US20160205979A1 - Taste-modifying combinations - Google Patents

Taste-modifying combinations Download PDF

Info

Publication number
US20160205979A1
US20160205979A1 US14/654,832 US201314654832A US2016205979A1 US 20160205979 A1 US20160205979 A1 US 20160205979A1 US 201314654832 A US201314654832 A US 201314654832A US 2016205979 A1 US2016205979 A1 US 2016205979A1
Authority
US
United States
Prior art keywords
umami
ppm
group
compound
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/654,832
Inventor
Maryline BILLAT-ROSSI
Kasia Aeberhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firmenich SA
Original Assignee
Firmenich SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firmenich SA filed Critical Firmenich SA
Priority to US14/654,832 priority Critical patent/US20160205979A1/en
Assigned to FIRMENICH SA reassignment FIRMENICH SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABERHARDT, KASIA, BILLAT-ROSSI, Maryline
Publication of US20160205979A1 publication Critical patent/US20160205979A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • A23L1/22091
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/82Acid flavourants
    • A23L1/22066
    • A23L1/22657
    • A23L1/22671
    • A23L1/22678
    • A23L1/22685
    • A23L1/231
    • A23L1/237
    • A23L1/31445
    • A23L1/40
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/40Meat products; Meat meal; Preparation or treatment thereof containing additives
    • A23L13/42Additives other than enzymes or microorganisms in meat products or meat meals
    • A23L13/428Addition of flavours, spices, colours, amino acids or their salts, peptides, vitamins, yeast extract or autolysate, nucleic acid or derivatives, organic acidifying agents or their salts or acidogens, sweeteners, e.g. sugars or sugar alcohols; Addition of alcohol-containing products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/70Comminuted, e.g. emulsified, fish products; Processed products therefrom such as pastes, reformed or compressed products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • A23L23/10Soup concentrates, e.g. powders or cakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2052Heterocyclic compounds having oxygen or sulfur as the only hetero atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2054Heterocyclic compounds having nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2056Heterocyclic compounds having at least two different hetero atoms, at least one being a nitrogen atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/24Synthetic spices, flavouring agents or condiments prepared by fermentation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/26Meat flavours
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/88Taste or flavour enhancing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to the field of taste. More particularly, it concerns the use of certain cinnamic acid derived amides as taste-enhancing ingredients to impart or reinforce the tastes known as kokumi or umami.
  • the present invention also concerns compositions or articles containing at least one of the aforementioned compounds.
  • Zanthoxylum rubescens (Rutaceae) [Amides from Zanthoxylum Rubescens . Adesina, S. K.; Reisch, J. Phytochem. 1989, 3, 839-842.] or Piperaceae [Chemical constituents of peppers (Piper spp.) and application to food preservation: naturally occurring antioxidative compounds. Nakatani, N.; Inatani, R.; Ohta, H.; Nishioka, A., Environ. Health Perspectives 1986, 67, 135-142].
  • vanilloid amides such as capsaicin or piperine are usually found in pepper or capsicum species, they generally have a pungent or hot taste. It would be desirable to avoid this.
  • US2003/0152682 (Bayer Polymers LLC) and EP 1 323 356 (Symrise) disclose the use of ferullic acid amides as pungent compounds or heat generating-system for oral hygiene products. Included in this document is the compound trans-rubenamine, but it is not described or even suggested to have an umami taste.
  • EP 2 138 152 (to Henkel) describes mouthwash compositions containing ferrulic acid derived amides among other amides or pungent, or cooling compounds.
  • none of these documents anticipate, report or suggest that the compounds described therein have organoleptic properties that can be used to impart or reinforce a kokumi or umami taste.
  • Kokumi and umami are now established descriptors in the field of taste and are known to supplement, enhance, or modify the taste and/or aroma of a food without necessarily having a strong characteristic taste or aroma of their own.
  • a desire for kokumi and umami exists for a wide range of foods like soups, sauces, savory snacks, prepared meals, condiments, etc. Moreover, they are often found to complement or enhance foodstuffs which have a savory or salty characteristic and, as a result, may be useful where sodium or salt reduction is desired.
  • Umami is one of the five basic tastes sensed by specialized receptor cells present on the human tongue. Umami applies to the sensation of savoriness, and particularly to the detection of glutamates and/or ribotides which are common in meats, cheese and other protein-rich foods. The behavior of umami receptors explains why foods containing monosodium glutamate (MSG) often taste “fuller”. However, some consumers are apparently sensitive to MSG and may suffer from headaches or other illnesses upon consuming it. Thus replacement of MSG, at least partially, can be desirable.
  • MSG monosodium glutamate
  • Kokumi has been described variously as “deliciousness”, “continuity”, “mouthfulness”, “mouthfeel” and “thickness”. It exists naturally in a variety of foods such as cheese, giving a ‘mature’ cheese taste; vegetable flavors, particularly tomato; meat, where it gives a fullness and longer lasting taste; mayonnaise & dressings, where it can round out acid notes; fat-reduced food products, where it gives a similar fullness to full-fat products; herbs and spice; and soups, especially miso soup.
  • a taste-modifying composition comprising a mixture of at least a compound according to formula (I)
  • a taste-modifying composition comprising:
  • n is an integer from 0 to 2; the dotted line represents a carbon-carbon single or double bond; and each of R 1 to R 4 , when taken independently from each other, represents a hydrogen atom or represents a R 5 or OR 5 group, R 5 representing a C 1 to C 5 alkyl group; and optionally one of the groups R 1 to R 4 represents —OH; and/or when R 1 and R 2 are taken together, and/or R 3 and R 4 are taken together, represent a OCH 2 O group, provided said groups taken together are adjacent substituents of the phenyl group; and (ii) a flavor base wherein the flavor base is selected from the group consisting of;
  • a method to confer, enhance, improve or modify the taste properties or mouthfeel, as indicated above, of a flavored article comprises adding to the article a taste-modifying compound as described above.
  • a compound of Formula I one is provided in the taste-modifying composition in an amount of about 0.1 to about 70%.
  • the umami imparting ingredient is provided in the taste-modifying composition in an amount, by weight, of about 5 to about 99%.
  • said flavor base does not comprise another umami imparting flavor ingredient, such as MSG (mono sodium glutamate), and ribotides (a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)), for example in a MSG/ribotides w/w ratio from 95/5 to 90/10.
  • MSG mono sodium glutamate
  • ribotides a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)
  • the acid is provided in the taste-modifying composition in an amount, by weight, of about 0.1 to about 15%.
  • the salt is provided in the taste-modifying composition in an amount, by weight, of about 5 to about 99%.
  • the sweetness imparting compound is provided in an amount, by weight, of about 0.2 to about 99%.
  • the sweet receptor modulator compounds described above is provided in an amount by weight of about 0.2 up to about 99%.
  • the above taste-modifying compositions can be used as flavors or taste enhancing ingredients, for instance to impart or reinforce the kokumi or umami taste of a flavor article.
  • use of a compound of formula (I) includes the use of any composition containing compound (I) and which can be advantageously employed in the flavor industry as active ingredient.
  • any one of its stereoisomers or the similar, it is meant the normal meaning understood by a person skilled in the art, i.e. that the invention's compound can be a pure enantiomer (if chiral) or diastereomer (e.g. the double bond is in a conformation E or Z).
  • dotted line represents carbon-carbon single or double bond
  • the expression “wherein the dotted line represents carbon-carbon single or double bond”, or the similar it is meant the normal meaning understood by a person skilled in the art, i.e. that the whole bonding (solid and dotted line) between the carbon atoms connected by said dotted line is a carbon-carbon single or double bond.
  • One advantage of the present invention is that the compounds confer umami and/or kokumi taste to a product without detrimentally affecting the flavor profile of the product.
  • said compound (I) is selected from the group of compounds in which
  • n is 0 or 1; the dotted line represents carbon-carbon single or double bond; and each of R 1 to R 4 , taken independently from each other, represents a hydrogen atom or represents a R 5 or OR 5 group, R 5 representing a C 1 to C 5 , or even a C 1 to C 3 , alkyl group.
  • said compound (I) is selected from the group of compounds in which R 1 and R 2 both represent methoxy groups and n is 1.
  • said dotted line represents a carbon-carbon double bond.
  • said compound (I) is a compound of formula
  • each of R 3 or R 4 taken independently from each other, represents a hydrogen atom or represents a R 5 or OR 5 group, R 5 representing a C 1 to C 5 , or even a C 1 to C 3 alkyl group.
  • R 3 represents a hydrogen atom or represents a R 5 or OR 5 group
  • R 4 represents a R 5 or OR 5 group
  • R 5 representing a C 1 to C 5 , or even a C 1 to C 3 , alkyl group.
  • R 3 represents a hydrogen atom or represents a R 5 group
  • R 4 represents a R 5 or OR 5 group
  • R 5 representing a C 1 to C 5 , or even a C 1 to C 3 , alkyl group.
  • R 3 represents a hydrogen atom or represents a R 5 group
  • R 4 represents a R 5 , R 5 representing a C 1 to C 5 , or even a C 1 to C 3 , alkyl group.
  • R 5 represents a methyl, ethyl, propyl or iso-propyl group.
  • R 3 represents a hydrogen atom or represents a C 1 to C 5 , or even a C 1-3 , alkyl group or a OR 6 group, R 6 representing a C 1 to C 5 , or even a C 2-3 , alkyl group; and R 4 represents a C 1 to C 5 , or even a C 1-3 , alkyl group or a OR 6 group, R 6 representing a C 1 to C 5 , or even a C 1-3 , alkyl group; are also novel compounds and therefore they represent another aspect of the invention.
  • said novel compounds are those wherein R 3 represents a hydrogen atom or a C 1-3 , alkyl group and R 4 represents a C 1-3 , alkyl group or OR 6 group, R 6 representing a C 1 to C 3 alkyl group.
  • said compound (I) or (II) is a C 19-25 compound, or even a C 19-22 compound.
  • the non-aromatic carbon-carbon double bond of compound (I) or (II) can be in a configuration Z or E or a mixture thereof.
  • said compound (I) or (II) is in the form of a mixture of the E and Z stereoisomers, said mixture comprising at least 50% w/w, or at least 80% w/w, of the stereoisomer E, the remaining being essentially the Z stereoisomer.
  • said compound (I) is selected amongst (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide (referenced in the Examples as Amide 1), (E)-3-(3,4-dimethoxyphenyl)-N-(3-methoxyphenethyl)acrylamide (referenced in the Examples as Amide 4), (E)-3-(3,4-dimethoxyphenyl)-N-(3-ethoxyphenethyl)acrylamide (referenced in the Examples as Amide 7), (E)-3-(3,4-dimethoxyphenyl)-N-(3-propoxyphenethyl)acrylamide (referenced in the Examples as Amide 8), (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropoxy-phenethyl)acrylamide (referenced in the Examples as Amide 9), (E)-3-(3,4-dimethoxy
  • the compounds of the invention can be used alone or in mixtures and provide a strong kokumi or umami taste at exceptionally low levels.
  • the invention concerns the use of a compound of formula (I) as a taste-conferring or enhancing ingredient, and in particular to impart or reinforce kokumi or umami taste.
  • said compound (I) is used to impart or reinforce kokumi or umami taste as well as to enhance the saltiness and/or savory perception of a flavor.
  • such use is very much appreciated by flavorists to impart or enhance the kokumi or umami taste in savory flavors, such as beef, chicken, pork, and seafood.
  • savory flavors such as beef, chicken, pork, and seafood.
  • compounds according to formula (I) are also found to enhance the perception of sweetness and longevity of the flavor.
  • the compounds according to formula (I) are found to enhance perception of fattiness and tallow notes. Additionally we found that said compounds can increase juiciness in meat based products.
  • the invention provides a taste-modifying composition comprising:
  • flavor carrier we mean here a material which is substantially neutral from a flavor point of view, insofar as it does not significantly alter the organoleptic properties of flavoring ingredients.
  • the carrier may be a liquid or a solid.
  • Suitable liquid carriers include, for instance, an aqueous system, an emulsifying system, i.e. a solvent and a surfactant system, or a solvent commonly used in flavors.
  • Suitable solvents include, for instance, water, propylene glycol, triacetine, triethyl citrate, benzylic alcohol, ethanol, vegetable oils or terpenes.
  • Suitable solid carriers include, for instance, absorbing gums or polymers, or even encapsulating materials.
  • materials may comprise wall-forming and plasticizing materials, such as mono, di- or trisaccharides, natural or modified starches, hydrocolloids, cellulose derivatives, polyvinyl acetates, polyvinylalcohols, proteins or pectins, or yet the materials cited in reference texts such as H. Scherz, Hydrokolloids: Stabilisatoren, Dickungs- and Geherstoff in Struktur, Band 2 der Kunststoffen Herbert Strukturchemie, claritat, Behr's VerlagGmbH & Co., Hamburg, 1996.
  • Encapsulation is a well known process to a person skilled in the art, and may be performed, for instance, using techniques such as spray-drying, agglomeration, extrusion, coacervation and the like.
  • flavor base we mean here a composition comprising at least one flavoring ingredient.
  • flavoring ingredient is not a compound of formula (I).
  • flavoring ingredient it is meant here a compound, which is used in flavoring preparations or compositions to impart a hedonic effect.
  • an ingredient to be considered as being a flavoring one, must be recognized by a person skilled in the art as being able to impart or modify in a positive or pleasant way the taste of a composition, and not just as having a taste.
  • flavoring co-ingredients present in the base do not warrant a more detailed description here, the skilled person being able to select them on the basis of its general knowledge and according to intended use or application and the desired organoleptic effect.
  • these flavoring co-ingredients belong to chemical classes as varied as alcohols, aldehydes, ketones, esters, ethers, acetates, nitriles, terpenoids, nitrogenous or sulphurous heterocyclic compounds and essential oils, and said perfuming co-ingredients can be of natural or synthetic origin. Many of these co-ingredients are in any case listed in reference texts such as the book by S.
  • said flavor base comprises another umami imparting flavor ingredient, such as MSG (mono sodium glutamate), and ribotides (a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)), for example in a MSG/ribotides w/w ratio from 95/5 to 90/10.
  • MSG mono sodium glutamate
  • ribotides a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)
  • a taste-modifying composition comprising a mixture of a compound of Formula I and a flavor base wherein the mixture is formulated to be added to a foodstuff to provide a flavored article.
  • the taste-modifying composition mixture is provided in the substantial absence of a foodstuff.
  • the taste-modifying composition comprises less than 2%, particularly less than 1%, more particularly less than 0.5%, and more particular less than 0.1%.
  • the taste-modifying composition mixture is provided in the absence of a foodstuff.
  • the mixture may be a dry powder.
  • a flavored article comprises a compound of Formula I in an amount of from about 1 to about 100 ppm, more particularly from about 10 to about 25 ppm wherein the flavored article further comprises a flavor base wherein the flavor base comprises:
  • a) a sweetness imparting compound in amount from about 0.05 to about 1000 ppm, particularly from about 0.1 to about 500 ppm.
  • the sweetness imparting compound is selected from the group consisting of stevia extracts, glycosylated derivatives of stevia extracts (for example, but not limited to, the transglucosylated sweet glycoside mixture of Stevia described in U.S. Pat. No.
  • sugars for example, but not limited to, sucrose, glucose, fructose high fructose corn syrup and corn syrup
  • sucralose for example, but not limited to, sucrose, glucose, fructose high fructose corn syrup and corn syrup
  • D-tryptophan for example, sucrose, glucose, fructose high fructose corn syrup and corn syrup
  • NHDC hydroxycellulose
  • polyols sucrose alcohols for example but not limited sorbitol xylitol, and mannitol xylose, arabinose, rhamnose and lactose
  • stevioside for example but not limited to those present in Luo Han Guo extract
  • monellin neotame, aspartame, potassium acesulfame, saccharine, monoammonium glycyrrhizinate, calcium cyclamate, sodium cyclamate, sodium saccharin, potassium saccharin, ammonium saccharin, and calcium saccharin
  • an umami imparting ingredient in an amount from about 1 to about 2000 ppm, more particularly from about 50 to about 200 ppm.
  • the umami imparting ingredient is ribotide, it is not provided at 300 ppm in chicken bouillon.
  • the umami imparting ingredient is selected from the group consisting of glutamic acid, MSG, ribotides, and ingredients that are sources of glutamic acid, MSG, ribotides, like yeast extracts, hydrolyzed proteins (for example but not limited to vegetable, corn, and wheat gluten), fermented ingredients, mushroom powder, tomato powder, enzymatic modified cheese, cheese powders, fish extracts, fermented fish, oyster sauce, Worcester sauce, and soy sauce;
  • the salt is selected from the group consisting of sodium chloride, potassium chloride, sea salt, magnesium chloride, calcium chloride, magnesium sulfate, calcium sulfate and a source rich in a cations and anions of at least one of the above salts;
  • an acid in an amount from about 1 ppm to about 2000 ppm, more particularly from about 50 to about 200 ppm.
  • the acid is selected from the group consisting of tartaric, citric, succinic, tannic, malic, phosphoric, lactic, acetic, ascorbic, and disodium succinic acids, and sodium lactate.
  • flavor adjuvant we mean here an ingredient capable of imparting additional added benefit such as a color, a particular light resistance, chemical stability, and so on. A detailed description of the nature and type of adjuvant commonly used in flavoring bases cannot be exhaustive. Nevertheless, such adjuvants are well known to a person skilled in the art, but it has to be mentioned that said ingredients are well known to a person skilled in the art.
  • a composition consisting of at least one compound of formula (I) and at least one flavor carrier represents a particular embodiment of the invention as well as a flavoring composition comprising at least one compound of formula (I), at least one flavor carrier, at least one flavor base, and optionally at least one flavor adjuvant.
  • more than one compound of formula (I) is used in combination since it is found that a synergistic enhancement of the kokumi or umami taste can be achieved in this way. Moreover, it is found that the combination of ingredients can provide the desired kokumi or umami taste without imparting undesirable flavor notes.
  • a compound of formula (I) can be advantageously incorporated into flavored articles to positively impart, or modify, the kokumi or umami taste of said articles.
  • the present invention provides a flavored article comprising:
  • Suitable foodstuff bases e.g. foods or beverages, can be fried or not, as well as frozen or not, low fat or not, marinated, battered, chilled, dehydrated, instant, canned, reconstituted, retorted or preserved.
  • Typical examples of said foodstuff bases include:
  • Particular foodstuffs in which the compound according to formula (I) finds utility include those having topnotes such as seafood, beef, chicken, vegetables, cheese, fat, tallow and/or marrow are important.
  • a flavored article according to the invention comprises one or more compounds according to formula (I), as well as optional benefit agents, corresponding to taste and flavor profile of the desired edible product, e.g. a savory cube.
  • the taste-modifying composition and the flavored article according to the invention comprise as taste conferring or modifying ingredient a compound of formula (II) wherein R 3 represents a hydrogen atom or represents a R 5 group, and R 4 represents a R 5 or OR 5 group, R 5 representing a C 1 to C 3 alkyl group.
  • R 5 represents a methyl, ethyl, propyl or iso-propyl group.
  • the proportions in which the compounds according to the invention can be incorporated into the various aforementioned articles or compositions vary within a wide range of values. These values are dependent on the nature of the article to be flavored and on the desired organoleptic effect as well as the nature of the co-ingredients in a given base when the compounds according to the invention are mixed with flavoring co-ingredients, solvents or additives commonly used in the art.
  • concentrations are in the order of 0.05% to 30%, more preferably 0.1% to 20%, most preferably 0.1% to 10%, of the compounds of the invention based on the weight of the flavoring compositions into which they are incorporated.
  • compositions disclosed herein and the use thereof are also contemplated, wherein the compositions consist of or consist essentially of the recited components.
  • the acid (E)-3-(3,4-dimethoxyphenyl)acrylic acid (typically 33 mmol) and DIEA (diisopropyl ethyl amine, 2 equiv.) were diluted in 200 mL of EtOAc and 50 mL of dichloromethane. The solution was cooled to 15° C. and ethyl chloroformate (1 molar equiv.) was added drop wise. The reaction was stirred for 1 hour before the starting amine (1 molar equiv., diluted 2-3 times in EtOAc) was added. The reaction was stirred overnight at room temperature.
  • the amides were evaluated at 20 ppm in mineral water in comparison with 0.05% monosodium glutamate (MSG).
  • MSG monosodium glutamate
  • the trained panelists (5-10) were giving an umami taste intensity note.
  • the Relative umami intensity (RUI) was calculated as follows:
  • Amides 1, 3, 4 and 8 were blended and diluted in maltodextrin at 10% w/w.
  • Sol 8 Sol 9 Sol 10 Sol 11 Sol 12 Sol 13 MSG 500 500 500 500 500 500 Amide 7 20 — — — — — Amide 9 — 20 — — — — Amide 10 — — 20 — — — Amide 11 — — — 20 — — Amide 12 — — — — 20 — Amide 17 — — — — — — 20 Sol solution
  • a panel consisted in 15 to 20 trained panelists evaluating the samples for taste properties on a scale of ⁇ 5 to 5 ( ⁇ 5 denoted no umami effect and 5 denoted extremely strong umami effect, 0 being the umami intensity of a reference umami solution containing Monosodium Glutamate at 0.05%). The samples were evaluated with and without nose clip to focus on taste.
  • a beef stock was prepared containing the following ingredients:
  • a chicken stock was prepared containing the following ingredients:
  • a chicken bouillon was prepared containing the following ingredients:
  • a marinade was prepared containing the following ingredients:
  • Surimi 1 Surimi 2
  • Surimi 3 Surimi 4 MSG — 5000 ppm — — Amide 1 — — 50 ppm — Amide 3 — — — 50 ppm
  • the 4 surimis were put in cooking bags and cooked for 45 minutes in a steam oven at 90° C. The samples were then quickly cooled down. The surimi samples were presented to 5 trained panelists on a blind test basis as described above. The results are reported herein below:
  • Monosodium glutamate (MSG), amide 1, an ingredient (glucosylated stevia glycosides from U.S. Pat. No. 7,807,206 (containing Rebaudioside A and stevioside), sea salt, succinic acid, yeast extract, hydrolyzed corn protein, or hydrolyzed wheat gluten) and a blend of the amide with the ingredient were weighed and hot mineral water was added to each sample according to the dosages indicated in each experiments. The samples were stirred in order to ensure the solubilisation of the ingredients.
  • the umami intensities were rated on a 1-10 scale (1 denoted no umami effect and 10 denoted extremely strong umami effect).
  • the “liking” was also rated on a 1-10 scale (1 was given if the sample was not liked, and 10 liked very much). The panelists were also asked to describe the samples.
  • the combinations provide an umami taste improvement better than each component alone. In other instances, the combination is preferred over each alone.

Abstract

The present invention relates to the use of a compound according to formula (I) in the form of any one of its stereoisomers or a mixture thereof, and wherein n is an integer from 0 to 2; the dotted line represents a carbon-carbon single or double bond; and each of R1 to R4, when taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3, alkyl group; and optionally one of the groups R1 to R4 represents —OH; and/or when R1 and R2 are taken together, and/or R3 and R4 are taken together, represent a OCH2O group, provided said groups taken together are adjacent substituents of the phenyl group; as an ingredient in combination with other ingredients to confer, enhance, improve or modify the kokumi or umami taste of a flavored article.
Figure US20160205979A1-20160721-C00001

Description

    FIELD
  • The present invention relates to the field of taste. More particularly, it concerns the use of certain cinnamic acid derived amides as taste-enhancing ingredients to impart or reinforce the tastes known as kokumi or umami.
  • The present invention also concerns compositions or articles containing at least one of the aforementioned compounds.
  • BACKGROUND
  • Various cinnamic acid derived amides are known to naturally occur in plants such as Zanthoxylum rubescens (Rutaceae) [Amides from Zanthoxylum Rubescens. Adesina, S. K.; Reisch, J. Phytochem. 1989, 3, 839-842.] or Piperaceae [Chemical constituents of peppers (Piper spp.) and application to food preservation: naturally occurring antioxidative compounds. Nakatani, N.; Inatani, R.; Ohta, H.; Nishioka, A., Environ. Health Perspectives 1986, 67, 135-142].
  • Since vanilloid amides, such as capsaicin or piperine are usually found in pepper or capsicum species, they generally have a pungent or hot taste. It would be desirable to avoid this. US2003/0152682 (Bayer Polymers LLC) and EP 1 323 356 (Symrise) disclose the use of ferullic acid amides as pungent compounds or heat generating-system for oral hygiene products. Included in this document is the compound trans-rubenamine, but it is not described or even suggested to have an umami taste. EP 2 138 152 (to Henkel) describes mouthwash compositions containing ferrulic acid derived amides among other amides or pungent, or cooling compounds. However, none of these documents anticipate, report or suggest that the compounds described therein have organoleptic properties that can be used to impart or reinforce a kokumi or umami taste.
  • In New Developments in Umami (Enhancing) Molecules by Winkel et al, Chemistry & Biodiversity, Vol. 5 (2008), p 1195-1203, a review of known umami modifying compounds is given. However, there is no suggestion of the compounds of the present invention.
  • Kokumi and umami are now established descriptors in the field of taste and are known to supplement, enhance, or modify the taste and/or aroma of a food without necessarily having a strong characteristic taste or aroma of their own. A desire for kokumi and umami exists for a wide range of foods like soups, sauces, savory snacks, prepared meals, condiments, etc. Moreover, they are often found to complement or enhance foodstuffs which have a savory or salty characteristic and, as a result, may be useful where sodium or salt reduction is desired.
  • Umami is one of the five basic tastes sensed by specialized receptor cells present on the human tongue. Umami applies to the sensation of savoriness, and particularly to the detection of glutamates and/or ribotides which are common in meats, cheese and other protein-rich foods. The behavior of umami receptors explains why foods containing monosodium glutamate (MSG) often taste “fuller”. However, some consumers are apparently sensitive to MSG and may suffer from headaches or other illnesses upon consuming it. Thus replacement of MSG, at least partially, can be desirable.
  • Kokumi has been described variously as “deliciousness”, “continuity”, “mouthfulness”, “mouthfeel” and “thickness”. It exists naturally in a variety of foods such as cheese, giving a ‘mature’ cheese taste; vegetable flavors, particularly tomato; meat, where it gives a fullness and longer lasting taste; mayonnaise & dressings, where it can round out acid notes; fat-reduced food products, where it gives a similar fullness to full-fat products; herbs and spice; and soups, especially miso soup.
  • US2006/057268 reports saturated or unsaturated N-alkamide and their use as umami ingredients.
  • It would be desirable to provide a flavor or taste enhancing ingredient that has umami or kokumi characteristics. It would be even more desirable to provide a flavor or taste enhancing ingredient that has umami and kokumi characteristics.
  • SUMMARY
  • Provided herein is a taste-modifying composition comprising a mixture of at least a compound according to formula (I)
  • Figure US20160205979A1-20160721-C00002
      • in the form of any one of its stereoisomers or a mixture thereof, and wherein
      • n is an integer from 0 to 2;
      • the dotted line represents a carbon-carbon single or double bond; and
      • each of R1 to R4, when taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3, alkyl group; and optionally one of the groups R1 to R4 represents —OH; and/or when R1 and R2 are taken together, and/or R3 and R4 are taken together, represent a OCH2O group, provided said groups taken together are adjacent substituents of the phenyl group;
        as an ingredient in combination with other ingredients to confer, enhance, improve or modify the kokumi or umami taste of a flavored article.
    DETAILED DESCRIPTION
  • A taste-modifying composition comprising:
  • a mixture of:
    (i) a compound according to formula (I)
  • Figure US20160205979A1-20160721-C00003
  • in the form of any one of its stereoisomers or a mixture thereof, and wherein
    n is an integer from 0 to 2;
    the dotted line represents a carbon-carbon single or double bond; and
    each of R1 to R4, when taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5 alkyl group; and optionally one of the groups R1 to R4 represents —OH; and/or
    when R1 and R2 are taken together, and/or R3 and R4 are taken together, represent a OCH2O group, provided said groups taken together are adjacent substituents of the phenyl group; and
    (ii) a flavor base wherein the flavor base is selected from the group consisting of;
      • a) a umami imparting ingredient;
      • b) an acid;
      • c) a salt;
      • d) a sweetness imparting compound; and
      • e) a sweet receptor modulator compound selected from the group consisting of:
  • Figure US20160205979A1-20160721-C00004
  • or one of their salts.
  • In another aspect, provided herein is a method to confer, enhance, improve or modify the taste properties or mouthfeel, as indicated above, of a flavored article, which method comprises adding to the article a taste-modifying compound as described above.
  • In a particular embodiment, a compound of Formula I one is provided in the taste-modifying composition in an amount of about 0.1 to about 70%.
  • In another embodiment, the umami imparting ingredient is provided in the taste-modifying composition in an amount, by weight, of about 5 to about 99%. According to a particular embodiment of the invention, said flavor base does not comprise another umami imparting flavor ingredient, such as MSG (mono sodium glutamate), and ribotides (a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)), for example in a MSG/ribotides w/w ratio from 95/5 to 90/10.
  • In another embodiment, the acid is provided in the taste-modifying composition in an amount, by weight, of about 0.1 to about 15%.
  • In another embodiment, the salt is provided in the taste-modifying composition in an amount, by weight, of about 5 to about 99%.
  • In another embodiment, the sweetness imparting compound is provided in an amount, by weight, of about 0.2 to about 99%.
  • In another embodiment, the sweet receptor modulator compounds described above is provided in an amount by weight of about 0.2 up to about 99%.
  • The above taste-modifying compositions can be used as flavors or taste enhancing ingredients, for instance to impart or reinforce the kokumi or umami taste of a flavor article.
  • In the context of the present invention “use of a compound of formula (I)” includes the use of any composition containing compound (I) and which can be advantageously employed in the flavor industry as active ingredient.
  • For the sake of clarity, by the expression “any one of its stereoisomers”, or the similar, it is meant the normal meaning understood by a person skilled in the art, i.e. that the invention's compound can be a pure enantiomer (if chiral) or diastereomer (e.g. the double bond is in a conformation E or Z).
  • For the sake of clarity, by the expression “wherein the dotted line represents carbon-carbon single or double bond”, or the similar, it is meant the normal meaning understood by a person skilled in the art, i.e. that the whole bonding (solid and dotted line) between the carbon atoms connected by said dotted line is a carbon-carbon single or double bond.
  • One advantage of the present invention is that the compounds confer umami and/or kokumi taste to a product without detrimentally affecting the flavor profile of the product.
  • According to a particular embodiment of the invention, said compound (I) is selected from the group of compounds in which
  • n is 0 or 1;
    the dotted line represents carbon-carbon single or double bond; and
    each of R1 to R4, taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3, alkyl group.
  • According to a particular embodiment of the invention, said compound (I) is selected from the group of compounds in which R1 and R2 both represent methoxy groups and n is 1.
  • According to any one of the above embodiments of the invention, said dotted line represents a carbon-carbon double bond.
  • According to a particular embodiment of the invention, said compound (I) is a compound of formula
  • Figure US20160205979A1-20160721-C00005
  • in the form of any one of its stereoisomers or a mixture thereof, and wherein each of R3 or R4, taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3 alkyl group.
  • According to any one of the above embodiments of the invention, R3 represents a hydrogen atom or represents a R5 or OR5 group, and R4 represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3, alkyl group.
  • According to any one of the above embodiments of the invention, R3 represents a hydrogen atom or represents a R5 group, and R4 represents a R5 or OR5 group, R5 representing a C1 to C5, or even a C1 to C3, alkyl group.
  • According to any one of the above embodiments of the invention, R3 represents a hydrogen atom or represents a R5 group, and R4 represents a R5, R5 representing a C1 to C5, or even a C1 to C3, alkyl group.
  • According to any one of the above embodiments of the invention, R5 represents a methyl, ethyl, propyl or iso-propyl group.
  • The compounds of formula (II) wherein:
  • R3 represents a hydrogen atom or represents a C1 to C5, or even a C1-3, alkyl group or a OR6 group, R6 representing a C1 to C5, or even a C2-3, alkyl group; and
    R4 represents a C1 to C5, or even a C1-3, alkyl group or a OR6 group, R6 representing a C1 to C5, or even a C1-3, alkyl group;
    are also novel compounds and therefore they represent another aspect of the invention.
  • According to any one of the above embodiments of the invention, said novel compounds are those wherein R3 represents a hydrogen atom or a C1-3, alkyl group and R4 represents a C1-3, alkyl group or OR6 group, R6 representing a C1 to C3 alkyl group.
  • According to any one of the above embodiments of the invention, said compound (I) or (II) is a C19-25 compound, or even a C19-22 compound.
  • According to any one of the above embodiments of the invention, the non-aromatic carbon-carbon double bond of compound (I) or (II) can be in a configuration Z or E or a mixture thereof. According to any one of the above embodiments of the invention, said compound (I) or (II) is in the form of a mixture of the E and Z stereoisomers, said mixture comprising at least 50% w/w, or at least 80% w/w, of the stereoisomer E, the remaining being essentially the Z stereoisomer.
  • According to a particular aspect of the present invention, said compound (I) is selected amongst (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide (referenced in the Examples as Amide 1), (E)-3-(3,4-dimethoxyphenyl)-N-(3-methoxyphenethyl)acrylamide (referenced in the Examples as Amide 4), (E)-3-(3,4-dimethoxyphenyl)-N-(3-ethoxyphenethyl)acrylamide (referenced in the Examples as Amide 7), (E)-3-(3,4-dimethoxyphenyl)-N-(3-propoxyphenethyl)acrylamide (referenced in the Examples as Amide 8), (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropoxy-phenethyl)acrylamide (referenced in the Examples as Amide 9), (E)-3-(3,4-dimethoxyphenyl)-N-(4-ethylphenethyl)acrylamide (referenced in the Examples as Amide 10), (E)-3-(3,4-dimethoxyphenyl)-N-(3,4-dimethylphenethyl)acrylamide (referenced in the Examples as Amide 11), (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropylphenethyl)acrylamide (referenced in the Examples as Amide 12) or (E)-3-(3,4-dimethoxyphenyl)-N-(3-methylphenethyl)acrylamide (referenced in the Examples as Amide 17).
  • The compounds of the invention can be used alone or in mixtures and provide a strong kokumi or umami taste at exceptionally low levels.
  • As mentioned above, the invention concerns the use of a compound of formula (I) as a taste-conferring or enhancing ingredient, and in particular to impart or reinforce kokumi or umami taste.
  • According to a particular embodiment of the invention, said compound (I) is used to impart or reinforce kokumi or umami taste as well as to enhance the saltiness and/or savory perception of a flavor.
  • According to a particular embodiment of the invention, such use is very much appreciated by flavorists to impart or enhance the kokumi or umami taste in savory flavors, such as beef, chicken, pork, and seafood. Surprisingly, in seafood applications such as surimi, or seafood bouillons or snack flavors, compounds according to formula (I) are also found to enhance the perception of sweetness and longevity of the flavor. By contrast, in beef flavors, the compounds according to formula (I) are found to enhance perception of fattiness and tallow notes. Additionally we found that said compounds can increase juiciness in meat based products.
  • In another aspect, the invention provides a taste-modifying composition comprising:
    • i) as a taste-conferring or modifying ingredient, at least one compound according to formula (I) above;
    • ii) at least one ingredient selected from the group consisting of a flavor carrier and a flavor base; and
    • iii) optionally at least one flavor adjuvant.
  • By “flavor carrier” we mean here a material which is substantially neutral from a flavor point of view, insofar as it does not significantly alter the organoleptic properties of flavoring ingredients. The carrier may be a liquid or a solid.
  • Suitable liquid carriers include, for instance, an aqueous system, an emulsifying system, i.e. a solvent and a surfactant system, or a solvent commonly used in flavors. A detailed description of the nature and type of solvents commonly used in flavor cannot be exhaustive. Suitable solvents include, for instance, water, propylene glycol, triacetine, triethyl citrate, benzylic alcohol, ethanol, vegetable oils or terpenes.
  • Suitable solid carriers include, for instance, absorbing gums or polymers, or even encapsulating materials. Examples of such materials may comprise wall-forming and plasticizing materials, such as mono, di- or trisaccharides, natural or modified starches, hydrocolloids, cellulose derivatives, polyvinyl acetates, polyvinylalcohols, proteins or pectins, or yet the materials cited in reference texts such as H. Scherz, Hydrokolloids: Stabilisatoren, Dickungs- and Gehermittel in Lebensmittel, Band 2 der Schriftenreihe Lebensmittelchemie, Lebensmittelqualitat, Behr's VerlagGmbH & Co., Hamburg, 1996. Encapsulation is a well known process to a person skilled in the art, and may be performed, for instance, using techniques such as spray-drying, agglomeration, extrusion, coacervation and the like.
  • By “flavor base” we mean here a composition comprising at least one flavoring ingredient.
  • Said flavoring ingredient is not a compound of formula (I). Moreover, by “flavoring ingredient” it is meant here a compound, which is used in flavoring preparations or compositions to impart a hedonic effect. In other words such an ingredient, to be considered as being a flavoring one, must be recognized by a person skilled in the art as being able to impart or modify in a positive or pleasant way the taste of a composition, and not just as having a taste.
  • The nature and type of the flavoring co-ingredients present in the base do not warrant a more detailed description here, the skilled person being able to select them on the basis of its general knowledge and according to intended use or application and the desired organoleptic effect. In general terms, these flavoring co-ingredients belong to chemical classes as varied as alcohols, aldehydes, ketones, esters, ethers, acetates, nitriles, terpenoids, nitrogenous or sulphurous heterocyclic compounds and essential oils, and said perfuming co-ingredients can be of natural or synthetic origin. Many of these co-ingredients are in any case listed in reference texts such as the book by S. Arctander, Perfume and Flavor Chemicals, 1969, Montclair, N.J., USA, or its more recent versions, or in other works of a similar nature, as well as in the abundant patent literature in the field of flavor. It is also understood that said co-ingredients may also be compounds known to release in a controlled manner various types of flavoring compounds.
  • According to a particular embodiment of the invention, said flavor base comprises another umami imparting flavor ingredient, such as MSG (mono sodium glutamate), and ribotides (a blend, e.g. 50-50 w/w, of IMP (inosine monophosphate) and GMP (guanosine monophosphate)), for example in a MSG/ribotides w/w ratio from 95/5 to 90/10. Or ingredients rich in those compounds mentioned before that are well known to the people skilled in the art.
  • Further provided herein is a taste-modifying composition comprising a mixture of a compound of Formula I and a flavor base wherein the mixture is formulated to be added to a foodstuff to provide a flavored article. In another particular embodiment, the taste-modifying composition mixture is provided in the substantial absence of a foodstuff. In further particular embodiment, the taste-modifying composition comprises less than 2%, particularly less than 1%, more particularly less than 0.5%, and more particular less than 0.1%. In a particular embodiment, the taste-modifying composition mixture is provided in the absence of a foodstuff.
  • In another embodiment, the mixture may be a dry powder.
  • In another embodiment, a flavored article comprises a compound of Formula I in an amount of from about 1 to about 100 ppm, more particularly from about 10 to about 25 ppm wherein the flavored article further comprises a flavor base wherein the flavor base comprises:
  • a) a sweetness imparting compound, in amount from about 0.05 to about 1000 ppm, particularly from about 0.1 to about 500 ppm. In a particular embodiment the sweetness imparting compound is selected from the group consisting of stevia extracts, glycosylated derivatives of stevia extracts (for example, but not limited to, the transglucosylated sweet glycoside mixture of Stevia described in U.S. Pat. No. 7,807,206 and incorporated by reference herein), sugars (for example, but not limited to, sucrose, glucose, fructose high fructose corn syrup and corn syrup) sucralose, D-tryptophan, NHDC, polyols (sugar alcohols for example but not limited sorbitol xylitol, and mannitol xylose, arabinose, rhamnose and lactose), stevioside, Rebaudioside A, thaumatin, mogrosides (for example but not limited to those present in Luo Han Guo extract), monellin, neotame, aspartame, potassium acesulfame, saccharine, monoammonium glycyrrhizinate, calcium cyclamate, sodium cyclamate, sodium saccharin, potassium saccharin, ammonium saccharin, and calcium saccharin;
  • b) an umami imparting ingredient in an amount from about 1 to about 2000 ppm, more particularly from about 50 to about 200 ppm. In a particular embodiment when the umami imparting ingredient is ribotide, it is not provided at 300 ppm in chicken bouillon. In another embodiment, the umami imparting ingredient is selected from the group consisting of glutamic acid, MSG, ribotides, and ingredients that are sources of glutamic acid, MSG, ribotides, like yeast extracts, hydrolyzed proteins (for example but not limited to vegetable, corn, and wheat gluten), fermented ingredients, mushroom powder, tomato powder, enzymatic modified cheese, cheese powders, fish extracts, fermented fish, oyster sauce, Worcester sauce, and soy sauce;
  • c) a salt in an amount from about 100 to about 10,000 ppm. In a particular embodiment the salt is selected from the group consisting of sodium chloride, potassium chloride, sea salt, magnesium chloride, calcium chloride, magnesium sulfate, calcium sulfate and a source rich in a cations and anions of at least one of the above salts;
  • d) an acid in an amount from about 1 ppm to about 2000 ppm, more particularly from about 50 to about 200 ppm. In a particular embodiment, the acid is selected from the group consisting of tartaric, citric, succinic, tannic, malic, phosphoric, lactic, acetic, ascorbic, and disodium succinic acids, and sodium lactate.
  • e) a compound in an amount from about 0.1 ppm to about 200 ppm, particularly from about 0.1 to about 20 ppm, more particularly from about 1 to about 15 ppm, wherein the compound is selected from the group consisting of:
  • Figure US20160205979A1-20160721-C00006
  • or one of their salts.
  • By “flavor adjuvant” we mean here an ingredient capable of imparting additional added benefit such as a color, a particular light resistance, chemical stability, and so on. A detailed description of the nature and type of adjuvant commonly used in flavoring bases cannot be exhaustive. Nevertheless, such adjuvants are well known to a person skilled in the art, but it has to be mentioned that said ingredients are well known to a person skilled in the art.
  • A composition consisting of at least one compound of formula (I) and at least one flavor carrier represents a particular embodiment of the invention as well as a flavoring composition comprising at least one compound of formula (I), at least one flavor carrier, at least one flavor base, and optionally at least one flavor adjuvant.
  • In a particular embodiment, more than one compound of formula (I) is used in combination since it is found that a synergistic enhancement of the kokumi or umami taste can be achieved in this way. Moreover, it is found that the combination of ingredients can provide the desired kokumi or umami taste without imparting undesirable flavor notes.
  • Moreover, a compound of formula (I) can be advantageously incorporated into flavored articles to positively impart, or modify, the kokumi or umami taste of said articles. Thus, in yet another aspect, the present invention provides a flavored article comprising:
    • i) as taste-conferring or modifying ingredient, at least one compound of formula (I), as defined above, optionally present as part of a flavoring composition; and
    • ii) a foodstuff base.
  • Suitable foodstuff bases, e.g. foods or beverages, can be fried or not, as well as frozen or not, low fat or not, marinated, battered, chilled, dehydrated, instant, canned, reconstituted, retorted or preserved. Typical examples of said foodstuff bases include:
      • a seasonings or condiment, such as a stock, a savory cube, a powder mix, a flavored oil, a sauce (e.g. a relish, barbecue sauce, a dressing, a gravy or a sweet and/or sour sauce), a salad dressing or a mayonnaise;
      • a meat-based product, such as a poultry, beef or pork based product, a seafood, surimi, or a fish sausage;
      • a soup, such as a clear soup, a cream soup, a chicken or beef soup or a tomato or asparagus soup;
      • a carbohydrate-based product, such as instant noodles, rice, pasta, potatoes flakes or fried, noodles, pizza, tortillas, wraps;
      • a dairy or fat product, such as a spread, a cheese, or regular or low fat margarine, a butter/margarine blend, a butter, a peanut butter, a shortening, a processed or flavored cheese;
      • a savory product, such as a snack, a biscuit (e.g. chips or crisps) or an egg product, a potato/tortilla chip, a microwave popcorn, nuts, a pretzel, a rice cake, a rice cracker, etc;
      • an imitation products, such as a dairy (e.g., a reformed cheese made from oils, fats and thickeners) or seafood or meat (e.g. a vegetarian meat replacer, veggie burgers) analogue; or
      • a pet or animal food.
  • Particular foodstuffs in which the compound according to formula (I) finds utility include those having topnotes such as seafood, beef, chicken, vegetables, cheese, fat, tallow and/or marrow are important.
  • For the sake of clarity, it has to be mentioned that, by “foodstuff” we mean here an edible product, e.g. a food or a beverage. Therefore, a flavored article according to the invention comprises one or more compounds according to formula (I), as well as optional benefit agents, corresponding to taste and flavor profile of the desired edible product, e.g. a savory cube.
  • The nature and type of the constituents of the foodstuffs or beverages do not warrant a more detailed description here, the skilled person being able to select them on the basis of his general knowledge and according to the nature of said product.
  • According to any one of the above embodiments of the invention, the taste-modifying composition and the flavored article according to the invention comprise as taste conferring or modifying ingredient a compound of formula (II) wherein R3 represents a hydrogen atom or represents a R5 group, and R4 represents a R5 or OR5 group, R5 representing a C1 to C3 alkyl group. According to any one of the above embodiments of the invention, R5 represents a methyl, ethyl, propyl or iso-propyl group.
  • The proportions in which the compounds according to the invention can be incorporated into the various aforementioned articles or compositions vary within a wide range of values. These values are dependent on the nature of the article to be flavored and on the desired organoleptic effect as well as the nature of the co-ingredients in a given base when the compounds according to the invention are mixed with flavoring co-ingredients, solvents or additives commonly used in the art.
  • In the case of flavoring compositions, typical concentrations are in the order of 0.05% to 30%, more preferably 0.1% to 20%, most preferably 0.1% to 10%, of the compounds of the invention based on the weight of the flavoring compositions into which they are incorporated. Concentrations lower than these, such as in the order of 0.5 ppm to 300 ppm by weight, more preferably 5 ppm to 75 ppm, most preferably 8 to 50 ppm, can be used when these compounds are incorporated into flavored articles, the percentage being relative to the weight of the article.
  • At these levels the taste is typically described as umami-like, lasting, sweet and lingering.
  • Additional embodiments of the compositions disclosed herein and the use thereof are also contemplated, wherein the compositions consist of or consist essentially of the recited components.
  • EXAMPLES
  • Embodiments will now be described in further detail by way of the following example, wherein the abbreviations have the usual meaning in the art, the NMR spectral data were recorded in CDCl3, with a 400 MHz machine for 1H, and a 100 or 125 MHz machine for 13C, the chemical displacements, 8, are indicated in ppm with respect to TMS as standard, and the coupling constants, J, are expressed in Hz.
  • Example 1 Preparation of Compound According to the Invention
  • Synthesis of Amides with Ethyl Chloroformate, General Procedure:
  • The acid (E)-3-(3,4-dimethoxyphenyl)acrylic acid (typically 33 mmol) and DIEA (diisopropyl ethyl amine, 2 equiv.) were diluted in 200 mL of EtOAc and 50 mL of dichloromethane. The solution was cooled to 15° C. and ethyl chloroformate (1 molar equiv.) was added drop wise. The reaction was stirred for 1 hour before the starting amine (1 molar equiv., diluted 2-3 times in EtOAc) was added. The reaction was stirred overnight at room temperature. It was washed with aqueous 5% KHSO4, brine, aqueous 5% NaHCO3, brine, and then dried over Na2SO4 and evaporated under high vacuum for 3 hours. The crude product was purified by flash chromatography (silica gel; cyclohexane/EtOAc, 2:8) or by recrystallization from EtOAc. Yields were between 50 and 80% on the purified product.
  • Figure US20160205979A1-20160721-C00007
  • starting amine: 2-(4-methoxyphenyl)ethanamine
  • 1H NMR: 2.82 (t, J=7.0, 2H), 3.61 (˜q, J=7.0, 5.9, 2H), 3.78 (s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 5.87 (t, J=5.9, 1H), 6.24 (d, J=15.5, 1H), 6.81 (d, J=8.3, 1H), 6.84 (d, J=8.6, 2H), 6.98 (d, J=2.0, 1H), 7.05 (dd, J=8.3, 2.0, 1H), 7.13 (d, J=8.6, 2H), 7.55 (d, J=15.5, 1H).
  • 13C NMR: 34.8 (t), 41.0 (t), 55.2 (q), 55.8 (q), 55.9 (q), 109.7 (d), 111.1 (d), 114.1 (d), 118.6 (d), 121.9 (d), 127.8 (s), 129.7 (d), 130.9 (s), 140.7 (d), 149.1 (s), 150.5 (s), 158.3 (s), 166.2 (s).
  • Figure US20160205979A1-20160721-C00008
  • starting amine: 2-phenylethanamine
  • 1H NMR: 2.89 (t, J=6.8, 2H), 3.66 (˜q, J=6.8, 5.5, 2H), 3.87 (s, 3H), 3.89 (s, 3H), 5.72 (t, J=5.5, 1H), 6.21 (d, J=15.5, 1H), 6.83 (d, J=8.3, 1H), 6.99 (d, J=2.0, 1H), 7.06 (dd, J=8.3, 2.0, 1H), 7.20-7.26 (m, 3H), 7.30-7.34 (m, 2H), 7.56. (d, J=15.5, 1H).
  • 13C NMR: 35.7 (t), 40.8 (t), 55.9 (q), 55.9 (q), 109.7 (d), 111.1 (d), 118.5 (d), 121.9 (d), 126.5 (d), 127.8 (s), 128.7 (d), 128.8 (d), 139.0 (s), 140.9 (d), 149.1 (s), 150.6 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00009
  • starting amine: 2-(3,4-dimethoxyphenyl)ethanamine
  • 1H NMR: 2.84 (t, J=6.9, 2H), 3.63 (˜q, J=6.9, 6.0, 2H), 3.86 (s, 6H), 3.87 (s, 3H), 3.89 (s, 3H), 5.79 (t, J=6.0, 1H), 6.23 (d, J=15.5, 1H), 6.75 (˜d, J=8.0, 1H), 6.77 (d, J=2.0, 1H), 6.81 (d, J=8.0, 1H), 6.83 (d, J=8.0, 1H), 6.99 (d, J=2.0, 1H), 7.06 (dd, J=8.3, 2.0, 1H), 7.56 (d, J=15.5, 1H).
  • 13C NMR: 35.2 (t), 40.9 (t), 55.86 (q), 55.88 (q), 55.93 (2 q), 109.6 (d), 111.1 (d), 111.4 (d), 112.0 (d), 118.5 (d), 120.7 (d), 122.0 (d), 127.8 (s), 131.4 (s), 140.9 (d), 147.7 (s), 149.1 (s), 149.1 (s), 150.6 (s), 166.1 (s);
  • Figure US20160205979A1-20160721-C00010
  • starting amine: 2-(3-methoxyphenyl)ethanamine
  • 1H NMR: 2.86 (t, J=6.9, 2H), 3.65 (˜q, J=7.0, 5.7, 2H), 3.79 (s, 3H), 3.87 (s, 3H), 3.89 (s, 3H), 5.76 (t, J=5.7, 1H), 6.22 (d, J=15.5, 1H), 6.76-6.82 (m, 3H), 6.83 (d, J=8.4, 1H), 6.99 (d, J=2.0, 1H), 7.05 (dd, J=8.4, 2.0, 1H), 7.23 (dt, J=7.5, 1.0, 1H), 7.56 (d, J=15.5, 1H).
  • 13C NMR: 35.7 (t), 40.6 (t), 55.2 (q), 55.8 (q), 55.9 (q), 109.7 (d), 111.1 (d), 111.9 (d), 114.5 (d), 118.6 (d), 121.1 (d), 121.9 (d), 127.8 (s), 129.7 (d), 140.6 (s), 140.8 (d), 149.1 (s), 150.6 (s), 159.8 (s), 166.2 (s).
  • Figure US20160205979A1-20160721-C00011
  • starting amine: 2-(2-methoxyphenyl)ethanamine
  • 1H NMR: 2.90 (t, J=6.8, 2H), 3.62 (˜q, J=6.8, 5.6, 2H), 3.84 (s, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 5.91 (t, J=5.6, 1H), 6.22 (d, J=15.5, 1H), 6.82 (d, J=8.3, 1H), 6.87 (˜dd, J=8.4, 1.0, 1H), 6.91 (dd, J=7.5, 1.0, 1H), 6.99 (d, J=1.9, 1H), 7.05 (dd, J=8.3, 1.9, 1H), 7.15 (dd, J=7.5, 1.8, 1H), 7.22 (dt, J=7.5, 1.8, 1H), 7.53 (d, J=15.5, 1H).
  • 13C NMR: 30.3 (t), 39.8 (t), 55.3 (q), 55.8 (q), 55.9 (q), 109.7 (d), 110.4 (d), 111.1 (d), 118.9 (d), 120.7 (d), 121.8 (d), 127.4 (s), 127.9 (d), 127.9 (s), 130.6 (d), 140.4 (d), 149.1 (s), 150.5 (s), 157.6 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00012
  • Starting amine: 2-(3,5-dimethoxyphenyl)ethanamine
  • 1H NMR: 2.82 (t, J=6.9, 2H), 3.64 (˜q, J=6.9, 5.7, 2H), 3.76 (s, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 5.85 (t, J=5.7, 1H), 6.24 (d, J=15.7, 1H), 6.34 (t, J=2.2, 1H), 6.38 (d, J=2.2, 1H), 6.82 (d, J=8.3, 1H), 6.99 (d, J=2.0, 1H), 7.05 (dd, J=8.3, 2.0, 1H), 7.55 (d, J=15.7, 1H).
  • 13C NMR: 36.0 (t), 40.5 (t), 55.3 (q), 55.8 (q), 55.9 (q), 98.4 (d), 106.8 (d), 109.7 (d), 111.1 (d), 118.6 (d), 122.0 (d), 127.8 (s), 140.8 (d), 141.3 (s), 149.1 (s), 150.6 (s), 161.0 (s), 166.2 (s).
  • Figure US20160205979A1-20160721-C00013
  • starting amine: 2-(3-ethoxyphenyl)ethanamine
  • 1H NMR: 1.40 (t, J=7.0, 3H), 2.85 (t, J=6.9, 2H), 3.65 (˜q, J=6.9, 5.6, 2H), 3.88 (s, 3H), 3.89 (s, 3H), 4.02 (q, J=7.0, 2H), 5.70 (t, J=5.6, 1H), 6.21 (d, J=15.4, 1H), 6.76-6.81 (m, 3H), 6.83 (d, J=8.3, 1H), 7.00 (d, J=2.0, 1H), 7.06 (dd, J=8.3, 2.0, 1H), 7.20-7.25 (m, 1H), 7.55 (d, J=15.4, 1H).
  • 13C NMR: 14.9 (q), 35.7 (t), 40.6 (t), 55.9 (q), 55.9 (q), 63.4 (t), 109.7 (d), 111.1 (d), 112.4 (d), 115.1 (d), 118.6 (d), 121.0 (d), 122.0 (d), 127.8 (s), 129.7 (d), 140.5 (s), 140.8 (d), 149.1 (s), 150.6 (s), 159.2 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00014
  • starting amine: 2-(3-propoxyphenyl)ethanamine
  • 1H NMR: 1.01 (t, J=7.4, 3H), 1.79 (˜hex, J=7.4, 6.5, 2H), 2.85 (t, J=6.9, 2H), 3.65 (˜q, J=6.9, 5.7, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 3.90 (t, J=6.5, 2H), 5.70 (t, J=5.7, 1H), 6.22 (d, J=15.5, 1H), 6.76-6.81 (m, 3H), 6.82 (d, J=8.4, 1H), 6.99 (d, J=1.9, 1H), 7.05 (dd, J=8.4, 2.0, 1H), 7.19-7.23 (m, 1H), 7.55 (d, J=15.4, 1H).
  • 13C NMR: 10.5 (q), 22.6 (t), 35.7 (t), 40.6 (t), 55.8 (q), 55.9 (q), 69.5 (t), 109.7 (d), 111.1 (d), 112.5 (d), 115.1 (d), 118.6 (d), 120.9 (d), 122.0 (d), 127.8 (s), 129.6 (d), 140.5 (s), 140.8 (d), 149.1 (s), 150.6 (s), 159.4 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00015
  • starting amine: 2-(4-isopropoxyphenyl)ethanamine
  • 1H NMR: 1.32 (d, J=6.1, 6H), 2.81 (t, J=6.9, 2H), 3.61 (˜q, J=6.9, 5.8, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 4.51 (hept, J=6.1, 1H), 5.80 (t, J=5.8, 1H), 6.23 (d, J=15.5, 1H), 6.81-6.85 (m, 3H), 6.99 (d, J=2.0, 1H), 7.05 (dd, J=8.4, 2.0, 1H), 7.11 (˜d, J=8.6, 2H), 7.55 (d, J=15.5, 1H).
  • 13C NMR: 22.1 (q), 34.8 (t), 40.9 (t), 55.8 (q), 55.9 (q), 69.9 (d), 109.7 (d), 111.1 (d), 116.1 (d), 118.6 (d), 121.9 (d), 127.8 (s), 129.7 (d), 130.7 (s), 140.8 (d), 149.1 (s), 150.5 (s), 156.6 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00016
  • starting amine: 2-(4-ethylphenyl)ethanamine
  • 1H NMR: 1.23 (t, J=7.6, 3H), 2.63 (q, J=7.6, 2H), 2.85 (t, J=6.8, 2H), 3.64 (˜q, J=6.8, 5.6, 2H), 3.87 (s, 3H), 3.89 (s, 3H), 5.73 (t, J=5.6, 1H), 6.22 (d, J=15.6, 1H), 6.81-6.85 (m, 3H), 6.83 (d, J=8.4, 1H), 6.99 (d, J=2.0, 1H), 7.06 (dd, J=8.4, 2.0, 1H), 7.15 (broad s, 4H), 7.55 (d, J=15.6, 1H).
  • 13C NMR: 15.6 (q), 28.4 (t), 35.3 (t), 40.8 (t), 55.8 (q), 55.9 (q), 109.7 (d), 111.1 (d), 118.7 (d), 121.9 (d), 127.8 (s), 128.1 (d), 128.7 (d), 136.1 (s), 140.7 (d), 142.4 (s), 149.1 (s), 150.5 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00017
  • starting amine: 2-(3,4-dimethylphenyl)ethanamine
  • 1H NMR: 2.24 (broad s, 6H), 2.82 (t, J=7.1, 2H), 3.63 (˜q, J=7.1, 5.5, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 5.75 (t, J=5.5, 1H), 6.22 (d, J=15.6, 1H), 6.82 (d, J=8.4, 1H), 6.95 (dd, J=7.7, 1.8, 1H), 6.98-7.00 (m, 2H), 7.04-7.08 (m, 2H), 7.55 (d, J=15.6, 1H).
  • 13C NMR: 19.3 (q), 19.8 (q), 35.2 (t), 40.8 (t), 55.9 (q), 55.9 (q), 109.7 (d), 111.1 (d), 118.6 (d), 121.9 (d), 126.1 (d), 127.9 (s), 129.9 (d), 130.1 (d), 134.7 (s), 136.2 (s), 136.8 (s), 140.7 (d), 149.1 (s), 150.6 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00018
  • starting amine: 2-(4-isopropylphenyl)ethanamine
  • 1H NMR: 1.25 (t, J=7.0, 3H), 2.85 (t, J=6.9, 2H), 2.89 (hept, J=7.0, 1H), 3.65 (˜q, J=6.9, 5.4, 2H), 3.88 (s, 3H), 3.89 (s, 3H), 5.71 (t, J=5.4, 1H), 6.22 (d, J=15.6, 1H), 6.83 (d, J=8.4, 1H), 7.00 (d, J=2.0, 1H), 7.06 (dd, J=8.4, 2.0, 1H), 7.14-7.19 (m, 4H), 7.56 (d, J=15.6, 1H).
  • 13C NMR: 24.0 (q), 33.7 (d), 35.3 (t), 40.8 (t), 55.9 (q), 55.9 (q), 109.7 (d), 111.1 (d), 118.6 (d), 121.9 (d), 126.7 (d), 127.9 (s), 128.7 (d), 136.2 (s), 140.8 (d), 147.1 (s), 149.1 (s), 150.6 (s), 166.1 (s).
  • Figure US20160205979A1-20160721-C00019
  • starting amine: 2-(3,4-dimethoxyphenyl)ethanamine starting acid: (E)-3-(benzo[d][1,3]dioxol-5-yl)acrylic acid
  • 1H NMR: 2.83 (t, J=7.1, 2H), 3.62 (˜q, J=7.1, 5.9, 2H), 3.858 (s, 3H), 3.862 (s, 3H), 5.70 (t, J=5.9, 1H), 5.98 (s, 2H), 6.16 (d, J=15.6, 1H), 6.74-6.83 (m, 4H), 6.96-6.97 (m, 2H), 7.56 (d, J=15.6, 1H).
  • 13C NMR: 35.2 (t), 40.9 (t), 55.9 (q), 55.9 (q), 101.4 (t), 106.3 (d), 108.5 (d), 111.4 (d), 112.0 (d), 118.6 (d), 120.7 (d), 123.8 (d), 129.2 (s), 131.4 (s), 140.8 (d), 147.7 (s), 148.2 (s), 149.0 (s), 149.1 (s), 166.0 (s).
  • Figure US20160205979A1-20160721-C00020
  • starting amine: 2-(3,4-dimethoxyphenyl)ethanamine starting acid: (E)-3-(4-methoxyphenyl)acrylic acid
  • 1H NMR: 2.83 (t, J=6.9, 2H), 3.62 (˜q, J=6.9, 5.7, 2H), 3.80 (s, 3H), 3.83 (s, 3H), 3.84 (s, 3H), 5.97 (t, J=5.7, 1H), 6.25 (d, J=15.6, 1H), 6.73-6.81 (m, 3H), 6.84 (d, J=8.8, 2H), 7.40 (d, J=8.8, 2H), 7.57 (d, J=15.6, 1H).
  • 13C NMR: 35.3 (t), 41.0 (t), 55.3 (q), 55.8 (q), 55.9 (q), 111.4 (d), 112.0 (d), 114.2 (d), 118.4 (d), 120.7 (d), 127.5 (s), 129.3 (d), 131.5 (s), 140.5 (d), 147.7 (s), 149.0 (s), 160.8 (s), 166.3 (s).
  • Figure US20160205979A1-20160721-C00021
  • starting amine: 2-(3,4-dimethoxyphenyl)ethanamine starting acid: (E)-3-(4-acetoxy-3-methoxyphenyl)acrylic acid
  • After the coupling, deprotection step was performed in MeOH/5% aq Na2CO3 (1:1).
  • 1H NMR: 2.83 (t, J=6.9, 2H), 3.63 (˜q, J=6.9, 5.7, 2H), 3.86 (s, 3H), 3.87 (s, 3H), 3.90 (s, 3H), 5.63 (t, J=5.7, 1H), 6.17 (d, J=15.4, 1H), 6.74 (˜d, J=1.9, 1H), 6.76 (˜dd, J=8.0, 1.9, 1H), 6.82 (d, J=8.0, 1H), 6.89 (d, J=8.0, 1H), 6.96 (d, J=1.9, 1H), 7.03 (dd, J=8.2, 1.9, 1H), 7.52 (d, J=15.4, 1H). Exchangeable OH not seen.
  • 13C NMR: 35.2 (t), 40.9 (t), 55.9 (q), 56.0 (q), 109.6 (d), 111.4 (d), 112.0 (d), 114.7 (d), 118.0 (d), 120.7 (d), 122.2 (d), 127.3 (s), 131.4 (s), 141.2 (d), 146.7 (s), 147.4 (s), 147.7 (s), 149.1 (s), 166.3 (s).
  • Figure US20160205979A1-20160721-C00022
  • starting amine: (4-methoxyphenyl)methanamine starting acid: (E)-3-(3,4-dimethoxyphenyl)acrylic acid
  • 1H NMR: 3.79 (s, 3H), 3.87 (s, 3H), 3.89 (s, 3H), 4.49 (d, J=5.7, 2H), 5.93 (t, J=5.7, 1H), 6.29 (d, J=15.5, 1H), 6.83 (d, J=8.4, 1H), 6.86 (˜d, J=8.7, 2H), 7.00 (d, J=2.0, 1H), 7.06 (dd, J=8.4, 2.0, 1H), 7.24 (˜d, J=8.7, 2H), 7.59 (d, J=15.5, 1H).
  • 13C NMR: 43.3 (t), 55.3 (q), 55.8 (q), 55.9 (q), 109.7 (d), 111.1 (d), 114.1 (d), 118.4 (d), 121.9 (d), 127.8 (s), 129.3 (d), 130.4 (s), 141.1 (d), 149.1 (s), 150.6 (s), 159.1 (s), 165.9 (s).
  • Figure US20160205979A1-20160721-C00023
  • starting amine: 2-(3-methylphenyl)ethanamine starting acid: (E)-3-(3,4-dimethoxyphenyl)acrylic acid
  • 1H NMR: 2.34 (s, 3H), 2.85 (t, J=7.1, 2H), 3.65 (˜q, J=7.1, 5.4, 2H), 3.88 (s, 3H), 3.89 (s, 3H), 5.67 (t, J=5.4, 1H), 6.21 (d, J=15.5, 1H), 6.83 (d, J=8.3, 1H), 7.00 (d, J=2.0, 1H), 7.02-7.07 (m, 4H), 7.21 (˜d, J=7.5, 1H), 7.55 (d, J=15.5, 1H).
  • 13C NMR: 21.4 (q), 35.6 (t), 40.7 (t), 55.9 (q), 55.9 (q), 109.7 (d), 111.1 (d), 118.6 (d), 121.9 (d), 125.8 (d), 127.3 (d), 127.8 (s), 128.6 (d), 129.6 (d), 138.3 (s), 138.8 (s), 140.8 (d), 149.1 (s), 150.6 (s), 166.1 (s).
  • Example 2 Evaluation of the Umami Effect of the Compound According to the Invention (in Water)
  • a) Pure Amide in Pure Water
  • The amides were evaluated at 20 ppm in mineral water in comparison with 0.05% monosodium glutamate (MSG). The trained panelists (5-10) were giving an umami taste intensity note. The Relative umami intensity (RUI) was calculated as follows:

  • RUI=(umami intensity of the amide)/(umami intensity of MSG)*10
  • The following table gives the average of the notes obtained from all panelists.
  • Amide No
    1 2 3 4 5 6 7
    RUI 5.6 3.8 3.3 10.2 3.2 3.7 9.8
    Amide No
    8 9 10 11 12 14 17
    RUI 9.9 6.5 11.5 13.3 5.9 3.8 12.1
  • b) In the Presence of Maltodextrin and MSG
  • Amides 1, 3, 4 and 8 were blended and diluted in maltodextrin at 10% w/w.
  • Each blend was then added into a water solution containing MSG at 500 ppm in order to achieve a concentration ranging between 20 and 100 ppm of the amides, as indicated in the tables below:
  • Sol 1 Sol 2 Sol 3 Sol 4 Sol 5 Sol 6 Sol 7
    MSG 500 500 500 500 500 500 500
    Amide 1  20
    Amide 3  20  35  50
    Amide 4  20
    Amide 8  20

    and also:
  • Sol 8 Sol 9 Sol 10 Sol 11 Sol 12 Sol 13
    MSG 500 500 500 500 500 500
    Amide 7  20
    Amide 9  20
    Amide 10  20
    Amide 11  20
    Amide 12  20
    Amide 17  20

    Sol=solution
    A panel consisted in 15 to 20 trained panelists evaluating the samples for taste properties on a scale of −5 to 5 (−5 denoted no umami effect and 5 denoted extremely strong umami effect, 0 being the umami intensity of a reference umami solution containing Monosodium Glutamate at 0.05%).
    The samples were evaluated with and without nose clip to focus on taste.
  • Umami Umami
    intensity intensity Description
    with without With nose-clip/without
    nose-clip nose-clip nose-clip
    Solution 1 0 0 Umami
    Solution 2 0.91 0.76 Umami, mouthfeel,
    salivating/nutty, woody
    Solution 3 0.46 0.65 Umami, mouthfeel, salty/nutty,
    woody
    Solution 4 0.95 0.95 Umami, salty, mouthfeel,
    salivating, astringent,
    metallic/nutty, earthy
    Solution 5 1.13 1.25 Umami, salty, sweet, mouthfeel,
    fatty
    Solution 6 1.72 1.71 Umami, mouthfeel, salty,
    sweet/nutty
    Solution 7 1.25 1.46 Umami, salty, mouthfeel,
    salivating, hot, cooling
    Solution 8 1.27 1.34 Umami, sweet, salty, astringent,
    bitter, mouthfeel
    Solution 9 0.98 1.16 Umami, sweet
    Solution 10 0.88 0.94 Umami, sweet, salty, pungent,
    bitter
    Solution 11 0.8 0.95 Umami, green, herbal, salivating
    Solution 12 0.95 1.13 Umami, salty, sweet, herbal,
    astringent, metallic
    Solution 13 1.57 1.47 Umami, salty, pungent, mouthfeel,
    herbal
  • Example 3 Evaluation of the Umami Effect of the Compound According to the Invention (in Applications)
  • 1) Evaluation of Amides 1 and 3 in a Beef Bouillon
  • A beef stock was prepared containing the following ingredients:
  • Ingredients in % w/w
    Maltodextrin 52
    Onion Powder 1.5
    Salt 32.7
    White pepper 0.1
    Yeast extract 3.8
    Palm Oil 7.6
    Caramel Color 0.7
    Beef flavor 1.5

    10 g of beef stock was poured in 500 ml of boiling water. MSG and amides 1 and 3 were added to the beef bouillon at the dosages indicated in Table 1.
  • TABLE 1
    Ingredients in ppm
    Bouillon 1 Bouillon 2 Bouillon 3 Bouillon 4
    MSG 700
    Amide 1 25
    Amide 3 50

    The bouillons were presented to 5 trained panelists on a blind test basis. They were asked to rate the samples for taste properties on a scale of 0 to 10 (0 denoted no umami effect and 10 denoted extremely strong umami effect). The results are reported herein below:
  • TABLE 2
    Averages for each bouillon and descriptors
    Umami
    intensity Comments
    Bouillon 1 2.1 Yeasty, oniony, beef fat, flat
    Bouillon 2 5.1 More salty, round, umami, oniony, juicy, fatty
    Bouillon 3 3.1 Mouthfeel, salty, body
    Bouillon 4 3.9 Umami, round
  • 2) Evaluation of Amide 1 in a Chicken Bouillon
  • A chicken stock was prepared containing the following ingredients:
  • Ingredients in % w/w
    Chicken meat powder 2.5
    Maltodextrin 32.2
    Garlic powder 0.5
    Palm oil 5
    Ground white pepper 0.3
    Yeast extract 10
    Onion powder 3.25
    Toasted onion powder 2
    Turmeric 0.25
    Salt 35
    Chicken fat 5
    Chicken flavor 4

    10 g of chicken stock was poured in 500 ml of boiling water. MSG and amide 1 were added to the chicken bouillon at the dosages indicated in Table 3.
  • TABLE 3
    Ingredients in ppm
    Bouillon 1 Bouillon 2 Bouillon 3
    MSG 500
    Amide 1 20

    The bouillons were presented to 5 trained panelists on a blind test basis as described above. The results are reported herein below:
  • TABLE 4
    Averages for each bouillon and descriptors
    Umami
    intensity Comments
    Bouillon 1 3.5 Flat, salty
    Bouillon 2 6.4 Umami, mouthfeel, sweet, pleasant
    Bouillon 3 6.3 Umami
  • 3) Evaluation of Amides 1 and 4 in a Pork Flavor
  • Amides 1 and 4 were evaluated at 20 ppm by 5 trained panelists in a pork flavor on a blind test basis as described above. The results are reported herein below:
  • TABLE 5
    Averages for each bouillon and descriptors
    Umami
    intensity Comments
    Pork flavor 4.5 Meaty, pork, animalic, fatty, mouthfeel,
    balanced, good
    Pork flavor + 6 More umami, more meaty, pork notes
    Amide 1 enhanced, liquorice note, slightly
    cooling, fatty
    Pork flavor + 7 More umami, rich strong meaty and pork
    Amide 4 notes, fatty
  • 4) Evaluation of Amides 1, 4, 8, 11, 12 in a Chicken Bouillon Containing MSG and Ribotides
  • A chicken bouillon was prepared containing the following ingredients:
  • Ingredients in % w/w
    Salt 27
    MSG 10
    Ribotides 0.03
    Sugar 4
    Vegetable oil 2
    Chicken fat 2
    White pepper powder 0.1
    Yeast powder 1.5
    Soy sauce powder 0.5
    Chicken powder 4
    Maltodextrin 35.77
    Corn starch 5
    Wheat powder 3
    Egg powder 4
    Chicken flavor 1.1

    1 g of chicken bouillon was poured into 100 ml of boiling water. Amides 1, 4, 8, 11, 12 were added to the chicken bouillon at the dosages indicated in Table 6:
  • TABLE 6
    Ingredients in ppm
    Bouillon
    1 2 3 4 5 6
    Amide 1 25
    Amide 4 25
    Amide 8 8
    Amide 11 5
    Amide 12 25

    The bouillons were presented to 5 trained panelists on a blind test basis as described above. The results are reported herein below:
  • TABLE 7
    Averages for each bouillon and descriptors
    Umami
    intensity Comments
    Bouillon 1 5.3 White meat, round, no off notes
    Bouillon 2 6.3 Sweet, meaty, balanced, very round, full
    Bouillon 3 6.3 Slow build, mouthfeel, sweet, umami, no
    off note, round, very balanced
    Bouillon 4 6.7 Strong umami, sweet, lingering, sweet and
    umami
    Bouillon 5 6.7 White meat, slightly astringent, very full,
    round, lasting, no off notes
    Bouillon 6 6 Mouthfeel, no off note, umami, sweet, very
    balanced slightly astringent
  • 5) Evaluation of Amides 1 and 3 in Marinated Chicken
  • A marinade was prepared containing the following ingredients:
  • Ingredients in % w/w
    Water 90
    Salt 4
    Hamine phosphate 1
    Chicken White Meat Flavor 5

    MSG, amides 1 and 3 were added to the marinade at the dosages indicated herein below:
  • Ingredients in % w/w
    Marinade 1 Marinade 2 Marinade 3 Marinade 4
    Marinade 100 100 100 100
    MSG 0.3
    Amide 1 0.05
    Amide 3 0.05

    Marinades were added with chicken meat in plastic bags in the following quantities:
  • Ingredients in % w/w
    Marinated Marinated Marinated Marinated
    chicken 1 chicken 2 chicken 3 chicken 4
    Chicken meat 90 90 90 90
    Marinade 1 10
    Marinade 2 10
    Marinade 3 10
    Marinade 4 10

    Samples were tumbled under vacuum for 25 minutes, and then cooked in a steam oven until meat temperature reaches 75° C. Samples were then frozen and reheat for 20 minutes at 80° C. in the oven before evaluation.
    The marinated chicken samples were presented to 5 trained panelists on a blind test basis as described above. The results are reported herein below:
  • TABLE 8
    Averages for each marinated chicken and descriptors
    Umami
    intensity Comments
    Marinated chicken 1 1.3 dry
    Marinated chicken 2 4 Strong, clean, pleasant aftertaste, juicy
    Marinated chicken 3 4.9 Very similar to MSG, meaty, round,
    brothy, balanced, sweet, full
    Marinated chicken 4 3 Clean, pleasant, strong impact,
    enhances chicken juicy, sweet
  • 6) Evaluation of Amides 1 and 3 in Surimi
  • Surimi was prepared using the following ingredients in % w/w:
  • Ingredients in % w/w
    Frozen surimi base 39.8
    Salt 1.19
    Native Wheat Starch 4.98
    Potato Starch 4.98
    Sunflower Oil 4.98
    Egg White 6.97
    Ice 36.6
    Crab extract 0.5

    The dry ingredients (salt, starches) were first put in a bowl chopper. The ice mix was added until homogenous. The surimi base was then added and mixed for 3 minutes. The oil was added while mixing, followed by the egg white.
    MSG and the amides 1 and 3 were added to the surimi preparation at the dosages indicated herein below:
  • Surimi 1 Surimi 2 Surimi 3 Surimi 4
    MSG 5000 ppm
    Amide 1 50 ppm
    Amide 3 50 ppm

    The 4 surimis were put in cooking bags and cooked for 45 minutes in a steam oven at 90° C. The samples were then quickly cooled down.
    The surimi samples were presented to 5 trained panelists on a blind test basis as described above. The results are reported herein below:
  • TABLE 9
    Averages for each surimi and descriptors
    Umami
    intensity Comments
    Surimi 1 2.2 Flat, eggy, slightly amine, not really fishy
    Surimi 2 5.3 Sweet, umami, round, sweet, salty
    Surimi 3 3.2 Slightly sweet, umami, juicy, round, fishy, crab
    Surimi 4 3.7 Crab, slightly amine, sweet, fishy, oyster,
    crab, juicy
  • Example 4
  • Monosodium glutamate (MSG), amide 1, an ingredient (glucosylated stevia glycosides from U.S. Pat. No. 7,807,206 (containing Rebaudioside A and stevioside), sea salt, succinic acid, yeast extract, hydrolyzed corn protein, or hydrolyzed wheat gluten) and a blend of the amide with the ingredient were weighed and hot mineral water was added to each sample according to the dosages indicated in each experiments. The samples were stirred in order to ensure the solubilisation of the ingredients.
  • Each sample was coded, and tasted in a random order by 5 trained panelists.
  • For each sample, the umami intensities were rated on a 1-10 scale (1 denoted no umami effect and 10 denoted extremely strong umami effect). The “liking” was also rated on a 1-10 scale (1 was given if the sample was not liked, and 10 liked very much). The panelists were also asked to describe the samples.
  • TABLE 10
    Amide 1 & glucosylated stevosides
    Samples Umami Liking Panelists' Comments
    MSG @ 0.04% 5.8 6.3 Balanced, meaty, up front
    umami
    Amide 1 @20 ppm 4.8 4.8 strong umami, lingering,
    slow build up
    glucosylated 1.8 2.8 weak
    stevosides @8 ppm
    Amide 1 @20 ppm + 4.6 5.0 The sweetest, very long
    Rebaudioside A lasting, build, umami,
    @8 ppm clean, the closest to MSG
  • TABLE 11
    Amide 1 with Sea Salt
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 5.8 6.8 immediate onset, umami,
    balanced, clean
    Amide 1 @20 ppm 3.3 3.8 umami, clean, lasting
    Sea Salt @0.03% 1.0 1.4 astringent, empty, weak.
    Amide 1 @20 ppm + 4.1 5.0 umami, slow build,
    Sea Salt @0.03% lingering, lasting.
  • TABLE 12
    Amide 1 with Succinic Acid (36 ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 4.2 5.8 umami, first impact, meaty,
    Amide 1 @20 ppm 3.7 4.0 umami, lasting, builds
    Succinic acid @36 ppm 1.0 1.3 weak, astringent,
    Amide 1 @20 ppm + 3.6 5.0 lasting, builds, umami
    Succinic acid @36 ppm up front
  • TABLE 13
    Amide 1 with Yeast Extract (60 ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 5.5 5.8 lasting, umami, round,
    mouthfeel
    Amide 1 @20 ppm 4.5 4.3 lingering, slow build up,
    strong umami, lasting.
    Yeast extract @60 ppm 3.4 2.2 yeasty, weak, watery,
    umami.
    Amide 1 @20 ppm + 5.4 5.0 long lasting, builds,
    Yeast extract @60 ppm lingering, strong umami,
    sweet, meaty, yeasty
  • TABLE 14
    Amide 1 with Yeast Extract (175 ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 5.5 6.3 strong umami, balanced
    meaty good
    Amide 1 @20 ppm 4.5 3.0 builds, umami, clean,
    astringent
    Yeast extract @175 ppm 3.3 3.5 yeasty, umami, balanced,
    meaty
    Amide 1 @20 ppm + 6.3 6.0 strong, build, lasting,
    Yeast extract @175 ppm yeasty, more meaty
  • TABLE 15
    Amide 1 with Yeast Extract (10 ppm)
    Sample Umami Liking Panelists; Comments
    MSG @0.04% 4.0 4.8 mild umami, up front,
    weak, lingers, round,
    mouthfeel
    Amide 1 @10 ppm 2.5 2.5 build, lasting, strong
    lingering, sl M/F
    Yeast extract @60 ppm 1.0 3.8 weak
    Amide 1 @10 ppm + 3.8 4.7 builds, lasting, lacks up
    Yeast extract @60 ppm front, weak mouthfeel,
    builds slowly, meaty
  • TABLE 16
    Amide 1 with Hydrolized Corn Protein (ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 5.4 5.2 umami, round,
    mouthfeel, meaty
    Amide 1 @20 ppm 4.2 3.8 lasting, builds, strong
    umami, clean
    Hydrolized corn 2.0 1.8 weak
    protein @40 ppm
    Amide 1 @20 ppm + 7.3 7.5 lasting, very strong
    Hydrolized corn umami, and round,
    protein @40 ppm clean, meaty
  • TABLE 17
    Amide 1 with Hydrolized Corn Protein (320 ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 3.0 3.7 umami, clean, sweet,
    full, mouthfeel, round
    Amide 1 @20 ppm 1.7 3.3 builds slowly
    Hydrolized corn 2.3 3.3 weak, sl umami, umami
    protein @320 ppm balanced but weak meaty,
    mild mouthfeel, round
    Amide 1 @20 ppm + 5.0 4.7 Umami, MSG like, strong
    Hydrolized corn umami impact, lingering,
    protein @320 ppm bit more intense, lasting
  • TABLE 18
    Amide 1 with Hydrolized Wheat Gluten (320 ppm)
    Sample Umami Liking Panelist's Comments
    MSG @0.04% 5.5 6.3 mild mouthfeel, round,
    mild umami
    Amide 1 @20 ppm 4.0 4.8 lingering umami
    Hydrolized wheat 2.0 2.8 very weak mouthfeel,
    gluten @100 ppm sweet little umami
    Amide 1 @20 ppm + 6.5 5.8 slow builds of mouthfeel,
    Hydrolized wheat stronger umami, sweet
    gluten @100 ppm
  • TABLE 19
    Amide 1 with Hydrolized Wheat Gluten (100 ppm)
    Sample Umami Liking Panelists' Comments
    MSG @0.04% 7.2 7.0 more umami and long
    lasting, umami
    Amide 1 @10 ppm 3.7 4.5 umami
    Nature Pep 971481 4.3 5.0 yeasty
    @100 ppm
    Amide 1 @10 ppm + 5.3 5.5 yeasty and acidic,
    Nature Pep 971481 more umami lingers
    @100 ppm
  • In some instances, the combinations provide an umami taste improvement better than each component alone. In other instances, the combination is preferred over each alone.

Claims (9)

1. A taste-modifying, composition comprising:
(i) a mixture of at least about of a compound according to formula (I)
Figure US20160205979A1-20160721-C00024
in the form of any one of its stereoisomers or a mixture thereof, and wherein
n is an integer from 0 to 2;
the dotted line represents a carbon-carbon single or double bond; and
each of R1 to R4, when taken independently from each other, represents a hydrogen atom or represents a R5 or OR5 group, R5 representing a C1 to C5 alkyl group; and optionally one of the groups R1 to R4 represents —OH; and/or
when R1 and R2 are taken together, and/or R3 and R4 are taken together, represent a OCH2O group, provided said groups taken together are adjacent substituents of the phenyl group; and
(ii) a flavor base;
wherein the flavor base is selected from the group consisting of;
a) an umami imparting ingredient;
b) an acid;
c) a salt;
d) a sweetness imparting compound; and
e) a compound selected from the group consisting of:
Figure US20160205979A1-20160721-C00025
or one of their salts.
2. The composition as recited in claim 1, wherein it is 0 or 1;
the dotted line represents carbon-carbon single or double bond; and
each of R1 to R4, taken independently from each other, represents a hydrogen atom, or represents a R5 or OR5 group, R5 representing a C1 to C5 alkyl group.
3. The composition as recited in claim 1, wherein said compound (I) is of formula
Figure US20160205979A1-20160721-C00026
in the form of any one of its stereoisomers or a mixture thereof, and wherein each of R3 or R4, taken independently from each other, represents a hydrogen atom, or represents a R5 or OR5 group, R5 representing a C1 to C5 alkyl group.
4-6. (canceled)
7. The composition as recited in claim 1, wherein said compound (I) is selected amongst (E)-3-(3,4-dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide, (E)-3-(3,4-di methoxy-phenyl)-N-(3-methoxyphenethyl)acrylamide, (E)-3-(3,4-dimethoxyphenyl)-N-(3-ethoxy-phenethyl)acrylamide, (E)-3-(3,4-dimethoxyphenyl)-N-(3-propoxyphenethyl)acrylamide, (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropoxyphenethyl)acrylamide, E)-3-(3,4-dim ethoxyphenyl)-N-(4-ethylphenethyl)acrylamide, (E)-3-(3,4-dimethoxyphenyl)-N-(3,4-dimethylphenethyl)acrylamide, (E)-3-(3,4-dimethoxyphenyl)-N-(4-isopropyl-phenethyl)acrylamide or (E)-3-(3,4-dimethoxyphenyl)-N-(3-methylphenethyl)acrylamide.
8-10. (canceled)
11. A flavored article comprising:
i) a composition according to claim 8, and
ii) a foodstuff base wherein a compound of Formula I is provided in an amount of from about 1 to about 100 ppm and wherein the flavor base is selected from the group consisting of:
a) at least about from 1 to about 2000 ppm of an umami imparting ingredient provided that when the umami imparting ingredient is Ribotide it is not provided in chicken bouillon in an amount of 300 ppm;
b) at least about form 1 to about 500 ppm acid;
c) at least about from 100 to about 10,000 ppm of a salt; and
d) at least about 0.1 to about 1000 ppm of a sweetness imparting compound; and
e) at least about 0.1 ppm up to about 200 ppm of a compound selected from the group consisting of:
Figure US20160205979A1-20160721-C00027
or one of their salts.
12. A flavored article according to claim 11, characterized in that the foodstuff base is a seasonings or condiment, a meat-based products, a soup, a carbohydrate-based product, a dairy or fat product, a savory product, an imitation product or a pet or animal food.
13. A flavored article according to claim 11, characterized in that the foodstuff base is selected from the group consisting of:
a) a stock, a savory cube; a powder mix a flavored oil, a sauce, a salad dressing or a mayonnaise;
b) a poultry, beef or pork based product, a seafood, surimi, or a fish sausage;
c) a clear soup, a cream soup, a chicken or beef soup or as tomato or asparagus soup;
d) instant noodles, rice, pasta, potatoes flakes or fried, noodles, pizza, tortillas, wraps;
e) a spread, a cheese, or regular or low fat margarine, a butter/margarine blend, a butter, a peanut butter, a shortening, a processed or flavored cheese;
f) a snack, a biscuit (e.g. chips or crisps) or an egg product, a potato tortilla chip a microwave popcorn, nuts, a bretzel, a rice cake, a rice cracker; or
g) a reformed cheese made from oils, fats and thickeners or a vegetarian meat replacer, a vegetarian burger.
US14/654,832 2012-12-21 2013-12-12 Taste-modifying combinations Abandoned US20160205979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/654,832 US20160205979A1 (en) 2012-12-21 2013-12-12 Taste-modifying combinations

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261745439P 2012-12-21 2012-12-21
PCT/EP2013/076380 WO2014095564A1 (en) 2012-12-21 2013-12-12 Taste-modifying combinations
US14/654,832 US20160205979A1 (en) 2012-12-21 2013-12-12 Taste-modifying combinations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/076380 A-371-Of-International WO2014095564A1 (en) 2012-12-21 2013-12-12 Taste-modifying combinations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/145,646 Continuation US11224243B2 (en) 2012-12-21 2018-09-28 Taste-modifying combinations

Publications (1)

Publication Number Publication Date
US20160205979A1 true US20160205979A1 (en) 2016-07-21

Family

ID=49918673

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/654,832 Abandoned US20160205979A1 (en) 2012-12-21 2013-12-12 Taste-modifying combinations
US16/145,646 Active 2034-09-24 US11224243B2 (en) 2012-12-21 2018-09-28 Taste-modifying combinations

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/145,646 Active 2034-09-24 US11224243B2 (en) 2012-12-21 2018-09-28 Taste-modifying combinations

Country Status (4)

Country Link
US (2) US20160205979A1 (en)
EP (1) EP2934182B1 (en)
CN (1) CN104883904B (en)
WO (1) WO2014095564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061368A1 (en) * 2019-03-28 2022-03-03 Firmenich Sa Flavor system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3398442A1 (en) 2017-05-05 2018-11-07 Takasago International Corporation Use of acetylenic fatty acid compounds as kokumi flavor
CN108813535A (en) * 2018-06-25 2018-11-16 珠海市宝门食品企业有限公司 A kind of vegetarian diet chicken flavor flavoring compositions, steamed bean curd roll powder and preparation method
CN113272273B (en) * 2019-08-15 2023-09-15 弗门尼舍有限公司 Taste improving compounds and uses thereof
MX2022002713A (en) 2019-09-30 2022-03-22 Givaudan Sa Improvements in or relating to organic compounds.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084506A1 (en) * 2003-08-06 2005-04-21 Catherine Tachdjian Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
US20120308703A1 (en) * 2011-05-31 2012-12-06 Symrise Ag Cinnamamides as savory flavorings

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000056307A (en) * 1999-02-19 2000-09-15 강해진 Zanthoxylum piperitum tea
DE50206069D1 (en) 2001-12-27 2006-05-11 Symrise Gmbh & Co Kg Use of ferulic acid amides as flavoring agents
US7427421B2 (en) 2004-09-10 2008-09-23 International Flavors & Fragrances Inc. Saturated and unsaturated N-alkamides exhibiting taste and flavor enhancement effect in flavor compositions
US7807206B2 (en) 2005-10-11 2010-10-05 Purecircle Sdn Bhd Sweetner and use
US7928111B2 (en) * 2007-06-08 2011-04-19 Senomyx, Inc. Compounds including substituted thienopyrimidinone derivatives as ligands for modulating chemosensory receptors
US8076491B2 (en) * 2007-08-21 2011-12-13 Senomyx, Inc. Compounds that inhibit (block) bitter taste in composition and use thereof
DE102008029665A1 (en) 2008-06-24 2009-12-31 Henkel Ag & Co. Kgaa Perlend-tingling mouthwash preparations
CA2731800C (en) * 2008-07-31 2018-03-20 Senomyx, Inc. Processes and intermediates for making sweet taste enhancers
EP2725927B2 (en) * 2011-06-30 2019-12-04 Firmenich SA Taste modifying product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084506A1 (en) * 2003-08-06 2005-04-21 Catherine Tachdjian Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
US20120308703A1 (en) * 2011-05-31 2012-12-06 Symrise Ag Cinnamamides as savory flavorings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061368A1 (en) * 2019-03-28 2022-03-03 Firmenich Sa Flavor system

Also Published As

Publication number Publication date
CN104883904A (en) 2015-09-02
US11224243B2 (en) 2022-01-18
US20190029300A1 (en) 2019-01-31
EP2934182A1 (en) 2015-10-28
CN104883904B (en) 2021-04-06
WO2014095564A1 (en) 2014-06-26
EP2934182B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11690390B2 (en) Taste modifying product
US11224243B2 (en) Taste-modifying combinations
US20110020518A1 (en) Taste modifying product
US20110020517A1 (en) Taste modifying product
EP2049509A2 (en) New furyl thioalkanals useful in the flavor industry
US20100310745A1 (en) Flavoring compositions for savory applications
EP4037502A1 (en) Improvements in or relating to organic compounds
AU2017279654B2 (en) Taste modifying product
AU2014216011A1 (en) Taste modifying product
US20160295903A1 (en) Organic compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRMENICH SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BILLAT-ROSSI, MARYLINE;ABERHARDT, KASIA;REEL/FRAME:035881/0521

Effective date: 20150420

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION