US20160196439A1 - Audio encryption systems and methods - Google Patents

Audio encryption systems and methods Download PDF

Info

Publication number
US20160196439A1
US20160196439A1 US15/071,741 US201615071741A US2016196439A1 US 20160196439 A1 US20160196439 A1 US 20160196439A1 US 201615071741 A US201615071741 A US 201615071741A US 2016196439 A1 US2016196439 A1 US 2016196439A1
Authority
US
United States
Prior art keywords
encrypted
audio
audio data
data
mobile device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/071,741
Inventor
Alexander Poston, JR.
Jackson Robert Harper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entrada Health
Original Assignee
Entrada Health
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entrada Health filed Critical Entrada Health
Priority to US15/071,741 priority Critical patent/US20160196439A1/en
Publication of US20160196439A1 publication Critical patent/US20160196439A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0894Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
    • H04L9/0897Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage involving additional devices, e.g. trusted platform module [TPM], smartcard or USB
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/28Constructional details of speech recognition systems
    • G10L15/30Distributed recognition, e.g. in client-server systems, for mobile phones or network applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Definitions

  • the present invention relates to encryption systems and methods for audio data, and more particularly, for complete security for audio encryption of recorded data for transmission, management, and modification or transformation thereof.
  • Prior art includes automatic systems and methods for transcription of medical dictation, including, by way of example, the following:
  • None of the prior art or relevant art cited or known at the time of the invention addresses the longstanding, unmet need for secure audio data storage, review, transmission, management, and transcription from audio to corresponding text (where appropriate), much less in the rapidly changing environment in any business or industry, in particular but not limited to in law enforcement, legal, and healthcare applications of electronic records (ER), where systems and processes need to be moving toward further efficiency, cost reduction, and paperless systems, all while requiring data privacy and security.
  • ER electronic records
  • the present invention relates to encryption systems and methods for complete audio encryption of recorded data for transmission, management, and modification or transformation thereof from a mobile device without compromising data security by exposing unencrypted data at any time.
  • a broad embodiment of this invention is directed to systems and methods having a remote server computer in communication with a network over which distributed users having authorization to access the system provide inputs of audio from respective mobile devices having iOS operating systems, wherein the inputs are preferably provided as voice-based audio of spoken words, that are transformed in real time to encrypted audio data upon recordation on the mobile device, and wherein the encrypted audio data is automatically available for selectively activating functions on the mobile device, within a software application operable thereon, including saving, managing, editing, deleting to end, transmitting, and/or reviewing and for automatically transforming the encrypted audio data to encrypted text that corresponds to the audio inputs.
  • FIG. 1 is a schematic diagram of one embodiment of the invention including at least one mobile device, remote server computer/database, and communications network.
  • FIG. 2 is another schematic diagram of an embodiment of the present invention including at least one mobile device, remote server computer/database, and communications network.
  • FIG. 3 shows a screen shot of data stored in an audio files database and a screenshot of the corresponding files on disk.
  • FIG. 4 illustrates a screen shot of an interactive graphic user interface (GUI) on a mobile device according to one embodiment of the present invention.
  • GUI graphic user interface
  • FIG. 5 is a flow diagram of methods according to the present invention, specifically relating to mobile device-based editing of encrypted audio data.
  • FIG. 6 shows a screen shot of another interactive GUI on a mobile device according to one embodiment of the present invention.
  • FIG. 1 illustrates a schematic diagram of a remote server computer and network connection with at least one mobile device in communication with the remote server computer for providing the means for receiving audio inputs via the at least one mobile device and immediately transforming the audio inputs into encrypted audio data recorded on the device.
  • FIG. 2 is another schematic diagram of an embodiment of the present invention including at least one mobile device, remote server computer/database, and communications network.
  • the present invention provides a mobile-device-based application used to capture audio inputs and automatically transform them into encrypted audio data, and most preferably, automatically transform them into a series of segments of encrypted audio data, wherein the segments are exactly the same size or length (e.g., 128 bytes).
  • the systems and methods of the present invention thus provide for totally and completely encrypted audio as the audio inputs are being recorded, i.e., in real time or near real-time, to ensure data security of the audio recorded, even if the device is compromised.
  • all other processing of the encrypted audio data including but not limited to reviewing, saving, transmitting, transcribing, editing, and combinations thereof provide for encrypted data management, i.e., all audio is encrypted and the audio data is never un-encrypted storage on the mobile device.
  • the methods of the present invention include steps for mobile devices having iOS operating systems, wherein the inputs are preferably provided as voice-based audio of spoken words, to be transformed in real time to encrypted audio data upon recordation on the mobile device, and wherein the encrypted audio data is automatically available for selectively activating functions on the mobile device, within a software application operable thereon, including saving, managing, editing, transmitting, and/or reviewing and for automatically transforming the encrypted audio data to encrypted text that corresponds to the audio inputs.
  • the application provides for a voice audio file to be captured through a microphone in the mobile device, or wirelessly via Bluetooth technology or any other microphone-based input connected with the device, either wirelessly or with wired connection, and encrypted in real time to ensure complete data security, whether in audio or data text format.
  • the system automatically converts or transforms the audio inputs into encrypted audio data, without user intervention.
  • the systems and methods of the present invention are further operable for automatically storing the encrypted audio as a series of encrypted segments in a database, which contains offsets into those slices for playback.
  • a segment refers to an on disk segment of data, a slice is a portion of a segment. Multiple slices could point to different sections of a single segment.
  • an entire recording is considered a library, wherein a segment represents a book, and a slice represents a chapter or several chapters in that book.
  • This format allows other operations on the encrypted data to occur instantly, and defers editing computations until playback, at a later time.
  • FIG. 5 is a flow diagram of methods according to the present invention, specifically relating to mobile device-based editing of encrypted audio data.
  • Audio inputs are received by the mobile device via a microphone, or wirelessly via Bluetooth technology or any other microphone-based input connected with the device, either wirelessly or with wired connection, and automatically transformed into encrypted audio data, and stored in memory on the mobile device.
  • the encrypted audio data available for editing includes a first continuous segment of audio input recorded on the mobile device; the software application that is operating on the mobile device automatically transforms the first continuous segment of audio input into encrypted audio data at the time of recordation to ensure complete data security.
  • the encrypted data corresponding to the first continuous segment of audio input recorded is further transformed into a series of segments of exactly the same length or size that are saved to an on disk file.
  • the authorized dictator user for the mobile device provides a selection input via interactive graphic user interface, wherein the selection includes a specific editing function to be performed to a specific slice of encrypted data (wherein a slice of encrypted data is a subset of the segment), and then the mobile device software application automatically performs the specific editing function to the specific slice of encrypted data within a data segment.
  • an insert audio input is recorded and the corresponding encrypted audio data associated with the insert audio input is automatically offset within the first segment of encrypted data.
  • the encrypted data with insertion are transformed into a new edited encrypted data file, and stored on the remote server computer.
  • the remote server and/or database is automatically queried, and encrypted audio data automatically read from the encrypted audio data slices based on the offsets and lengths of encrypted audio data that is automatically stored in the remote server and/or database.
