip of sensor 40 are in contact with ISF.
  • a parameter to be estimated may include a concentration of glucose in blood plasma.
  • Glucose may be carried throughout a body in blood plasma 420 .
  • glucose may move from blood plasma 420 into ISF of subcutaneous tissue 44 and vice versa.
  • a glucose level of ISF may lag behind blood glucose level 18 due, at least in part, on a duration for a body to achieve glucose concentration equilibrium between blood plasma 420 and ISF.
  • glucose lag times between blood plasma and ISF may vary between, e.g., 0.0 to 30.0 minutes.
  • Some parameters that may affect such a glucose lag time between blood plasma and ISF are an individual's metabolism, a current blood glucose level, whether a glucose level is rising or falling, combinations thereof, and so forth, just to name a few examples.
  • a chemical reaction delay 424 may be introduced by sensor response times, as represented by a circle 424 that surrounds a tip of sensor 26 in FIG. 6 .
  • Sensor electrodes may be coated with protective membranes that keep electrodes wetted with ISF, attenuate the glucose concentration, and reduce glucose concentration fluctuations on an electrode surface. As glucose levels change, such protective membranes may slow the rate of glucose exchange between ISF and an electrode surface.
  • there may be chemical reaction delay(s) due to a reaction time for glucose to react with glucose oxidase GOX to generate hydrogen peroxide and a reaction time for a secondary reaction, such as a reduction of hydrogen peroxide to water, oxygen, and free electrons.
  • FIG. 7 is a flow diagram of a process 500 for compensating for a latency in estimating a concentration of an analyte in a physiological compartment.
  • a latency in the transportation an analyte (glucose in particular examples below) between physiological compartments (ISF and blood plasma in particular examples below) is modeled at block 502 .
  • a process of estimating a concentration of the analyte present in one of the physiological compartments based upon an observed concentration of the analyte in the other physiological compartment may then compensate for this modeled latency at block 504 .
  • a relationship between a concentration of glucose in blood (B) and a concentration of glucose in ISF(I) may be expressed as follows:
  • V ⁇ ⁇ I ⁇ t k M ⁇ A ⁇ ( B - I ) - K U ⁇ VI ( 1 )
  • I is the concentration of glucose in ISF
  • B is the concentration of glucose in blood
  • V is the ISF volume
  • A is the effective mass transfer surface area
  • k M is a glucose mass transfer coefficient
  • k U is a rate of glucose uptake by neighboring cells.
  • glucose monitor 30 may measure a continuous electrical current signal value (ISIG) generated by glucose sensor 26 in response to a concentration of glucose present in ISF of the user's body.
  • ISIG continuous electrical current signal value
  • glucose monitor 30 may sample the ISIG from glucose sensor 26 at a sampling rate of once every 10.0 seconds (e.g., stored as DSIG as discussed above).
  • I may be observed directly based, at least in part, on ISIG.
  • a value of ISIG may be observed to respond as a linear function of I.
  • I(t) may be observed to be a substantially linear function of ISIG as shown in expression (3) follows:
  • Combining expressions (2) and (3) may then provide an estimator of B as follows:
  • values for ⁇ and ⁇ may be set as constants. Assuming that there is a small glucose level in ISF, ⁇ may approach one. In at least one clinical study, an average error appeared to be lowest if a is about 5.5 minutes. If sensor signal bias is to be ignored or assumed to be negligible, the term ⁇ c in expression (4) approaches zero, and a single blood glucose reference sample may be used to solve for s to complete the estimator shown in expression (4) by setting B to the obtained blood glucose reference sample.
  • values for ⁇ and ⁇ may be patient-specific and time-dependent.
  • values for ⁇ and ⁇ may be estimated by obtaining multiple blood glucose reference samples. Again setting the term ⁇ c in expression (4) to zero, equating the estimator of expression (4) to two blood glucose reference samples separated in time (e.g., separated by one hour or less) values for s ⁇ and s ⁇ in the estimator for expression (4) may then be determined using least square error or other “best fit” parameter estimation techniques.
  • a parameter estimation technique may constrain a value for ⁇ to be 0.5 to 10.0 mg/dl/nA while a ratio of ⁇ / ⁇ may be constrained to be in a range of 2.0 to 10.0 minutes.
  • a ratio of ⁇ / ⁇ may represent a time delay as the time at which a concentration in ISF reaches 63%.
  • values of ⁇ and ⁇ may be searched within ranges which give a lowest error at multiple calibration points pairing sensor blood glucose with blood glucose reference samples. If sensor signal bias is not negligible or not insignificant, parameters for the estimator of expression (4) may be determined by setting B to three consecutive blood glucose reference samples (e.g., less than one hour apart). As indicated above, values for s ⁇ , s ⁇ and ⁇ c providing a “best fit” or smallest error may be selected.
  • values for ⁇ and ⁇ may be constrained within ranges.
  • values for c may be similarly constrained to be between ⁇ 3.0 seconds and 3.0 seconds.
  • expression (3) models I(t) as a linear function of ISIG (t).
  • I(t) may be observed to be a non-linear function of ISIG (t) as discussed above in the aforementioned U.S. patent application Ser. No. 13/239,265.
  • such a non-linear function of ISIG (t) may be expressed as an exponential function in expression (5) follows:
  • a, b and d are sensor and physiological dependent parameters.
  • b may reflect a sensor's non-linear response to the presence of glucose in ISF while d may reflect a patient's particular physiology.
  • Expressions (2) and (5) may be combined to provide an estimator of B at expression (6) as follows:
  • parameters of the estimator for B shown of expression (6) may be obtained based on a series of blood glucose reference samples.
  • parameters of interest may be solved to provide a “best fit” for the estimator.
  • initial ranges may be set for a (e.g., 1.2 to 1.8), b ( ⁇ 5 to 20), ⁇ (e.g., 0 to 3) and ⁇ (e.g., 0.8 to 2.0). It should be understood, however, that these are merely example ranges provided for illustration, and that claimed subject matter is not limited in these respects.
  • values for ISIG′(T) as implemented in the estimators of expressions (4) and (6) at time T may be determined based, at least in part, on values for ISIG(t) obtained over a time period.
  • Techniques for determining ISIG′(T) provided herein are merely example techniques, and it should be understood that any of these techniques mentioned, or techniques not mentioned, may be used without deviating from claimed subject matter. Applying a finite difference technique, a value for may be determined as follows:
  • ISIG′( T ) [ISIG( T ) ⁇ ISIG( T ⁇ k )]/( T ⁇ k ),
  • ISIG′(t) may be computed as follows:
  • N>M and values for c represent sample Savitzky-Golay coefficients.
  • Fourier decomposition may be used to compute a first derivative in the frequency domain as discussed in Jauberteau, F; Jauberteau, J L: Numerical differentiation with noisy signal, Applied Mathematics and Computation 2009; 215: 2283-2297.
  • a piecewise cubic spline interpolation may be used smooth values for ISIG(t). Its Fourier coefficients may give an approximation of ISIG′(t).
  • the particular example implementations outlined above estimate a blood glucose concentration based, at least in part, on an estimated rate of change for ISIG (t) (e.g., ISIG′(t) computed using any of the techniques identified above or other techniques).
  • ISIG′(t) computed using any of the techniques identified above or other techniques.
  • computation of ISIG′(t) over a short period of time the presence of noise may distort an actual rate of change of a glucose concentration in ISF.
  • B may be estimated or modeled based, at least in part, on an estimated delay for a presence of glucose in blood to be detected in ISF.
  • Expression (9) may model the behavior of ISIG(t) as a linear function of B(t) as follows:
  • m is a slope indicative of a responsiveness of ISIG (t) to the presence of blood glucose
  • is a delay for a presence of glucose in blood to be detected in ISF
  • k is an offset constant
  • an estimator of B may be provided in expression (10) as follows:
  • an estimate of B(t) may be provided as a function of ISIG (t).
  • values for ⁇ , k, and m may be estimated using any one of several different “best fit” parameter estimation techniques such as, for example, the so-called Taguchi method as shown in Intelligent Fault Diagnosis, Prognosis and Self-Reconfiguration for nonlinear Dynamic Systems Using Soft Computing Techniques, IEEE Conference, 2006, Paul, P. Lin, Xiaolong Li, However, other multi-parameter estimation techniques may be used.
  • values for ⁇ , k, and m may each be constrained to be in a particular range.
  • may range from 1.0 to 10.0 minutes
  • k may range from ⁇ 50.0 to 10.0 nA
  • m may range from 3.0 to 8.0 nA/mg/dl. It should be understood, however that these are merely ranges that may be applied with a particular sensor in a particular implementation, and that claimed subject matter is not limited in this respect.
  • a value for ⁇ may represent or be affected by a delay for the presence of glucose in blood plasma to be detected in ISF. As such, values for ⁇ may change over time or as conditions change (e.g., an environment of rising blood glucose concentration or falling blood glucose concentration). Likewise, values for m and k may be affected by specific characteristics of a blood glucose sensor which may change over time with normal use. Accordingly, in a particular implementation, estimates for values for ⁇ , k, and m may be updated from time to time or on receipt of a blood glucose reference sample at a controller.
  • a glucose sensor may behave differently over time through normal use and wear. Also, a newly implanted glucose sensor may not have provided an opportunity to obtain a lengthy history of behavior or pairings of blood glucose reference samples with sampled values of ISIG(t) sufficient for accurate or useful estimates of ⁇ , k, or m for estimating B(t) from expression (10). Accordingly, in a particular implementation, a different technique may be used initially for estimating blood glucose such as, for example, techniques that do not rely on an estimated delay for a presence of glucose in blood to be detected in ISF. Such techniques may model a blood glucose concentration as a function of ISIG as shown in expression (11) as follows:
  • SR is a sensitivity ratio computed from correlated pairings of ISIG and blood glucose reference samples over time
  • SBG is the estimated sensor blood glucose
  • offset is an offset computed from correlated pairings of ISIG and blood glucose reference samples over time.
  • multiple techniques may be applied concurrently until a reliable estimate of a delay for a presence of glucose in blood to be detected in ISF emerges.
  • techniques according to expressions (10) and (11) may be used to estimate B as a function of ISIG for a period of time (e.g., six to twelve hours). If the measured performance of the technique according to expression (10) surpasses the technique according to expression (11), according to a particular performance metric, the technique of expression (10) may be selected to provide an estimate of B for display, recommendation of an appropriate insulin therapy, controlling an insulin pump, just to name a few examples.
  • a performance metric may comprise, for example, a mean absolute relative difference (MARD) computed according to expression (12) as follows:
  • MBG is a blood glucose concentration value obtained from a blood glucose reference sample
  • SSG is a sensor blood glucose concentration measurement based upon application of an ISIG value to either a technique according to expression (10) or a technique according to expression (11).
  • combining expressions (2) and (3) may provide an alternative estimator of B as follows:
  • Expression (13) may then be simplified as expression (14) follows:
  • expression (15) may be approximated by a value ⁇ ISIG(t) representing a difference between a present sensor signal value ISIG(t) and an initial ISIG(t 0 ) to simplify expression (15) as expression (16) as follows:
  • ⁇ Bdt ⁇ delay ⁇ ISIG( t )+ ⁇ (ISIG( t ) ⁇ offset) dt. (16)
  • a sensor blood glucose measurement may then be obtained by determining a rate of change of the right-hand portion of expression (16) as shown in expression (17) as follows:
  • an integrated expression such as ⁇ (ISIG(t) ⁇ offset)dt) in expression (17) may be computed using any one of several numerical integration computation techniques to provide a numerical value to approximate the value of the expression. Accordingly, the right-hand portion of expression (17) may be reliably computed using well known techniques for computing a derivative and/or rate of change of a signal or function.
  • Values for ⁇ , delay and offset for use in computing SG(t) according to expression (17) may be computed using a calibration process that attempts to reduce or minimize an expected error in SG(t) in comparison with blood glucose reference sample values BG.
  • a value for offset may be treated as a constant (e.g., as a known sensor parameter) or may be computed as a variable using multivariable estimation techniques. If offset is treated as a constant, then two parameters, ⁇ and delay, may be estimated using calibration techniques. Otherwise, if offset is treated as a variable, then three parameters, offset, ⁇ and delay, may be estimated.
  • expression (15) may be transformed to a discrete format expression (18) in which:
  • BG is a blood glucose reference sample value obtained at a time T BG
  • ISIG 0 is a sample value of ISIG(t) obtained at a time T 0 preceding T BG
  • ISIG 1 is a sensor signal sample value of ISIG(t) obtained at a time T 1 following T BG
  • ⁇ t is a sampling interval between consecutive discrete samples of ISIG(t) to obtain ISIG 0 and ISIG 1 (e.g., T 1 -T 0 ).
  • values fort, delay and offset for use in computing SG(t) may be determined using any one of several least squares or “best fit” parameter estimation techniques by, for example, comparing a value of SG(t) computed according to expression (17) with a contemporaneous blood glucose reference sample BG.
  • an initial value for ⁇ may be computed according to expression (19) as follows:
  • w i 1 and w i 2 are weight coefficients
  • BG i is an ith blood glucose reference sample value
  • sumP i is a value of sumP computed with blood glucose reference sample BG i and temporally correlated values for ISIG(t) (e.g., ISIG 0 , and ISIG 1i ).
  • Coefficients w i 1 and w i 2 may be determined according to any one of several weighting functions.
  • One such weighting function may more heavily weight more recent values of sumP i to account, for example, in changes in sensor performance over time (e.g., sensor drift).
  • Another such weighting function may apply a weight according to an inverse variance function based on corresponding values for ISIG as discussed in U.S. patent application Ser. No. 12/345,477, filed on Dec. 29, 2008, incorporated herein by reference, and assigned to the assignee of claimed subject matter.
  • computation of an estimate for ⁇ according to expression (19) may commence on having a minimum blood glucose reference measurements (e.g., two blood glucose reference measurements BG i stored in a buffer of controller 12 ).
  • An initial value for delay may be selected (e.g., two to twenty minutes).
  • a value for ⁇ may be computed according to expression (19).
  • Values for ⁇ and delay may be computed on a set cycle (e.g., twice per day).
  • determination of ⁇ ISIG(t) in expression (17) may be determined as a difference between a new initial sensor signal value ISIG(t) and ISIG(t 0 ).
  • a rate of change or derivative of a signal or function may be as set forth in expression (17), for example, may be computed using any one of several techniques described above, and claimed subject matter is not limited to any particular technique.
  • FIG. 8 is a flow diagram of a process 506 to compensate for a delay or latency in transportation of an analyte between physiological compartments according to an alternative implementation (e.g., according to expressions (13) through (19) discussed above).
  • a latency in the transportation an analyte between physiological compartments is modeled at block 508 .
  • a process of estimating a concentration of the analyte present in one of the physiological compartments based upon an observed concentration of the analyte in the other physiological compartment may then compensate for this modeled latency at block 510 .
  • a difference between a sensor signal value and an offset value is integrated to provide an integrated expression.
  • the estimated concentration may then be based, at least in part, on a computed rate of change in the integrated expression.
  • FIG. 9 is diagram illustrating a two-compartment model for observing a patient's blood glucose concentration according to an alternative embodiment.
  • FIG. 9 in addition to modeling a delay in transporting glucose between blood plasma (observed as blood glucose G 1 ) and interstitial fluid (observed as G 2 ) according to flux rates K 12 and K 21 , FIG. 9 also models transportation of glucose from interstitial fluid to fat or muscle tissue according to a flux rate K 02 . Accordingly, a patient's blood glucose concentration may be observed according to expression (20) as follows:
  • V 2 ⁇ ⁇ G 2 ⁇ t K 21 ⁇ V 1 ⁇ G 1 - ( K 12 + K 02 ) ⁇ V 2 ⁇ G 2 ( 20 )
  • G 1 is patient's blood glucose concentration
  • G 2 is the glucose concentration in patient's interstitial fluid
  • K 12 is a reverse flux rate for glucose transportation from interstitial fluid to blood
  • K 21 is a forward flux rate for glucose transportation from interstitial fluid to blood
  • V 1 is a volume of a blood plasma compartment
  • V 2 is a volume of an interstitial fluid compartment.
  • a glucose uptake rate into subcutaneous tissue may be characterized by K 02 to express a patient's blood glucose concentration as follows:
  • G 1 ⁇ K a ⁇ ⁇ G 2 ⁇ t + K b ⁇ G 2 ⁇ ⁇
  • ⁇ : ⁇ ⁇ K a V 2 K 21 ⁇ V 1
  • K b ( K 12 + K 02 ) ⁇ V 2 K 21 ⁇ V 1 . ( 21 )
  • Expression (21) may then be simplified (expressed) in expression (22) as follows:
  • K ⁇ is indicative of a delay in transportation of glucose between blood plasma and interstitial fluid
  • K ⁇ is indicative of an attenuation ratio
  • K ⁇ is indicative of an attenuation offset
  • G 2 may be observed as being proportional to ISIG as discussed above. Accordingly, expression (22) may be rewritten as expression (23) as follows:
  • G 1 K ⁇ ′ ⁇ ⁇ ISIG ⁇ t + K ⁇ ′ ⁇ ISIG + K ⁇ ⁇ ⁇
  • expression (23) provides an estimator of blood glucose G 1 with application of ISIG and dISIG/dt model to parameters K ⁇ ′, K ⁇ ′ and K ⁇ .
  • the estimator of expression (23) may be implemented by estimating values for K ⁇ ′, K ⁇ ′ and K ⁇ using one or more techniques described above.
  • a value of may dISIG/dt represent an estimated rate of change in G 2 and may be computed using one or more of the techniques outlined above.
  • multiple measurements of G 1 may be obtained from an accurate measuring source (e.g., blood glucose reference measurements from a meter) and analyzed with corresponding values for ISIG and dISIG/dt to obtain a “best fit” for the values of K ⁇ ′, K ⁇ ′ and K 67 .
  • an accurate measuring source e.g., blood glucose reference measurements from a meter
  • K ⁇ ′, K ⁇ ′ and K 67 may permit accounting for attenuation of G 2 from cellular uptake in estimating G 1 .
  • FIG. 10 is a plot of blood glucose reference samples and values of ISIG taken over a period (e.g., ten hours).
  • values for K ⁇ ′, K ⁇ ′ and K ⁇ are computed as 4.8 mg/dl-nA, 22.0 mg/dl-nA/min and ⁇ 20.5 mg/dl, respectively, using a best fit for these parameters.
  • a plot of computed blood glucose concentration incorporating these values is also plotted.
  • FIGS. 11 and 12 also plot values for ISIG at plot 612 and values for blood glucose reference measurements at plots 610 .
  • FIG. 11 also provides a plot 614 of blood glucose as observed according to expression ( 23 ) using the values of K ⁇ ′, K ⁇ ′ and K ⁇ above and FIG.
  • plot 616 provides a plot 616 of blood glucose as observed according to a two-parameter estimator. As can be observed, plot 616 diverges from plot 610 (of values for blood glucose reference measurements) significantly more than does plot 614 (of blood glucose as observed according to expression (23)).
  • a special purpose computer or a similar special purpose electronic computing device may be capable of manipulating or transforming signals, which are typically represented as physical electronic and/or magnetic quantities within memories, registers, or other information storage devices; transmission devices; display devices of a special purpose computer; or similar special purpose electronic computing device; and so forth, just to name a few examples.
  • a special purpose computer or similar may comprise one or more processors programmed with instructions to perform one or more specific functions.
  • a special purpose computer may refer to a system or a device that includes an ability to process or store data in the form of signals.
  • a process or method as described herein, with reference to flow diagrams or otherwise may also be executed or controlled, in whole or in part, by a special purpose computer.
  • Storage medium may relate to media capable of storing information or instructions which may be operated on, or executed by, one or more machines (e.g., that include at least one processor).
  • a storage medium may comprise one or more storage articles and/or devices for storing machine-readable instructions or information.
  • Such storage articles and/or devices may comprise any one of several media types including, for example, magnetic, optical, semiconductor, a combination thereof, etc. storage media.
  • one or more computing platforms may be adapted to perform one or more processes, methods, etc. in accordance with claimed subject matter, such as methods, processes, etc. that are described herein.
  • these are merely examples relating to a storage medium and a computing platform and claimed subject matter is not limited in these respects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Diabetes (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Subject matter disclosed herein relates to monitoring and/or controlling levels of an analyte in bodily fluid. In particular, estimation of a concentration of the analyte in a first physiological compartment based upon observations of a concentration of the analyte in a second physiological compartment may account for a latency in transporting the analyte between the first and second physiological compartments.

Description

  • This is a continuation-in-part of U.S. patent application Ser. No. 13/365,406, which is a continuation-in-part of U.S. patent application Ser. No. 13/282,096, filed on Oct. 26, 2011 titled “Method and/or System for Multicompartment Analyte Monitoring,” and claims the benefit of priority to U.S. Provisional Patent Appl. No. 61/551,844 titled “Method and /or System for Multicompartment Analyte Monitoring,” filed on Oct. 26, 2011, assigned to the assignee of claimed subject matter, and incorporated herein by reference in its entirety.
  • This application also claims the benefit of priority to U.S. Provisional Patent Appl. No. 61/551,290, filed on Oct. 25, 2011, assigned to the assignee of claimed subject matter, and incorporated herein by reference in its entirety.
  • BACKGROUND
  • 1. Field
  • Subject matter disclosed herein relates to monitoring a concentration of an analyte in a physiological compartment.
  • 2. Information
  • The pancreas of a normal healthy person produces and releases insulin into the blood stream in response to elevated blood plasma glucose levels. Beta cells (β-cells), which reside in the pancreas, produce and secrete insulin into the blood stream as it is needed. If β-cells become incapacitated or die, a condition known as Type 1 diabetes mellitus (or in some cases, if β-cells produce insufficient quantities of insulin, a condition known as Type 2 diabetes), then insulin may be provided to a body from another source to maintain life or health.444
  • Traditionally, because insulin cannot be taken orally, insulin has been injected with a syringe. More recently, the use of infusion pump therapy has been increasing in a number of medical situations, including for delivering insulin to diabetic individuals or trauma patients. As of 1995, less than 5% of Type 1 diabetic individuals in the United States were using infusion pump therapy. Presently, over 7% of the more than 900,000 Type 1 diabetic individuals in the U.S. are using infusion pump therapy. The percentage of Type 1 diabetic individuals that use an infusion pump is growing at a rate of over 2% each year. Moreover, the number of Type 2 diabetic individuals is growing at 3% or more per year, and growing numbers of insulin-using Type 2 diabetic individuals are also adopting infusion pumps. Additionally, physicians have recognized that continuous infusion can provide greater control of a diabetic individual's condition, so they too are increasingly prescribing it for patients.
  • External infusion pumps are typically provided to control a rate of insulin infusion based, at least in part, on blood glucose measurements obtained from metered blood glucose samples (e.g., finger stick samples) or from processing signals received from a blood glucose sensor attached to a patient to provide sensor glucose measurements. By processing signals from such a blood glucose sensor, a patient's blood glucose level may be continuously monitored to reduce a frequency of obtaining metered blood glucose sample measurements from finger sticks and the like. However, measurements of blood glucose concentration obtained from processing signals from blood glucose sensors may not be as accurate or reliable as blood glucose sample measurements obtained from finger stick samples, for example. Also, parameters used for processing blood glucose sensors for obtaining blood glucose measurements may be calibrated from time to time using metered blood glucose sample measurements as reference measurements obtained from finger sticks and the like.
  • SUMMARY
  • Briefly, example embodiments may relate to methods, systems, apparatuses, and/or articles.
  • Other alternative example embodiments are described herein and/or illustrated in the accompanying Drawings. Additionally, particular example embodiments may be directed to an article comprising a storage medium including machine-readable instructions stored thereon which, if executed by a special purpose computing device and/or processor, may be directed to enable the special purpose computing device/processor to execute at least a portion of described method(s) according to one or more particular implementations. In other particular example embodiments, a sensor may be adapted to generate one or more signals responsive to a measured blood glucose concentration in a body while a special purpose computing device/processor may be adapted to perform at least a portion of described method(s) according to one or more particular implementations based upon one or more signals generated by the sensor.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Non-limiting and non-exhaustive features will be described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures:
  • FIG. 1 is a front view of example devices located on a body in accordance with an embodiment.
  • FIG. 2(a) is a perspective view of an example glucose sensor system for use in accordance with an embodiment.
  • FIG. 2(b) is a side cross-sectional view of a glucose sensor system of FIG. 2(a) for an embodiment.
  • FIG. 2(c) is a perspective view of an example sensor set of a glucose sensor system of FIG. 2(a) for an embodiment.
  • FIG. 2(d) is a side cross-sectional view of a sensor set of FIG. 2(c) for an embodiment.
  • FIG. 3 is a cross sectional view of an example sensing end of a sensor set of FIG. 2(d) for an embodiment.
  • FIG. 4 is a top view of an example infusion device with a reservoir door in an open position, for use according to an embodiment.
  • FIG. 5 is a side view of an example infusion set with an insertion needle pulled out, for use according to an embodiment.
  • FIG. 6 is a cross-sectional view of an example sensor set and an example infusion set attached to a body in accordance with an embodiment.
  • FIG. 7 is a flow diagram of a process for compensating for a latency in estimating a concentration of an analyte in a physiological compartment, according to an embodiment.
  • FIG. 8 is a flow diagram of a process for compensating for a latency in estimating a concentration of an analyte in physiological compartment according to an alternative embodiment.
  • FIG. 9 is a diagram illustrating attenuation of blood glucose in interstitial fluid from cellular uptake according to an embodiment.
  • FIGS. 10-12 are plots of sensor signal measurements and observations of a blood glucose concentration according to an embodiment.
  • DETAILED DESCRIPTION
  • In an example glucose control system environment, blood-glucose measurements may be obtained from a blood glucose sensor in any one of several different specific applications such as, for example, aiding in the application of insulin therapies in a hospital environment, controlling infusion of insulin in a patient-operated insulin infusion systems, just to name a few examples. In particular applications, a blood glucose sensor may be employed as part of a system to control infusion of insulin so as to control/maintain a patient's blood glucose within a target range, thus reducing a risk that the patient's blood glucose level transitions to dangerous extreme levels in the absence of action from the patient or treating attendant.
  • According to certain embodiments, example systems as described herein may be implemented in a hospital environment to monitor or control levels of glucose in a patient. Here, as part of a hospital or other medical facility procedure, a caretaker or attendant may be tasked with interacting with a patient's glycemic management system to, for example: enter blood-glucose reference measurements into control equipment to calibrate blood glucose measurements obtained from glucose sensors, make manual adjustments to devices, and/or make changes to therapies, just to name a few examples. Alternatively, a patient or other non-medical professional may be responsible for interacting with a closed-loop system to, for example, provide updated measurements of blood-glucose concentration obtained from blood glucose reference samples or the like.
  • In a typical continuous glucose monitoring environment, a glucose sensor may be inserted into a patient's subcutaneous tissue to observe a concentration or level of glucose present in the interstitial fluid. Based, at least in part, on a concentration of level of glucose observed to be present in interstitial fluid, a level or concentration of glucose present in blood plasma may be estimated or measured. Glucose entering the blood by, for example, digestion of a meal, etc., may not substantially affect a glucose level or concentration in interstitial fluid until after a physiological delay or latency. If a blood glucose level in a patient is rapidly rising or falling, estimates of blood glucose level or concentration based upon a blood glucose level or concentration observed in interstitial fluid from a glucose sensor may be inaccurate.
  • According to an embodiment, a delay or latency in transportation of an analyte between first and second physiological compartments may be modeled. In alternative implementations, a metabolic decay in an analyte in connection with transportation between physiological compartments may also be modeled. A process for estimating a concentration of the analyte in the first physiological compartment based, at least in part, on measurements of a concentration of the analyte in a second physiological compartment may compensate for the modeled delay. Similarly, a process for estimating a concentration may also compensate for a modeled metabolic decay in an analyte.
  • In a particular implementation in a continuous glucose monitoring system, a delay or latency in the transportation of glucose from blood to interstitial fluid may be modeled. A process for estimating a concentration of blood glucose based, at least in part, on an observed concentration of glucose in interstitial fluid may then compensate for this delay. Likewise, a process for estimating a concentration of glucose in blood from an observed concentration of glucose in interstitial fluid may also compensate for a metabolic decay of glucose. Here, compensating for this delay or decay may reduce inaccuracies in estimating blood glucose which is rapidly rising or falling. It should be understood, however, that this is merely an example implementation presented for the purpose of illustration, and that claimed subject matter is not limited in this respect. For example, other implementations may be directed to estimating a concentration of analytes in a physiological compartment other than glucose such as, for example, low-density lipoprotein, amino acids, just to provide a couple of examples. Also, other implementations may be directed to modeling a delay or latency in transportation of an analyte between physiological compartments, and/or metabolic decay of an analyte in physiological compartments, other than blood stream and interstitial fluid. For example, other embodiments may be directed to modeling a delay, latency or decay in connection with gastric transport or nasal transport.
  • FIGS. 1 through 5 illustrate example glucose control systems in accordance with certain embodiments. Such glucose control systems may be used, for example, in controlling a patient's glucose level about a target range as discussed above. It should be understood, however, that these are merely examples of particular systems that may be used for controlling a patient's glucose level about a target range and that claimed subject matter is not limited in this respect. FIG. 1 is a front view of example devices located on a body in accordance with certain embodiments. FIGS. 2(a)-2(d) and 3 show different views and portions of an example glucose sensor system for use in accordance with certain embodiments enabling continuous monitoring of a patient's blood glucose level. FIG. 4 is a top view of an example optional infusion device with a reservoir door in an open position in accordance with certain embodiments. FIG. 5 is a side view of an example infusion set with an insertion needle pulled out in accordance with certain embodiments.
  • Particular example embodiments may include a sensor 26, a sensor set 28, a telemetered characteristic monitor 30, a sensor cable 32, an infusion device 34, an infusion tube 36, and an infusion set 38, any or all of which may be worn on a body 20 of a user or patient, as shown in FIG. 1. As shown in FIGS. 2a and 2b , telemetered characteristic monitor 30 may include a monitor housing 31 that supports a printed circuit board 33, battery or batteries 35, antenna (not shown), a sensor cable connector (not shown), and so forth. A sensing end 40 of sensor 26 may have exposed electrodes 42 that may be inserted through skin 46 into a subcutaneous tissue 44 of a user's body 20, as shown in FIGS. 2d and 3. Electrodes 42 may be in contact with interstitial fluid (ISF) that is usually present throughout subcutaneous tissue 44.
  • Sensor 26 may be held in place by sensor set 28, which may be adhesively secured to a user's skin 46, as shown in FIGS. 2(c) and 2(d). Sensor set 28 may provide for a connector end 27 of sensor 26 to connect to a first end 29 of sensor cable 32. A second end 37 of sensor cable 32 may connect to monitor housing 31. Batteries 35 that may be included in monitor housing 31 provide power for sensor 26 and electrical components 39 on printed circuit board 33. Electrical components 39 may sample a sensor signal current (ISIG, not shown) and store the sampled digital sensor values (DSIG) in a memory. Digital sensor values DSIG may be periodically transmitted from a memory to a controller 12, which may be included in an infusion device.
  • With reference to FIGS. 1 and 4, a controller 12 may process digital sensor values DSIG and generate commands for infusion device 34. Infusion device 34 may respond to commands and actuate a plunger 48 that forces insulin out of a reservoir 50 that is located inside an infusion device 34. In an alternative implementation, glucose may also be infused from a reservoir responsive to commands using a similar and/or analogous device (not shown). In alternative implementations, glucose may be administered to a patient orally.
  • Also, controller 12 may collect and maintain a log or history of continuous measurements of a patient's blood glucose level to, for example, allow for characterization of a patient's glycemic trends. For example, and as illustrated below in particular example embodiments, a history of continuous blood glucose sensor measurements may enable prediction of a patient's blood glucose level at some time in the future.
  • In particular example embodiments, a connector tip 54 of reservoir 50 may extend through infusion device housing 52, and a first end 51 of infusion tube 36 may be attached to connector tip 54. A second end 53 of infusion tube 36 may connect to infusion set 38 (e.g., of FIGS. 1 and 5). With reference to FIG. 5, insulin may be forced through infusion tube 36 into infusion set 38 and into a body of a patient. Infusion set 38 may be adhesively attached to a user's skin 46. As part of infusion set 38, a cannula 56 may extend through skin 46 and terminate in subcutaneous tissue 44 to complete fluid communication between a reservoir 50 (e.g., of FIG. 4) and subcutaneous tissue 44 of a user's body 16.
  • As pointed out above, particular implementations may employ a closed-loop system as part of a hospital-based glucose management system. Given that insulin therapy during intensive care has been shown to dramatically improve wound healing and reduce blood stream infections, renal failure, and polyneuropathy mortality, irrespective of whether subjects previously had diabetes (See, e.g., Van den Berghe G. et al. NEJM 345: 1359-67, 2001), particular example implementations may be used in a hospital setting to control a blood glucose level of a patient in intensive care. In such alternative embodiments, because an intravenous (IV) hookup may be implanted into a patient's arm while the patient is in an intensive care setting (e.g., ICU), a closed loop glucose control may be established that piggy-backs off an existing IV connection. Thus, in a hospital or other medical-facility based system, IV catheters that are directly connected to a patient's vascular system for purposes of quickly delivering IV fluids, may also be used to facilitate blood sampling and direct infusion of substances (e.g., insulin, glucose, glucagon, etc.) into an intra-vascular space.
  • FIG. 6 is a cross-sectional view of an example sensor set and an example infusion set that is attached to a body in accordance with an embodiment. In particular example implementations, as shown in FIG. 6, a physiological delay or latency may arise while glucose transitions between blood plasma 420 and interstitial fluid (ISF). This example delay may be represented by a circled double-headed arrow 422. As discussed above with reference to FIG. 1-3, a sensor may be inserted into subcutaneous tissue 44 of body 20 such that electrode(s) 42 (e.g., of FIGS. 3 and 4) near a tip of sensor 40 are in contact with ISF. However, a parameter to be estimated may include a concentration of glucose in blood plasma.
  • Glucose may be carried throughout a body in blood plasma 420. Through a process of diffusion, glucose may move from blood plasma 420 into ISF of subcutaneous tissue 44 and vice versa. As blood glucose level changes, so may a glucose level of ISF. However, a glucose level of ISF may lag behind blood glucose level 18 due, at least in part, on a duration for a body to achieve glucose concentration equilibrium between blood plasma 420 and ISF. Some studies have shown that glucose lag times between blood plasma and ISF may vary between, e.g., 0.0 to 30.0 minutes. Some parameters that may affect such a glucose lag time between blood plasma and ISF are an individual's metabolism, a current blood glucose level, whether a glucose level is rising or falling, combinations thereof, and so forth, just to name a few examples.
  • A chemical reaction delay 424 may be introduced by sensor response times, as represented by a circle 424 that surrounds a tip of sensor 26 in FIG. 6. Sensor electrodes may be coated with protective membranes that keep electrodes wetted with ISF, attenuate the glucose concentration, and reduce glucose concentration fluctuations on an electrode surface. As glucose levels change, such protective membranes may slow the rate of glucose exchange between ISF and an electrode surface. In addition, there may be chemical reaction delay(s) due to a reaction time for glucose to react with glucose oxidase GOX to generate hydrogen peroxide and a reaction time for a secondary reaction, such as a reduction of hydrogen peroxide to water, oxygen, and free electrons.
  • Previous techniques for observing a blood glucose concentration based on sensor signals have entailed modeling a concentration of glucose present in blood based on contemporaneous sensor measurements of a concentration of glucose present in ISF. As pointed out above, this particular technique may lead to inaccurate estimates of the concentration of glucose present in blood in conditions where blood glucose is rapidly rising. FIG. 7 is a flow diagram of a process 500 for compensating for a latency in estimating a concentration of an analyte in a physiological compartment. In particular implementations described below, a latency in the transportation an analyte (glucose in particular examples below) between physiological compartments (ISF and blood plasma in particular examples below) is modeled at block 502. A process of estimating a concentration of the analyte present in one of the physiological compartments based upon an observed concentration of the analyte in the other physiological compartment may then compensate for this modeled latency at block 504. In a particular implementation, a relationship between a concentration of glucose in blood (B) and a concentration of glucose in ISF(I) may be expressed as follows:
  • V I t = k M A ( B - I ) - K U VI ( 1 )
  • where:
    I is the concentration of glucose in ISF;
    B is the concentration of glucose in blood;
    V is the ISF volume;
    A is the effective mass transfer surface area;
    kM is a glucose mass transfer coefficient; and
    kU is a rate of glucose uptake by neighboring cells.
  • An expression for B may then be provided as follows:
  • B = ( 1 + k U V k M A ) I + V k M A I t . ( 2 )
  • As pointed out above, glucose monitor 30 may measure a continuous electrical current signal value (ISIG) generated by glucose sensor 26 in response to a concentration of glucose present in ISF of the user's body. In one particular example, glucose monitor 30 may sample the ISIG from glucose sensor 26 at a sampling rate of once every 10.0 seconds (e.g., stored as DSIG as discussed above). Accordingly, in specific implementations, I may be observed directly based, at least in part, on ISIG. In certain particular applications, and as described in U.S. patent application Ser. Nos. 12/345,477, filed Dec. 29, 2008, and Ser. No. 13/239,265, filed on Sep. 21, 2011, both assigned to the assignee of claimed subject matter, a value of ISIG may be observed to respond as a linear function of I. As such, I(t) may be observed to be a substantially linear function of ISIG as shown in expression (3) follows:

  • I(t)=s×ISIG(t)+c,   (3)
  • Where s and c are sensor-dependent parameters.
  • Combining expressions (2) and (3) may then provide an estimator of B as follows:

  • B=s×[α×ISIG′(t)+β×ISIG(t)]+β×c   (4)
  • Where:
  • α = V k M A and β = 1 + α k U .
  • In one particular implementation, values for α and β may be set as constants. Assuming that there is a small glucose level in ISF, β may approach one. In at least one clinical study, an average error appeared to be lowest if a is about 5.5 minutes. If sensor signal bias is to be ignored or assumed to be negligible, the term β×c in expression (4) approaches zero, and a single blood glucose reference sample may be used to solve for s to complete the estimator shown in expression (4) by setting B to the obtained blood glucose reference sample.
  • It has been observed, however, that values for α and β may be patient-specific and time-dependent. As such, values for α and β may be estimated by obtaining multiple blood glucose reference samples. Again setting the term β×c in expression (4) to zero, equating the estimator of expression (4) to two blood glucose reference samples separated in time (e.g., separated by one hour or less) values for s×α and s×β in the estimator for expression (4) may then be determined using least square error or other “best fit” parameter estimation techniques. In particular example embodiments, a parameter estimation technique may constrain a value for β to be 0.5 to 10.0 mg/dl/nA while a ratio of α/β may be constrained to be in a range of 2.0 to 10.0 minutes. In one particular implementation, a ratio of α/β may represent a time delay as the time at which a concentration in ISF reaches 63%. Here, values of α and β may be searched within ranges which give a lowest error at multiple calibration points pairing sensor blood glucose with blood glucose reference samples. If sensor signal bias is not negligible or not insignificant, parameters for the estimator of expression (4) may be determined by setting B to three consecutive blood glucose reference samples (e.g., less than one hour apart). As indicated above, values for s×α, s×β and β×c providing a “best fit” or smallest error may be selected. Here, values for α and β may be constrained within ranges. In one particular implementation of a sensor, values for c may be similarly constrained to be between −3.0 seconds and 3.0 seconds. In the particular example above, expression (3) models I(t) as a linear function of ISIG (t). In other implementations, I(t) may be observed to be a non-linear function of ISIG (t) as discussed above in the aforementioned U.S. patent application Ser. No. 13/239,265. In one particular implementation, such a non-linear function of ISIG (t) may be expressed as an exponential function in expression (5) follows:

  • I(t)=(ISIG(t)+b)a +d,   (5)
  • Where: a, b and d are sensor and physiological dependent parameters.
  • According to an embodiment, b may reflect a sensor's non-linear response to the presence of glucose in ISF while d may reflect a patient's particular physiology. Expressions (2) and (5) may be combined to provide an estimator of B at expression (6) as follows:
  • I ( t ) t = a × ISIG ( t ) × ( ISIG ( t ) + b ) a - 1 B = β × [ ( ISIG ( t ) + b ) a + d ] + α [ a × ISIG ( t ) × ( ISIG ( t ) + b ) a - 1 ] ( 6 )
  • As discussed above in connection with determining parameters for the estimator of expression (4), parameters of the estimator for B shown of expression (6) (e.g., α, β, a, b and d) may be obtained based on a series of blood glucose reference samples. As pointed out above, by equating multiple blood glucose reference samples to B in expression (6), parameters of interest may be solved to provide a “best fit” for the estimator. In determining a best fit for parameters in expression (6), initial ranges may be set for a (e.g., 1.2 to 1.8), b (−5 to 20), α (e.g., 0 to 3) and β (e.g., 0.8 to 2.0). It should be understood, however, that these are merely example ranges provided for illustration, and that claimed subject matter is not limited in these respects.
  • In particular implementations, values for ISIG′(T) as implemented in the estimators of expressions (4) and (6) at time T may be determined based, at least in part, on values for ISIG(t) obtained over a time period. Techniques for determining ISIG′(T) provided herein are merely example techniques, and it should be understood that any of these techniques mentioned, or techniques not mentioned, may be used without deviating from claimed subject matter. Applying a finite difference technique, a value for may be determined as follows:

  • ISIG′(T)=[ISIG(T)−ISIG(T−k)]/(T−k),
  • where k is selected to filter noisy samples of ISIG.
  • Applying a Savitzky-Golay filter, as discussed in Savitzky, A; Golay, MJE: Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry 1964; 36 (8): 1627-1639, by performing a local polynomial regression of degree M on a series of values (e.g., of at least M+1 values equally spaced), ISIG′(t) at discrete points may be computed as follows:
  • g i = n = i - N i c n M ISIG i + n ( 7 ) ISIG i = g i Δ , ( 8 )
  • where:
  • N>M and values for c represent sample Savitzky-Golay coefficients.
  • In another particular implementation, Fourier decomposition may be used to compute a first derivative in the frequency domain as discussed in Jauberteau, F; Jauberteau, J L: Numerical differentiation with noisy signal, Applied Mathematics and Computation 2009; 215: 2283-2297. A piecewise cubic spline interpolation may be used smooth values for ISIG(t). Its Fourier coefficients may give an approximation of ISIG′(t).
  • The particular example implementations outlined above estimate a blood glucose concentration based, at least in part, on an estimated rate of change for ISIG (t) (e.g., ISIG′(t) computed using any of the techniques identified above or other techniques). In certain application, computation of ISIG′(t) over a short period of time the presence of noise may distort an actual rate of change of a glucose concentration in ISF. In an alternative implementation, B may be estimated or modeled based, at least in part, on an estimated delay for a presence of glucose in blood to be detected in ISF. Expression (9) may model the behavior of ISIG(t) as a linear function of B(t) as follows:

  • ISIG(t)=m B(t−τ)+k,   (9)
  • where:
    m is a slope indicative of a responsiveness of ISIG (t) to the presence of blood glucose;
    τ is a delay for a presence of glucose in blood to be detected in ISF; and
    k is an offset constant.
  • From expression (9), an estimator of B may be provided in expression (10) as follows:

  • B(t)=[ISIG(t+τ)−k]/m   (10)
  • By estimating τ, k, and m, an estimate of B(t) may be provided as a function of ISIG (t). By obtaining a series of blood glucose reference measurements paired with sampled values of ISIG(t) over a time period, values for τ, k, and m may be estimated using any one of several different “best fit” parameter estimation techniques such as, for example, the so-called Taguchi method as shown in Intelligent Fault Diagnosis, Prognosis and Self-Reconfiguration for nonlinear Dynamic Systems Using Soft Computing Techniques, IEEE Conference, 2006, Paul, P. Lin, Xiaolong Li, However, other multi-parameter estimation techniques may be used. In one particular implementation, values for τ, k, and m may each be constrained to be in a particular range. In a particular example implementation, τ may range from 1.0 to 10.0 minutes, k may range from −50.0 to 10.0 nA and m may range from 3.0 to 8.0 nA/mg/dl. It should be understood, however that these are merely ranges that may be applied with a particular sensor in a particular implementation, and that claimed subject matter is not limited in this respect.
  • A value for τ may represent or be affected by a delay for the presence of glucose in blood plasma to be detected in ISF. As such, values for τ may change over time or as conditions change (e.g., an environment of rising blood glucose concentration or falling blood glucose concentration). Likewise, values for m and k may be affected by specific characteristics of a blood glucose sensor which may change over time with normal use. Accordingly, in a particular implementation, estimates for values for τ, k, and m may be updated from time to time or on receipt of a blood glucose reference sample at a controller.
  • As pointed out above, a glucose sensor may behave differently over time through normal use and wear. Also, a newly implanted glucose sensor may not have provided an opportunity to obtain a lengthy history of behavior or pairings of blood glucose reference samples with sampled values of ISIG(t) sufficient for accurate or useful estimates of τ, k, or m for estimating B(t) from expression (10). Accordingly, in a particular implementation, a different technique may be used initially for estimating blood glucose such as, for example, techniques that do not rely on an estimated delay for a presence of glucose in blood to be detected in ISF. Such techniques may model a blood glucose concentration as a function of ISIG as shown in expression (11) as follows:

  • SBG=SR*ISIG+offset,   (11)
  • Where:
  • SR is a sensitivity ratio computed from correlated pairings of ISIG and blood glucose reference samples over time;
  • SBG is the estimated sensor blood glucose; and
  • offset is an offset computed from correlated pairings of ISIG and blood glucose reference samples over time.
  • In particular example implementations, techniques for obtaining an estimated blood glucose SBG according to expression (11) may be found in U.S. patent application Ser. Nos. 12/345,477, filed Dec. 29, 2008, and U.S. patent application Ser. No. 13/239,265, filed on Sep. 21, 2011, both assigned to the assignee of claimed subject and incorporated herein by reference. It should be understood, however, that these are merely example techniques for computing an estimate of B without estimating a delay for a presence of glucose in blood to be detected in ISF, and that claimed subject matter is not limited in these respects.
  • In one implementation, multiple techniques may be applied concurrently until a reliable estimate of a delay for a presence of glucose in blood to be detected in ISF emerges. For example, as a new glucose sensor is implanted in a patient, techniques according to expressions (10) and (11) may be used to estimate B as a function of ISIG for a period of time (e.g., six to twelve hours). If the measured performance of the technique according to expression (10) surpasses the technique according to expression (11), according to a particular performance metric, the technique of expression (10) may be selected to provide an estimate of B for display, recommendation of an appropriate insulin therapy, controlling an insulin pump, just to name a few examples. Such a performance metric may comprise, for example, a mean absolute relative difference (MARD) computed according to expression (12) as follows:

  • MARD=100×(MBG−SBG)/MGB,   (12)
  • where:
  • MBG is a blood glucose concentration value obtained from a blood glucose reference sample; and
  • SSG is a sensor blood glucose concentration measurement based upon application of an ISIG value to either a technique according to expression (10) or a technique according to expression (11).
  • In an alternative embodiment, combining expressions (2) and (3) may provide an alternative estimator of B as follows:
  • B = γ ISIG ( t ) t + χ ( ISIG ( t ) - offset ) Where : γ = s V k M A and χ = s ( 1 + k U V K M A α k U ) . ( 13 )
  • In one particular implementation, the ratio
  • γ χ
  • may represent a modeled delay or latency for 63% of glucose in ISF to be absorbed in blood glucose in a step response. Expression (13) may then be simplified as expression (14) follows:
  • B = χ ( delay ISIG ( t ) t + ( ISIG ( t ) - offset ) ) Where : delay = γ χ . ( 14 )
  • The term
  • ISIG ( t ) t
  • in expression (14) may be difficult to reliably measure or compute by typical techniques for computing a derivative of a noisy signal such as ISIG(t). However, an integration of both left-hand and right-hand sides of expression over time may avoid the complexities and unreliability of computing a rate of change of a noisy signal as follows as shown in expression (15) as follows:
  • B t = χ × delay × ISIG ( t ) t t + χ × ( ISIG ( t ) - offset ) t = χ × delay ISIG ( t ) t t + χ × ( ISIG ( t ) - offset ) t ( 15 )
  • The term
  • ISIG ( t ) t t
  • in expression (15) may be approximated by a value ΔISIG(t) representing a difference between a present sensor signal value ISIG(t) and an initial ISIG(t0) to simplify expression (15) as expression (16) as follows:

  • Bdt=χ×delay×ΔISIG(t)+∫χ×(ISIG(t)−offset)dt.   (16)
  • A sensor blood glucose measurement (SG(t)) may then be obtained by determining a rate of change of the right-hand portion of expression (16) as shown in expression (17) as follows:
  • SG ( t ) = ( χ × delay × Δ ISIG ( t ) + χ × ( ISIG ( t ) - offset ) t ) t ( 17 )
  • By integrating the expression χ×(ISIG(t)−offset), unbiased noise in the signal for ISIG(t) over an integration interval may be substantially cancelled and/or removed. Here, such an integration interval may commence after a sensor has achieved a desired stability (e.g., 30 to 60 minutes following stabilization) and continue for the life of the sensor. In particular embodiments, an integrated expression such as ∫χ×(ISIG(t)−offset)dt) in expression (17) may be computed using any one of several numerical integration computation techniques to provide a numerical value to approximate the value of the expression. Accordingly, the right-hand portion of expression (17) may be reliably computed using well known techniques for computing a derivative and/or rate of change of a signal or function. Values for χ, delay and offset for use in computing SG(t) according to expression (17) the may be computed using a calibration process that attempts to reduce or minimize an expected error in SG(t) in comparison with blood glucose reference sample values BG. In particular implementations, a value for offset may be treated as a constant (e.g., as a known sensor parameter) or may be computed as a variable using multivariable estimation techniques. If offset is treated as a constant, then two parameters, χ and delay, may be estimated using calibration techniques. Otherwise, if offset is treated as a variable, then three parameters, offset, χ and delay, may be estimated. First, expression (15) may be transformed to a discrete format expression (18) in which:

  • BGΔt=χ×sumP   (18)
  • where:
  • sumP = delay ( ISIG 1 - ISIG 0 ) + ( ISIG 1 - offset ) + ( ISIG 0 - offset ) 2 Δ t
  • BG is a blood glucose reference sample value obtained at a time TBG;
    ISIG0 is a sample value of ISIG(t) obtained at a time T0 preceding TBG;
    ISIG1 is a sensor signal sample value of ISIG(t) obtained at a time T1 following TBG; and
    Δt is a sampling interval between consecutive discrete samples of ISIG(t) to obtain ISIG0 and ISIG1 (e.g., T1-T0).
  • In a particular implementation, values fort, delay and offset for use in computing SG(t) may be determined using any one of several least squares or “best fit” parameter estimation techniques by, for example, comparing a value of SG(t) computed according to expression (17) with a contemporaneous blood glucose reference sample BG. In one particular implementation, an initial value for χ may be computed according to expression (19) as follows:
  • χ = i w i 1 w 1 2 sumP i BG i i w i 1 w i 2 sumP i 2 ( 19 )
  • where:
  • wi 1 and wi 2 are weight coefficients;
  • BGi is an ith blood glucose reference sample value; and
  • sumPi is a value of sumP computed with blood glucose reference sample BGi and temporally correlated values for ISIG(t) (e.g., ISIG0, and ISIG1i).
  • Coefficients wi 1 and wi 2 may be determined according to any one of several weighting functions. One such weighting function may more heavily weight more recent values of sumPi to account, for example, in changes in sensor performance over time (e.g., sensor drift). Another such weighting function may apply a weight according to an inverse variance function based on corresponding values for ISIG as discussed in U.S. patent application Ser. No. 12/345,477, filed on Dec. 29, 2008, incorporated herein by reference, and assigned to the assignee of claimed subject matter.
  • In one implementation, computation of an estimate for χ according to expression (19) may commence on having a minimum blood glucose reference measurements (e.g., two blood glucose reference measurements BGi stored in a buffer of controller 12). An initial value for delay may be selected (e.g., two to twenty minutes). A value for χ may be computed according to expression (19).
  • Values for χ and delay may be computed on a set cycle (e.g., twice per day). Upon computation of updated values for χ and delay, determination of ΔISIG(t) in expression (17) may be determined as a difference between a new initial sensor signal value ISIG(t) and ISIG(t0).
  • A rate of change or derivative of a signal or function may be as set forth in expression (17), for example, may be computed using any one of several techniques described above, and claimed subject matter is not limited to any particular technique.
  • FIG. 8 is a flow diagram of a process 506 to compensate for a delay or latency in transportation of an analyte between physiological compartments according to an alternative implementation (e.g., according to expressions (13) through (19) discussed above). A latency in the transportation an analyte between physiological compartments (ISF and blood plasma in particular examples below) is modeled at block 508. A process of estimating a concentration of the analyte present in one of the physiological compartments based upon an observed concentration of the analyte in the other physiological compartment may then compensate for this modeled latency at block 510. At block 510, however, a difference between a sensor signal value and an offset value is integrated to provide an integrated expression. The estimated concentration may then be based, at least in part, on a computed rate of change in the integrated expression.
  • While an estimator of blood glucose concentration based on expression (2) above may account for delays in transportation of glucose between blood plasma and interstitial fluid, such an estimator of blood glucose may still introduce inaccuracies at hyperglycemic a or hypoglycemic blood glucose concentration levels. FIG. 9 is diagram illustrating a two-compartment model for observing a patient's blood glucose concentration according to an alternative embodiment. Here, in addition to modeling a delay in transporting glucose between blood plasma (observed as blood glucose G1) and interstitial fluid (observed as G2) according to flux rates K12 and K21, FIG. 9 also models transportation of glucose from interstitial fluid to fat or muscle tissue according to a flux rate K02. Accordingly, a patient's blood glucose concentration may be observed according to expression (20) as follows:
  • V 2 G 2 t = K 21 V 1 G 1 - ( K 12 + K 02 ) V 2 G 2 ( 20 )
  • where:
  • G1 is patient's blood glucose concentration;
  • G2 is the glucose concentration in patient's interstitial fluid;
  • K12 is a reverse flux rate for glucose transportation from interstitial fluid to blood;
  • K21 is a forward flux rate for glucose transportation from interstitial fluid to blood;
  • V1 is a volume of a blood plasma compartment; and
  • V2 is a volume of an interstitial fluid compartment.
  • Here, a glucose uptake rate into subcutaneous tissue may be characterized by K02 to express a patient's blood glucose concentration as follows:
  • G 1 = K a G 2 t + K b G 2 where : K a = V 2 K 21 V 1 , K b = ( K 12 + K 02 ) V 2 K 21 V 1 . ( 21 )
  • Expression (21) may then be simplified (expressed) in expression (22) as follows:

  • Figure US20160228042A9-20160811-P00999
      (22)
  • where:
    Kα is indicative of a delay in transportation of glucose between blood plasma and interstitial fluid;
    Kβ is indicative of an attenuation ratio; and
    Kδ is indicative of an attenuation offset.
  • In a particular implementation, G2 may be observed as being proportional to ISIG as discussed above. Accordingly, expression (22) may be rewritten as expression (23) as follows:
  • G 1 = K α ISIG t + K β ISIG + K δ where : K α = K α G 2 ISIG and K δ = K δ G 2 ISIG . ( 23 )
  • Here, expression (23) provides an estimator of blood glucose G1 with application of ISIG and dISIG/dt model to parameters Kα′, Kβ′ and Kδ. The estimator of expression (23) may be implemented by estimating values for Kα′, Kβ′ and Kδ using one or more techniques described above. A value of may dISIG/dt represent an estimated rate of change in G2 and may be computed using one or more of the techniques outlined above. For example, multiple measurements of G1 may be obtained from an accurate measuring source (e.g., blood glucose reference measurements from a meter) and analyzed with corresponding values for ISIG and dISIG/dt to obtain a “best fit” for the values of Kα′, Kβ′ and K67 . Here, inclusion of Kδ to indicate an offset may permit accounting for attenuation of G2 from cellular uptake in estimating G1.
  • FIG. 10 is a plot of blood glucose reference samples and values of ISIG taken over a period (e.g., ten hours). In this particular example, values for Kα′, Kβ′ and Kδ are computed as 4.8 mg/dl-nA, 22.0 mg/dl-nA/min and −20.5 mg/dl, respectively, using a best fit for these parameters. A plot of computed blood glucose concentration incorporating these values is also plotted. FIGS. 11 and 12 also plot values for ISIG at plot 612 and values for blood glucose reference measurements at plots 610. FIG. 11 also provides a plot 614 of blood glucose as observed according to expression (23) using the values of Kα′, Kβ′ and Kδ above and FIG. 12 provides a plot 616 of blood glucose as observed according to a two-parameter estimator. As can be observed, plot 616 diverges from plot 610 (of values for blood glucose reference measurements) significantly more than does plot 614 (of blood glucose as observed according to expression (23)).
  • Unless specifically stated otherwise, as is apparent from the preceding discussion, it is to be appreciated that throughout this specification discussions utilizing terms such as “processing”, “computing”, “calculating”, “determining”, “estimating”, “selecting”, “identifying”, “obtaining”, “representing”, “receiving”, “transmitting”, “storing”, “analyzing”, “associating”, “measuring”, “detecting”, “controlling”, “delaying”, “initiating”, “setting”, “delivering”, “waiting”, “starting”, “providing”, and so forth may refer to actions, processes, etc. that may be partially or fully performed by a specific apparatus, such as a special purpose computer, special purpose computing apparatus, a similar special purpose electronic computing device, and so forth, just to name a few examples. In the context of this specification, therefore, a special purpose computer or a similar special purpose electronic computing device may be capable of manipulating or transforming signals, which are typically represented as physical electronic and/or magnetic quantities within memories, registers, or other information storage devices; transmission devices; display devices of a special purpose computer; or similar special purpose electronic computing device; and so forth, just to name a few examples. In particular example embodiments, such a special purpose computer or similar may comprise one or more processors programmed with instructions to perform one or more specific functions. Accordingly, a special purpose computer may refer to a system or a device that includes an ability to process or store data in the form of signals. Further, unless specifically stated otherwise, a process or method as described herein, with reference to flow diagrams or otherwise, may also be executed or controlled, in whole or in part, by a special purpose computer.
  • It should be noted that although aspects of the above systems, methods, devices, processes, etc. have been described in particular orders and in particular arrangements, such specific orders and arrangements are merely examples and claimed subject matter is not limited to the orders and arrangements as described. It should also be noted that systems, devices, methods, processes, etc. described herein may be capable of being performed by one or more computing platforms. In addition, instructions that are adapted to realize methods, processes, etc. that are described herein may be capable of being stored on a storage medium as one or more machine readable instructions. If executed, machine readable instructions may enable a computing platform to perform one or more actions. “Storage medium” as referred to herein may relate to media capable of storing information or instructions which may be operated on, or executed by, one or more machines (e.g., that include at least one processor). For example, a storage medium may comprise one or more storage articles and/or devices for storing machine-readable instructions or information. Such storage articles and/or devices may comprise any one of several media types including, for example, magnetic, optical, semiconductor, a combination thereof, etc. storage media. By way of further example, one or more computing platforms may be adapted to perform one or more processes, methods, etc. in accordance with claimed subject matter, such as methods, processes, etc. that are described herein. However, these are merely examples relating to a storage medium and a computing platform and claimed subject matter is not limited in these respects.
  • Although what are presently considered to be example features have been illustrated and described, it will be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from central concepts that are described herein. Therefore, it is intended that claimed subject matter not be limited to particular examples disclosed, but that such claimed subject matter may also include all aspects falling within the scope of appended claims, and equivalents thereof.

Claims (20)

What is claimed is:
1. A method comprising:
modeling a latency in transportation of an analyte between first and second physiological compartments;
compensating for the latency in estimating a concentration of the analyte in the first physiological compartment based, at least in part, on one or more measurements of a concentration of the analyte in the second physiological compartment; and
compensating for an attenuation of said analyte in the second physiological compartment in estimating said concentration of the analyte in the second physiological compartment.
2. The method of claim 1, wherein the analyte comprises glucose, the first physiological compartment comprises blood plasma, and the second physiological compartment comprises interstitial fluid.
3. The method of claim 2, wherein compensating for said attenuation of said analyte in the second physiological compartment comprises compensating for uptake of glucose from cells.
4. The method of claim 1, wherein said one or more measurements are obtained based, at least in part, on one or more values of a sensor signal, and wherein modeling the latency further comprises modeling the latency based, at least in part, on an estimated rate of change in said sensor signal.
5. The method of claim 4, and wherein the estimated rate of change comprises an estimated first derivative of the sensor signal.
6. The method of claim 4, wherein said sensor signal value comprises a measured current responsive to a concentration of said analyte in said second physiological compartment.
7. The method of claim 4, wherein estimating the concentration of the analyte in the first physiological compartment further comprises:
multiplying the one or more sensor signal value by a first coefficient to provide a first product;
multiplying the estimated rate of change by a second coefficient to provide a second product; and
combining the first and second products with an offset value to provide an estimate of the concentration of the analyte in the first physiological compartment.
8. The method of claim 1, wherein the latency is based, at least in part, on a latency of a presence of glucose in a patient's interstitial fluid to affect a blood glucose concentration in said patient.
9. An apparatus comprising:
a sensor to generate a signal responsive to a concentration of an analyte in a second physiological compartment; and
a processor to:
model a latency in transportation of the analyte between the second physiological compartment and a first physiological compartment; and
compensate for the latency in estimating a concentration of the analyte in the first physiological compartment based, at least in part, on one or more measurements of a concentration of the analyte in the second physiological compartment; and
compensate for an attenuation of said analyte in the second physiological compartment in estimating said concentration of the analyte in the second physiological compartment.
10. The apparatus of claim 9, wherein said sensor signal value comprises a measured current responsive to the concentration of said analyte in said second physiological compartment.
11. The apparatus of claim 9, wherein the analyte comprises glucose, the first physiological compartment comprises blood plasma, and the second physiological compartment comprises interstitial fluid.
12. The apparatus of claim 9, wherein said processor to further compensate for said attenuation of said analyte in the second physiological compartment comprises compensating for uptake of glucose from cells.
13. The apparatus of claim 9, wherein the latency is based, at least in part, on a latency of a presence of glucose in a patient's interstitial fluid to affect a blood glucose concentration in said patient.
14. The apparatus of claim 9, the processor further to generate a command to one or more infusion pumps computed based, at least in part, on said estimated concentration.
15. An article comprising:
a non-transitory storage medium having machine-readable instructions stored thereon which are executable by a special purpose computing apparatus to:
model a latency in transportation of an analyte between first and second physiological compartments;
compensate for the latency in estimating a concentration of the analyte in the first physiological compartment based, at least in part, on one or more measurements of a concentration of the analyte in the second physiological compartment; and
compensate for an attenuation of said analyte in the second physiological compartment in estimating said concentration of the analyte in the second physiological compartment.
16. The article of claim 15, wherein said sensor signal value comprises a measured current responsive to the concentration of said analyte in said second physiological compartment.
17. The article of claim 15, wherein the analyte comprises glucose, the first physiological compartment comprises blood plasma, and the second physiological compartment comprises interstitial fluid.
18. The article of claim 15, wherein said processor to further compensate for said attenuation of said analyte in the second physiological compartment comprises compensating for uptake of glucose from cells.
19. The article of claim 15, wherein the latency is based, at least in part, on a latency of a presence of glucose in a patient's interstitial fluid to affect a blood glucose concentration in said patient.
20. An apparatus comprising:
means for modeling a latency in transportation of an analyte between first and second physiological compartments;
means for compensating for the latency in estimating a concentration of the analyte in the first physiological compartment based, at least in part, on one or more measurements of a concentration of the analyte in the second physiological compartment; and
means for compensating for an attenuation of said analyte in the second physiological compartment in estimating said concentration of the analyte in the second physiological compartment.
US13/657,642 2011-10-25 2012-10-22 Method and/or system for multicompartment analyte monitoring Active 2033-10-30 US9907491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/657,642 US9907491B2 (en) 2011-10-25 2012-10-22 Method and/or system for multicompartment analyte monitoring

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161551290P 2011-10-25 2011-10-25
US201161551844P 2011-10-26 2011-10-26
US13/282,096 US8882665B2 (en) 2011-10-26 2011-10-26 Method and/or system for multicompartment analyte monitoring
US13/365,406 US8870763B2 (en) 2011-10-26 2012-02-03 Method and/or system for multicompartment analyte monitoring
US13/657,642 US9907491B2 (en) 2011-10-25 2012-10-22 Method and/or system for multicompartment analyte monitoring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/365,406 Continuation-In-Part US8870763B2 (en) 2011-10-25 2012-02-03 Method and/or system for multicompartment analyte monitoring

Publications (3)

Publication Number Publication Date
US20130102866A1 US20130102866A1 (en) 2013-04-25
US20160228042A9 true US20160228042A9 (en) 2016-08-11
US9907491B2 US9907491B2 (en) 2018-03-06

Family

ID=48136521

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/657,642 Active 2033-10-30 US9907491B2 (en) 2011-10-25 2012-10-22 Method and/or system for multicompartment analyte monitoring

Country Status (1)

Country Link
US (1) US9907491B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176449A1 (en) 2020-03-03 2021-09-10 Karmon Benny Bone implant
US11298059B2 (en) 2016-05-13 2022-04-12 PercuSense, Inc. Analyte sensor
US11484652B2 (en) 2017-08-02 2022-11-01 Diabeloop Closed-loop blood glucose control systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3687400B1 (en) 2017-09-26 2023-10-04 Senseonics, Incorporated Methods and systems for updating lag parameters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424847B1 (en) * 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US6558351B1 (en) * 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6579690B1 (en) * 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
ATE478333T1 (en) * 2005-06-02 2010-09-15 Isense Corp USE OF MULTIPLE DATA POINTS AND FILTERING IN ONE ANALYTICAL SENSOR
US8986208B2 (en) * 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9289168B2 (en) 2008-12-29 2016-03-22 Medtronic Minimed, Inc. System and/or method for glucose sensor calibration
US8870763B2 (en) * 2011-10-26 2014-10-28 Medtronic Minimed, Inc. Method and/or system for multicompartment analyte monitoring
US8882665B2 (en) 2011-10-26 2014-11-11 Medtronic Minimed, Inc. Method and/or system for multicompartment analyte monitoring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424847B1 (en) * 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298059B2 (en) 2016-05-13 2022-04-12 PercuSense, Inc. Analyte sensor
US11484652B2 (en) 2017-08-02 2022-11-01 Diabeloop Closed-loop blood glucose control systems and methods
WO2021176449A1 (en) 2020-03-03 2021-09-10 Karmon Benny Bone implant

Also Published As

Publication number Publication date
US20130102866A1 (en) 2013-04-25
US9907491B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
US9854998B2 (en) Method and/or system for multicompartment analyte monitoring
US8882665B2 (en) Method and/or system for multicompartment analyte monitoring
US11957459B2 (en) Method and/or system for determining blood glucose reference sample times
US11266334B2 (en) Calibration of glucose monitoring sensor and/or insulin delivery system
US10251588B2 (en) Glucose sensor signal reliability analysis
EP2537110B1 (en) Closed-loop glucose control startup
US9907491B2 (en) Method and/or system for multicompartment analyte monitoring
US20130109943A1 (en) Polar plot to represent glucose sensor performance

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC MINIMED, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, XIAOLONG;KANNARD, BRIAN T.;SIGNING DATES FROM 20121016 TO 20121018;REEL/FRAME:029169/0550

AS Assignment

Owner name: MEDTRONIC MINIMED, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTIES PREVIOUSLY RECORDED ON REEL 029169 FRAME 550. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:LI, XIAOLONG;KANNARD, BRIAN T.;SHAH, RAJIV;SIGNING DATES FROM 20121016 TO 20121019;REEL/FRAME:044636/0330

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4