  • FIG. 3 shows a screen shot of the data stored in an audio files database and just a screenshot of the corresponding files on disk.
  • the system automatically created encrypted audio data from an audio input from a dictation user, and provided for the system to create a number of continuous segments (in series) of the encrypted audio data by recording and then pausing; these slices are numbered in series accordingly on the right side of the screen shot.
  • the system provided for the function of rewind through most of that particular slice (number 6 ) and began recording in an overwrite mode, thereby automatically transforming the encrypted data series to include a slice 7 of the encrypted audio data, which has a stream offset as illustrated in the left side of the screen shot of FIG. 3 .
  • the systems and methods of the present invention provide for automatic transformation of the audio inputs into encrypted audio data as it is being recorded by encryption of a segment of data, i.e., a predetermined amount of data, preferably a predetermined amount of data, wherein each predetermined amount of data is exactly the same length; in a most preferred embodiment, the predetermined amount of data is equivalent to 128 bytes.
  • the recording, saving or storing, transmitting to the remote server computer over the network (wireless or otherwise), reviewing, editing (including inserting, deleting, overwriting, etc.) are steps that are all performed on the encrypted audio data, thereby ensuring that the audio inputs, once recorded on the mobile device, are secure.
  • dictator users can dictate discrete text segments while still having the speed and flexibility of mobility, i.e., using a mobile device for targeted, field-specific dictation of audio data into a templated interactive graphic user interface (GUI), wherein on a real-time basis of dictation, the audio data stream is transformed automatically by the system into encrypted chunks of recorded data.
  • GUI interactive graphic user interface
  • FIG. 4 illustrates one interactive GUI for editing encrypted audio data on a mobile device, with click-select or touch-select items that control corresponding functionality relating to editing as set forth in the foregoing.
  • the present invention provides methods for secure audio data management including the steps of: providing a base system including a remote server computer having a memory, a processor, and power supply connected thereto, in communication via a network with at least one mobile device constructed and configured for receiving an audio input; and the system receiving or recording the audio input by the at least one mobile device and automatically transforming the audio input into encrypted audio data at the time the audio input is being recorded on the at least one mobile device, and the system automatically transforming the encrypted audio data into a series of encrypted audio data slices, each of the slices having an order and a content, respectively, wherein each of the encrypted audio data slices is editable in its encrypted form, without affecting the order or content of the non-edited segments, thereby providing completely encrypted audio for secure audio data management.
  • method steps of the present invention further include at least one mobile device(s) communicating with the remote server computer via wireless communication over the network for transmitting the encrypted audio data, wherein the method provides the audio data and/or its transcribed equivalent are completely encrypted from the time of generation and capture as the audio input by the at least one mobile device.
  • the system immediately upon recording the audio input, automatically transforms the encrypted audio data into a series of encrypted audio data slices, each of the slices having an order and a content, respectively, wherein each of the encrypted audio data slices is editable in its encrypted form, without affecting the order or content of the non-edited slices.
  • the management of the audio data includes but is not limited to the following functions: reviewing, saving, transferring to a remote data server (database), editing, editing remotely from the dictation generation and/or on a mobile device by the dictation user/generator, deleting, forwarding to remote server and/or database for storage and other processing, and combinations thereof.
  • a remote data server database
  • editing editing remotely from the dictation generation and/or on a mobile device by the dictation user/generator
  • deleting forwarding to remote server and/or database for storage and other processing, and combinations thereof.
  • systems and methods include operations on a mobile device using iOS platform for receiving inputs of audio, namely voice-based audio of spoken words, that are automatically transformed in real time upon recording to encrypted audio data.
  • the encrypted audio data is managed later with functions including saving, editing, transmitting, and/or reviewing.
  • the present invention provides responsive editing and seeking of encrypted audio data on mobile devices, most preferably those having proprietary iOS platforms thereon, namely iPhone, iPad, iPod Touch, and combinations thereof.
  • the software of the present invention is particularly suited to operation on this proprietary iOS, since it provides for automatic management of the encrypted audio data in modules of predetermined size (e.g., 128 bytes) for rapid, responsive editing while maintaining data security on mobile devices.
  • Examples of applications of the present invention systems and methods include, but are not limited to mobile device-based dictation for Healthcare, Law Enforcement, Legal, Education, Business, consulting, Financial and Accounting, and any application where data security of recorded audio and electronic records management is important. Furthermore, the present invention is provided for any application where data needs to be captured remotely and reported into a central database. Thus, the present invention systems and methods provide for multiple entities to share secure, confidential notes created to document services performed at the point of provision, (e.g., in medical practices this means patient care), with all notes, from audio recording at the point of dictation on a mobile device to transcription, being completely encrypted to ensure data security.
  • EHR Electronic Health Record
  • the present invention includes technology solutions that address the longstanding and unmet needs in the healthcare market and the context of growing, aging population with increasing demands on health care service providers and with increasing challenges of securely managing electronic health records (EHR).
  • EHR electronic health records
  • the systems and methods of the present invention help organizations accelerate adoption of clinical information systems by addressing one of the most significant problems within the largest industry in the U.S. with an innovative solution that allows this change to occur while protecting physician productivity; while driving costs from the system and while reducing days in Accounts Receivable by accelerating chart completion for billing.
  • Particular commercial applications include outpatient clinics (including specialists and multi-specialty groups), hospitals, and surgery centers for the automated, encrypted audio dictation and corresponding text-based documentation for improved speed, accuracy, and physician productivity, while also preserving complete data security and patient data privacy.
  • the solution of the present invention interfaces with either schedules or census information to capture all relevant demographics and create client work lists. Doctors are still allowed to dictate relevant portions of the encounter (e.g. progress note, operative report, History & Physical, etc.)
  • the dictation is automatically routed to a proprietary back-end system, where it is converted into a draft report through use of voice recognition technology, all while maintaining encryption of the audio data to ensure complete security of the patient-related information.
  • an editor reviews the information and finalizes the work product, i.e., the transcription text corresponding to the audio data.
  • the finalized work product is automatically set to distribute to the healthcare organization through a document return rules engine.
  • Finalized work can be returned as a single document (in any number of formats including but not limited to .doc, .rtf, .txt, etc), as an HL7 message set to interact with an organization's HL7 infrastructure, as segments of text which are automatically inserted into multiple points in an organization's database, or any combination(s) of the above.
  • a police officer called to a crime scene, where on the site location, the officer is the dictator user, who uses a mobile device for recording audio input, including interviews with multiple people, narratives and/or incident reports (e.g., by speaking into the device and describing the scene, witness names, description of the areas, anything that has to do with the incident, etc., what was said during an arrest, anything made as a statement by a witness, etc.).
  • the audio input (spoken report) is automatically immediately transformed or converted into encrypted audio data, and more preferably into segments of encrypted audio data, each segment having the exact same length or size, which is then available to be efficiently used on a mobile device for functions including to be saved, edited, managed, transferred, etc., as described herein in this specification.
  • Transcription of the encrypted audio data is also provided, either automatic transformation on the mobile device or server computer, or after transfer to the server computer a third party provides transcription into an incident report, which is a specific format of the encrypted audio data.
  • the spoken audio is automatically transformed on the mobile device to be encrypted, synced on back end, transcribed, saved, and returned to the dictator user, which in this case, is a police officer or detective or other law enforcement.
  • the legal profession uses dictation of attorney-client privileged and/or confidential information.
  • An attorney is the dictator user who speaks into a microphone (built-in or external) on the mobile device to provide spoken audio inputs relating to a case; as with the other case study examples listed in the foregoing, upon recordation on the mobile device, the audio input (spoken report) is automatically immediately converted to encrypted audio data, which is available to be saved, edited, managed, transferred, etc.
  • a legal transcribed case file is also provided, maintaining the encrypted audio data and/or the encrypted transcription corresponding thereto in a completely secure workflow.
  • the present invention systems and methods and software are operable to finalize and route reports dictated at the hospital or surgery center facility to the doctor at his home clinic or another remote location for review and signature, all while retaining complete encryption of the dictation or recorded audio. All audio-related functions are operable inside the software application of the present invention, preferably from a mobile device, such as a tablet device, smartphone, mobile communication device, and the like, and more preferably, those mobile devices running Apple's proprietary iOS platform. or through a web portal.
  • a mobile device such as a tablet device, smartphone, mobile communication device, and the like, and more preferably, those mobile devices running Apple's proprietary iOS platform. or through a web portal.
  • the present invention provides for complete data security because the audio data and/or corresponding text data are encrypted at every stage of data management, from the time of initial recording, through managing, editing, saving, etc.
  • dictator users can dictate discrete text segments while still having the speed and flexibility of mobility, i.e., using a mobile device for targeted, field-specific dictation of audio data into a templated interactive graphic user interface (GUI), wherein on a real-time basis of dictation, the audio data stream is transformed automatically by the system into encrypted chunks, modules, segments, or slices of recorded data.
  • GUI interactive graphic user interface
  • the software of the present invention includes an additional application that intercepts the audio stream during recording, sending the audio in an encrypted tunnel to a data center where the audio is immediately converted to text and returned to the application.
  • the recognized text is then automatically inserted into an external application (e.g., in healthcare industry, the EHR) at the location where the cursor was currently sitting when the intercept application was started.
  • an external application e.g., in healthcare industry, the EHR
  • This provides operability for electronic record-agnostic integration, i.e., embedding the proprietary software, methods, and systems of the present invention with any electronic records provider without significant development programming required for the integration, for example being offered on a tablet computer such as the Apple iPad mobile device.
  • the systems and methods of the present invention further provide for mobile applications utilizing Apple iPhone operating system, namely iOS, in the preferred embodiments. It may be possible for alternative versions to be operable on other systems, such as Google Android, Microsoft, and RIM Blackberry operating systems.
  • the present invention provides a documentation solution to any audio-based dictation environment, through an automated, secure information workflow using encrypted data “chunks”, or modules, segments, and/or slices, which are predetermined identical lengths of recorded encrypted data.
  • This audio input originates from a suitable mobile device, including but not limited to devices such as the commercially available products from Apple, namely commercial products including mobile phones, smartphones, personal mobile devices, tablet computers, respectively known under trademarks such as iPhone, iPod Touch, and/or iPad.
  • every audio recording immediately becomes encrypted audio data upon storing on the device.
  • a multiplicity of Apple mobile devices are illustrated in communication with a mobile web service, and then a mobile audio server, to an audio delivery location.
  • a computer or PC direction connects via network to an audio delivery location.
  • Each of the devices or computers in communication with the rules engine runs applications of the software of the present invention to manage the encrypted audio data on any of the multiplicity of mobile devices and/or PC. These applications allow a dictator user to select a job to be dictated from a job list that is generated by data based upon an automated remote interface with a server computer and/or database having an electronic data management system.
  • scheduling data is related to a dictation job list through a crosswalk table, referenced herein as a rules engine.
  • the number and types of jobs generated for each dictator user is configured based on each combination of location, dictator, interviewee(s), type, reason for recording, code(s), and combinations thereof. This advantageously provides greater flexibility to customize jobs by user preference.
  • a dictator user either begins recording or selects from a listing of jobs to be dictated in an interactive graphic user interface (GUI) on a display.
  • GUI interactive graphic user interface
  • a GUI illustrating “jobs available” is shown in FIG. 6 , including a search function and a status bar indicating jobs downloading completed and remaining on a continuous line bar (at bottom).
  • the mobile device receives a voice audio file that is captured through a speech microphone either built-in and/or peripheral device on the dictator's mobile device, smartphone, etc. and records the audio.
  • the user has the ability to rewind and edit their dictation at any point in the encrypted audio data, without having to edit the entire data file by simply selecting the point at which the editing is to occur.
  • the rules engine resides within the client's information systems environment. After a job has been selected from the work list, dictated, and released by the user, the rules engine automatically creates a secure connection with a remote datacenter, where the encrypted job is automatically routed through a third party voice recognition engine and converted from a voice file into text, and transformed to an encrypted audio data file in real time, i.e., without noticeable delay from the point of creation and/or file save or transfer. The encrypted job is then available to a medical editor for completion edits.
  • the job Once the job has cleared editing, while retaining encrypted format for the overall job (all chunks in series), except for any “chunk”, segment, or audio data module undergoing editing at any given moment, it is automatically routed back to the client's environment to the rules engine software where it is automatically routed to the appropriate return location for the client, all while the data is completely encrypted. The encrypted audio data is then automatically provided securely for approval. Competed jobs are returned in multiple file formats depending upon client preferences and/or selected formats.
  • the system automatically provides for the data-secure functions of editing, including review, rewind, insert, delete, and overwrite of any dictation or audio inputs after it has been automatically transformed into encrypted audio data prior to being submitted into the workflow. Once submitted the system automatically provides for the removal of the dictated jobs from the dictator's work list. Dictators have the ability to add jobs not listed, delete existing jobs, change dictate job types, and combinations of these functions.
  • Systems and methods according to the present invention have applications for providing innovative documentation solutions that simplify the process of adopting and using a mobile-based audio input capture, automated immediate conversion to encrypted audio data, and editing of the encrypted audio data on the mobile device on which the audio inputs were initially created, and/or on any other mobile device, provided an authorized user/dictator is accessing the encrypted data.
  • a secure login/password or other user security may be provided on the mobile device. For example with a specific dictator's username and password, or other client-specific code, being entered and saved into the device's configuration settings, the dictation user authenticates by using a client-specific code (unique client identifier, e.g., a single personal identification number (PIN)).
  • client-specific code unique client identifier, e.g., a single personal identification number (PIN)
  • dictation users view a listing of jobs to be dictated that are specific to their unique client identifier. Jobs are selected for dictation, and a voice audio file is captured through a microphone in the mobile device, and encrypted in real time to ensure complete data security, even when editing.
  • the system automatically converts or transforms the audio inputs into encrypted audio data.
  • the present invention provides for a secure, mobile-device-based application used to capture dictations that are automatically transformed to an encrypted audio data format upon recordation on the mobile device.
  • the encrypted audio data may be processed for automatic conversion from audio to digital text, while maintaining complete encryption of the data.

Abstract

Encryption systems and methods for audio data, and more particularly, for complete audio encryption of recorded data for transmission, management, review, and modification or transformation of selected segments of encrypted audio data, without compromising data security by exposing unencrypted data at any time.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/419,416, filed Mar. 13, 2012.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to encryption systems and methods for audio data, and more particularly, for complete security for audio encryption of recorded data for transmission, management, and modification or transformation thereof.
  • 2. Description of the Prior Art
  • Prior art includes automatic systems and methods for transcription of medical dictation, including, by way of example, the following:
  • US Patent Application Publication No. 20080288250 by inventors Renillo, et al. for Real-time transcription system, published Nov. 20, 2008 for a transcription system and method that includes a transcription terminal for recording electronically generated text as units of transcribed text, and a conversion unit for translating the units of ascribed text into a generally accurate transcript of the electronically generated text and converting said transcript into a signal to be transmitted to an authorized receiving unit over a communication link, including a wireless access point for transmitting serial data representing the transcript, and suppression of an automatic network identifier.
  • US Patent Application Publication No. 20050187766 by inventors Renillo, et al. for Real-time transcription system, published Aug. 25, 2005 for a transcription system and method that includes a transcription terminal for recording spoken words as units of transcribed text, and a conversion unit for translating the units of transcribed text into a generally accurate transcript of the spoken words and converting said transcript into a signal to be transmitted to an authorized receiving unit over a communication link, including a wireless access point for transmitting serial data representing the transcript, and suppression of an automatic network identifier.
  • US Patent Application Publication No. 20090197573 by inventor Rofougaran for Secure use of a handheld computing unit, published Aug. 6, 2009 for a handheld computing unit including a wireless transceiver and a processing module, which is coupled to detect initiation of the handheld computing unit so that when the initiation is detected, the processing module initiates collection of a user security parameter, receives an input corresponding to the user security parameter, and converts the input into the outbound symbol stream, which is converted into an outbound wireless signal and transmitted; the processing module further converts an inbound symbol stream into a security response, interprets the security response, and when it is favorable, enables use of the handheld computing unit.
  • Relevant art also includes systems and methods for secure audio transmission and/or communication, including, by way of example, the following:
  • US Patent Application Publication No. 20030169730 by inventors Narasimhan, et al. for Method and process for signaling, communication and administration of networked objects, published Sep. 11, 2003 for systems and processes for communication of messages between one or more networked objects on circuit data networks, including means for representation of various communication types, including content description and disposition rules, delivery and routing description and rules, conversion and translation descriptions and rules, and methods for interactions and for administration over one or more network types, through one or more communication protocol types, to one or more destination types. The delivery of messages and other communication over various communication protocols in addition to emails are described, as well as methods for administering and managing rules for directing and transforming the messages and communications for purposes of routing or delivery to one or more specific destinations.
  • US Patent Application Publication No. 20110222688 by inventors Graham, et al. for One vault voice encryption, published Sep. 15, 2011 for secure voice solutions for mobile communication device Blackberry 9000 (BOLD™), providing that rather than making encrypted voice calls through traditional GSM cellular phone calls, voice data is received from the user using a device microphone and built-in media player software; that data is then encrypted and sent as an IP packet; the device then receives as IP packets, encrypted voice communication from the other party in the encrypted call, which in turn are decrypted in the device and then played back on a second media player running on that device. This requires that the device runs two media players simultaneously, in order to in effect, simulate a cellular telephone call, so that PDA-type devices provide for encrypted calls wherein the calls are placed over the Internet, rather than traditional cellular data signals.
  • US Patent Application Publication No. 20110302408 by inventors McDermott, et al. for Secure communication systems, methods, and devices, published Dec. 11, 2011 for secure communication systems including voice call processing server, user database in communication with the server, a security gateway in communication with the server and the database, wherein the gateway transmits an encrypted signaling key and at least one media key in response to validating a mobile device using configuration data stored in the database, wherein the server tracks call traffic encrypted using the at least one media key, and the traffic being routed through the internet.
  • US Patent Application Publication No. 20120020475 by inventor Altmann for Mechanism for partial encryption of data streams, published Jan. 26, 2012 for partial encryption of data streams, with methods including receiving a data stream at a data transmitting device, wherein the data stream has content including one or more audio content, video content, and control content; determining one or more content that are to be encrypted; partially encrypting the data stream by encrypting the one or more content, and leaving the other content unencrypted, and transmitting from the data transmitting device, the partially encrypted data stream to a data receiving device.
  • None of the prior art or relevant art cited or known at the time of the invention addresses the longstanding, unmet need for secure audio data storage, review, transmission, management, and transcription from audio to corresponding text (where appropriate), much less in the rapidly changing environment in any business or industry, in particular but not limited to in law enforcement, legal, and healthcare applications of electronic records (ER), where systems and processes need to be moving toward further efficiency, cost reduction, and paperless systems, all while requiring data privacy and security. In particular, a dramatic increase in the number of mobile devices, especially smartphones and tablet devices, which function substantially like computers, containing data that is at risk of being exposed, simply due to their mobility. Thus, the need for ensuring privacy and security of mobile data is greater than at any other time.
  • SUMMARY OF THE INVENTION
  • The present invention relates to encryption systems and methods for complete audio encryption of recorded data for transmission, management, and modification or transformation thereof from a mobile device without compromising data security by exposing unencrypted data at any time.
  • It is an object of this invention to provide systems and methods for real-time encryption of recorded audio data for saving, managing, editing, transmitting, reviewing, and combinations thereof, wherein all functions are performed on a mobile device.
  • It is another object of the present invention to provide methods for real-time encryption of audio inputs, automatically creating encrypted audio data upon recording, for saving, managing, editing, transmitting, reviewing, and combinations thereof.
  • Accordingly, a broad embodiment of this invention is directed to systems and methods having a remote server computer in communication with a network over which distributed users having authorization to access the system provide inputs of audio from respective mobile devices having iOS operating systems, wherein the inputs are preferably provided as voice-based audio of spoken words, that are transformed in real time to encrypted audio data upon recordation on the mobile device, and wherein the encrypted audio data is automatically available for selectively activating functions on the mobile device, within a software application operable thereon, including saving, managing, editing, deleting to end, transmitting, and/or reviewing and for automatically transforming the encrypted audio data to encrypted text that corresponds to the audio inputs.
  • These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings, as they support the claimed invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of one embodiment of the invention including at least one mobile device, remote server computer/database, and communications network.
  • FIG. 2 is another schematic diagram of an embodiment of the present invention including at least one mobile device, remote server computer/database, and communications network.
  • FIG. 3 shows a screen shot of data stored in an audio files database and a screenshot of the corresponding files on disk.
  • FIG. 4 illustrates a screen shot of an interactive graphic user interface (GUI) on a mobile device according to one embodiment of the present invention.
  • FIG. 5 is a flow diagram of methods according to the present invention, specifically relating to mobile device-based editing of encrypted audio data.
  • FIG. 6 shows a screen shot of another interactive GUI on a mobile device according to one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Referring to the drawings in general, the illustrations are for the purpose of describing preferred embodiments of the invention, and are not intended to limit the invention thereto. FIG. 1 illustrates a schematic diagram of a remote server computer and network connection with at least one mobile device in communication with the remote server computer for providing the means for receiving audio inputs via the at least one mobile device and immediately transforming the audio inputs into encrypted audio data recorded on the device. FIG. 2 is another schematic diagram of an embodiment of the present invention including at least one mobile device, remote server computer/database, and communications network.
  • The present invention provides a mobile-device-based application used to capture audio inputs and automatically transform them into encrypted audio data, and most preferably, automatically transform them into a series of segments of encrypted audio data, wherein the segments are exactly the same size or length (e.g., 128 bytes).
  • Significantly, the systems and methods of the present invention thus provide for totally and completely encrypted audio as the audio inputs are being recorded, i.e., in real time or near real-time, to ensure data security of the audio recorded, even if the device is compromised. Furthermore, all other processing of the encrypted audio data including but not limited to reviewing, saving, transmitting, transcribing, editing, and combinations thereof provide for encrypted data management, i.e., all audio is encrypted and the audio data is never un-encrypted storage on the mobile device.
  • The methods of the present invention include steps for mobile devices having iOS operating systems, wherein the inputs are preferably provided as voice-based audio of spoken words, to be transformed in real time to encrypted audio data upon recordation on the mobile device, and wherein the encrypted audio data is automatically available for selectively activating functions on the mobile device, within a software application operable thereon, including saving, managing, editing, transmitting, and/or reviewing and for automatically transforming the encrypted audio data to encrypted text that corresponds to the audio inputs.
  • The application provides for a voice audio file to be captured through a microphone in the mobile device, or wirelessly via Bluetooth technology or any other microphone-based input connected with the device, either wirelessly or with wired connection, and encrypted in real time to ensure complete data security, whether in audio or data text format. At the time of recording of the audio inputs by the mobile device, the system automatically converts or transforms the audio inputs into encrypted audio data, without user intervention. The systems and methods of the present invention are further operable for automatically storing the encrypted audio as a series of encrypted segments in a database, which contains offsets into those slices for playback. A segment refers to an on disk segment of data, a slice is a portion of a segment. Multiple slices could point to different sections of a single segment. Also, as an analogy, an entire recording is considered a library, wherein a segment represents a book, and a slice represents a chapter or several chapters in that book. This format allows other operations on the encrypted data to occur instantly, and defers editing computations until playback, at a later time.
  • FIG. 5 is a flow diagram of methods according to the present invention, specifically relating to mobile device-based editing of encrypted audio data. Audio inputs are received by the mobile device via a microphone, or wirelessly via Bluetooth technology or any other microphone-based input connected with the device, either wirelessly or with wired connection, and automatically transformed into encrypted audio data, and stored in memory on the mobile device. The encrypted audio data available for editing includes a first continuous segment of audio input recorded on the mobile device; the software application that is operating on the mobile device automatically transforms the first continuous segment of audio input into encrypted audio data at the time of recordation to ensure complete data security. The encrypted data corresponding to the first continuous segment of audio input recorded is further transformed into a series of segments of exactly the same length or size that are saved to an on disk file. Then the authorized dictator user for the mobile device provides a selection input via interactive graphic user interface, wherein the selection includes a specific editing function to be performed to a specific slice of encrypted data (wherein a slice of encrypted data is a subset of the segment), and then the mobile device software application automatically performs the specific editing function to the specific slice of encrypted data within a data segment.
  • For an inserting function, an insert audio input is recorded and the corresponding encrypted audio data associated with the insert audio input is automatically offset within the first segment of encrypted data. After the insertion, the encrypted data with insertion are transformed into a new edited encrypted data file, and stored on the remote server computer. During playback or upload functions of the encrypted audio data files, when the underlying audio functions of the present invention request audio data, the remote server and/or database is automatically queried, and encrypted audio data automatically read from the encrypted audio data slices based on the offsets and lengths of encrypted audio data that is automatically stored in the remote server and/or database.
  • To illustrate one aspect of the present invention, FIG. 3 shows a screen shot of the data stored in an audio files database and just a screenshot of the corresponding files on disk. In the attached screenshot the system automatically created encrypted audio data from an audio input from a dictation user, and provided for the system to create a number of continuous segments (in series) of the encrypted audio data by recording and then pausing; these slices are numbered in series accordingly on the right side of the screen shot. However, for the encrypted audio data having a slice 6, the system provided for the function of rewind through most of that particular slice (number 6) and began recording in an overwrite mode, thereby automatically transforming the encrypted data series to include a slice 7 of the encrypted audio data, which has a stream offset as illustrated in the left side of the screen shot of FIG. 3.
  • Advantageously, the systems and methods of the present invention provide for automatic transformation of the audio inputs into encrypted audio data as it is being recorded by encryption of a segment of data, i.e., a predetermined amount of data, preferably a predetermined amount of data, wherein each predetermined amount of data is exactly the same length; in a most preferred embodiment, the predetermined amount of data is equivalent to 128 bytes. The recording, saving or storing, transmitting to the remote server computer over the network (wireless or otherwise), reviewing, editing (including inserting, deleting, overwriting, etc.) are steps that are all performed on the encrypted audio data, thereby ensuring that the audio inputs, once recorded on the mobile device, are secure. In other words, dictator users can dictate discrete text segments while still having the speed and flexibility of mobility, i.e., using a mobile device for targeted, field-specific dictation of audio data into a templated interactive graphic user interface (GUI), wherein on a real-time basis of dictation, the audio data stream is transformed automatically by the system into encrypted chunks of recorded data.
  • FIG. 4 illustrates one interactive GUI for editing encrypted audio data on a mobile device, with click-select or touch-select items that control corresponding functionality relating to editing as set forth in the foregoing.
  • Overall, the present invention provides methods for secure audio data management including the steps of: providing a base system including a remote server computer having a memory, a processor, and power supply connected thereto, in communication via a network with at least one mobile device constructed and configured for receiving an audio input; and the system receiving or recording the audio input by the at least one mobile device and automatically transforming the audio input into encrypted audio data at the time the audio input is being recorded on the at least one mobile device, and the system automatically transforming the encrypted audio data into a series of encrypted audio data slices, each of the slices having an order and a content, respectively, wherein each of the encrypted audio data slices is editable in its encrypted form, without affecting the order or content of the non-edited segments, thereby providing completely encrypted audio for secure audio data management.
  • Also, method steps of the present invention further include at least one mobile device(s) communicating with the remote server computer via wireless communication over the network for transmitting the encrypted audio data, wherein the method provides the audio data and/or its transcribed equivalent are completely encrypted from the time of generation and capture as the audio input by the at least one mobile device. Furthermore, immediately upon recording the audio input, the system automatically transforms the encrypted audio data into a series of encrypted audio data slices, each of the slices having an order and a content, respectively, wherein each of the encrypted audio data slices is editable in its encrypted form, without affecting the order or content of the non-edited slices.
  • The management of the audio data, which is encrypted at all times on the mobile device, includes but is not limited to the following functions: reviewing, saving, transferring to a remote data server (database), editing, editing remotely from the dictation generation and/or on a mobile device by the dictation user/generator, deleting, forwarding to remote server and/or database for storage and other processing, and combinations thereof.
  • In preferred broad embodiment of the present invention, systems and methods include operations on a mobile device using iOS platform for receiving inputs of audio, namely voice-based audio of spoken words, that are automatically transformed in real time upon recording to encrypted audio data. The encrypted audio data is managed later with functions including saving, editing, transmitting, and/or reviewing. Thus, the present invention provides responsive editing and seeking of encrypted audio data on mobile devices, most preferably those having proprietary iOS platforms thereon, namely iPhone, iPad, iPod Touch, and combinations thereof. The software of the present invention is particularly suited to operation on this proprietary iOS, since it provides for automatic management of the encrypted audio data in modules of predetermined size (e.g., 128 bytes) for rapid, responsive editing while maintaining data security on mobile devices.
  • Examples of applications of the present invention systems and methods include, but are not limited to mobile device-based dictation for Healthcare, Law Enforcement, Legal, Education, Business, Consulting, Financial and Accounting, and any application where data security of recorded audio and electronic records management is important. Furthermore, the present invention is provided for any application where data needs to be captured remotely and reported into a central database. Thus, the present invention systems and methods provide for multiple entities to share secure, confidential notes created to document services performed at the point of provision, (e.g., in medical practices this means patient care), with all notes, from audio recording at the point of dictation on a mobile device to transcription, being completely encrypted to ensure data security.
  • Healthcare Example
  • Today, several competing forces are converging to put tremendous pressure on physician productivity in the United States: First, the demand for clinical services is growing with an expanding and aging population, and millions of newly insured patients. The U.S. population is projected to grow by 14% between 2005 and 2020, and this population is getting older as the “Baby Boomer” generation enters its 60s and 70s. Also, the recently passed health reform act in the U.S. will add up to 32 million newly insured people by mid-2013. Against that backdrop of growing demand are projections for flat growth in the number of practicing physicians over the next 15 years, particularly in the surgical specialties. Moreover, independent research shows that physician productivity is clearly being reduced by the time-consuming data entry models of Electronic Health Record (EHR) systems, which are being aggressively promoted and subsidized by the Federal Government. This problem of EHR systems impeding physician productivity is so acute that many organizations have resorted to hiring data entry clerks as full time employees who shadow physicians over the course of their patient visits and enter data into mobile computers.
  • The recently passed American Recovery and Reinvestment Act (i.e. the Stimulus Package) is funneling over $19 Billion into Health IT infrastructure over the next several years. Of this amount, $17 Billion will reimburse hospitals and physicians for the implementation and use of “meaningful” certified Electronic Health Record (EHR/EMR) systems. As a result there will be an acceleration of activity, development and aggregation within the Health IT industry. However, no solutions provide for integrated, secure audio introduction of data into EMRs or other healthcare data systems. Furthermore, some of the most significant problems within this healthcare industry, the largest industry in the U.S., is adopting electronic systems and embracing infrastructure change while protecting physician productivity, driving costs from the system, and reducing days in Accounts Receivable by accelerating chart completion for billing, all while ensuring patient data privacy and data security at all times.
  • The present invention includes technology solutions that address the longstanding and unmet needs in the healthcare market and the context of growing, aging population with increasing demands on health care service providers and with increasing challenges of securely managing electronic health records (EHR). In a Healthcare example, the systems and methods of the present invention help organizations accelerate adoption of clinical information systems by addressing one of the most significant problems within the largest industry in the U.S. with an innovative solution that allows this change to occur while protecting physician productivity; while driving costs from the system and while reducing days in Accounts Receivable by accelerating chart completion for billing.
  • Particular commercial applications include outpatient clinics (including specialists and multi-specialty groups), hospitals, and surgery centers for the automated, encrypted audio dictation and corresponding text-based documentation for improved speed, accuracy, and physician productivity, while also preserving complete data security and patient data privacy.
  • In the healthcare industry embodiment, the solution of the present invention interfaces with either schedules or census information to capture all relevant demographics and create client work lists. Doctors are still allowed to dictate relevant portions of the encounter (e.g. progress note, operative report, History & Physical, etc.) The dictation is automatically routed to a proprietary back-end system, where it is converted into a draft report through use of voice recognition technology, all while maintaining encryption of the audio data to ensure complete security of the patient-related information. At that point an editor reviews the information and finalizes the work product, i.e., the transcription text corresponding to the audio data. The finalized work product is automatically set to distribute to the healthcare organization through a document return rules engine. Finalized work can be returned as a single document (in any number of formats including but not limited to .doc, .rtf, .txt, etc), as an HL7 message set to interact with an organization's HL7 infrastructure, as segments of text which are automatically inserted into multiple points in an organization's database, or any combination(s) of the above.
  • Integration of data and the ability for disparate entities to share encrypted and private documentation with complete security is a critical element of any infrastructure, regardless of the industry application of the present invention. Beyond the medical and healthcare industry for dictation and transcription, the systems and methods of the present invention also have application in other areas where secure audio recording, saving, management, editing, reviewing, and transcribing, and combinations thereof, are used. Significantly, the spoken audio is automatically transformed on the mobile device to be encrypted, synced on back end, transcribed, saved, and returned to the dictator user for additional editing on the mobile device.
  • Law Enforcement Example
  • In a law enforcement application, a police officer called to a crime scene, where on the site location, the officer is the dictator user, who uses a mobile device for recording audio input, including interviews with multiple people, narratives and/or incident reports (e.g., by speaking into the device and describing the scene, witness names, description of the areas, anything that has to do with the incident, etc., what was said during an arrest, anything made as a statement by a witness, etc.). Upon recordation on the mobile device, the audio input (spoken report) is automatically immediately transformed or converted into encrypted audio data, and more preferably into segments of encrypted audio data, each segment having the exact same length or size, which is then available to be efficiently used on a mobile device for functions including to be saved, edited, managed, transferred, etc., as described herein in this specification.
  • Transcription of the encrypted audio data is also provided, either automatic transformation on the mobile device or server computer, or after transfer to the server computer a third party provides transcription into an incident report, which is a specific format of the encrypted audio data. Significantly, the spoken audio is automatically transformed on the mobile device to be encrypted, synced on back end, transcribed, saved, and returned to the dictator user, which in this case, is a police officer or detective or other law enforcement.
  • Legal Services Example
  • In another industry example, the legal profession uses dictation of attorney-client privileged and/or confidential information. An attorney is the dictator user who speaks into a microphone (built-in or external) on the mobile device to provide spoken audio inputs relating to a case; as with the other case study examples listed in the foregoing, upon recordation on the mobile device, the audio input (spoken report) is automatically immediately converted to encrypted audio data, which is available to be saved, edited, managed, transferred, etc. A legal transcribed case file is also provided, maintaining the encrypted audio data and/or the encrypted transcription corresponding thereto in a completely secure workflow.
  • For example, once again in the medical field, physicians (doctors, or dictator users) must do an operative report after performing surgery at a location. The present invention systems and methods and software are operable to finalize and route reports dictated at the hospital or surgery center facility to the doctor at his home clinic or another remote location for review and signature, all while retaining complete encryption of the dictation or recorded audio. All audio-related functions are operable inside the software application of the present invention, preferably from a mobile device, such as a tablet device, smartphone, mobile communication device, and the like, and more preferably, those mobile devices running Apple's proprietary iOS platform. or through a web portal.
  • The present invention provides for complete data security because the audio data and/or corresponding text data are encrypted at every stage of data management, from the time of initial recording, through managing, editing, saving, etc. In other words, dictator users can dictate discrete text segments while still having the speed and flexibility of mobility, i.e., using a mobile device for targeted, field-specific dictation of audio data into a templated interactive graphic user interface (GUI), wherein on a real-time basis of dictation, the audio data stream is transformed automatically by the system into encrypted chunks, modules, segments, or slices of recorded data.
  • Additionally, the software of the present invention includes an additional application that intercepts the audio stream during recording, sending the audio in an encrypted tunnel to a data center where the audio is immediately converted to text and returned to the application. The recognized text is then automatically inserted into an external application (e.g., in healthcare industry, the EHR) at the location where the cursor was currently sitting when the intercept application was started. This provides operability for electronic record-agnostic integration, i.e., embedding the proprietary software, methods, and systems of the present invention with any electronic records provider without significant development programming required for the integration, for example being offered on a tablet computer such as the Apple iPad mobile device. The systems and methods of the present invention further provide for mobile applications utilizing Apple iPhone operating system, namely iOS, in the preferred embodiments. It may be possible for alternative versions to be operable on other systems, such as Google Android, Microsoft, and RIM Blackberry operating systems.
  • The present invention provides a documentation solution to any audio-based dictation environment, through an automated, secure information workflow using encrypted data “chunks”, or modules, segments, and/or slices, which are predetermined identical lengths of recorded encrypted data. This audio input originates from a suitable mobile device, including but not limited to devices such as the commercially available products from Apple, namely commercial products including mobile phones, smartphones, personal mobile devices, tablet computers, respectively known under trademarks such as iPhone, iPod Touch, and/or iPad.
  • Significantly, according to the present invention, every audio recording immediately becomes encrypted audio data upon storing on the device. As illustrated in the schematic and flow diagram of FIG. 2, a multiplicity of Apple mobile devices are illustrated in communication with a mobile web service, and then a mobile audio server, to an audio delivery location. Alternatively, a computer or PC direction connects via network to an audio delivery location. Each of the devices or computers in communication with the rules engine runs applications of the software of the present invention to manage the encrypted audio data on any of the multiplicity of mobile devices and/or PC. These applications allow a dictator user to select a job to be dictated from a job list that is generated by data based upon an automated remote interface with a server computer and/or database having an electronic data management system. For example, scheduling data is related to a dictation job list through a crosswalk table, referenced herein as a rules engine. In the crosswalk table, the number and types of jobs generated for each dictator user is configured based on each combination of location, dictator, interviewee(s), type, reason for recording, code(s), and combinations thereof. This advantageously provides greater flexibility to customize jobs by user preference.
  • In one embodiment of the present invention, a dictator user either begins recording or selects from a listing of jobs to be dictated in an interactive graphic user interface (GUI) on a display. A GUI illustrating “jobs available” is shown in FIG. 6, including a search function and a status bar indicating jobs downloading completed and remaining on a continuous line bar (at bottom). The mobile device receives a voice audio file that is captured through a speech microphone either built-in and/or peripheral device on the dictator's mobile device, smartphone, etc. and records the audio. The user has the ability to rewind and edit their dictation at any point in the encrypted audio data, without having to edit the entire data file by simply selecting the point at which the editing is to occur.
  • These systems and methods allow for rapidly managing or editing encrypted audio data without on disk files having to be manually moved or divided into pieces; this is a significant advantage of the encryption of audio data into segments having equal length, which is nowhere taught or described in prior art audio recordation, management, encryption, and/or editing. For example, on a less sophisticated system, the prior art type systems and methods may manually split the original audio file into two files, insert the additional audio at the end of the first file and then append the final five seconds of audio, making one continuous file. The limited resources on mobile devices make operations like this very slow with encrypted data.
  • The rules engine resides within the client's information systems environment. After a job has been selected from the work list, dictated, and released by the user, the rules engine automatically creates a secure connection with a remote datacenter, where the encrypted job is automatically routed through a third party voice recognition engine and converted from a voice file into text, and transformed to an encrypted audio data file in real time, i.e., without noticeable delay from the point of creation and/or file save or transfer. The encrypted job is then available to a medical editor for completion edits. Once the job has cleared editing, while retaining encrypted format for the overall job (all chunks in series), except for any “chunk”, segment, or audio data module undergoing editing at any given moment, it is automatically routed back to the client's environment to the rules engine software where it is automatically routed to the appropriate return location for the client, all while the data is completely encrypted. The encrypted audio data is then automatically provided securely for approval. Competed jobs are returned in multiple file formats depending upon client preferences and/or selected formats.
  • The system automatically provides for the data-secure functions of editing, including review, rewind, insert, delete, and overwrite of any dictation or audio inputs after it has been automatically transformed into encrypted audio data prior to being submitted into the workflow. Once submitted the system automatically provides for the removal of the dictated jobs from the dictator's work list. Dictators have the ability to add jobs not listed, delete existing jobs, change dictate job types, and combinations of these functions.
  • Systems and methods according to the present invention have applications for providing innovative documentation solutions that simplify the process of adopting and using a mobile-based audio input capture, automated immediate conversion to encrypted audio data, and editing of the encrypted audio data on the mobile device on which the audio inputs were initially created, and/or on any other mobile device, provided an authorized user/dictator is accessing the encrypted data. A secure login/password or other user security may be provided on the mobile device. For example with a specific dictator's username and password, or other client-specific code, being entered and saved into the device's configuration settings, the dictation user authenticates by using a client-specific code (unique client identifier, e.g., a single personal identification number (PIN)). Once logged in, dictation users view a listing of jobs to be dictated that are specific to their unique client identifier. Jobs are selected for dictation, and a voice audio file is captured through a microphone in the mobile device, and encrypted in real time to ensure complete data security, even when editing. At the time of recording of the audio inputs by the mobile device, the system automatically converts or transforms the audio inputs into encrypted audio data.
  • Additionally, the present invention provides for a secure, mobile-device-based application used to capture dictations that are automatically transformed to an encrypted audio data format upon recordation on the mobile device. In addition to the functions set forth in the foregoing, the encrypted audio data may be processed for automatic conversion from audio to digital text, while maintaining complete encryption of the data.
  • Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. While the preferred embodiments of the present invention are directed to applications on mobile devices running iOS platform specifically, application for the functionality described in the foregoing on any mobile devices using other operating systems, such as Google Android, Microsoft, and RIM Blackberry mobile applications, are contemplated.
  • The above-mentioned examples are provided to serve the purpose of clarifying the aspects of the invention and it will be apparent to one skilled in the art that they do not serve to limit the scope of the invention. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the present invention.

Claims (17)

What is claimed is:
1. A method for secure audio data management comprising the steps of:
providing a mobile device constructed and configured for receiving or recording an audio input;
receiving or recording the audio input by the mobile device and automatically transforming the audio input into encrypted audio data in real-time at the time the audio input is being recorded on the mobile device; and
automatically transforming and storing the encrypted audio data into a series of encrypted audio data segments in a database.
2. The method of claim 1, further including the step of automatically transforming the series of encrypted audio data segments into encrypted text segments that correspond to the audio input.
3. The method of claim 1, wherein the method provides the audio data are completely encrypted from the time of generation and capture as the audio input by the mobile device.
4. The method of claim 1, wherein the step of automatically transforming the audio inputs into encrypted audio data occurs simultaneously with audio inputs recording by the mobile device.
5. The method of claim 1, wherein the audio inputs are automatically encrypted in a series of data modules.
6. The method of claim 1, wherein the audio inputs are automatically encrypted in a series of data modules including a predetermined amount of data.
7. The method of claim 6, wherein the predetermined amount of data is equivalent to about 128 bytes.
8. The method of claim 1, further including the step transforming the encrypted audio data by editing on the mobile device via an interactive GUI.
9. The system of claim 8, wherein the editing function further includes the additional functions of review, rewind, insert, delete, overwrite, and combinations thereof, for any dictation segment after it has been automatically transformed into encrypted audio data in a series of data modules.
10. A system for secure audio data management comprising:
a base system including a remote server computer having a memory, a processor, and power supply connected thereto, in communication via a network with at least one mobile device constructed and configured for receiving an audio input;
the system is operable for receiving the audio input by the at least one mobile device, which is running iOS operating system, and automatically transforming the audio input into encrypted audio data at the time the audio input is being recorded on the at least one mobile device;
wherein the system further includes a database for storing the audio input and the encrypted audio data, thereby providing encrypted audio for secure audio data management.
11. The system of claim 10, wherein the system is further operable for automated transcription of the encrypted audio data.
12. The system of claim 10, wherein the system automatically provides further transformation of the encrypted audio data, including editing via the at least one mobile device.
13. The system of claim 12, wherein the editing function further includes the additional functions of review, rewind, insert, delete, overwrite, and combinations thereof, for any dictation segment after it has been automatically transformed into encrypted audio data in a series of data modules.
14. A method for transcription of medical records, the steps comprising:
providing a base system including:
a remote server computer having a memory, a processor, and a power supply connected thereto
a database for storing audio input and encrypted audio data, thereby providing encrypted audio for secure audio data management;
the base system:
communicating via a network with at least one mobile device operable for receiving and automatically transforming audio input into encrypted audio data at the time the audio input is being recorded on the at least one mobile device;
communicating via the network with a healthcare system server and receiving relevant demographics of a patient on the healthcare system server;
receiving audio data of dictation of relevant portions of an encounter between a healthcare professional and a patient;
converting the dictation into a draft report through use of voice recognition technology;
submitting the draft report to an editor for review and creation of a final report;
encrypting the final report; and
distributing the final report to the healthcare system server using a document return rules engine.
15. The method of claim 14, further including the step of returning the final report as:
a single document;
an HL7 message set to interact with an organization's HL7 infrastructure, as segments of text which are automatically inserted into multiple points in an organization's database;
and combinations thereof.
16. The method of claim 14, further including the step of always maintaining encryption for the overall draft report, except for any segment or audio data module undergoing editing.
17. The method of claim 14, further including the steps of:
receiving schedules or census information from the healthcare system server;
creating dictation work lists for the healthcare professionals based on the schedules or census information; and
submitting the lists to the health care professional for dictation through the mobile apparatus.
US15/071,741 2012-03-13 2016-03-16 Audio encryption systems and methods Abandoned US20160196439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/071,741 US20160196439A1 (en) 2012-03-13 2016-03-16 Audio encryption systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/419,416 US9294277B2 (en) 2012-03-13 2012-03-13 Audio encryption systems and methods
US15/071,741 US20160196439A1 (en) 2012-03-13 2016-03-16 Audio encryption systems and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/419,416 Continuation US9294277B2 (en) 2012-03-13 2012-03-13 Audio encryption systems and methods

Publications (1)

Publication Number Publication Date
US20160196439A1 true US20160196439A1 (en) 2016-07-07

Family

ID=49157659

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/419,416 Active 2034-11-30 US9294277B2 (en) 2012-03-13 2012-03-13 Audio encryption systems and methods
US15/071,741 Abandoned US20160196439A1 (en) 2012-03-13 2016-03-16 Audio encryption systems and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/419,416 Active 2034-11-30 US9294277B2 (en) 2012-03-13 2012-03-13 Audio encryption systems and methods

Country Status (1)

Country Link
US (2) US9294277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160014099A1 (en) * 2013-03-07 2016-01-14 Icelero Inc System and method for secure voip communication
CN111462725A (en) * 2020-04-17 2020-07-28 北京灵伴即时智能科技有限公司 Recording editing management method and system
US10747947B2 (en) * 2016-02-25 2020-08-18 Nxgn Management, Llc Electronic health record compatible distributed dictation transcription system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065593B2 (en) * 2012-11-16 2015-06-23 Nuance Communications, Inc. Securing speech recognition data
US9131369B2 (en) 2013-01-24 2015-09-08 Nuance Communications, Inc. Protection of private information in a client/server automatic speech recognition system
US9514740B2 (en) 2013-03-13 2016-12-06 Nuance Communications, Inc. Data shredding for speech recognition language model training under data retention restrictions
US9514741B2 (en) 2013-03-13 2016-12-06 Nuance Communications, Inc. Data shredding for speech recognition acoustic model training under data retention restrictions
US10103872B2 (en) * 2014-09-26 2018-10-16 Intel Corporation Securing audio communications
WO2018029464A1 (en) * 2016-08-08 2018-02-15 Record Sure Limited A method of generating a secure record of a conversation
US10956519B2 (en) * 2017-06-29 2021-03-23 Cisco Technology, Inc. Fine-grained encrypted access to encrypted information
US11200328B2 (en) 2019-10-17 2021-12-14 The Toronto-Dominion Bank Homomorphic encryption of communications involving voice-enabled devices in a distributed computing environment
CA3059029A1 (en) * 2019-10-17 2021-04-17 The Toronto-Dominion Bank Maintaining data confidentiality in communications involving voice-enabled devices in a distributed computing environment
CN114627877A (en) * 2022-05-09 2022-06-14 杭州海康威视数字技术股份有限公司 Intelligent voice recognition security defense method, device and equipment based on directional target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245611B2 (en) 2002-02-27 2007-07-17 J2 Global Communications Method and process for signaling, communication and administration of networked objects
US7376561B2 (en) 2004-02-23 2008-05-20 Louis Ralph Rennillo Real-time transcription system
US20080288250A1 (en) 2004-02-23 2008-11-20 Louis Ralph Rennillo Real-time transcription system
US8127130B2 (en) * 2006-04-18 2012-02-28 Advanced Communication Concepts, Inc. Method and system for securing data utilizing reconfigurable logic
US20090197573A1 (en) 2008-02-06 2009-08-06 Broadcom Corporation Secure use of a handheld computing unit
US9059971B2 (en) * 2010-03-10 2015-06-16 Koolspan, Inc. Systems and methods for secure voice communications
US20110302408A1 (en) 2010-06-03 2011-12-08 Morrigan Partners Limited Secure Communication Systems, Methods, and Devices
US9654810B2 (en) 2010-07-23 2017-05-16 Lattice Semiconductor Corporation Mechanism for partial encryption of data streams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160014099A1 (en) * 2013-03-07 2016-01-14 Icelero Inc System and method for secure voip communication
US10747947B2 (en) * 2016-02-25 2020-08-18 Nxgn Management, Llc Electronic health record compatible distributed dictation transcription system
CN111462725A (en) * 2020-04-17 2020-07-28 北京灵伴即时智能科技有限公司 Recording editing management method and system

Also Published As

Publication number Publication date
US9294277B2 (en) 2016-03-22
US20130243186A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US9294277B2 (en) Audio encryption systems and methods
US11822677B2 (en) Secure content sharing
US11074475B2 (en) Integrating external data processing technologies with a cloud-based collaboration platform
JP6592583B1 (en) Method and apparatus for information exchange
US8352506B2 (en) Automatic submission of audiovisual content to desired destinations
CA2957567A1 (en) Secure monitoring of private encounters
US20140122116A1 (en) System and method for providing audio data to assist in electronic medical records management
WO2014011169A1 (en) Media annotations in networked environment
WO2011002627A1 (en) A system, method, and apparatus for capturing, securing, sharing, retrieving, and searching data
US10909985B1 (en) Systems and methods for real-time patient record transcription and medical form population via mobile devices
US20140337420A1 (en) System and Method for Recording Music Which Allows Asynchronous Collaboration over the Internet
US20200211720A1 (en) Surgical media streaming, archiving, and analysis platform
US20160154941A1 (en) Protected health information image capture, processing and submission from a client device
US10747947B2 (en) Electronic health record compatible distributed dictation transcription system
US20180144814A1 (en) Systems and Methods for Facilitating Coding of a Patient Encounter Record Based on a Healthcare Practitioner Recording
KR20110032161A (en) Management method and system for video-recording and history-data of medical examination and treatment containing consultation and surgery
US20130243185A1 (en) Audio encryption systems and methods with secure editing
WO2017120221A1 (en) Process for automated video production
US20230037669A1 (en) Systems and Methods of Automating Processes for Remote Work
US11765181B1 (en) Systems and methods for integrated communication
US11086592B1 (en) Distribution of audio recording for social networks
US20160217254A1 (en) Image insertion into an electronic health record
US20150379522A1 (en) Modifiable sharing of received content
US20150227698A1 (en) Method, system and computer program product for consolidating healthcare sms/mms messaging to a medical record server
US20230045558A1 (en) Systems and Methods for Automating Processes for Remote Work

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION