US20160184282A1 - Nampt inhibitors - Google Patents

Nampt inhibitors Download PDF

Info

Publication number
US20160184282A1
US20160184282A1 US14/878,858 US201514878858A US2016184282A1 US 20160184282 A1 US20160184282 A1 US 20160184282A1 US 201514878858 A US201514878858 A US 201514878858A US 2016184282 A1 US2016184282 A1 US 2016184282A1
Authority
US
United States
Prior art keywords
pyridin
ylmethyl
imidazo
piperidin
benzamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/878,858
Other versions
US20170135994A9 (en
Inventor
Richard F. Clark
Bryan Sorensen
Augustine T. Osuma
Robin Frey
Kenton Longenecker
George Doherty
Michael L. Curtin
Michael Michaelides
Ramzi Sweis
Marina Pliushchev
Andrew Judd
Todd Hansen
Howard R. Heyman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
AbbVie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AbbVie Inc filed Critical AbbVie Inc
Priority to US14/878,858 priority Critical patent/US20170135994A9/en
Publication of US20160184282A1 publication Critical patent/US20160184282A1/en
Publication of US20170135994A9 publication Critical patent/US20170135994A9/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • This invention pertains to compounds which inhibit the activity of NAMPT, compositions containing the compounds, and methods of treating diseases during which NAMPT is expressed.
  • NAD+ (nicotinamide adenine dinucleotide) is a coenzyme that plays a critical role in many physiologically essential processes (Ziegkel, M. Eur. J. Biochem. 267, 1550-1564, 2000). NAD is necessary for several signaling pathways including among others poly ADP-ribosylation in DNA repair, mono-ADP-ribosylation in both the immune system and G-protein-coupled signaling, and NAD is also required by sirtuins for their deacetylase activity (Garten, A. et al Trends in Endocrinology and Metabolism, 20, 130-138, 2008).
  • NAMPT also known as pre-B-cell-colony-enhancing factor (PBEF) and visfatin
  • PBEF pre-B-cell-colony-enhancing factor
  • visfatin is an enzyme that catalyzes the phosphoribosylation of nicotinamide and is the rate-limiting enzyme in one of two pathways that salvage NAD.
  • NAMPT inhibitors have potential as anticancer agents. Cancer cells have a higher basal turnover of NAD and also display higher energy requirements compared with normal cells. Additionally, increased NAMPT expression has been reported in colorectal cancer (Van Beijnum, J. R. et al Int. J. Cancer 101, 118-127, 2002) and NAMPT is involved in angiogenesis (Kim, S. R. et al. Biochem. Biophys. Res. Commun. 357, 150-156, 2007). Small-molecule inhibitors of NAMPT have been shown to cause depletion of intracellular NAD+ levels and ultimately induce tumor cell death (Hansen, C M et al. Anticancer Res. 20, 42111-4220, 2000) as well as inhibit tumor growth in xenograft models (Olese, U. H. et al. Mol Cancer Ther. 9, 1609-1617, 2010).
  • NAMPT inhibitors also have potential as therapeutic agents in inflammatory and metabolic disorders (Galli, M. et al Cancer Res. 70, 8-11, 2010).
  • NAMPT is the predominant enzyme in T and B lymphocytes.
  • Selective inhibition of NAMPT leads to NAD+ depletion in lymphocytes blocking the expansion that accompanies autoimmune disease progression whereas cell types expressing the other NAD+ generating pathways might be spared.
  • a small molecule NAMPT inhibitor (FK866) has been shown to selectively block proliferation and induce apoptosis of activated T cells and was efficacious in animal models of arthritis (collagen-induced arthritis) (Busso, N. et al. Plos One 3, e2267, 2008).
  • FK866 ameliorated the manifestations of experimental autoimmune encephalomyelitis (EAE), a model of T-cell mediated autoimmune disorders.
  • EAE experimental autoimmune encephalomyelitis
  • NaMPT activity increases NF-kB transcriptional activity in human vascular endothelial cell, resulting in MMP-2 and MMP-9 activation, suggesting a role for NAMPT inhibitors in the prevention of inflammatory mediated complications of obesity and type 2 diabetes (Adya, R. et. Al. Diabetes Care, 31, 758-760, 2008).
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IB)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • Z is CH, C—F, C—Cl, C—Br, C—I or N;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is hydrogen, F, Cl, Br, or I
  • Z is CR 2 ;
  • R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R 3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I;
  • R 11 at each occurrence is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 11 alkyl is optionally substituted with NH(CH 3 ), heterocyclyl, SCH 2 CH(NH 2 )C(O)OH, OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 NH 2 , or NHC(O)CH 2 CH(NH 2 )C(O)OH;
  • n 4, 5, or 6;
  • n 1 or 2;
  • R 1 is NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is furanyl; the R 3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is thienyl; the R 3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • R 1 is NHC(O)NHR 3 ; and R 2 is hydrogen.
  • R 1 is CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • R 1 is hydrogen; and R 2 is CH 2 NHC(O)NHR 3 .
  • R 1 is hydrogen; and R 2 is CH 2 NHC(O)R 3 .
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 1 is NHC(O)NHR 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 1 is CH 2 NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 1 is hydrogen;
  • R 2 is CH 2 NHC(O)NHR 3 ; and
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 1 is hydrogen;
  • R 2 is CH 2 NHC(O)R 3 ; and
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 1 is NHC(O)NHR 3 ;
  • R 2 is hydrogen; and
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 1 is CH 2 NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 1 is hydrogen;
  • R 2 is CH 2 NHC(O)NHR 3 ; and
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 1 is hydrogen;
  • R 2 is CH 2 NHC(O)R 3 ; and
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • Still another embodiment pertains to compounds, which are
  • Still another embodiment pertains to compounds of Formula (IA), selected from the group consisting of
  • Another embodiment pertains to a composition for treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic upus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress
  • Another embodiment pertains to a method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult
  • Another embodiment pertains to a method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult
  • alkyl (alone or in combination with another term(s)) means a straight- or branched-chain saturated hydrocarbyl substituent typically containing from 1 to about 10 carbon atoms; or in another embodiment, from 1 to about 8 carbon atoms; in another embodiment, from 1 to about 6 carbon atoms; and in another embodiment, from 1 to about 4 carbon atoms.
  • substituents include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, and hexyl and the like.
  • alkenyl (alone or in combination with another term(s)) means a straight- or branched-chain hydrocarbyl substituent containing one or more double bonds and typically from 2 to about 10 carbon atoms; or in another embodiment, from 2 to about 8 carbon atoms; in another embodiment, from 2 to about 6 carbon atoms; and in another embodiment, from 2 to about 4 carbon atoms.
  • substituents include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-pentadienyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl and the like.
  • alkynyl (alone or in combination with another term(s)) means a straight- or branched-chain hydrocarbyl substituent containing one or more triple bonds and typically from 2 to about 10 carbon atoms; or in another embodiment, from 2 to about 8 carbon atoms; in another embodiment, from 2 to about 6 carbon atoms; and in another embodiment, from 2 to about 4 carbon atoms.
  • substituents include ethynyl, 2-propynyl, 3-propynyl, 2-butynyl, and 3-butynyl and the like.
  • carbocyclyl (alone or in combination with another term(s)) means a saturated cyclic (i.e., “cycloalkyl”), partially saturated cyclic (i.e., “cycloalkenyl”), or completely unsaturated (i.e., “aryl”) hydrocarbyl substituent containing from 3 to 14 carbon ring atoms (“ring atoms” are the atoms bound together to form the ring or rings of a cyclic substituent).
  • a carbocyclyl may be a single-ring (monocyclic) or polycyclic ring structure.
  • a carbocyclyl may be a single ring structure, which typically contains from 3 to 8 ring atoms, more typically from 3 to 6 ring atoms, and even more typically 5 to 6 ring atoms.
  • Examples of such single-ring carbocyclyls include cyclopropyl (cyclopropanyl), cyclobutyl (cyclobutanyl), cyclopentyl (cyclopentanyl), cyclopentenyl, cyclopentadienyl, cyclohexyl (cyclohexanyl), cyclohexenyl, cyclohexadienyl, and phenyl.
  • a carbocyclyl may alternatively be polycyclic (i.e., may contain more than one ring).
  • polycyclic carbocyclyls include bridged, fused, and spirocyclic carbocyclyls.
  • a spirocyclic carbocyclyl one atom is common to two different rings.
  • An example of a spirocyclic carbocyclyl is spiropentanyl.
  • a bridged carbocyclyl the rings share at least two common non-adjacent atoms.
  • bridged carbocyclyls include bicyclo[2.2.1]heptanyl, bicyclo[2.2.1]hept-2-enyl, and adamantanyl.
  • two or more rings may be fused together, such that two rings share one common bond.
  • Examples of two- or three-fused ring carbocyclyls include naphthalenyl, tetrahydronaphthalenyl (tetralinyl), indenyl, indanyl (dihydroindenyl), anthracenyl, phenanthrenyl, and decalinyl.
  • cycloalkyl (alone or in combination with another term(s)) means a saturated cyclic hydrocarbyl substituent containing from 3 to 14 carbon ring atoms.
  • a cycloalkyl may be a single carbon ring, which typically contains from 3 to 8 carbon ring atoms and more typically from 3 to 6 ring atoms.
  • single-ring cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • a cycloalkyl may alternatively be polycyclic or contain more than one ring. Examples of polycyclic cycloalkyls include bridged, fused, and spirocyclic carbocyclyls.
  • aryl (alone or in combination with another term(s)) means an aromatic carbocyclyl containing from 6 to 14 carbon ring atoms.
  • An aryl may be monocyclic or polycyclic (i.e., may contain more than one ring). In the case of polycyclic aromatic rings, only one ring the polycyclic system is required to be unsaturated while the remaining ring(s) may be saturated, partially saturated or unsaturated.
  • aryls include phenyl, naphthalenyl, indenyl, indanyl, and tetrahydronapthyl.
  • the number of carbon atoms in a hydrocarbyl substituent is indicated by the prefix “C x -C y -”, wherein x is the minimum and y is the maximum number of carbon atoms in the substituent.
  • C 1 -C 6 -alkyl refers to an alkyl substituent containing from 1 to 6 carbon atoms.
  • C 3 -C 8 -cycloalkyl means a saturated hydrocarbyl ring containing from 3 to 8 carbon ring atoms.
  • hydrogen (alone or in combination with another term(s)) means a hydrogen radical, and may be depicted as —H.
  • hydroxy (alone or in combination with another term(s)) means —OH.
  • amino (alone or in combination with another term(s)) means —NH 2 .
  • halogen or “halo” (alone or in combination with another term(s)) means a fluorine radical (which may be depicted as —F), chlorine radical (which may be depicted as —Cl), bromine radical (which may be depicted as —Br), or iodine radical (which may be depicted as —I).
  • a non-hydrogen radical is in the place of hydrogen radical on a carbon or nitrogen of the substituent.
  • a substituted alkyl substituent is an alkyl substituent in which at least one non-hydrogen radical is in the place of a hydrogen radical on the alkyl substituent.
  • monofluoroalkyl is alkyl substituted with a fluoro radical
  • difluoroalkyl is alkyl substituted with two fluoro radicals. It should be recognized that if there are more than one substitution on a substituent, each non-hydrogen radical may be identical or different (unless otherwise stated).
  • substituent may be either (1) not substituted or (2) substituted. If a substituent is described as being optionally substituted with up to a particular number of non-hydrogen radicals, that substituent may be either (1) not substituted; or (2) substituted by up to that particular number of non-hydrogen radicals or by up to the maximum number of substitutable positions on the substituent, whichever is less. Thus, for example, if a substituent is described as a heteroaryl optionally substituted with up to 3 non-hydrogen radicals, then any heteroaryl with less than 3 substitutable positions would be optionally substituted by up to only as many non-hydrogen radicals as the heteroaryl has substitutable positions.
  • tetrazolyl (which has only one substitutable position) would be optionally substituted with up to one non-hydrogen radical.
  • an amino nitrogen is described as being optionally substituted with up to 2 non-hydrogen radicals, then a primary amino nitrogen will be optionally substituted with up to 2 non-hydrogen radicals, whereas a secondary amino nitrogen will be optionally substituted with up to only 1 non-hydrogen radical.
  • haloalkyl means an alkyl substituent in which at least one hydrogen radical is replaced with a halogen radical.
  • haloalkyls include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, and 1,1,1-trifluoroethyl. It should be recognized that if a substituent is substituted by more than one halogen radical, those halogen radicals may be identical or different (unless otherwise stated).
  • the prefix “perhalo” indicates that every hydrogen radical on the substituent to which the prefix is attached is replaced with independently selected halogen radicals, i.e., each hydrogen radical on the substituent is replaced with a halogen radical. If all the halogen radicals are identical, the prefix typically will identify the halogen radical. Thus, for example, the term “perfluoro” means that every hydrogen radical on the substituent to which the prefix is attached is substituted with a fluorine radical. To illustrate, the term “perfluoroalkyl” means an alkyl substituent wherein a fluorine radical is in the place of each hydrogen radical.
  • carbonyl (alone or in combination with another term(s)) means —C(O)—.
  • aminocarbonyl (alone or in combination with another term(s)) means —C(O)—NH 2 .
  • oxy (alone or in combination with another term(s)) means an ether substituent, and may be depicted as —O—.
  • alkylhydroxy (alone or in combination with another term(s)) means -alkyl-OH.
  • alkylamino (alone or in combination with another term(s)) means -alkyl-NH 2 .
  • alkyloxy (alone or in combination with another term(s)) means an alkylether substituent, i.e., —O-alkyl.
  • alkylether substituent i.e., —O-alkyl.
  • substituents include methoxy (—O—CH 3 ), ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, and tert-butoxy.
  • alkylcarbonyl (alone or in combination with another term(s)) means —C(O)-alkyl.
  • aminoalkylcarbonyl (alone or in combination with another term(s)) means —C(O)-alkyl-NH 2 .
  • alkyloxycarbonyl (alone or in combination with another term(s)) means —C(O)—O-alkyl.
  • carbocyclylcarbonyl (alone or in combination with another term(s)) means —C(O)-carbocyclyl.
  • heterocyclylcarbonyl (alone or in combination with another term(s)) means —C(O)-heterocyclyl.
  • carbocyclylalkylcarbonyl (alone or in combination with another term(s)) means —C(O)-alkyl-carbocyclyl.
  • heterocyclylalkylcarbonyl (alone or in combination with another term(s)) means —C(O)-alkyl-heterocyclyl.
  • carbocyclyloxycarbonyl (alone or in combination with another term(s)) means —C(O)—O-carbocyclyl.
  • carbocyclylalkyloxycarbonyl (alone or in combination with another term(s)) means —C(O)—O-alkyl-carbocyclyl.
  • thio or “thia” (alone or in combination with another term(s)) means a thiaether substituent, i.e., an ether substituent wherein a divalent sulfur atom is in the place of the ether oxygen atom. Such a substituent may be depicted as —S—.
  • alkyl-thio-alkyl means alkyl-S-alkyl (alkyl-sulfanyl-alkyl).
  • thiol or “sulfhydryl” (alone or in combination with another term(s)) means a sulfhydryl substituent, and may be depicted as —SH.
  • (thiocarbonyl) (alone or in combination with another term(s)) means a carbonyl wherein the oxygen atom has been replaced with a sulfur. Such a substituent may be depicted as —C(S)—.
  • sulfonyl (alone or in combination with another term(s)) means —S(O) 2 —.
  • aminosulfonyl (alone or in combination with another term(s)) means —S(O) 2 —NH 2 .
  • sulfinyl or “sulfoxido” (alone or in combination with another term(s)) means —S(O)—.
  • heterocyclyl (alone or in combination with another term(s)) means a saturated (i.e., “heterocycloalkyl”), partially saturated (i.e., “heterocycloalkenyl”), or completely unsaturated (i.e., “heteroaryl”) ring structure containing a total of 3 to 14 ring atoms. At least one of the ring atoms is a heteroatom (i.e., oxygen, nitrogen, or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, oxygen, nitrogen, and sulfur.
  • a heterocyclyl may be a single-ring (monocyclic) or polycyclic ring structure.
  • a heterocyclyl may be a single ring, which typically contains from 3 to 7 ring atoms, more typically from 3 to 6 ring atoms, and even more typically 5 to 6 ring atoms.
  • single-ring heterocyclyls include 1,2,3,6-tetrahydropyridine, thiomorpholinyl, tetrahydropyranyl, furanyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl (thiofuranyl), dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, oxazolyl, oxazolidinyl, isoxazolidinyl, isox
  • a heterocyclyl may alternatively be polycyclic (i.e., may contain more than one ring).
  • polycyclic heterocyclyls include bridged, fused, and spirocyclic heterocyclyls.
  • a spirocyclic heterocyclyl one atom is common to two different rings.
  • a bridged heterocyclyl the rings share at least two common non-adjacent atoms.
  • two or more rings may be fused together, such that two rings share one common bond.
  • fused-ring heterocyclyls include hexahydro-furo[3,4-c]pyrrole, hexahydro-furo[3,4-b]pyrrole, octahydro-pyrrolo[3,4-b]pyridine, octahydro-pyrrolo[3,4-c]pyridine, (3aR,6aR)-5-methyl-octahydro-pyrrolo[3,4-b]pyrrole, (3aR,6aR)-octahydro-pyrrolo[3,4-b]pyrrole, 6-methyl-2,6-diaza-bicyclo[3.2.0]heptane, (3aS,6aR)-2-methyl-octahydro-pyrrolo[3,4-c]pyrrole, decahydro-[1,5]naphthyridine, 2,3-dihydrobenzofuranyl, 2,3,4,9-tetrahydro-1H-pyrido[3,
  • fused-ring heterocyclyls include benzo-fused heterocyclyls, such as benzimidazolyl, benzo[d][1,3]dioxolyl, indolyl, isoindolyl (isobenzazolyl, pseudoisoindolyl), indoleninyl (pseudoindolyl), isoindazolyl (benzpyrazolyl), benzazinyl (including quinolinyl (1-benzazinyl) or isoquinolinyl (2-benzazinyl)), phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl (including cinnolinyl (1,2-benzodiazinyl) or quinazolinyl (1,3-benzodiazinyl)), benzopyranyl (including chromanyl or isochromanyl), benzoxazinyl (including 1,3,2-benzoxazinyl,
  • 5-6 membered heteroaryl (alone or in combination with another term(s)) means aromatic heterocyclyl containing a total of 5 to 6 ring atoms. At least one of the ring atoms is a heteroatom (i.e., oxygen, nitrogen, or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, oxygen, nitrogen, and sulfur.
  • a heteroatom i.e., oxygen, nitrogen, or sulfur
  • heterocycloalkyl (alone or in combination with another term(s)) means a saturated heterocyclyl.
  • heteroaryl (alone or in combination with another term(s)) means an aromatic heterocyclyl containing from 5 to 14 ring atoms.
  • a heteroaryl may be a single ring or 2 or 3 fused rings.
  • heteroaryl substituents include 6-membered ring substituents such as pyridyl, pyrazyl, pyrimidinyl, pyridazinyl, and 1,3,5-, 1,2,4- or 1,2,3-triazinyl; 5-membered ring substituents such as imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl; 6/5-membered fused ring substituents such as benzothiofuranyl, benzisoxazolyl, benzoxazoly
  • halogen substitution may alternatively or additionally occur on the alkyl component, the substituent would instead be described as “halogen-substituted alkyloxyalkyl” rather than “haloalkyloxyalkyl.” And finally, if the halogen substitution may only occur on the alkyl component, the substituent would instead be described as “alkyloxyhaloalkyl.”
  • treat refers to a method of alleviating or abrogating a disease and/or its attendant symptoms.
  • prevent refers to a method of preventing the onset of a disease and/or its attendant symptoms or barring a subject from acquiring a disease.
  • prevent also include delaying the onset of a disease and/or its attendant symptoms and reducing a subject's risk of acquiring a disease.
  • terapéuticaally effective amount refers to that amount of the compound being administered sufficient to prevent development of or alleviate to some extent one or more of the symptoms of the condition or disorder being treated.
  • modulate refers to the ability of a compound to increase or decrease the function, or activity, of a kinase.
  • “Modulation”, as used herein in its various forms, is intended to encompass antagonism, agonism, partial antagonism and/or partial agonism of the activity associated with kinase.
  • Kinase inhibitors are compounds that, e.g., bind to, partially or totally block stimulation, decrease, prevent, delay activation, inactivate, desensitize, or down regulate signal transduction.
  • Kinase activators are compounds that, e.g., bind to, stimulate, increase, open, activate, facilitate, enhance activation, sensitize or up regulate signal transduction.
  • composition as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • the “subject” is defined herein to include animals such as mammals, including, but not limited to, primates (e.g., humans), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice and the like. In preferred embodiments, the subject is a human.
  • Compounds of the invention can exist in isotope-labeled or -enriched form containing one or more atoms having an atomic mass or mass number different from the atomic mass or mass number most abundantly found in nature.
  • Isotopes can be radioactive or non-radioactive isotopes.
  • Isotopes of atoms such as hydrogen, carbon, phosphorous, sulfur, fluorine, chlorine, and iodine include, but are not limited to, 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 32 P, 35 S, 18 F, 36 Cl, and 125 I.
  • Compounds that contain other isotopes of these and/or other atoms are within the scope of this invention.
  • the isotope-labeled compounds contain deuterium ( 2 H), tritium ( 3 H) or 14 C isotopes.
  • Isotope-labeled compounds of this invention can be prepared by the general methods well known to persons having ordinary skill in the art. Such isotope-labeled compounds can be conveniently prepared by carrying out the procedures disclosed in the Examples disclosed herein and Schemes by substituting a readily available isotope-labeled reagent for a non-labeled reagent.
  • compounds may be treated with isotope-labeled reagents to exchange a normal atom with its isotope, for example, hydrogen for deuterium can be exchanged by the action of a deuteric acid such as D 2 SO 4 /D 2 O.
  • a deuteric acid such as D 2 SO 4 /D 2 O.
  • the isotope-labeled compounds of the invention may be used as standards to determine the effectiveness in binding assays.
  • Isotope containing compounds have been used in pharmaceutical research to investigate the in vivo metabolic fate of the compounds by evaluation of the mechanism of action and metabolic pathway of the nonisotope-labeled parent compound (Blake et al. J. Pharm. Sci. 64, 3, 367-391 (1975)).
  • Such metabolic studies are important in the design of safe, effective therapeutic drugs, either because the in vivo active compound administered to the patient or because the metabolites produced from the parent compound prove to be toxic or carcinogenic (Foster et al., Advances in Drug Research Vol. 14, pp. 2-36, Academic press, London, 1985; Kato et al., J. Labelled Comp. Radiopharmaceut., 36(10):927-932 (1995); Kushner et al., Can. J. Physiol. Pharmacol., 77, 79-88 (1999).
  • non-radio active isotope containing drugs such as deuterated drugs called “heavy drugs,” can be used for the treatment of diseases and conditions related to NAMPT activity.
  • Increasing the amount of an isotope present in a compound above its natural abundance is called enrichment.
  • Examples of the amount of enrichment include from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %.
  • Stable isotope labeling of a drug can alter its physico-chemical properties such as pKa and lipid solubility. These effects and alterations can affect the pharmacodynamic response of the drug molecule if the isotopic substitution affects a region involved in a ligand-receptor interaction. While some of the physical properties of a stable isotope-labeled molecule are different from those of the unlabeled one, the chemical and biological properties are the same, with one important exception: because of the increased mass of the heavy isotope, any bond involving the heavy isotope and another atom will be stronger than the same bond between the light isotope and that atom. Accordingly, the incorporation of an isotope at a site of metabolism or enzymatic transformation will slow said reactions potentially altering the pharmacokinetic profile or efficacy relative to the non-isotopic compound.
  • Suitable groups for X, R 1 , and Z in all Formulas are independently selected.
  • the described embodiments of the present invention may be combined. Such combination is contemplated and within the scope of the present invention.
  • embodiments for any of X, R 1 , and Z can be combined with embodiments defined for any other of X, R 1 , and Z.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (I)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 ; and CH 2 NHC(O)R 3 ; and
  • Z is CH or N;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is hydrogen
  • Z is CR 2 ;
  • R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 ; and CH 2 NHC(O)R 3 ; and
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R 3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • n 4, 5, or 6;
  • n 1 or 2;
  • R 1 is NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is furanyl; the R 3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is thienyl; the R 3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • X is N or CY 1 . In another embodiment of Formula (I), X is N. In another embodiment of Formula (I), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • Z is CH or N;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is NHC(O)NHR 3 ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is NHC(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is CH 2 NHC(O)NHR 3 ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is NHC(O)(CH 2 ) n R 3 ; and R 2 is hydrogen.
  • Z is CH or N; R 1 is C(O)NH(CH 2 ) n R 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R 1 is NHC(O)(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R 1 is C(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R 1 is CH 2 C(O)NHR 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R 1 is CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is CH;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is CH; R 1 is NHC(O)NHR 3 ; and R 2 is hydrogen.
  • Z is CH; R 1 is NHC(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen.
  • Z is CH; R 1 is CH 2 NHC(O)NHR 3 ; and R 2 is hydrogen.
  • Z is CH; R 1 is NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is CH; R 1 is NHC(O)(CH 2 ) n R 3 ; and R 2 is hydrogen.
  • Z is CH; R 1 is C(O)NH(CH 2 ) n R 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH; R 1 is NHC(O)(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH; R 1 is C(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH; R 1 is CH 2 C(O)NHR 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is CH; R 1 is CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is N;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • Z is N; R 1 is NHC(O)NHR 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is NHC(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is CH 2 NHC(O)NHR 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is NHC(O)R 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is NHC(O)(CH 2 ) n R 3 ; and R 2 is hydrogen.
  • Z is N; R 1 is C(O)NH(CH 2 ) n R 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is NHC(O)(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is C(O)NH(CH 2 ) m R 3x ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is CH 2 C(O)NHR 3 ; and R 2 is hydrogen. In another embodiment of Formula (I), Z is N; R 1 is CH 2 NHC(O)R 3 ; and R 2 is hydrogen.
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3 , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)NH(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 NHC(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)(CH 2 ) n R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is C(O)NH(CH 2 ) n R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is C(O)NH(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 C(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 NHC(O)R 3 .
  • m is 4, 5, or 6. In another embodiment of Formula (I), m is 4. In another embodiment of Formula (I), m is 5. In another embodiment of Formula (I), m is 6.
  • n is 1 or 2. In another embodiment of Formula (I), n is 1. In another embodiment of Formula (I), n is 2.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R 3x phenyl and heterocycyl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 ,
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (I)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 ; and CH 2 NHC(O)R 3 ; and
  • Z is CH or N;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen F, Cl, Br, and I;
  • R 1 is hydrogen
  • Z is CR 2 ;
  • R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , CH 2 C(O)NHR 3 ; and CH 2 NHC(O)R 3 ; and
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 3x is independently heterocyclyl; wherein each R 3x heterocyclyl is substituted with one substituents independently selected from the group consisting of C(O)R 4 , CO(O)R 4 , F, Cl, Br and I;
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • n 4, or 5;
  • n 1;
  • R 1 is NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is furanyl; the R 3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is thienyl; the R 3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • Still another embodiment pertains to compounds having Formula (I), which includes Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
  • the present invention provides compounds of Formula (II)
  • One embodiment pertains to compounds of Formula (II) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (II), X is N. In another embodiment of Formula (II), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (II)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (II), which includes Example 2; and pharmaceutically acceptable salts thereof.
  • the present invention provides compounds of Formula (III)
  • One embodiment pertains to compounds of Formula (III) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (III), X is N. In another embodiment of Formula (III), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 1 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R 1 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (III)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (III), which includes Examples 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • Formula (III) includes Examples 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • the present invention provides compounds of Formula (IV)
  • One embodiment pertains to compounds of Formula (IV) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (IV), X is N. In another embodiment of Formula (IV), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IV)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (IV), which includes Examples 118, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 243, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 302, 303, 306, 307, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 364, 366, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 404, 407, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460
  • the present invention provides compounds of Formula (V)
  • One embodiment pertains to compounds of Formula (V) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (V), X is N. In another embodiment of Formula (V), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (V)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (V), which include Examples 59, 60, 274, 275, 276, 277, 278, 279, 360, 362, and pharmaceutically acceptable salts thereof.
  • the present invention provides compounds of Formula (VI)
  • One embodiment pertains to compounds of Formula (VI) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (VI), X is N. In another embodiment of Formula (VI), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 10 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R 10 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VI)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (VI), which includes Examples 57, 117, 121, 138, 174, 181, 182, 185, 187, 188, 192, 193, 194, 195, 196, 197, 198, 199, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 304, 305, 308, 309, 310, 311, 312, 313, 315, 316, 3
  • the present invention provides compounds of Formula (VII)
  • One embodiment pertains to compounds of Formula (VII) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (VII), X is N. In another embodiment of Formula (VII), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VII)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (VII), which includes Examples 52, 55, 56, 61, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 108, 114, 115, 116, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 17
  • the present invention provides compounds of Formula (VIII)
  • One embodiment pertains to compounds of Formula (VIII) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (VIII), X is N. In another embodiment of Formula (VIII), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIII)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (VIII), which includes Example 322, and pharmaceutically acceptable salts thereof.
  • the present invention provides compounds of Formula (IX)
  • One embodiment pertains to compounds of Formula (IX) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (IX), X is N. In another embodiment of Formula (IX), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , and OH.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R 8 at each occurrence, is independently alkyl.
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O
  • R 9 at each occurrence is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R 10 at each occurrence, is independently haloalkyl or alkyl.
  • R 11 at each occurrence is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R 11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IX)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F,
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , OH, F, Cl, Br and I;
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R 8 , OR 8 , CNF, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of haloalkyl, and alkyl;
  • R 11 at each occurrence, is alkyl
  • Still another embodiment pertains to compounds having Formula (IX), which includes Examples 53, 54, 76, 314, 323, 491, and pharmaceutically acceptable salts thereof.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • Z is CH, C—F, C—Cl, C—Br, C—I or N;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 1 is hydrogen, F, Cl, Br, or I
  • Z is CR 2 ;
  • R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R 3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 at each occurrence is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I;
  • R 11 at each occurrence is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • n 4, 5, or 6;
  • n 1 or 2;
  • R 1 is NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is furanyl; the R 3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is thienyl; the R 3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • X is N or CY 1 . In another embodiment of Formula (IA), X is N. In another embodiment of Formula (IA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • Z is CH, C—F, C—Cl, C—Br, C—I or N; and R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 .
  • Z is CH or N; and R 1 is NHC(O)NHR 3 .
  • Z is CH or N; and R 1 is NHC(O)NH(CH 2 ) m R 3x .
  • Z is CH or N; and R 1 is CH 2 NHC(O)NHR 3 .
  • Z is CH or N; and R 1 is NHC(O)R 3 .
  • Z is CH or N; and R 1 is NHC(O)(CH 2 ) n R 3 .
  • Z is CH or N; and R 1 is C(O)NH(CH 2 ) n R 3 .
  • Z is CH or N; and R 1 is NHC(O)(CH 2 ) m R 3x .
  • Z is CH or N; and R 1 is C(O)NH(CH 2 ) m R 3x .
  • Z is CH or N; and R 1 is CH 2 C(O)NHR 3 .
  • Z is CH or N; and R 1 is CH 2 NHC(O)R 3 .
  • Z is CH; and R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 .
  • Z is CH; and R 1 is NHC(O)NHR 3 .
  • Z is CH; and R 1 is NHC(O)NH(CH 2 ) m R 3x .
  • Z is CH; and R 1 is CH 2 NHC(O)NHR 3 .
  • Z is CH; and R 1 is NHC(O)R 3 .
  • Z is CH; and R 1 is NHC(O)(CH 2 ) n R 3 .
  • Z is CH; and R 1 is C(O)NH(CH 2 ) n R 3 .
  • Z is CH; and R 1 is NHC(O)(CH 2 ) m R 3x .
  • Z is CH; and R 1 is C(O)NH(CH 2 ) m R 3x .
  • Z is CH; and R 1 is CH 2 C(O)NHR 3 .
  • Z is CH; and R 1 is CH 2 NHC(O)R 3 .
  • Z is N; and R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 .
  • Z is N; and R 1 is NHC(O)NHR 3 .
  • Z is N; and R 1 is NHC(O)NH(CH 2 ) m R 3x .
  • Z is N; and R 1 is CH 2 NHC(O)NHR 3 .
  • Z is N; and R 1 is NHC(O)R 3 .
  • Z is N; and R 1 is NHC(O)(CH 2 ) n R 3 .
  • Z is N; and R 1 is C(O)NH(CH 2 ) n R 3 .
  • Z is N; and R 1 is NHC(O)(CH 2 ) m R 3x .
  • Z is N; and R 1 is C(O)NH(CH 2 ) m R 3x .
  • Z is N; and R 1 is CH 2 C(O)NHR 3 .
  • Z is N; and R 1 is CH 2 NHC(O)R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)NH(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 NHC(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)(CH 2 ) n R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is C(O)NH(CH 2 ) n R 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is NHC(O)(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is C(O)NH(CH 2 ) m R 3x .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 C(O)NHR 3 .
  • R 1 is hydrogen; Z is CR 2 ; and R 2 is CH 2 NHC(O)R 3 .
  • m is 4, 5, or 6. In another embodiment of Formula (IA), m is 4. In another embodiment of Formula (IA), m is 5. In another embodiment of Formula (IA), m is 6.
  • n is 1 or 2. In another embodiment of Formula (IA), n is 1. In another embodiment of Formula (IA), n is 2.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , SO 2 R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , SO 2 R 4 , OR 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R 3x phenyl and heterocycyl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NHC(O)NHR
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, and Cl.
  • R 10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 10 at each occurrence is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IA), R 11 , at each occurrence, is independently alkyl.
  • R 11 at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 1 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , NHC(O)(CH 2 ) n R 3 , C(O)NH(CH 2 ) n R 3 , NHC(O)(CH 2 ) m R 3x , C(O)NH(CH 2 ) m R 3x , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • Z is CH, C—F, or N;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, and Cl;
  • R 1 is hydrogen
  • Z is CR 2 ;
  • R 2 is independently selected from the group consisting of NHC(O)NHR 3 , NHC(O)NH(CH 2 ) m R 3x , CH 2 NHC(O)NHR 3 , NHC(O)R 3 , CH 2 C(O)NHR 3 , and CH 2 NHC(O)R 3 ; and
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 3x is heterocyclyl; wherein the R 3x heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of C(O)R 4 , CO(O)R 4 , F, Cl, Br and I;
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is independently alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, Cl, Br and I;
  • R 10 at each occurrence is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F;
  • R 11 at each occurrence, is independently cycloalkyl or alkyl
  • n 4, or 5;
  • n 1;
  • R 1 is NHC(O)R 3 ;
  • R 2 is hydrogen; and
  • R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is phenyl; the R 3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is furanyl; the R 3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • R 1 is C(O)NH(CH 2 ) n R 3 ; n is 1; R 2 is hydrogen; and R 3 is thienyl; the R 3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • Still another embodiment pertains to compounds having Formula (IA), which includes Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
  • the present invention provides compounds of Formula (IIA)
  • One embodiment pertains to compounds of Formula (IIA) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (IIA), X is N. In another embodiment of Formula (IIA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 10 is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIA), R 11 , at each occurrence, is independently alkyl. In another embodiment of Formula (IIA), R 11 , at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is independently alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, Cl, Br and I;
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R 11 at each occurrence, is independently cycloalkyl or alkyl
  • the present invention provides compounds of Formula (IIIA)
  • One embodiment pertains to compounds of Formula (IIIA) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (IIIA), X is N. In another embodiment of Formula (IIIA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIIA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIIA), R 11 , at each occurrence, is independently alkyl. In another embodiment of Formula (IIIA), R 11 , at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIIA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is independently alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, Cl, Br and I;
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R 11 at each occurrence, is independently cycloalkyl or alkyl
  • Still another embodiment pertains to compounds having Formula (IIIA), which includes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • Formula (IIIA) includes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • the present invention provides compounds of Formula (IVA)
  • One embodiment pertains to compounds of Formula (IVA) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (IVA), X is N. In another embodiment of Formula (IVA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IVA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 10 in another embodiment, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IVA), R 11 , at each occurrence, is independently alkyl. In another embodiment of Formula (IVA), R 11 , at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IVA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is independently alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, Cl, Br and I;
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R 11 at each occurrence, is independently cycloalkyl or alkyl
  • Still another embodiment pertains to compounds having Formula (IVA), which includes Examples 118, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 243, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 302, 303, 306, 307, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 364, 366, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 404, 407, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
  • the present invention provides compounds of Formula (VA)
  • One embodiment pertains to compounds of Formula (VA) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 1 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (VA), X is N. In another embodiment of Formula (VA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)N
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 10 is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VA), R 11 , at each occurrence, is independently alkyl. In another embodiment of Formula (VA), R 11 , at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R 8 at each occurrence, is independently alkyl
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , CN, F, Cl, Br and I;
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R 11 at each occurrence, is independently cycloalkyl or alkyl
  • Still another embodiment pertains to compounds having Formula (VA), which includes 59, 60, 274, 275, 276, 277, 278, 279, 360, 362, and pharmaceutically acceptable salts thereof.
  • VA Formula (VA)
  • the present invention provides compounds of Formula (VIA)
  • One embodiment pertains to compounds of Formula (VIA) or pharmaceutically acceptable salts thereof;
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)N(R 4 ) 2
  • R 4 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NHC(O)NH 2
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(O)NH 2 , NHC(O)NH 2 ,
  • R 7 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , C(
  • R 10 is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • X is N or CY 1 . In another embodiment of Formula (VIA), X is N. In another embodiment of Formula (VIA), X is CY 1 .
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is independently selected from the group consisting of hydrogen, Cl, Br, and I.
  • X is CY 1 ; and Y 1 is Cl.
  • X is CY 1 ; and Y 1 is hydrogen.
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SR 4 , S(O)R 4 , SO 2 R 4 , C(O)R 4 , CO(O)R 4 , OC(O)R 4 , OC(O)OR 4 , NH 2 , NHR 4 , N(R 4 ) 2 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NR 4 S(O) 2 R 4 , NHC(O)OR 4 , NR 4 C(O)OR 4 , NHC(O)NH 2 , NHC(O)NHR 4 , NHC(O)N(R 4 ) 2 , NR 4 C(O)NHR 4 , NR 4 C(O)NHR 4 , NR 4
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)
  • R 3 is phenyl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , and C(O)NHR 4 ; and wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I.
  • R 3 is 5-6 membered heteroaryl; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 3 is thienyl; wherein each R 3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)NHR 4 , C(O)NHR 4 , F, Cl, Br and I.
  • R 4 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , SR 5 , S(O)R 5 , SO 2 R 5 , C(O)R 5 , CO(O)R 5 , OC(O)R 5 , OC(O)OR 5 , NH 2 , NHR 5 , N(R 5 ) 2 , NHC(O)R 5 , NR 5 C(O)R 5 , NHS(O) 2 R 5 , NR 5 S(O) 2 R 5 , NHC(O)OR 5 , NR 5 C(O)OR 5 , NR 5 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , C(O)N(R 6 ) 2 , OH, and F.
  • R 5 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , SR 7 , S(O)R 7 , SO 2 R 7 , C(O)R 7 , CO(O)R 7 , OC(O)R 7 , OC(O)OR 7 , NH 2 , NHR 7 , N(R 7 ) 2 , NHC(O)R 7 , NR 7 C(O)R 7 , NHS(O) 2 R 7 , NR 7 S(O) 2 R 7 , NHC(O)OR 7 , NR 7 C(O)OR 7 , NHC(
  • R 5 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , and OH; wherein each R 5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I.
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SR 9 , S(O)R 9 , SO 2 R 9 , C(O)R 9 , CO(O)R 9 , OC(O)R 9 , OC(O)OR 9 , NH 2 , NHR 9 , N(R 9 ) 2 , NHC(O)R 9 , NR 9 C(O)R 9 , NHS(O) 2 R 9 , NR 9 S(O) 2 R 9 , NHC(O)OR 9 , NR 9 C(O)OR 9 , NHC(
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , CN, F, Cl, Br and I.
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N 3 , NO 2 , F, Cl, Br and I; wherein each R 7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N 3 , NO 2 , F, Cl, Br and I.
  • R 7 at each occurrence, is alkyl or heterocyclyl.
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIA), R 8 , at each occurrence, is independently alkyl.
  • R 9 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO 2 , F, Cl, Br and I; wherein each R 9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , NH 2 , NHR 11 , N(R 11 ) 2 , NHC(O)R 11 , NR 11 C
  • R 9 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R 9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 11 , OR 11 , CO(O)R 11 , and F.
  • R 10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R 10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I.
  • R 10 is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R 10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • R 11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIA), R 11 , at each occurrence, is independently alkyl. In another embodiment of Formula (VIA), R 11 , at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIA)
  • X is N or CY 1 ;
  • Y 1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R 3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R 3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R 4 , OR 4 , SO 2 R 4 , C(O)R 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHS(O) 2 R 4 , NHC(O)OR 4 , C(O)NHR 4 , F, Cl, Br and I; wherein each R 3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R 3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R 4 , C(O)R 4 , NHR 4 , NHC(O)R 4 , NR 4 C(O)R 4 , NHC(O)OR 4 , NR 4 C(O)OR
  • R 4 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R 4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 5 , OR 5 , C(O)R 5 , NHC(O)R 5 , OH, F, Cl, Br and I; wherein each R 4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 6 , OR 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , C(O)C(O)R 6 , NHC(O)R 6 , NHC(O)NHR 6 , C(O)N(R 6 ) 2 , OH, F, Cl, Br and I;
  • R 5 is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R 5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 7 , OR 7 , OH, F, Cl, Br and I; wherein each R 5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 8 , OR 8 , CN, F, Cl, Br and I;
  • R 6 is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R 6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 9 , OR 9 , SO 2 R 9 , NH 2 , N(R 9 ) 2 , OH, F, Cl, Br and I; wherein each R 6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R 10 , OR 10 , C(O)R 10 , CN, F, and Cl;
  • R 7 at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;

Abstract

Disclosed are compounds which inhibit the activity of NAMPT, compositions containing the compounds and methods of treating diseases during which NAMPT is expressed.

Description

  • This application claims priority to U.S. Provisional Application Ser. No. 61/645,679, filed May 11, 2012, U.S. Provisional Application Ser. No. 61/718,998, filed Oct. 26, 2012, and U.S. Provisional Application Ser. No. 61/779,626, filed Mar. 13, 2013, which are incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention pertains to compounds which inhibit the activity of NAMPT, compositions containing the compounds, and methods of treating diseases during which NAMPT is expressed.
  • BACKGROUND OF THE INVENTION
  • NAD+ (nicotinamide adenine dinucleotide) is a coenzyme that plays a critical role in many physiologically essential processes (Ziegkel, M. Eur. J. Biochem. 267, 1550-1564, 2000). NAD is necessary for several signaling pathways including among others poly ADP-ribosylation in DNA repair, mono-ADP-ribosylation in both the immune system and G-protein-coupled signaling, and NAD is also required by sirtuins for their deacetylase activity (Garten, A. et al Trends in Endocrinology and Metabolism, 20, 130-138, 2008).
  • NAMPT (also known as pre-B-cell-colony-enhancing factor (PBEF) and visfatin) is an enzyme that catalyzes the phosphoribosylation of nicotinamide and is the rate-limiting enzyme in one of two pathways that salvage NAD.
  • Figure US20160184282A1-20160630-C00001
  • Increasing evidence suggests that NAMPT inhibitors have potential as anticancer agents. Cancer cells have a higher basal turnover of NAD and also display higher energy requirements compared with normal cells. Additionally, increased NAMPT expression has been reported in colorectal cancer (Van Beijnum, J. R. et al Int. J. Cancer 101, 118-127, 2002) and NAMPT is involved in angiogenesis (Kim, S. R. et al. Biochem. Biophys. Res. Commun. 357, 150-156, 2007). Small-molecule inhibitors of NAMPT have been shown to cause depletion of intracellular NAD+ levels and ultimately induce tumor cell death (Hansen, C M et al. Anticancer Res. 20, 42111-4220, 2000) as well as inhibit tumor growth in xenograft models (Olese, U. H. et al. Mol Cancer Ther. 9, 1609-1617, 2010).
  • NAMPT inhibitors also have potential as therapeutic agents in inflammatory and metabolic disorders (Galli, M. et al Cancer Res. 70, 8-11, 2010). For example, NAMPT is the predominant enzyme in T and B lymphocytes. Selective inhibition of NAMPT leads to NAD+ depletion in lymphocytes blocking the expansion that accompanies autoimmune disease progression whereas cell types expressing the other NAD+ generating pathways might be spared. A small molecule NAMPT inhibitor (FK866) has been shown to selectively block proliferation and induce apoptosis of activated T cells and was efficacious in animal models of arthritis (collagen-induced arthritis) (Busso, N. et al. Plos One 3, e2267, 2008). FK866 ameliorated the manifestations of experimental autoimmune encephalomyelitis (EAE), a model of T-cell mediated autoimmune disorders. (Bruzzone, S et al. Plos One 4, e7897, 2009). NaMPT activity increases NF-kB transcriptional activity in human vascular endothelial cell, resulting in MMP-2 and MMP-9 activation, suggesting a role for NAMPT inhibitors in the prevention of inflammatory mediated complications of obesity and type 2 diabetes (Adya, R. et. Al. Diabetes Care, 31, 758-760, 2008).
  • SUMMARY OF THE INVENTION
  • One embodiment, therefore, pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IB)
  • Figure US20160184282A1-20160630-C00002
  • or a therapeutically acceptable salt thereof, wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • Z is CH, C—F, C—Cl, C—Br, C—I or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is hydrogen, F, Cl, Br, or I;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I;
  • R11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • m is 4, 5, or 6; and
  • n is 1 or 2;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • In another embodiment of Formula (IB), R1 is NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (IB), R1 is CH2NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (IB), R1 is hydrogen; and R2 is CH2NHC(O)NHR3. In another embodiment of Formula (IB), R1 is hydrogen; and R2 is CH2NHC(O)R3. In one embodiment of Formula (IB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In one embodiment of Formula (IB), R1 is NHC(O)NHR3; R2 is hydrogen; and R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In one embodiment of Formula (IB), R1 is CH2NHC(O)R3; R2 is hydrogen; and R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In one embodiment of Formula (IB), R1 is hydrogen; R2 is CH2NHC(O)NHR3; and R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In one embodiment of Formula (IB), R1 is hydrogen; R2 is CH2NHC(O)R3; and R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IB), R1 is NHC(O)NHR3; R2 is hydrogen; and R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IB), R1 is CH2NHC(O)R3; R2 is hydrogen; and R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IB), R1 is hydrogen; R2 is CH2NHC(O)NHR3; and R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IB), R1 is hydrogen; R2 is CH2NHC(O)R3; and R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • Still another embodiment pertains to compounds, which are
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-7-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenylethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(morpholin-4-yl)ethyl]benzamide;
    • N-(1-hydroxy-2-methylpropan-2-yl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-benzyl-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-(cyclopentylmethyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(piperidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenoxyethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(propan-2-yloxy)ethyl]benzamide;
    • N-(2-hydroxy-2-methylpropyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-[2-hydroxy-1-(4-methoxyphenyl)ethyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(2-oxopyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-propylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(morpholin-4-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-phenylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-methylbutyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide;
    • N-[(1,1-dioxidotetrahydrothiophen-3-yl)methyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydrofuran-3-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(ethoxyacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(1-methylpiperidin-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 2-ethoxy-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(morpholin-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(2-methoxyethoxy)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3-methoxy-2-methylpropanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide;
    • 4,4,4-trifluoro-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-pyran-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-4-methylpentanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1-methylpiperidine-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-thiopyran-4-carboxamide 1,1-dioxide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1,4-dioxane-2-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine-1-carboxylate;
    • 4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}butyl)urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-{4-[1-(cyclopentylcarbonyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(2-methoxyethoxy)acetyl]piperidin-4-yl}butyl)urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(morpholin-4-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 2-cyclopentyl-N-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(morpholin-4-ylacetyl)amino]benzamide;
    • 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate;
    • N-{4-[(cyclopentylacetyl)amino]benzyl}imidazo[1,2-a]pyridine-6-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(3-phenylpyrrolidin-1-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-(1,3-dihydro-2H-isoindol-2-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[3-(tetrahydrofuran-2-yl)propanoyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)butyl]-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[2-oxo-4-(tetrahydrofuran-3-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(2-oxo-5-phenyl-1,3-oxazolidin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(3-methyl-1,2-oxazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3-chloro-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(3-methoxy-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3,5-dimethyl-1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(4-methyl-1,3-thiazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1H-tetrazol-5-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(1,2-oxazol-3-ylacetyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-2-ylmethyl) [3-(1,3-thiazol-2-yl)propanoyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutanoyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylmethyl)(tetrahydro-2H-pyran-4-ylcarbonyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-3-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydro-2H-pyran-4-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl) [(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2S)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydro-2H-pyran-4-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2R)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2S)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-[5-(4-chlorophenyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{[1-(cyclopropylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-[(1-butanoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3-methoxy-2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropanoyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2R)-2-hydroxybutyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,3-dimethyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 2-{(4R)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{(4S)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1,3-thiazol-4-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(1,2-oxazol-3-ylacetyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(5-methyl-1,2-oxazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](1,3-thiazol-4-ylacetyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[3-(tetrahydrofuran-2-yl)propanoyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide; 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(4-methylpentanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • 4-[(4-cyanobenzyl)(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 2-{5-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3-hydroxy-3-methylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 5-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]thiophene-2-carboxamide;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 2-[(2S)-2-(hydroxymethyl)-5-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(cyclopropylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]thiophene-2-carboxamide;
    • 2-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5S)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5R)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methoxyacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(1,2-oxazol-5-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4R)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4S)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 1-[4-(1-benzoylpiperidin-4-yl)butyl]-3-imidazo[1,2-a]pyridin-7-ylurea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-5-ethyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methoxy-3,3-dimethylcyclohexyl)methyl]-5-methyl-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1(2H)-carboxylate;
    • tert-butyl (3R)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate;
    • tert-butyl {2-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-(1-ethyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(1,1-dioxidotetrahydrothiophen-3-yl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-phenylthiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(methylsulfonyl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)pyrrolidine-1-carboxylate;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)biphenyl-2-sulfonamide;
    • 5-{1-[(2R)-2-hydroxypropyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-3-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxyethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(propan-2-yloxy)phenyl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-7-ylcarbamoyl)phenyl]piperidine-1-carboxylate;
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-6-ylcarbamoyl)phenyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(2-methylpropanoyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • 5-[3-(benzoylamino)oxetan-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(tetrahydrofuran-3-ylacetyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(pentanoylamino)oxetan-3-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydrofuran-3-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3R)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}benzamide;
    • 5-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-3-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • 4-{[(3S)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(3-methoxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-butanoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(3-hydroxy-3-methylbutanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2-(4-benzoylpiperazin-1-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(propan-2-yl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(2-methoxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-phenyl-1,3-thiazole-5-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-5-yl)thiophene-2-carboxamide;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)azetidine-1-carboxylate;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]benzamide;
    • 1-[4-(1-acetylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 4-{[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]amino}-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-6-yl)methyl]-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate;
    • tert-butyl 4-hydroxy-4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[5-(piperidin-1-ylcarbonyl)-1,3-thiazol-2-yl]urea;
    • 5-{3-hydroxy-1-[(2S)-2-methylbutanoyl]azetidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(3-{[(2S)-2-methylbutanoyl]amino}oxetan-3-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(morpholin-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • 1-{4-[(1-acetylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[1-(1,4-dioxan-2-ylcarbonyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]oxy}phenyl)urea;
    • tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate;
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-[4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{1-[(3,3-difluorocyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylpiperidin-4-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylazetidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]phenyl}urea;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[6-(morpholin-4-yl)pyridin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methyltetrahydro-2H-pyran-2-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylbutanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-{[(2S)-2-methylbutanoyl]amino}cyclobutyl)thiophene-2-carboxamide;
    • 5-[1-(benzoylamino)cyclobutyl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3,3,3-trifluoropropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(1-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}cyclobutyl)tetrahydro-2H-pyran-4-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(furan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-phenoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide;
    • tert-butyl 4-{4-[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-phenoxyphenyl)urea;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohexylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • 4-(1-butanoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylpent-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyloxetan-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopropyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopentylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-oxobutanoyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2,5-dimethylfuran-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-propanoylpiperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 5-[4-hydroxy-1-(3-methylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[4-hydroxy-1-(2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-4-hydroxypiperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylazetidin-3-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 2-cyclopentyl-N-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • tert-butyl 4-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-1-ylcarbonyl)benzamide;
    • 4-[1-(ethylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)azetidin-3-yl]benzamide;
    • propan-2-yl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 2-methylpropyl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(2-cyano-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3R)-tetrahydrofuran-3-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}benzamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(ethylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)azetidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • 4-[1-(cyclopropylsulfonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{(1R)-3-methyl-1-[(tetrahydrofuran-3-ylacetyl)amino]butyl}thiophene-2-carboxamide;
    • 5-{(1S)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide;
    • 1-(4-{[(3R)-1-(2-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(3-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[4-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(pyridin-2-yl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • 1-[4-(1-butanoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopropyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(phenylacetyl)piperidin-4-yl]phenyl}urea;
    • 5-[1-(cyclopropylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 1-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3-fluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)pyrrolidin-3-yl]benzamide; N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methyl-2-phenylpropanoyl)pyrrolidin-3-yl]benzamide;
    • 4-{1-[difluoro(phenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]furan-2-carboxamide;
    • 4-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2,2,2-trifluoroethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 5-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[4-(2-methylpropyl)phenyl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-2-methylbutanoyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(cyclopropylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{1-[(2-methylpropyl)sulfonyl]pyrrolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(phenylsulfonyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidine-1-carboxylate;
    • 5-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(3,5-difluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2E)-2-methylpent-2-enoyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-{1-[(2,5-dimethylfuran-3-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propanoylpyrrolidin-3-yl)thiophene-2-carboxamide;
    • 5-{1-[(1-cyanocyclopropyl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-butanoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyrazin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(phenylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-fluorobenzoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-methylbutanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylpiperidin-4-yl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}acetamide;
    • tert-butyl 4-{4-[(imidazo[1,2-b]pyridazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-b]pyridazin-6-ylmethyl)benzamide;
    • 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(propan-2-ylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(phenylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • 2-(imidazo[1,2-a]pyridin-6-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide;
    • N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2-methoxyphenyl)acetyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(phenylacetyl)amino]benzamide;
    • 4-(benzoylamino)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2-fluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-3-methoxybenzamide;
    • 4-{[(2-fluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-methyl-2-(piperazin-1-yl)propanoyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-2-methoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • 4-(phenylsulfonyl)-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)benzamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-oxatricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 4-{[(2,5-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(2,4-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-cyclopropyl-1-(2-methoxyethyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 4-{[difluoro(phenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(2-methyl-2-phenylpropanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-[(3-chloroimidazo[1,2-a]pyrazin-6-yl)methyl]-4-[(cyclopentylacetyl)amino]benzamide;
    • N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • 2-(imidazo[1,2-a]pyridin-7-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide;
    • 1-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-methyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • 5-[1-benzyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • N-(2,5-difluorobenzyl)-N′-(imidazo[1,2-a]pyridin-7-ylmethyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(propan-2-yl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-{4-[5-(2,2-dimethylpropyl)-1,3,4-oxadiazol-2-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-ethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(methoxymethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[(2-methylpropyl)sulfonyl]acetyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenoxypropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-({[(1R,2S)-2-methylcyclohexyl]oxy}acetyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-ethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-oxo-2,3-dihydro-1H-inden-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(1H-indol-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrrolidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-dihydro-2H-chromen-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(cyclohexyloxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloropyridin-3-yl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropyl-1,2-oxazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2H-chromen-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thieno[3,2-b]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)pyrimidin-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)tetrahydro-2H-pyran-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(2S)-2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1-benzofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cinnolin-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-2,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1-ethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-{4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-methyl-5-(propan-2-yl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 1-(4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • tert-butyl 4-{3-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(piperidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • 1-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(4-methylpentanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(2-fluoro-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-cyanobenzoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-N,N-dimethylpiperidine-1-carboxamide;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-[(cyclopentylacetyl)amino]-N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]benzamide;
    • N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • 5-{1-[2,2-dimethyl-3-(piperazin-1-yl)propyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-amino-2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]acetyl}piperidin-4-yl)benzamide;
    • 4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyl-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-7-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-thiazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-5-methyl-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 1-(4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(thieno[3,2-b]furan-5-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-7-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[6-(trifluoromethyl)pyrimidin-4-yl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • 4-(1-benzoylpiperidin-4-yl)-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-1-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine;
    • 5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-L-cysteine; and pharmaceutically acceptable salts thereof.
  • Still another embodiment pertains to compounds of Formula (IA), selected from the group consisting of
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(methoxymethyl)benzoyl]piperidin-4-yl}benzamide;
    • 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide; and pharmaceutically acceptable salts thereof.
  • Another embodiment pertains to a composition for treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic upus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia, said composition comprising an excipient and a therapeutically effective amount of a compound of Formula (IB), or pharmaceutically acceptable salts thereof.
  • Another embodiment pertains to a method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia in a patient, said method comprising administering to the patient a therapeutically effective amount of a compound of Formula (IB), or pharmaceutically acceptable salts thereof.
  • Another embodiment pertains to a method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia or spleen cancer in a patient, said method comprising administering to the patient therapeutically effective amount of the compound of Formula (IB), or pharmaceutically acceptable salts thereof; and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This detailed description is intended only to acquaint others skilled in the art with Applicants' invention, its principles, and its practical application so that others skilled in the art may adapt and apply the invention in its numerous forms, as they may be best suited to the requirements of a particular use. This description and its specific examples are intended for purposes of illustration only. This invention, therefore, is not limited to the embodiments described in this patent application, and may be variously modified.
  • ABBREVIATIONS AND DEFINITIONS
  • Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. The meaning and scope of the terms should be clear, however, in the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. With reference to the use of the words “comprise” or “comprises” or “comprising” in this patent application (including the claims), Applicants note that unless the context requires otherwise, those words are used on the basis and clear understanding that they are to be interpreted inclusively, rather than exclusively, and that Applicants intend each of those words to be so interpreted in construing this patent application, including the claims below. For a variable that occurs more than one time in any substituent or in the compound of the invention or any other formulae herein, its definition on each occurrence is independent of its definition at every other occurrence. Combinations of substituents are permissible only if such combinations result in stable compounds. Stable compounds are compounds which can be isolated in a useful degree of purity from a reaction mixture.
  • It is meant to be understood that proper valences are maintained for all combinations herein, that monovalent moieties having more than one atom are attached through their left ends, and that divalent moieties are drawn from left to right.
  • As used in the specification and the appended claims, unless specified to the contrary, the following terms have the meaning indicated:
  • The term “alkyl” (alone or in combination with another term(s)) means a straight- or branched-chain saturated hydrocarbyl substituent typically containing from 1 to about 10 carbon atoms; or in another embodiment, from 1 to about 8 carbon atoms; in another embodiment, from 1 to about 6 carbon atoms; and in another embodiment, from 1 to about 4 carbon atoms. Examples of such substituents include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, and hexyl and the like.
  • The term “alkenyl” (alone or in combination with another term(s)) means a straight- or branched-chain hydrocarbyl substituent containing one or more double bonds and typically from 2 to about 10 carbon atoms; or in another embodiment, from 2 to about 8 carbon atoms; in another embodiment, from 2 to about 6 carbon atoms; and in another embodiment, from 2 to about 4 carbon atoms. Examples of such substituents include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-pentadienyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl and the like.
  • The term “alkynyl” (alone or in combination with another term(s)) means a straight- or branched-chain hydrocarbyl substituent containing one or more triple bonds and typically from 2 to about 10 carbon atoms; or in another embodiment, from 2 to about 8 carbon atoms; in another embodiment, from 2 to about 6 carbon atoms; and in another embodiment, from 2 to about 4 carbon atoms. Examples of such substituents include ethynyl, 2-propynyl, 3-propynyl, 2-butynyl, and 3-butynyl and the like.
  • The term “carbocyclyl” (alone or in combination with another term(s)) means a saturated cyclic (i.e., “cycloalkyl”), partially saturated cyclic (i.e., “cycloalkenyl”), or completely unsaturated (i.e., “aryl”) hydrocarbyl substituent containing from 3 to 14 carbon ring atoms (“ring atoms” are the atoms bound together to form the ring or rings of a cyclic substituent). A carbocyclyl may be a single-ring (monocyclic) or polycyclic ring structure.
  • A carbocyclyl may be a single ring structure, which typically contains from 3 to 8 ring atoms, more typically from 3 to 6 ring atoms, and even more typically 5 to 6 ring atoms. Examples of such single-ring carbocyclyls include cyclopropyl (cyclopropanyl), cyclobutyl (cyclobutanyl), cyclopentyl (cyclopentanyl), cyclopentenyl, cyclopentadienyl, cyclohexyl (cyclohexanyl), cyclohexenyl, cyclohexadienyl, and phenyl. A carbocyclyl may alternatively be polycyclic (i.e., may contain more than one ring). Examples of polycyclic carbocyclyls include bridged, fused, and spirocyclic carbocyclyls. In a spirocyclic carbocyclyl, one atom is common to two different rings. An example of a spirocyclic carbocyclyl is spiropentanyl. In a bridged carbocyclyl, the rings share at least two common non-adjacent atoms. Examples of bridged carbocyclyls include bicyclo[2.2.1]heptanyl, bicyclo[2.2.1]hept-2-enyl, and adamantanyl. In a fused-ring carbocyclyl system, two or more rings may be fused together, such that two rings share one common bond. Examples of two- or three-fused ring carbocyclyls include naphthalenyl, tetrahydronaphthalenyl (tetralinyl), indenyl, indanyl (dihydroindenyl), anthracenyl, phenanthrenyl, and decalinyl.
  • The term “cycloalkyl” (alone or in combination with another term(s)) means a saturated cyclic hydrocarbyl substituent containing from 3 to 14 carbon ring atoms. A cycloalkyl may be a single carbon ring, which typically contains from 3 to 8 carbon ring atoms and more typically from 3 to 6 ring atoms. Examples of single-ring cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. A cycloalkyl may alternatively be polycyclic or contain more than one ring. Examples of polycyclic cycloalkyls include bridged, fused, and spirocyclic carbocyclyls.
  • The term “aryl” (alone or in combination with another term(s)) means an aromatic carbocyclyl containing from 6 to 14 carbon ring atoms. An aryl may be monocyclic or polycyclic (i.e., may contain more than one ring). In the case of polycyclic aromatic rings, only one ring the polycyclic system is required to be unsaturated while the remaining ring(s) may be saturated, partially saturated or unsaturated. Examples of aryls include phenyl, naphthalenyl, indenyl, indanyl, and tetrahydronapthyl.
  • In some instances, the number of carbon atoms in a hydrocarbyl substituent (e.g., alkyl, alkenyl, alkynyl, or cycloalkyl) is indicated by the prefix “Cx-Cy-”, wherein x is the minimum and y is the maximum number of carbon atoms in the substituent. Thus, for example, “C1-C6-alkyl” refers to an alkyl substituent containing from 1 to 6 carbon atoms. Illustrating further, C3-C8-cycloalkyl means a saturated hydrocarbyl ring containing from 3 to 8 carbon ring atoms.
  • The term “hydrogen” (alone or in combination with another term(s)) means a hydrogen radical, and may be depicted as —H.
  • The term “hydroxy” (alone or in combination with another term(s)) means —OH.
  • The term “carboxy” (alone or in combination with another term(s)) means —C(O)—OH.
  • The term “amino” (alone or in combination with another term(s)) means —NH2.
  • The term “halogen” or “halo” (alone or in combination with another term(s)) means a fluorine radical (which may be depicted as —F), chlorine radical (which may be depicted as —Cl), bromine radical (which may be depicted as —Br), or iodine radical (which may be depicted as —I).
  • If a substituent is described as being “substituted”, a non-hydrogen radical is in the place of hydrogen radical on a carbon or nitrogen of the substituent. Thus, for example, a substituted alkyl substituent is an alkyl substituent in which at least one non-hydrogen radical is in the place of a hydrogen radical on the alkyl substituent. To illustrate, monofluoroalkyl is alkyl substituted with a fluoro radical, and difluoroalkyl is alkyl substituted with two fluoro radicals. It should be recognized that if there are more than one substitution on a substituent, each non-hydrogen radical may be identical or different (unless otherwise stated).
  • If a substituent is described as being “optionally substituted”, the substituent may be either (1) not substituted or (2) substituted. If a substituent is described as being optionally substituted with up to a particular number of non-hydrogen radicals, that substituent may be either (1) not substituted; or (2) substituted by up to that particular number of non-hydrogen radicals or by up to the maximum number of substitutable positions on the substituent, whichever is less. Thus, for example, if a substituent is described as a heteroaryl optionally substituted with up to 3 non-hydrogen radicals, then any heteroaryl with less than 3 substitutable positions would be optionally substituted by up to only as many non-hydrogen radicals as the heteroaryl has substitutable positions. To illustrate, tetrazolyl (which has only one substitutable position) would be optionally substituted with up to one non-hydrogen radical. To illustrate further, if an amino nitrogen is described as being optionally substituted with up to 2 non-hydrogen radicals, then a primary amino nitrogen will be optionally substituted with up to 2 non-hydrogen radicals, whereas a secondary amino nitrogen will be optionally substituted with up to only 1 non-hydrogen radical.
  • This patent application uses the terms “substituent” and “radical” interchangeably.
  • The prefix “halo” indicates that the substituent to which the prefix is attached is substituted with one or more independently selected halogen radicals. For example, haloalkyl means an alkyl substituent in which at least one hydrogen radical is replaced with a halogen radical. Examples of haloalkyls include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, and 1,1,1-trifluoroethyl. It should be recognized that if a substituent is substituted by more than one halogen radical, those halogen radicals may be identical or different (unless otherwise stated).
  • The prefix “perhalo” indicates that every hydrogen radical on the substituent to which the prefix is attached is replaced with independently selected halogen radicals, i.e., each hydrogen radical on the substituent is replaced with a halogen radical. If all the halogen radicals are identical, the prefix typically will identify the halogen radical. Thus, for example, the term “perfluoro” means that every hydrogen radical on the substituent to which the prefix is attached is substituted with a fluorine radical. To illustrate, the term “perfluoroalkyl” means an alkyl substituent wherein a fluorine radical is in the place of each hydrogen radical.
  • The term “carbonyl” (alone or in combination with another term(s)) means —C(O)—.
  • The term “aminocarbonyl” (alone or in combination with another term(s)) means —C(O)—NH2.
  • The term “oxo” (alone or in combination with another term(s)) means (═O).
  • The term “oxy” (alone or in combination with another term(s)) means an ether substituent, and may be depicted as —O—.
  • The term “alkylhydroxy” (alone or in combination with another term(s)) means -alkyl-OH.
  • The term “alkylamino” (alone or in combination with another term(s)) means -alkyl-NH2.
  • The term “alkyloxy” (alone or in combination with another term(s)) means an alkylether substituent, i.e., —O-alkyl. Examples of such a substituent include methoxy (—O—CH3), ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, and tert-butoxy.
  • The term “alkylcarbonyl” (alone or in combination with another term(s)) means —C(O)-alkyl.
  • The term “aminoalkylcarbonyl” (alone or in combination with another term(s)) means —C(O)-alkyl-NH2.
  • The term “alkyloxycarbonyl” (alone or in combination with another term(s)) means —C(O)—O-alkyl.
  • The term “carbocyclylcarbonyl” (alone or in combination with another term(s)) means —C(O)-carbocyclyl.
  • Similarly, the term “heterocyclylcarbonyl” (alone or in combination with another term(s)) means —C(O)-heterocyclyl.
  • The term “carbocyclylalkylcarbonyl” (alone or in combination with another term(s)) means —C(O)-alkyl-carbocyclyl.
  • Similarly, the term “heterocyclylalkylcarbonyl” (alone or in combination with another term(s)) means —C(O)-alkyl-heterocyclyl.
  • The term “carbocyclyloxycarbonyl” (alone or in combination with another term(s)) means —C(O)—O-carbocyclyl.
  • The term “carbocyclylalkyloxycarbonyl” (alone or in combination with another term(s)) means —C(O)—O-alkyl-carbocyclyl.
  • The term “thio” or “thia” (alone or in combination with another term(s)) means a thiaether substituent, i.e., an ether substituent wherein a divalent sulfur atom is in the place of the ether oxygen atom. Such a substituent may be depicted as —S—. This, for example, “alkyl-thio-alkyl” means alkyl-S-alkyl (alkyl-sulfanyl-alkyl).
  • The term “thiol” or “sulfhydryl” (alone or in combination with another term(s)) means a sulfhydryl substituent, and may be depicted as —SH.
  • The term “(thiocarbonyl)” (alone or in combination with another term(s)) means a carbonyl wherein the oxygen atom has been replaced with a sulfur. Such a substituent may be depicted as —C(S)—.
  • The term “sulfonyl” (alone or in combination with another term(s)) means —S(O)2—.
  • The term “aminosulfonyl” (alone or in combination with another term(s)) means —S(O)2—NH2.
  • The term “sulfinyl” or “sulfoxido” (alone or in combination with another term(s)) means —S(O)—.
  • The term “heterocyclyl” (alone or in combination with another term(s)) means a saturated (i.e., “heterocycloalkyl”), partially saturated (i.e., “heterocycloalkenyl”), or completely unsaturated (i.e., “heteroaryl”) ring structure containing a total of 3 to 14 ring atoms. At least one of the ring atoms is a heteroatom (i.e., oxygen, nitrogen, or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, oxygen, nitrogen, and sulfur. A heterocyclyl may be a single-ring (monocyclic) or polycyclic ring structure.
  • A heterocyclyl may be a single ring, which typically contains from 3 to 7 ring atoms, more typically from 3 to 6 ring atoms, and even more typically 5 to 6 ring atoms. Examples of single-ring heterocyclyls include 1,2,3,6-tetrahydropyridine, thiomorpholinyl, tetrahydropyranyl, furanyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl (thiofuranyl), dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, oxazolyl, oxazolidinyl, isoxazolidinyl, isoxazolyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxadiazolyl (including 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl (furazanyl), or 1,3,4-oxadiazolyl), oxatriazolyl (including 1,2,3,4-oxatriazolyl or 1,2,3,5-oxatriazolyl), dioxazolyl (including 1,2,3-dioxazolyl, 1,2,4-dioxazolyl, 1,3,2-dioxazolyl, or 1,3,4-dioxazolyl), oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, thiopyranyl, tetrahydrothiopyranyl, pyridinyl (azinyl), piperidinyl, diazinyl (including pyridazinyl (1,2-diazinyl), pyrimidinyl (1,3-diazinyl), or pyrazinyl (1,4-diazinyl)), piperazinyl, pyrrolidin-2-only, triazinyl (including 1,3,5-triazinyl, 1,2,4-triazinyl, and 1,2,3-triazinyl)), oxazinyl (including 1,2-oxazinyl, 1,3-oxazinyl, or 1,4-oxazinyl)), oxathiazinyl (including 1,2,3-oxathiazinyl, 1,2,4-oxathiazinyl, 1,2,5-oxathiazinyl, or 1,2,6-oxathiazinyl)), oxadiazinyl (including 1,2,3-oxadiazinyl, 1,2,4-oxadiazinyl, 1,4,2-oxadiazinyl, or 1,3,5-oxadiazinyl)), morpholinyl, azepinyl, oxepinyl, thiepinyl, and diazepinyl.
  • A heterocyclyl may alternatively be polycyclic (i.e., may contain more than one ring). Examples of polycyclic heterocyclyls include bridged, fused, and spirocyclic heterocyclyls. In a spirocyclic heterocyclyl, one atom is common to two different rings. In a bridged heterocyclyl, the rings share at least two common non-adjacent atoms. In a fused-ring heterocyclyl, two or more rings may be fused together, such that two rings share one common bond. Examples of fused-ring heterocyclyls include hexahydro-furo[3,4-c]pyrrole, hexahydro-furo[3,4-b]pyrrole, octahydro-pyrrolo[3,4-b]pyridine, octahydro-pyrrolo[3,4-c]pyridine, (3aR,6aR)-5-methyl-octahydro-pyrrolo[3,4-b]pyrrole, (3aR,6aR)-octahydro-pyrrolo[3,4-b]pyrrole, 6-methyl-2,6-diaza-bicyclo[3.2.0]heptane, (3aS,6aR)-2-methyl-octahydro-pyrrolo[3,4-c]pyrrole, decahydro-[1,5]naphthyridine, 2,3-dihydrobenzofuranyl, 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indolyl, thieno[3,2-c]pyridinyl, furo[3,2-c]pyridinyl, phthalazin-1(2H)-onyl, isoquinolinyl, isoquinolin-1(2H)-onyl, 5,6,7,8-tetrahydrophthalazin-1(2H)-onyl, fluorophthalazin-1(2H)-onyl, (Z)-3H-benzo[d][1,2]diazepin-4(5H)-onyl, (trifluoromethyl)phthalazin-1(2H)-onyl, pyrrolo[1,2-d][1,2,4]triazin-1(2H)-onyl, 1,2,3,4-tetrahydroisoquinolinyl, 2,3-dihydrobenzo[b][1,4]dioxinyl, 5,6,7,8-tetrahydrophthalazin-1(2H)-onyl, 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazinyl, 5,6,7,8-tetrahydroimidazo[1,5-a]pyrazinyl, thieno[3,2-c]pyridinyl, furo[3,2-c]pyridinyl, indolizinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl (including pyrido[3,4-b]-pyridinyl, pyrido[3,2-b]-pyridinyl, or pyrido[4,3-b]-pyridinyl), and pteridinyl. Other examples of fused-ring heterocyclyls include benzo-fused heterocyclyls, such as benzimidazolyl, benzo[d][1,3]dioxolyl, indolyl, isoindolyl (isobenzazolyl, pseudoisoindolyl), indoleninyl (pseudoindolyl), isoindazolyl (benzpyrazolyl), benzazinyl (including quinolinyl (1-benzazinyl) or isoquinolinyl (2-benzazinyl)), phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl (including cinnolinyl (1,2-benzodiazinyl) or quinazolinyl (1,3-benzodiazinyl)), benzopyranyl (including chromanyl or isochromanyl), benzoxazinyl (including 1,3,2-benzoxazinyl, 1,4,2-benzoxazinyl, 2,3,1-benzoxazinyl, or 3,1,4-benzoxazinyl), and benzisoxazinyl (including 1,2-benzisoxazinyl or 1,4-benzisoxazinyl). Examples of spirocyclic heterocyclyls include 1,4-dioxa-8-azaspiro[4.5]decanyl.
  • The term “5-6 membered heteroaryl” (alone or in combination with another term(s)) means aromatic heterocyclyl containing a total of 5 to 6 ring atoms. At least one of the ring atoms is a heteroatom (i.e., oxygen, nitrogen, or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, oxygen, nitrogen, and sulfur.
  • The term “heterocycloalkyl” (alone or in combination with another term(s)) means a saturated heterocyclyl.
  • The term “heteroaryl” (alone or in combination with another term(s)) means an aromatic heterocyclyl containing from 5 to 14 ring atoms. A heteroaryl may be a single ring or 2 or 3 fused rings. Examples of heteroaryl substituents include 6-membered ring substituents such as pyridyl, pyrazyl, pyrimidinyl, pyridazinyl, and 1,3,5-, 1,2,4- or 1,2,3-triazinyl; 5-membered ring substituents such as imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl; 6/5-membered fused ring substituents such as benzothiofuranyl, benzisoxazolyl, benzoxazolyl, and purinyl; and 6/6-membered fused rings such as benzopyranyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and benzoxazinyl.
  • A prefix attached to a multi-component substituent only applies to the first component. To illustrate, the term “alkylcycloalkyl” contains two components: alkyl and cycloalkyl. Thus, the C1-C6-prefix on C1-C6-alkylcycloalkyl means that the alkyl component of the alkylcycloalkyl contains from 1 to 6 carbon atoms; the C1-C6-prefix does not describe the cycloalkyl component. To illustrate further, the prefix “halo” on haloalkyloxyalkyl indicates that only the alkyloxy component of the alkyloxyalkyl substituent is substituted with one or more halogen radicals. If halogen substitution may alternatively or additionally occur on the alkyl component, the substituent would instead be described as “halogen-substituted alkyloxyalkyl” rather than “haloalkyloxyalkyl.” And finally, if the halogen substitution may only occur on the alkyl component, the substituent would instead be described as “alkyloxyhaloalkyl.”
  • The terms “treat”, “treating” and “treatment” refer to a method of alleviating or abrogating a disease and/or its attendant symptoms.
  • The terms “prevent”, “preventing” and “prevention” refer to a method of preventing the onset of a disease and/or its attendant symptoms or barring a subject from acquiring a disease. As used herein, “prevent”, “preventing” and “prevention” also include delaying the onset of a disease and/or its attendant symptoms and reducing a subject's risk of acquiring a disease.
  • The term “therapeutically effective amount” refers to that amount of the compound being administered sufficient to prevent development of or alleviate to some extent one or more of the symptoms of the condition or disorder being treated.
  • The term “modulate” refers to the ability of a compound to increase or decrease the function, or activity, of a kinase. “Modulation”, as used herein in its various forms, is intended to encompass antagonism, agonism, partial antagonism and/or partial agonism of the activity associated with kinase. Kinase inhibitors are compounds that, e.g., bind to, partially or totally block stimulation, decrease, prevent, delay activation, inactivate, desensitize, or down regulate signal transduction. Kinase activators are compounds that, e.g., bind to, stimulate, increase, open, activate, facilitate, enhance activation, sensitize or up regulate signal transduction.
  • The term “composition” as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. By “pharmaceutically acceptable” it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • The “subject” is defined herein to include animals such as mammals, including, but not limited to, primates (e.g., humans), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice and the like. In preferred embodiments, the subject is a human.
  • Isotope Enriched or Labeled Compounds
  • Compounds of the invention can exist in isotope-labeled or -enriched form containing one or more atoms having an atomic mass or mass number different from the atomic mass or mass number most abundantly found in nature. Isotopes can be radioactive or non-radioactive isotopes. Isotopes of atoms such as hydrogen, carbon, phosphorous, sulfur, fluorine, chlorine, and iodine include, but are not limited to, 2H, 3H, 13C, 14C, 15N, 18O, 32P, 35S, 18F, 36Cl, and 125I. Compounds that contain other isotopes of these and/or other atoms are within the scope of this invention.
  • In another embodiment, the isotope-labeled compounds contain deuterium (2H), tritium (3H) or 14C isotopes. Isotope-labeled compounds of this invention can be prepared by the general methods well known to persons having ordinary skill in the art. Such isotope-labeled compounds can be conveniently prepared by carrying out the procedures disclosed in the Examples disclosed herein and Schemes by substituting a readily available isotope-labeled reagent for a non-labeled reagent. In some instances, compounds may be treated with isotope-labeled reagents to exchange a normal atom with its isotope, for example, hydrogen for deuterium can be exchanged by the action of a deuteric acid such as D2SO4/D2O. In addition to the above, relevant procedures and intermediates are disclosed, for instance, in Lizondo, J et al., Drugs Fut, 21(11), 1116 (1996); Brickner, S J et al., J Med Chem, 39(3), 673 (1996); Mallesham, B et al., Org Lett, 5(7), 963 (2003); PCT publications WO1997010223, WO2005099353, WO1995007271, WO2006008754; U.S. Pat. Nos. 7,538,189; 7,534,814; 7,531,685; 7,528,131; 7,521,421; 7,514,068; 7,511,013; and US Patent Application Publication Nos. 20090137457; 20090131485; 20090131363; 20090118238; 20090111840; 20090105338; 20090105307; 20090105147; 20090093422; 20090088416; and 20090082471, the methods are hereby incorporated by reference.
  • The isotope-labeled compounds of the invention may be used as standards to determine the effectiveness in binding assays. Isotope containing compounds have been used in pharmaceutical research to investigate the in vivo metabolic fate of the compounds by evaluation of the mechanism of action and metabolic pathway of the nonisotope-labeled parent compound (Blake et al. J. Pharm. Sci. 64, 3, 367-391 (1975)). Such metabolic studies are important in the design of safe, effective therapeutic drugs, either because the in vivo active compound administered to the patient or because the metabolites produced from the parent compound prove to be toxic or carcinogenic (Foster et al., Advances in Drug Research Vol. 14, pp. 2-36, Academic press, London, 1985; Kato et al., J. Labelled Comp. Radiopharmaceut., 36(10):927-932 (1995); Kushner et al., Can. J. Physiol. Pharmacol., 77, 79-88 (1999).
  • In addition, non-radio active isotope containing drugs, such as deuterated drugs called “heavy drugs,” can be used for the treatment of diseases and conditions related to NAMPT activity. Increasing the amount of an isotope present in a compound above its natural abundance is called enrichment. Examples of the amount of enrichment include from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %. Replacement of up to about 15% of normal atom with a heavy isotope has been effected and maintained for a period of days to weeks in mammals, including rodents and dogs, with minimal observed adverse effects (Czajka D M and Finkel A J, Ann. N.Y. Acad. Sci. 196084: 770; Thomson J F, Ann. New York Acad. Sci 1960 84: 736; Czakja D M et al., Am. J. Physiol. 1961 201: 357). Acute replacement of as high as 15%-23% in human fluids with deuterium was found not to cause toxicity (Blagojevic N et al. in “Dosimetry & Treatment Planning for Neutron Capture Therapy”, Zamenhof R, Solares G and Harling O Eds. 1994. Advanced Medical Publishing, Madison Wis. pp. 125-134; Diabetes Metab. 23: 251 (1997)).
  • Stable isotope labeling of a drug can alter its physico-chemical properties such as pKa and lipid solubility. These effects and alterations can affect the pharmacodynamic response of the drug molecule if the isotopic substitution affects a region involved in a ligand-receptor interaction. While some of the physical properties of a stable isotope-labeled molecule are different from those of the unlabeled one, the chemical and biological properties are the same, with one important exception: because of the increased mass of the heavy isotope, any bond involving the heavy isotope and another atom will be stronger than the same bond between the light isotope and that atom. Accordingly, the incorporation of an isotope at a site of metabolism or enzymatic transformation will slow said reactions potentially altering the pharmacokinetic profile or efficacy relative to the non-isotopic compound.
  • Compounds
  • Suitable groups for X, R1, and Z in all Formulas are independently selected. The described embodiments of the present invention may be combined. Such combination is contemplated and within the scope of the present invention. For example, it is contemplated that embodiments for any of X, R1, and Z can be combined with embodiments defined for any other of X, R1, and Z.
  • Embodiments of Formula (I)
  • One embodiment, therefore, pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (I)
  • Figure US20160184282A1-20160630-C00003
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3; and CH2NHC(O)R3; and
  • Z is CH or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is hydrogen;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3; and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • m is 4, 5, or 6; and
  • n is 1 or 2;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • In one embodiment of Formula (I), X is N or CY1. In another embodiment of Formula (I), X is N. In another embodiment of Formula (I), X is CY1.
  • In one embodiment of Formula (I), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (I), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (I), X is CY1; and Y1 is Cl. In another embodiment of Formula (I), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (I), Z is CH or N; R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is NHC(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is CH2NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is NHC(O)(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is C(O)NH(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is NHC(O)(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is C(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is CH2C(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH or N; R1 is CH2NHC(O)R3; and R2 is hydrogen.
  • In one embodiment of Formula (I), Z is CH; R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is NHC(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is CH2NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is NHC(O)(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is C(O)NH(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is NHC(O)(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is C(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is CH2C(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is CH; R1 is CH2NHC(O)R3; and R2 is hydrogen.
  • In one embodiment of Formula (I), Z is N; R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is NHC(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is CH2NHC(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is NHC(O)R3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is NHC(O)(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is C(O)NH(CH2)nR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is NHC(O)(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is C(O)NH(CH2)mR3x; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is CH2C(O)NHR3; and R2 is hydrogen. In another embodiment of Formula (I), Z is N; R1 is CH2NHC(O)R3; and R2 is hydrogen.
  • In one embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NHR3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)NHR3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is NHC(O)R3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)nR3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)nR3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)mR3x. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)mR3x. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is CH2C(O)NHR3. In another embodiment of Formula (I), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)R3.
  • In one embodiment of Formula (I), m is 4, 5, or 6. In another embodiment of Formula (I), m is 4. In another embodiment of Formula (I), m is 5. In another embodiment of Formula (I), m is 6.
  • In one embodiment of Formula (I), n is 1 or 2. In another embodiment of Formula (I), n is 1. In another embodiment of Formula (I), n is 2.
  • In one embodiment of Formula (I), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (I), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (I), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (I), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (I), R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocycyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R3x is heterocyclyl; wherein each R3x heterocycyl is substituted with C(O)R4, or CO(O)R4.
  • In one embodiment of Formula (I), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (I), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (I), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (I), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (I), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (I), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (I), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (I), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (I), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (I), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (I)
  • Figure US20160184282A1-20160630-C00004
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3; and CH2NHC(O)R3; and
  • Z is CH or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen F, Cl, Br, and I;
  • R1 is hydrogen;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, CH2C(O)NHR3; and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R3x is independently heterocyclyl; wherein each R3x heterocyclyl is substituted with one substituents independently selected from the group consisting of C(O)R4, CO(O)R4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl;
  • R11 at each occurrence, is alkyl;
  • m is 4, or 5; and
  • n is 1;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • Still another embodiment pertains to compounds having Formula (I), which includes Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 580, 581, 582, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (II)
  • In another aspect, the present invention provides compounds of Formula (II)
  • Figure US20160184282A1-20160630-C00005
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (II) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (II), X is N or CY1. In another embodiment of Formula (II), X is N. In another embodiment of Formula (II), X is CY1.
  • In one embodiment of Formula (II), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (II), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (II), X is CY1; and Y1 is Cl. In another embodiment of Formula (II), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (II), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (II), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (II), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (II), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (II), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (II), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (II), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (II), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (II), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (II), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (II), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (II), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (II), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (II), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (II)
  • Figure US20160184282A1-20160630-C00006
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (II), which includes Example 2; and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (III)
  • In another aspect, the present invention provides compounds of Formula (III)
  • Figure US20160184282A1-20160630-C00007
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described in Formula (I) herein.
  • One embodiment pertains to compounds of Formula (III) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (III), X is N or CY1. In another embodiment of Formula (III), X is N. In another embodiment of Formula (III), X is CY1.
  • In one embodiment of Formula (III), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (III), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (III), X is CY1; and Y1 is Cl. In another embodiment of Formula (III), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (III), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (III), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (III), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (III), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (III), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (III), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (III), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (III), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (III), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (III), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (III), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (III), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (III), R1 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (III), R1 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (III)
  • Figure US20160184282A1-20160630-C00008
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (III), which includes Examples 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IV)
  • In another aspect, the present invention provides compounds of Formula (IV)
  • Figure US20160184282A1-20160630-C00009
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (IV) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IV), X is N or CY1. In another embodiment of Formula (IV), X is N. In another embodiment of Formula (IV), X is CY1.
  • In one embodiment of Formula (IV), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IV), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IV), X is CY1; and Y1 is Cl. In another embodiment of Formula (IV), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IV), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IV), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IV), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IV), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IV), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (IV), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IV), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IV), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IV), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IV), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IV), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IV), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (IV), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IV), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IV)
  • Figure US20160184282A1-20160630-C00010
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I; R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IV), which includes Examples 118, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 243, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 302, 303, 306, 307, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 364, 366, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 404, 407, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 486, 487, 496, 564, 565, 673, 674, 675, 689, 690, 691, 692, 693, 694, 695, 696, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (V)
  • In another aspect, the present invention provides compounds of Formula (V)
  • Figure US20160184282A1-20160630-C00011
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (V) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl;
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (V), X is N or CY1. In another embodiment of Formula (V), X is N. In another embodiment of Formula (V), X is CY1.
  • In one embodiment of Formula (V), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (V), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (V), X is CY1; and Y1 is Cl. In another embodiment of Formula (V), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (V), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (V), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (V), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (V), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (V), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (V), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (V), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (V), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (V), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (V), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (V), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (V), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (V), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (V), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (V)
  • Figure US20160184282A1-20160630-C00012
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (V), which include Examples 59, 60, 274, 275, 276, 277, 278, 279, 360, 362, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VI)
  • In another aspect, the present invention provides compounds of Formula (VI)
  • Figure US20160184282A1-20160630-C00013
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (VI) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VI), X is N or CY1. In another embodiment of Formula (VI), X is N. In another embodiment of Formula (VI), X is CY1.
  • In one embodiment of Formula (VI), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VI), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VI), X is CY1; and Y1 is Cl. In another embodiment of Formula (VI), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VI), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VI), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VI), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VI), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VI), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (VI), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VI), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VI), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VI), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VI), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VI), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VI), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (VI), R10 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VI), R10 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VI)
  • Figure US20160184282A1-20160630-C00014
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VI), which includes Examples 57, 117, 121, 138, 174, 181, 182, 185, 187, 188, 192, 193, 194, 195, 196, 197, 198, 199, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 304, 305, 308, 309, 310, 311, 312, 313, 315, 316, 317, 318, 319, 320, 321, 324, 325, 326, 327, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 361, 363, 365, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 393, 394, 395, 397, 399, 400, 401, 402, 403, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 436, 437, 440, 441, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 677, 682, 683, 684, 685, 686, 687, 688, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 717, 718, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 818, 821, 823, 824, 825, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VII)
  • In another aspect, the present invention provides compounds of Formula (VII)
  • Figure US20160184282A1-20160630-C00015
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (VII) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VII), X is N or CY1. In another embodiment of Formula (VII), X is N. In another embodiment of Formula (VII), X is CY1.
  • In one embodiment of Formula (VII), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VII), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VII), X is CY1; and Y1 is Cl. In another embodiment of Formula (VII), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VII), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VII), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VII), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VII), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VII), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (VII), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VII), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VII), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VII), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VII), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VII), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VII), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (VII), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VII), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VII)
  • Figure US20160184282A1-20160630-C00016
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VII), which includes Examples 52, 55, 56, 61, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 108, 114, 115, 116, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 183, 184, 186, 189, 190, 191, 200, 201, 206, 215, 219, 240, 358, 359, 398, 462, 621, 622, 676, 810, 820, 822, 831, 832, 833, 834, 835, 836, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VIII)
  • In another aspect, the present invention provides compounds of Formula (VIII)
  • Figure US20160184282A1-20160630-C00017
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (VIII) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIII), X is N or CY1. In another embodiment of Formula (VIII), X is N. In another embodiment of Formula (VIII), X is CY1.
  • In one embodiment of Formula (VIII), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIII), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIII), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIII), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIII), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIII), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIII), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIII), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIII), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (VIII), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIII), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIII), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIII), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIII), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIII), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VIII), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (VIII), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIII), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIII)
  • Figure US20160184282A1-20160630-C00018
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIII), which includes Example 322, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IX)
  • In another aspect, the present invention provides compounds of Formula (IX)
  • Figure US20160184282A1-20160630-C00019
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (IX) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl; and
  • R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and
  • when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • In one embodiment of Formula (IX), X is N or CY1. In another embodiment of Formula (IX), X is N. In another embodiment of Formula (IX), X is CY1.
  • In one embodiment of Formula (IX), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IX), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IX), X is CY1; and Y1 is Cl. In another embodiment of Formula (IX), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IX), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IX), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IX), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IX), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IX), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, and OH.
  • In another embodiment of Formula (IX), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IX), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR11C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IX), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IX), R8 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R8 at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IX), R9 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IX), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IX), R10 at each occurrence, is independently selected from the group consisting of haloalkyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R10 at each occurrence, is independently haloalkyl or alkyl.
  • In one embodiment of Formula (IX), R11 at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IX), R11 at each occurrence, is independently alkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IX)
  • Figure US20160184282A1-20160630-C00020
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, substituent independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl and heterocyclyl is optionally substituted with one, or two substituents independently selected from the group consisting of R8, OR8, CNF, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, and cycloalkyl; wherein each R6 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, substituent independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, or three substituents independently selected from the group consisting of R11, OR11, CO(O)R11, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of haloalkyl, and alkyl; and
  • R11 at each occurrence, is alkyl;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and
  • when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • Still another embodiment pertains to compounds having Formula (IX), which includes Examples 53, 54, 76, 314, 323, 491, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IA)
  • One embodiment, therefore, pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IA)
  • Figure US20160184282A1-20160630-C00021
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • Z is CH, C—F, C—Cl, C—Br, C—I or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is hydrogen, F, Cl, Br, or I;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I;
  • R11 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • m is 4, 5, or 6; and
  • n is 1 or 2;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • In one embodiment of Formula (IA), X is N or CY1. In another embodiment of Formula (IA), X is N. In another embodiment of Formula (IA), X is CY1.
  • In one embodiment of Formula (IA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IA), X is CY1; and Y1 is Cl. In another embodiment of Formula (IA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IA), Z is CH, C—F, C—Cl, C—Br, C—I or N; and R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IA), Z is CH or N; and R1 is NHC(O)NHR3. In another embodiment of Formula (IA), Z is CH or N; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is CH or N; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IA), Z is CH or N; and R1 is NHC(O)R3. In another embodiment of Formula (IA), Z is CH or N; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IA), Z is CH or N; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IA), Z is CH or N; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IA), Z is CH or N; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is CH or N; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IA), Z is CH or N; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IA), Z is CH; and R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IA), Z is CH; and R1 is NHC(O)NHR3. In another embodiment of Formula (IA), Z is CH; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is CH; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IA), Z is CH; and R1 is NHC(O)R3.
  • In another embodiment of Formula (IA), Z is CH; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IA), Z is CH; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IA), Z is CH; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IA), Z is CH; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is CH; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IA), Z is CH; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IA), Z is N; and R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IA), Z is N; and R1 is NHC(O)NHR3. In another embodiment of Formula (IA), Z is N; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is N; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IA), Z is N; and R1 is NHC(O)R3.
  • In another embodiment of Formula (IA), Z is N; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IA), Z is N; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IA), Z is N; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IA), Z is N; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IA), Z is N; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IA), Z is N; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NHR3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)NHR3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is NHC(O)R3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)nR3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)nR3.
  • In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is CH2C(O)NHR3. In another embodiment of Formula (IA), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)R3.
  • In one embodiment of Formula (IA), m is 4, 5, or 6. In another embodiment of Formula (IA), m is 4. In another embodiment of Formula (IA), m is 5. In another embodiment of Formula (IA), m is 6.
  • In one embodiment of Formula (IA), n is 1 or 2. In another embodiment of Formula (IA), n is 1. In another embodiment of Formula (IA), n is 2.
  • In one embodiment of Formula (IA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, SO2R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, SO2R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IA), R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocycyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R3x is heterocyclyl; wherein each R3x heterocycyl is substituted with C(O)R4, or CO(O)R4.
  • In one embodiment of Formula (IA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, and Cl.
  • In one embodiment of Formula (IA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IA), R10 at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IA), R11, at each occurrence, is independently alkyl.
  • In another embodiment of Formula (IA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IA)
  • Figure US20160184282A1-20160630-C00022
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • Z is CH, C—F, or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, and Cl;
  • R1 is hydrogen;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R3x is heterocyclyl; wherein the R3x heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of C(O)R4, CO(O)R4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F;
  • R11 at each occurrence, is independently cycloalkyl or alkyl;
  • m is 4, or 5; and
  • n is 1;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • Still another embodiment pertains to compounds having Formula (IA), which includes Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 437, 508, 513, 516, 527, 529, 699, 915, 919, 923, 924, 925, 927, 934, 937, 985, 996, 999, 1009, 1095, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IIA)
  • In another aspect, the present invention provides compounds of Formula (IIA)
  • Figure US20160184282A1-20160630-C00023
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (IIA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IIA), X is N or CY1. In another embodiment of Formula (IIA), X is N. In another embodiment of Formula (IIA), X is CY1.
  • In one embodiment of Formula (IIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IIA), X is CY1; and Y1 is Cl. In another embodiment of Formula (IIA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IIA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IIA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IIA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IIA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IIA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IIA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IIA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIA)
  • Figure US20160184282A1-20160630-C00024
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IIA), which includes Example 2; and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IIIA)
  • In another aspect, the present invention provides compounds of Formula (IIIA)
  • Figure US20160184282A1-20160630-C00025
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described in Formula (IA) herein.
  • One embodiment pertains to compounds of Formula (IIIA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IIIA), X is N or CY1. In another embodiment of Formula (IIIA), X is N. In another embodiment of Formula (IIIA), X is CY1.
  • In one embodiment of Formula (IIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IIIA), X is CY1; and Y1 is Cl. In another embodiment of Formula (IIIA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIIA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IIIA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IIIA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIIA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IIIA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIIA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IIIA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IIIA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IIIA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIIA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IIIA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIIA)
  • Figure US20160184282A1-20160630-C00026
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IIIA), which includes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 89, 106, 109, 110, 111, 112, 113, 396, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IVA)
  • In another aspect, the present invention provides compounds of Formula (IVA)
  • Figure US20160184282A1-20160630-C00027
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (IVA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IVA), X is N or CY1. In another embodiment of Formula (IVA), X is N. In another embodiment of Formula (IVA), X is CY1.
  • In one embodiment of Formula (IVA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IVA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IVA), X is CY1; and Y1 is Cl. In another embodiment of Formula (IVA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IVA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IVA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IVA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IVA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IVA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IVA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IVA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IVA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IVA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IVA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IVA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IVA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IVA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IVA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IVA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IVA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IVA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IVA)
  • Figure US20160184282A1-20160630-C00028
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IVA), which includes Examples 118, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 243, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 302, 303, 306, 307, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 364, 366, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 404, 407, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 486, 487, 496, 564, 565, 673, 674, 675, 689, 690, 691, 692, 693, 694, 695, 696, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 904, 912, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1065, 1066, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1078, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VA)
  • In another aspect, the present invention provides compounds of Formula (VA)
  • Figure US20160184282A1-20160630-C00029
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (VA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R1, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VA), X is N or CY1. In another embodiment of Formula (VA), X is N. In another embodiment of Formula (VA), X is CY1.
  • In one embodiment of Formula (VA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VA), X is CY1; and Y1 is Cl. In another embodiment of Formula (VA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VA)
  • Figure US20160184282A1-20160630-C00030
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VA), which includes 59, 60, 274, 275, 276, 277, 278, 279, 360, 362, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VIA)
  • In another aspect, the present invention provides compounds of Formula (VIA)
  • Figure US20160184282A1-20160630-C00031
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (VIA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIA), X is N or CY1. In another embodiment of Formula (VIA), X is N. In another embodiment of Formula (VIA), X is CY1.
  • In one embodiment of Formula (VIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIA), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VIA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIA)
  • Figure US20160184282A1-20160630-C00032
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIA), which includes Examples 57, 117, 121, 138, 174, 181, 182, 185, 187, 188, 192, 193, 194, 195, 196, 197, 198, 199, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 304, 305, 308, 309, 310, 311, 312, 313, 315, 316, 317, 318, 319, 320, 321, 324, 325, 326, 327, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 361, 363, 365, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 393, 394, 395, 397, 399, 400, 401, 402, 403, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 436, 437, 440, 441, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 677, 682, 683, 684, 685, 686, 687, 688, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 717, 718, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 818, 821, 823, 824, 825, 857, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 895, 896, 899, 906, 907, 909, 910, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1061, 1062, 1063, 1064, 1068, 1077, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VIIA)
  • In another aspect, the present invention provides compounds of Formula (VIIA)
  • Figure US20160184282A1-20160630-C00033
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (VIIA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIIA), X is N or CY1. In another embodiment of Formula (VIIA), X is N. In another embodiment of Formula (VIIA), X is CY1.
  • In one embodiment of Formula (VIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIIA), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIIA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIIA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIIA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIIA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VIIA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIIA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIIA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIIA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIIA)
  • Figure US20160184282A1-20160630-C00034
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIIA), which includes Examples 52, 55, 56, 61, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 108, 114, 115, 116, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 183, 184, 186, 189, 190, 191, 200, 201, 206, 215, 219, 240, 358, 359, 398, 462, 621, 622, 676, 810, 820, 822, 831, 832, 833, 834, 835, 836, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 859, 860, 882, 898, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (VIIIA)
  • In another aspect, the present invention provides compounds of Formula (VIIIA)
  • Figure US20160184282A1-20160630-C00035
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (VIIIA) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIIIA), X is N or CY1. In another embodiment of Formula (VIIIA), X is N. In another embodiment of Formula (VIIIA), X is CY1.
  • In one embodiment of Formula (VIIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIIIA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIIIA), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIIIA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIIIA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIIIA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIIA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (VIIIA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIIIA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIIIA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIIA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIIIA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIIIA)
  • Figure US20160184282A1-20160630-C00036
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIIIA), which includes Examples 322; and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IXA)
  • In another aspect, the present invention provides compounds of Formula (IXA)
  • Figure US20160184282A1-20160630-C00037
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (IX) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR1C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and
  • when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • In one embodiment of Formula (IXA), X is N or CY1. In another embodiment of Formula (IXA), X is N. In another embodiment of Formula (IXA), X is CY1.
  • In one embodiment of Formula (IXA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IXA), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IXA), X is CY1; and Y1 is Cl. In another embodiment of Formula (IXA), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IXA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IXA), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IXA), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IXA), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IXA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IXA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IXA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IXA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IXA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IXA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IXA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IXA), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (IXA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IXA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IXA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IXA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IXA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IXA)
  • Figure US20160184282A1-20160630-C00038
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and
  • when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • Still another embodiment pertains to compounds having Formula (IXA), which includes Examples 53, 54, 76, 314, 323, 491, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (XA)
  • In another aspect, the present invention provides compounds of Formula (XA)
  • Figure US20160184282A1-20160630-C00039
  • and pharmaceutically acceptable salts thereof; wherein R4 is as described herein for Formula (IA).
  • One embodiment pertains to compounds of Formula (XA) or pharmaceutically acceptable salts thereof;
  • wherein
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R1, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I; and
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl.
  • In one embodiment of Formula (XA), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XA), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (XA), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XA), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (XA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XA), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (XA), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XA), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (XA), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (XA), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (XA), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (XA), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, and F.
  • In one embodiment of Formula (XA), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (XA), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (XA), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl. In another embodiment of Formula (XA), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (XA), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (XA)
  • Figure US20160184282A1-20160630-C00040
  • wherein
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl.
  • Still another embodiment pertains to compounds having Formula (XA), which includes Examples 217, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 298, 301, 308, 309, 310, 311, 312, 313, 315, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 402, 437, 440, 441, 484, 488, 490, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 547, 548, 549, 550, 551, 552, 557, 562, 567, 568, 569, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 682, 683, 684, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 731, 732, 733, 737, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1061, 1062, 1063, 1064, 1068, 1077, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, and pharmaceutically acceptable salts thereof.
  • Embodiments of Formula (IB)
  • One embodiment, therefore, pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IB)
  • Figure US20160184282A1-20160630-C00041
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • Z is CH, C—F, C—Cl, C—Br, C—I or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R1 is hydrogen, F, Cl, Br, or I;
  • Z is CR2; and
  • R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I;
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • m is 4, 5, or 6; and
  • n is 1 or 2;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
      • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • In one embodiment of Formula (IB), X is N or CY1. In another embodiment of Formula (IB), X is N. In another embodiment of Formula (IB), X is CY1.
  • In one embodiment of Formula (IB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IB), X is CY1; and Y1 is Cl. In another embodiment of Formula (IB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IB), Z is CH, C—F, C—Cl, C—Br, C—I or N; and R is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IB), Z is CH or N; and R1 is NHC(O)NHR3. In another embodiment of Formula (IB), Z is CH or N; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is CH or N; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IB), Z is CH or N; and R1 is NHC(O)R3. In another embodiment of Formula (IB), Z is CH or N; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IB), Z is CH or N; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IB), Z is CH or N; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IB), Z is CH or N; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is CH or N; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IB), Z is CH or N; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IB), Z is CH; and R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IB), Z is CH; and R1 is NHC(O)NHR3. In another embodiment of Formula (IB), Z is CH; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is CH; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IB), Z is CH; and R1 is NHC(O)R3.
  • In another embodiment of Formula (IB), Z is CH; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IB), Z is CH; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IB), Z is CH; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IB), Z is CH; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is CH; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IB), Z is CH; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IB), Z is N; and R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IB), Z is N; and R1 is NHC(O)NHR3. In another embodiment of Formula (IB), Z is N; and R1 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is N; and R1 is CH2NHC(O)NHR3. In another embodiment of Formula (IB), Z is N; and R1 is NHC(O)R3.
  • In another embodiment of Formula (IB), Z is N; and R1 is NHC(O)(CH2)nR3. In another embodiment of Formula (IB), Z is N; and R1 is C(O)NH(CH2)nR3. In another embodiment of Formula (IB), Z is N; and R1 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IB), Z is N; and R1 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IB), Z is N; and R1 is CH2C(O)NHR3. In another embodiment of Formula (IB), Z is N; and R1 is CH2NHC(O)R3.
  • In one embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NHR3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is NHC(O)NH(CH2)mR3x. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)NHR3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is NHC(O)R3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)nR3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)nR3.
  • In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is NHC(O)(CH2)mR3x. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is C(O)NH(CH2)mR3x. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is CH2C(O)NHR3. In another embodiment of Formula (IB), R1 is hydrogen; Z is CR2; and R2 is CH2NHC(O)R3.
  • In one embodiment of Formula (IB), m is 4, 5, or 6. In another embodiment of Formula (IB), m is 4. In another embodiment of Formula (IB), m is 5. In another embodiment of Formula (IB), m is 6.
  • In one embodiment of Formula (IB), n is 1 or 2. In another embodiment of Formula (IB), n is 1. In another embodiment of Formula (IB), n is 2.
  • In one embodiment of Formula (IB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, SO2R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, SO2R4, OR4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IB), R3x is independently selected from the group consisting of phenyl and heterocyclyl; wherein each R3x phenyl and heterocycyl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R3x is heterocyclyl; wherein each R3x heterocycyl is substituted with C(O)R4, or CO(O)R4.
  • In one embodiment of Formula (IB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, and Cl.
  • In one embodiment of Formula (IB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IB), R10 at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (IB), R11, at each occurrence, is independently alkyl.
  • In another embodiment of Formula (IB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IB)
  • Figure US20160184282A1-20160630-C00042
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R1 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, NHC(O)(CH2)nR3, C(O)NH(CH2)nR3, NHC(O)(CH2)mR3x, C(O)NH(CH2)mR3x, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • Z is CH, C—F, or N; or
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, and Cl;
  • R1 is hydrogen;
  • Z is CR2; and R2 is independently selected from the group consisting of NHC(O)NHR3, NHC(O)NH(CH2)mR3x, CH2NHC(O)NHR3, NHC(O)R3, CH2C(O)NHR3, and CH2NHC(O)R3; and
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R3x is heterocyclyl; wherein the R3x heterocyclyl is substituted with one, two, three or four substituents independently selected from the group consisting of C(O)R4, CO(O)R4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, Cl, Br and I;
  • R10 at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F;
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • m is 4, or 5; and
  • n is 1;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent;
  • when X is CY1 and Y1 is hydrogen; R1 is NHC(O)R3; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl; when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenylmethoxy or 3-fluorophenoxy;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is furanyl; the R3 furanyl is not substituted with benzyl, or 3-fluorophenyl methyl;
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is thienyl; the R3 thienyl is not substituted with phenoxy, 3-fluorophenoxy, or 3-chlorophenoxy; and
  • when X is CY1 and Y1 is hydrogen; R1 is C(O)NH(CH2)nR3; n is 1; R2 is hydrogen; and R3 is R3 phenyl; the phenyl is not substituted at the para position with SO2R4 or SO2NHR4.
  • Still another embodiment pertains to compounds having Formula (IB), which includes
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-7-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenylethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(morpholin-4-yl)ethyl]benzamide;
    • N-(1-hydroxy-2-methylpropan-2-yl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-benzyl-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-(cyclopentylmethyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(piperidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenoxyethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(propan-2-yloxy)ethyl]benzamide;
    • N-(2-hydroxy-2-methylpropyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-[2-hydroxy-1-(4-methoxyphenyl)ethyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(2-oxopyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-propylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(morpholin-4-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-phenylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-methylbutyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide;
    • N-[(1,1-dioxidotetrahydrothiophen-3-yl)methyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydrofuran-3-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(ethoxyacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(1-methylpiperidin-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 2-ethoxy-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(morpholin-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(2-methoxyethoxy)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3-methoxy-2-methylpropanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide; 4,4,4-trifluoro-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-pyran-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-4-methylpentanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1-methylpiperidine-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-thiopyran-4-carboxamide 1,1-dioxide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1,4-dioxane-2-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine-1-carboxylate;
    • 4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}butyl)urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-{4-[1-(cyclopentylcarbonyl)piperidin-4-yl]butyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(2-methoxyethoxy)acetyl]piperidin-4-yl}butyl)urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(morpholin-4-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]butyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]butyl}urea;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 2-cyclopentyl-N-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(morpholin-4-ylacetyl)amino]benzamide;
    • 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • N-{4-[(cyclopentylacetyl)amino]benzyl}imidazo[1,2-a]pyridine-6-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(3-phenylpyrrolidin-1-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-(1,3-dihydro-2H-isoindol-2-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[3-(tetrahydrofuran-2-yl)propanoyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)butyl]-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[2-oxo-4-(tetrahydrofuran-3-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide; 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(2-oxo-5-phenyl-1,3-oxazolidin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(3-methyl-1,2-oxazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3-chloro-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(3-methoxy-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3,5-dimethyl-1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(4-methyl-1,3-thiazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1H-tetrazol-5-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(1,2-oxazol-3-ylacetyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-2-ylmethyl) [3-(1,3-thiazol-2-yl)propanoyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutanoyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylmethyl)(tetrahydro-2H-pyran-4-ylcarbonyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-3-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydro-2H-pyran-4-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl) [(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2S)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydro-2H-pyran-4-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2R)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2S)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-[5-(4-chlorophenyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{[1-(cyclopropylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide; 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide; 4-[(1-butanoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3-methoxy-2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropanoyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2R)-2-hydroxybutyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,3-dimethyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 2-{(4R)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{(4S)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1,3-thiazol-4-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(1,2-oxazol-3-ylacetyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(5-methyl-1,2-oxazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](1,3-thiazol-4-ylacetyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[3-(tetrahydrofuran-2-yl)propanoyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide; 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(4-methylpentanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • 4-[(4-cyanobenzyl)(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 2-{5-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3-hydroxy-3-methylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 5-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]thiophene-2-carboxamide;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 2-[(2S)-2-(hydroxymethyl)-5-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(cyclopropylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]thiophene-2-carboxamide;
    • 2-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5S)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5R)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methoxyacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(1,2-oxazol-5-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4R)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4S)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide; 1-[4-(1-benzoylpiperidin-4-yl)butyl]-3-imidazo[1,2-a]pyridin-7-ylurea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-5-ethyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methoxy-3,3-dimethylcyclohexyl)methyl]-5-methyl-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1(2H)-carboxylate;
    • tert-butyl (3R)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate;
    • tert-butyl {2-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-(1-ethyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(1,1-dioxidotetrahydrothiophen-3-yl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-phenylthiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(methylsulfonyl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)pyrrolidine-1-carboxylate;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)biphenyl-2-sulfonamide;
    • 5-{1-[(2R)-2-hydroxypropyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-3-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxyethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(propan-2-yloxy)phenyl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-7-ylcarbamoyl)phenyl]piperidine-1-carboxylate;
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-6-ylcarbamoyl)phenyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(2-methylpropanoyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • 5-[3-(benzoylamino)oxetan-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(tetrahydrofuran-3-ylacetyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(pentanoylamino)oxetan-3-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydrofuran-3-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3R)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}benzamide;
    • 5-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-3-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • 4-{[(3S)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(3-methoxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-butanoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(3-hydroxy-3-methylbutanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2-(4-benzoylpiperazin-1-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(propan-2-yl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(2-methoxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-phenyl-1,3-thiazole-5-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-5-yl)thiophene-2-carboxamide;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)azetidine-1-carboxylate;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]benzamide;
    • 1-[4-(1-acetylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 4-{[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]amino}-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-6-yl)methyl]-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate;
    • tert-butyl 4-hydroxy-4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[5-(piperidin-1-ylcarbonyl)-1,3-thiazol-2-yl]urea;
    • 5-{3-hydroxy-1-[(2S)-2-methylbutanoyl]azetidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(3-{[(2S)-2-methylbutanoyl]amino}oxetan-3-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(morpholin-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • 1-{4-[(1-acetylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[1-(1,4-dioxan-2-ylcarbonyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]oxy}phenyl)urea;
    • tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate;
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-[4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{1-[(3,3-difluorocyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylpiperidin-4-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylazetidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]phenyl}urea;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[6-(morpholin-4-yl)pyridin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methyltetrahydro-2H-pyran-2-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylbutanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-{[(2S)-2-methylbutanoyl]amino}cyclobutyl)thiophene-2-carboxamide;
    • 5-[1-(benzoylamino)cyclobutyl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3,3,3-trifluoropropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(1-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}cyclobutyl)tetrahydro-2H-pyran-4-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(furan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-phenoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide;
    • tert-butyl 4-{4-[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-phenoxyphenyl)urea;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohexylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • 4-(1-butanoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylpent-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyloxetan-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopropyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopentylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-oxobutanoyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2,5-dimethylfuran-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-propanoylpiperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide; 4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 5-[4-hydroxy-1-(3-methylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[4-hydroxy-1-(2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-4-hydroxypiperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylazetidin-3-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 2-cyclopentyl-N-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • tert-butyl 4-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-1-ylcarbonyl)benzamide;
    • 4-[1-(ethylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)azetidin-3-yl]benzamide;
    • propan-2-yl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 2-methylpropyl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(2-cyano-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3R)-tetrahydrofuran-3-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}benzamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(ethylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)azetidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • 4-[1-(cyclopropylsulfonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{(1R)-3-methyl-1-[(tetrahydrofuran-3-ylacetyl)amino]butyl}thiophene-2-carboxamide;
    • 5-{(1S)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide;
    • 1-(4-{[(3R)-1-(2-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(3-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[4-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(pyridin-2-yl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • 1-[4-(1-butanoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopropyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(phenylacetyl)piperidin-4-yl]phenyl}urea;
    • 5-[1-(cyclopropylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 1-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3-fluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methyl-2-phenylpropanoyl)pyrrolidin-3-yl]benzamide;
    • 4-{1-[difluoro(phenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]furan-2-carboxamide;
    • 4-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2,2,2-trifluoroethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 5-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[4-(2-methylpropyl)phenyl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-2-methylbutanoyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(cyclopropylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{1-[(2-methylpropyl)sulfonyl]pyrrolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(phenylsulfonyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidine-1-carboxylate;
    • 5-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(3,5-difluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2E)-2-methylpent-2-enoyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-{1-[(2,5-dimethylfuran-3-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propanoylpyrrolidin-3-yl)thiophene-2-carboxamide;
    • 5-{1-[(1-cyanocyclopropyl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-butanoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyrazin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(phenylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-fluorobenzoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-methylbutanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylpiperidin-4-yl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}acetamide;
    • tert-butyl 4-{4-[(imidazo[1,2-b]pyridazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-b]pyridazin-6-ylmethyl)benzamide;
    • 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(propan-2-ylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(phenylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • 2-(imidazo[1,2-a]pyridin-6-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide;
    • N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2-methoxyphenyl)acetyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(phenylacetyl)amino]benzamide;
    • 4-(benzoylamino)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2-fluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-3-methoxybenzamide;
    • 4-{[(2-fluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-methyl-2-(piperazin-1-yl)propanoyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-2-methoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • 4-(phenylsulfonyl)-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)benzamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-oxatricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 4-{[(2,5-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(2,4-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-cyclopropyl-1-(2-methoxyethyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 4-{[difluoro(phenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(2-methyl-2-phenylpropanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-[(3-chloroimidazo[1,2-a]pyrazin-6-yl)methyl]-4-[(cyclopentylacetyl)amino]benzamide;
    • N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • 2-(imidazo[1,2-a]pyridin-7-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide;
    • 1-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-methyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • 5-[1-benzyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • N-(2,5-difluorobenzyl)-N′-(imidazo[1,2-a]pyridin-7-ylmethyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(propan-2-yl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-{4-[5-(2,2-dimethylpropyl)-1,3,4-oxadiazol-2-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-ethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(methoxymethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[(2-methylpropyl)sulfonyl]acetyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenoxypropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-({[(1R,2S)-2-methylcyclohexyl]oxy}acetyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-ethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-oxo-2,3-dihydro-1H-inden-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(1H-indol-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrrolidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-dihydro-2H-chromen-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(cyclohexyloxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloropyridin-3-yl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropyl-1,2-oxazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2H-chromen-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thieno[3,2-b]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)pyrimidin-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)tetrahydro-2H-pyran-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(2S)-2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1-benzofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cinnolin-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-2,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1-ethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-{4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-methyl-5-(propan-2-yl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 1-(4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • tert-butyl 4-{3-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(piperidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • 1-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(4-methylpentanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(2-fluoro-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-cyanobenzoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-N,N-dimethylpiperidine-1-carboxamide;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 4-[(cyclopentylacetyl)amino]-N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]benzamide;
    • N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-2-(imidazo[1,2-a]pyridin-7-yl)acetamide;
    • 5-{1-[2,2-dimethyl-3-(piperazin-1-yl)propyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-amino-2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]acetyl}piperidin-4-yl)benzamide;
    • 4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyl-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-7-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-thiazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-5-methyl-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 1-(4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(thieno[3,2-b]furan-5-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-7-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[6-(trifluoromethyl)pyrimidin-4-yl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • 4-(1-benzoylpiperidin-4-yl)-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-1-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine;
    • 5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-L-cysteine; and pharmaceutically acceptable salts thereof.
  • Still another embodiment pertains to compounds of Formula (IB) selected from the group consisting of
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(methoxymethyl)benzoyl]piperidin-4-yl}benzamide;
    • 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (IIB)
  • In another aspect, the present invention provides compounds of Formula (IIB)
  • Figure US20160184282A1-20160630-C00043
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (IIB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IIB), X is N or CY1. In another embodiment of Formula (IIB), X is N. In another embodiment of Formula (IIB), X is CY1.
  • In one embodiment of Formula (IIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IIB), X is CY1; and Y1 is Cl. In another embodiment of Formula (IIB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IIB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IIB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IIB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (IIB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IIB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IIB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (IIB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IIB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIB)
  • Figure US20160184282A1-20160630-C00044
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IIB), which include
    • 4-[(imidazo[1,2-a]pyridin-7-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide; and
      pharmaceutically acceptable salts thereof.
    Embodiments of Formula (IIIB)
  • In another aspect, the present invention provides compounds of Formula (IIIB)
  • Figure US20160184282A1-20160630-C00045
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described in Formula (IB) herein.
  • One embodiment pertains to compounds of Formula (IIIB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IIIB), X is N or CY1. In another embodiment of Formula (IIIB), X is N. In another embodiment of Formula (IIIB), X is CY1.
  • In one embodiment of Formula (IIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IIIB), X is CY1; and Y1 is Cl. In another embodiment of Formula (IIIB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIIB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IIIB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IIIB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IIIB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IIIB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IIIB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (IIIB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IIIB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IIIB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (IIIB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IIIB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IIIB)
  • Figure US20160184282A1-20160630-C00046
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IIIB), which include
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenylethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(morpholin-4-yl)ethyl]benzamide;
    • N-(1-hydroxy-2-methylpropan-2-yl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-benzyl-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-(cyclopentylmethyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(piperidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenoxyethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(pyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(propan-2-yloxy)ethyl]benzamide;
    • N-(2-hydroxy-2-methylpropyl)-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • N-[2-hydroxy-1-(4-methoxyphenyl)ethyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[2-(2-oxopyrrolidin-1-yl)ethyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydrofuran-2-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-propylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(morpholin-4-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-phenylbenzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-methylbutyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-[3-(2-oxopyrrolidin-1-yl)propyl]benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-4-ylmethyl)benzamide;
    • 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide;
    • N-[(1,1-dioxidotetrahydrothiophen-3-yl)methyl]-4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydrofuran-3-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(ethoxyacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(1-methylpiperidin-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}phenyl)-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea;
    • 2-ethoxy-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(morpholin-4-yl)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-2-(2-methoxyethoxy)acetamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3-methoxy-2-methylpropanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide;
    • 4,4,4-trifluoro-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}butanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-pyran-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-4-methylpentanamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1-methylpiperidine-4-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}tetrahydro-2H-thiopyran-4-carboxamide 1,1-dioxide;
    • N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-1,4-dioxane-2-carboxamide;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}piperidine-1-carboxylate;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-imidazo[1,2-a]pyridin-6-ylurea;
    • 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 4-{[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]amino}-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (IVB)
  • In another aspect, the present invention provides compounds of Formula (IVB)
  • Figure US20160184282A1-20160630-C00047
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (IVB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (IVB), X is N or CY1. In another embodiment of Formula (IVB), X is N. In another embodiment of Formula (IVB), X is CY1.
  • In one embodiment of Formula (IVB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IVB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IVB), X is CY1; and Y1 is Cl. In another embodiment of Formula (IVB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IVB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IVB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IVB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IVB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IVB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IVB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IVB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IVB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IVB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IVB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IVB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IVB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (IVB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IVB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IVB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (IVB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (IVB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IVB)
  • Figure US20160184282A1-20160630-C00048
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R1 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (IVB), which include
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3-hydroxy-3-methylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1(2H)-carboxylate;
    • tert-butyl (3R)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)pyrrolidine-1-carboxylate;
    • N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)biphenyl-2-sulfonamide;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[(3R)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydrofuran-3-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}phenyl)urea;
    • tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)azetidine-1-carboxylate;
    • tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)piperidine-1-carboxylate;
    • 1-[4-(1-acetylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethylpropanoyl)pyrrolidin-3-{4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4-ylacetyl)pyrrolidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[5-(piperidin-1-ylcarbonyl)-1,3-thiazol-2-yl]urea;
    • 2-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)-1,3-thiazole-5-carboxamide;
    • 1-{4-[(1-acetylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-(4-{[1-(1,4-dioxan-2-ylcarbonyl)azetidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]oxy}phenyl)urea;
    • 1-[4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[(1-benzoylpiperidin-4-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylazetidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(propan-2-yloxy)acetyl]azetidin-3-yl}phenyl)urea;
    • 1-{4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]azetidin-3-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-phenoxyphenyl)urea;
    • 2-cyclopentyl-N-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • tert-butyl 4-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea;
    • 1-(4-{[(3R)-1-(2-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(3-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[4-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}oxy)phenyl]urea;
    • 1-(4-{[(3R)-1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(2-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[(3R)-1-(4-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-butanoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopropyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(phenylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3-fluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(2,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,4-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{[1-(3,5-difluorobenzoyl)piperidin-4-yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea;
    • tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate;
    • 1-(4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-ethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,4-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,5-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-oxo-2,3-dihydro-1H-inden-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(1H-indol-3-ylacetyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(2S)-2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,3-dihydro-1-benzofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(cinnolin-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-2,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-5-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1-ethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-{4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-{4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(4-methylpentanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(2-fluoro-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(2-cyanobenzoyl)piperidin-4-yl]-2-fluorophenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{2-fluoro-4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(thieno[3,2-b]furan-5-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-[4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-{4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea;
    • 1-{4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-7-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea;
    • 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)phenyl]urea; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (VB)
  • In another aspect, the present invention provides compounds of Formula (VB)
  • Figure US20160184282A1-20160630-C00049
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (VB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VB), X is N or CY1. In another embodiment of Formula (VB), X is N. In another embodiment of Formula (VB), X is CY1.
  • In one embodiment of Formula (VB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VB), X is CY1; and Y1 is Cl. In another embodiment of Formula (VB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (VB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (VB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VB)
  • Figure US20160184282A1-20160630-C00050
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VB), which include
    • 4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)benzamide;
    • 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide;
    • 3-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)propanamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(propan-2-yloxy)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydrofuran-2-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-2-(tetrahydro-2H-pyran-4-yl)acetamide;
    • N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-3-phenylpropanamide;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea;
    • 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (VIB)
  • In another aspect, the present invention provides compounds of Formula (VIB)
  • Figure US20160184282A1-20160630-C00051
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (VIB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIB), X is N or CY1. In another embodiment of Formula (VIB), X is N. In another embodiment of Formula (VIB), X is CY1.
  • In one embodiment of Formula (VIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIB), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (VIB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH. In another embodiment of Formula (VIB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIB)
  • Figure US20160184282A1-20160630-C00052
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIB), which include
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 2-{(4R)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{(4S)-4-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(1,2-oxazol-3-ylacetyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(5-methyl-1,2-oxazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](1,3-thiazol-4-ylacetyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • 2-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-1,3-thiazole-5-carboxamide;
    • tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[3-(tetrahydrofuran-2-yl)propanoyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide;
    • 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(4-methylpentanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 2-{5-[(benzyloxy)methyl]-2-oxo-1,3-oxazolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 5-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]thiophene-2-carboxamide;
    • 2-[(2S)-2-(hydroxymethyl)-5-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 5-[1-(cyclopropylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]thiophene-2-carboxamide;
    • 2-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5S)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{(5R)-2-oxo-5-[(propan-2-yloxy)methyl]-1,3-oxazolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methoxyacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(1,2-oxazol-5-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4R)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[(4S)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-5-ethyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methoxy-3,3-dimethylcyclohexyl)methyl]-5-methyl-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl {2-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(morpholin-4-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-(1-ethyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(1,1-dioxidotetrahydrothiophen-3-yl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 2-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-phenylthiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(methylsulfonyl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate;
    • 5-{1-[(2R)-2-hydroxypropyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-3-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxyethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(propan-2-yloxy)phenyl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(2-methylpropanoyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • 5-[3-(benzoylamino)oxetan-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(tetrahydrofuran-3-ylacetyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(pentanoylamino)oxetan-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3R)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}benzamide;
    • 5-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-3-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • 4-{[(3S)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(3-methoxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-butanoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(3-hydroxy-3-methylbutanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2-(4-benzoylpiperazin-1-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(propan-2-yl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(2-methoxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-phenyl-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-5-yl)thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate;
    • tert-butyl 4-hydroxy-4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 5-{3-hydroxy-1-[(2S)-2-methylbutanoyl]azetidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(3-{[(2S)-2-methylbutanoyl]amino}oxetan-3-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(morpholin-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate;
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3,3-difluorocyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[6-(morpholin-4-yl)pyridin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methyltetrahydro-2H-pyran-2-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylbutanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-{[(2S)-2-methylbutanoyl]amino}cyclobutyl)thiophene-2-carboxamide;
    • 5-[1-(benzoylamino)cyclobutyl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3,3,3-trifluoropropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(1-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}cyclobutyl)tetrahydro-2H-pyran-4-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(furan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-phenoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohexylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • 4-(1-butanoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylpent-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyloxetan-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopropyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopentylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-oxobutanoyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2,5-dimethylfuran-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-propanoylpiperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 5-[4-hydroxy-1-(3-methylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[4-hydroxy-1-(2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-4-hydroxypiperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylazetidin-3-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-1-ylcarbonyl)benzamide;
    • 4-[1-(ethylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)azetidin-3-yl]benzamide;
    • propan-2-yl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 2-methylpropyl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(2-cyano-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3R)-tetrahydrofuran-3-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(ethylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)azetidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • 4-[1-(cyclopropylsulfonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{(1R)-3-methyl-1-[(tetrahydrofuran-3-ylacetyl)amino]butyl}thiophene-2-carboxamide;
    • 5-{(1S)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(pyridin-2-yl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • 5-[1-(cyclopropylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methyl-2-phenylpropanoyl)pyrrolidin-3-yl]benzamide;
    • 4-{1-[difluoro(phenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]furan-2-carboxamide;
    • 4-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2,2,2-trifluoroethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 5-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[4-(2-methylpropyl)phenyl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-2-methylbutanoyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(cyclopropylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{1-[(2-methylpropyl)sulfonyl]pyrrolidin-3-yl}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(phenylsulfonyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidine-1-carboxylate;
    • 5-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(3,5-difluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2E)-2-methylpent-2-enoyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-{1-[(2,5-dimethylfuran-3-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propanoylpyrrolidin-3-yl)thiophene-2-carboxamide;
    • 5-{1-[(1-cyanocyclopropyl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-butanoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyrazin-2-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]pyrrolidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide;
    • 5-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(phenylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 5-[1-(2-fluorobenzoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 2-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutyl)-1H-pyrazol-5-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2-methoxyphenyl)acetyl]amino}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(phenylacetyl)amino]benzamide;
    • 4-(benzoylamino)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 3,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • 2-fluoro-N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}benzamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-3-methoxybenzamide;
    • 4-{[(2-fluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-methyl-2-(piperazin-1-yl)propanoyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-2-methoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(phenylsulfonyl)benzamide;
    • 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-oxatricyclo[3.3.1.1˜3,7˜]dec-1-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 4-{[(2,5-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(2,4-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-cycloproopyl-1-(2-methoxyethyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-{[difluoro(phenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(2-methyl-2-phenylpropanoyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-methyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide;
    • 5-[1-benzyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(2,5-difluorobenzyl)-N′-(imidazo[1,2-a]pyridin-7-ylmethyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(propan-2-yl)pyrrolidin-1-yl]carbonyl}benzamide;
    • 4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbut-2-enoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopent-1-en-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-ethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(methoxymethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[(2-methylpropyl)sulfonyl]acetyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-phenoxypropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-({[(1R,2S)-2-methylcyclohexyl]oxy}acetyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxyphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylbut-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylphenyl)acetyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrrolidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-4,5,6,7-tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(pyridin-2-yl)cyclopropyl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-dihydro-2H-chromen-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(cyclohexyloxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloropyridin-3-yl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropyl-1,2-oxazol-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2H-chromen-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxycyclohexyl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-1,3-benzoxazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thieno[3,2-b]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(5,6,7,8-tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-7-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinoxalin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(2-methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(pyridin-2-yl)prop-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(8-methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-4,5,6,7-tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methyl-4H-furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-8-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[3-methyl-1-(prop-2-en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)pyrimidin-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)tetrahydro-2H-pyran-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-methyl-5-(propan-2-yl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(piperidin-1-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-N,N-dimethylpiperidine-1-carboxamide;
    • 5-{1-[2,2-dimethyl-3-(piperazin-1-yl)propyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-amino-2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxythiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H-pyrazol-3-yl]acetyl}piperidin-4-yl)benzamide;
    • 4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyl-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-1-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxy-5-methylpyridin-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[4-(propan-2-yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-5-propyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2,3-dihydro-1-benzofuran-7-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-thiazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • 4-(1-{[1-(difluoromethyl)-5-methyl-1H-pyrazol-3-yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazolo[1,5-a]pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3-oxazol-4-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5-methylpyridin-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol-6-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[6-(trifluoromethyl)pyrimidin-4-yl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-1-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine;
    • 5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-L-cysteine; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (VIIB)
  • In another aspect, the present invention provides compounds of Formula (VIIB)
  • Figure US20160184282A1-20160630-C00053
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (VIIB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR1, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIIB), X is N or CY1. In another embodiment of Formula (VIIB), X is N. In another embodiment of Formula (VIIB), X is CY1.
  • In one embodiment of Formula (VIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIIB), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIIB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIIB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIIB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIIB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (VIIB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIIB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIIB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (VIIB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIIB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIIB)
  • Figure US20160184282A1-20160630-C00054
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIIB), which include
    • 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(morpholin-4-ylacetyl)amino]benzamide;
    • 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(3-phenylpyrrolidin-1-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-(1,3-dihydro-2H-isoindol-2-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(morpholin-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[3-(tetrahydrofuran-2-yl)propanoyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{1-[(2-methoxyethoxy)acetyl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide;
    • 4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]-1,2,3,6-tetrahydropyridin-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[2-oxo-4-(tetrahydrofuran-3-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(2-oxo-5-phenyl-1,3-oxazolidin-3-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methyl-1,3-thiazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(3-methyl-1,2-oxazol-5-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3-chloro-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(3-methoxy-1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(3,5-dimethyl-1,2-oxazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 2-{[3-(3,5-dimethyl-1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(4-methyl-1,3-thiazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1H-tetrazol-5-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-5-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(1,2-oxazol-3-ylacetyl)(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1,2-oxazol-4-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-2-ylmethyl) [3-(1,3-thiazol-2-yl)propanoyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutanoyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylmethyl)(tetrahydro-2H-pyran-4-ylcarbonyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydrofuran-3-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methoxypropanoyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-3-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydro-2H-pyran-4-ylcarbonyl)(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl)[(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2R)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(3-methoxypropanoyl)[(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{(tetrahydrofuran-3-ylcarbonyl) [(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2S)-tetrahydrofuran-2-ylmethyl](tetrahydro-2H-pyran-4-ylcarbonyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl](tetrahydro-2H-pyran-4-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydro-2H-pyran-4-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2R)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2R)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(2-methoxyethyl)carbamoyl][(2S)-tetrahydrofuran-2-ylmethyl]amino}-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-({[2-(propan-2-yloxy)ethyl]carbamoyl}[(2S)-tetrahydrofuran-2-ylmethyl]amino)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-3-ylmethyl)amino]-1,3-thiazole-5-carboxamide;
    • 2-[5-(4-chlorophenyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 4-{[1-(cyclopropylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-[(1-butanoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3-methoxy-2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropanoyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(cyclohexylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2R)-2-hydroxybutyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[(1-methyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,3-dimethyl-1H-pyrazol-4-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-{[3-(1-methyl-1H-pyrrol-2-yl)propanoyl](tetrahydrofuran-2-ylmethyl)amino}-1,3-thiazole-5-carboxamide;
    • 2-{[(1,5-dimethyl-1H-pyrazol-3-yl)acetyl](tetrahydrofuran-2-ylmethyl)amino}-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(tetrahydrofuran-2-ylmethyl)(1,3-thiazol-4-ylacetyl)amino]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(4-cyanobenzyl)(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-6-yl)methyl]-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3-methylbutanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • 5-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-{1-[(1-methylpiperidin-4-yl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(propan-2-ylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(phenylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide;
    • 4-(phenylsulfonyl)-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(phenylsulfonyl)benzamide; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (VIIIB)
  • In another aspect, the present invention provides compounds of Formula (VIIIB)
  • Figure US20160184282A1-20160630-C00055
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (VIIIB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • In one embodiment of Formula (VIIIB), X is N or CY1. In another embodiment of Formula (VIIIB), X is N. In another embodiment of Formula (VIIIB), X is CY1.
  • In one embodiment of Formula (VIIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (VIIIB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (VIIIB), X is CY1; and Y1 is Cl. In another embodiment of Formula (VIIIB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (VIIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (VIIIB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (VIIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (VIIIB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (VIIIB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (VIIIB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (VIIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (VIIIB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (VIIIB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (VIIIB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH. In another embodiment of Formula (VIIIB), R11, at each occurrence, is independently alkyl. In another embodiment of Formula (VIIIB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (VIIIB)
  • Figure US20160184282A1-20160630-C00056
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the proviso that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent.
  • Still another embodiment pertains to compounds having Formula (VIIIB), which include
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-7-ylcarbamoyl)phenyl]piperidine-1-carboxylate; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (IXB)
  • In another aspect, the present invention provides compounds of Formula (IXB)
  • Figure US20160184282A1-20160630-C00057
  • and pharmaceutically acceptable salts thereof; wherein X and R3 are as described herein for Formula (I).
  • One embodiment pertains to compounds of Formula (IXB) or pharmaceutically acceptable salts thereof;
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and
  • when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • In one embodiment of Formula (IXB), X is N or CY1. In another embodiment of Formula (IXB), X is N. In another embodiment of Formula (IXB), X is CY1.
  • In one embodiment of Formula (IXB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, haloalkyl, hydroxyalkyl, OH, CN, F, Cl, Br, and I. In another embodiment of Formula (IXB), X is CY1; and Y1 is independently selected from the group consisting of hydrogen, Cl, Br, and I. In another embodiment of Formula (IXB), X is CY1; and Y1 is Cl. In another embodiment of Formula (IXB), X is CY1; and Y1 is hydrogen.
  • In one embodiment of Formula (IXB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, C(O)H, C(O)OH, C(N)NH2, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, OR4, SR4, S(O)R4, SO2R4, C(O)R4, CO(O)R4, OC(O)R4, OC(O)OR4, NH2, NHR4, N(R4)2, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NR4S(O)2R4, NHC(O)OR4, NR4C(O)OR4, NHC(O)NH2, NHC(O)NHR4, NHC(O)N(R4)2, NR4C(O)NHR4, NR4C(O)N(R4)2, C(O)NH2, C(O)NHR4, C(O)N(R4)2, C(O)NHOH, C(O)NHOR4, C(O)NHSO2R4, C(O)NR4SO2R4, SO2NH2, SO2NHR4, SO2N(R4)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR4, C(N)N(R4)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IXB), R3 is phenyl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, and C(O)NHR4; and wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I. In another embodiment of Formula (IXB), R3 is 5-6 membered heteroaryl; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I. In another embodiment of Formula (IXB), R3 is thienyl; wherein each R3 thienyl is substituted with one, two, or three substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)NHR4, C(O)NHR4, F, Cl, Br and I.
  • In one embodiment of Formula (IXB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (IXB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IXB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (IXB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (IXB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (IXB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (IXB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (IXB), R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (IXB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (IXB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (IXB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In another embodiment of Formula (IXB), R1, at each occurrence, is independently alkyl. In another embodiment of Formula (IXB), R11, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (IXB)
  • Figure US20160184282A1-20160630-C00058
  • wherein
  • X is N or CY1;
  • Y1 is independently selected from the group consisting of hydrogen, F, Cl, Br, and I;
  • R3 is independently selected from the group consisting of phenyl and 5-6 membered heteroaryl; wherein each R3 phenyl is substituted at the para position with one substituent independently selected from the group consisting of R4, OR4, SO2R4, C(O)R4, NHC(O)R4, NR4C(O)R4, NHS(O)2R4, NHC(O)OR4, C(O)NHR4, F, Cl, Br and I; wherein each R3 phenyl is optionally additionally substituted with one substituent independently selected from the group consisting of F, Cl, Br and I; wherein each R3 5-6 membered heteroaryl is substituted with one, two, three or four substituents independently selected from the group consisting of R4, C(O)R4, NHR4, NHC(O)R4, NR4C(O)R4, NHC(O)OR4, NR4C(O)OR4, C(O)NHR4, F, Cl, Br and I;
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6, aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH;
  • with the provisos that
  • when X is CY1 and Y1 is hydrogen; and R3 is thiazolyl; the R3 thiazolyl is substituted with one substituent; and when X is CY1 and Y1 is hydrogen; and R3 is phenyl; the R3 phenyl is not substituted at the para position with phenyl.
  • Still another embodiment pertains to compounds having Formula (IXB), which include
    • 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide;
    • 2-cyclopentyl-N-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}acetamide;
    • tert-butyl 4-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate;
    • tert-butyl 4-[4-(imidazo[1,2-a]pyridin-6-ylcarbamoyl)phenyl]piperidine-1-carboxylate;
    • tert-butyl 4-{4-[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]phenyl}piperidine-1-carboxylate; and pharmaceutically acceptable salts thereof.
    Embodiments of Formula (XB)
  • In another aspect, the present invention provides compounds of Formula (XB)
  • Figure US20160184282A1-20160630-C00059
  • and pharmaceutically acceptable salts thereof; wherein R4 is as described herein for Formula (IB).
  • One embodiment pertains to compounds of Formula (XB) or pharmaceutically acceptable salts thereof;
  • wherein
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R7, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I;
  • R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I; and
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I; and
  • R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2CHCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • In one embodiment of Formula (XB), R4, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, SR5, S(O)R5, SO2R5, C(O)R5, CO(O)R5, OC(O)R5, OC(O)OR5, NH2, NHR5, N(R5)2, NHC(O)R5, NR5C(O)R5, NHS(O)2R5, NR5S(O)2R5, NHC(O)OR5, NR5C(O)OR5, NHC(O)NH2, NHC(O)NHR5, NHC(O)N(R5)2, NR5C(O)NHR5, NR5C(O)N(R5)2, C(O)NH2, C(O)NHR5, C(O)N(R5)2, C(O)NHOH, C(O)NHOR5, C(O)NHSO2R5, C(O)NR5SO2R5, SO2NH2, SO2NHR5, SO2N(R5)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR5, C(N)N(R5)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, cycloalkenyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, NR6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XB), R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, C(O)N(R6)2, OH, and F.
  • In another embodiment of Formula (XB), R5, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R5 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, SR7, S(O)R7, SO2R7, C(O)R7, CO(O)R7, OC(O)R7, OC(O)OR7, NH2, NHR7, N(R7)2, NHC(O)R7, NR7C(O)R7, NHS(O)2R, NR7S(O)2R7, NHC(O)OR7, NR7C(O)OR7, NHC(O)NH2, NHC(O)NHR7, NHC(O)N(R7)2, NR7C(O)NHR7, NR7C(O)N(R7)2, C(O)NH2, C(O)NHR7, C(O)N(R7)2, C(O)NHOH, C(O)NHOR7, C(O)NHSO2R7, C(O)NR7SO2R7, SO2NH2, SO2NHR7, SO2N(R7)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR7, C(N)N(R7)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R5 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, SR8, S(O)R8, SO2R8, C(O)R8, CO(O)R8, OC(O)R8, OC(O)OR8, NH2, NHR8, N(R8)2, NHC(O)R8, NR8C(O)R8, NHS(O)2R8, NR8S(O)2R8, NHC(O)OR8, NR8C(O)OR8, NHC(O)NH2, NHC(O)NHR8, NHC(O)N(R8)2, NR8C(O)NHR8, NR8C(O)N(R8)2, C(O)NH2, C(O)NHR8, C(O)N(R8)2, C(O)NHOH, C(O)NHOR8, C(O)NHSO2R8, C(O)NR8SO2R8, SO2NH2, SO2NHR8, SO2N(R8)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR8, C(N)N(R8)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XB), R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, and OH; wherein each R5 aryl and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I.
  • In one embodiment of Formula (XB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SR9, S(O)R9, SO2R9, C(O)R9, CO(O)R9, OC(O)R9, OC(O)OR9, NH2, NHR9, N(R9)2, NHC(O)R9, NR9C(O)R9, NHS(O)2R9, NR9S(O)2R9, NHC(O)OR9, NR9C(O)OR9, NHC(O)NH2, NHC(O)NHR9, NHC(O)N(R9)2, NR9C(O)NHR9, NR9C(O)N(R9)2, C(O)NH2, C(O)NHR9, C(O)N(R9)2, C(O)NHOH, C(O)NHOR9, C(O)NHSO2R9, C(O)NR9SO2R9, SO2NH2, SO2NHR9, SO2N(R9)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR9, C(N)N(R9)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, SR10, S(O)R10, SO2R10, C(O)R10, CO(O)R10, OC(O)R10, OC(O)OR10, NH2, NHR10, N(R10)2, NHC(O)R10, NR10C(O)R10, NHS(O)2R10, NR10S(O)2R10, NHC(O)OR10, NR10C(O)OR10, NHC(O)NH2, NHC(O)NHR10, NHC(O)N(R10)2, NR10C(O)NHR10, NR10C(O)N(R10)2, C(O)NH2, C(O)NHR10, C(O)N(R10)2, C(O)NHOH, C(O)NHOR10, C(O)NHSO2R10, C(O)NR10SO2R10, SO2NH2, SO2NHR10, SO2N(R10)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR10, C(N)N(R10)2, CNOH, CNOCH3, OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XB), R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, CN, F, Cl, Br and I.
  • In one embodiment of Formula (XB), R7, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R7 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, N3, NO2, F, Cl, Br and I; wherein each R7 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of OH, CN, N3, NO2, F, Cl, Br and I. In another embodiment of Formula (XB), R7, at each occurrence, is alkyl or heterocyclyl.
  • In one embodiment of Formula (XB), R8, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, and alkynyl. In another embodiment of Formula (XB), R8, at each occurrence, is independently alkyl.
  • In one embodiment of Formula (XB), R9, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R9 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, OH, CN, NO2, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, OC(O)R11, NH2, NHR11, N(R11)2, NHC(O)R11, NR11C(O)R11, C(O)NH2, C(O)NHR11, C(O)N(R11)2, C(O)H, C(O)OH, COH, CN, NO2, F, Cl, Br and I. In another embodiment of Formula (XB), R9 at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, and alkoxy; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R11, and F.
  • In one embodiment of Formula (XB), R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R10 alkyl, alkenyl, and alkynyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, F, Cl, Br and I. In another embodiment of Formula (XB), R10, at each occurrence, is independently heterocyclyl, cycloalkyl, alkyl, or alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F.
  • In one embodiment of Formula (XB), R11, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkyl, alkenyl, and alkynyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH. In another embodiment of Formula (XB), R1, at each occurrence, is independently alkyl. In another embodiment of Formula (XB), R1, at each occurrence, is independently cycloalkyl.
  • One embodiment pertains to compounds or pharmaceutically acceptable salts thereof, which are useful as inhibitors of NAMPT, the compounds having Formula (XB)
  • Figure US20160184282A1-20160630-C00060
  • wherein
  • R4, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, and 3-12 membered heterocyclyl; wherein each R4 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R5, OR5, C(O)R5, NHC(O)R5, OH, F, Cl, Br and I; wherein each R4 aryl, cycloalkyl, and 3-12 membered heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R6, OR6, SO2R6, C(O)R6, CO(O)R6, C(O)C(O)R6, NHC(O)R6, NHC(O)NHR6, C(O)N(R6)2, OH, F, Cl, Br and I;
  • R5, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R5 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R7, OR7, OH, F, Cl, Br and I; wherein each R5 aryl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R8, OR8, CN, F, Cl, Br and I;
  • R6, at each occurrence, is independently selected from the group consisting of alkyl, alkenyl, aryl, heterocyclyl, cycloalkyl, and cycloalkenyl; wherein each R6 alkyl and alkenyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R9, OR9, SO2R9, NH2, N(R9)2, OH, F, Cl, Br and I; wherein each R6 aryl, cycloalkyl, cycloalkenyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R10, OR10, C(O)R10, CN, F, and Cl;
  • R7, at each occurrence, is independently selected from the group consisting of alkyl, and heterocyclyl;
  • R8, at each occurrence, is independently alkyl;
  • R9, at each occurrence, is independently selected from the group consisting of alkyl, aryl, heterocyclyl, and cycloalkyl; wherein each R9 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of aryl, alkoxy, F, Cl, Br and I; wherein each R9 aryl, cycloalkyl, and heterocyclyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of R11, OR11, C(O)R11, CO(O)R, CN, F, Cl, Br and I;
  • R10, at each occurrence, is independently selected from the group consisting of aryl, heterocyclyl, cycloalkyl, alkyl, and alkenyl; wherein each R10 alkyl is optionally substituted with one, two, three or four substituents independently selected from the group consisting of alkoxy, and F; and
  • R11, at each occurrence, is independently cycloalkyl or alkyl; wherein each R11 alkyl is optionally substituted with NH(CH3), heterocyclyl, SCH2CH(NH2)C(O)OH, OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2NH2, or NHC(O)CH2CH(NH2)C(O)OH.
  • Still another embodiment pertains to compounds having Formula (XB), which include
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-phenylthiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(methylsulfonyl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate;
    • 5-{1-[(2R)-2-hydroxypropyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-3-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3R)-tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide;
    • 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(2-hydroxyethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(propan-2-yloxy)phenyl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(2-methylpropanoyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • 5-[3-(benzoylamino)oxetan-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(tetrahydrofuran-3-ylacetyl)amino]oxetan-3-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(pentanoylamino)oxetan-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3R)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}benzamide;
    • 5-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-3-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • 4-{[(3S)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(3-methoxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-butanoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3S)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{[(3S)-1-(3-hydroxy-3-methylbutanoyl)pyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 2-(4-benzoylpiperazin-1-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(propan-2-yl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(2-methoxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-phenyl-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-methyl-1H-pyrazol-5-yl)thiophene-2-carboxamide;
    • tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2-yloxy)acetyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(1,4-dioxan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate;
    • tert-butyl 4-hydroxy-4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 5-{3-hydroxy-1-[(2S)-2-methylbutanoyl]azetidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[3-hydroxy-1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(3-{[(2S)-2-methylbutanoyl]amino}oxetan-3-yl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-[(1-acetylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylpiperidin-4-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(propan-2-yloxy)acetyl]piperidin-4-yl}oxy)benzamide;
    • 4-{[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2R)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]oxy}benzamide;
    • 4-{[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(tetrahydro-2H-pyran-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(morpholin-4-ylacetyl)piperidin-4-yl]oxy}benzamide;
    • tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate;
    • 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(3,3-difluorocyclobutyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[6-(morpholin-4-yl)pyridin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methyltetrahydro-2H-pyran-2-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylbutanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-{[(2S)-2-methylbutanoyl]amino}cyclobutyl)thiophene-2-carboxamide;
    • 5-[1-(benzoylamino)cyclobutyl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3,3,3-trifluoropropanoyl)amino]cyclobutyl}thiophene-2-carboxamide;
    • N-(1-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}cyclobutyl)tetrahydro-2H-pyran-4-carboxamide;
    • tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-2-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-3-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]furan-2-carboxamide;
    • 5-[1-(cyclobutylmethyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide;
    • 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide;
    • 4-[1-(furan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-phenoxybenzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide;
    • 4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide;
    • 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclohexylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide;
    • 4-(1-butanoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylpent-2-enoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyloxetan-3-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-{1-[(1-cyanocyclopropyl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopentylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-oxobutanoyl)piperidin-4-yl]benzamide;
    • 4-{1-[(2,5-dimethylfuran-3-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • 4-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)piperidin-4-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-propanoylpiperidin-4-yl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)piperidin-4-yl]benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide;
    • 5-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 2-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide;
    • 4-[(cyclopentylacetyl)amino]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2-methylbutanoyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopropylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-(1-benzoylazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 5-[4-hydroxy-1-(3-methylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[4-hydroxy-1-(2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-[1-(3,3-dimethylbutanoyl)-4-hydroxypiperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 5-(1-benzoyl-4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)benzamide;
    • 4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[(1-benzoylazetidin-3-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • tert-butyl 4-{4-[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-1-ylcarbonyl)benzamide;
    • 4-[1-(ethylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)azetidin-3-yl]benzamide;
    • propan-2-yl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • 2-methylpropyl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]piperidin-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide;
    • N-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • 5-[1-(2-cyano-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
    • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3R)-tetrahydrofuran-3-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]pyrrolidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]pyrrolidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 4-[1-(ethylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(cyclopropylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)pyrrolidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclopentylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylpentanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclopentylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,2-dimethylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-5-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(2-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(furan-2-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,4-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol-3-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylbenzoyl)azetidin-3-yl]benzamide;
    • 4-[1-(4-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,2-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,5-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(4-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbutanoyl)azetidin-3-yl]benzamide;
    • 4-[1-(3,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3-cyanobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4-methoxybenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(cyclohexylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(cyclohexylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • 4-[1-(furan-3-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methylcyclohexyl)carbonyl]azetidin-3-yl}benzamide;
    • 4-[1-(2,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbenzoyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3-ylcarbonyl)azetidin-3-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2-yl)carbonyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]azetidin-3-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)pyrrolidin-3-yl]benzamide;
    • 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide;
    • 4-[1-(cyclopropylsulfonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{(1R)-3-methyl-1-[(tetrahydrofuran-3-ylacetyl)amino]butyl}thiophene-2-carboxamide;
    • 5-{(1S)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(pyridin-2-yl)piperidin-4-yl]-1,3-thiazole-5-carboxamide;
    • 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
    • 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • 4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)piperidin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2-(trifluoromethyl)benzoyl]piperidin-4-yl}benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide;
    • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[6-(trifluoromethyl)pyrimidin-4-yl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide; and pharmaceutically acceptable salts thereof.
    Pharmaceutical Compositions, Combination Therapies, Methods of Treatment, and Administration
  • Another embodiment comprises pharmaceutical compositions comprising a compound having Formula (I) and an excipient.
  • Still another embodiment comprises methods of treating cancer in a mammal comprising administering thereto a therapeutically acceptable amount of a compound having Formula (I).
  • Still another embodiment pertains to compositions for treating diseases during which NAMPT is expressed, said compositions comprising an excipient and a therapeutically effective amount of the compound having Formula (I).
  • Still another embodiment pertains to methods of treating disease in a patient during which NAMPT is expressed, said methods comprising administering to the patient a therapeutically effective amount of a compound having Formula (I).
  • Still another embodiment pertains to compositions for treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia, said compositions comprising an excipient and a therapeutically effective amount of the compound having Formula (I).
  • Still another embodiment pertains to methods of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia in a patient, said methods comprising administering to the patient a therapeutically effective amount of a compound having Formula (I).
  • Still another embodiment pertains to compositions for treating diseases during which NAMPT is expressed, said compositions comprising an excipient and a therapeutically effective amount of the compound having Formula (I) and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
  • Still another embodiment pertains to methods of treating disease in a patient during which NAMPT is expressed, said methods comprising administering to the patient a therapeutically effective amount of a compound having Formula (I) and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
  • Still another embodiment pertains to compositions for treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia, said compositions comprising an excipient and a therapeutically effective amount of the compound having Formula (I) and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
  • Still another embodiment pertains to methods of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia in a patient, said methods comprising administering to the patient a therapeutically effective amount of the compound having Formula (I) and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
  • Metabolites of compounds having Formula (I), produced by in vitro or in vivo metabolic processes, may also have utility for treating diseases associated with NAMPT.
  • Certain precursor compounds which may be metabolized in vitro or in vivo to form compounds having Formula (I) may also have utility for treating diseases associated with NAMPT.
  • Compounds having Formula (I) may exist as acid addition salts, basic addition salts or zwitterions. Salts of the compounds are prepared during isolation or following purification of the compounds. Acid addition salts of the compounds are those derived from the reaction of the compounds with an acid. For example, the acetate, adipate, alginate, bicarbonate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsufonate, digluconate, formate, fumarate, glycerophosphate, glutamate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactobionate, lactate, maleate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, phosphate, picrate, propionate, succinate, tartrate, thiocyanate, trichloroacetic, trifluoroacetic, para-toluenesulfonate, and undecanoate salts of the compounds are contemplated as being embraced by this invention. Basic addition salts of the compounds are those derived from the reaction of the compounds with the hydroxide, carbonate or bicarbonate of cations such as lithium, sodium, potassium, calcium, and magnesium.
  • The compounds having Formula (I) may be administered, for example, bucally, ophthalmically, orally, osmotically, parenterally (intramuscularly, intraperitoneally intrasternally, intravenously, subcutaneously), rectally, topically, transdermally or vaginally.
  • Therapeutically effective amounts of compounds having Formula (I) depend on the recipient of the treatment, the disorder being treated and the severity thereof, the composition containing the compound, the time of administration, the route of administration, the duration of treatment, the compound potency, its rate of clearance and whether or not another drug is co-administered. The amount of a compound of this invention having Formula (I) used to make a composition to be administered daily to a patient in a single dose or in divided doses is from about 0.03 to about 200 mg/kg body weight. Single dose compositions contain these amounts or a combination of submultiples thereof.
  • Compounds having Formula (I) may be administered with or without an excipient. Excipients include, for example, encapsulating materials or additives such as absorption accelerators, antioxidants, binders, buffers, coating agents, coloring agents, diluents, disintegrating agents, emulsifiers, extenders, fillers, flavoring agents, humectants, lubricants, perfumes, preservatives, propellants, releasing agents, sterilizing agents, sweeteners, solubilizers, wetting agents and mixtures thereof.
  • Excipients for preparation of compositions comprising a compound having Formula (I) to be administered orally in solid dosage form include, for example, agar, alginic acid, aluminum hydroxide, benzyl alcohol, benzyl benzoate, 1,3-butylene glycol, carbomers, castor oil, cellulose, cellulose acetate, cocoa butter, corn starch, corn oil, cottonseed oil, cross-povidone, diglycerides, ethanol, ethyl cellulose, ethyl laureate, ethyl oleate, fatty acid esters, gelatin, germ oil, glucose, glycerol, groundnut oil, hydroxypropylmethyl cellulose, isopropanol, isotonic saline, lactose, magnesium hydroxide, magnesium stearate, malt, mannitol, monoglycerides, olive oil, peanut oil, potassium phosphate salts, potato starch, povidone, propylene glycol, Ringer's solution, safflower oil, sesame oil, sodium carboxymethyl cellulose, sodium phosphate salts, sodium lauryl sulfate, sodium sorbitol, soybean oil, stearic acids, stearyl fumarate, sucrose, surfactants, talc, tragacanth, tetrahydrofurfuryl alcohol, triglycerides, water, and mixtures thereof. Excipients for preparation of compositions comprising a compound of this invention having Formula (I) to be administered ophthalmically or orally in liquid dosage forms include, for example, 1,3-butylene glycol, castor oil, corn oil, cottonseed oil, ethanol, fatty acid esters of sorbitan, germ oil, groundnut oil, glycerol, isopropanol, olive oil, polyethylene glycols, propylene glycol, sesame oil, water and mixtures thereof. Excipients for preparation of compositions comprising a compound of this invention having Formula (I) to be administered osmotically include, for example, chlorofluorohydrocarbons, ethanol, water and mixtures thereof. Excipients for preparation of compositions comprising a compound of this invention having Formula (I) to be administered parenterally include, for example, 1,3-butanediol, castor oil, corn oil, cottonseed oil, dextrose, germ oil, groundnut oil, liposomes, oleic acid, olive oil, peanut oil, Ringer's solution, safflower oil, sesame oil, soybean oil, U.S.P. or isotonic sodium chloride solution, water and mixtures thereof. Excipients for preparation of compositions comprising a compound of this invention having Formula (I) to be administered rectally or vaginally include, for example, cocoa butter, polyethylene glycol, wax and mixtures thereof.
  • Compounds having Formula (I) are expected to be useful when used with alkylating agents, angiogenesis inhibitors, antibodies, antimetabolites, antimitotics, antiproliferatives, antivirals, aurora kinase inhibitors, apoptosis promoters (for example, Bcl-xL, Bcl-w and Bfl-1) inhibitors, activators of death receptor pathway, Bcr-Abl kinase inhibitors, BiTE (Bi-Specific T cell Engager) antibodies, antibody drug conjugates, biologic response modifiers, cyclin-dependent kinase inhibitors, cell cycle inhibitors, cyclooxygenase-2 inhibitors, DVDs, leukemia viral oncogene homolog (ErbB2) receptor inhibitors, growth factor inhibitors, heat shock protein (HSP)-90 inhibitors, histone deacetylase (HDAC) inhibitors, hormonal therapies, immunologicals, inhibitors of inhibitors of apoptosis proteins (IAPs), intercalating antibiotics, kinase inhibitors, kinesin inhibitors, Jak2 inhibitors, mammalian target of rapamycin inhibitors, microRNA's, mitogen-activated extracellular signal-regulated kinase inhibitors, multivalent binding proteins, non-steroidal anti-inflammatory drugs (NSAIDs), poly ADP (adenosine diphosphate)-ribose polymerase (PARP) inhibitors, platinum chemotherapeutics, polo-like kinase (Plk) inhibitors, phosphoinositide-3 kinase (PI3K) inhibitors, proteosome inhibitors, purine analogs, pyrimidine analogs, receptor tyrosine kinase inhibitors, retinoids/deltoids plant alkaloids, small inhibitory ribonucleic acids (siRNAs), topoisomerase inhibitors, ubiquitin ligase inhibitors, and the like, and in combination with one or more of these agents.
  • BiTE antibodies are bi-specific antibodies that direct T-cells to attack cancer cells by simultaneously binding the two cells. The T-cell then attacks the target cancer cell. Examples of BiTE antibodies include adecatumumab (Micromet MT201), blinatumomab (Micromet MT103) and the like. Without being limited by theory, one of the mechanisms by which T-cells elicit apoptosis of the target cancer cell is by exocytosis of cytolytic granule components, which include perforin and granzyme B.
  • SiRNAs are molecules having endogenous RNA bases or chemically modified nucleotides. The modifications do not abolish cellular activity, but rather impart increased stability and/or increased cellular potency. Examples of chemical modifications include phosphorothioate groups, 2′-deoxynucleotide, 2′-OCH3-containing ribonucleotides, 2′-F-ribonucleotides, 2′-methoxyethyl ribonucleotides, combinations thereof and the like. The siRNA can have varying lengths (e.g., 10-200 bps) and structures (e.g., hairpins, single/double strands, bulges, nicks/gaps, mismatches) and are processed in cells to provide active gene silencing. A double-stranded siRNA (dsRNA) can have the same number of nucleotides on each strand (blunt ends) or asymmetric ends (overhangs). The overhang of 1-2 nucleotides can be present on the sense and/or the antisense strand, as well as present on the 5′- and/or the 3′-ends of a given strand.
  • Multivalent binding proteins are binding proteins comprising two or more antigen binding sites. Multivalent binding proteins are engineered to have the three or more antigen binding sites and are generally not naturally occurring antibodies. The term “multispecific binding protein” means a binding protein capable of binding two or more related or unrelated targets. Dual variable domain (DVD) binding proteins are tetravalent or multivalent binding proteins binding proteins comprising two or more antigen binding sites. Such DVDs may be monospecific (i.e., capable of binding one antigen) or multispecific (i.e., capable of binding two or more antigens). DVD binding proteins comprising two heavy chain DVD polypeptides and two light chain DVD polypeptides are referred to as DVD Ig's. Each half of a DVD Ig comprises a heavy chain DVD polypeptide, a light chain DVD polypeptide, and two antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of 6 CDRs involved in antigen binding per antigen binding site.
  • Alkylating agents include altretamine, AMD-473, AP-5280, apaziquone, bendamustine, brostallicin, busulfan, carboquone, carmustine (BCNU), chlorambucil, CLORETAZINE® (laromustine, VNP 40101M), cyclophosphamide, decarbazine, estramustine, fotemustine, glufosfamide, ifosfamide, KW-2170, lomustine (CCNU), mafosfamide, melphalan, mitobronitol, mitolactol, nimustine, nitrogen mustard N-oxide, ranimustine, temozolomide, thiotepa, TREANDA® (bendamustine), treosulfan, trofosfamide and the like.
  • Angiogenesis inhibitors include endothelial-specific receptor tyrosine kinase (Tie-2) inhibitors, epidermal growth factor receptor (EGFR) inhibitors, insulin growth factor-2 receptor (IGFR-2) inhibitors, matrix metalloproteinase-2 (MMP-2) inhibitors, matrix metalloproteinase-9 (MMP-9) inhibitors, platelet-derived growth factor receptor (PDGFR) inhibitors, thrombospondin analogs, vascular endothelial growth factor receptor tyrosine kinase (VEGFR) inhibitors and the like.
  • Antimetabolites include ALIMTA® (pemetrexed disodium, LY231514, MTA), 5-azacitidine, XELODA® (capecitabine), carmofur, LEUSTAT® (cladribine), clofarabine, cytarabine, cytarabine ocfosfate, cytosine arabinoside, decitabine, deferoxamine, doxifluridine, eflornithine, EICAR (5-ethynyl-1-β-D-ribofuranosylimidazole-4-carboxamide), enocitabine, ethnylcytidine, fludarabine, 5-fluorouracil alone or in combination with leucovorin, GEMZAR® (gemcitabine), hydroxyurea, ALKERAN®(melphalan), mercaptopurine, 6-mercaptopurine riboside, methotrexate, mycophenolic acid, nelarabine, nolatrexed, ocfosfate, pelitrexol, pentostatin, raltitrexed, Ribavirin, triapine, trimetrexate, S-1, tiazofurin, tegafur, TS-1, vidarabine, UFT and the like.
  • Antivirals include ritonavir, hydroxychloroquine and the like.
  • Aurora kinase inhibitors include ABT-348, AZD-1152, MLN-8054, VX-680, Aurora A-specific kinase inhibitors, Aurora B-specific kinase inhibitors and pan-Aurora kinase inhibitors and the like.
  • Bcl-2 protein inhibitors include AT-101 ((−)gossypol), GENASENSE® (G3139 or oblimersen (Bcl-2-targeting antisense oligonucleotide)), IPI-194, IPI-565, N-(4-(4-((4′-chloro(1,1′-biphenyl)-2-yl)methyl)piperazin-1-yl)benzoyl)-4-(((1R)-3-(dimethylamino)-1-((phenylsulfanyl)methyl)propyl)amino)-3-nitrobenzenesulfonamide) (ABT-737), N-(4-(4-((2-(4-chlorophenyl)-5,5-dimethyl-1-cyclohex-1-en-1-yl)methyl)piperazin-1-yl)benzoyl)-4-(((1R)-3-(morpholin-4-yl)-1-((phenylsulfanyl)methyl)propyl)amino)-3-((trifluoromethyl)sulfonyl)benzenesulfonamide (ABT-263), GX-070 (obatoclax) and the like.
  • Bcr-Abl kinase inhibitors include DASATINIB® (BMS-354825), GLEEVEC® (imatinib) and the like.
  • CDK inhibitors include AZD-5438, BMI-1040, BMS-032, BMS-387, CVT-2584, flavopyridol, GPC-286199, MCS-5A, PD0332991, PHA-690509, seliciclib (CYC-202, R-roscovitine), ZK-304709 and the like.
  • COX-2 inhibitors include ABT-963, ARCOXIA® (etoricoxib), BEXTRA® (valdecoxib), BMS347070, CELEBREX® (celecoxib), COX-189 (lumiracoxib), CT-3, DERAMAXX® (deracoxib), JTE-522, 4-methyl-2-(3,4-dimethylphenyl)-1-(4-sulfamoylphenyl-1H-pyrrole), MK-663 (etoricoxib), NS-398, parecoxib, RS-57067, SC-58125, SD-8381, SVT-2016, S-2474, T-614, VIOXX® (rofecoxib) and the like.
  • EGFR inhibitors include ABX-EGF, anti-EGFR immunoliposomes, EGF-vaccine, EMD-7200, ERBITUX® (cetuximab), HR3, IgA antibodies, IRESSA® (gefitinib), TARCEVA® (erlotinib or OSI-774), TP-38, EGFR fusion protein, TYKERB® (lapatinib) and the like.
  • ErbB2 receptor inhibitors include CP-724-714, CI-1033 (canertinib), HERCEPTIN® (trastuzumab), TYKERB® (lapatinib), OMNITARG® (2C4, petuzumab), TAK-165, GW-572016 (ionafarnib), GW-282974, EKB-569, PI-166, dHER2 (HER2 vaccine), APC-8024 (HER-2 vaccine), anti-HER/2neu bispecific antibody, B7.her2IgG3, AS HER2 trifunctional bispecfic antibodies, mAB AR-209, mAB 2B-1 and the like.
  • Histone deacetylase inhibitors include depsipeptide, LAQ-824, MS-275, trapoxin, suberoylanilide hydroxamic acid (SAHA), TSA, valproic acid and the like.
  • HSP-90 inhibitors include 17-AAG-nab, 17-AAG, CNF-101, CNF-1010, CNF-2024, 17-DMAG, geldanamycin, IPI-504, KOS-953, MYCOGRAB® (human recombinant antibody to HSP-90), NCS-683664, PU24FC1, PU-3, radicicol, SNX-2112, STA-9090 VER49009 and the like.
  • Inhibitors of inhibitors of apoptosis proteins include HGS1029, GDC-0145, GDC-0152, LCL-161, LBW-242 and the like.
  • Antibody drug conjugates include anti-CD22-MC-MMAF, anti-CD22-MC-MMAE, anti-CD22-MCC-DM1, CR-011-vcMMAE, PSMA-ADC, MEDI-547, SGN-19Am SGN-35, SGN-75 and the like
  • Activators of death receptor pathway include TRAIL, antibodies or other agents that target TRAIL or death receptors (e.g., DR4 and DR5) such as Apomab, conatumumab, ETR2-ST01, GDC0145 (lexatumumab), HGS-1029, LBY-135, PRO-1762 and trastuzumab.
  • Kinesin inhibitors include Eg5 inhibitors such as AZD4877, ARRY-520; CENPE inhibitors such as GSK923295A and the like.
  • JAK-2 inhibitors include CEP-701 (lesaurtinib), XL019 and INCB018424 and the like.
  • MEK inhibitors include ARRY-142886, ARRY-438162 PD-325901, PD-98059 and the like.
  • mTOR inhibitors include AP-23573, CCI-779, everolimus, RAD-001, rapamycin, temsirolimus, ATP-competitive TORC1/TORC2 inhibitors, including PI-103, PP242, PP30, Torin 1 and the like.
  • Non-steroidal anti-inflammatory drugs include AMIGESIC® (salsalate), DOLOBID® (diflunisal), MOTRIN® (ibuprofen), ORUDIS® (ketoprofen), RELAFEN® (nabumetone), FELDENE® (piroxicam), ibuprofen cream, ALEVE® (naproxen) and NAPROSYN® (naproxen), VOLTAREN® (diclofenac), INDOCIN® (indomethacin), CLINORIL® (sulindac), TOLECTIN® (tolmetin), LODINE® (etodolac), TORADOL® (ketorolac), DAYPRO® (oxaprozin) and the like.
  • PDGFR inhibitors include C-451, CP-673, CP-868596 and the like.
  • Platinum chemotherapeutics include cisplatin, ELOXATIN® (oxaliplatin) eptaplatin, lobaplatin, nedaplatin, PARAPLATIN® (carboplatin), satraplatin, picoplatin and the like.
  • Polo-like kinase inhibitors include BI-2536 and the like.
  • Phosphoinositide-3 kinase (PI3K) inhibitors include wortmannin, LY294002, XL-147, CAL-120, ONC-21, AEZS-127, ETP-45658, PX-866, GDC-0941, BGT226, BEZ235, XL765 and the like.
  • Thrombospondin analogs include ABT-510, ABT-567, ABT-898, TSP-1 and the like.
  • VEGFR inhibitors include AVASTIN® (bevacizumab), ABT-869, AEE-788, ANGIOZYME™ (a ribozyme that inhibits angiogenesis (Ribozyme Pharmaceuticals (Boulder, Colo.) and Chiron, (Emeryville, Calif.)), axitinib (AG-13736), AZD-2171, CP-547,632, IM-862, MACUGEN (pegaptamib), NEXAVAR® (sorafenib, BAY43-9006), pazopanib (GW-786034), vatalanib (PTK-787, ZK-222584), SUTENT® (sunitinib, SU-11248), VEGF trap, ZACTIMA™ (vandetanib, ZD-6474) and the like.
  • Antibiotics include intercalating antibiotics aclarubicin, actinomycin D, amrubicin, annamycin, adriamycin, BLENOXANE® (bleomycin), daunorubicin, CAELYX® or MYOCET® (liposomal doxorubicin), elsamitrucin, epirbucin, glarbuicin, ZAVEDOS® (idarubicin), mitomycin C, nemorubicin, neocarzinostatin, peplomycin, pirarubicin, rebeccamycin, stimalamer, streptozocin, VALSTAR® (valrubicin), zinostatin and the like.
  • Topoisomerase inhibitors include aclarubicin, 9-aminocamptothecin, amonafide, amsacrine, becatecarin, belotecan, BN-80915, CAMPTOSAR® (irinotecan hydrochloride), camptothecin, CARDIOXANE® (dexrazoxine), diflomotecan, edotecarin, ELLENCE® or PHARMORUBICIN® (epirubicin), etoposide, exatecan, 10-hydroxycamptothecin, gimatecan, lurtotecan, mitoxantrone, orathecin, pirarbucin, pixantrone, rubitecan, sobuzoxane, SN-38, tafluposide, topotecan and the like.
  • Antibodies include AVASTIN® (bevacizumab), CD40-specific antibodies, chTNT-1/B, denosumab, ERBITUX® (cetuximab), HUMAX-CD4® (zanolimumab), IGF1R-specific antibodies, lintuzumab, PANOREX® (edrecolomab), RENCAREX® (WX G250), RITUXAN® (rituximab), ticilimumab, trastuzimab, CD20 antibodies types I and II and the like.
  • Hormonal therapies include ARIMIDEX® (anastrozole), AROMASIN® (exemestane), arzoxifene, CASODEX® (bicalutamide), CETROTIDE® (cetrorelix), degarelix, deslorelin, DESOPAN® (trilostane), dexamethasone, DROGENIL® (flutamide), EVISTA® (raloxifene), AFEMA™ (fadrozole), FARESTON® (toremifene), FASLODEX® (fulvestrant), FEMARA® (letrozole), formestane, glucocorticoids, HECTOROL® (doxercalciferol), RENAGEL® (sevelamer carbonate), lasofoxifene, leuprolide acetate, MEGACE® (megesterol), MIFEPREX® (mifepristone), NILANDRON™ (nilutamide), NOLVADEX® (tamoxifen citrate), PLENAXIS™ (abarelix), prednisone, PROPECIA® (finasteride), rilostane, SUPREFACT® (buserelin), TRELSTAR® (luteinizing hormone releasing hormone (LHRH)), VANTAS® (Histrelin implant), VETORYL® (trilostane or modrastane), ZOLADEX® (fosrelin, goserelin) and the like.
  • Deltoids and retinoids include seocalcitol (EB1089, CB1093), lexacalcitrol (KH1060), fenretinide, PANRETIN® (aliretinoin), ATRAGEN® (liposomal tretinoin), TARGRETIN® (bexarotene), LGD-1550 and the like.
  • PARP inhibitors include ABT-888 (veliparib), olaparib, KU-59436, AZD-2281, AG-014699, BSI-201, BGP-15, INO-1001, ONO-2231 and the like.
  • Plant alkaloids include, but are not limited to, vincristine, vinblastine, vindesine, vinorelbine and the like.
  • Proteasome inhibitors include VELCADE® (bortezomib), MG132, NPI-0052, PR-171 and the like.
  • Examples of immunologicals include interferons and other immune-enhancing agents. Interferons include interferon alpha, interferon alpha-2a, interferon alpha-2b, interferon beta, interferon gamma-1a, ACTIMMUNE® (interferon gamma-1b) or interferon gamma-n1, combinations thereof and the like. Other agents include ALFAFERONE®, (IFN-α), BAM-002 (oxidized glutathione), BEROMUN® (tasonermin), BEXXAR® (tositumomab), CAMPATH® (alemtuzumab), CTLA4 (cytotoxic lymphocyte antigen 4), decarbazine, denileukin, epratuzumab, GRANOCYTE® (lenograstim), lentinan, leukocyte alpha interferon, imiquimod, MDX-010 (anti-CTLA-4), melanoma vaccine, mitumomab, molgramostim, MYLOTARG™ (gemtuzumab ozogamicin), NEUPOGEN® (filgrastim), OncoVAC-CL, OVAREX® (oregovomab), pemtumomab (Y-muHMFG1), PROVENGE® (sipuleucel-T), sargaramostim, sizofilan, teceleukin, THERACYS® (Bacillus Calmette-Guerin), ubenimex, VIRULIZIN® (immunotherapeutic, Lorus Pharmaceuticals), Z-100 (Specific Substance of Maruyama (SSM)), WF-10 (Tetrachlorodecaoxide (TCDO)), PROLEUKIN® (aldesleukin), ZADAXIN® (thymalfasin), ZENAPAX® (daclizumab), ZEVALIN® (90Y-Ibritumomab tiuxetan) and the like.
  • Biological response modifiers are agents that modify defense mechanisms of living organisms or biological responses, such as survival, growth or differentiation of tissue cells to direct them to have anti-tumor activity and include krestin, lentinan, sizofiran, picibanil PF-3512676 (CpG-8954), ubenimex and the like.
  • Pyrimidine analogs include cytarabine (ara C or Arabinoside C), cytosine arabinoside, doxifluridine, FLUDARA® (fludarabine), 5-FU (5-fluorouracil), floxuridine, GEMZAR® (gemcitabine), TOMUDEX® (ratitrexed), TROXATYL™ (triacetyluridine troxacitabine) and the like.
  • Purine analogs include LANVIS® (thioguanine) and PURI-NETHOL® (mercaptopurine).
  • Antimitotic agents include batabulin, epothilone D (KOS-862), N-(2-((4-hydroxyphenyl)amino)pyridin-3-yl)-4-methoxybenzenesulfonamide, ixabepilone (BMS 247550), paclitaxel, TAXOTERE® (docetaxel), PNU100940 (109881), patupilone, XRP-9881 (larotaxel), vinflunine, ZK-EPO (synthetic epothilone) and the like.
  • Ubiquitin ligase inhibitors include MDM2 inhibitors, such as nutlins, NEDD8 inhibitors such as MLN4924 and the like.
  • Compounds of this invention can also be used as radiosensitizers that enhance the efficacy of radiotherapy. Examples of radiotherapy include external beam radiotherapy, teletherapy, brachytherapy and sealed, unsealed source radiotherapy and the like.
  • Additionally, compounds having Formula (I) may be combined with other chemotherapeutic agents such as ABRAXANE™ (ABI-007), ABT-100 (farnesyl transferase inhibitor), ADVEXIN® (Ad5CMV-p53 vaccine), ALTOCOR® or MEVACOR® (lovastatin), AMPLIGEN® (poly I:poly C12U, a synthetic RNA), APTOSYN® (exisulind), AREDIA® (pamidronic acid), arglabin, L-asparaginase, atamestane (1-methyl-3,17-dione-androsta-1,4-diene), AVAGE® (tazarotene), AVE-8062 (combreastatin derivative) BEC2 (mitumomab), cachectin or cachexin (tumor necrosis factor), canvaxin (vaccine), CEAVAC® (cancer vaccine), CELEUK® (celmoleukin), CEPLENE® (histamine dihydrochloride), CERVARIX® (human papillomavirus vaccine), CHOP® (C: CYTOXAN® (cyclophosphamide); H: ADRIAMYCIN® (hydroxydoxorubicin); O: Vincristine (ONCOVIN®); P: prednisone), CYPAT™ (cyproterone acetate), combrestatin A4P, DAB(389)EGF (catalytic and translocation domains of diphtheria toxin fused via a His-Ala linker to human epidermal growth factor) or TransMID-107R™ (diphtheria toxins), dacarbazine, dactinomycin, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), eniluracil, EVIZON™ (squalamine lactate), DIMERICINE® (T4N5 liposome lotion), discodermolide, DX-8951 f (exatecan mesylate), enzastaurin, EP0906 (epithilone B), GARDASIL® (quadrivalent human papillomavirus (Types 6, 11, 16, 18) recombinant vaccine), GASTRIMMUNE®, GENASENSE®, GMK (ganglioside conjugate vaccine), GVAX® (prostate cancer vaccine), halofuginone, histerelin, hydroxycarbamide, ibandronic acid, IGN-101, IL-13-PE38, IL-13-PE38QQR (cintredekin besudotox), IL-13-pseudomonas exotoxin, interferon-α, interferon-γ, JUNOVAN™ or MEPACT™ (mifamurtide), lonafarnib, 5,10-methylenetetrahydrofolate, miltefosine (hexadecylphosphocholine), NEOVASTAT®(AE-941), NEUTREXIN® (trimetrexate glucuronate), NIPENT® (pentostatin), ONCONASE® (a ribonuclease enzyme), ONCOPHAGE® (melanoma vaccine treatment), ONCOVAX® (IL-2 Vaccine), ORATHECIN™ (rubitecan), OSIDEM® (antibody-based cell drug), OVAREX® MAb (murine monoclonal antibody), paclitaxel, PANDIMEX™ (aglycone saponins from ginseng comprising 20(S)protopanaxadiol (aPPD) and 20(S)protopanaxatriol (aPPT)), panitumumab, PANVAC®-VF (investigational cancer vaccine), pegaspargase, PEG Interferon A, phenoxodiol, procarbazine, rebimastat, REMOVAB® (catumaxomab), REVLIMID® (lenalidomide), RSR13 (efaproxiral), SOMATULINE® LA (lanreotide), SORIATANE® (acitretin), staurosporine (Streptomyces staurospores), talabostat (PT100), TARGRETIN® (bexarotene), TAXOPREXIN® (DHA-paclitaxel), TELCYTA® (canfosfamide, TLK286), temilifene, TEMODAR® (temozolomide), tesmilifene, thalidomide, THERATOPE® (STn-KLH), thymitaq (2-amino-3,4-dihydro-6-methyl-4-oxo-5-(4-pyridylthio)quinazoline dihydrochloride), TNFERADE™ (adenovector: DNA carrier containing the gene for tumor necrosis factor-a), TRACLEER® or ZAVESCA® (bosentan), tretinoin (Retin-A), tetrandrine, TRISENOX® (arsenic trioxide), VIRULIZIN®, ukrain (derivative of alkaloids from the greater celandine plant), vitaxin (anti-alphavbeta3 antibody), XCYTRIN® (motexafin gadolinium), XINLAY™ (atrasentan), XYOTAX™ (paclitaxel poliglumex), YONDELIS® (trabectedin), ZD-6126, ZINECARD® (dexrazoxane), ZOMETA® (zolendronic acid), zorubicin and the like.
  • Data
  • Determination of the utility of compounds having Formula (I) as binders to and inhibitors of NAMPT was performed using Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assays.
  • Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Binding Assay of NAMPT
  • Test compounds were serially diluted (typically 11 half log dilutions) in neat DMSO to 50× final concentrations prior to dilution with assay buffer (50 mM HEPES (NaOH), pH 7.5, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT, 1% Glycerol) to 3× and 6% DMSO. Six μL were transferred to 384-well low-volume plates (Owens Corning #3673). To this, 12 L of a 1.5× solution containing enzyme, probe and antibody were added. Final concentrations in the 18 μL reactions were 1× assay buffer, 2% DMSO, 6.8 nM NAMPT (human, recombinant, C-terminally His-tagged), 200 nM probe (a potent nicotinamide-competitive inhibitor conjugated to Oregon Green 488) and 1 nM Tb-anti-His antibody (Invitrogen #PV5895).
  • Reactions were equilibrated at room temperature for 3 hours prior to reading on an Envision multi-label plate reader (Perkin Elmer; Ex=337 nm, Em=520 and 495 nm). Time-resolved FRET ratios (Em520/Em495) were normalized to controls, plotted as a function of compound concentration and fit with the four-parameter logistic equation to determine IC50s.
  • Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Binding Assay of NAMPT with PRPP
  • Compound handling and data processing were identical to the assay in the absence of substrates (above). Final concentrations were 1× assay buffer, 2% DMSO, 2 nM NAMPT, 2 nM probe, 1 nM Tb-anti-His antibody (Invitrogen #PV5895), 200 M PRPP and 2.5 mM ATP. Reactions were equilibrated for 16 hours prior to measurement to allow for potential enzymatic modification of test compounds.
  • Table 1 shows the utility of compounds having Formula I to functionally inhibit NAMPT.
  • TABLE 1
    TR-
    FRET
    TR- Binding -
    FRET IC50
    Binding - (with
    IC50 PRPP)
    Example (μM) (μM)
    1 0.0921 0.00072
    2 0.854 0.0398
    3 0.0316 0.000282
    4 0.413 0.000516
    5 2.5 0.000684
    6 2.91 0.000964
    7 0.183 0.000516
    8 0.114 0.000702
    9 1.72 0.000459
    10 0.197 0.000457
    11 7.6 0.000271
    12 0.486 0.000292
    13 0.653 0.000663
    14 0.741 0.00122
    15 1.76 0.000841
    16 0.409 0.000396
    17 2.96 0.000401
    18 2.73 0.000418
    19 2.68 0.000921
    20 0.404 0.000169
    21 0.433 0.000887
    22 0.399 0.000277
    23 0.281 0.000409
    24 0.167 0.000363
    25 0.508 0.000714
    26 0.211 0.0011
    27 0.756 0.000658
    28 0.152 0.00019
    29 0.168 0.000236
    30 1.18 0.000785
    31 0.739 0.000311
    32 0.906 0.000169
    33 0.369 0.000553
    34 0.208 0.000377
    35 0.387 0.000801
    36 0.356 0.000444
    37 0.129 0.000309
    38 0.243 0.000266
    39 0.814 0.00026
    40 0.0409 0.000217
    41 0.294 0.00115
    42 0.697 0.000381
    43 4.35 0.000169
    44 0.396 0.000496
    45 0.879 0.00119
    46 0.773 0.000318
    47 0.0575 0.00062
    48 >10 0.000169
    49 0.442 0.000317
    50 1.64 0.000817
    51 0.264 0.000524
    52 0.0186 0.00579
    53 4.45 0.0144
    54 0.363 0.00255
    55 0.364 0.00137
    56 0.158 0.00107
    57 0.0058
    58 0.523 0.00143
    59 0.222 0.000695
    60 0.00861 0.00149
    61 0.0782 0.000549
    62 0.25 0.000456
    63 0.636 0.000283
    64 0.518 0.000495
    65 0.773 0.000685
    66 0.558 0.000326
    67 0.53 0.000326
    68 0.386 0.000476
    69 0.676 0.000268
    70 0.71 0.000616
    71 0.754 0.000348
    72 0.851 0.000536
    73 0.605 0.000426
    74 0.356 0.000222
    75 0.0122 0.000445
    76 0.993 0.000739
    77 0.0561 0.00288
    78 0.0565 0.0024
    79 0.121 0.00697
    80 0.228 0.00571
    81 0.0155 0.00268
    82 0.357 0.00642
    83 0.899 0.0023
    84 1.67 0.0109
    85 4.07 0.00141
    86 2.04 0.0119
    87 2.05 0.00135
    88 2.85 0.00855
    89 0.667 0.000383
    90 0.204 0.00063
    91 0.174 0.00126
    92 0.183 0.000881
    93 0.389 0.00139
    94 0.29 0.000593
    95 0.201 0.000991
    96 0.192 0.00156
    97 0.109 0.000333
    98 0.12 0.000367
    99 0.119 0.000411
    100 0.102 0.000169
    101 0.332 0.00173
    102 0.385 0.00121
    103 0.84 0.00144
    104 0.135 0.002
    105 0.106 0.000476
    106 0.247 0.000201
    107 0.0451 0.000492
    108 1.77 0.00105
    109 0.34 0.000209
    110 0.423 0.000174
    111 0.263 0.000209
    112 0.0465 0.000169
    113 0.356 0.000169
    114 0.818 0.00111
    115 0.243 0.000676
    116 0.863 0.00069
    117 0.392 0.000436
    118 0.0352 0.000234
    119 0.942 0.000783
    120 0.0739 0.000367
    121 0.486 0.000234
    122 0.255 0.00476
    123 0.133 0.00257
    124 1.1 0.00212
    125 0.547 0.00209
    126 0.102 0.000963
    127 0.0522 0.000522
    128 0.0307 0.000873
    129 0.0116 0.000634
    130 0.0532 0.000981
    131 0.0152 0.00167
    132 0.155 0.0133
    133 0.067 0.000709
    134 0.303 0.00149
    135 0.0738 0.00127
    136 0.0727 0.000512
    137 0.315 0.00721
    138 0.0807 0.000424
    139 0.582 0.000173
    140 1.34 0.000927
    141 2.11 0.000757
    142 1.43 0.00305
    143 8.71 0.00203
    144 9.49 0.00292
    145 0.191 0.00108
    146 0.261 0.000403
    147 0.251 0.00063
    148 6.23 0.00135
    149 >10 0.00486
    150 6.11 0.00349
    151 7.15 0.00554
    152 3.6 0.00691
    153 0.118 0.00188
    154 0.194 0.0026
    155 3.37 0.0023
    156 3.27 0.00318
    157 4.14 0.0011
    158 0.341 0.00639
    159 2.49 0.00216
    160 3.22 0.00126
    161 1.31 0.00289
    162 2.57 0.00209
    163 2.1 0.00629
    164 2.46 0.00346
    165 1.53 0.00161
    166 1.43 0.00181
    167 1.73 0.00252
    168 1.11 0.000951
    169 0.375 0.00425
    170 3.36 0.00225
    171 2.17 0.00251
    172 2.21 0.00355
    173 1.51 0.00124
    174 0.0283 0.000169
    175 0.697 0.0009
    176 0.0606 0.000414
    177 0.0201 0.000169
    178 0.0143 0.000169
    179 0.0581 0.000445
    180 0.584 0.000266
    181 0.349 0.000283
    182 0.139 0.0004
    183 1.05 0.0018
    184 4.34 0.00254
    185 >10 0.00186
    186 0.0657 0.000347
    187 0.549 0.000172
    188 >10 0.00509
    189 0.192 0.0111
    190 0.4 0.00457
    191 0.821 0.00609
    192 0.238 0.000242
    193 0.516 0.000266
    194 0.0323 0.00024
    195 0.0247 0.000251
    196 0.358 0.000169
    197 1.57 0.000505
    198 0.0325 0.000225
    199 0.00976 0.000311
    200 0.063 0.000482
    201 0.0466 0.000281
    202 0.216 0.000355
    203 0.0137 0.00021
    204 4.83 0.000773
    205 1.06 0.000358
    206 0.0257 0.000263
    207 1.51 0.000282
    208 0.404 0.000169
    209 0.811 0.000988
    210 0.469 0.000363
    211 1.66 0.000453
    212 0.0448 0.00021
    213 0.116 0.000271
    214 0.641 0.00128
    215 2.01 0.00304
    216 0.118 0.00019
    217 0.22 0.0002
    218 0.123 0.000169
    219 0.0794 0.000903
    220 0.0742 0.000278
    221 0.12 0.000352
    222 0.112 0.000192
    223 0.109 0.000354
    224 0.233 0.000555
    225 0.155 0.000673
    226 0.113 0.000608
    227 0.0162 0.000273
    228 0.0494 0.000238
    229 0.0136 0.000398
    230 0.294 0.000169
    231 0.817 0.000546
    232 0.396 0.000277
    233 0.495 0.000401
    234 0.904 0.000736
    235 0.494 0.000369
    236 0.604 0.000243
    237 0.451 0.000285
    238 0.123 0.000187
    239 0.308 0.000771
    240 7.35 0.00875
    241 0.0674 0.000169
    242 0.0571 0.000169
    243 0.169 0.000169
    244 >10 0.00169
    245 2.89 0.000502
    246 0.0732 0.00022
    247 0.0627 0.000275
    248 0.0658 0.000169
    249 0.817 0.00072
    250 0.0205 0.00023
    251 2.2 0.00063
    252 0.0374 0.000274
    253 0.0144 0.000229
    254 0.0313 0.000306
    255 8.19 0.00222
    256 0.126 0.000266
    257 0.101 0.000344
    258 0.113 0.000558
    259 0.0266 0.000169
    260 0.0465 0.000351
    261 0.0627 0.000231
    262 0.00367 0.000221
    263 0.0486 0.000247
    264 0.0404 0.000412
    265 0.0331 0.000266
    266 0.12 0.000333
    267 0.0543 0.000291
    268 0.755 0.000169
    269 0.0412 0.000169
    270 0.0609 0.000991
    271 0.0517 0.000169
    272 0.0272 0.000417
    273 0.0493 0.000555
    274 0.0178 0.000196
    275 0.0123 0.00043
    276 0.107 0.000468
    277 0.103 0.000667
    278 0.102 0.000621
    279 0.0688 0.000437
    280 0.0113 0.000213
    281 0.0055 0.000214
    282 0.0765 0.000297
    283 0.0632 0.000264
    284 0.00796 0.000169
    285 0.0826 0.000593
    286 0.12 0.000412
    287 0.0673 0.000351
    288 0.0495 0.000568
    289 0.155 0.000286
    290 0.415 0.00096
    291 0.159 0.000449
    292 1.54 0.00115
    293 0.0273 0.000169
    294 0.0447 0.000169
    295 0.0561 0.000292
    296 0.067 0.000226
    297 0.177 0.000286
    298 3.41 0.000557
    299 0.172 0.000283
    300 0.0614 0.000169
    301 0.288 0.000301
    302 0.16 0.000435
    303 0.00999 0.000169
    304 0.0662 0.000169
    305 0.494 0.000449
    306 0.144 0.000169
    307 0.0508 0.000169
    308 0.306 0.000169
    309 0.117 0.000169
    310 0.564 0.000217
    311 0.289 0.000274
    312 0.165 0.000243
    313 0.531 0.00036
    314 1.98 0.000581
    315 0.231 0.00032
    316 0.0421 0.000169
    317 0.317 0.000282
    318 0.0416 0.000228
    319 0.466 0.000192
    320 0.0963 0.000208
    321 3.16 0.000792
    322 6.04 0.0341
    323 1.4 0.000232
    324 0.981 0.000752
    325 0.18 0.000278
    326 2.35 0.0013
    327 1.32 0.000558
    328 0.068 0.000169
    329 0.0308 0.000169
    330 0.32 0.000432
    331 0.383 0.000416
    332 0.18 0.000297
    333 0.583 0.000346
    334 0.0809 0.000345
    335 0.632 0.000354
    336 0.334 0.000264
    337 0.497 0.000205
    338 0.609 0.000394
    339 >10 0.000797
    340 >10 0.000817
    341 >10 0.000719
    342 >10 0.000454
    343 >10 0.000456
    344 0.036 0.000169
    345 0.201 0.00027
    346 3.11 0.000548
    347 4.73 0.000667
    348 >10 0.00152
    349 4.11 0.000736
    350 >10 0.000795
    351 8.39 0.000792
    352 >10 0.00106
    353 3.17 0.00047
    354 >10 0.000526
    355 0.831 0.000169
    356 >10 0.000169
    357 >10 0.000291
    358 1.84 0.00219
    359 >10 0.0025
    360 0.291 0.000717
    361 5.03 0.00194
    362 0.143 0.000256
    363 0.588 0.000305
    364 0.135 0.000172
    365 1.34 0.000171
    366 0.146 0.000435
    367 0.65 0.00018
    368 0.602 0.000317
    369 0.429 0.000337
    370 0.0476 0.000175
    371 1.44 0.000298
    372 2.44 0.00046
    373 3.04 0.00036
    374 1.67 0.000292
    375 0.986 0.000241
    376 1.05 0.000305
    377 1.67 0.000275
    378 0.897 0.000169
    379 0.279 0.00029
    380 0.179 0.000251
    381 0.0841 0.000259
    382 0.119 0.000204
    383 0.0495 0.000225
    384 0.406 0.000375
    385 0.491 0.000539
    386 0.283 0.000254
    387 0.419 0.000467
    388 0.388 0.000506
    389 0.584 0.000617
    390 0.133 0.000445
    391 0.171 0.000227
    392 0.814 0.000465
    393 >10 0.00437
    394 >10 0.00308
    395 0.0125 0.000193
    396 0.0226 0.00036
    397 0.0177 0.000169
    398 0.21 0.000792
    399 9.5 0.00154
    400 0.0812 0.000298
    401 0.0126 0.000292
    402 0.0548 0.000327
    403 1.55 0.000847
    404 2.55 0.00088
    405 0.0784 0.000214
    406 1.14 0.000505
    407 0.22 0.000659
    408 0.276 0.000725
    409 >10 0.48
    410 0.0207 0.000169
    411 1.87 0.000556
    412 1.25 0.000424
    413 0.805 0.000279
    414 2.63 0.000307
    415 1.62 0.000246
    416 2.5 0.000318
    417 6.84 0.000264
    418 4.75 0.000233
    419 2.43 0.000197
    420 2.71 0.000226
    421 2.45 0.000271
    422 1.72 0.000212
    423 8.26 0.000338
    424 0.988 0.000494
    425 0.153 0.000227
    426 0.0256 0.000169
    427 0.15 0.00027
    428 0.0871 0.000258
    429 0.129 0.000396
    430 0.292 0.000264
    431 0.301 0.000276
    432 0.304 0.00033
    433 0.2 0.000248
    434 0.102 0.000169
    435 0.163 0.000191
    436 1.59 0.000416
    437 0.0291 0.000169
    438 0.145 0.000427
    439 0.453 0.000641
    440 0.295 0.00049
    441 0.338 0.000324
    442 0.301 0.0002
    443 0.138 0.000274
    444 0.156 0.000244
    445 0.11 0.000212
    446 0.388 0.000253
    447 0.261 0.000232
    448 0.175 0.000176
    449 0.256 0.000169
    450 0.422 0.000244
    451 0.4 0.000373
    452 0.293 0.000285
    453 0.152 0.000258
    454 0.405 0.00034
    455 0.0167 0.000194
    456 0.389 0.000169
    457 1.14 0.000487
    458 0.94 0.000382
    459 0.381 0.00041
    460 0.569 0.000307
    461 0.459 0.000169
    462 0.0591 0.000266
    463 0.314 0.000529
    464 0.0634 0.000169
    465 0.0138 0.000169
    466 0.0749 0.000287
    467 0.0911 0.000278
    468 >10 0.000985
    469 >10 0.000432
    470 5.58 0.000456
    471 3.44 0.000471
    472 2.86 0.000334
    473 >10 0.00101
    474 1.98 0.000362
    475 0.00976 0.000169
    476 0.0708 0.000194
    477 0.0729 0.000235
    478 0.192 0.00024
    479 0.063 0.000243
    480 0.181 0.000342
    481 0.0572 0.000176
    482 0.0763 0.000259
    483 0.13 0.000575
    484 0.0795 0.00019
    485 0.0956 0.000205
    486 0.0917 0.000232
    487 0.143 0.000334
    488 0.138 0.000544
    489 1.22 0.000263
    490 0.753 0.000267
    491 >10 0.0019
    492 >10 0.000863
    493 1.29 0.000455
    494 7.56 0.000712
    495 1.47 0.000399
    496 0.199 0.00114
    497 0.0242 0.00286
    498 0.309 0.000169
    499 0.113 0.00038
    500 0.181 0.000169
    501 0.104 0.000483
    502 0.169 0.000385
    503 0.0532 0.000277
    504 0.185 0.000361
    505 0.253 0.000355
    506 0.245 0.000407
    507 0.121 0.000359
    508 0.257 0.000481
    509 0.163 0.000384
    510 0.142 0.000284
    511 0.0653 0.000286
    512 0.631 0.000209
    513 0.0239 0.000188
    514 0.368 0.000249
    515 0.18 0.000268
    516 0.117 0.000266
    517 0.33 0.000264
    518 0.234 0.000169
    519 0.218 0.000338
    520 0.565 0.000301
    521 0.413 0.000292
    522 0.0581 0.000199
    523 0.343 0.000422
    524 0.0247 0.000169
    525 0.0864 0.000213
    526 0.126 0.000275
    527 0.141 0.000265
    528 0.126 0.000276
    529 0.248 0.000283
    530 0.378 0.000791
    531 0.333 0.000253
    532 0.338 0.000178
    533 0.101 0.000169
    534 0.145 0.000251
    535 0.297 0.000325
    536 0.0776 0.000202
    537 0.461 0.00023
    538 0.275 0.000514
    539 0.0985 0.00031
    540 0.266 0.000305
    541 0.175 0.000448
    542 0.0351 0.000337
    543 1.48 0.000383
    544 0.871 0.000437
    545 0.109 0.000403
    546 0.237 0.0232
    547 0.498 0.000423
    548 0.397 0.000471
    549 0.0812 0.000224
    550 0.762 0.000427
    551 0.713 0.000392
    552 0.184 0.000543
    553 0.478 0.000592
    554 0.451 0.000837
    555 0.427 0.000749
    556 0.00543 0.000407
    557 0.167 0.000359
    558 1.41 0.000352
    559 0.681 0.000223
    560 0.969 0.000312
    561 0.869 0.000335
    562 0.218 0.000607
    563 0.322 0.00419
    564 0.0238 0.00343
    565 0.215 0.00538
    566 >10 0.216
    567 0.403 0.00111
    568 0.375 0.000723
    569 0.217 0.000669
    570 0.0704 0.000751
    571 0.0417 0.000494
    572 0.0516 0.000403
    573 0.0242 0.000403
    574 0.0975 0.000505
    575 3.25 0.0108
    576 0.016 0.000783
    577 0.0189 0.000361
    578 0.682 0.000775
    579 0.488 0.000634
    580 1.47 0.000798
    581 0.945 0.00109
    582 0.711 0.000911
    583 1.12 0.000799
    584 0.811 0.000756
    585 0.641 0.000648
    586 0.842 0.00109
    587 0.236 0.000917
    588 0.684 0.000623
    589 0.0161 0.000887
    590 0.666 0.000734
    591 0.138 0.000761
    592 0.0388 0.000603
    593 0.767 0.000544
    594 0.0227 0.000682
    595 0.133 0.000746
    596 0.691 0.000909
    597 0.232 0.000862
    598 0.457 0.000804
    599 0.527 0.000786
    600 0.51 0.000169
    601 0.712 0.000682
    602 0.786 0.000887
    603 1.03 0.00101
    604 0.151 0.000843
    605 0.559 0.000886
    606 0.281 0.000169
    607 0.478 0.000796
    608 0.481 0.00051
    609 0.598 0.00062
    610 0.751 0.000762
    611 0.288 0.000621
    612 0.706 0.000919
    613 0.347 0.000916
    614 0.216 0.00067
    615 0.544 0.00079
    616 0.174 0.00049
    617 0.164 0.000645
    618 0.5 0.000751
    619 0.0793 0.000616
    620 0.71 0.001
    621 0.114 0.00542
    622 0.0294 0.00236
    623 1.01 0.0016
    624 0.261 0.000627
    625 0.795 0.00076
    626 0.645 0.000793
    627 0.211 0.00071
    628 0.706 0.000978
    629 0.23 0.000643
    630 0.266 0.000563
    631 0.616 0.00126
    632 0.27 0.000698
    633 0.335 0.000707
    634 0.353 0.000648
    635 0.462 0.000975
    636 0.238 0.000915
    637 0.36 0.000421
    638 0.0166 0.000545
    639 0.215 0.000713
    640 0.17 0.000817
    641 0.0748 0.000684
    642 0.454 0.000532
    643 0.028 0.000552
    644 0.0817 0.00069
    645 0.091 0.000474
    646 0.195 0.00051
    647 0.173 0.000672
    648 0.661 0.00106
    649 0.203 0.000749
    650 0.153 0.00111
    651 0.276 0.000715
    652 0.535 0.00116
    653 0.831 0.000893
    654 0.213 0.000945
    655 0.23 0.000998
    656 0.218 0.000738
    657 0.232 0.000589
    658 0.137 0.00076
    659 0.646 0.00071
    660 0.282 0.000693
    661 0.462 0.000641
    662 0.318 0.000671
    663 0.653 0.00107
    664 0.214 0.000733
    665 0.123 0.000357
    666 0.193 0.000855
    667 0.226 0.000798
    668 0.263 0.0011
    669 0.407 0.000807
    670 0.062 0.000545
    671 0.611 0.00106
    672 0.313 0.000504
    673 0.452 0.000697
    674 0.297 0.000535
    675 0.376 0.00207
    676 0.126 0.00698
    677 0.00177 0.000796
    678 0.0412 0.00023
    679 0.0228 0.00174
    680 0.0371 0.00238
    681 0.0276 0.002
    682 0.607 0.00158
    683 0.154 0.00119
    684 0.481 0.00134
    685 1.25 0.00136
    686 0.959 0.0013
    687 0.0973 0.00116
    688 1.11 0.00266
    689 0.016 0.00132
    690 0.0643 0.00122
    691 0.169 0.00067
    692 0.0839 0.00119
    693 0.781 0.00142
    694 0.163 0.00112
    695 0.0137 0.000621
    696 0.272 0.000725
    697 0.735 0.000802
    698 0.0364 0.000629
    699 0.0411 0.000721
    700 0.0684 0.00103
    701 0.367 0.000856
    702 0.568 0.00129
    703 0.559 0.000824
    704 0.503 0.000777
    705 0.876 0.00163
    706 0.0841 0.000937
    707 0.277 0.000624
    708 0.06 0.0009
    709 0.0194 0.000473
    710 0.0491 0.00125
    711 0.0885 0.00111
    712 0.0911 0.000907
    713 0.0443 0.000689
    714 0.168 0.000991
    715 0.0659 0.000771
    716 0.0502 0.000607
    717 0.186 0.000428
    718 0.0236 0.000755
    719 0.00632 0.000835
    720 0.0367 0.000181
    721 0.125 0.00121
    722 0.0394 0.00101
    723 0.154 0.000932
    724 0.161 0.000992
    725 0.0196 0.000747
    726 0.251 0.000534
    727 0.166 0.000783
    728 0.14 0.000496
    729 0.428 0.000765
    730 0.489 0.000847
    731 0.223 0.000391
    732 0.0213 0.000471
    733 0.119 0.000712
    734 0.0142 0.000605
    735 0.646 0.000864
    736 3.09 0.00073
    737 0.0704 0.000612
    738 0.364 0.000705
    739 0.0377 0.000672
    740 0.0701 0.000403
    741 0.068 0.000647
    742 0.241 0.000526
    743 0.0633 0.000691
    744 1.08 0.000806
    745 0.994 0.000783
    746 0.795 0.000839
    747 0.435 0.00175
    748 0.558 0.000648
    749 0.392 0.00079
    750 1.53 0.00154
    751 1.24 0.001
    752 5.19 0.00077
    753 0.403 0.000783
    754 0.00492 0.00051
    755 0.013 0.00057
    756 0.123 0.000609
    757 0.0156 0.000705
    758 0.132 0.00061
    759 0.0285 0.000799
    760 0.0289 0.00071
    761 0.0944 0.000394
    762 0.0301 0.000506
    763 0.0485 0.000478
    764 0.135 0.000465
    765 0.0365 0.000782
    766 0.0615 0.000581
    767 0.265 0.00064
    768 0.0281 0.000672
    769 0.0984 0.000705
    770 0.0388 0.000735
    771 0.0708 0.000573
    772 0.0615 0.000828
    773 0.0726 0.000773
    774 0.103 0.00046
    775 0.0519 0.000538
    776 0.0215 0.000169
    777 0.0394 0.00092
    778 0.0276 0.000414
    779 0.0142 0.000603
    780 0.25 0.000382
    781 0.0875 0.000839
    782 0.134 0.000466
    783 0.0644 0.000907
    784 0.0226 0.000455
    785 0.0236 0.000638
    786 0.0444 0.000484
    787 0.055 0.000474
    788 0.082 0.000674
    789 0.0217 0.000434
    790 0.0795 0.000586
    791 0.0471 0.00115
    792 0.116 0.0005
    793 0.0231 0.000398
    794 0.029 0.000465
    795 0.0896 0.000764
    796 0.0917 0.00049
    797 0.0972 0.000671
    798 0.0957 0.00047
    799 0.102 0.000406
    800 0.0821 0.000925
    801 0.866 0.001
    802 0.0359 0.000533
    803 0.314 0.00101
    804 0.289 0.000445
    805 3.92 0.00112
    806 2.74 0.000543
    807 0.628 0.000509
    808 0.0944 0.000568
    809 0.0953 0.00063
    810 0.481 0.0126
    811 0.0998 0.00286
    812 0.08 0.00257
    813 0.0112 0.00153
    814 0.0687 0.00163
    815 0.053 0.00193
    816 0.0461 0.00158
    817 0.0658 0.0016
    818 1.52 0.000644
    819 0.0199 0.000624
    820 0.499 0.00928
    821 0.663 0.000284
    822 0.104 0.00346
    823 0.189 0.000356
    824 0.118 0.000566
    825 0.0261 0.000538
    826 0.00779 0.000897
  • NAMPT Cell Proliferation Assay
  • PC3 cells were seeded in 96-well black plates (Corning #3904) at 500 cells/well in 90 μl of RPMI media containing 10% heat-inactivated FBS and incubated overnight at 37° C. and 5% CO2 to allow cells to attach to wells. The following day, test compounds were serially diluted in neat DMSO to 1000× final concentrations prior to dilution with RPMI media to 10× and 1% DMSO. Ten μL of the 100× compounds were then transferred to wells containing cells to produce a dose response of 10-fold dilutions from 10 M to 1×10−5 M. Cells were incubated for 5 days at 37° C. and 5% CO2, then cell viability was measured using Cell Titer Glo reagent (Promega #G7571). Percent inhibition values were calculated and fitted to a sigmoidal dose response curves using Assay Explorer software to determine IC50s. To assess whether inhibition of cell viability was due to NAMPT inhibition, the proliferation assay was also performed in the presence of 0.3 mM nicotinamide mononucleotide.
  • Table 2 shows the results of the cell proliferation assay.
  • TABLE 2
    Cell
    Titer-Glo -
    IC50
    Example (μM)
    1 0.0609
    2 >10
    3 0.0367
    4 0.935
    5 0.74
    6 6.65
    7 0.527
    8 0.0702
    9 0.649
    10 0.331
    11 4.53
    12 0.213
    13 1.17
    14 0.644
    15 3.97
    16 0.325
    17 4.96
    18 0.36
    19 6.63
    20 0.102
    21 0.899
    22 0.142
    23 0.0415
    24 0.691
    25 0.146
    26 0.261
    27 7.54
    28 0.0142
    29 0.0439
    30 0.0384
    31 0.107
    32 0.284
    33 0.0673
    34 0.0383
    35 0.0586
    36 0.0514
    37 0.0347
    38 0.0659
    39 7.28
    40 0.0708
    41 0.138
    42 1.59
    43 7.45
    44 1.58
    45 2.07
    46 6.28
    47 0.0648
    48 5.32
    49 7.04
    50 6.14
    51 0.083
    52 0.00407
    53 3.3
    54 0.303
    55 0.0146
    56 0.00886
    57 0.00576
    58 0.0526
    59 0.143
    60 0.00958
    61 0.00601
    62 0.0165
    63 0.0168
    64 0.0198
    65 0.0656
    66 0.0115
    67 0.0119
    68 0.0538
    69 0.0166
    70 0.0278
    71 0.0667
    72 0.0659
    73 0.0595
    74 0.014
    75 0.00149
    76 0.185
    77 0.0142
    78 0.0407
    79 0.00745
    80 0.0194
    81 0.0071
    82 0.0679
    83 0.0243
    84 0.762
    85 2.61
    86 5.72
    87 6.58
    88 8.11
    89 0.113
    90 0.0187
    91 0.0139
    92 0.00948
    93 0.00713
    94 0.0142
    95 0.0106
    96 0.00965
    97 0.00455
    98 0.0194
    99 0.0264
    100 0.0162
    101 0.00244
    102 0.013
    103 0.0621
    104 0.00846
    105 0.00661
    106 0.0787
    107 0.0108
    108 7.66
    109 0.0522
    110 0.202
    111 0.0755
    112 0.00696
    113 0.0933
    114 0.142
    115 0.00638
    116 0.0613
    117 0.0639
    118 0.0182
    119 0.146
    120 0.0908
    121 0.00391
    122 0.172
    123 0.00743
    124 0.0208
    125 0.023
    126 0.00396
    127 0.00234
    128 0.00221
    129 0.00274
    130 0.00655
    131 0.00217
    132 0.523
    133 0.00216
    134 0.00654
    135 0.00636
    136 0.00305
    137 0.225
    138 0.00383
    139 0.0122
    140 0.0655
    141 0.0778
    142 0.0182
    143 0.0808
    144 0.187
    145 0.00601
    146 0.00769
    147 0.00669
    148 0.0415
    149 0.0266
    150 0.0362
    151 0.0761
    152 0.0283
    153 0.00373
    154 0.00667
    155 0.0176
    156 0.028
    157 0.0292
    158 0.191
    159 0.233
    160 0.915
    161 0.635
    162 0.0436
    163 0.0964
    164 0.101
    165 0.137
    166 0.0971
    167 0.104
    168 0.208
    169 0.0269
    170 0.604
    171 0.0447
    172 0.223
    173 0.0501
    174 0.00112
    175 0.313
    176 0.00181
    177 0.00169
    178 0.00185
    179 0.00218
    180 0.00912
    181 0.00775
    182 0.00137
    183 0.063
    184 0.0651
    185 5.05
    186 0.00236
    187 0.0341
    188 6.29
    189 0.0293
    190 0.0149
    191 0.0143
    192 0.00185
    193 0.0199
    194 0.000773
    195 0.000966
    196 0.00675
    197 0.0254
    198 0.00184
    199 0.000539
    200 0.00572
    201 0.00189
    202 0.00488
    203 0.00239
    204 1.62
    205 0.483
    206 0.00131
    207 0.739
    208 0.0849
    209 0.693
    210 0.398
    211 0.95
    212 0.0341
    213 0.0397
    214 0.289
    215 0.686
    216 0.00659
    217 0.00342
    218 0.0711
    219 0.00559
    220 0.00573
    221 0.00782
    222 0.00408
    223 0.00708
    224 0.023
    225 0.00927
    226 0.00726
    227 0.00628
    228 0.00856
    229 0.00106
    230 0.0072
    231 0.0351
    232 0.00927
    233 0.00937
    234 0.105
    235 0.0555
    236 0.0138
    237 0.0372
    238 0.00257
    239 0.0177
    240 0.651
    241 0.00848
    242 0.00756
    243 0.028
    244 7.04
    245 5.5
    246 0.00243
    247 0.00134
    248 0.00242
    249 0.0665
    250 0.000675
    251 1.84
    252 0.00191
    253 0.000702
    254 0.000938
    255 4.29
    256 0.00984
    257 0.0152
    258 0.0325
    259 0.00254
    260 0.00806
    261 0.0051
    262 0.00187
    263 0.00243
    264 0.00669
    265 0.00159
    266 0.606
    267 0.665
    268 5.54
    269 0.0151
    270 0.973
    271 0.00271
    272 0.0156
    273 0.00235
    274 0.0104
    275 0.0239
    276 0.0381
    277 0.0832
    278 0.0517
    279 0.869
    280 0.013
    281 0.0248
    282 0.0447
    283 0.145
    284 0.107
    285 0.301
    286 0.0194
    287 0.0241
    288 0.00811
    289 0.00933
    290 0.0722
    291 0.0261
    292 7.22
    293 0.00774
    294 0.00188
    295 0.0242
    296 0.0115
    297 0.0358
    298 2.37
    299 8.64
    300 0.0287
    301 0.0258
    302 0.0193
    303 0.00179
    304 0.0188
    305 1.17
    306 0.0219
    307 0.0136
    308 0.0295
    309 0.0548
    310 0.0244
    311 0.0191
    312 0.065
    313 0.82
    314 0.395
    315 0.72
    316 0.00634
    317 0.542
    318 0.0421
    319 0.0293
    320 0.171
    321 1.13
    322 >10
    323 0.175
    324 0.0547
    325 0.0329
    326 0.457
    327 0.638
    328 0.0089
    329 0.0124
    330 0.0229
    331 0.227
    332 0.0643
    333 0.116
    334 0.0219
    335 0.0976
    336 0.139
    337 0.533
    338 0.081
    339 9.18
    340 >10
    341 8.3
    342 6.73
    343 6.53
    344 0.00746
    345 0.281
    346 7.02
    347 8.08
    348 >10
    349 5.51
    350 8.17
    351 8.11
    352 9.8
    353 7.51
    354 7.49
    355 1.94
    356 1.02
    357 6.74
    358 2.26
    359 8.77
    360 0.663
    361 >10
    362 0.106
    363 7.66
    364 0.031
    365 0.332
    366 0.0215
    367 0.601
    368 0.0484
    369 0.738
    370 0.00993
    371 0.82
    372 0.868
    373 0.585
    374 0.792
    375 >10
    376 >10
    377 >10
    378 >10
    379 0.37
    380 0.04
    381 0.0173
    382 0.0838
    383 0.0133
    384 0.0517
    385 0.11
    386 0.0424
    387 0.0581
    388 0.122
    389 0.0783
    390 0.0803
    391 0.0784
    392 0.666
    393 >10
    394 >10
    395 0.00634
    396 0.0324
    397 0.00712
    398 0.0736
    399 7.68
    400 0.712
    401 0.0559
    402 0.00671
    403 0.0545
    404 9.41
    405 0.0221
    406 0.347
    407 1.31
    408 0.0192
    409 10
    410 nd
    411 4.72
    412 0.978
    413 0.19
    414 0.853
    415 0.234
    416 0.659
    417 0.867
    418 0.866
    419 0.365
    420 0.147
    421 0.317
    422 0.109
    423 0.187
    424 0.521
    425 0.069
    426 0.0064
    427 0.0622
    428 0.0675
    429 0.0186
    430 0.0886
    431 0.0719
    432 0.0363
    433 0.0644
    434 0.00559
    435 0.0204
    436 0.762
    437 0.00702
    438 0.0425
    439 0.0375
    440
    441 0.0072
    442 0.0707
    443 0.00896
    444 0.0699
    445 0.0229
    446 0.0612
    447 0.0125
    448 0.0678
    449 0.0236
    450 0.0701
    451 0.0173
    452 0.0592
    453 0.00921
    454 0.0422
    455 0.0035
    456 0.0496
    457 0.194
    458 0.183
    459 0.0777
    460 0.0509
    461 0.0314
    462 0.00743
    463 0.234
    464 0.00679
    465 0.000319
    466 0.00431
    467 0.00402
    468 2.93
    469 3.38
    470 0.936
    471 6.51
    472 0.963
    473 7.85
    474 0.879
    475 0.00692
    476 0.00942
    477 0.00321
    478 0.0312
    479 0.00808
    480 0.00743
    481 0.00579
    482 0.00222
    483 0.0124
    484 0.00959
    485 0.0345
    486 0.0233
    487 0.0833
    488 0.0983
    489 >10
    490 0.0899
    491 7.83
    492 1.27
    493 0.486
    494 1.22
    495 0.127
    496 7.14
    497 0.742
    498 0.0179
    499 0.00219
    500 0.0217
    501 0.00596
    502 0.0165
    503 0.00421
    504 0.0154
    505 0.0305
    506 0.0180018
    507 0.0032
    508 0.0285902
    509 0.00747
    510 0.0121
    511 0.00278
    512 0.0179
    513 0.0011805
    514 0.0308
    515 0.0158
    516 0.021279
    517 0.0722
    518 0.0348
    519 0.0609
    520 0.101
    521 0.0935
    522 0.00673
    523 0.0171
    524 0.00246
    525 0.00677
    526 0.0603
    527 0.0598
    528 0.024
    529 0.227
    530 0.0821
    531 0.0529
    532 0.0927
    533 0.0174
    534 0.00508
    535 0.0285
    536 0.00304
    537 0.0431
    538 0.00333
    539 0.00347
    540 0.074
    541 0.0645
    542 0.00289
    543 0.386
    544 0.647
    545 0.0287
    546 2.45
    547 0.0255558
    548 0.0744613
    549 0.009417
    550 0.1741494
    551 0.0550545
    552 0.0425577
    553 0.103
    554 0.177
    555 0.0332
    556 0.00655
    557 0.0374
    558 1.17
    559 0.0943
    560 0.844
    561 0.24
    562 0.0709
    563 5.14
    564 0.211
    565 0.891
    566 >10
    567 0.237
    568 0.18
    569 0.226
    570 0.00735
    571 0.0229
    572 0.00666
    573 0.00372
    574 0.005201
    575 >10
    576 .000569
    577 0.00215
    578 4.6
    579 0.758
    580 0.212
    581 0.0812
    582 0.0332
    583 0.189
    584 0.0587
    585 0.0346
    586 0.301
    587 0.00754
    588 0.181
    589 0.00131
    590 0.189
    591 0.0193
    592 0.00375
    593 0.677
    594 0.00111
    595 0.00693
    596 0.257
    597 0.0335
    598 0.0166
    599 0.0523
    600 0.11
    601 0.0567
    602 0.0486107
    603 0.695
    604 0.0101
    605 0.0661
    606 0.0348
    607 0.0744
    608 0.148
    609 0.142
    610 0.0744
    611 0.0709
    612 0.695
    613 0.14
    614 0.00572
    615 0.0188
    616 0.0326
    617 0.0826
    618 0.125
    619 0.0033
    620 0.131
    621 0.0253
    622 0.00706
    623 0.446
    624 0.329
    625 0.226
    626 0.0807
    627 0.0175
    628 0.0436
    629 0.0652
    630 0.0404
    631 0.0772
    632 0.0323
    633 0.012
    634 0.0835
    635 0.05
    636 0.0184
    637 0.0811
    638 0.00261
    639 0.0581
    640 0.05
    641 0.00999
    642 0.0949
    643 0.0069
    644 0.00408
    645 0.034
    646 0.13
    647 0.00699
    648 0.203
    649 0.0706
    650 0.0583
    651 0.0648
    652 0.0346
    653 0.715
    654 0.0679
    655 0.0688
    656 0.0385
    657 0.036
    658 0.0608
    659 0.223
    660 0.0709
    661 0.0672
    662 0.0934
    663 0.09
    664 0.0715
    665 0.00728
    666 0.00518
    667 0.0458
    668 0.0803
    669 0.686
    670 0.00992
    671 0.684
    672 0.08
    673 0.122
    674 0.0324
    675 0.0698
    676 0.0787
    677 6.13E−04
    678 0.0151
    679 0.0109
    680 0.629
    681 0.145
    682 0.771
    683 0.0361
    684 0.32
    685 0.074
    686 0.0772
    687 0.00219
    688 5.48
    689 0.00721
    690 0.0138
    691 0.0777
    692 0.0198
    693 0.652
    694 0.0247
    695 0.00582
    696 0.667
    697 0.633
    698 0.000670
    699 0.00527
    700 0.00325
    701 0.0761902
    702 0.088
    703 0.0903
    704 0.0915
    705 0.0958
    706 0.00654
    707 0.0741
    708 0.00597
    709 0.00336
    710 0.00276
    711 0.00325
    712 0.0058
    713 0.00286
    714 0.0174
    715 0.00349
    716 0.021
    717 0.0724
    718 0.00125
    719 0.00237
    720 0.00582
    721 0.0307
    722 0.00388
    723 0.0716
    724 0.0632
    725 0.006
    726 0.0719
    727 0.0582
    728 0.021
    729 0.0459
    730 0.0295
    731 0.05
    732 0.0059
    733 0.0202
    734 0.000553
    735 0.688
    736 8.36
    737 0.00405
    738 0.0859
    739 0.0676
    740 0.00813
    741 0.0749
    742 0.0105
    743 0.00681
    744 0.505
    745 0.632
    746 0.116
    747 0.942
    748 0.0507
    749 0.077
    750 0.794
    751 0.755
    752 6.66
    753 0.0746
    754 0.00125
    755 0.00249
    756 0.0189
    757 0.000435
    758 0.0232
    759 0.00165
    760 0.00119
    761 0.0277
    762 0.00112
    763 0.00231
    764 0.0687
    765 0.00291
    766 0.00636
    767 0.0672
    768 0.000905
    769 0.00526
    770 0.006
    771 0.00347
    772 0.0024
    773 0.00953
    774 0.00707
    775 0.0609
    776 0.0021
    777 0.00126
    778 0.000896
    779 0.000499
    780 0.0817
    781 0.00727
    782 0.0247
    783 0.0098
    784 0.00238
    785 0.000839
    786 0.00751
    787 0.00675
    788 0.00544
    789 0.0694
    790 0.0026
    791 0.000898
    792 0.00957
    793 0.00102
    794 0.000883
    795 0.0062
    796 0.00465
    797 0.00698
    798 0.00963
    799 0.00696
    800 0.00621
    801 0.0573
    802 0.00583
    803 0.0176
    804 0.0497
    805 7.82
    806 1.4
    807 0.1
    808 0.0011
    809 0.0332
    810 0.327
    811 0.0114
    812 0.0388
    813 0.00221
    814 0.0045
    815 0.00589
    816 0.00482
    817 0.00927
    818 0.716
    819 0.013
    820 0.802
    821 0.192
    822 0.0711
    823 0.00462
    824 0.0124
    825 0.00106
    826 0.00679
    827 0.000625
    828 0.00644
    829 0.00177
    830 0.000269
    831 0.000886
    832 0.0101
    833 0.07
    834 0.0127
    835 0.00395
    836 0.0683
    837 0.00277
    838 0.0027
    839 0.000607
    840 0.00275
    841 0.00613
    842 0.0714
    843 0.0172
    844 0.0148172
    845 0.00389
    846 0.0744
    847 0.0936
    848 0.0292
    849 0.0636
    850 0.054
    851 0.133
    852 0.00832
    853 0.00996
    854 0.000414
    855 0.111
    856 0.657
    857 0.00155
    858 0.00059
    859 0.0104
    860 0.00824
    861 0.000574
    862 0.000780
    863 0.000642
    864 0.0672
    865 0.000861
    866 0.000525
    867 0.0687
    868 0.0869
    869 6.87
    870 0.994
    871 7.3
    872 >10
    873 3.87
    874 6.65
    875 1.14
    876 0.0477
    877 >10
    878 >10
    879 0.0633
    880 0.75
    881 8.49
    882 >10
    883 0.000220
    884 0.000968
    885 0.005333
    886 0.000194
    887 0.000214
    888 0.000494
    889 0.651
    890 0.0318
    891 0.0872
    892 0.00676
    893 0.000662
    894 0.202
    895 0.73
    896 1.58
    897 0.716
    898 0.223
    899 0.181
    900 0.0174
    901 0.865
    902 0.0108
    903 0.0352
    904 0.282
    905 0.000994
    906 0.00417
    907 0.00709
    908 0.0112
    909 7.21
    910 >10
    911 0.0425
    912 0.008725
    913 0.0144
    914 0.0772
    915 0.174
    916 0.00673
    917 0.00679
    918 0.233
    919 0.101
    920 0.00794
    921 0.157
    922 0.00995
    923 0.00458
    924 0.018
    925 0.00206
    926 0.00969
    927 0.00713
    928 0.106
    929 0.0247
    930 0.00209
    931 0.00677
    932 0.0303
    933 0.0717
    934 0.00638
    935 0.0103
    936 0.0325
    937 0.0809
    938 0.00627
    939 >10
    940 0.000691
    941 0.000519
    942 0.00102
    943 0.0244
    944 0.00336
    945 0.00238
    946 0.00594
    947 0.00328
    948 0.00539
    949 0.0254
    950 0.634
    951 0.0639
    952 0.0103
    953 0.00235
    954 0.00276
    955 0.00256
    956 0.00883
    957 0.00351
    958 0.0214
    959 0.00976
    960 0.00613
    961 0.00894
    962 0.0161
    963 0.0195
    964 0.00622
    965 0.00831
    966 0.00209
    967 0.00396
    968 0.00177
    969 0.00636
    970 0.0109
    971 0.0226
    972 0.0289
    973 0.0218
    974 0.0287
    975 0.0503
    976 0.0349
    977 0.00265
    978 0.00202
    979 0.0757
    980 0.0294
    981 0.00654
    982 0.1
    983 0.724
    984 0.0554
    985 0.0283
    986 0.0214
    987 0.543
    988 0.0601
    989 0.0682
    990 0.0179
    991 0.0669
    992 0.584
    993 0.074
    994 0.0121
    995 0.0108
    996 0.062
    997 0.0194
    998 0.123
    999 0.684
    1000 0.0818
    1001 0.0953
    1002 0.154
    1003 0.00496
    1004 0.0567
    1005 0.0747
    1006 0.0737
    1007 0.0373
    1008 0.00294
    1009 0.0012
    1010 0.0058
    1011 0.00197
    1012 0.00836
    1013 0.00232
    1014 0.00207
    1015 0.00168
    1016 0.00219
    1017 0.00229
    1018 0.00164
    1019 0.00198
    1020 0.000901
    1021 0.00111
    1022 0.00293
    1023 0.00687
    1024 0.00352
    1025 0.000808
    1026 0.00156
    1027 0.00228
    1028 0.00736
    1029 0.000272
    1030 0.002040
    1031 0.00773
    1032 0.00888
    1033 0.00197
    1034 0.00629
    1035 0.00304
    1036 0.016
    1037 0.00776
    1038 0.00784
    1039 0.00687
    1040 0.0134
    1041 0.00241
    1042 0.00359
    1043 0.0104
    1044 0.000892
    1045 0.00669
    1046 0.00461
    1047 0.000205
    1048 0.00827
    1049 0.00239
    1050 0.0234
    1051 0.000313
    1052 0.0271
    1053 0.00341
    1054 0.026
    1055 0.00438
    1056 0.0013
    1057 0.0258
    1058 0.00249
    1059 0.0164
    1060 0.00229
    1061 0.00784
    1062 0.017
    1063 0.00189
    1064 0.00412
    1065 0.00143
    1066 0.0057
    1067 0.37
    1068 0.00577
    1069 0.00123
    1070 0.000857
    1071 0.000473
    1072 0.00624
    1073 0.00388
    1074 0.0144
    1075 0.00762
    1076 0.0057
    1077 0.0691
    1078 0.00761
    1079 0.0182
    1080 0.00341
    1081 0.195
    1082 0.00218
    1083 0.000920
    1084 0.0148
    1085 0.0256
    1086 0.00993
    1087 0.00168
    1088 0.0344
    1089 0.00827
    1090 0.00542
    1091 0.00419
    1092 0.0177
    1093 0.565
    1094 0.0688
    1095 0.00445
    1096 0.00207
    1097 0.0647
    1098 0.00955
    1099 0.0156
    1100 0.0087
    1101 0.00206
    1102 0.00177
    1103 0.00424
    1104 0.00696
    1105 0.0026
    1106 0.0275
    1107 0.00226
    1108 0.0201
    1109 0.00921
    1110 0.111
    1111 0.062
    1112 0.0164
    1113 0.0231
    1114 0.0218
    1115 0.0212
    1116 0.00619
    1117 0.0657
    1118 0.00418
    1119 0.00667
    1120 0.00237
    1121 0.00842
    1122 0.00996
    1123 0.00711
    1124 0.000344
    1125 0.00477
    1126 0.00236
    1127 0.00299
    1128 0.00605
    1129 0.00805
    1130 0.00296
    1131 0.0344
    1132 0.00896
    1133 0.001
    1134 0.00551
    1135 0.00423
    1136 0.00302
    1137 0.000277
    1138 0.00385
    1139 0.00141
    1140 0.00584
    1141 0.0022
    1142 0.0029
    1143 0.0174
    1144 0.0096
    1145 0.00704
    1146 0.00188
    1147 0.00283
    1148 0.00272
    1149 0.00262
    1150 0.0641
    1151 0.00778
    1152 0.00308
    1153 0.00172
    1154 0.17043
    1156 0.0354
    1157 0.0531
    1158 0.00204
    1159 0.01740
    1160 0.01630
    1161 0.061
    1162 0.0618
    1163 0.0027
    1164 0.158
    1165 0.577
    1166 0.0261
  • Compounds which inhibit NAMPT are useful for treating diseases in which activation of NF-KB is implicated. Such methods are useful in the treatment of a variety of diseases including inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukaemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia.
  • Involvement of NAMPT in the treatment of cancer is described in WO 97/48696. Involvement of NAMPT in immuno-supression is described in WO 97/48397. Involvement of NAMPT for the treatment of diseases involving angiogenesis is described in WO 2003/80054. Involvement of NAMPT for the treatment of rheumatoid arthritis and septic shock is described in WO 2008/025857. Involvement of NAMPT for the prophlaxis and treatment of ischaemia is described in WO 2009/109610.
  • Cancers include, but are not limited to, hematologic and solid tumor types such as acoustic neuroma, acute leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia (monocytic, myeloblastic, adenocarcinoma, angiosarcoma, astrocytoma, myelomonocytic and promyelocytic), acute t-cell leukemia, basal cell carcinoma, bile duct carcinoma, bladder cancer, brain cancer, breast cancer (including estrogen-receptor positive breast cancer), bronchogenic carcinoma, Burkitt's lymphoma, cervical cancer, chondrosarcoma, chordoma, choriocarcinoma, chronic leukemia, chronic lymphocytic leukemia, chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia, colon cancer, colorectal cancer, craniopharyngioma, cystadenocarcinoma, dysproliferative changes (dysplasias and metaplasias), embryonal carcinoma, endometrial cancer, endotheliosarcoma, ependymoma, epithelial carcinoma, erythroleukemia, esophageal cancer, estrogen-receptor positive breast cancer, essential thrombocythemia, Ewing's tumor, fibrosarcoma, gastric carcinoma, germ cell testicular cancer, gestational trophobalstic disease, glioblastoma, head and neck cancer, heavy chain disease, hemangioblastoma, hepatoma, hepatocellular cancer, hormone insensitive prostate cancer, leiomyosarcoma, liposarcoma, lung cancer (including small cell lung cancer and non-small cell lung cancer), lymphangioendothelio-sarcoma, lymphangiosarcoma, lymphoblastic leukemia, lymphoma (lymphoma, including diffuse large B-cell lymphoma, follicular lymphoma, Hodgkin's lymphoma and non-Hodgkin's lymphoma), malignancies and hyperproliferative disorders of the bladder, breast, colon, lung, ovaries, pancreas, prostate, skin and uterus, lymphoid malignancies of T-cell or B-cell origin, leukemia, medullary carcinoma, medulloblastoma, melanoma, meningioma, mesothelioma, multiple myeloma, myelogenous leukemia, myeloma, myxosarcoma, neuroblastoma, oligodendroglioma, oral cancer, osteogenic sarcoma, ovarian cancer, pancreatic cancer, papillary adenocarcinomas, papillary carcinoma, peripheral T-cell lymphoma, pinealoma, polycythemia vera, prostate cancer (including hormone-insensitive (refractory) prostate cancer), rectal cancer, renal cell carcinoma, retinoblastoma, rhabdomyosarcoma, sarcoma, sebaceous gland carcinoma, seminoma, skin cancer, small cell lung carcinoma, solid tumors (carcinomas and sarcomas), stomach cancer, squamous cell carcinoma, synovioma, sweat gland carcinoma, testicular cancer (including germ cell testicular cancer), thyroid cancer, Waldenström's macroglobulinemia, testicular tumors, uterine cancer, Wilms' tumor and the like.
  • Schemes and Experimentals
  • The following abbreviations have the meanings indicated. ADDP means 1,1′-(azodicarbonyl)dipiperidine; AD-mix-3 means a mixture of (DHQD)2PHAL, K3Fe(CN)6, K2CO3, and K2SO4; 9-BBN means 9-borabicyclo(3.3.1)nonane; Boc means tert-butoxycarbonyl; (DHQD)2PHAL means hydroquinidine 1,4-phthalazinediyl diethyl ether; DBU means 1,8-diazabicyclo[5.4.0]undec-7-ene; DIBAL means diisobutylaluminum hydride; DIEA means diisopropylethylamine; DMAP means N,N-dimethylaminopyridine; DMF means N,N-dimethylformamide; dmpe means 1,2-bis(dimethylphosphino)ethane; DMSO means dimethylsulfoxide; dppb means 1,4-bis(diphenylphosphino)-butane; dppe means 1,2-bis(diphenylphosphino)ethane; dppf means 1,1′-bis(diphenylphosphino)ferrocene; dppm means 1,1-bis(diphenylphosphino)methane; EDAC-HCl means 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; Fmoc means fluorenylmethoxycarbonyl; HATU means O-(7-azabenzotriazol-1-yl)-N,N′N′N′-tetramethyluronium hexafluorophosphate; HMPA means hexamethylphosphoramide; IPA means isopropyl alcohol; MP-BH3 means macroporous triethylammonium methylpolystyrene cyanoborohydride; TEA means triethylamine; TFA means trifluoroacetic acid; THF means tetrahydrofuran; NCS means N-chlorosuccinimide; NMM means N-methylmorpholine; NMP means N-methylpyrrolidine; PPh3 means triphenylphosphine.
  • The following schemes are presented to provide what is believed to be the most useful and readily understood description of procedures and conceptual aspects of this invention. Compounds of this invention may be made by synthetic chemical processes, examples of which are shown herein. It is meant to be understood that the order of the steps in the processes may be varied, that reagents, solvents and reaction conditions may be substituted for those specifically mentioned, and that vulnerable moieties may be protected and deprotected, as necessary.
  • Schemes
  • Figure US20160184282A1-20160630-C00061
  • As shown in Scheme 1, compounds of formula (1), wherein R4 is as described herein, can be reacted with 4-nitrobenzoic acid in the presence of a base such as but not limited to N-methylmorpholine, an ester activating agent such as but not limited to 1-hydroxybenzotriazole hydrate, and a carboxyl activating agent such as but not limited to N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, to provide compounds of formula (2). The reaction is typically performed at ambient temperature in a solvent such as but not limited to dimethylformamide. Compounds of formula (3) can be prepared by reacting compounds of formula (2) with hydrogen in the presence of palladium on carbon.
  • The reaction is typically performed at ambient temperature in a solvent such as but not limited to methanol. Compounds of formula (3) can be reacted with compounds of formula (4) wherein X and Z are as described herein, to provide compounds of formula (5). The reaction is typically performed in the presence of bis(2,5-dioxopyrrolidin-1-yl) carbonate and a base such as but not limited to pyridine. The reaction is typically performed at ambient temperature in a solvent such as but not limited to N-methyl-2-pyrrolidinone.
  • Alternatively, Compounds of formula (3) can be reacted with compounds of formula (6) wherein X is as described herein, to provide compounds of formula (7). The reaction is typically performed in the presence of bis(2,5-dioxopyrrolidin-1-yl) carbonate and a base such as but not limited to pyridine. The reaction is typically performed at ambient temperature in a solvent such as but not limited to N-methyl-2-pyrrolidinone.
  • Figure US20160184282A1-20160630-C00062
  • Compounds of formula (8), wherein Rx is as described herein for substituents on the R3 phenyl, can be reacted with compounds of formula (9), wherein X and Z are as described herein, to provide compounds of formula (10). The reaction is typically performed in the presence of a base such as but not limited to N-methylmorpholine, an ester activating agent such as but not limited to 1-hydroxybenzotriazole hydrate, and a carboxyl activating agent such as but not limited to N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. The reaction is typically performed at ambient temperature in a solvent such as but not limited to dimethylformamide.
  • Similarly, compounds of formula (8), wherein Rx is as described herein for substituents on the R3 phenyl, can be reacted with compounds of formula (11), wherein X is as described herein, to provide compounds of formula (12). The reaction is typically performed in the presence of a base such as but not limited to N-methylmorpholine, an ester activating agent such as but not limited to 1-hydroxybenzotriazole hydrate, and a carboxyl activating agent such as but not limited to N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. The reaction is typically performed at ambient temperature in a solvent such as but not limited to dimethylformamide.
  • Figure US20160184282A1-20160630-C00063
  • As shown in Scheme 3, compounds of formula (13), wherein R3 is as described herein, can be reacted with compounds of formula (11), wherein X is as described herein, in the presence of bis(2,5-dioxopyrrolidin-1-yl) carbonate and a base such as but not limited to pyridine to provide compounds of formula (14). The reaction is typically performed at ambient temperature in a solvent such as but not limited to N-methyl-2-pyrrolidinone.
  • Alternatively, compounds of formula (13), wherein R3 is as described herein, can be reacted with compounds of formula (9), wherein X and Z are as described herein, in the presence of bis(2,5-dioxopyrrolidin-1-yl) carbonate and a base such as but not limited to pyridine to provide compounds of formula (14). The reaction is typically performed at ambient temperature in a solvent such as but not limited to N-methyl-2-pyrrolidinone.
  • Figure US20160184282A1-20160630-C00064
  • 2-Bromo-5-thiazolecarboxylic acid can be reacted with compounds of formula (9), N-methylmorpholine, an ester activating agent such as but not limited to 1-hydroxybenzotriazole hydrate, and a carboxyl activating agent such as but not limited to N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, to provide compounds of formula (16). The reaction is typically performed at ambient temperature in a solvent such as but not limited to dimethylformamide. Compounds of formula (16) can be reacted with amines of formula (1) wherein R4 is as described herein, to provide compounds of formula (17). The reaction is typically performed at an elevated temperature in a solvent such as but not limited to acetonitrile and may be performed in a microwave oven. Compounds of formula (19), which are representative of the compounds of this invention, can be prepared by reacting compounds of formula (17) with compounds of formula (18), wherein R4 is as described herein, in the presence of a base such as but not limited to diisopropylethylamine. The reaction is typically performed at ambient temperature in a solvent such as but not limited to tetrahydrofuran. Alternatively, compounds of formula (17) can be reacted with amines of formula (4), wherein R4 is as described herein, to provide compounds of formula (20), which are representative of the compounds of Formula (I). The reaction is typically performed in the presence of bis(2,5-dioxopyrrolidin-1-yl) carbonate and a base such as but not limited to pyridine. The reaction is typically performed at ambient temperature in a solvent such as but not limited to N-methyl-2-pyrrolidinone.
  • Figure US20160184282A1-20160630-C00065
  • As shown in Scheme 5, compounds of formula (16), which can be prepared as described in Scheme 4 and wherein X and Z are as described herein, can be reacted with suitable boronic acids (or the equivalent boronic ester) of formula (21) wherein R4 is as described herein, under Suzuki coupling conditions known to those skilled in the art and widely available in the literature, to provide compounds of formula (22), which are representative of the compounds of Formula (I).
  • EXAMPLES
  • The following examples are presented to provide what is believed to be the most useful and readily understood description of procedures and conceptual aspects of this invention. Each exemplified compound and intermediate was named using ACD/ChemSketch Version 12.5 (20 Apr. 2011) or (3 Sep. 2012), Advanced Chemistry Development Inc., Toronto, Ontario), or ChemDraw Ver. 9.0.7 (CambridgeSoft, Cambridge, Mass.).
  • EXPERIMENTALS Example 1 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide Example 1A N-isopentyl-4-nitrobenzamide
  • 4-Nitrobenzoic acid (0.8 g, 4.79 mmol) and 1-hydroxybenzotriazole hydrate (1.1 g, 7.18 mmol) in dimethylformamide (20 mL) was treated with N-methylmorpholine (1.8 mL, 16.75 mmol) and 3-methylbutan-1-amine (0.724 mL, 6.22 mmol) followed by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.38 g, 7.18 mmol). The reaction mixture was stirred at room temperature for 17 hours. Water was added and the resulting suspension was stirred for 2 hours. The suspension was filtered and the solid collected was washed with water and dried to provide the title compound.
  • Example 1B 4-amino-N-isopentylbenzamide
  • N-Isopentyl-4-nitrobenzamide (1 g, 4.23 mmol) and methanol (40 ml) were added to palladium on carbon (0.200 g, 1.879 mmol) in a 250 mL SS pressure bottle and the mixture was stirred for 6 hours with hydrogen at 30 psi and room temperature. The mixture was filtered through a nylon membrane and concentrated to provide the title compound.
  • Example 1C 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide
  • A solution of 4-amino-N-isopentylbenzamide (0.05 g, 0.242 mmol),bis(2,5-dioxopyrrolidin-1-yl) carbonate (0.078 g, 0.303 mmol) and pyridine (0.020 ml, 0.242 mmol) in N-methyl-2-pyrrolidinone (0.6 mL) was stirred at room temperature for 1 hour. Diisopropylethylamine (0.127 ml, 0.727 mmol) was added followed by addition of a solution of imidazo[1,2-a]pyridin-6-amine (0.041 g, 0.279 mmol) in N-methyl-2-pyrrolidinone (0.6 mL) dropwise by syringe over 5 minutes. The reaction mixture was stirred for 16 hours at room temperature and the mixture was treated with water. The resulting suspension was stirred for 5 minutes and filtered with water washes. Vacuum drying and reverse phase chromatography provided the title compound. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04-8.93 (m, 2H), 8.76 (bs, 1H), 8.24 (t, J=5.5 Hz, 1H), 7.96 (s, 1H), 7.79 (d, J=8.7 Hz, 2H), 7.58-7.45 (m, 4H), 7.09 (dd, J=9.6, 2.0 Hz, 1H), 3.33-3.20 (m, 2H), 1.68-1.52 (m, 1H), 1.46-1.35 (m, 2H), 0.90 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 366 (M+H)+.
  • Example 2 4-[(imidazo[1,2-a]pyridin-7-ylcarbamoyl)amino]-N-(3-methylbutyl)benzamide
  • The title compound was prepared as described in Example 1C, substituting imidazo[1,2-a]pyridin-7-amine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (m, 2H), 8.42 (dd, J=7.5, 0.6 Hz, 1H), 8.25 (t, J=5.5 Hz, 1H), 7.78 (m, 4H), 7.53 (d, J=8.7 Hz, 2H), 7.42 (d, J=1.2 Hz, 1H), 6.90 (dd, J=7.3, 2.1 Hz, 1H), 3.30-3.21 (m, 2H), 1.69-1.54 (m, 1H), 1.47-2.36 (m, 2H), 0.91 (d, J=6.5 Hz, 6H); MS (ESI(+)) m/e 366 (M+H)+.
  • Example 3 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide Example 3A 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-nitrophenyl)urea
  • A 0° C. solution of imidazo[1,2-a]pyridin-6-amine (1 g, 7.21 mmol), N-ethyl-N-isopropylpropan-2-amine (2.51 ml, 14.42 mmol) and dimethylformamide (21.85 ml) was treated with a solution of 1-isocyanato-4-nitrobenzene (1.313 g, 8.00 mmol) in tetrahydrofuran (10.92 ml) which was added dropwise via syringe over 5 minutes. The reaction mixture was allowed to stir at room temperature for 6 hours, and water was added. The suspension was filtered with water washes to give the title compound after vacuum drying.
  • Example 3B 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-6-yl)urea
  • The title compound was prepared as described in Example 1B, substituting 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-nitrophenyl)urea for N-isopentyl-4-nitrobenzamide.
  • Example 3C 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}acetamide
  • The title compound was prepared as described in Example 1A, substituting 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-6-yl)urea for 3-methylbutan-1-amine and 2-cyclopentylacetic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6, Temp=90° C.) δ ppm 9.73 (bs, 1H), 8.96 (m, 1H), 8.66 (s, 1H), 8.62 (s, 1H), 7.95 (s, 1H), 7.57-7.44 (m, 4H), 7.37 (d, J=8.9 Hz, 2H), 7.07 (dd, J=9.6, 2.0 Hz, 1H), 2.29-2.15 (m, 3H), 1.82-1.68 (m, 2H), 1.68-1.45 (m, 4H), 1.29-1.07 (m, 2H); MS (ESI(+)) m/e 378 (M+H)+.
  • TABLE 1
    The following Examples were prepared essentially as described in Example 3, substituting
    the appropriate carboxylic acid in Example 1C. Some products were purified by
    flash chromatography while others were purified by reverse-phase HPLC. Accordingly,
    some Examples were isolated as trifluoroacetic acid salts.
    Ex Name 1H NMR MS
    26 N-{4-[(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.49 (bs, 1H), m/e 380
    ylcarbamoyl)amino]phenyl}- 8.84 (m, 1H), 8.44 (m, 2H), 7.85 (s, (M + H)+
    2-(tetrahydrofuran-3- 1H), 7.52-7.44 (m, 4H), 7.39-7.29
    yl)acetamide (m, 2H), 7.09 (dd, J = 9.6, 2.1 Hz,
    1H), 3.83-3.72 (m, 2H), 3.68-3.62
    (m, 1H), 3.38-3.33 (m, 1H), 2.57
    (m, 1H), 2.40-2.33 (m, 2H), 2.08-
    1.95 (m, 1H), 1.62-1.52 (m, 1H)
    27 N-{4-[(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ (ESI(+))
    a]pyridin-6- ppm δ 9.81 (s, 1H), 8.98-8.93 (m, m/e 310
    ylcarbamoyl)amino]phenyl} 1H), 8.70-8.62 (m, 2H), 7.96-7.93 (M + H)+
    acetamide (m, 1H), 7.53-7.45 (m, 4H), 7.41-
    7.33 (m, 2H), 7.07 (dd, J = 9.5, 2.0
    Hz, 1H), 2.01 (s, 3H)
    39 2-ethoxy-N-{4- 1H NMR (400 MHz, DMSO-d6, (ESI(+))
    [(imidazo[1,2-a]pyridin-6- Temp = 90° C.) δ ppm 9.57 (s, 1H), 8.96 m/e 354
    ylcarbamoyl)amino]phenyl} (m, 1H), 8.69 (s, 1H), 8.64 (s, 1H), (M + H)+
    acetamide 7.95 (s, 1H), 7.60-7.48 (m, 4H),
    7.42-7.37 (m, 2H), 7.07 (dd, J = 9.6,
    2.0 Hz, 1H), 4.00 (s, 2H), 3.56 (q, J =
    7.0 Hz, 2H), 1.19 (t, J = 7.0 Hz, 3H)
    40 N-{4-[(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6,) δ (ESI(+))
    a]pyridin-6- ppm 9.79 (s, 1H), 8.98-8.93 (m, m/e 394
    ylcarbamoyl)amino]phenyl}- 1H), 8.67 (s, 1H), 8.63 (s, 1H), 7.97- (M + H)+
    2-(tetrahydro-2H-pyran-4- 7.93 (m, 1H), 7.54-7.46 (m, 4H),
    yl)acetamide 7.40-7.34 (m, 2H), 7.07 (dd, J = 9.5,
    2.0 Hz, 1H), 3.87-3.79 (m, 2H),
    3.34-3.26 (m, 2H), 2.25-2.19 (m,
    2H), 2.07-1.91 (m, 1H), 1.63-1.54
    (m, 2H), 1.31-1.17 (m, 2H)
    41 N-{4-[(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.35 (bs, 1H), m/e 395
    ylcarbamoyl)amino]phenyl}- 8.85 (m, 1H), 8.50-8.30 (M, 2H), (M + H)+
    2-(morpholin-4- 7.86 (s, 1H), 7.55-7.43 (m, 4H),
    yl)acetamide 7.41-7.34 (m, 2H), 7.09 (dd, J = 9.5,
    2.0 Hz, 1H), 3.68-3.60 (m, 4H),
    3.09 (s, 2H), 2.56-2.51 (m, 4H)
    42 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 384
    ylcarbamoyl)amino]phenyl}- (M + H)+
    2-(2-methoxyethoxy)acetamide
    43 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 368
    ylcarbamoyl)amino]phenyl}- (M + H)+
    3-methoxy-2-
    methylpropanamide
    44 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 338
    ylcarbamoyl)amino]phenyl} (M + H)+
    butanamide
    45 4,4,4-trifluoro-N-{4- (ESI(+))
    [(imidazo[1,2-a]pyridin-6- m/e 392
    ylcarbamoyl)amino]phenyl} (M + H)+
    butanamide
    46 -{4-[(imidazo[1,2-a]pyridin- (ESI(+))
    6-ylcarbamoyl)amino]phenyl} m/e 380
    tetrahydro-2H-pyran-4- (M + H)+
    carboxamide
    47 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 366
    ylcarbamoyl)amino]phenyl}- (M + H)+
    4-methylpentanamide
    48 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 393
    ylcarbamoyl)amino]phenyl}- (M + H)+
    1-methylpiperidine-4-
    carboxamide
    49 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 428
    ylcarbamoyl)amino]phenyl} (M + H)+
    tetrahydro-2H-thiopyran-4-
    carboxamide 1,1-dioxide
    50 N-{4-[(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 382
    ylcarbamoyl)amino]phenyl}- (M + H)+
    1,4-dioxane-2-carboxamide
  • Example 4 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenylethyl)benzamide Example 4A methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate
  • The title compound was prepared as described in Example 3A, substituting methyl 4-isocyanatobenzoate for 1-isocyanato-4-nitrobenzene.
  • Example 4B 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoic acid
  • A solution of methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate (2.1 g, 6.77 mmol) in tetrahydrofuran (18.05 ml) and methanol (9.02 ml) was treated with 2N lithium hydroxide (13.53 ml, 27.1 mmol) and the reaction was allowed to stir at room temperature for 16 hours. The mixture was concentrated, redissolved in 225 mL water and acidified to -pH 4 with 3N hydrochloric acid. The suspension was filtered with water washes to give the title compound after vacuum drying.
  • Example 4C 4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]-N-(2-phenylethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-phenylethanamine for 3-methylbutan-1-amine and 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6/D2O, Temp=90° C.) δ ppm 9.33 (dd, J=1.9, 0.8 Hz, 1H), 8.32 (d, J=1.8 Hz, 1H), 8.05 (d, J=2.0 Hz, 1H), 7.90 (d, J=9.7 Hz, 1H), 7.85-7.74 (m, 3H), 7.61-7.51 (m, 2H), 7.35-7.20 (m, 5H), 3.49 (dd, J=8.1, 6.9 Hz, 2H), 2.94-2.79 (m, 2H); MS (ESI(+)) m/e 400 (M+H)+.
  • TABLE 2
    The following Examples were prepared essentially as described in Example 4,
    substituting the appropriate amine in Example 4C. Some products were purified
    by flash chromatography while others were purified by reverse-phase HPLC. Accordingly,
    some Examples were isolated as trifluoroacetic acid salts.
    Ex Name 1H NMR MS
    5 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.37 (dd, J = 2.0, 0.9 Hz, m/e 409
    ylcarbamoyl)amino]- 1H), 8.36 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 2.1 (M + H)+
    N-[2- Hz, 1H), 7.94 (d, J = 9.6 Hz, 1H), 7.88-7.78
    (morpholin-4- (m, 3H), 7.71-7.57 (m, 2H), 4.02 (d, J = 11.3
    yl)ethyl]benzamide Hz, 2H), 3.66 (dd, J = 16.1, 10.0 Hz, 4H), 3.56
    (d, J = 11.3 Hz, 2H), 3.33 (t, J = 6.1 Hz, 2H),
    3.17 (d, J = 13.5 Hz, 2H), 2.70 (s, 2H)
    6 N-(1-hydroxy-2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    methylpropan-2- Temp = 90° C.) δ ppm 9.36 (t, J = 6.6 Hz, 1H), m/e 368
    yl)-4- 8.34 (d, J = 1.9 Hz, 1H), 8.09 (dd, J = 10.9, 5.4 (M + H)+
    [(imidazo[1,2- Hz, 1H), 7.90 (t, J = 10.7 Hz, 1H), 7.85-7.73
    a]pyridin-6- (m, 3H), 7.56 (dd, J = 12.5, 5.6 Hz, 2H), 3.51 (s,
    ylcarbamoyl)ami- 2H), 1.49-1.23 (m, 6H)
    no]benzamide
    7 N-benzyl-4- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    [(imidazo[1,2- Temp = 90° C.) δ ppm 9.38-9.29 (m, 1H), 8.33 m/e 386
    a]pyridin-6- (d, J = 2.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, 1H), (M + H)+
    ylcarbamoyl)ami- 7.96-7.85 (m, 3H), 7.77 (td, J = 9.4, 1.5 Hz,
    no]benzamide 1H), 7.66-7.51 (m, 2H), 7.38-7.31 (m, 4H),
    7.32-7.19 (m, 1H), 4.48 (s, 2H)
    8 N-(cyclopentylmethyl)- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    4-[(imidazo[1,2- Temp = 90° C.) δ ppm 9.41-9.31 (m, 1H), 8.34 m/e 378
    a]pyridin-6- (d, J = 2.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, 1H), (M + H)+
    ylcarbamoyl)ami- 7.91 (d, J = 8.9 Hz, 1H), 7.86-7.73 (m, 3H),
    no]benzamide 7.63-7.51 (m, 2H), 3.19 (d, J = 7.4 Hz, 2H),
    2.24-2.01 (m, 1H), 1.68 (dt, J = 11.6, 7.2 Hz,
    2H), 1.64-1.57 (m, 2H), 1.57-1.42 (m, 2H),
    1.37-1.14 (m, 2H)
    9 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.36 (d, J = 1.4 Hz, 1H), m/e 421
    ylcarbamoyl)amino]- 8.35 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.1 Hz, (M + H)+
    N-[3-(piperidin-1- 1H), 7.94 (d, J = 9.7 Hz, 1H), 7.88-7.80 (m,
    yl)propyl]benzamide 3H), 7.66-7.53 (m, 2H), 3.44 (d, J = 12.2 Hz,
    2H), 3.34 (t, J = 6.6 Hz, 2H), 3.12-3.02 (m,
    2H), 2.97-2.85 (m, 2H), 2.02-1.81 (m, 4H),
    1.81-1.58 (m, 4H), 1.51-1.31 (m, 1H)
    10 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.36 (dd, J = 6.3, 5.4 Hz, m/e 411
    ylcarbamoyl)amino]- 1H), 8.35 (d, J = 2.1 Hz, 1H), 8.09 (d, J = 2.0 (M + H)+
    N-(2- Hz, 1H), 7.92 (d, J = 9.8 Hz, 1H), 7.89-7.80
    phenoxyethyl)benz- (m, 3H), 7.63-7.55 (m, 2H), 7.30 (dd, J = 8.4,
    amide 7.4 Hz, 2H), 6.95 (dd, J = 11.9, 7.8 Hz, 3H),
    4.12 (t, J = 5.8 Hz, 2H), 3.64 (t, J = 5.8 Hz, 2H)
    11 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.34 (s, 1H), 8.34 (d, J = m/e 393
    ylcarbamoyl)amino]- 2.0 Hz, 1H), 8.09 (d, J = 2.0 Hz, 1H), 7.92 (d, J = (M + H)+
    N-[2- 9.1 Hz, 1H), 7.88-7.78 (m, 3H), 7.59 (dd, J =
    (pyrrolidin-1- 16.4, 8.7 Hz, 2H), 3.59 (dd, J = 15.8, 9.8 Hz,
    yl)ethyl]benzamide 4H), 3.33 (t, J = 6.0 Hz, 2H), 3.07 (d, J = 11.0
    Hz, 2H), 2.05 (s, 2H), 1.97-1.74 (m, 2H)
    12 -[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.35 (d, J = 1.3 Hz, 1H), m/e 382
    ylcarbamoyl)amino]- 8.34 (d, J = 2.0 Hz, 1H), 8.08 (d, J = 2.0 Hz, (M + H)+
    N-[2-(propan-2- 1H), 7.92 (d, J = 9.7 Hz, 1H), 7.88-7.77 (m,
    yloxy)ethyl]benz- 3H), 7.63-7.52 (m, 2H), 3.64-3.55 (m, 1H),
    amide 3.51 (dd, J = 20.1, 13.7 Hz, 2H), 3.39 (t, J = 6.2
    Hz, 2H), 1.09 (d, J = 6.1 Hz, 6H)
    13 N-(2-hydroxy-2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    methylpropyl)-4- Temp = 90° C.) δ ppm 9.37-9.31 (m, 1H), 8.33 m/e 368
    [(imidazo[1,2- (d, J = 1.9 Hz, 1H), 8.06 (d, J = 2.0 Hz, 1H), (M + H)+
    a]pyridin-6- 7.96-7.88 (m, 1H), 7.88-7.81 (m, 2H), 7.76
    ylcarbamoyl)ami- (dd, J = 9.6, 1.9 Hz, 1H), 7.65-7.53 (m, 2H),
    no]benzamide 3.27 (s, 2H), 1.15 (d, J = 27.1 Hz, 6H)
    14 N-[2-hydroxy-1-(4- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    methoxyphenyl)eth- Temp = 90° C.) δ ppm 9.40-9.32 (m, 1H), 8.34 m/e 446
    yl]-4- (d, J = 2.0 Hz, 1H), 8.08 (d, J = 2.1 Hz, 1H), (M + H)+
    [(imidazo[1,2- 7.95-7.86 (m, 3H), 7.81-7.75 (m, 1H), 7.61-
    a]pyridin-6- 7.55 (m, 2H), 7.39-7.26 (m, 2H), 6.92-6.86
    ylcarbamoyl)ami- (m, 2H), 5.09-4.96 (m, 1H), 3.72-3.67 (m,
    no]benzamide 5H), 3.66-3.60 (m, 1H)
    15 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.41-9.33 (m, 1H), 8.35 m/e 407
    ylcarbamoyl)amino]- (d, J = 2.0 Hz, 1H), 8.09 (d, J = 2.1 Hz, 1H), (M + H)+
    N-[2-(2- 7.92 (d, J = 9.7 Hz, 1H), 7.82-7.72 (m, 3H),
    oxopyrrolidin-1- 7.63-7.51 (m, 2H), 3.50-3.30 (m, 6H), 2.20
    yl)ethyl]benzamide (t, J = 8.1 Hz, 2H), 1.96-1.86 (m, 2H)
    16 4-[(imidazo[1,2- NMR (500 MHz, DMSO-d6/D2O, Temp = 90° C.) (ESI(+))
    a]pyridin-6- δ ppm 9.39-9.29 (m, 1H), 8.34 (d, J = 2.0 Hz, m/e 380
    ylcarbamoyl)amino]- 1H), 8.08 (d, J = 2.0 Hz, 1H), 7.92 (d, J = 9.5 (M + H)+
    N-(tetrahydrofuran- Hz, 1H), 7.86-7.77 (m, 3H), 7.63-7.53 (m,
    2-ylmethyl)benzamide 2H), 3.99 (p, J = 6.3 Hz, 1H), 3.64 (dd, J = 14.3,
    7.5 Hz, 2H), 3.42-3.24 (m, 2H), 2.03-1.87
    (m, 1H), 1.89-1.75 (m, 2H), 1.66-1.52 (m,
    1H)
    17 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.34 (d, J = 1.3 Hz, 1H), m/e 338
    ylcarbamoyl)amino]- 8.34 (d, J = 2.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, (M + H)+
    N-propylbenzamide 1H), 7.91 (d, J = 9.6 Hz, 1H), 7.87-7.73 (m,
    3H), 7.64-7.50 (m, 2H), 3.22 (t, J = 7.1 Hz,
    2H), 1.61-1.45 (m, 2H), 0.89 (t, J = 7.4 Hz,
    3H)
    18 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.35 (d, J = 1.2 Hz, 1H), m/e 423
    ylcarbamoyl)amino]- 8.35 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 2.1 Hz, (M + H)+
    N-[3- 1H), 7.93 (d, J = 9.7 Hz, 1H), 7.85-7.78 (m,
    (morpholin-4- 3H), 7.65-7.56 (m, 2H), 4.07-3.96 (m, 2H),
    yl)propyl]benzamide 3.66 (t, J = 12.1 Hz, 2H), 3.44 (d, J = 12.4 Hz,
    2H), 3.35 (t, J = 6.6 Hz, 2H), 3.21-3.12 (m,
    2H), 3.07 (d, J = 9.4 Hz, 2H), 2.03-1.83 (m,
    2H)
    19 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.30 (s, 1H), 8.29 (d, J = m/e 372
    ylcarbamoyl)amino]- 1.6 Hz, 1H), 8.02-7.92 (m, 3H), 7.87 (d, J = (M + H)+
    N-phenylbenzamide 9.6 Hz, 1H), 7.79-7.66 (m, 3H), 7.65-7.58
    (m, 2H), 7.42-7.33 (m, 2H), 7.20-7.05 (m,
    1H)
    20 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.39-9.29 (m, 1H), 8.43- m/e 366
    ylcarbamoyl)amino]- 8.29 (m, 1H), 8.09-8.03 (m, 1H), 7.96-7.89 (M + H)+
    N-(2- (m, 1H), 7.87-7.75 (m, 3H), 7.66-7.50 (m,
    methylbutyl)benz- 2H), 3.25-3.16 (m, 1H), 3.14-3.03 (m, 1H),
    amide 1.70-1.58 (m, 1H), 1.48-1.36 (m, 1H), 1.23-
    1.05 (m, 1H), 0.97-0.79 (m, 6H)
    21 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.44-9.30 (m, 1H), 8.34 m/e 421
    ylcarbamoyl)amino]- (t, J = 5.8 Hz, 1H), 8.13-8.05 (m, 1H), 7.92 (d, (M + H)+
    N-[3-(2- J = 9.7 Hz, 1H), 7.87-7.76 (m, 3H), 7.68-
    oxopyrrolidin-1- 7.51 (m, 2H), 3.45-3.32 (m, 2H), 3.31-3.14
    yl)propyl]benzamide (m, 4H), 2.33-2.19 (m, 2H), 2.02-1.87 (m,
    2H), 1.80-1.63 (m, 2H)
    22 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.34 (d, J = 1.2 Hz, 1H), m/e 394
    ylcarbamoyl)amino]- 8.33 (d, J = 2.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, (M + H)+
    N-(tetrahydro- 1H), 7.91 (d, J = 9.6 Hz, 1H), 7.85-7.75 (m,
    2H-pyran-4- 3H), 7.62-7.53 (m, 2H), 3.85 (dd, J = 11.4, 2.5
    ylmethyl)benzamide Hz, 2H), 3.27 (td, J = 11.7, 1.9 Hz, 2H), 3.16 (d,
    J = 6.9 Hz, 2H), 1.80 (tt, J = 11.3, 3.9 Hz, 1H),
    1.59 (d, J = 11.0 Hz, 2H), 1.20 (qd, J = 12.0, 4.5
    Hz, 2H)
    23 4-[(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6- Temp = 90° C.) δ ppm 9.43-9.28 (m, 1H), 8.34 m/e 394
    ylcarbamoyl)amino]- (d, J = 2.0 Hz, 1H), 8.08 (d, J = 2.0 Hz, 1H), (M + H)+
    N-(tetrahydro- 7.92 (d, J = 9.7 Hz, 1H), 7.87-7.74 (m, 3H),
    2H-pyran-2- 7.65-7.51 (m, 2H), 3.87 (dd, J = 10.6, 2.6 Hz,
    ylmethyl)benzamide 1H), 3.48-3.41 (m, 1H), 3.33 (td, J = 11.1, 3.3
    Hz, 1H), 3.29-3.21 (m, 2H), 1.78 (d, J = 5.1
    Hz, 1H), 1.61 (d, J = 12.8 Hz, 1H), 1.54-1.38
    (m, 3H), 1.18 (qd, J = 12.1, 3.7 Hz, 1H)
    24 N-[(1,1- (ESI(+))
    dioxidotetrahydro- m/e 428
    thiophen-3- (M + H)+
    yl)methyl]-4-
    [(imidazo[1,2-
    a]pyridin-6-
    ylcarbamoyl)ami-
    no]benzamide
  • Example 25 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenyl)-5,6-dihydropyridine-1 (2H)-carboxylate for 4-amino-N-isopentylbenzamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.96 (m, 1H), 8.82-8.75 (m, 1H), 8.65 (m, 1H), 7.96 (s, 1H), 7.52-7.36 (m, 6H), 7.12-7.04 (m, 1H), 6.12-6.05 (m, 1H), 4.07-3.92 (m, 2H), 3.59-3.49 (m, 2H), 2.44 (m, 2H), 1.43 (s, 9H); MS (ESI(+)) m/e 434 (M+H)+.
  • Example 28 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea Example 28A 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)urea
  • A solution of tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate (0.57 g, 1.315 mmol) in dichloromethane (5 ml) was treated with trifluoroacetic acid (0.608 ml, 7.88 mmol) and the reaction mixture was stirred at room temperature for 4 hours. Concentration provided the title compound.
  • Example 28B 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 1A, substituting 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)urea for 3-methylbutan-1-amine and 2-(tetrahydrofuran-3-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.96 (m, 1H), 8.82 (bs, 1H), 8.70 (bs, 1H), 7.96 (s, 1H), 7.55-7.35 (m, 6H), 7.08 (dd, J=9.6, 2.0 Hz, 1H), 6.11 (m, 1H), 4.18-4.05 (m, 2H), 3.90-3.79 (m, 1H), 3.76-3.57 (m, 4H), 3.35-3.23 (m, 2H), 2.55-2.39 (m, 4H), 2.05-1.95 (m, 1H), 1.60-1.42 (m, 1H); MS (ESI(+)) m/e 446 (M+H)+.
  • TABLE 3
    The following Examples were prepared essentially as described in Example 28, substituting
    the appropriate carboxylic acid in Example 28B. Some products were purified by
    flash chromatography while others were purified by reverse-phase HPLC. Accordingly,
    some Examples were isolated as trifluoroacetic acid salts.
    Ex Name 1H NMR MS
    29 1-{4-[1-(2-hydroxy- 1H NMR (300 MHz, DMSO-d6,) δ ppm 9.01- (ESI(+))
    2-methylpropanoyl)- 8.93 (m, 1H), 8.84 (bs, 1H), 8.71 (bs, 1H), m/e 420
    1,2,3,6- 7.95 (s, 1H), 7.53-7.35 (m, 6H), 7.12-7.04 (M + H)+
    tetrahydropyridin-4- (m, 1H), 6.13 (m, 1H), 5.43 (bs, 1H), 4.20-
    yl]phenyl}-3- 3.95 (m, 2H), 3.31 (m, 2H), 2.58-2.45 (m,
    imidazo[1,2- 2H), 1.34 (s, 6H)
    a]pyridin-6-ylurea
    30 1-imidazo[1,2- 1H NMR (300 MHz, methanol-d4) δ ppm 9.01- (ESI(+))
    a]pyridin-6-yl-3-{4- 8.81 (m, 1H), 7.82 (bs, 1H), 7.54-7.49 (m, m/e 461
    [1-(morpholin-4- 2H), 7.48-7.32 (m, 4H), 7.18 (dd, J = 9.6, (M + H)+
    ylacetyl)-1,2,3,6- 2.0 Hz, 1H), 6.09 (m, 1H), 4.31 (d, J = 2.8 Hz,
    tetrahydropyridin-4- 1H), 4.18 (d, J = 2.9 Hz, 1H), 3.89-3.76 (m,
    yl]phenyl}urea 2H), 3.71 (m, 4H), 3.38-3.25 (m, 2H), 2.65
    (m, 1H), 2.61-2.49 (m, 5H)
    31 1-{4-[1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.85 (ESI(+))
    (ethoxyacetyl)- (d, J = 1.9 Hz, 1H), 8.56 (s, 1H), 8.43 (s, 1H), m/e 420
    1,2,3,6- 7.87 (s, 1H), 7.50-7.40 (m, 4H), 7.38-7.32 (M + H)+
    tetrahydropyridin-4- (m, 2H), 7.10 (dd, J = 9.4, 2.0 Hz, 1H), 6.09-
    yl]phenyl}-3- 6.04 (m, 1H), 4.13 (s, 2H), 4.13-4.08 (m,
    imidazo[1,2- 2H), 3.66 (t, J = 5.7 Hz, 2H), 3.51 (q, J = 6.9
    a]pyridin-6-ylurea Hz, 2H), 2.50-2.45 (m, 2H), 1.14 (t, J = 6.9
    Hz, 3H)
    32 1-imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 8.96 (ESI(+))
    a]pyridin-6-yl-3-(4- (d, J = 1.9 Hz, 1H), 8.83 (s, 1H), 8.70 (s, 1H), m/e 450
    {1-[(2- 7.96 (s, 1H), 7.55-7.42 (m, 4H), 7.42-7.34 (M + H)+
    methoxyethoxy)acetyl]- (m, 2H), 7.08 (dd, J = 9.6, 2.0 Hz, 1H), 6.15-
    1,2,3,6- 6.05 (m, 1H), 4.24-4.17 (m, 2H), 4.12-4.05
    tetrahydropyridin-4- (m, 2H), 3.70-3.54 (m, 4H), 3.51-3.43 (m,
    yl}phenyl)urea 2H), 3.25 (s, 3H), 2.57-2.41 (m, 2H)
    33 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    a]pyridin-6-yl-3-{4- δ ppm 8.89-8.84 (m, 1H), 8.59 (s, 1H), 8.47 m/e 432
    [1-(tetrahydrofuran- (s, 1H), 7.86 (s, 1H), 7.51-7.40 (m, 4H), (M + H)+
    2-ylcarbonyl)- 7.39-7.31 (m, 2H), 7.12-7.08 (m, 1H), 6.10-
    1,2,3,6- 6.04 (m, 1H), 4.71-4.64 (m, 1H), 4.15 (m,
    tetrahydropyridin-4- 2H), 3.84-3.68 (m, 4H), 2.54-2.44 (m, 2H),
    yl]phenyl}urea 2.15-1.96 (m, 2H), 1.92-1.81 (m, 2H)
    34 1-imidazo[1,2- 1H NMR (300 MHz, methanol-d4) δ ppm 8.93 (ESI(+))
    a]pyridin-6-yl-3-{4- (dd, J = 2.0, 1.0 Hz, 1H), 7.82 (s, 1H), 7.56- m/e 446
    [1-(tetrahydro-2H- 7.47 (m, 2H), 7.47-7.35 (m, 4H), 7.22-7.14 (M + H)+
    pyran-4- (m, 1H), 6.13-6.07 (m, 1H), 4.32-4.16 (m,
    ylcarbonyl)-1,2,3,6- 2H), 4.03-3.92 (m, 2H), 3.86-3.77 (m, 2H),
    tetrahydropyridin-4- 3.61-3.46 (m, 2H), 3.12-2.92 (m, 1H), 2.66-
    yl]phenyl}urea 2.49 (m, 2H), 1.92-1.71 (m, 2H), 1.72-
    1.59 (m, 2H)
    35 1-{4-[1-(1,4-dioxan- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    2-ylcarbonyl)- δ ppm 8.86 (d, J = 1.2 Hz, 1H), 8.61 (bs, 1H), m/e 448
    1,2,3,6- 8.49 (bs, 1H), 7.87 (s, 1H), 7.52-7.40 (m, (M + H)+
    tetrahydropyridin-4- 4H), 7.38-7.32 (m, 2H), 7.11 (dd, J = 9.6,
    yl]phenyl}-3- 2.0 Hz, 1H), 6.10-6.04 (m, 1H), 4.37 (dd, J =
    imidazo[1,2- 9.2, 2.9 Hz, 1H), 4.15 (m, 2H), 3.81-3.63
    a]pyridin-6-ylurea (m, 7H), 3.58-3.45 (m, 1H), 2.56-2.47 (m,
    2H)
    36 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    a]pyridin-6-yl-3-(4- δ ppm 8.91-8.87 (m 1H), 8.68 (s, 1H), 8.56 m/e 459
    {1-[(1- (s, 1H), 7.90 (s, 1H), 7.53-7.44 (m, 4H), (M + H)+
    methylpiperidin-4- 7.41-7.35 (m, 2H), 7.14 (dd, J = 9.6, 2.1 Hz,
    yl)carbonyl]- 1H), 6.14-6.08 (m, 1H), 4.19-4.13 (m, 2H),
    1,2,3,6- 3.72 (t, J = 5.7 Hz, 2H), 3.17 (m, 1H), 2.85-
    tetrahydropyridin-4- 2.77 (m, 2H), 2.64-2.48 (m, 2H), 2.20 (s,
    yl}phenyl)urea 3H), 2.06-1.94 (m, 2H), 1.76-1.60 (m, 4H)
    37 1-(4-{1-[(1,1- 1H NMR (300 MHz, DMSO-d6) δ 8.98-8.94 (ESI(+))
    dioxidotetrahydro- (m, 1H), 8.83 (bs, 1H), 8.70 (s, 1H), 7.97- m/e 494
    2H-thiopyran-4- 7.94 (m, 1H), 7.55-7.35 (m, 6H), 7.09 (dd, J = (M + H)+
    yl)carbonyl]- 9.6, 2.0 Hz, 1H), 6.15-6.09 (m, 1H), 4.27-
    1,2,3,6- 4.20 (m, 1H), 4.13-4.06 (m, 1H), 3.79-
    tetrahydropyridin-4- 3.62 (m, 2H), 3.28-3.02 (m, 5H), 2.40-2.60
    yl}phenyl)-3- (m, 2H), 2.08-1.94 (m, 4H)
    imidazo[1,2-
    a]pyridin-6-ylurea
    38 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    a]pyridin-6-yl-3-{4- δ ppm 8.88-8.83 (m, 1H), 8.59 (bs, 1H), m/e 404
    [1-(2- 8.47 (bs, 1H), 7.87 (s, 1H), 7.50-7.41 (m, (M + H)+
    methylpropanoyl)- 4H), 7.39-7.33 (m, 2H), 7.11 (dd, J = 9.5,
    1,2,3,6- 2.0 Hz, 1H), 6.12-6.06 (m, 1H), 4.17-4.11
    tetrahydropyridin-4- (m, 2H), 3.69 (t, J = 5.7 Hz, 2H), 2.95-2.86
    yl]phenyl}urea (m, 1H), 2.50 (m, 2H), 1.05 (d, J = 6.7 Hz,
    6H)
  • Example 51 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea Example 51A 4-(1-isobutyl-1H-pyrazol-4-yl)aniline
  • A suspension of 4-bromoaniline (406 mg, 2.362 mmol), 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (650 mg, 2.60 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane (57.9 mg, 0.071 mmol) and sodium carbonate (526 mg, 4.96 mmol) in a 6:2:1 mixture of tetrahydrofuran/water/methanol (12 ml) in a microwave vial was subjected to three vacuum/nitrogen purge cycles. The vial was sealed and heated in an oil bath at 85° C. overnight. The mixture was dissolved in a mixture of ethyl acetate (45 ml) and water (20 ml), and the separated aqueous layer was extracted with ethyl acetate (20 ml). The combined organic layers were washed with brine (20 ml), dried with magnesium sulfate, filtered and concentrated. Normal phase chromatography provided the title compound.
  • Example 51B 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 1C, substituting 4-(1-isobutyl-1H-pyrazol-4-yl)aniline for 4-amino-N-isopentylbenzamide. 1H NMR (400 MHz, CDCl3) δ 9.18 (s, 2H), 8.49 (s, 1H), 7.73 (s, 1H), 7.64 (d, J=10.3 Hz, 2H), 7.56 (s, 1H), 7.42-7.31 (m, 4H), 7.36 (d, J=9.5 Hz, 1H), 6.62 (dd, J=9.6, 1.7 Hz, 1H), 3.92 (d, J=7.3 Hz, 2H), 2.23 (hept, J=6.8 Hz, 1H), 0.93 (d, J=6.7 Hz, 6H). MS (ESI)(+)) m/e 375 (M+H)+.
  • Example 52 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide Example 52A methyl 4-(2-cyclopentylacetamido)benzoate
  • A solution of methyl 4-aminobenzoate (0.25 g, 1.654 mmol) in tetrahydrofuran (8.27 ml) was treated with diisopropylethylamine (0.433 ml, 2.481 mmol) and 2-cyclopentylacetyl chloride (0.279 g, 1.902 mmol) and the reaction mixture was stirred at ambient temperature for 2 hours. Concentration and normal phase chromatography provided the title compound.
  • Example 52B 4-(2-cyclopentylacetamido)benzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-(2-cyclopentylacetamido)benzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 52C 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.08 (s, 1H), 8.93 (t, J=5.8 Hz, 1H), 8.47 (s, 1H), 7.96 (s, 1H), 7.87-7.81 (m, 2H), 7.70-7.64 (m, 2H), 7.57-7.50 (m, 2H), 7.24 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 2.36-2.30 (m, 2H), 2.29-2.15 (m, 1H), 1.81-1.65 (m, 2H), 1.67-1.38 (m, 4H), 1.39-0.95 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 53 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide Example 53A 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-A]pyridin-6-amine (0.768 g, 5.77 mmol) for 3-methylbutan-1-amine and 2-bromo-5-thiazolecarboxylic acid (1 g, 4.81 mmol) for 4-nitrobenzoic acid.
  • Example 53B 2-(4-cyanobenzylamino)-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide
  • To a solution of 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide (165 mg, 0.511 mmol) in acetonitrile (2553 μl) was added 4-cyanobenzylamine (67.5 mg, 0.511 mmol). The mixture was heated in a microwave (Biotage Initiator) at 180° C. for 30 minutes. The heating was repeated again after another equivalent of 4-cyanobenzylamine was added. The reaction mixture was purified by normal phase chromatography to provide the title compound.
  • Example 53C 2-[(4-cyanobenzyl)(3-methylbutanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-yl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 3-methylbutanoyl chloride for 2-cyclopentylacetyl chloride and 2-(4-cyanobenzylamino)-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ 10.75 (s, 1H), 9.62 (s, 1H), 8.43 (d, J=1.6 Hz, 1H), 8.32 (s, 1H), 8.11 (s, 1H), 7.99-7.89 (m, 2H), 7.82 (dd, J=18.8, 8.3 Hz, 2H), 7.38 (d, J=8.3 Hz, 2H), 5.63 (s, 2H), 2.14 (dt, J=13.4, 6.7 Hz, 1H), 0.88 (d, J=6.7 Hz, 6H); (APCI(+)) m/e 459 (M+H)+.
  • TABLE 4
    The following Examples were prepared essentially as described in Example 53,
    substituting the appropriate amine in Example 53A, the appropriate amine in
    53B and the appropriate acid chloride in Example 53C. Some products were purified
    by flash chromatography while others were purified by reverse-phase HPLC. Accordingly,
    some Examples were isolated as trifluoroacetic acid salts.
    Ex Name 1H NMR MS
    54 2-[(4- 1H NMR (400 MHz, DMSO-d6) δ 10.75 (s, (APCI(+))
    cyanobenzyl)(3- 1H), 9.61 (s, 1H), 8.42 (s, 1H), 8.33 (s, 1H), m/e 461
    methoxypropanoyl) 8.10 (s, 1H), 7.94 (s, 2H), 7.84 (d, J = 8.3 (M + H)+
    amino]-N- Hz, 3H), 7.40 (d, J = 8.3 Hz, 2H), 5.64 (s,
    (imidazo[1,2- 2H), 3.64 (t, J = 6.0 Hz, 2H), 3.20 (s, 3H),
    a]pyridin-6-yl)-1,3- 2.89 (t, J = 6.1 Hz, 2H).
    thiazole-5-
    carboxamide
    55 2-[(4- 1H NMR (400 MHz, CDCl3) δ 8.57 (s, 1H), (APCI(+))
    cyanobenzyl)(3- 8.16 (d, J = 9.5 Hz, 1H), 7.96 (s, 1H), 7.86 m/e 473
    methylbutanoyl)ami- (d, J = 1.8 Hz, 1H), 7.81 (d, J = 9.6 Hz, (M + H)+
    no]-N-(imidazo[1,2- 1H), 7.75 (s, 1H), 7.63 (d, J = 8.3 Hz, 2H),
    a]pyridin-6- 7.24 (d, J = 8.3 Hz, 2H), 5.54 (s, 2H), 4.69
    ylmethyl)-1,3- (d, J = 6.1 Hz, 2H), 2.39 (d, J = 6.7 Hz,
    thiazole-5- 2H), 2.30-2.24 (m, 1H), 0.94 (d, J = 6.6
    carboxamide Hz, 6H)
    56 2-[(4- 1H NMR (400 MHz, methanol-d4) δ 8.78 (s, (APCI(+))
    cyanobenzyl)(3- 1H), 8.20 (d, J = 2.1 Hz, 1H), 8.02 (d, J = m/e 475
    methoxypropanoyl) 2.1 Hz, 1H), 8.01 (s, 1H), 8.00-7.96 (m, (M + H)+
    amino]-N- 1H), 7.90 (d, J = 9.3 Hz, 1H), 7.70 (d, J =
    (imidazo[1,2- 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 5.65
    a]pyridin-6- (s, 2H), 4.66 (s, 2H), 3.73 (t, J = 5.9 Hz,
    ylmethyl)-1,3- 2H), 2.87 (t, J = 5.9 Hz, 2H)
    thiazole-5-
    carboxamide
    57 2-[(4- 1H NMR (400 MHz, methanol-d4) δ 9.22 (APCI(+))
    cyanobenzyl)(3- (td, J = 6.4, 1.2 Hz, 1H), 8.75 (d, J = 7.0 m/e 475
    methoxypropanoyl) Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), 8.08- (M + H)+
    amino]-N- 7.95 (m, 2H), 7.80 (s, 1H), 7.77-7.66 (m,
    (imidazo[1,2- 2H), 7.47 (dd, J = 7.1, 1.1 Hz, 1H), 7.39 (d,
    a]pyridin-7- J = 8.2 Hz, 2H), 5.66 (s, 2H), 4.73 (d, J =
    ylmethyl)-1,3- 4.5 Hz, 2H), 3.74 (t, J = 5.9 Hz, 2H), 2.88
    thiazole-5- (t, J = 5.8 Hz, 2H)
    carboxamide
    61 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.08 (s, 1H), m/e 430
    ylmethyl)-2-[(3- 8.05-7.96 (m, 2H), 7.90 (d, J = 9.3 Hz, (M + H)+
    methoxypropanoyl)(3- 1H), 4.67 (d, J = 3.8 Hz, 2H), 4.27 (dd, J =
    methylbutyl)amino]- 9.3, 7.0 Hz, 2H), 3.79 (t, J = 5.9 Hz, 2H),
    1,3-thiazole-5- 3.36 (s, 3H), 2.98 (t, J = 5.9 Hz, 2H), 1.80-
    carboxamide 1.67 (m, 1H), 1.67-1.57 (m, 2H), 1.01 (d,
    J = 6.5 Hz, 6H)
    121 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ 9.11 (t, J = (APCI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.50 (d, J = 7.0 Hz, 1H), m/e 444
    ylmethyl)-2-[(3- 8.17 (s, 1H), 7.90 (s, 1H), 7.53 (s, 1H), 7.41 (M + H)+
    methoxypropanoyl)(tet- (s, 1H), 6.85 (dd, J = 7.1, 1.5 Hz, 1H), 4.48
    rahydrofuran-2- (d, J = 5.8 Hz, 2H), 4.39 (d, J = 12.5 Hz,
    ylmethyl)amino]- 1H), 4.25-4.08 (m, 2H), 3.78 (dd, J = 14.8,
    1,3-thiazole-5- 6.8 Hz, 1H), 3.66 (t, J = 6.4 Hz, 2H), 3.65-
    carboxamide 3.55 (m, 1H), 3.26 (s, 3H), 3.06 (ddd, J =
    17.2, 13.9, 6.4 Hz, 2H), 1.99 (dd, J = 12.7,
    7.4 Hz, 1H), 1.94-1.86 (m, 1H), 1.86-
    1.74 (m, 1H), 1.66-1.53 (m, 1H)
    123 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O) δ ppm (ESI(+))
    a]pyridin-6- 8.76 (s, 1 H) 8.24 (d, J = 2.14 Hz, 1 H) 8.10 m/e 496
    ylmethyl)-2-{[(2- (s, 1 H) 8.02 (d, J = 2.14 Hz, 1 H) 7.89 (d, (M + H)+
    methyl-1,3-thiazol-5- J = 1.22 Hz, 2 H) 7.45 (s, 1 H) 4.57 (s, 2 H)
    yl)acetyl](tetrahydro- 4.50 (d, J = 12.21 Hz, 1 H) 4.42 (d, J = 5.80
    furan-2- Hz, 1 H) 4.19-4.31 (m, 2 H) 3.78-3.85
    ylmethyl)amino}- (m, 1 H) 3.63-3.69 (m, 1 H) 3.28-3.29
    1,3-thiazole-5- (m, 2 H) 2.62 (s, 3 H) 2.01 (s, 1 H) 1.81-
    carboxamide 1.95 (m, 2 H) 1.60-1.68 (m, 1 H)
    124 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O) δ ppm (ESI(+))
    a]pyridin-6- 8.78 (s, 1 H) 8.26 (d, J = 1.83 Hz, 1 H) 8.10 m/e 496
    ylmethyl)-2-{[(2- (s, 1 H) 8.05 (d, J = 2.14 Hz, 1 H) 7.90-7.96 (M + H)+
    methyl-1,3-thiazol-4- (m, 2 H) 7.24 (s, 1 H) 4.58 (s, 2 H) 4.47 (dd,
    yl)acetyl](tetrahydro- 1 H) 4.18-4.37 (m, 4 H) 3.79-3.86 (m, 1
    furan-2- H) 3.62-3.69 (m, 1 H) 2.62 (s, 3 H) 1.97-
    ylmethyl)amino}- 2.06 (m, 1 H) 1.80-1.94 (m, 2 H) 1.56-
    1,3-thiazole-5- 1.69 (m, 1H)
    carboxamide
    125 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O) δ ppm (ESI(+))
    a]pyridin-6- 8.70 (s, 1 H) 8.17 (d, J = 1.83 Hz, 1 H) 8.10 m/e 480
    ylmethyl)-2-{[(3- (s, 1 H) 7.92 (d, J = 1.83 Hz, 1 H) 7.79-7.84 (M + H)+
    methyl-1,2-oxazol-5- (m, 1 H) 7.73-7.85 (m, 1 H) 6.27 (s, 1 H)
    yl)acetyl](tetrahydro- 4.55 (s, 2 H) 4.35-4.52 (m, 3 H) 4.19-
    furan-2- 4.27 (m, 2 H) 3.77-3.85 (m, 1 H) 3.62-
    ylmethyl)amino}- 3.69 (m, 1 H) 2.23 (s, 3 H) 2.01 (d, J = 2.75
    1,3-thiazole-5- Hz, 1 H) 1.80-1.95 (m, 2 H) 1.56-1.67
    carboxamide (m, 1 H)
    126 2-{[3-(3-chloro-1,2- (ESI(+))
    oxazol-5- m/e 515
    yl)propanoyl](tetra- (M + H)+
    hydrofuran-2-
    ylmethyl)amino}-N-
    (imidazo[1,2-
    a]pyridin-6-
    ylmethyl)-1,3-
    thiazole-5-
    carboxamide
    127 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 510
    ylmethyl)-2-{[3-(3- (M + H)+
    methoxy-1,2-
    oxazol-5-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    128 2-{[(3,5-dimethyl- (ESI(+))
    1,2-oxazol-4- m/e 495
    yl)acetyl](tetrahydro- (M + H)+
    furan-2-
    ylmethyl)amino}-N-
    (imidazo[1,2-
    a]pyridin-6-
    ylmethyl)-1,3-
    thiazole-5-
    carboxamide
    129 2-{[3-(3,5-dimethyl- (ESI(+))
    1,2-oxazol-4- m/e 509
    yl)propanoyl](tetra- (M + H)+
    hydrofuran-2-
    ylmethyl)amino}-N-
    (imidazo[1,2-
    a]pyridin-6-
    ylmethyl)-1,3-
    thiazole-5-
    carboxamide
    130 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 494
    ylmethyl)-2-{[3-(1- (M + H)+
    methyl-1H-pyrazol-4-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    131 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 511
    ylmethyl)-2-{[3-(4- (M + H)+
    methyl-1,3-thiazol-5-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    132 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 468
    ylmethyl)-2- (M + H)+
    [(tetrahydrofuran-2-
    ylmethyl)(1H-
    tetrazol-5-
    ylacetyl)amino]-1,3-
    thiazole-5-
    carboxamide
    133 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 481
    ylmethyl)-2-{[3- (M + H)+
    (1,2-oxazol-5-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    134 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 467
    ylmethyl)-2-[(1,2- (M + H)+
    oxazol-3-
    ylacetyl)(tetrahydro-
    furan-2-
    ylmethyl)amino]-
    1,3-thiazole-5-
    carboxamide
    135 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 481
    ylmethyl)-2-{[3- (M + H)+
    (1,2-oxazol-4-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    136 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 497
    ylmethyl)-2- (M + H)+
    {(tetrahydrofuran-2-
    ylmethyl)[3-(1,3-
    thiazol-2-
    yl)propanoyl]amino}-
    1,3-thiazole-5-
    carboxamide
    139 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.08 (s, 1H), m/e 444
    ylmethyl)-2-[(3- 8.03 (d, J = 2.2 Hz, 1H), 7.98 (d, J = 1.4 Hz, (M + H)+
    methoxypropanoyl)(tet- 1H), 7.91 (d, J = 9.3 Hz, 1H), 4.66 (s, 2H),
    rahydrofuran-3- 4.31 (qd, J = 14.8, 7.7 Hz, 2H), 3.96 (td, J =
    ylmethyl)amino]- 8.2, 5.7 Hz, 1H), 3.87-3.71 (m, 3H), 3.65
    1,3-thiazole-5- (qd, J = 8.9, 5.6 Hz, 2H), 3.36 (s, 3H), 3.02
    carboxamide (dd, J = 10.4, 5.6 Hz, 2H), 2.94-2.81 (m,
    1H), 2.05 (dtd, J = 13.5, 8.0, 5.7 Hz, 1H),
    1.75 (ddd, J = 12.6, 7.9, 6.5 Hz, 1H)
    140 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 1.9 Hz, 1H), 8.09 (s, 1H), m/e 470
    ylmethyl)-2- 8.03 (d, J = 2.0 Hz, 1H), 8.00 (d, J = 9.3 Hz, (M + H)+
    [(tetrahydrofuran-3- 1H), 7.91 (d, J = 9.2 Hz, 1H), 4.66 (s, 2H),
    ylmethyl)(tetrahydro- 4.40 (dd, J = 14.8, 7.0 Hz, 1H), 4.28 (dd, J =
    2H-pyran-4- 14.7, 8.5 Hz, 1H), 4.06-3.94 (m, 3H),
    ylcarbonyl)amino]- 3.77 (dd, J = 15.0, 8.1 Hz, 1H), 3.68 (dd, J =
    1,3-thiazole-5- 8.9, 6.3 Hz, 1H), 3.60 (dd, J = 8.9, 4.7 Hz,
    carboxamide 1H), 3.55 (t, J = 11.7 Hz, 2H), 3.24 (tt, J =
    11.1, 3.7 Hz, 1H), 2.85 (dt, J = 12.1, 3.5 Hz,
    1H), 2.11-2.01 (m, 1H), 1.93 (ddd, J =
    16.1, 12.7, 4.3 Hz, 1H), 1.89-1.82 (m,
    1H), 1.75 (dt, J = 13.0, 9.9 Hz, 3H)
    142 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.08 (s, 1H), m/e 458
    ylmethyl)-2-[(3- 8.03 (d, J = 2.1 Hz, 1H), 8.00 (dd, J = 9.4, (M + H)+
    methoxypropanoyl)(tet- 1.4 Hz, 1H), 7.91 (d, J = 9.4 Hz, 1H), 4.66
    rahydro-2H- (s, 2H), 4.23 (d, J = 7.3 Hz, 2H), 4.00-
    pyran-4- 3.85 (m, 2H), 3.79 (t, J = 5.9 Hz, 2H), 3.36
    ylmethyl)amino]- (s, 3H), 3.02 (t, J = 5.9 Hz, 2H), 2.26-2.13
    1,3-thiazole-5- (m, 1H), 1.58-1.50 (m, 2H), 1.49-1.36
    carboxamide (m, 2H)
    143 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.09 (s, 1H), m/e 470
    ylmethyl)-2- 8.03 (d, J = 2.0 Hz, 1H), 8.00 (d, J = 9.3 Hz, (M + H)+
    [(tetrahydrofuran-3- 1H), 7.91 (d, J = 9.3 Hz, 1H), 4.67 (s, 2H),
    ylcarbonyl)(tetra- 4.32-4.23 (m, 2H), 4.08 (t, J = 8.1 Hz,
    hydro-2H-pyran-4- 1H), 3.94 (qd, J = 9.9, 3.8 Hz, 4H), 3.87
    ylmethyl)amino]- (dd, J = 14.8, 7.3 Hz, 1H), 3.83-3.74 (m,
    1,3-thiazole-5- 1H), 3.35 (dd, J = 11.7, 1.9 Hz, 2H), 2.31
    carboxamide (dt, J = 15.4, 7.1 Hz, 1H), 2.18 (td, J = 12.9,
    6.6 Hz, 2H), 1.53 (t, J = 10.9 Hz, 2H), 1.50-
    1.41 (m, 2H)
    144 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 2.0 Hz, 1H), 8.09 (s, 1H), m/e 484
    ylmethyl)-2- 8.03 (d, J = 2.1 Hz, 1H), 8.00 (dd, J = 9.3, (M + H)+
    [(tetrahydro-2H- 1.4 Hz, 1H), 7.91 (d, J = 9.3 Hz, 1H), 4.66
    pyran-4- (s, 2H), 4.27 (d, J = 7.3 Hz, 2H), 4.03-
    ylcarbonyl)(tetra- 3.97 (m, 2H), 3.93 (dd, J = 11.4, 2.7 Hz,
    hydro-2H-pyran-4- 2H), 3.62-3.52 (m, 2H), 3.35 (dd, J = 11.6,
    ylmethyl)amino]- 2.2 Hz, 2H), 3.26 (dd, J = 9.3, 5.6 Hz, 1H),
    1,3-thiazole-5- 2.21-2.10 (m, 1H), 1.89 (ddd, J = 16.0,
    carboxamide 12.6, 4.4 Hz, 2H), 1.76 (dd, J = 13.0, 1.5
    Hz, 2H), 1.54 (dt, J = 7.1, 3.0 Hz, 2H), 1.51-
    1.42 (m, 2H)
    145 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.78 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (s, 1H), 8.07 (s, 1H), 8.02 (s, 1H), m/e 444
    ylmethyl)-2-{(3- 8.00 (d, J = 9.4 Hz, 1H), 7.91 (d, J = 9.4 Hz, (M + H)+
    methoxy- 1H), 4.66 (s, 2H), 4.52 (d, J = 14.9 Hz, 1H),
    propanoyl)[(2R)- 4.29 (d, J = 6.8 Hz, 1H), 4.17 (dd, J = 14.9,
    tetrahydrofuran-2- 8.9 Hz, 1H), 3.88 (dd, J = 14.5, 7.2 Hz, 1H),
    ylmethyl]amino}- 3.76 (dd, J = 14.0, 7.9 Hz, 2H), 3.74-3.69
    1,3-thiazole-5- (m, 1H), 3.36 (s, 3H), 3.13 (q, J = 6.1 Hz,
    carboxamide 2H), 2.10 (td, J = 12.4, 7.4 Hz, 1H), 2.04-
    1.94 (m, 1H), 1.94-1.85 (m, 1H), 1.67 (dq,
    J = 15.3, 7.8 Hz, 1H)
    146 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (s, 1H), 8.08 (s, 1H), 8.02 (d, J = m/e 456
    ylmethyl)-2- 1.8 Hz, 1H), 8.00 (d, J = 9.4 Hz, 1H), 7.91 (M + H)+
    {(tetrahydrofuran-3- (d, J = 9.3 Hz, 1H), 4.66 (s, 2H), 4.61 (t, J =
    ylcarbonyl)[(2R)- 13.7 Hz, 1H), 4.30-4.17 (m, 2H), 4.06
    tetrahydrofuran-2- (ddd, J = 15.8, 14.9, 7.9 Hz, 1H), 3.99-
    ylmethyl]amino}- 3.91 (m, 2H), 3.90-3.79 (m, 3H), 3.76-
    1,3-thiazole-5- 3.68 (m, 1H), 2.32 (qd, J = 12.8, 6.7 Hz,
    carboxamide 1H), 2.25-2.04 (m, 2H), 2.03-1.86 (m,
    2H), 1.72-1.61 (m, 1H)
    147 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.07 (s, 1H), m/e 470
    ylmethyl)-2-{[(2R)- 8.02 (d, J = 2.1 Hz, 1H), 8.00 (dd, J = 9.3, (M + H)+
    tetrahydrofuran-2- 1.2 Hz, 1H), 7.91 (d, J = 9.3 Hz, 1H), 4.66
    ylmethyl](tetrahydro- (s, 2H), 4.61 (d, J = 12.8 Hz, 1H), 4.29-
    2H-pyran-4- 4.19 (m, 2H), 4.06-3.96 (m, 2H), 3.85 (dd,
    ylcarbonyl)amino}- J = 14.9, 6.9 Hz, 1H), 3.73 (dd, J = 13.9, 7.7
    1,3-thiazole-5- Hz, 1H), 3.57-3.47 (m, 2H), 3.43 (ddd, J =
    carboxamide 14.8, 8.4, 3.9 Hz, 1H), 2.11 (dt, J = 12.1,
    5.4 Hz, 1H), 2.05-1.87 (m, 3H), 1.83-
    1.73 (m, 3H), 1.73-1.64 (m, 1H)
    148 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.78 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 1.8 Hz, 1H), 8.06 (s, 1H), m/e 444
    ylmethyl)-2-{(3- 8.02 (d, J = 2.2 Hz, 1H), 8.00 (dd, J = 9.4, (M + H)+
    methoxypropanoyl)[(2S)- 1.5 Hz, 1H), 7.90 (d, J = 9.3 Hz, 1H), 4.66
    tetrahydrofuran-2- (s, 2H), 4.52 (dd, J = 14.9, 2.5 Hz, 1H),
    ylmethyl]amino}- 4.32-4.25 (m, 1H), 4.17 (dd, J = 14.8, 8.9
    1,3-thiazole-5- Hz, 1H), 3.92-3.83 (m, 1H), 3.81-3.74
    carboxamide (m, 2H), 3.71 (td, J = 7.7, 6.3 Hz, 1H), 3.36
    (s, 3H), 3.21-3.05 (m, 2H), 2.15-2.05 (m,
    1H), 2.04-1.95 (m, 1H), 1.91 (ddt, J = 7.5,
    5.0, 1.9 Hz, 1H), 1.73-1.60 (m, 1H)
    149 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 2.2 Hz, 1H), 8.08 (d, J = m/e 456
    ylmethyl)-2- 0.7 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 8.00 (M + H)+
    {(tetrahydrofuran-3- (dd, J = 9.3, 1.3 Hz, 1H), 7.91 (d, J = 9.3
    ylcarbonyl)[(2S)- Hz, 1H), 4.66 (s, 2H), 4.61 (t, J = 13.2 Hz,
    tetrahydrofuran-2- 1H), 4.31-4.17 (m, 2H), 4.06 (ddd, J =
    ylmethyl]amino}- 14.8, 14.3, 7.3 Hz, 1H), 4.00-3.92 (m,
    1,3-thiazole-5- 2H), 3.90-3.79 (m, 3H), 3.71 (ddd, J =
    carboxamide 10.8, 8.3, 3.1 Hz, 1H), 2.39-2.27 (m, 1H),
    2.25-2.04 (m, 2H), 2.03-1.87 (m, 2H),
    1.73-1.60 (m, 1H)
    150 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ 8.79 (s, (APCI(+))
    a]pyridin-6- 1H), 8.21 (d, J = 1.9 Hz, 1H), 8.07 (d, J = m/e 470
    ylmethyl)-2-{[(2S)- 3.1 Hz, 1H), 8.02 (d, J = 2.2 Hz, 1H), 8.00 (M + H)+
    tetrahydrofuran-2- (dd, J = 9.4, 1.5 Hz, 1H), 7.91 (d, J = 9.3
    ylmethyl](tetrahydro- Hz, 1H), 4.66 (s, 2H), 4.61 (d, J = 12.7 Hz,
    2H-pyran-4- 1H), 4.31-4.19 (m, 2H), 4.07-3.95 (m,
    ylcarbonyl)amino}- 2H), 3.89-3.81 (m, 1H), 3.73 (td, J = 7.8,
    1,3-thiazole-5- 6.1 Hz, 1H), 3.58-3.47 (m, 2H), 3.47-
    carboxamide 3.39 (m, 1H), 2.16-2.05 (m, 1H), 2.05-
    1.86 (m, 3H), 1.77 (ddd, J = 14.6, 6.0, 2.5
    Hz, 3H), 1.73-1.65 (m, 1H)
    183 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 480
    ylmethyl)-2-{[(1- (M + H)+
    methyl-1H-pyrazol-4-
    yl)acetyl](tetrahydro-
    furan-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    184 2-{[(1,3-dimethyl- (ESI(+))
    1H-pyrazol-4- m/e 494
    yl)acetyl](tetrahydro- (M + H)+
    furan-2-
    ylmethyl)amino}-N-
    (imidazo[1,2-
    a]pyridin-6-
    ylmethyl)-1,3-
    thiazole-5-
    carboxamide
    189 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 493
    ylmethyl)-2-{[3-(1- (M + H)+
    methyl-1H-pyrrol-2-
    yl)propanoyl](tetra-
    hydrofuran-2-
    ylmethyl)amino}-
    1,3-thiazole-5-
    carboxamide
    190 2-{[(1,5-dimethyl- (ESI(+))
    1H-pyrazol-3- m/e 494
    yl)acetyl](tetrahydro- (M + H)+
    furan-2-
    ylmethyl)amino}-N-
    (imidazo[1,2-
    a]pyridin-6-
    ylmethyl)-1,3-
    thiazole-5-
    carboxamide
    191 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 483
    ylmethyl)-2- (M + H)+
    [(tetrahydrofuran-2-
    ylmethyl)(1,3-
    thiazol-4-
    ylacetyl)amino]-1,3-
    thiazole-5-
    carboxamide
    192 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.73 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.64 (d, J = 1.5 Hz, 1H), m/e 467
    ylmethyl)-2-{(1,2- 8.16 (d, J = 2.1 Hz, 1H), 8.12 (s, 1H), 7.98 (M + H)+
    oxazol-3- (d, J = 2.2 Hz, 1H), 7.80 (s, 1H), 7.46 (dd, J =
    ylacetyl)[(2R)- 7.0, 1.4 Hz, 1H), 6.52 (d, J = 1.6 Hz, 1H),
    tetrahydrofuran-2- 4.72 (s, 2H), 4.65 (dd, J = 14.9, 1.9 Hz,
    ylmethyl]amino}- 1H), 4.42 (d, J = 1.4 Hz, 2H), 4.32 (dd, J =
    1,3-thiazole-5- 11.6, 4.4 Hz, 1H), 4.23 (dd, J = 14.8, 9.0
    carboxamide Hz, 1H), 3.94 (dd, J = 14.9, 6.8 Hz, 1H),
    3.76 (dd, J = 14.2, 7.7 Hz, 1H), 2.21-2.07
    (m, 1H), 2.08-1.87 (m, 2H), 1.69 (ddd, J =
    15.8, 12.3, 7.6 Hz, 1H)
    193 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.74 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.17 (d, J = 1.9 Hz, 1H), m/e 481
    ylmethyl)-2-{[(5- 8.11 (s, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.79 (M + H)+
    methyl-1,2-oxazol- (s, 1H), 7.47 (d, J = 6.8 Hz, 1H), 6.16 (s,
    3-yl)acetyl][(2R)- 1H), 4.72 (s, 2H), 4.63 (d, J = 12.8 Hz, 1H),
    tetrahydrofuran-2- 4.36-4.27 (m, 3H), 4.21 (dd, J = 14.6, 9.4
    ylmethyl]amino}- Hz, 1H), 3.94 (dd, J = 15.1, 6.8 Hz, 1H),
    1,3-thiazole-5- 3.75 (dd, J = 14.3, 7.5 Hz, 1H), 2.43 (s,
    carboxamide 3H), 2.13 (d, J = 8.1 Hz, 1H), 2.05-1.89
    (m, 2H), 1.75-1.62 (m, 1H)
    194 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.74 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.27 (d, J = 1.6 Hz, 1H), m/e 481
    ylmethyl)-2-{[3- 8.17 (d, J = 2.1 Hz, 1H), 8.10 (s, 1H), 7.99 (M + H)+
    (1,2-oxazol-5- (d, J = 2.1 Hz, 1H), 7.79 (s, 1H), 7.47 (d, J =
    yl)propanoyl][(2R)- 6.8 Hz, 1H), 6.23 (s, 1H), 4.72 (s, 2H),
    tetrahydrofuran-2- 4.55 (d, J = 12.6 Hz, 1H), 4.35-4.23 (m,
    ylmethyl]amino}- 1H), 4.15 (dd, J = 14.8, 9.0 Hz, 1H), 3.87
    1,3-thiazole-5- (dd, J = 14.8, 6.9 Hz, 1H), 3.72 (dd, J =
    carboxamide 14.0, 7.8 Hz, 1H), 3.46 (dd, J = 12.2, 6.1
    Hz, 1H), 3.28-3.18 (m, 3H), 2.10 (dd, J =
    12.6, 7.2 Hz, 1H), 1.94 (dd, J = 15.7, 8.4
    Hz, 2H), 1.74-1.60 (m, 1H)
    195 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.71 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.51 (s, 1H), 8.36 (s, 1H), m/e 481
    ylmethyl)-2-{[3- 8.11 (d, J = 17.0 Hz, 2H), 7.94 (d, J = 2.0 (M + H)+
    (1,2-oxazol-4- Hz, 1H), 7.76 (s, 1H), 7.42 (d, J = 6.8 Hz,
    yl)propanoyl][(2R)- 1H), 4.71 (s, 2H), 4.53 (d, J = 12.5 Hz, 1H),
    tetrahydrofuran-2- 4.27 (t, J = 6.7 Hz, 1H), 4.14 (dd, J = 14.9,
    ylmethyl]amino}- 9.1 Hz, 1H), 3.83 (dd, J = 14.9, 6.8 Hz, 1H),
    1,3-thiazole-5- 3.69 (dd, J = 13.8, 7.5 Hz, 1H), 3.26 (d, J =
    carboxamide 7.1 Hz, 1H), 3.09 (dd, J = 17.6, 6.4 Hz, 1H),
    2.91 (dd, J = 12.3, 6.4 Hz, 2H), 2.10 (dt, J =
    12.3, 5.9 Hz, 1H), 2.03-1.84 (m, 2H), 1.74-
    1.58 (m, 1H)
    196 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 9.00 (s, (APCI(+))
    a]pyridin-7- 1H), 8.74 (d, J = 7.0 Hz, 1H), 8.17 (d, J = m/e 483
    ylmethyl)-2-{[(2R)- 1.9 Hz, 1H), 8.11 (s, 1H), 7.98 (d, J = 2.2 (M + H)+
    tetrahydrofuran-2- Hz, 1H), 7.79 (s, 1H), 7.51 (s, 1H), 7.47 (d,
    ylmethyl](1,3- J = 7.0 Hz, 1H), 4.72 (s, 2H), 4.63 (d, J =
    thiazol-4- 12.8 Hz, 1H), 4.49 (q, J = 16.9 Hz, 2H),
    ylacetyl)amino}- 4.38-4.25 (m, 2H), 3.96 (dd, J = 14.9, 6.7
    1,3-thiazole-5- Hz, 1H), 3.76 (dd, J = 14.2, 7.6 Hz, 1H),
    carboxamide 2.19-2.08 (m, 1H), 2.06-1.98 (m, 1H),
    1.98-1.89 (m, 1H), 1.70 (td, J = 15.6, 7.6
    Hz, 1H)
    197 2-{[(1,5-dimethyl- 1H NMR (400 MHz, methanol-d4) δ 8.74 (d, (APCI(+))
    1H-pyrazol-3- J = 7.0 Hz, 1H), 8.17 (d, J = 2.1 Hz, 1H), m/e 494
    yl)acetyl][(2R)- 8.10 (s, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.79 (M + H)+
    tetrahydrofuran-2- (s, 1H), 7.47 (d, J = 7.0 Hz, 1H), 6.01 (s,
    ylmethyl]amino}-N- 1H), 4.72 (s, 2H), 4.55 (d, J = 12.9 Hz, 1H),
    (imidazo[1,2- 4.30 (t, J = 7.9 Hz, 1H), 4.27-4.18 (m,
    a]pyridin-7- 2H), 4.10 (t, J = 15.1 Hz, 1H), 3.94 (dd, J =
    ylmethyl)-1,3- 14.8, 6.8 Hz, 1H), 3.82-3.68 (m, 4H), 2.27
    thiazole-5- (s, 3H), 2.20-2.06 (m, 1H), 2.00 (dd, J =
    carboxamide 13.5, 5.8 Hz, 1H), 1.97-1.87 (m, 1H), 1.76-
    1.58 (m, 1H)
    198 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.75 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.17 (d, J = 2.1 Hz, 1H), m/e 494
    ylmethyl)-2-{[3-(1- 8.09 (s, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.80 (M + H)+
    methyl-1H-pyrazol-4- (s, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.45 (s,
    yl)propanoyl][(2R)- 1H), 7.36 (s, 1H), 4.72 (s, 2H), 4.50 (dd, J =
    tetrahydrofuran-2- 14.9, 2.3 Hz, 1H), 4.27 (t, J = 6.9 Hz, 1H),
    ylmethyl]amino}- 4.13 (dd, J = 14.9, 9.0 Hz, 1H), 3.89-3.76
    1,3-thiazole-5- (m, 4H), 3.70 (dd, J = 14.1, 7.6 Hz, 1H),
    carboxamide 3.21 (dt, J = 17.0, 7.2 Hz, 1H), 3.05 (dt, J =
    16.9, 6.9 Hz, 1H), 2.88 (t, J = 7.1 Hz, 2H),
    2.09 (dt, J = 12.1, 7.6 Hz, 1H), 1.92 (ddd, J =
    19.6, 13.4, 7.1 Hz, 2H), 1.65 (dt, J = 19.6,
    7.6 Hz, 1H)
    199 2-{[(3,5-dimethyl- 1H NMR (400 MHz, methanol-d4) δ 8.74 (d, (APCI(+))
    1,2-oxazol-4- J = 7.0 Hz, 1H), 8.17 (d, J = 2.0 Hz, 1H), m/e 495
    yl)acetyl][(2R)- 8.11 (s, 1H), 7.99 (d, J = 2.2 Hz, 1H), 7.79 (M + H)+
    tetrahydrofuran-2- (s, 1H), 7.47 (d, J = 7.1 Hz, 1H), 4.72 (s,
    ylmethyl]amino}-N- 2H), 4.68 (d, J = 13.1 Hz, 1H), 4.39-4.19
    (imidazo[1,2- (m, 3H), 4.03-3.88 (m, 2H), 3.77 (dd, J =
    a]pyridin-7- 13.8, 7.6 Hz, 1H), 2.32 (s, 3H), 2.23-2.11
    ylmethyl)-1,3- (m, 4H), 2.09-1.91 (m, 2H), 1.77-1.63
    thiazole-5- (m, 1H)
    carboxamide
    202 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 9.20 (s, (APCI(+))
    a]pyridin-7- 1H), 8.74 (d, J = 7.2 Hz, 1H), 8.17 (d, J = m/e 480
    ylmethyl)-2-{[(1- 2.0 Hz, 1H), 8.10 (s, 1H), 7.99 (d, J = 2.1 (M + H)+
    methyl-1H-pyrazol- Hz, 1H), 7.79 (s, 1H), 7.57 (s, 1H), 7.47 (d,
    4-yl)acetyl][(2R)- J = 5.9 Hz, 1H), 7.42 (s, 1H), 4.72 (s, 2H),
    tetrahydrofuran-2- 4.59 (d, J = 13.1 Hz, 1H), 4.31 (t, J = 7.1
    ylmethyl]amino}- Hz, 1H), 4.22 (dd, J = 14.7, 9.1 Hz, 1H),
    1,3-thiazole-5- 4.11 (s, 2H), 3.92 (dd, J = 14.9, 6.9 Hz,
    carboxamide 1H), 3.87 (s, 3H), 3.76 (dd, J = 14.2, 7.7
    Hz, 1H), 2.19-2.06 (m, 1H), 2.00 (d, J =
    7.3 Hz, 1H), 1.94 (dd, J = 13.4, 6.2 Hz, 1H),
    1.69 (dt, J = 15.5, 7.5 Hz, 1H)
    203 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ 8.74 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 8.17 (d, J = 2.0 Hz, 1H), m/e 493
    ylmethyl)-2-{[3-(1- 8.10 (s, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.80 (M + H)+
    methyl-1H-pyrrol-2- (s, 1H), 7.47 (d, J = 7.0 Hz, 1H), 6.54 (d, J =
    yl)propanoyl][(2R)- 2.5 Hz, 1H), 5.91 (t, J = 3.1 Hz, 1H), 5.83
    tetrahydrofuran-2- (s, 1H), 4.72 (s, 2H), 4.50 (dd, J = 14.9, 2.3
    ylmethyl]amino}- Hz, 1H), 4.28 (t, J = 6.8 Hz, 1H), 4.12 (dd,
    1,3-thiazole-5- J = 14.8, 8.9 Hz, 1H), 3.85 (dd, J = 14.9, 6.8
    carboxamide Hz, 1H), 3.77-3.65 (m, 1H), 3.58 (s, 3H),
    3.25 (t, J = 8.4 Hz, 1H), 3.16-3.02 (m,
    1H), 2.96 (t, J = 7.4 Hz, 2H), 2.10 (dt, J =
    12.0, 7.3 Hz, 1H), 2.04-1.81 (m, 2H), 1.66
    (dt, J = 15.7, 7.4 Hz, 1H)
  • Example 58 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminobutyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide. 1H NMR (500 MHz, DMSO-d6, Temp=90° C.) δ ppm 8.79-8.76 (m, 1H), 8.10 (bs, 1H), 7.81-7.78 (m, 1H), 7.45-7.37 (m, 2H), 7.02 (dd, J=9.5, 2.1 Hz, 1H), 6.04-5.96 (m, 1H), 3.93-3.85 (m, 2H), 3.14-3.06 (m, 2H), 2.75-2.63 (m, 2H), 1.67-1.57 (m, 2H), 1.50-1.19 (m, 16H), 1.07-0.91 (m, 2H); MS (ESI(+)) m/e 416 (M+H)+.
  • Example 59 4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)benzamide
  • The title compound was prepared as described in Example 1, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine in Example 1C. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.87 (s, 1H), 8.46-8.41 (m, 1H), 8.23-8.15 (m, 1H), 7.97-7.93 (m, 1H), 7.76-7.70 (m, 2H), 7.57-7.51 (m, 2H), 7.49-7.43 (m, 2H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 6.77 (t, J=5.9 Hz, 1H), 4.30 (d, J=5.8 Hz, 2H), 3.29-3.19 (m, 2H), 1.67-1.53 (m, 1H), 1.45-1.35 (m, 2H), 0.93-0.87 (m, 6H); MS (ESI(+)) m/e 380 (M+H)+.
  • Example 60 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide
  • The title compound was prepared as described in Example 3, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine in Example 3A. 1H NMR (400 MHz, DMSO-d6, Temp=90° C.) δ 9.34 (bs, 1H), 8.71 (s, 1H), 8.38-8.33 (m, 1H), 8.23 (d, J=1.9 Hz, 1H), 7.97 (d, J=1.9 Hz, 1H), 7.86-7.75 (m, 2H), 7.44-7.38 (m, 2H), 7.32-7.26 (m, 2H), 6.69-6.62 (m, 1H), 4.43-4.38 (m, 2H), 2.29-2.18 (m, 3H), 1.81-1.68 (m, 2H), 1.67-1.45 (m, 4H), 1.29-1.15 (m, 2H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 62 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}butyl)urea Example 62A 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 62B 1-imidazo[1,2-a]pyridin-6-yl-3-(4-{1-[(propan-2-yloxy)acetyl]piperidin-4-yl}butyl)urea
  • The title compound was prepared as described in Example 1A, substituting 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]butyl}piperidine for 3-methylbutan-1-amine and 2-isopropoxyacetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6/D2O) δ ppm 9.18 (dd, J=1.9, 0.8 Hz, 1H), 8.30-8.19 (m, 1H), 7.98 (d, J=2.1 Hz, 1H), 7.84 (d, J=9.7 Hz, 1H), 7.76-7.72 (m, 1H), 4.03 (s, 4H), 3.72-3.52 (m, 1H), 3.14 (t, J=6.9 Hz, 2H), 2.77 (s, 2H), 1.69 (dd, J=12.9, 2.3 Hz, 2H), 1.58-1.40 (m, 4H), 1.41-1.31 (m, 2H), 1.31-1.21 (m, 2H), 1.11 (t, J=5.2 Hz, 6H), 1.03 (d, J=10.2 Hz, 2H); MS (ESI(+)) m/e 416 (M+H)+.
  • TABLE 5
    The following Examples were prepared essentially as described
    in Example 62, substituting the appropriate carboxylic acid in
    Example 62B. Some products were purified by flash chromatography
    while others were purified by reverse-phase HPLC. Accordingly,
    some Examples were isolated as trifluoroacetic acid salts.
    Ex Name 1H NMR MS
    63 1-{4-[1-(1,4- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    dioxan-2- Temp = 90° C.) δ ppm 9.17 (dd, J = 2.0, 0.8 Hz, m/e 430
    ylcarbonyl)piper- 1H), 8.23 (d, J = 1.7 Hz, 1H), 7.97 (d, J = 2.1 (M + H)+
    idin-4-yl]butyl}-3- Hz, 1H), 7.83 (d, J = 9.7 Hz, 1H), 7.74 (dd, J =
    imidazo[1,2- 9.7, 1.9 Hz, 1H), 4.27 (dt, J = 16.5, 8.3 Hz,
    a]pyridin-6-ylurea 1H), 3.80-3.70 (m, 2H), 3.70-3.58 (m, 3H),
    3.58-3.43 (m, 1H), 3.13 (q, J = 7.1 Hz, 2H),
    1.69 (d, J = 11.6 Hz, 2H), 1.56-1.43 (m, 4H),
    1.42-1.21 (m, 6H), 1.03 (s, 2H)
    64 1-{4-[1- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    (cyclopropylace- Temp = 90° C.) δ ppm 9.25-9.11 (m, 1H), 8.24 m/e 398
    tyl)-piperidin-4- (d, J = 1.8 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), (M + H)+
    yl]butyl}-3- 7.84 (d, J = 9.7 Hz, 1H), 7.81-7.71 (m, 1H),
    imidazo[1,2- 3.98 (s, 1H), 3.24-3.06 (m, 3H), 2.23 (d, J =
    a]pyridin-6-ylurea 6.7 Hz, 2H), 1.68 (d, J = 12.9 Hz, 2H), 1.61-
    1.41 (m, 4H), 1.39-1.20 (m, 4H), 1.09-0.85
    (m, 4H), 0.49-0.35 (m, 2H), 0.22-0.05 (m,
    2H)
    65 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.24-9.11 (m, 1H), 8.23 m/e 440
    {4-[1-(4,4,4- (d, J = 2.1 Hz, 1H), 7.97 (d, J = 2.0 Hz, 1H), (M + H)+
    trifluorobutanoyl)pi- 7.83 (d, J = 9.7 Hz, 1H), 7.77-7.69 (m, 1H),
    peridin-4- 3.14 (t, J = 6.9 Hz, 2H), 2.56 (dd, J = 10.8, 4.4
    yl]butyl}urea Hz, 3H), 2.51-2.40 (m, 2H), 1.69 (d, J = 12.0
    Hz, 2H), 1.63-1.43 (m, 4H), 1.41-1.22 (m,
    4H), 0.98 (dd, J = 36.1, 8.5 Hz, 2H)
    66 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.17 (dd, J = 1.9, 0.8 Hz, m/e 402
    {4-[1-(tetrahydro- 1H); 8.23 (d, J = 2.0 Hz, 1H), 7.97 (d, J = 2.1 (M + H)+
    2H-pyran-4- Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.73 (dd, J =
    ylacetyl)piperidin- 9.7, 1.9 Hz, 1H), 7.55 (dd, J = 8.4, 4.5 Hz, 2H),
    4-yl]butyl}urea 4.46 (d, J = 12.6 Hz, 2H), 3.16 (dd, J = 18.1,
    11.2 Hz, 2H), 2.78 (t, J = 12.3 Hz, 3H), 1.68 (d,
    J = 9.8 Hz, 2H), 1.54-1.42 (m, 4H), 1.33 (s,
    8H), 1.26 (t, J = 7.0 Hz, 3H), 1.11-0.99 (m,
    2H)
    67 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.17 (dd, J = 1.9, 0.8 Hz, m/e 442
    {4-[1- 1H), 8.30-8.19 (m, 1H), 7.98 (d, J = 2.1 Hz, (M + H)+
    (tetrahydrofuran-2- 1H), 7.83 (d, J = 9.6 Hz, 1H), 7.75 (dd, J = 9.6,
    ylacetyl)piperidin- 1.9 Hz, 1H), 3.88-3.71 (m, 2H), 3.14 (t, J =
    4-yl]butyl}urea 6.9 Hz, 2H), 2.23 (t, J = 6.9 Hz, 2H), 1.91 (ttd,
    J = 10.7, 6.9, 3.5 Hz, 1H), 1.68 (d, J = 12.1 Hz,
    2H), 1.56 (t, J = 12.5 Hz, 2H), 1.53-1.42 (m,
    4H), 1.42-1.28 (m, 2H), 1.22 (m, 4H), 0.99
    (d, J = 10.1 Hz, 2H)
    68 1-{4-[1- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    (cyclopentylcarbon- Temp = 90° C.) δ ppm 9.23-9.13 (m, 1H), 8.23 m/e 412
    yl)piperidin-4- (d, J = 2.1 Hz, 1H), 7.97 (d, J = 2.0 Hz, 1H), (M + H)+
    yl]butyl}-3- 7.83 (d, J = 9.7 Hz, 1H), 7.82-7.71 (m, 1H),
    imidazo[1,2- 4.12 (s, 2H), 3.98 (s, 1H), 3.14 (t, J = 6.9 Hz,
    a]pyridin-6-ylurea 2H), 3.04-2.89 (m, 2H), 2.77 (s, 2H), 1.87-
    1.59 (m, 8H), 1.51-1.33 (m, 6H), 1.40-1.10
    (m, 4H), 1.08-0.91 (m, 2H)
    69 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ 9 ppm. 23-9.14 (m, 1H), 8.24 m/e 428
    {4-[1-(tetrahydro- (d, J = 1.9 Hz, 1H), 7.98 (d, J = 2.1 Hz, 1H), (M + H)+
    2H-pyran-4- 7.84 (d, J = 9.7 Hz, 1H), 7.79-7.68 (m, 1H),
    ylcarbonyl)piperi- 4.11 (s, 2H), 3.88-3.77 (m, 2H), 3.51-3.36
    din-4-yl]butyl}urea (m, 2H), 3.21-3.09 (m, 2H), 2.92-2.73 (m,
    2H), 1.76-1.56 (m, 4H), 1.56-1.42 (m, 6H),
    1.45-1.18 (m, 4H), 1.04-0.87 (m, 2H)
    70 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.17 (dd, J = 1.9, 0.8 Hz, m/e 432
    (4-{1-[(2- 1H), 8.24 (d, J = 1.9 Hz, 1H), 7.98 (d, J = 2.1 (M + H)+
    methoxyethoxy)ace- Hz, 1H), 7.84 (d, J = 9.7 Hz, 1H), 7.75 (dd, J =
    tyl]piperidin-4- 9.7, 1.9 Hz, 1H), 4.09 (d, J = 7.6 Hz, 2H), 3.56
    yl}butyl)urea (dd, J = 6.0, 3.8 Hz, 2H), 3.47 (dd, J = 5.7, 3.7
    Hz, 2H), 3.26 (s, 2H), 3.19-3.07 (m, 2H), 1.68
    (dd, J = 13.0, 2.2 Hz, 2H), 1.48 (dt, J = 14.1,
    7.0 Hz, 4H), 1.40-1.22 (m, 6H), 1.04 (d, J =
    9.3 Hz, 2H)
    71 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.26-9.11 (m, 1H), 8.23 m/e 443
    {4-[1-(morpholin-4- (d, J = 1.8 Hz, 1H), 7.98 (d, J = 2.1 Hz, 1H), (M + H)+
    ylacetyl)piperidin- 7.83 (t, J = 8.1 Hz, 1H), 7.80-7.71 (m, 1H),
    4-yl]butyl}urea 4.22 (s, 2H), 3.98 (s, 1H), 3.93-3.84 (m, 4H),
    3.62 (s, 1H), 3.18-3.07 (m, 2H), 2.71 (s, 2H),
    1.80-1.67 (m, 2H), 1.51 (dq, J = 21.7, 7.0 Hz,
    4H), 1.42-1.20 (m, 6H), 1.07 (s, 2H)
    72 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.25-9.14 (m, 1H), 8.24 m/e 414
    {4-[1- (d, J = 1.9 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), (M + H)+
    (tetrahydrofuran-3- 7.84 (d, J = 9.7 Hz, 1H), 7.79-7.69 (m, 1H),
    ylcarbonyl)piperi- 3.85 (t, J = 8.1 Hz, 2H), 3.70 (h, J = 7.8 Hz,
    din-4-yl]butyl}urea 4H), 3.20-3.08 (m, 2H), 2.09-1.91 (m, 2H),
    1.70 (d, J = 12.1 Hz, 2H), 1.61-1.43 (m, 4H),
    1.37-1.24 (m, 4H), 1.08-0.88 (m, 2H)
    73 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.22-9.12 (m, 1H), 8.24 m/e 428
    {4-[1- (d, J = 2.1 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), (M + H)+
    (tetrahydrofuran-3- 7.84 (d, J = 9.7 Hz, 1H), 7.79-7.69 (m, 1H),
    ylacetyl)piperidin- 3.98 (s, 1H), 3.86-3.76 (m, 1H), 3.75-3.68
    4-yl]butyl}urea (m, 1H), 3.68-3.57 (m, 1H), 3.28-3.23 (m,
    1H), 3.14 (t, J = 6.9 Hz, 2H), 2.50-2.43 (m,
    1H), 2.43-2.30 (m, 2H), 2.09-1.92 (m, 1H),
    1.68 (d, J = 13.3 Hz, 2H), 1.56-1.41 (m, 6H),
    1.38-1.29 (m, 2H), 1.25 (dd, J = 14.2, 6.0 Hz,
    2H), 1.00 (d, J = 10.2 Hz, 2H)
    74 1-imidazo[1,2- 1H NMR (400 MHz, DMSO-d6/D2O, (ESI(+))
    a]pyridin-6-yl-3- Temp = 90° C.) δ ppm 9.18 (d, J = 1.1 Hz, 1H), m/e 414
    {4-[1- 8.24 (d, J = 2.0 Hz, 1H), 7.98 (d, J = 2.0 Hz, (M + H)+
    (tetrahydrofuran-2- 1H), 7.84 (d, J = 9.6 Hz, 1H), 7.79-7.65 (m,
    ylcarbonyl)piperi- 1H), 4.59 (t, J = 6.7 Hz, 1H), 4.12 (s, 2H), 3.88-
    din-4-yl]butyl}urea 3.62 (m, 2H), 3.16 (dd, J = 18.1, 11.3 Hz,
    2H), 2.02-1.93 (m, 2H), 1.93-1.72 (m, 2H),
    1.69 (d, J = 12.7 Hz, 2H), 1.58-1.43 (m, 4H),
    1.42-1.19 (m, 5H), 1.17-0.87 (m, 2H)
    107 1-[4-(1- 1H NMR (400 MHz, methanol-d4) δ ppm 8.82- (ESI(+))
    benzoylpiperidin- 8.77 (m, 1H), 7.76 (s, 1H), 7.50 (s, 1H), 7.48- m/e 420
    4-yl)butyl]-3- 7.40 (m, 4H), 7.42-7.33 (m, 2H), 7.09 (dd, J = (M + H)+
    imidazo[1,2- 9.5, 2.0 Hz, 1H), 4.65-4.57 (m, 1H), 3.74-
    a]pyridin-6-ylurea 3.65 (m, 1H), 3.21 (t, J = 6.9 Hz, 2H), 3.13-
    3.03 (m, 1H), 2.88-2.78 (m, 1H), 1.90-1.82
    (m, 1H), 1.74-1.46 (m, 4H), 1.48-1.26 (m,
    4H), 1.28-1.04 (m, 2H)
    270 1-[4-(1- (ESI(+))
    benzoylpiperidin- m/e 420
    4-yl)butyl]-3- (M + H)+
    imidazo[1,2-
    a]pyridin-7-ylurea
  • Example 75 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide Example 75A 5-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 5-bromothiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 75B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 5-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.8 Hz, 1H), 8.46 (s, 1H), 8.14 (s, 1H), 7.95 (s, 1H), 7.79 (s, 1H), 7.69 (d, J=3.9 Hz, 1H), 7.49-7.58 (m, 2H), 7.20 (d, J=4.0 Hz, 2H), 4.43 (d, J=5.7 Hz, 2H), 3.91 (d, J=7.2 Hz, 2H), 2.11 (dq, J=13.6, 6.8 Hz, 1H), 0.84 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 380 (M+H)+.
  • TABLE 6
    The following Examples were prepared essentially as described in Example
    75, substituting the appropriate carboxylic acid and amine in Example
    75A and the appropriate boronate in Example 75B. Some boronates were
    Boc-protected and required deprotection as in Example 28A.
    Ex Name 1H NMR MS
    120 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.87 (ESI(+))
    a]pyridin-6- (t, J = 6.0 Hz, 1 H), 8.46 (s, 1 H), 8.14 (s, 1 H), m/e 364
    ylmethyl)-5-[1-(2- 7.96 (s, 1 H), 7.87 (s, 1 H), 7.53 (d, J = 6.8 Hz, (M + H)+
    methylpropyl)-1H- 2 H), 7.21 (dd, J = 9.3, 1.4 Hz, 1 H), 7.14 (d,
    pyrazol-4-yl]furan- J = 3.6 Hz, 1 H), 6.64 (d, J = 3.5 Hz, 1 H), 4.44
    2-carboxamide (d, J = 6.0 Hz, 2 H), 3.94 (d, J = 7.2 Hz, 2 H),
    2.11 (dq, J = 13.6, 6.8 Hz, 1 H), 0.83 (d, J = 6.7
    Hz, 6 H)
    174 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.04 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1 H), 8.48 (d, J = 7.0 Hz, 1 H), m/e 380
    ylmethyl)-5-[1-(2- 8.14 (s, 1 H), 7.88 (s, 1 H), 7.80 (s, 1 H), 7.73 (M + H)+
    methylpropyl)-1H- (d, J = 3.8 Hz, 1 H), 7.51 (s, 1 H), 7.38 (s, 1 H),
    pyrazol-4- 7.21 (d, J = 3.9 Hz, 1 H), 6.84 (dd, J = 7.0, 1.5
    yl]thiophene-2- Hz, 1 H), 4.46 (d, J = 5.9 Hz, 2 H), 3.91 (d,
    carboxamide J = 7.3 Hz, 2 H), 2.11 (dq, J = 13.6, 6.7, 6.6 Hz,
    1 H), 0.84 (d, J = 6.7 Hz, 6 H)
    175 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.09
    a]pyridin-6- (t, J = 5.9 Hz, 1 H), 8.81 (s, 1 H), 8.47 (s, 1 H),
    ylmethyl)-5-[1-(2- 8.31 (s, 1 H), 7.95 (s, 1 H), 7.76 (d, J = 3.9 Hz,
    methylpropanoyl)- 1 H), 7.54 (t, J = 4.6 Hz, 2 H), 7.50 (d, J = 3.9
    1H-pyrazol-4- Hz, 1 H), 7.20 (dd, J = 9.2, 1.5 Hz, 1 H), 4.44
    yl]thiophene-2- (d, J = 5.9 Hz, 2 H), 3.77 (dq, J = 6.9 Hz, 1 H),
    carboxamide 1.21 (d, J = 6.9 Hz, 6 H)
    176 5-[1-(2-hydroxy-2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (ESI(+))
    methylpropyl)-1H- (t, J = 5.9 Hz, 1 H), 8.46 (s, 1 H), 8.03 (s, 1 H), m/e 396
    pyrazol-4-yl]-N- 7.95 (s, 1 H), 7.78 (s, 1 H), 7.69 (d, J = 3.8 Hz, (M + H)+
    (imidazo[1,2- 1 H), 7.49-7.58 (m, 2 H), 7.16-7.25 (m, 2
    a]pyridin-6- H), 4.76 (s, 1 H), 4.42 (d, J = 5.7 Hz, 2 H), 4.01
    ylmethyl)thiophene- (s, 2 H), 1.06 (s, 6 H)
    2-carboxamide
    177 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00
    a]pyridin-6- (t, J = 5.9 Hz, 1 H), 8.46 (s, 1 H), 8.19 (s, 1 H),
    ylmethyl)-5-{1-[(3- 7.95 (s, 1 H), 7.83 (s, 1 H), 7.70 (d, J = 3.9 Hz,
    methyloxetan-3- 1 H), 7.48-7.58 (m, 2 H), 7.15-7.24 (m, 2
    yl)methyl]-1H- H), 4.59 (d, J = 6.0 Hz, 2 H), 4.42 (d, J = 5.9 Hz,
    pyrazol-4- 2 H), 4.33 (s, 2 H), 4.22 (d, J = 6.0 Hz, 2 H),
    yl}thiophene-2- 1.13 (s, 3 H)
    carboxamide
    178 5-[1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99
    (cyclobutylmethyl)- (t, J = 5.9 Hz, 1 H), 8.46 (s, 1 H), 8.13 (s, 1 H),
    1H-pyrazol-4-yl]- 7.95 (s, 1 H), 7.77 (s, 1 H), 7.69 (d, J = 3.9 Hz,
    N-(imidazo[1,2- 1 H), 7.48-7.57 (m, 2 H), 7.16-7.23 (m, 2
    a]pyridin-6- H), 4.42 (d, J = 5.7 Hz, 2 H), 4.12 (d, J = 7.3 Hz,
    ylmethyl)thiophene- 2 H), 2.74 (dq, J = 7.5, 7.4 Hz, 1 H), 1.90-2.02
    2-carboxamide (m, 2 H), 1.67-1.90 (m, 4 H)
    179 5-[1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99 (ESI(+))
    (cyclohexylmethyl)- (t, J = 5.9 Hz, 1 H), 8.46 (s, 1 H), 8.12 (s, 1 H), m/e 420
    1H-pyrazol-4-yl]- 7.95 (s, 1 H), 7.78 (s, 1 H), 7.69 (d, J = 3.9 Hz, (M + H)+
    N-(imidazo[1,2- 1 H), 7.48-7.57 (m, 2 H), 7.14-7.26 (m, 2
    a]pyridin-6- H), 4.42 (d, J = 5.9 Hz, 2 H), 3.93 (d, J = 7.2 Hz,
    ylmethyl)thiophene- 2 H), 1.72-1.88 (m, 1 H), 1.54-1.70 (m, 3
    2-carboxamide H), 1.50 (d, J = 12.1 Hz, 2 H), 1.03-1.28 (m, 3
    H), 0.85-1.01 (m, 2 H)
    180 5-{1-[(2R)-2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99
    hydroxybutyl]-1H- (t, J = 5.8 Hz, 1 H), 8.46 (s, 1 H), 8.08 (s, 1 H),
    pyrazol-4-yl}-N- 7.95 (s, 1 H), 7.78 (s, 1 H), 7.69 (d, J = 3.9 Hz,
    (imidazo[1,2- 1 H), 7.50-7.58 (m, 2 H), 7.17-7.23 (m, 2
    a]pyridin-6- H), 4.92 (d, J = 5.4 Hz, 1 H), 4.42 (d, J = 5.7 Hz,
    ylmethyl)thiophene- 2 H), 4.03-4.12 (m, 1 H), 3.93-4.02 (m, 1
    2-carboxamide H), 3.66-3.76 (m, 1 H), 1.20-1.44 (m, 2 H),
    0.88 (t, J = 7.4 Hz, 3 H)
    182 5-[1-(2-hydroxy-2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.04
    methylpropyl)-1H- (t, J = 5.9 Hz, 1 H), 8.48 (d, J = 7.0 Hz, 1 H),
    pyrazol-4-yl]-N- 8.04 (s, 1 H), 7.88 (s, 1 H), 7.79 (s, 1 H), 7.73
    (imidazo[1,2- (d, J = 3.8 Hz, 1 H), 7.51 (s, 1 H), 7.38 (s, 1 H),
    a]pyridin-7- 7.23 (d, J = 3.8 Hz, 1 H), 6.84 (dd, J = 7.0, 1.3
    ylmethyl)thiophene- Hz, 1 H), 4.75 (s, 1 H), 4.46 (d, J = 5.9 Hz, 2
    2-carboxamide H), 4.01 (s, 2 H), 1.07 (s, 6 H)
    186 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (ESI(+))
    a]pyridin-6- (t, J = 5.8 Hz, 1 H), 8.46 (s, 1 H), 8.07 (s, 1 H), m/e 422
    ylmethyl)-5-[1- 7.95 (s, 1 H), 7.78 (s, 1 H), 7.69 (d, J = 3.8 Hz, (M + H)+
    (tetrahydro-2H- 1 H), 7.48-7.57 (m, 2 H), 7.14-7.27 (m, 2
    pyran-2-ylmethyl)- H), 4.42 (d, J = 5.9 Hz, 2 H), 4.05-4.15 (m, 2
    1H-pyrazol-4- H), 3.83 (d, J = 11.1 Hz, 1 H), 3.55-3.71 (m, 1
    yl]thiophene-2- H), 3.19-3.37 (m, 2 H), 1.68-1.85 (m, 1 H),
    carboxamide 1.48-1.63 (m, 1 H), 1.32-1.50 (m, 2 H),
    1.06-1.29 (m, 1 H)
    200 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00
    a]pyridin-6- (t, J = 5.8 Hz, 1 H), 8.46 (s, 1 H), 8.20 (s, 1 H),
    ylmethyl)-5-[1- 7.95 (s, 1 H), 7.81 (s, 1 H), 7.69 (d, J = 3.9 Hz,
    (tetrahydrofuran-3- 1 H), 7.49-7.57 (m, 2 H), 7.15-7.24 (m, 2
    ylmethyl)-1H- H), 4.42 (d, J = 5.7 Hz, 2 H), 4.10 (d, J = 7.5 Hz,
    pyrazol-4- 2 H), 3.69-3.79 (m, 1 H), 3.56-3.70 (m, 2
    yl]thiophene-2- H), 3.46 (dd, J = 8.7, 5.4 Hz, 2 H), 1.81-1.98
    carboxamide (m, 1 H), 1.52-1.65 (m, 1 H)
    201 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99
    a]pyridin-6- (t, J = 5.8 Hz, 1 H), 8.46 (s, 1 H), 8.14 (s, 1 H),
    ylmethyl)-5-[1- 7.95 (s, 1 H), 7.80 (s, 1 H), 7.69 (d, J = 3.9 Hz,
    (tetrahydro-2H- 1 H), 7.48-7.58 (m, 2 H), 7.12-7.25 (m, 2
    pyran-4-ylmethyl)- H), 4.43 (d, J = 5.7 Hz, 2 H), 4.00 (d, J = 7.2 Hz,
    1H-pyrazol-4- 2 H), 3.81 (dd, J = 11.3, 2.9 Hz, 2 H), 3.24 (td,
    yl]thiophene-2- J = 11.6, 1.7 Hz, 2 H), 1.91-2.18 (m, 1 H),
    carboxamide 1.39 (dd, J = 12.7, 1.4 Hz, 2 H), 1.14-1.30 (m,
    2 H)
    206 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99
    a]pyridin-6- (t, J = 5.8 Hz, 1 H), 8.46 (s, 1 H), 8.15 (s, 1 H),
    ylmethyl)-5-[1- 7.95 (s, 1 H), 7.80 (s, 1 H), 7.69 (d, J = 3.9 Hz,
    (tetrahydro-2H- 1 H), 7.53 (t, J = 4.6 Hz, 2 H), 7.15-7.26 (m, 2
    pyran-3-ylmethyl)- H), 4.43 (d, J = 5.9 Hz, 2 H), 4.02 (dd, J = 7.2,
    1H-pyrazol-4- 3.2 Hz, 2 H), 3.64-3.72 (m, 1 H), 3.61 (dd,
    yl]thiophene-2- J = 11.1, 3.3 Hz, 1 H), 3.15 (dd, J = 11.2, 8.8 Hz,
    carboxamide 1 H), 1.96-2.18 (m, 1 H), 1.52-1.70 (m, 2
    H), 1.34-1.51 (m, 1 H), 1.10-1.31 (m, 2 H)
    219 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99
    a]pyridin-6- (t, J = 5.9 Hz, 1 H), 8.46 (s, 1 H), 8.10 (s, 1 H),
    ylmethyl)-5-[1- 7.95 (s, 1 H), 7.79 (s, 1 H), 7.70 (d, J = 3.9 Hz,
    (tetrahydrofuran-2- 1 H), 7.46-7.60 (m, 2 H), 7.11-7.26 (m, 2
    ylmethyl)-1H- H), 4.43 (d, J = 5.9 Hz, 2 H), 4.04-4.25 (m, 3
    pyrazol-4- H), 3.69-3.80 (m, 1 H), 3.62 (q, J = 7.4 Hz, 1
    yl]thiophene-2- H), 1.86-2.01 (m, 1 H), 1.68-1.84 (m, 2 H),
    carboxamide 1.52-1.67 (m, 1 H)
    247 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 422
    ylmethyl)-5-[1- (M + H)+
    (tetrahydro-2H-
    pyran-2-ylmethyl)-
    1H-pyrazol-4-
    yl]thiophene-2-
    carboxamide
    248 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 408
    ylmethyl)-5-[1- (M + H)+
    (tetrahydrofuran-2-
    ylmethyl)-1H-
    pyrazol-4-
    yl]thiophene-2-
    carboxamide
    252 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 408
    ylmethyl)-5-[1- (M + H)+
    (tetrahydrofuran-3-
    ylmethyl)-1H-
    pyrazol-4-
    yl]thiophene-2-
    carboxamide
    253 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.2, 1.1 Hz, m/e 422
    ylmethyl)-5-[1- 1H), 8.16 (s, 1H), 7.89 (t, J = 1.0 Hz, 1H), (M + H)+
    (tetrahydro-2H- 7.82 (s, 1H), 7.74 (d, J = 3.9 Hz, 1H), 7.52 (d,
    pyran-3-ylmethyl)- J = 1.4 Hz, 1H), 7.40 (s, 1H), 7.22 (d, J = 3.8
    1H-pyrazol-4- Hz, 1H), 6.85 (dd, J = 7.0, 1.7 Hz, 1H), 4.48
    yl]thiophene-2- (d, J = 5.7 Hz, 2H), 4.03 (dd, J = 7.3, 2.1 Hz,
    carboxamide 2H), 3.76-3.57 (m, 2H), 3.42-3.32 (m, 1H),
    3.17 (dd, J = 11.2, 8.7 Hz, 1H), 2.15-1.98
    (m, 1H), 1.77-1.54 (m, 2H), 1.54-1.35 (m,
    1H), 1.32-1.14 (m, 1H)
    254 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 408
    ylmethyl)-5-{1-[(3- (M + H)+
    methyloxetan-3-
    yl)methyl]-1H-
    pyrazol-4-
    yl}thiophene-2-
    carboxamide
    265 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 422
    ylmethyl)-5-[1- (M + H)+
    (tetrahydro-2H-
    pyran-4-ylmethyl)-
    1H-pyrazol-4-
    yl]thiophene-2-
    carboxamide
    269 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 5.9 Hz, 1H), 8.53-8.45 (m, 1H), 8.13 m/e 382
    ylmethyl)-5-[1-(2- (s, 1H), 7.89 (s, 1H), 7.81 (s, 1H), 7.74 (d, J = (M + H)+
    methoxyethyl)-1H- 3.9 Hz, 1H), 7.52 (d, J = 1.1 Hz, 1H), 7.40 (s,
    pyrazol-4- 1H), 7.22 (d, J = 3.8 Hz, 1H), 6.85 (dd, J =
    yl]thiophene-2- 7.0, 1.6 Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H),
    carboxamide 4.27 (t, J = 5.3 Hz, 2H), 3.70 (t, J = 5.3 Hz,
    2H), 3.24 (s, 3H)
    272 5-[1- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (ESI(+))
    (cyclohexylmethyl)- (t, J = 6.1 Hz, 1H), 8.49 (d, J = 7.8 Hz, 1H), m/e 448
    5-ethyl-1H- 7.89 (s, 1H), 7.78 (d, J = 4.1 Hz, 1H), 7.72 (s, (M + H)+
    pyrazol-4-yl]-N- 1H), 7.52 (d, J = 1.0 Hz, 1H), 7.40 (s, 1H),
    (imidazo[1,2- 7.17 (d, J = 4.1 Hz, 1H), 6.85 (dd, J = 7.1, 1.7
    a]pyridin-7- Hz, 1H), 4.48 (d, J = 5.8 Hz, 2H), 3.90 (d, J =
    ylmethyl)thiophene- 7.5 Hz, 2H), 2.87 (q, J = 7.2 Hz, 2H), 1.79-
    2-carboxamide 1.95 (m, 1H), 1.59-1.73 (m, J = 3.4 Hz, 3H),
    1.54 (d, J = 12.5 Hz, 2H), 1.09-1.25 (m, 6H),
    0.93-1.08 (m, J = 11.9 Hz, 2H)
    273 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 5.9 Hz, 1H), 8.49 (d, J = 7.1 Hz, 1H), m/e 492
    ylmethyl)-5-{1-[(1- 7.89 (s, 1H), 7.79 (d, J = 3.7 Hz, 1H), 7.74 (s, (M + H)+
    methoxy-3,3- 1H), 7.52 (d, J = 1.0 Hz, 1H), 7.40 (s, 1H),
    dimethylcyclohex- 7.18 (d, J = 4.1 Hz, 1H), 6.85 (dd, J = 7.1, 1.7
    yl)methyl]-5-methyl- Hz, 1H), 4.48 (d, J = 5.8 Hz, 2H), 3.97-4.16
    1H-pyrazol-4- (m, 2H), 3.20 (s, 3H), 2.45 (s, 3H), 1.64-1.78
    yl}thiophene-2- (m, 1H), 1.27-1.59 (m, 4H), 0.99-1.24 (m,
    carboxamide 3H), 0.96 (s, 3H), 0.85 (s, 3H)
    293 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (s, 1H), 8.47 (t, J = 9.6 Hz, 1H), 8.17 (s, 1H), m/e 366
    ylmethyl)-5-(1- 7.89 (s, 1H), 7.80 (s, 1H), 7.74 (d, J = 3.9 Hz, (M + H)+
    propyl-1H-pyrazol- 1H), 7.52 (d, J = 1.1 Hz, 1H), 7.40 (s, 1H),
    4-yl)thiophene-2- 7.22 (d, J = 3.8 Hz, 1H), 6.83 (dt, J = 14.9, 7.4
    carboxamide Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.07 (t, J =
    7.0 Hz, 2H), 1.81 (dd, J = 14.4, 7.2 Hz, 2H),
    0.84 (t, J = 7.4 Hz, 3H)
    294 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 5.9 Hz, 1H), 8.49 (d, J = 7.0 Hz, 1H), m/e 437
    ylmethyl)-5-{1-[2- 8.17 (s, 1H), 7.89 (s, 1H), 7.80 (s, 1H), 7.74 (M + H)+
    (morpholin-4- (d, J = 3.9 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H),
    yl)ethyl]-1H- 7.40 (s, 1H), 7.22 (d, J = 3.8 Hz, 1H), 6.85
    pyrazol-4- (dd, J = 7.0, 1.5 Hz, 1H), 4.48 (d, J = 5.9 Hz,
    yl}thiophene-2- 2H), 4.24 (t, J = 6.5 Hz, 2H), 3.59-3.49 (m,
    carboxamide 4H), 2.72 (t, J = 6.5 Hz, 2H), 2.45-2.35 (m,
    4H)
    295 5-(1-ethyl-1H- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (ESI(+))
    pyrazol-4-yl)-N- (t, J = 5.9 Hz, 1H), 8.49 (d, J = 7.0 Hz, 1H), m/e 352
    (imidazo[1,2- 8.17 (s, 1H), 7.89 (s, 1H), 7.79 (s, 1H), 7.74 (M + H)+
    a]pyridin-7- (d, J = 3.8 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H),
    ylmethyl)thiophene- 7.40 (s, 1H), 7.21 (d, J = 3.8 Hz, 1H), 6.85
    2-carboxamide (dd, J = 7.0, 1.6 Hz, 1H), 4.48 (d, J = 5.9 Hz,
    2H), 4.15 (q, J = 7.3 Hz, 2H), 1.39 (t, J = 7.3
    Hz, 3H)
    296 5-[1-(1,1- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.05 (ESI(+))
    dioxidotetrahydro- (t, J = 6.0 Hz, 1H), 8.49 (d, J = 6.9 Hz, 1H), m/e 442
    thiophen-3-yl)-1H- 8.32 (s, 1H), 7.94 (s, 1H), 7.89 (s, 1H), 7.76 (M + H)+
    pyrazol-4-yl]-N- (d, J = 3.8 Hz, 1H), 7.52 (d, J = 1.1 Hz, 1H),
    (imidazo[1,2- 7.40 (s, 1H), 7.26 (d, J = 3.8 Hz, 1H), 6.85
    a]pyridin-7- (dd, J = 7.0, 1.6 Hz, 1H), 5.35-5.18 (m, 1H),
    ylmethyl)thiophene- 4.48 (d, J = 5.9 Hz, 2H), 3.75 (dd, J = 13.6,
    2-carboxamide 8.2 Hz, 1H), 3.48 (m, 2H), 3.35-3.20 (m,
    1H), 2.78-2.53 (m, 2H)
    300 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.0, 0.8 Hz, m/e 430
    ylmethyl)-5-{1-[2- 1H), 8.25 (s, 1H), 7.89 (d, J = 1.4 Hz, 2H), (M + H)+
    (methylsulfonyl)eth- 7.75 (d, J = 3.9 Hz, 1H), 7.52 (d, J = 1.2 Hz,
    yl]-1H-pyrazol-4- 1H), 7.40 (s, 1H), 7.24 (d, J = 3.8 Hz, 1H),
    yl}thiophene-2- 6.85 (dd, J = 7.0, 1.7 Hz, 1H), 4.57 (t, J = 6.9
    carboxamide Hz, 2H), 4.48 (d, J = 5.9 Hz, 2H), 3.73 (t, J =
    6.9 Hz, 2H), 2.93 (s, 3H)
    304 5-{1-[(2R)-2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (ESI(+))
    hydroxypropyl]- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.0, 0.7 Hz, m/e 382
    1H-pyrazol-4-yl}- 1H), 8.09 (s, 1H), 7.89 (s, 1H), 7.80 (d, J = 0.5 (M + H)+
    N-(imidazo[1,2- Hz, 1H), 7.74 (d, J = 3.9 Hz, 1H), 7.52 (d, J =
    a]pyridin-7- 1.2 Hz, 1H), 7.40 (s, 1H), 7.22 (d, J = 3.8 Hz,
    ylmethyl)thiophene- 1H), 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.93 (d, J =
    2-carboxamide 4.7 Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.11-
    3.93 (m, 3H), 1.12-0.98 (m, 3H)
    316 5-[1-(1,4-dioxan-2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    ylmethyl)-1H- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.0, 0.7 Hz, m/e 424
    pyrazol-4-yl]-N- 1H), 8.12 (s, 1H), 7.89 (s, 1H), 7.82 (s, 1H), (M + H)+
    (imidazo[1,2- 7.74 (d, J = 3.8 Hz, 1H), 7.52 (d, J = 1.2 Hz,
    a]pyridin-7- 1H), 7.40 (s, 1H), 7.23 (d, J = 3.8 Hz, 1H),
    ylmethyl)thiophene- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.48 (d, J = 5.9
    2-carboxamide Hz, 2H), 4.20-4.14 (m, 2H), 3.96-3.83 (m,
    1H), 3.79-3.70 (m, 2H), 3.68-3.39 (m, 3H),
    3.29-3.21 (m, 1H)
    317 5-[1-(2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (ESI(+))
    hydroxyethyl)-1H- (t, J = 5.9 Hz, 1H), 8.49 (dd, J = 7.0, 0.7 Hz, m/e 368
    pyrazol-4-yl]-N- 1H), 8.12 (s, 1H), 7.89 (d, J = 0.8 Hz, 1H), (M + H)+
    (imidazo[1,2- 7.80 (d, J = 0.6 Hz, 1H), 7.74 (d, J = 3.8 Hz,
    a]pyridin-7- 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.40 (s, 1H),
    ylmethyl)thiophene- 7.22 (d, J = 3.9 Hz, 1H), 6.85 (dd, J = 7.0, 1.6
    2-carboxamide Hz, 1H), 4.92 (t, J = 5.3 Hz, 1H), 4.48 (d, J =
    5.9 Hz, 2H), 4.15 (t, J = 5.6 Hz, 2H), 3.75 (q,
    J = 5.5 Hz, 2H)
    344 5-{1-[(1,1- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (ESI(+))
    dioxidotetrahydro- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.0, 0.8 Hz, m/e 470
    2H-thiopyran-3- 1H), 8.19 (d, J = 0.4 Hz, 1H), 7.89 (d, J = 0.8 (M + H)+
    yl)methyl]-1H- Hz, 1H), 7.86 (d, J = 0.5 Hz, 1H), 7.75 (d, J =
    pyrazol-4-yl}-N- 3.9 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.40 (s,
    (imidazo[1,2- 1H), 7.24 (d, J = 3.9 Hz, 1H), 6.85 (dd, J =
    a]pyridin-7- 7.0, 1.7 Hz, 1H), 4.48 (d, J = 5.8 Hz, 2H),
    ylmethyl)thiophene- 4.13 (d, J = 6.6 Hz, 2H), 3.09-2.83 (m, 4H),
    2-carboxamide 2.47-2.40 (m, 1H), 2.14-1.96 (m, 1H), 1.88-
    1.69 (m, 1H), 1.69-1.54 (m, 1H), 1.37-
    1.14 (m, 1H)
    345 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (d, J = 7.0 Hz, 1H), m/e 338
    ylmethyl)-5-(1- 8.12 (s, 1H), 7.89 (s, 1H), 7.79 (s, 1H), 7.74 (M + H)+
    methyl-1H-pyrazol- (d, J = 3.8 Hz, 1H), 7.52 (d, J = 1.1 Hz, 1H),
    4-yl)thiophene-2- 7.40 (s, 1H), 7.21 (d, J = 3.8 Hz, 1H), 6.84
    carboxamide (dd, J = 7.0, 1.6 Hz, 1H), 4.48 (d, J = 5.9 Hz,
    2H), 3.86 (s, 3H)
    363 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.22 (ESI(+))
    a]pyridin-7- (t, J = 5.9 Hz, 1H), 8.50 (dd, J = 6.9, 0.8 Hz, m/e 338
    ylmethyl)-5-(1- 1H), 7.92-7.86 (m, 2H), 7.53 (d, J = 1.2 Hz, (M + H)+
    methyl-1H-pyrazol- 1H), 7.48 (d, J = 2.0 Hz, 1H), 7.45 (d, J = 3.9
    5-yl)thiophene-2- Hz, 1H), 7.41 (s, 1H), 6.86 (dd, J = 7.0, 1.7
    carboxamide Hz, 1H), 6.59 (d, J = 1.9 Hz, 1H), 4.51 (d, J =
    5.9 Hz, 2H), 3.98 (s, 3H)
    395 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 6.9, 1.0 Hz, m/e 408
    ylmethyl)-5-{1- 1H), 8.12 (s, 1H), 7.89 (t, J = 1.0 Hz, 1H), (M + H)+
    [(2R)- 7.81 (s, 1H), 7.74 (d, J = 4.0 Hz, 1H), 7.52 (d,
    tetrahydrofuran-2- J = 1.5 Hz, 1H), 7.40 (s, 1H), 7.23 (d, J = 4.0
    ylmethyl]-1H- Hz, 1H), 6.85 (dd, J = 7.0, 1.7 Hz, 1H), 4.48
    pyrazol-4- (d, J = 5.9 Hz, 2H), 4.26-4.04 (m, 3H), 3.82-
    yl}thiophene-2- 3.69 (m, 1H), 3.69-3.57 (m, 1H), 2.00-1.85
    carboxamide (m, 1H), 1.85-1.70 (m, 2H), 1.70-1.52 (m,
    1H)
    397 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 6.9, 1.0 Hz, m/e 408
    ylmethyl)-5-{1- 1H), 8.11 (d, J = 0.9 Hz, 1H), 7.89 (d, J = 0.9 (M + H)+
    [(2S)- Hz, 1H), 7.80 (d, J = 0.9 Hz, 1H), 7.74 (d, J =
    tetrahydrofuran-2- 3.9 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.43-
    ylmethyl]-1H- 7.37 (m, 1H), 7.23 (d, J = 3.9 Hz, 1H), 6.85
    pyrazol-4- (dd, J = 7.1, 1.7 Hz, 1H), 4.48 (d, J = 5.7 Hz,
    yl}thiophene-2- 2H), 4.27-4.06 (m, 3H), 3.82-3.69 (m, 1H),
    carboxamide 3.69-3.58 (m, 1H), 2.01-1.86 (m, 1H), 1.86-
    1.69 (m, 2H), 1.69-1.52 (m, 1H)
    410 N-(imidazo[1,2- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.49 (d, J = 6.7 Hz, 1H), m/e 408
    ylmethyl)-5-[1- 8.24 (s, 1H), 7.89 (s, 1H), 7.82 (s, 1H), 7.75 (M + H)+
    (tetrahydro-2H- (d, J = 3.9 Hz, 1H), 7.52 (d, J = 1.1 Hz, 1H),
    pyran-4-yl)-1H- 7.40 (s, 1H), 7.23 (d, J = 3.9 Hz, 1H), 6.85
    pyrazol-4- (dd, J = 7.0, 1.7 Hz, 1H), 4.54-4.34 (m, 3H),
    yl]thiophene-2- 4.04-3.88 (m, 2H), 3.47 (td, J = 11.3, 3.9 Hz,
    carboxamide 2H), 2.06-1.86 (m, 4H)
    465 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.05 (ESI(+))
    a]pyridin-7- (t, J = 6.0 Hz, 1H), 8.50 (d, J = 7.0 Hz, 1H), m/e 436
    ylmethyl)-5-{1-[(2- 8.03 (s, 1H), 7.90 (s, 1H), 7.80 (s, 1H), 7.75 (M + H)+
    methyltetrahydro- (d, J = 3.8 Hz, 1H), 7.54 (d, J = 1.1 Hz, 1H),
    2H-pyran-2- 7.41 (s, 1H), 7.25 (d, J = 3.9 Hz, 1H), 6.86
    yl)methyl]-1H- (dd, J = 7.0, 1.6 Hz, 1H), 4.49 (d, J = 5.9 Hz,
    pyrazol-4- 2H), 4.24 (d, J = 14.1 Hz, 1H), 4.10 (d, J =
    yl}thiophene-2- 14.0 Hz, 1H), 3.81-3.67 (m, 1H), 3.65-3.52
    carboxamide (m, 1H), 1.71-1.55 (m, 2H), 1.52-1.31 (m,
    4H), 1.07 (s, 3H)
    466 tert-butyl 4-[(4-{5- 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (ESI(+))
    [(imidazo[1,2- (t, J = 6.0 Hz, 1H), 8.49 (dd, J = 7.1, 1.0 Hz, m/e 521
    a]pyridin-7- 1H), 8.14 (d, J = 0.8 Hz, 1H), 7.89 (s, 1H), (M + H)+
    ylmethyl)car- 7.81 (d, J = 0.9 Hz, 1H), 7.74 (d, J = 3.8 Hz,
    bamoyl]thiophen-2-yl}- 1H), 7.52 (d, J = 1.3 Hz, 1H), 7.40 (s, 1H),
    1H-pyrazol-1- 7.22 (d, J = 3.9 Hz, 1H), 6.84 (dd, J = 7.1, 1.7
    yl)methyl]piperidine- Hz, 1H), 4.48 (d, J = 5.7 Hz, 2H), 4.02 (d, J =
    1-carboxylate 7.0 Hz, 2H), 3.92 (d, J = 13.2 Hz, 2H), 2.81-
    2.57 (m, 2H), 2.16-1.90 (m, 1H), 1.56-1.42
    (m, 2H), 1.38 (s, 9H), 1.22-0.94 (m, 2H)
    475 5-[1- (ESI(+))
    (cyclobutylmethyl)- m/e 392
    1H-pyrazol-4-yl]- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)thiophene-
    2-carboxamide
    476 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 392
    ylmethyl)-5-[1- (M + H)+
    (tetrahydrofuran-2-
    ylmethyl)-1H-
    pyrazol-4-yl]furan-
    2-carboxamide
    477 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 406
    ylmethyl)-5-[1- (M + H)+
    (tetrahydro-2H-
    pyran-2-ylmethyl)-
    1H-pyrazol-4-
    yl]furan-2-
    carboxamide
    478 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 392
    ylmethyl)-5-[1- (M + H)+
    (tetrahydrofuran-3-
    ylmethyl)-1H-
    pyrazol-4-yl]furan-
    2-carboxamide
    479 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 406
    ylmethyl)-5-[1- (M + H)+
    (tetrahydro-2H-
    pyran-3-ylmethyl)-
    1H-pyrazol-4-
    yl]furan-2-
    carboxamide
    480 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 406
    ylmethyl)-5-[1- (M + H)+
    (tetrahydro-2H-
    pyran-4-ylmethyl)-
    1H-pyrazol-4-
    yl]furan-2-
    carboxamide
    481 5-[1- (ESI(+))
    (cyclobutylmethyl)- m/e 376
    1H-pyrazol-4-yl]- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)furan-2-
    carboxamide
    482 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 392
    ylmethyl)-5-{1-[(3- (M + H)+
    methyloxetan-3-
    yl)methyl]-1H-
    pyrazol-4-yl}furan-
    2-carboxamide
    483 5-[1-(2-hydroxy-2- (ESI(+))
    methylpropyl)-1H- m/e 380
    pyrazol-4-yl]-N- (M + H)+
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)furan-2-
    carboxamide
    883 5-[1-(2,2- (ESI(+))
    dimethylpropyl)- m/e 394
    1H-pyrazol-4-yl]- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)thiophene-
    2-carboxamide
    884 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 472
    ylmethyl)-5-[1- (M + H)+
    (tricyclo[3.3.1.1~3,
    7~]dec-1-
    ylmethyl)-1H-
    pyrazol-4-
    yl]thiophene-2-
    carboxamide
    885 5-(1-benzyl-1H- (ESI(+))
    pyrazol-4-yl)-N- m/e 414
    (imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)thiophene-
    2-carboxamide
    886 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 474
    ylmethyl)-5-[1-(2- (M + H)+
    oxatricyclo[3.3.1.1~
    3,7~]dec-1-
    ylmethyl)-1H-
    pyrazol-4-
    yl]thiophene-2-
    carboxamide
    1082 5-{1-[2,2-dimethyl- (ESI(+))
    3-(piperazin-1- m/e 478
    yl)propyl]-1H- (M + H)+
    pyrazol-4-yl}-N-
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)thiophene-
    2-carboxamide
    1083 5-[1-(3-amino-2,2- (ESI(+))
    dimethylpropyl)- m/e 409
    1H-pyrazol-4-yl]- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)thiophene-
    2-carboxamide
  • Example 76 2-cyclopentyl-N-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}acetamide Example 76A N-(imidazo[1,2-a]pyridin-6-yl)-2-(4-nitrophenyl)acetamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-amine for 3-methylbutan-1-amine and 2-(4-nitrophenyl)acetic acid for 4-nitrobenzoic acid.
  • Example 76B 2-(4-aminophenyl)-N-(imidazo[1,2-a]pyridin-6-yl)acetamide
  • The title compound was prepared as described in Example 1B, substituting N-(imidazo[1,2-a]pyridin-6-yl)-2-(4-nitrophenyl)acetamide for N-isopentyl-4-nitrobenzamide.
  • Example 76C 2-cyclopentyl-N-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}acetamide
  • The title compound was prepared as described in Example 52A, substituting 2-(4-aminophenyl)-N-(imidazo[1,2-a]pyridin-6-yl)acetamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.71 (s, 1H), 9.83 (s, 1H), 9.55 (m, 1H), 8.38 (d, J=2.0 Hz, 1H), 8.08 (d, J=2.0 Hz, 1H), 7.96-7.88 (m, 1H), 7.80-7.73 (m, 1H), 7.58-7.51 (m, 2H), 7.29-7.23 (m, 2H), 3.67 (bs, 2H), 2.34-2.15 (m, 3H), 1.82-1.65 (m, 2H), 1.67-1.41 (m, 4H), 1.26-1.10 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 77 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide Example 77A tert-butyl 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)phenylcarbamate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(tert-butoxycarbonylamino)benzoic acid for 4-nitrobenzoic acid.
  • Example 77B 4-amino-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)phenylcarbamate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 77C N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-2-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-amino-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide for 3-methylbutan-1-amine and 2-(tetrahydrofuran-2-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.14 (s, 1H), 8.93 (t, J=5.8 Hz, 1H), 8.48-8.45 (m, 1H), 7.95 (s, 1H), 7.88-7.82 (m, 2H), 7.71-7.64 (m, 2H), 7.53 (m, 7.55-7.48, 2H), 7.22 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 4.23-4.12 (m, 1H), 3.82-3.72 (m, 1H), 3.66-3.56 (m, 1H), 2.59-2.44 (m, 2H), 2.07-1.95 (m, 1H), 1.92-1.77 (m, 2H), 1.60-1.47 (m, 1H); MS (ESI(+)) m/e 379 (M+H)+.
  • Example 78 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 77, substituting 2-(tetrahydrofuran-3-yl)acetic acid for 2-(tetrahydrofuran-2-yl)acetic acid in Example 77C. 1H NMR (500 MHz, DMSO-d6, Temp=90° C.) δ ppm 9.87 (bs, 1H), 8.65-8.59 (m, 1H), 8.42 (s, 1H), 7.87 (s, 1H), 7.84-7.79 (m, 2H), 7.66-7.61 (m, 2H), 7.52-7.45 (m, 2H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 3.85-3.78 (m, 1H), 3.77-3.69 (m, 1H), 3.68-3.60 (m, 1H), 3.38-3.31 (m, 1H), 2.64-2.54 (m, 1H), 2.45-2.40 (m, 2H), 2.09-1.98 (m, 1H), 1.63-1.51 (m, 1H); MS (ESI(+)) m/e 379 (M+H)+.
  • Example 79 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 77, substituting 2-(tetrahydro-2H-pyran-4-yl)acetic acid for 2-(tetrahydrofuran-2-yl)acetic acid in Example 77C. 1H NMR (500 MHz, DMSO-d6, Temp=90° C.) δ ppm 9.84 (bs, 1H), 8.67-8.60 (m, 1H), 8.42 (s, 1H), 7.87 (s, 1H), 7.85-7.79 (m, 2H), 7.67-7.61 (m, 2H), 7.52-7.45 (m, 2H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 3.85-3.77 (m, 2H), 3.35-3.26 (m, 2H), 2.28 (d, J=7.0 Hz, 2H), 2.07-1.96 (m, 1H), 1.65-1.57 (m, 2H), 1.31-1.22 (m, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 80 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[(morpholin-4-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 77, substituting 2-morpholinoacetic acid for 2-(tetrahydrofuran-2-yl)acetic acid in Example 77C. 1H NMR (500 MHz, DMSO-d6, Temp=90° C.) δ ppm 9.70 (bs, 1H), 8.69-8.63 (m, 1H), 8.42 (s, 1H), 7.90-7.81 (m, 3H), 7.70-7.65 (m, 2H), 7.53-7.45 (m, 2H), 7.21 (dd, J=9.3, 1.7 Hz, 1H), 4.46 (d, J=5.8 Hz, 2H), 3.67-3.61 (m, 4H), 3.14 (s, 2H), 2.56-2.52 (m, 4H); MS (ESI(+)) m/e 394 (M+H)+.
  • Example 81 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 77, substituting 4-cyclopentylbutanoic acid for 2-(tetrahydrofuran-2-yl)acetic acid in Example 77C. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.10 (s, 1H), 8.92 (t, J=5.8 Hz, 1H), 8.46 (dd, J=1.9, 0.9 Hz, 1H), 7.95 (dd, J=1.2, 0.6 Hz, 1H), 7.87-7.81 (m, 2H), 7.70-7.64 (m, 2H), 7.55-7.49 (m, 2H), 7.22 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 2.37-2.30 (m, 2H), 1.81-1.68 (m, 3H), 1.64-1.41 (m, 6H), 1.19-1.02 (m, 2H); MS (ESI(+)) m/e 391 (M+H)+.
  • Example 82 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[(propan-2-yloxy)acetyl]amino}benzamide
  • The title compound was prepared as described in Example 77, substituting 2-isopropoxyacetic acid for 2-(tetrahydrofuran-2-yl)acetic acid in Example 77C. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.78 (s, 1H), 8.95 (t, J=5.8 Hz, 1H), 8.49-8.44 (m, 1H), 7.97-7.93 (m, 1H), 7.89-7.83 (m, 2H), 7.78-7.72 (m, 2H), 7.56-7.50 (m, 2H), 7.22 (dd, J=9.2, 1.7 Hz, 1H), 4.46 (d, J=5.8 Hz, 2H), 4.04 (s, 2H), 3.75-3.64 (m, 1H), 1.17 (d, J=6.1 Hz, 6H); MS (ESI(+)) m/e 367 391 (M+H)+.
  • Example 83 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate Example 83A 4-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-bromobenzoic acid for 4-nitrobenzoic acid.
  • Example 83B tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.9 Hz, 1H), 8.49-8.45 (m, 1H), 7.97-7.93 (m, 1H), 7.91-7.84 (m, 2H), 7.61-7.48 (m, 4H), 7.22 (dd, J=9.3, 1.7 Hz, 1H), 6.32-6.25 (m, 1H), 4.47 (d, J=5.8 Hz, 2H), 4.05-3.99 (m, 2H), 3.58-3.50 (m, 2H), 2.55-2.44 (m, 2H), 1.43 (s, 9H); MS (ESI(+)) m/e 433 (M+H)+.
  • Example 84 N-{4-[(cyclopentylacetyl)amino]benzyl}imidazo[1,2-a]pyridine-6-carboxamide Example 84A N-(4-nitrobenzyl)imidazo[1,2-a]pyridine-6-carboxamide
  • The title compound was prepared as described in Example 1A, substituting (4-nitrophenyl)methanamine for 3-methylbutan-1-amine and imidazo[1,2-a]pyridine-6-carboxylic acid for 4-nitrobenzoic acid.
  • Example 84B N-(4-aminobenzyl)imidazo[1,2-a]pyridine-6-carboxamide
  • The title compound was prepared as described in Example 1B, substituting N-(4-nitrobenzyl)imidazo[1,2-a]pyridine-6-carboxamide for N-isopentyl-4-nitrobenzamide.
  • Example 84C N-{4-[(cyclopentylacetyl)amino]benzyl}imidazo[1,2-a]pyridine-6-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(4-aminobenzyl)imidazo[1,2-a]pyridine-6-carboxamide for 3-methylbutan-1-amine and 2-cyclopentylacetic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.80 (s, 1H), 9.16-9.11 (m, 1H), 9.04 (t, J=5.9 Hz, 1H), 8.08-8.03 (m, 1H), 7.76-7.57 (m, 3H), 7.58-7.50 (m, 2H), 7.29-7.22 (m, 2H), 4.44 (d, J=5.8 Hz, 2H), 2.33-2.14 (m, 3H), 1.81-1.67 (m, 2H), 1.66-1.42 (m, 4H), 1.27-1.09 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 85 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-1,3-thiazole-5-carboxamide Example 85A 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 2-bromothiazole-5-carboxamide for 4-nitrobenzoic acid.
  • Example 85B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting 2,3,4,5-tetrahydro-1H-benzo[d]azepine for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.78 (t, J=5.8 Hz, 1H), 8.44 (s, 1H), 7.95 (s, 1H), 7.86 (s, 1H), 7.48-7.56 (m, 2H), 7.08-7.22 (m, 5H), 4.38 (d, J=5.9 Hz, 2H), 3.67-3.78 (m, 4H), 2.89-3.01 (m, 4H); MS (ESI(+)) m/e 402 (M+H)+.
  • Example 86 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-(3-phenylpyrrolidin-1-yl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 85, substituting 3-phenylpyrrolidine for 2,3,4,5-tetrahydro-1H-benzo[d]azepine in Example 85B. 1H NMR (400 MHz, DMSO-d6) δ 8.75 (dd, J=5.8, 5.6 Hz, 1H), 8.44 (s, 1H), 7.95 (s, 1H), 7.86 (s, 1H), 7.56-7.50 (m, 2H), 7.35-7.31 (m, 2H), 7.29-7.21 (m, 2H), 7.18 (dd, J=8.4, 4.7 Hz, 1H), 4.45 (s, 1H), 4.38 (d, J=5.8 Hz, 2H), 3.92-3.83 (m, 2H), 3.62-3.45 (m, 2H), 2.68-2.62 (m, 1H), 2.42-2.30 (m, 1H), 2.20-2.07 (m, 1H). MS (ESI)(+)) m/e 404 (M+H)+.
  • Example 87 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutyl)amino]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 85, substituting 3-methylbutan-1-amine for 2,3,4,5-tetrahydro-1H-benzo[d]azepine in Example 85B. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.67 (t, J=5.9 Hz, 1H), 8.42 (s, 1H), 8.08 (t, J=5.4 Hz, 1H), 7.94 (s, 1H), 7.71 (s, 1H), 7.49-7.55 (m, 2H), 7.16 (dd, J=9.3, 1.6 Hz, 1H), 4.36 (d, J=5.9 Hz, 2H), 3.17-3.26 (m, 2H), 1.61 (dq, J=6.7 Hz, 1H), 1.41 (q, J=7.0 Hz, 2H), 0.87 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 344 (M+H)+.
  • Example 88 2-(1,3-dihydro-2H-isoindol-2-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 85, substituting isoindoline for 2,3,4,5-tetrahydro-1H-benzo[d]azepine in Example 85B. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.81 (t, J=5.9 Hz, 1H), 8.45 (s, 1H), 7.89-7.99 (m, 2H), 7.49-7.56 (m, 2H), 7.37-7.45 (m, 2H), 7.30-7.37 (m, 2H), 7.19 (dd, J=9.3, 1.5 Hz, 1H), 4.76 (s, 4H), 4.40 (d, J=5.7 Hz, 2H); MS (ESI(+)) m/e 376 (M+H)+.
  • Example 89 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylcarbamoyl)amino]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.98-8.94 (m, 1H), 8.67 (s, 1H), 8.64 (s, 1H), 7.97-7.93 (m, 1H), 7.54-7.48 (m, 2H), 7.42-7.36 (m, 2H), 7.19-7.12 (m, 2H), 7.08 (dd, J=9.5, 2.1 Hz, 1H), 4.14-3.99 (m, 2H), 2.89-2.56 (m, 3H), 1.77-1.69 (m, 2H), 1.52-1.36 (m, 11H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 90 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide Example 90A N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenyl}-3,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 90B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6, Temp=90° C.) δ ppm 8.75-8.67 (m, 1H), 8.43 (s, 1H), 7.89-7.83 (m, 3H), 7.54-7.43 (m, 4H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 6.29-6.23 (m, 1H), 4.47 (d, J=5.8 Hz, 2H), 4.19-4.13 (m, 2H), 3.70 (t, J=5.7 Hz, 2H), 2.95-2.84 (m, 1H), 2.57-2.49 (m, 2H), 1.04 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 403 (M+H)+.
  • TABLE 7
    The following Examples were prepared essentially as described in Example 90, substituting
    the appropriate carboxylic acid for isobutyric acid in Example 90B.
    Ex Name 1H NMR MS
    91 4-[1-(2-hydroxy-2- (ESI(+))
    methylpropanoyl)- m/e 419
    1,2,3,6- (M + H)+
    tetrahydropyridin-4-
    yl]-N-(imidazo[1,2-
    a]pyridin-6-
    ylmethyl)benzamide
    92 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 460
    ylmethyl)-4-[1- (M + H)+
    (morpholin-4-
    ylacetyl)-1,2,3,6-
    tetrahydropyridin-4-
    yl]benzamide
    93 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 459
    ylmethyl)-4-[1- (M + H)+
    (tetrahydro-2H-
    pyran-4-ylacetyl)-
    1,2,3,6-
    tetrahydropyridin-4-
    yl]benzamide
    94 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 445
    ylmethyl)-4-[1- (M + H)+
    (tetrahydrofuran-3-
    ylacetyl)-1,2,3,6-
    tetrahydropyridin-4-
    yl]benzamide
    95 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 445
    ylmethyl)-4-[1- (M + H)+
    (tetrahydrofuran-2-
    ylacetyl)-1,2,3,6-
    tetrahydropyridin-4-
    yl]benzamide
    96 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6- m/e 459
    ylmethyl)-4-{1-[3- (M + H)+
    (tetrahydrofuran-2-
    yl)propanoyl]-
    1,2,3,6-
    tetrahydropyridin-4-
    yl}benzamide
    97 4-[1- 1H NMR (300 MHz, methanol-d4) δ ppm 8.81- (ESI(+))
    (cyclopentylacetyl)- 8.76 (m, 1H), 8.21 (m, 1H), 8.05-7.98 (m, m/e 443
    1,2,3,6- 2H), 7.97-7.79 (m, 3H), 7.59-7.53 (m, 2H), (M + H)+
    tetrahydropyridin-4- 6.31-6.23 (m, 1H), 4.74-4.65 (m, 2H), 4.29-
    yl]-N-(imidazo[1,2- 4.19 (m, 2H), 3.85-3.75 (m, 2H), 2.71-
    a]pyridin-6- 2.41 (m, 4H), 2.33-2.14 (m, 1H), 1.92-1.74
    ylmethyl)benzamide (m, 2H), 1.76-1.49 (m, 4H), 1.32-1.13 (m,
    2H)
    98 N-(imidazo[1,2- 1H NMR (300 MHz, methanol-d4) δ ppm 8.81- (ESI(+))
    a]pyridin-6- 8.76 (m, 1H), 8.21 (m, 1H), 8.05-7.98 (m, m/e 443
    ylmethyl)-4-{1- 2H), 7.95-7.83 (m, 3H), 7.61-7.51 (m, 2H), (M + H)+
    [(propan-2- 6.31-6.22 (m, 1H), 4.74-4.68 (m, 2H), 4.32-
    yloxy)acetyl]- 4.17 (m, 4H), 3.90-3.64 (m, 3H), 2.73-
    1,2,3,6- 2.53 (m, 2H), 1.25-1.16 (m, 6H)
    tetrahydropyridin-4-
    yl}benzamide
    99 N-(imidazo[1,2- 1H NMR (300 MHz, methanol-d4) δ ppm 8.81- (ESI(+))
    a]pyridin-6- 8.77 (m, 1H), 8.22-8.20 (m, 1H), 8.02- m/e 431
    ylmethyl)-4-[1- 7.99 (m, 2H), 7.97-7.82 (m, 3H), 7.59-7.53 (M + H)+
    (tetrahydrofuran-2- (m, 2H), 6.31-6.23 (m, 1H), 4.82-4.74 (m,
    ylcarbonyl)-1,2,3,6- 1H), 4.70 (s, 2H), 4.40-4.11 (m, 2H), 4.01-
    tetrahydropyridin-4- 3.71 (m, 4H), 2.74-2.52 (m, 2H), 2.30-2.17
    yl]benzamide (m, 1H), 2.17-1.84 (m, 3H)
    100 N-(imidazo[1,2- 1H NMR (300 MHz, methanol-d4) δ ppm 8.81- (ESI(+))
    a]pyridin-6- 8.77 (m, 1H), 8.24-8.17 (m, 1H), 8.05- m/e 431
    ylmethyl)-4-[1- 7.97 (m, 2H), 7.97-7.82 (m, 3H), 7.59-7.53 (M + H)+
    (tetrahydrofuran-3- (m, 2H), 6.31-6.25 (m, 1H), 4.72 (s, 2H),
    ylcarbonyl)-1,2,3,6- 4.35-4.21 (m, 2H), 4.06-3.93 (m, 1H), 3.95-
    tetrahydropyridin-4- 3.76 (m, 5H), 3.60-3.42 (m, 1H), 2.71-
    yl]benzamide 2.52 (m, 2H), 2.27-2.02 (m, 2H)
    101 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.81- (ESI(+))
    a]pyridin-6- 8.78 (m, 1H), 8.23-8.19 (m, 1H), 8.05- m/e 828
    ylmethyl)-4-[1- 7.98 (m, 2H), 7.93-7.84 (m, 3H), 7.59-7.53 (M + H)+
    (tetrahydro-2H- (m, 2H), 6.31-6.25 (m, 1H), 4.70 (s, 2H),
    pyran-4- 4.36-4.30 (m, 1H), 4.25-4.19 (m, 1H), 4.02-
    ylcarbonyl)-1,2,3,6- 3.93 (m, 2H), 3.87-3.78 (m, 2H), 3.59-
    tetrahydropyridin-4- 3.46 (m, 2H), 3.10-2.92 (m, 1H), 2.70-2.53
    yl]benzamide (m, 2H), 1.91-1.72 (m, 2H), 1.73-1.57 (m,
    2H)
    102 4-[1-(1,4-dioxan-2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79 (ESI(+))
    ylcarbonyl)-1,2,3,6- (s, 1H), 8.23-8.20 (m, 1H), 8.04-7.99 (m, m/e 447
    tetrahydropyridin-4- 2H), 7.93-7.84 (m, 3H), 7.59-7.53 (m, 2H), (M + H)+
    yl]-N-(imidazo[1,2- 6.29-6.23 (m, 1H), 4.73-4.67 (m, 2H), 4.53-
    a]pyridin-6- 4.06 (m, 3H), 3.96-3.59 (m, 8H), 2.76-
    ylmethyl)benzamide 2.53 (m, 2H)
    103 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79 (ESI(+))
    a]pyridin-6- (s, 1H), 8.24-8.19 (m, 1H), 8.01 (m, 2H), m/e 449
    ylmethyl)-4-{1-[(2- 7.97-7.82 (m, 3H), 7.59-7.53 (m, 2H), 6.31- (M + H)+
    methoxyethoxy)acetyl]- 6.23 (m, 1H), 4.76-4.69 (m, 2H), 4.35-
    1,2,3,6- 4.26 (m, 2H), 4.25-4.19 (m, 2H), 3.86-3.62
    tetrahydropyridin-4- (m, 4H), 3.61-3.54 (m, 2H), 3.35 (s, 3H),
    yl}benzamide 2.72-2.54 (m, 2H)
    104 4-(1-benzoyl- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    1,2,3,6- δ ppm 8.89-8.82 (m, 1H), 8.73 (s, 1H), 8.22 m/e 437
    tetrahydropyridin-4- (d, J = 1.9 Hz, 1H), 7.96 (d, J = 1.9 Hz, 1H), (M + H)+
    yl)-N-(imidazo[1,2- 7.90-7.75 (m, 4H), 7.56-7.49 (m, 2H), 7.49-
    a]pyridin-6- 7.37 (m, 5H), 6.27 (bs, 1H), 4.58 (d, J = 5.8
    ylmethyl)benzamide Hz, 2H), 4.23-4.17 (m, 2H), 3.72-3.65 (m,
    2H), 2.61-2.53 (m, 2H)
    105 4-{1-[(4,4- 1H NMR (400 MHz, DMSO-d6, Temp = 90° C.) (ESI(+))
    difluorocyclohexyl) δ ppm 8.90-8.83 (m, 1H), 8.74 (s, 1H), 8.22 m/e 479
    carbonyl]-1,2,3,6- (d, J = 1.9 Hz, 1H), 7.97 (d, J = 1.9 Hz, 1H), (M + H)+
    tetrahydropyridin-4- 7.90-7.75 (m, 4H), 7.54-7.48 (m, 2H), 6.30-
    yl}-N-(imidazo[1,2- 6.24 (m, 1H), 4.58 (d, J = 5.8 Hz, 2H), 4.21-
    a]pyridin-6- 4.15 (m, 2H), 3.77-3.69 (m, 2H), 2.91-
    ylmethyl)benzamide 2.79 (m, 1H), 2.58-2.51 (m, 2H), 2.12-2.00
    (m, 2H), 2.00-1.59 (m, 6H)
  • Example 106 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea Example 106A 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-(piperidin-4-yl)phenyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 106B 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 1A, substituting 1-(imidazo[1,2-a]pyridin-6-yl)-3-(4-(piperidin-4-yl)phenyl)urea for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6, Temp=90° C.) δ ppm 8.86-8.81 (m, 1H), 8.41 (s, 1H), 8.38 (s, 1H), 7.86 (s, 1H), 7.50-7.42 (m, 2H), 7.40-7.34 (m, 2H), 7.18-7.12 (m, 2H), 7.12-7.06 (m, 1H), 4.41-4.18 (m, 2H), 2.95-2.64 (m, 4H), 1.87-1.78 (m, 2H), 1.56-1.38 (m, 2H), 1.03 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 406 (M+H)+.
  • Example 108 2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-(imidazo[1,2-a]pyridin-6-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 85, substituting 1,2,3,4-tetrahydroisoquinoline for 2,3,4,5-tetrahydro-1H-benzo[d]azepine in Example 85B. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.81 (t, J=5.8 Hz, 1H), 8.47 (s, 1H), 7.98 (s, 1H), 7.89 (s, 1H), 7.48-7.63 (m, 2H), 7.13-7.32 (m, 5H), 4.65 (s, 2H), 4.39 (d, J=5.9 Hz, 2H), 3.73 (t, J=6.0 Hz, 2H), 2.94 (t, J=6.0 Hz, 2H); MS (ESI(+)) m/e 390 (M+H)+.
  • Example 109 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 106, substituting tetrahydro-2H-pyran-4-carboxylic acid for isobutyric acid in Example 106B. 1H NMR (400 MHz, methanol-d4) δ ppm 9.37-9.33 (m, 1H), 8.22-8.17 (m, 1H), 7.97 (d, J=2.1 Hz, 1H), 7.89-7.77 (m, 2H), 7.44-7.38 (m, 2H), 7.24-7.18 (m, 2H), 4.73-4.64 (m, 1H), 4.25-4.15 (m, 1H), 4.01-3.93 (m, 2H), 3.57-3.46 (m, 2H), 3.27-3.17 (m, 1H), 3.06-2.95 (m, 1H), 2.87-2.66 (m, 2H), 2.00-1.70 (m, 4H), 1.70-1.48 (m, 4H); MS (ESI(+)) m/e 448 (M+H)+.
  • Example 110 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-3-ylacetyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 106, substituting 2-(tetrahydrofuran-3-yl)acetic acid for isobutyric acid in Example 106B. 1H NMR (400 MHz, methanol-d4) δ ppm 9.37-9.32 (m, 1H), 8.21-8.17 (m, 1H), 7.97 (d, J=2.1 Hz, 1H), 7.88-7.76 (m, 2H), 7.44-7.38 (m, 2H), 7.23-7.18 (m, 2H), 4.71-4.62 (m, 1H), 4.14-4.05 (m, 1H), 3.95-3.82 (m, 2H), 3.81-3.70 (m, 1H), 3.47-3.35 (m, 1H), 3.25-3.12 (m, 1H), 2.86-2.48 (m, 5H), 2.22-2.07 (m, 1H), 1.95-1.83 (m, 2H), 1.74-1.46 (m, 3H); MS (ESI(+)) m/e 448 (M+H)+.
  • Example 111 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylacetyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 106, substituting 2-(tetrahydrofuran-2-yl)acetic acid for isobutyric acid in Example 106B. 1H NMR (400 MHz, methanol-d4) δ ppm 9.37-9.32 (m, 1H), 8.21-8.17 (m, 1H), 7.99-7.95 (m, 1H), 7.88-7.77 (m, 2H), 7.44-7.38 (m, 2H), 7.23-7.17 (m, 2H), 4.73-4.63 (m, 1H), 4.33-4.20 (m, 1H), 4.19-4.10 (m, 1H), 3.92-3.83 (m, 1H), 3.79-3.69 (m, 1H), 3.26-3.14 (m, 1H), 2.87-2.65 (m, 3H), 2.63-2.47 (m, 1H), 2.19-2.06 (m, 1H), 2.01-1.81 (m, 4H), 1.77-1.50 (m, 3H); MS (ESI(+)) m/e 448 (M+H)+.
  • Example 112 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-imidazo[1,2-a]pyridin-6-ylurea
  • The title compound was prepared as described in Example 106, substituting benzoic acid for isobutyric acid in Example 106B. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.87-8.81 (m, 1H), 8.38 (bs, 1H), 8.38 (bs, 1H), 7.86 (s, 1H), 7.51-7.34 (m, 9H), 7.21-7.14 (m, 2H), 7.09 (dd, J=9.5, 2.0 Hz, 1H), 4.34-3.97 (m, 2H), 3.08-2.95 (m, 2H), 2.83-2.71 (m, 1H), 1.85-1.77 (m, 2H), 1.66-1.50 (m, 2H); MS (ESI(+)) m/e 440 (M+H)+.
  • Example 113 1-imidazo[1,2-a]pyridin-6-yl-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 106, substituting tetrahydrofuran-2-carboxylic acid for isobutyric acid in Example 106B. 1H NMR (400 MHz, methanol-d4) δ ppm 9.38-9.33 (m, 1H), 8.21-8.16 (m, 1H), 8.00-7.95 (m, 1H), 7.88-7.77 (m, 2H), 7.44-7.38 (m, 2H), 7.23-7.17 (m, 2H), 4.83-4.73 (m, 1H), 4.69-4.60 (m, 1H), 4.22-4.11 (m, 1H), 4.01-3.90 (m, 1H), 3.91-3.82 (m, 1H), 3.26-3.12 (m, 1H), 2.87-2.68 (m, 2H), 2.31-2.14 (m, 1H), 2.12-1.75 (m, 5H), 1.77-1.50 (m, 2H); MS (ESI(+)) m/e 434 (M+H)+.
  • Example 114 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yloxy)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.40 (s, 1H), 7.86-7.79 (m, 3H), 7.52 (t, J=5.4 Hz, 2H), 7.34 (dd, J=9.3, 1.7 Hz, 1H), 7.06-6.99 (m, 2H), 4.72-4.60 (m, 1H), 4.56 (s, 2H), 3.77-3.65 (m, 2H), 3.41-3.30 (m, 2H), 2.03-1.90 (m, 2H), 1.76-1.59 (m, 2H), 1.46 (s, 9H); MS (ESI(+)) m/e 451 (M+H)+.
  • Example 115 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide Example 115A 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 2-bromothiazole-5-carboxylic acid for 4-nitrobenzoic acid.
  • Example 115B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-((tetrahydrofuran-2-yl)methylamino)thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting (tetrahydrofuran-2-yl)methanamine for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide.
  • Example 115C N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[{[2-(propan-2-yloxy)ethyl]carbamoyl}(tetrahydrofuran-2-ylmethyl)amino]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1C, substituting 2-isopropoxyethanamine for 4-amino-N-isopentylbenzamide and N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-((tetrahydrofuran-2-yl)methylamino)thiazole-5-carboxamide for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, CDCl3) δ ppm 8.52 (s, 1H), 8.21 (d, J=9.0 Hz, 1H), 7.96 (s, 1H), 7.89 (d, J=1.5 Hz, 1H), 7.86-7.80 (m, 1H), 7.78 (d, J=9.5 Hz, 1H), 7.73 (s, 1H), 6.96-6.86 (m, 1H), 4.74-4.60 (m, 2H), 4.50-4.38 (m, 1H), 4.26 (ddd, J=4.4, 2.2, 0.6 Hz, 1H), 4.07-3.90 (m, 2H), 3.85-3.74 (m, 1H), 3.63 (dd, J=12.2, 6.1 Hz, 1H), 3.60-3.53 (m, 2H), 3.53-3.41 (m, 2H), 1.95 (dd, J=7.8, 6.9 Hz, 3H), 1.63-1.56 (m, 1H), 1.18 (dd, J=6.1, 1.2 Hz, 6H); (APCI(+)) m/e 487 (M+H)+.
  • TABLE 8
    The following Examples were prepared essentially as described in Example
    115, substituting the appropriate amine in Example 115B and the appropriate
    amine for 2-isopropoxyethanamine in Example 115C.
    Ex Name 1H NMR MS
    138 N-(imidazo[1,2- 1H NMR (400 MHz, CDCl3) δ ppm 8.09 (d, (APCI(+))
    a]pyridin-7- J = 7.0 Hz, 1H), 7.86 (d, J = 14.0 Hz, 2H), m/e 459
    ylmethyl)-2-{[(2- 7.62 (d, J = 0.8 Hz, 1H), 7.54 (d, J = 9.1 Hz, (M + H)+
    methoxyethyl)carbam- 2H), 6.84 (dd, J = 7.0, 1.4 Hz, 1H), 6.27 (t,
    oyl](tetrahydrofuran- J = 5.8 Hz, 1H), 4.63 (d, J = 6.0 Hz, 2H),
    2-ylmethyl)amino}- 4.44 (d, J = 14.3 Hz, 1H), 4.29 (q, J = 7.3
    1,3-thiazole-5- Hz, 1H), 4.05 (dd, J = 15.4, 7.2 Hz, 1H),
    carboxamide 3.92 (dd, J = 15.2, 7.2 Hz, 1H), 3.86-3.72
    (m, 1H), 3.58-3.51 (m, 2H), 3.48 (dd, J =
    9.2, 3.8 Hz, 3H), 3.39 (s, 3H), 2.14 (dt, J =
    12.4, 6.3 Hz, 1H), 2.05-1.86 (m, 2H)
    141 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.78 (s, 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.03 m/e 459
    ylmethyl)-2-{[(2- (d, J = 2.1 Hz, 1H), 7.99 (d, J = 9.8 Hz, (M + H)+
    methoxyethyl)carbam- 2H), 7.91 (d, J = 9.3 Hz, 1H), 4.65 (s, 2H),
    oyl](tetrahydrofuran- 4.24 (dd, J = 15.2, 7.6 Hz, 1H), 4.12 (dd, J =
    3-ylmethyl)amino}- 15.2, 7.9 Hz, 1H), 3.93 (td, J = 8.1, 5.8
    1,3-thiazole-5- Hz, 1H), 3.79-3.67 (m, 2H), 3.60 (dd, J =
    carboxamide 8.7, 5.2 Hz, 1H), 3.55-3.45 (m, 4H), 3.36
    (s, 3H), 2.85-2.75 (m, 1H), 2.00 (td, J =
    13.4, 7.8 Hz, 1H), 1.72 (dt, J = 20.1, 6.3 Hz,
    1H)
    151 N-(imidazo[1,2- 1H NMR (500 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.77 (s, 1H), 8.21 (d, J = 2.0 Hz, 1H), 8.02 m/e 473
    ylmethyl)-2-{[(2- (d, J = 2.1 Hz, 1H), 7.99 (dd, J = 9.3, 1.4 (M + H)+
    methoxyethyl)carbam- Hz, 1H), 7.97 (s, 1H), 7.90 (d, J = 9.3 Hz,
    oyl](tetrahydro- 1H), 4.65 (s, 2H), 4.07 (d, J = 7.6 Hz, 2H),
    2H-pyran-4- 3.92 (dd, J = 11.5, 3.0 Hz, 2H), 3.52 (dd, J =
    ylmethyl)amino}- 8.3, 3.1 Hz, 2H), 3.47 (dd, J = 8.1, 3.0 Hz,
    1,3-thiazole-5- 2H), 3.36 (s, 3H), 3.36-3.32 (m, 2H), 2.14
    carboxamide (ddd, J = 15.4, 7.7, 3.8 Hz, 1H), 1.54 (d, J =
    11.2 Hz, 2H), 1.42 (qd, J = 12.1, 4.4 Hz,
    2H)
    152 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.78 (s, 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.03 m/e 501
    ylmethyl)-2-[{[2- (d, J = 2.1 Hz, 1H), 8.01-7.97 (m, 2H), (M + H)+
    (propan-2- 7.91 (d, J = 9.3 Hz, 1H), 4.65 (s, 2H), 4.06
    yloxy)ethyl]carbam- (d, J = 7.6 Hz, 2H), 3.92 (dd, J = 11.4, 3.0
    oyl}(tetrahydro-2H- Hz, 2H), 3.63 (dt, J = 12.2, 6.1 Hz, 1H),
    pyran-4- 3.57 (dd, J = 10.1, 4.5 Hz, 2H), 3.45 (t, J =
    ylmethyl)amino]- 5.5 Hz, 2H), 3.35 (dd, J = 11.6, 1.7 Hz, 2H),
    1,3-thiazole-5- 2.16 (ddd, J = 11.4, 7.6, 3.8 Hz, 1H), 1.55
    carboxamide (dd, J = 12.6, 1.5 Hz, 2H), 1.42 (qd, J =
    12.1, 4.4 Hz, 2H), 1.16 (d, J = 6.1 Hz, 6H)
    153 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.70 (s, 1H), 8.14 (d, J = 2.1 Hz, 1H), 7.95 m/e 459
    ylmethyl)-2-{[(2- (d, J = 2.2 Hz, 1H), 7.91 (dd, J = 9.4, 1.5 (M + H)+
    methoxyethyl)carbam- Hz, 1H), 7.88 (s, 1H), 7.82 (d, J = 9.3 Hz,
    oyl][(2R)- 1H), 4.57 (s, 2H), 4.33 (dd, J = 15.4, 1.8
    tetrahydrofuran-2- Hz, 1H), 4.17 (dd, J = 11.3, 4.9 Hz, 1H),
    ylmethyl]amino}- 4.00 (dd, J = 15.4, 7.7 Hz, 1H), 3.86 (dd, J =
    1,3-thiazole-5- 15.2, 7.0 Hz, 1H), 3.71 (td, J = 7.8, 5.8
    carboxamide Hz, 1H), 3.52-3.39 (m, 2H), 3.38-3.32
    (m, 2H), 3.30 (s, 3H), 2.11-1.95 (m, 1H),
    1.95-1.77 (m, 2H), 1.66-1.48 (m, 1H),
    0.99-0.87 (m, 1H)
    154 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.77 (s, 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.02 m/e 487
    ylmethyl)-2-({[2- (d, J = 2.1 Hz, 1H), 7.98 (dd, J = 9.4, 1.2 (M + H)+
    (propan-2- Hz, 1H), 7.96 (s, 1H), 7.90 (d, J = 9.3 Hz,
    yloxy)ethyl]carbam- 1H), 4.64 (s, 2H), 4.41 (dd, J = 15.4, 1.6
    oyl}[(2R)- Hz, 1H), 4.29-4.21 (m, 1H), 4.07 (dd, J =
    tetrahydrofuran-2- 15.4, 7.6 Hz, 1H), 3.96 (dd, J = 15.0, 7.1
    ylmethyl]amino)- Hz, 1H), 3.77 (dd, J = 14.0, 7.7 Hz, 1H),
    1,3-thiazole-5- 3.64 (dt, J = 12.2, 6.1 Hz, 1H), 3.57 (t, J =
    carboxamide 5.0 Hz, 2H), 3.41 (t, J = 5.3 Hz, 2H), 2.15-
    2.03 (m, 1H), 2.00-1.87 (m, 2H), 1.64 (dq,
    J = 12.4, 8.2 Hz, 1H), 1.16 (d, J = 6.1 Hz,
    6H)
    155 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.78 (s, 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.03 m/e 459
    ylmethyl)-2-{[(2- (d, J = 2.1 Hz, 1H), 8.01-7.97 (m, 1H), (M + H)+
    methoxyethyl)carbam- 7.96 (s, 1H), 7.90 (d, J = 9.3 Hz, 1H), 4.64
    oyl][(2S)- (s, 2H), 4.41 (d, J = 15.4 Hz, 1H), 4.26 (q, J =
    tetrahydrofuran-2- 6.4 Hz, 1H), 4.08 (dd, J = 15.4, 7.7 Hz,
    ylmethyl]amino}- 1H), 3.94 (dd, J = 15.1, 7.1 Hz, 1H), 3.79
    1,3-thiazole-5- (dd, J = 13.7, 7.7 Hz, 1H), 3.53 (dt, J = 7.4,
    carboxamide 4.5 Hz, 2H), 3.43 (t, J = 5.2 Hz, 2H), 3.38
    (s, 3H), 2.11 (td, J = 12.3, 7.2 Hz, 1H), 2.01-
    1.85 (m, 2H), 1.65 (dq, J = 12.2, 8.2 Hz,
    1H)
    156 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.78 (s, 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.03 m/e 487
    ylmethyl)-2-({[2- (d, J = 2.1 Hz, 1H), 7.99 (dd, J = 9.3, 1.4 (M + H)+
    (propan-2- Hz, 1H), 7.96 (s, 1H), 7.91 (d, J = 9.3 Hz,
    yloxy)ethyl]carbam- 1H), 4.65 (s, 2H), 4.41 (dd, J = 15.4, 1.8
    oyl}[(2S)- Hz, 1H), 4.31-4.22 (m, 1H), 4.08 (dd, J =
    tetrahydrofuran-2- 15.4, 7.6 Hz, 1H), 3.96 (dd, J = 15.1, 7.0
    ylmethyl]amino)- Hz, 1H), 3.78 (dd, J = 14.0, 7.7 Hz, 1H),
    1,3-thiazole-5- 3.65 (dt, J = 12.1, 6.1 Hz, 1H), 3.57 (t, J =
    carboxamide 4.9 Hz, 2H), 3.41 (t, J = 5.3 Hz, 2H), 2.11
    (td, J = 12.2, 7.1 Hz, 1H), 2.01-1.85 (m,
    2H), 1.65 (dq, J = 12.3, 8.2 Hz, 1H), 1.17
    (d, J = 6.1 Hz, 6H)
    157 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm (APCI(+))
    a]pyridin-6- 8.78 (s, 1H), 8.21 (d, J = 2.0 Hz, 1H), 8.03 m/e 487
    ylmethyl)-2-[{[2- (d, J = 2.1 Hz, 1H), 7.99 (d, J = 11.6 Hz, (M + H)+
    (propan-2- 2H), 7.90 (d, J = 9.4 Hz, 1H), 4.65 (d, J =
    yloxy)ethyl]carbam- 3.9 Hz, 2H), 4.24 (dd, J = 15.2, 7.6 Hz, 1H),
    oyl}(tetrahydrofuran- 4.12 (dd, J = 15.1, 8.0 Hz, 1H), 3.94 (td, J =
    3-ylmethyl)amino]- 8.1, 5.7 Hz, 1H), 3.79-3.67 (m, 2H), 3.63
    1,3-thiazole-5- (dt, J = 8.2, 4.7 Hz, 2H), 3.57 (t, J = 5.8 Hz,
    carboxamide 2H), 3.51-3.41 (m, 2H), 2.89-2.76 (m,
    1H), 2.00 (td, J = 13.3, 7.9 Hz, 1H), 1.73
    (dt, J = 20.3, 6.4 Hz, 1H), 1.15 (d, J = 6.1
    Hz, 6H)
  • Example 116 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[2-oxo-4-(tetrahydrofuran-3-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide Example 116A 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 2-bromothiazole-5-carboxylic acid for 4-nitrobenzoic acid.
  • Example 116B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[2-oxo-4-(tetrahydrofuran-3-yl)-1,3-oxazolidin-3-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting 4-(tetrahydrofuran-3-yl)oxazolidin-2-one for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide. 1H NMR (400 MHz, methanol-d4) δ 8.79 (s, 1H), 8.22 (d, J=1.9 Hz, 1H), 8.03 (s, 2H), 8.01-7.97 (m, 1H), 7.91 (d, J=9.5 Hz, 1H), 4.98-4.92 (m, 1H), 4.64 (dt, J=8.6, 4.5 Hz, 3H), 4.57-4.49 (m, 1H), 3.97 (td, J=8.5, 3.9 Hz, 1H), 3.81-3.71 (m, 1H), 3.71-3.59 (m, 2H), 2.26-2.02 (m, 1H), 1.96-1.85 (m, 1H), 1.78-1.65 (m, 1H); (APCI(+)) m/e 414 (M+H)+.
  • TABLE 9
    The following Examples were prepared essentially as described
    in Example 116, substituting the appropriate amine in Example
    116A and the appropriate amine in Example 116B.
    Ex Name 1H NMR MS
    122 N-(imidazo[1,2- (ESI(+))
    a]pyridin-6-ylmethyl)-2- m/e 420
    (2-oxo-5-phenyl-1,3- (M + H)+
    oxazolidin-3-yl)-1,3-
    thiazole-5-carboxamide
    158 2-[5-(4-chlorophenyl)- (ESI(+))
    2-oxo-1,3-oxazolidin-3- m/e 454
    yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-6-ylmethyl)-
    1,3-thiazole-5-
    carboxamide
    181 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- ppm 8.39 (d, J = 7.0 Hz, 1H), 8.04 (s, m/e 386
    [(4R)-2-oxo-4-(propan- 1H), 7.80 (s, 1H), 7.53 (s, 1H), 7.45 (s, (M + H)+
    2-yl)-1,3-oxazolidin-3- 1H), 6.97-6.87 (m, 1H), 4.75 (dt, J =
    yl]-1,3-thiazole-5- 7.7, 3.8 Hz, 1H), 4.52 (dd, J = 9.5, 6.3
    carboxamide Hz, 2H), 2.85-2.65 (m, 1H), 0.99 (d, J =
    7.1 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H)
    185 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- ppm 9.26 (t, J = 5.5 Hz, 1H), 8.75 (d, J = m/e 386
    [(4S)-2-oxo-4-(propan- 7.0 Hz, 1H), 8.18 (d, J = 2.1 Hz, 1H), (M + H)+
    2-yl)-1,3-oxazolidin-3- 8.07 (s, 1H), 8.00 (d, J = 2.1 Hz, 1H),
    yl]-1,3-thiazole-5- 7.81 (s, 1H), 7.48 (d, J = 7.0 Hz, 1H),
    carboxamide 4.77 (dd, J = 7.7, 3.9 Hz, 1H), 4.55 (dd,
    J = 10.7, 6.3 Hz, 2H), 2.76 (qd, J =
    10.6, 7.1 Hz, 1H), 1.00 (d, J = 7.1 Hz,
    3H), 0.84 (d, J = 6.9 Hz, 3H)
    187 2-{(4R)-4- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    [(benzyloxy)methyl]-2- ppm 8.40 (d, J = 7.0 Hz, 1H), 7.91 (s, m/e 464
    oxo-1,3-oxazolidin-3- 1H), 7.80 (s, 1H), 7.53 (s, 1H), 7.46 (s, (M + H)+
    yl}-N-(imidazo[1,2- 1H), 7.20 (ddd, J = 15.4, 11.1, 5.1 Hz,
    a]pyridin-7-ylmethyl)- 5H), 6.93 (dd, J = 7.0, 1.3 Hz, 1H), 4.85
    1,3-thiazole-5- (dd, J = 6.1, 2.6 Hz, 1H), 4.67-4.52
    carboxamide (m, 5H), 4.41 (d, J = 12.2 Hz, 1H), 4.12
    (dd, J = 10.2, 3.2 Hz, 1H), 3.63 (dd, J =
    10.2, 1.6 Hz, 1H)
    188 2-{(4S)-4- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    [(benzyloxy)methyl]-2- ppm 8.35 (d, J = 7.0 Hz, 1H), 7.87 (s, m/e 464
    oxo-1,3-oxazolidin-3- 1H), 7.75 (s, 1H), 7.48 (s, 1H), 7.42 (s, (M + H)+
    yl}-N-(imidazo[1,2- 1H), 7.16 (ddd, J = 19.3, 11.3, 5.0 Hz,
    a]pyridin-7-ylmethyl)- 5H), 6.88 (dd, J = 7.0, 1.3 Hz, 1H), 4.83-
    1,3-thiazole-5- 4.75 (m, 1H), 4.62-4.47 (m, 5H),
    carboxamide 4.36 (d, J = 12.2 Hz, 1H), 4.07 (dd, J =
    10.2, 3.2 Hz, 1H), 3.59 (dd, J = 10.2,
    1.6 Hz, 1H)
    218 2-{5- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    [(benzyloxy)methyl]-2- ppm 8.39 (d, J = 7.0 Hz, 1H), 8.03 (s, m/e 464
    oxo-1,3-oxazolidin-3- 1H), 7.79 (s, 1H), 7.53 (s, 1H), 7.45 (s, (M + H)+
    yl}-N-(imidazo[1,2- 1H), 7.36-7.18 (m, 5H), 6.92 (d, J =
    a]pyridin-7-ylmethyl)- 5.6 Hz, 1H), 5.02-4.99 (m, 2H), 4.59
    1,3-thiazole-5- (d, J = 2.3 Hz, 6H), 3.76 (ddd, J = 14.8,
    carboxamide 11.2, 3.2 Hz, 1H)
    244 2-[(2S)-2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    (hydroxymethyl)-5- ppm 9.25 (t, J = 5.7 Hz, 1H), 8.75 (d, J = m/e 372
    oxopyrrolidin-1-yl]-N- 7.0 Hz, 1H), 8.18 (d, J = 1.9 Hz, 1H), (M + H)+
    (imidazo[1,2-a]pyridin- 8.10 (s, 1H), 8.00 (d, J= 2.1 Hz, 1H),
    7-ylmethyl)-1,3- 7.81 (s, 1H), 7.48 (dd, J = 7.1, 1.3 Hz,
    thiazole-5-carboxamide 1H), 4.75-4.69 (m, 3H), 4.17 (dd, J =
    11.7, 3.4 Hz, 1H), 3.75 (dd, J = 11.7,
    2.2 Hz, 1H), 2.88 (dt, J = 17.8, 10.1 Hz,
    1H), 2.57 (ddd, J = 17.7, 10.1, 2.3 Hz,
    1H), 2.48-2.33 (m, 1H), 2.33-2.18
    (m, 1H)
    245 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- ppm 8.75 (d, J = 7.0 Hz, 1H), 8.18 (d, J = m/e 358
    [(4R)-4-methyl-2-oxo- 2.0 Hz, 1H), 8.07 (s, 1H), 8.00 (t, J = (M + H)+
    1,3-oxazolidin-3-yl]- 2.4 Hz, 1H), 7.81 (s, 1H), 7.48 (dd, J =
    1,3-thiazole-5- 7.0, 1.4 Hz, 1H), 4.87-4.78 (m, 1H),
    carboxamide 4.73 (s, 2H), 4.69 (t, J = 8.5 Hz, 1H),
    4.25 (dd, J = 8.7, 3.9 Hz, 1H), 1.57 (d, J =
    6.3 Hz, 3H)
    249 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- ppm 9.26 (t, J = 5.9 Hz, 1H), 8.75 (d, J = m/e 416
    {2-oxo-5-[(propan-2- 7.0 Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), (M + H)+
    yloxy)methyl]-1,3- 8.06 (s, 1H), 8.00 (d, J = 2.1 Hz, 1H),
    oxazolidin-3-yl}-1,3- 7.81 (s, 1H), 7.48 (d, J = 7.0 Hz, 1H),
    thiazole-5-carboxamide 4.98 (ddd, J = 9.1, 5.8, 2.9 Hz, 1H),
    4.73 (s, 2H), 4.31 (t, J = 9.5 Hz, 1H),
    4.14 (dd, J = 9.9, 5.6 Hz, 1H), 3.78 (dd,
    J = 11.2, 2.9 Hz, 1H), 3.73-3.60 (m,
    2H), 1.13 (d, J = 6.1 Hz, 6H)
    251 2-[5-(hydroxymethyl)- 1H NMR (400 MHz, DMSO-d6) δ ppm (APCI(+))
    2-oxo-1,3-oxazolidin-3- 9.17 (t, J = 6.2 Hz, 1H), 8.50 (d, J = 6.9 m/e 374
    yl]-N-(imidazo[1,2- Hz, 1H), 8.14 (s, 1H), 7.90 (s, 1H), 7.53 (M + H)+
    a]pyridin-7-ylmethyl)- (s, 1H), 7.41 (s, 1H), 6.85 (d, J = 6.9
    1,3-thiazole-5- Hz, 1H), 5.29 (t, J = 5.6 Hz, 1H), 4.93-
    carboxamide 4.84 (m, 1H), 4.47 (d, J = 5.8 Hz, 2H),
    4.24 (t, J = 9.4 Hz, 1H), 4.00 (dd, J =
    9.8, 5.8 Hz, 1H), 3.76-3.66 (m, 1H),
    3.66-3.56 (m, 1H)
    255 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- 8.40 (d, J = 7.0 Hz, 1H), 8.04 (s, 1H), m/e 416
    {(5S)-2-oxo-5-[(propan- 7.80 (s, 1H), 7.53 (s, 1H), 7.45 (s, 1H), (M + H)+
    2-yloxy)methyl]-1,3- 6.92 (d, J = 6.3 Hz, 1H), 5.01-4.94 (m,
    oxazolidin-3-yl}-1,3- 1H), 4.59 (s, 2H), 4.31 (t, J = 9.5 Hz,
    thiazole-5-carboxamide 1H), 4.13 (dd, J = 9.9, 5.6 Hz, 1H), 3.77
    (dd, J = 11.2, 3.0 Hz, 1H), 3.72-3.58
    (m, 2H), 1.13 (d, J = 6.1 Hz, 6H)
    256 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ (APCI(+))
    a]pyridin-7-ylmethyl)-2- ppm 8.40 (d, J = 7.0 Hz, 1H), 8.04 (s, m/e 416
    {(5R)-2-oxo-5-[(propan- 1H), 7.80 (s, 1H), 7.53 (s, 1H), 7.45 (s, (M + H)+
    2-yloxy)methyl]-1,3- 1H), 6.92 (d, J = 7.0 Hz, 1H), 5.03-
    oxazolidin-3-yl}-1,3- 4.95 (m, 1H), 4.59 (s, 2H), 4.31 (t, J =
    thiazole-5-carboxamide 9.5 Hz, 1H), 4.13 (dd, J = 9.9, 5.7 Hz,
    1H), 3.77 (dd, J = 11.2, 3.0 Hz, 1H),
    3.71-3.58 (m, 2H), 1.13 (d, J = 6.1 Hz,
    6H)
  • Example 117 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.09 (s, 1H), 9.00-8.93 (m, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.82 (m, 3H), 7.71-7.65 (m, 2H), 7.51 (d, J=1.2 Hz, 1H), 7.40-7.35 (m, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 2.37-2.31 (m, 2H), 2.31-2.16 (m, 1H), 1.81-1.68 (m, 2H), 1.67-1.44 (m, 4H), 1.26-1.10 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 118 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide Example 118A 2-cyclopentyl-N-(4-nitrophenyl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 4-nitroaniline for 3-methylbutan-1-amine and 2-cyclopentylacetic acid for 4-nitrobenzoic acid.
  • Example 118B N-(4-aminophenyl)-2-cyclopentylacetamide
  • The title compound was prepared as described in Example 1B, substituting 2-cyclopentyl-N-(4-nitrophenyl)acetamide for N-isopentyl-4-nitrobenzamide.
  • Example 118C 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide
  • The title compound was prepared as described in Example 1C, substituting N-(4-aminophenyl)-2-cyclopentylacetamide for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, methanol-d4) δ ppm 8.76-8.69 (m, 1H), 8.16 (dd, J=2.2, 0.8 Hz, 1H), 7.98 (d, J=2.2 Hz, 1H), 7.81-7.77 (m, 1H), 7.49-7.41 (m, 3H), 7.36-7.30 (m, 2H), 4.59 (s, 2H), 2.37-2.24 (m, 3H), 1.90-1.77 (m, 2H), 1.75-1.52 (m, 4H), 1.32-1.18 (m, 2H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 119 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide
  • The title compound was prepared as described in Example 51A, substituting 4-bromo-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.18 (t, J=5.7 Hz, 1H), 8.75 (s, 1H), 8.28 (s, 2H), 8.02 (d, J=1.5 Hz, 1H), 7.97 (s, 1H), 7.89 (d, J=8.5 Hz, 2H), 7.83-7.88 (m, 1H), 7.74-7.80 (m, 1H), 7.69 (d, J=8.3 Hz, 2H), 4.56 (d, J=5.7 Hz, 2H), 3.92 (d, J=7.2 Hz, 2H), 2.13 (dq, J=13.6, 6.8 Hz, 1H), 0.85 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 374 (M+H)+.
  • Example 137 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutanoyl)amino]-1,3-thiazole-5-carboxamide Example 137A 2-(3-methylbutanamido)thiazole-5-carboxylic acid
  • The title compound was prepared as described in Example 52A, substituting 3-methylbutanoyl chloride for 2-cyclopentylacetyl chloride and methyl 2-aminothiazole-5-carboxylate for methyl 4-aminobenzoate.
  • Example 137B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-2-[(3-methylbutanoyl)amino]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 2-(3-methylbutanamido)thiazole-5-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 12.31 (s, 1H), 9.05 (t, J=5.7 Hz, 1H), 8.54 (s, 1H), 7.97-8.11 (m, 2H), 7.56-7.71 (m, 2H), 7.34 (d, J=9.2 Hz, 1H), 4.44 (d, J=5.7 Hz, 2H), 2.33 (d, J=7.2 Hz, 2H), 2.07 (dq, J=13.6, 6.7, 6.6 Hz, 1H), 0.90 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 358 (M+H)+.
  • Example 159 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide Example 159A tert-butyl 4-(4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)phenoxy)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yloxy)benzoic acid for 4-nitrobenzoic acid.
  • Example 159B N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(piperidin-4-yloxy)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)phenoxy)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 159C N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(piperidin-4-yloxy)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.79-8.74 (m, 1H), 8.23-8.19 (m, 1H), 8.04-7.97 (m, 2H), 7.94-7.81 (m, 3H), 7.09-7.03 (m, 2H), 4.81-4.72 (m, 1H), 4.69 (s, 2H), 3.91-3.77 (m, 2H), 3.62-3.48 (m, 2H), 3.04-2.92 (m, 1H), 2.12-1.86 (m, 2H), 1.87-1.61 (m, 2H), 1.11 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 421 (M+H)+.
  • TABLE 10
    The following Examples were prepared essentially as described
    in Example 159, substituting the appropriate amine in Example
    159A and the appropriate carboxylic acid in Example 159C.
    Ex Name 1H NMR MS
    160 4-[(1- 1H NMR (400 MHz, methanol-d4) δ ppm 8.80- (ESI(+))
    acetylpiperidin-4- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 393
    yl)oxy]-N- 8.04-7.97 (m, 2H), 7.94-7.79 (m, 3H), 7.09- (M + H)+
    (imidazo[1,2- 7.03 (m, 2H), 4.78-4.70 (m, 1H), 4.69 (s, 2H),
    a]pyridin-6- 3.88-3.69 (m, 2H), 3.59-3.45 (m, 2H), 2.12
    ylmethyl)benzamide (s, 3H), 2.09-1.91 (m, 2H), 1.86-1.63 (m,
    2H)
    161 4-{[1- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    (cyclopropylcar- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 419
    bonyl)piperidin-4- 8.04-7.97 (m, 2H), 7.93-7.82 (m, 3H), 7.10- (M + H)+
    yl]oxy}-N- 7.04 (m, 2H), 4.81-4.73 (m, 1H), 4.69 (s, 2H),
    (imidazo[1,2- 4.07-3.97 (m, 1H), 3.92-3.81 (m, 1H), 3.78-
    a]pyridin-6- 3.67 (m, 1H), 3.57-3.48 (m, 1H), 2.13-1.92
    ylmethyl)benzamide (m, 3H), 1.88-1.65 (m, 2H), 0.91-0.78 (m,
    4H)
    162 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.77 (ESI(+))
    a]pyridin-6- (m, 1H), 8.23-8.19 (m, 1H), 8.04-7.97 (m, m/e 463
    ylmethyl)-4-{[1- 2H), 7.94-7.82 (m, 3H), 7.09-7.03 (m, 2H), (M + H)+
    (tetrahydro-2H- 4.75 (m, 1H), 4.69 (s, 2H), 4.00-3.88 (m, 2H),
    pyran-4- 3.89-3.80 (m, 2H), 3.63-3.45 (m, 4H), 3.04-
    ylcarbonyl)piperidin-4- 2.93 (m, 1H), 2.11-1.92 (m, 2H), 1.86-1.65
    yl]oxy}benzamide (m, 4H), 1.66-1.58 (m, 2H)
    163 4-{[1-(1,4-dioxan- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    2- 8.75 (m, 1H), 8.23-8.19 (m, 1H), 8.04-7.97 m/e 465
    ylcarbonyl)piperidin- (m, 2H), 7.93-7.82 (m, 3H), 7.09-7.02 (m, (M + H)+
    4-yl]oxy}-N- 2H), 4.79-4.71 (m, 1H), 4.69 (s, 2H), 4.47-
    (imidazo[1,2- 4.39 (m, 1H), 3.99-3.57 (m, 9H), 3.56-3.37
    a]pyridin-6- (m, 1H), 2.11-1.88 (m, 2H), 1.90-1.62 (m,
    ylmethyl)benzamide 2H)
    164 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    a]pyridin-6- 8.76 (m, 1H), 8.23-8.19 (m, 1H), 8.04-7.97 m/e 449
    ylmethyl)-4-({1- (m, 2H), 7.94-7.82 (m, 3H), 7.09-7.03 (m, (M + H)+
    [(2S)- 2H), 4.79-4.71 (m, 2H), 4.69 (s, 2H), 3.98-
    tetrahydrofuran-2- 3.72 (m, 4H), 3.66-3.43 (m, 2H), 2.26-2.13
    ylcarbonyl]piperidin-4- (m, 1H), 2.13-1.86 (m, 5H), 1.88-1.65 (m,
    yl}oxy)benzamide 2H)
    165 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    a]pyridin-6- 8.75 (m, 1H), 8.23-8.19 (m, 1H), 8.04-7.97 m/e 449
    ylmethyl)-4-({1- (m, 2H), 7.93-7.82 (m, 3H), 7.09-7.03 (m, (M + H)+
    [(2R)- 2H), 4.79-4.71 (m, 1H), 4.69 (s, 1H), 4.00-
    tetrahydrofuran-2- 3.71 (m, 4H), 3.67-3.43 (m, 1H), 2.26-2.13
    ylcarbonyl]piperidin-4- (m, 1H), 2.13-1.86 (m, 5H), 1.88-1.65 (m,
    yl}oxy)benzamide 2H)
    166 4-{[1-(2-hydroxy- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    2-methylpropanoyl)pi- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 437
    peridin-4- 8.04-7.97 (m, 2H), 7.93-7.81 (m, 3H), 7.08- (M + H)+
    yl]oxy}-N- 7.02 (m, 2H), 4.78-4.70 (m, 1H), 4.69 (s, 2H),
    (imidazo[1,2- 4.41-3.50 (m, 4H), 2.10-1.95 (m, 2H), 1.82-
    a]pyridin-6- 1.69 (m, 2H), 1.44 (s, 6H)
    ylmethyl)benzamide
    167 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    a]pyridin-6- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 451
    ylmethyl)-4-({1- 8.04-7.97 (m, 2H), 7.93-7.82 (m, 3H), 7.09- (M + H)+
    [(propan-2- 7.03 (m, 2H), 4.80-4.72 (m, 1H), 4.69 (s, 2H),
    yloxy)acetyl]piper- 4.19 (s, 2H), 3.87-3.73 (m, 2H), 3.73-3.62
    idin-4- (m, 1H), 3.59-3.45 (m, 2H), 2.11-1.93 (m,
    yl}oxy)benzamide 2H), 1.87-1.68 (m, 2H), 1.19 (d, J = 6.1 Hz,
    6H)
    168 4-[(1- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    butanoylpiperidin- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 421
    4-yl)oxy]-N- 8.04-7.97 (m, 2H), 7.96-7.81 (m, 3H), 7.08- (M + H)+
    (imidazo[1,2- 7.02 (m, 2H), 4.78-4.70 (m, 1H), 4.69 (s, 2H),
    a]pyridin-6- 3.90-3.73 (m, 2H), 3.59-3.46 (m, 2H), 2.40
    ylmethyl)benzamide (t, J = 7.5 Hz, 2H), 2.10-1.90 (m, 2H), 1.84-
    1.57 (m, 4H), 0.98 (t, J = 7.4 Hz, 3H)
    169 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.80- (ESI(+))
    a]pyridin-6- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 451
    ylmethyl)-4-{[1- 8.04-7.97 (m, 2H), 7.94-7.82 (m, 3H), 7.09- (M + H)+
    (3-methoxy-2- 7.03 (m, 2H), 4.80-4.71 (m, 1H), 4.69 (s, 2H),
    methylpropanoyl) 4.01-3.71 (m, 2H), 3.71-3.41 (m, 3H), 3.38-
    piperidin-4- 3.31 (m, 1H), 3.30 (s, 3H), 3.26-3.16 (m, 1H),
    yl]oxy}benzamide 2.12-1.88 (m, 2H), 1.87-1.61 (m, 2H), 1.06
    (d, J = 6.8 Hz, 3H)
    170 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    a]pyridin-6- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 461
    ylmethyl)-4-{[1- 8.04-7.97 (m, 2H), 7.94-7.81 (m, 3H), 7.09- (M + H)+
    (3,3,3- 7.03 (m, 2H), 4.80-4.73 (m, 1H), 4.69 (s, 2H),
    trifluoropropanoyl)pi- 3.90-3.72 (m, 2H), 3.66-3.47 (m, 4H), 2.11-
    peridin-4- 1.90 (m, 2H), 1.91-1.68 (m, 2H)
    yl]oxy}benzamide
    171 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    a]pyridin-6- 8.76 (m, 1H), 8.21 (dd, J = 2.1, 0.7 Hz, 1H), m/e 477
    ylmethyl)-4-{[1- 8.04-7.97 (m, 2H), 7.93-7.82 (m, 3H), 7.09- (M + H)+
    (tetrahydro-2H- 7.03 (m, 2H), 4.78-4.71 (m, 1H), 4.68 (s, 2H),
    pyran-4- 3.97-3.74 (m, 4H), 3.59-3.48 (m, 2H), 3.48-
    ylacetyl)piperidin- 3.38 (m, 2H), 2.37 (d, J = 7.0 Hz, 2H), 2.10-
    4- 1.90 (m, 3H), 1.85-1.60 (m, 4H), 1.41-1.26
    yl]oxy}benzamide (m, 2H)
    172 4-{[1- 1H NMR (400 MHz, methanol-d4) δ ppm 8.79- (ESI(+))
    (cyclopropylace- 8.75 (m, 1H), 8.21 (dd, J = 2.2, 0.7 Hz, 1H), m/e 433
    tyl)piperidin-4- 8.04-7.97 (m, 2H), 7.93-7.82 (m, 3H), 7.09- (M + H)+
    yl]oxy}-N- 7.03 (m, 2H), 4.79-4.71 (m, 1H), 4.69 (s, 2H),
    (imidazo[1,2- 3.92-3.73 (m, 2H), 3.60-3.47 (m, 2H), 2.36
    a]pyridin-6- (d, J = 6.8 Hz, 2H), 2.10-1.91 (m, 2H), 1.86-
    ylmethyl)benzamide 1.65 (m, 2H), 1.08-0.94 (m, 1H), 0.58-0.47
    (m, 2H), 0.23-0.16 (m, 2H)
    173 N-(imidazo[1,2- 1H NMR (400 MHz, methanol-d4) δ ppm 8.80- (ESI(+))
    a]pyridin-6- 8.75 (m, 1H), 8.22-8.19 (m, 1H), 8.04-7.97 m/e 463
    ylmethyl)-4-{[1- (m, 2H), 7.92-7.81 (m, 3H), 7.09-7.03 (m, (M + H)+
    (tetrahydrofuran- 2H), 4.79-4.70 (m, 1H), 4.69 (s, 2H), 4.29-
    2- 4.18 (m, 1H), 3.94-3.66 (m, 4H), 3.65-3.45
    ylacetyl)piperidin- (m, 2H), 2.76 (dd, J = 14.8, 7.6 Hz, 1H), 2.52
    4- (dd, J = 14.8, 5.2 Hz, 1H), 2.18-1.67 (m, 7H),
    yl]oxy}benzamide 1.69-1.53 (m, 1H)
    411 4-[(1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    acetylpiperidin-4- 5.9 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (m, m/e 393
    yl)oxy]-N- 3H), 7.51 (s, 1H), 7.37 (s, 1H), 7.07 (m, 2H), (M + H)+
    (imidazo[1,2- 6.85 (dd, J = 6.9, 1.6 Hz, 1H), 4.72 (m, 1H),
    a]pyridin-7- 4.49 (d, J = 5.9 Hz, 2H), 3.85 (m, 1H), 3.68 (m,
    ylmethyl)benzamide 1H), 3.50-3.15 (m, 2H), 2.02 (s, 3H), 2.03-
    1.85 (m 2H), 1.62 (m, 1H), 1.51 (m, 1H)
    412 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 421
    ylmethyl)-4-{[1- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    (2- 1H), 7.07 (m, 2H), 6.85 (dd, J = 6.9, 1.7 Hz,
    methylpropanoyl) 1H), 4.73 (m, 1H), 4.49 (d, J = 5.9 Hz, 2H),
    piperidin-4- 3.96-3.70 (m, 2H), 3.45-3.20 (m, 2H), 2.89
    yl]oxy}benzamide (m, 1H), 1.93 (m, 2H), 1.58 (m, 2H), 1.00 (d, J =
    6.7 Hz, 6H)
    413 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 435
    ylmethyl)-4-({1- 7.88 (m, 3H), 7.51 (s, 1H), 7.37 (s, 1H), 7.07 (M + H)+
    [(2S)-2- (m, 2H), 6.85 (dd, J = 6.9, 1.6 Hz, 1H), 4.74 (m,
    methylbutanoyl]pi- 1H), 4.49 (d, J = 5.9 Hz, 2H), 4.00-3.74 (m,
    peridin-4- 2H), 3.50-3.15 (m, 2H), 2.72 (m, 1H), 1.95
    yl}oxy)benzamide (m, 2H), 1.54 (m, 3H), 1.27 (m, 1H), 0.98 (d, J =
    6.7 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H)
    414 4-{[1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.95 (t, J = (ESI(+))
    (cyclopropylace- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 433
    tyl)piperidin-4- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    yl]oxy}-N- 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0, 1.7 Hz,
    (imidazo[1,2- 1H), 4.73 (m, 1H), 4.49 (d, J = 5.9 Hz, 2H),
    a]pyridin-7- 3.89 (m, 1H), 3.69 (m, 1H), 3.40-3.15 (m,
    ylmethyl)benzamide 2H), 2.28 (d, J = 6.7 Hz, 2H), 1.93 (m, 2H),
    1.85-1.41 (m, 2H), 0.95 (m, 1H), 0.45 (m,
    2H), 0.12 (m, 2H)
    415 4-[(1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    benzoylpiperidin- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 455
    4-yl)oxy]-N- 7.90 (m, 3H), 7.51 (m, 1H), 7.47-7.37 (m, (M + H)+
    (imidazo[1,2- 5H), 7.36 (m, 1H), 7.07 (m, 2H), 6.84 (dd, J =
    a]pyridin-7- 7.0, 1.7 Hz, 1H), 4.78 (m, 1H), 4.49 (d, J = 5.9
    ylmethyl)benzamide Hz, 2H), 4.00 (m, 1H), 3.55 (m, 1H), 3.45-
    3.15 (m, 2H), 2.00 (m, 2H), 164 (m, 2H)
    416 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 451
    ylmethyl)-4-({1- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    [(propan-2- 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0, 1.7 Hz,
    yloxy)acetyl]piper- 1H), 4.74 (m, 1H), 4.49 (d, J = 5.9 Hz, 2H),
    idin-4- 4.10 (d, J = 1.1 Hz, 2H), 3.85 (m, 1H), 3.70 (m,
    yl}oxy)benzamide 1H), 3.60 (m, 1H), 3.40-3.15 (m, 2H), 1.97
    (m, 2H), 1.69-1.45 (m, 2H), 1.11 (d, J = 6.1
    Hz, 6H)
    417 4-{[1-(2-hydroxy- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    2- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 437
    methylpropanoyl)pi- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    peridin-4- 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0, 1.7 Hz,
    yl]oxy}-N- 1H), 5.42 (m, 1H), 4.73 (m, 1H), 4.49 (d, J =
    (imidazo[1,2- 5.9 Hz, 2H), 4.42-3.78 (m, 2H), 3.70-3.20
    a]pyridin-7- (m, 2H), 1.95 (m, 2H), 1.57 (m, 2H), 1.32 (s,
    ylmethyl)benzamide 6H)
    418 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 449
    ylmethyl)-4-({1- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    [(2R)- 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0, 1.7 Hz,
    tetrahydrofuran-2- 1H), 4.79-4.64 (m, 2H), 4.49 (d, J = 5.9 Hz,
    ylcarbonyl]piper- 2H), 3.95-3.70 (m, 4H), 3.50-3.15 (m, 2H),
    idin-4- 2.10-1.90 (m, 4H), 1.90-1.75 (m, 2H), 1.70-
    yl}oxy)benzamide 1.43 (m, 2H)
    419 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 449
    ylmethyl)-4-({1- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    [(2S)- 1H), 7.07 (m, 2H), 6.85 (dd, J = 6.9, 1.7 Hz,
    tetrahydrofuran-2- 1H), 4.79-4.64 (m, 2H), 4.49 (d, J = 5.9 Hz,
    ylcarbonyl]piper- 2H), 3.94-3.67 (m, 4H), 3.50-3.15 (m, 2H),
    idin-4- 2.10-1.90 (m, 4H), 1.90-1.75 (m, 2H), 1.70-
    yl}oxy)benzamide 1.43 (m, 2H)
    420 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 463
    ylmethyl)-4-{[1- 7.88 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    (tetrahydro-2H- 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0, 1.7 Hz,
    pyran-4- 1H), 4.73 (m, 1H), 4.49 (d, J = 5.9 Hz, 2H),
    ylcarbonyl)piper- 3.84 (m, 4H), 3.45-3.15 (m, 4H), 2.90 (m,
    idin-4- 1H), 1.96 (m, 2H), 1.65-1.45 (m, 6H)
    yl]oxy}benzamide
    421 4-{[1-(1,4-dioxan- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    2- 6.0 Hz, 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), m/e 465
    ylcarbonyl)piper- 7.89 (m, 3H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (d, (M + H)+
    idin-4-yl]oxy}-N- J = 1.5 Hz, 1H), 7.07 (m, 2H), 6.85 (dd, J = 7.0,
    (imidazo[1,2- 1.7 Hz, 1H), 4.74 (m, 1H), 4.49 (d, J = 5.9 Hz,
    a]pyridin-7- 2H), 4.35 (dd, J = 9.4, 2.8 Hz, 1H), 3.90-3.55
    ylmethyl)benzamide (m, 7H), 3.55-3.15 (m, 3H), 1.98 (m, 2H),
    1.75-1.40 (m, 2H)
    422 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.95 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.89 (m, m/e 477
    ylmethyl)-4-{[1- 3H), 7.51 (s, 1H), 7.37 (bs, 1H), 7.07 (m, 2H), (M + H)+
    (tetrahydro-2H- 6.85 (dd, J = 6.9, 1.7 Hz, 1H), 4.72 (m, 1H),
    pyran-4- 4.49 (d, J = 5.9 Hz, 2H), 3.95-3.67 (m, 4H),
    ylacetyl)piperidin- 3.45-3.15 (m, 5H), 2.28 (m, 2H), 1.93 (m,
    4- 2H), 1.67-1.42 (m, 4H), 1.26-1.12 (m, 2H)
    yl]oxy}benzamide
    423 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 (t, J = (ESI(+))
    a]pyridin-7- 5.9 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.89 (m, m/e 478
    ylmethyl)-4-{[1- 3H), 7.51 (s, 1H), 7.37 (s, 1H), 7.07 (m, 2H), (M + H)+
    (morpholin-4- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.73 (m, 1H),
    ylacetyl)piperidin- 4.49 (d, J = 5.8 Hz, 2H), 3.86 (m, 2H), 3.57 (m,
    4- 4H), 3.50-3.20 (m, 2H), 3.20-3.05 (m, 2H),
    yl]oxy}benzamide 2.40 (m, 4H), 2.08-1.89 (m, 2H), 1.70-1.41
    (m, 2H)
  • Example 204 2-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide Example 204A 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 2-bromothiazole-5-carboxylic acid for 4-nitrobenzoic acid.
  • Example 204B 2-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 2-methyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrol-1-yl)propan-2-ol for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, methanol-d4) δ ppm 8.41 (d, J=7.05 Hz, 1H) 8.27 (d, J=7.92 Hz, 2H) 8.00 (s, 1H) 7.80 (s, 1H) 7.53 (s, 1H) 7.47 (s, 1H) 6.93 (dd, J=6.99, 1.36 Hz, 1H) 4.61 (s, 2H) 4.16 (s, 2H) 1.20 (s, 6H); MS (ESI)(+)) m/e 397 (M+H)+.
  • Example 205 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, methanol-d4) δ ppm 8.40 (d, J=6.94 Hz, 1H) 8.27 (d, J=7.48 Hz, 2H) 8.00 (s, 1H) 7.80 (s, 1H) 7.53 (s, 1H) 7.47 (s, 1H) 6.93 (d, J=6.83 Hz, 1H) 4.61 (s, 2H) 4.01 (d, J=7.26 Hz, 2H) 2.12-2.30 (m, 1H) 0.93 (d, J=6.61 Hz, 6H); MS (ESI)(+)) m/e 381 (M+H)+.
  • Example 207 tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(tert-butoxycarbonylamino)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.62 (s, 1H), 8.92 (t, J=6.0 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.79 (m, 3H), 7.57-7.49 (m, 3H), 7.39-7.35 (m, 1H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 4.48 (d, J=5.8 Hz, 2H), 1.49 (s, 9H); MS (ESI(+)) m/e 367 (M+H)+.
  • Example 208 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide Example 208A tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(tert-butoxycarbonylamino)benzoic acid for 4-nitrobenzoic acid.
  • Example 208B 4-amino-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl {4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 208C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydro-2H-pyran-4-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-amino-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and 2-(tetrahydro-2H-pyran-4-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.74 (dd, J=7.0, 0.9 Hz, 1H), 8.17 (dd, J=2.2, 0.7 Hz, 1H), 7.98 (d, J=2.2 Hz, 1H), 7.91-7.84 (m, 2H), 7.81-7.78 (m, 1H), 7.75-7.68 (m, 2H), 7.49 (dd, J=7.0, 1.6 Hz, 1H), 4.79-4.74 (m, 2H), 3.98-3.89 (m, 2H), 3.50-3.38 (m, 2H), 2.38-2.32 (m, 2H), 2.20-2.02 (m, 1H), 1.74-1.61 (m, 2H), 1.47-1.28 (m, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • TABLE 11
    The following Examples were prepared essentially as described in
    Example 208, substituting the appropriate carboxylic acid in Example
    208A and the appropriate carboxylic acid in Example 208C.
    Ex Name MS
    209 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-2- (ESI(+))
    ylacetyl)amino]benzamide m/e 379
    (M + H)+
    210 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[3-(tetrahydrofuran-2- (ESI(+))
    yl)propanoyl]amino}benzamide m/e 393
    (M + H)+
    211 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(propan-2- (ESI(+))
    yloxy)acetyl]amino}benzamide m/e 367
    (M + H)+
    212 4-[(3-cyclopentylpropanoyl)amino]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 391
    (M + H)+
    213 N-(imidazo [1,2-a]pyridin-7-ylmethyl)-4-[(4- (ESI(+))
    methylpentanoyl)amino]benzamide m/e 365
    (M + H)+
    214 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(tetrahydrofuran-3- (ESI(+))
    ylacetyl)amino]benzamide m/e 379
    (M + H)+
    305 4-[(cyclopentylacetyl)amino]-3-fluoro-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 395
    (M + H)+
    463 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 395
    (M + H)+
    867 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2- (ESI(+))
    methoxyphenyl)acetyl]amino}benzamide m/e 415
    (M + H)+
    868 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4- (ESI(+))
    [(phenylacetyl)amino]benzamide m/e 385
    (M + H)+
    869 4-(benzoylamino)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide (ESI(+))
    m/e 371
    (M + H)+
    870 2,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)carbamoyl]phenyl}benzamide m/e 407
    (M + H)+
    871 3,5-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)carbamoyl]phenyl}benzamide m/e 407
    (M + H)+
    872 3,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)carbamoyl]phenyl}benzamide m/e 407
    (M + H)+
    873 2,4-difluoro-N-{4-[(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)carbamoyl]phenyl}benzamide m/e 407
    (M + H)+
    874 2-fluoro-N-{4-[(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)carbamoyl]phenyl}benzamide m/e 389
    (M + H)+
    875 N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-3- (ESI(+))
    methoxybenzamide m/e 401
    (M + H)+
    876 4-{[(2-fluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 403
    (M + H)+
    880 N-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-2- (ESI(+))
    methoxybenzamide m/e 401
    (M + H)+
    890 4-{[(2,5-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 421
    (M + H)+
    891 4-{[(2,4-difluorophenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 421
    (M + H)+
    895 4-{[difluoro(phenyl)acetyl]amino}-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 421
    (M + H)+
    896 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[(2-methyl-2- (ESI(+))
    phenylpropanoyl)amino]benzamide m/e 413
    (M + H)+
  • Example 215 4-[(4-cyanobenzyl)(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide Example 215A methyl 4-(4-cyanobenzylamino)benzoate
  • A solution of methyl 4-aminobenzoate (0.2 g, 1.323 mmol) and 4-formylbenzonitrile (0.177 g, 1.350 mmol) in methanol (2 ml) and dichloromethane (4 ml) was treated with acetic acid (0.379 ml, 6.62 mmol) followed by MP-cyanoborohydride (1.151 g, 2.65 mmol) and the reaction was slowly stirred at room temperature. After 16 hours, the mixture was filtered and concentrated and the concentrate was partitioned between 2 N sodium hydroxide and dichloromethane. The organic phase was concentrated to give the title compound with 30% of remaining 4-formylbenzonitrile.
  • Example 215B methyl 4-(N-(4-cyanobenzyl)-2-cyclopentylacetamido)benzoate
  • The title compound was prepared as described in Example 52A, substituting methyl 4-(4-cyanobenzylamino)benzoate for methyl 4-aminobenzoate.
  • Example 215C 4-(N-(4-cyanobenzyl)-2-cyclopentylacetamido)benzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-(N-(4-cyanobenzyl)-2-cyclopentylacetamido)benzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 215D 4-[(4-cyanobenzyl)(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(N-(4-cyanobenzyl)-2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.08 (t, J=5.8 Hz, 1H), 8.47 (s, 1H), 7.94 (s, 1H), 7.90-7.85 (m, 2H), 7.79-7.74 (m, 2H), 7.56-7.49 (m, 2H), 7.43-7.37 (m, 2H), 7.36-7.30 (m, 2H), 7.21 (dd, J=9.3, 1.7 Hz, 1H), 4.98 (bs, 2H), 4.45 (d, J=5.8 Hz, 2H), 2.19-2.13 (m, 3H), 1.74-1.66 (m, 2H), 1.51-1.38 (m, 4H), 1.01-0.92 (m, 2H); MS (ESI(+)) m/e 492 (M+H)+.
  • Example 216 tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.56 (s, 1H), 8.51-8.45 (m, 1H), 7.88 (s, 1H), 7.52-7.49 (m, 1H), 7.39-7.36 (m, 1H), 7.35-7.30 (m, 2H), 7.12-7.07 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.67 (t, J=6.0 Hz, 1H), 4.32 (d, J=6.0 Hz, 2H), 4.10-4.00 (m, 2H), 2.89-2.65 (m, 2H), 2.62-2.54 (m, 1H), 1.75-1.66 (m, 2H), 1.49-1.37 (m, 11H); MS (ESI(+)) m/e 450 (M+H)+.
  • Example 217 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (t, J=6.0 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.81 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.40-7.32 (m, 3H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.13-4.03 (m, 2H), 2.91-2.69 (m, 3H), 1.82-1.72 (m, 2H), 1.60-1.44 (m, 2H), 1.42 (s, 9H); MS (ESI(+)) m/e 435 (M+H)+.
  • Example 220 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea Example 220A 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(piperidin-4-yl)phenyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 220B 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylcarbonyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 1A, substituting 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(piperidin-4-yl)phenyl)urea for 3-methylbutan-1-amine and tetrahydrofuran-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.72 (d, J=7.0 Hz, 1H), 8.17-8.12 (m, 1H), 7.98-7.93 (m, 1H), 7.78 (bs, 1H), 7.48-7.41 (m, 1H), 7.35-7.28 (m, 2H), 7.18-7.12 (m, 2H), 4.81-4.72 (m, 1H), 4.67-4.55 (m, 3H), 4.19-4.08 (m, 1H), 4.01-3.91 (m, 1H), 3.90-3.81 (m, 1H), 3.24-3.09 (m, 1H), 2.85-2.67 (m, 2H), 2.30-2.14 (m, 1H), 2.09-1.79 (m, 5H), 1.73-1.46 (m, 2H); MS (ESI(+)) m/e 448 (M+H)+.
  • TABLE 12
    The following Examples were prepared essentially as described in Example
    220, substituting the appropriate carboxylic acid in Example 220B.
    Ex Name MS
    221 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran- (ESI(+))
    4-ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 462
    (M + H)+
    222 1-{4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 464
    (M + H)+
    223 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran- (ESI(+))
    4-ylacetyl)piperidin-4-yl]phenyl}urea m/e 476
    (M + H)+
    224 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(morpholin-4- (ESI(+))
    ylacetyl)piperidin-4-yl]phenyl}urea m/e 477
    (M + H)+
    225 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2- (ESI(+))
    ylacetyl)piperidin-4-yl]phenyl}urea m/e 462
    (M + H)+
    226 1-{4-[1-(3-hydroxy-3-methylbutanoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 450
    (M + H)+
    227 1-{4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 436
    (M + H)+
    228 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2- (ESI(+))
    methylpropanoyl)piperidin-4-yl]phenyl}urea m/e 420
    (M + H)+
    229 1-[4-(1-benzoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)urea m/e 454
    (M + H)+
    243 1-(4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4- (ESI(+))
    yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7- m/e 510
    ylmethyl)urea (M + H)+
    286 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3S)-tetrahydrofuran- (ESI(+))
    3-ylcarbonyl]piperidin-4-yl}phenyl)urea m/e 448
    (M + H)+
    287 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3R)- (ESI(+))
    tetrahydrofuran-3-ylcarbonyl]piperidin-4-yl}phenyl)urea m/e 448
    (M + H)+
    288 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-tetrahydrofuran- (ESI(+))
    2-ylcarbonyl]piperidin-4-yl}phenyl)urea m/e 448
    (M + H)+
    289 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2R)- (ESI(+))
    tetrahydrofuran-2-ylcarbonyl]piperidin-4-yl}phenyl)urea m/e 448
    (M + H)+
    709 1-[4-(1-butanoylpiperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)urea m/e 420
    (M + H)+
    710 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2S)-2- (ESI(+))
    methylbutanoyl]piperidin-4-yl}phenyl)urea m/e 434
    (M + H)+
    711 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2- (ESI(+))
    methylcyclopropyl)carbonyl]piperidin-4-yl}phenyl)urea m/e 432
    (M + H)+
    712 1-{4-[1-(cyclopropylacetyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 432
    (M + H)+
    713 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3,3,3- (ESI(+))
    trifluoropropanoyl)piperidin-4-yl]phenyl}urea m/e 460
    (M + H)+
    714 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,4,4- (ESI(+))
    trifluorobutanoyl)piperidin-4-yl]phenyl}urea m/e 474
    (M + H)+
    715 1-(4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 496
    (M + H)+
    716 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1- (ESI(+))
    (phenylacetyl)piperidin-4-yl]phenyl}urea m/e 468
    (M + H)+
    719 1-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 472
    (M + H)+
    720 1-{4-[1-(3-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 472
    (M + H)+
    721 1-{4-[1-(4-fluorobenzoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 472
    (M + H)+
    722 1-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
    723 1-{4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
    724 1-{4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
    725 1-{4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]phenyl}-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
    938 1-(4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 489
    (M + H)+
    939 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(3-methylbut-2- ESI(+))
    enoyl)piperidin-4-yl]phenyl}urea m/e 432
    (M + H)+
    940 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 448
    (M + H)+
    941 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methylcyclopent- ESI(+))
    1-en-1-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 458
    (M + H)+
    942 1-{4-[1-(2-ethylbutanoyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 448
    (M + H)+
    943 1-(4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 502
    (M + H)+
    944 1-{4-[1-(2,4-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 514
    (M + H)+
    945 1-{4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 458
    (M + H)+
    946 1-{4-[1-(2,5-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 514
    (M + H)+
    947 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2- ESI(+))
    methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea m/e 498
    (M + H)+
    948 1-{4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 498
    (M + H)+
    949 1-{4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 514
    (M + H)+
    950 1-{4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 477
    (M + H)+
    951 1-(4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 503
    (M + H)+
    952 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3- ESI(+))
    methoxyphenyl)acetyl]piperidin-4-yl}phenyl)urea m/e 498
    (M + H)+
    953 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-oxo-2,3-dihydro- ESI(+))
    1H-inden-4-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    954 1-{4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 513
    (M + H)+
    955 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-2-methylbut-2- ESI(+))
    enoyl]piperidin-4-yl}phenyl)urea m/e 432
    (M + H)+
    956 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(1H-indol-3- ESI(+))
    ylacetyl)piperidin-4-yl]phenyl}urea m/e 507
    (M + H)+
    957 1-{4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 484
    (M + H)+
    1011 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(propan-2-yl)-1H- ESI(+))
    pyrazol-3-yl]carbonyl}piperidin-4-yl)phenyl]urea m/e 486
    (M + H)+
    1012 1-(4-{1-[(2S)-2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl]piperidin- ESI(+))
    4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1013 1-(4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5- ESI(+))
    yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7- m/e 497
    ylmethyl)urea (M + H)+
    1014 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-4,5,6,7- ESI(+))
    tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 512
    (M + H)+
    1015 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro- ESI(+))
    2,1-benzoxazol-3-ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 499
    (M + H)+
    1016 1-(4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 507
    (M + H)+
    1017 1-(4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 487
    (M + H)+
    1018 1-(4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 507
    (M + H)+
    1019 1-(4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 489
    (M + H)+
    1020 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[1-(pyridin-2- ESI(+))
    yl)cyclopropyl]carbonyl}piperidin-4-yl)phenyl]urea m/e 495
    (M + H)+
    1021 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1022 1-[4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4- ESI(+))
    yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 494
    (M + H)+
    1023 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4- ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1024 1-{4-[1-(2,3-dihydro-1-benzofuran-2-ylcarbonyl)piperidin-4- ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 496
    (M + H)+
    1025 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4- ESI(+))
    methoxycyclohexyl)carbonyl]piperidin-4-yl}phenyl)urea m/e 490
    (M + H)+
    1026 1-{4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4- ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1027 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-4- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 505
    (M + H)+
    1028 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-1,3- ESI(+))
    benzoxazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 509
    (M + H)+
    1029 1-(4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin- ESI(+))
    4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 514
    (M + H)+
    1030 1-(4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 471
    (M + H)+
    1031 1-{4-[1-(cinnolin-4-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 506
    (M + H)+
    1032 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinolin-7- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 505
    (M + H)+
    1033 1-{4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 497
    (M + H)+
    1034 1-(4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 485
    (M + H)+
    1035 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(5,6,7,8- ESI(+))
    tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 509
    (M + H)+
    1036 1-{4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 511
    ylmethyl)urea (M + H)+
    1037 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-7- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 505
    (M + H)+
    1038 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(quinoxalin-2- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 506
    (M + H)+
    1039 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(2- ESI(+))
    methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea m/e 511
    (M + H)+
    1040 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2E)-3-(pyridin-2- ESI(+))
    yl)prop-2-enoyl]piperidin-4-yl}phenyl)urea m/e 481
    (M + H)+
    1041 1-(4-{1-[(4-chloro-2,6-dimethylpyridin-3-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e XXX
    (M + H)+
    1042 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(8- ESI(+))
    methylimidazo[1,2-a]pyridin-2-yl)carbonyl]piperidin-4- m/e 517
    yl}phenyl)urea (M + H)+
    1043 1-(4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 499
    (M + H)+
    4044 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-4,5,6,7- ESI(+))
    tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 512
    (M + H)+
    1045 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methyl-4H- ESI(+))
    furo[3,2-b]pyrrol-5-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 497
    (M + H)+
    1046 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2,3- ESI(+))
    dihydro-1-benzofuran-5-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 510
    (M + H)+
    1047 1-(4-{1-[(4-chloro-1-ethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 506
    (M + H)+
    1048 1-{4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 497
    (M + H)+
    1049 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(isoquinolin-8- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 505
    (M + H)+
    1050 1-(4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 493
    (M + H)+
    1051 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(3-methoxythiophen- ESI(+))
    2-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 490
    (M + H)+
    1052 1-{4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 497
    (M + H)+
    1053 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(4,5,6,7-tetrahydro- ESI(+))
    1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 515
    (M + H)+
    1054 1-{4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 511
    (M + H)+
    1055 1-(4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 473
    (M + H)+
    1056 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[3-methyl-1-(prop-2- ESI(+))
    en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)phenyl]urea m/e 498
    (M + H)+
    1057 1-{4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1058 1-(4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 489
    (M + H)+
    1059 1-(4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 483
    (M + H)+
    1060 1-{4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 511
    (M + H)+
    1065 1-(4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 517
    (M + H)+
    1066 1-(4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 492
    (M + H)+
    1121 1-(4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 501
    (M + H)+
    1122 1-{4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 511
    (M + H)+
    1123 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H- ESI(+))
    indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    1124 1-(4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5- ESI(+))
    yl)carbonyl]piperidin-4-yl}phenyl)-3-(imidazo[1,2-a]pyridin-7- m/e 506
    ylmethyl)urea (M + H)+
    1125 1-(4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 483
    (M + H)+
    1126 1-(4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 514
    (M + H)+
    1127 1-(4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 471
    (M + H)+
    1128 1-(4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 501
    (M + H)+
    1129 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(thieno[3,2-b]furan-5- ESI(+))
    ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 500
    (M + H)+
    1130 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxythiophen- ESI(+))
    2-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 490
    (M + H)+
    1131 1-(4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 485
    (M + H)+
    1132 1-(4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 495
    (M + H)+
    1133 1-{4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 515
    (M + H)+
    1134 1-[4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4- ESI(+))
    yl]carbonyl}piperidin-4-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7- m/e 514
    ylmethyl)urea (M + H)+
    1135 1-{4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 494
    (M + H)+
    1136 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(4-methoxy-5- ESI(+))
    methylpyridin-2-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 499
    (M + H)+
    1137 1-(4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1138 1-(4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 495
    (M + H)+
    1139 1-(4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}phenyl)-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 485
    (M + H)+
    1140 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[4-(propan-2- ESI(+))
    yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)phenyl]urea m/e 498
    (M + H)+
    1141 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-5-propyl- ESI(+))
    1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 500
    (M + H)+
    1142 1-(4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 512
    (M + H)+
    1143 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(pyrazolo[1,5- ESI(+))
    a]pyridin-2-ylcarbonyl)piperidin-4-yl]phenyl}urea m/e 494
    (M + H)+
    1144 1-{4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]phenyl}-3- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 494
    (M + H)+
    1145 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2-(propan-2-yl)-1,3- ESI(+))
    oxazol-4-yl]carbonyl}piperidin-4-yl)phenyl]urea m/e 487
    (M + H)+
    1146 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H- ESI(+))
    indazol-7-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    1147 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methoxy-5- ESI(+))
    methylpyridin-3-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 499
    (M + H)+
    1148 1-(4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4- ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 515
    (M + H)+
    1149 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H- ESI(+))
    indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    1150 1-(4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}phenyl)- ESI(+))
    3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 517
    (M + H)+
    1151 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(2-methyl-2H- ESI(+))
    indazol-6-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    1152 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{1-[(1-methyl-1H- ESI(+))
    indazol-4-yl)carbonyl]piperidin-4-yl}phenyl)urea m/e 508
    (M + H)+
    1153 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-{[2- ESI(+))
    (trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)phenyl]urea m/e 512
    (M + H)+
  • Example 230B 4-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 2-hydroxy-2-methylpropanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6/D2O, Temp=90° C.) δ ppm 8.77 (dd, J=6.9, 0.9 Hz, 1H), 8.22-8.18 (m, 1H), 8.02-7.98 (m, 1H), 7.88-7.81 (m, 2H), 7.77 (s, 1H), 7.44 (dd, J=6.9, 1.6 Hz, 1H), 7.40-7.34 (m, 2H), 4.76-4.64 (m, 4H), 2.98-2.82 (m, 3H), 1.89-1.81 (m, 2H), 1.65-1.48 (m, 2H), 1.38 (s, 6H); MS (ESI(+)) m/e 421 (M+H)+.
  • TABLE 13
    The following Examples were prepared essentially as described in Example
    230, substituting the appropriate carboxylic acid in Example 230B.
    Ex Name MS
    231 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-3- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 443
    (M + H)+
    232 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 447
    (M + H)+
    233 4-[1-(1,4-dioxan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 445
    (M + H)+
    234 4-{1-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)carbonyl]piperidin- (ESI(+))
    4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 495
    (M + H)+
    235 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydrofuran-2- (ESI(+))
    ylacetyl)piperidin-4-yl]benzamide m/e 447
    (M + H)+
    236 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4- (ESI(+))
    ylacetyl)piperidin-4-yl]benzamide m/e 461
    (M + H)+
    237 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(propan-2- (ESI(+))
    yloxy)acetyl]piperidin-4-yl}benzamide m/e 435
    (M + H)+
    238 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2- (ESI(+))
    methylbutanoyl]piperidin-4-yl}benzamide m/e 419
    (M + H)+
    239 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    methylpropanoyl)piperidin-4-yl]benzamide m/e 405
    (M + H)+
    308 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3S)-tetrahydrofuran-3- (ESI(+))
    ylcarbonyl]piperidin-4-yl}benzamide m/e 433
    (M + H)+
    309 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3R)-tetrahydrofuran-3- (ESI(+))
    ylcarbonyl]piperidin-4-yl}benzamide m/e 433
    (M + H)+
    310 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2R)-tetrahydrofuran-2- (ESI(+))
    ylcarbonyl]piperidin-4-yl}benzamide m/e 433
    (M + H)+
    311 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-tetrahydrofuran-2- (ESI(+))
    ylcarbonyl]piperidin-4-yl}benzamide m/e 433
    (M + H)+
    312 4-[1-(cyclopropylacetyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 417
    (M + H)+
    313 4-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 377
    (M + H)+
    437 4-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 439
    (M + H)+
    44 4-{1-[(3,3-difluorocyclobutyl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 453
    (M + H)+
    441 4-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 481
    (M + H)+
    484 4-[1-(furan-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 429
    (M + H)+
    498 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 440
    (M + H)+
    499 4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 433
    (M + H)+
    500 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4- (ESI(+))
    methylbenzoyl)piperidin-4-yl]benzamide m/e 453
    (M + H)+
    501 4-[1-(2,2-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 433
    (M + H)+
    502 4-[1-(cyclohexylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 445
    (M + H)+
    503 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 445
    (M + H)+
    504 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3,3,3- (ESI(+))
    trifluoropropanoyl)piperidin-4-yl]benzamide m/e 445
    (M + H)+
    505 4-(1-butanoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 405
    (M + H)+
    506 4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 475
    (M + H)+
    507 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    methylbenzoyl)piperidin-4-yl]benzamide m/e 453
    (M + H)+
    508 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 457
    (M + H)+
    509 4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 419
    (M + H)+
    510 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylpent-2- (ESI(+))
    enoyl]piperidin-4-yl}benzamide m/e 431
    (M + H)+
    511 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol- (ESI(+))
    5-yl)carbonyl]piperidin-4-yl}benzamide m/e 443
    (M + H)+
    512 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyloxetan-3- (ESI(+))
    yl)carbonyl]piperidin-4-yl}benzamide m/e 433
    (M + H)+
    513 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 457
    (M + H)+
    514 4-{1-[(1-cyanocyclopropyl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 428
    (M + H)+
    515 4-[1-(cyclopentylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 431
    (M + H)+
    516 4-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 457
    (M + H)+
    517 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol- (ESI(+))
    4-yl)carbonyl]piperidin-4-yl}benzamide m/e 443
    (M + H)+
    518 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    oxobutanoyl)piperidin-4-yl]benzamide m/e 419
    (M + H)+
    519 4-{1-[(2,5-dimethylfuran-3-yl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 457
    (M + H)+
    520 4-[1-(4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 464
    (M + H)+
    521 4-[1-(3-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 464
    (M + H)+
    522 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 475
    (M + H)+
    523 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 441
    (M + H)+
    524 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2- (ESI(+))
    yl)carbonyl]piperidin-4-yl}benzamide m/e 459
    (M + H)+
    525 4-{1-[(3,5-dimethyl-1,2-oxazol-4-yl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 458
    (M + H)+
    526 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methoxybenzoyl)piperidin-4-yl]benzamide m/e 469
    (M + H)+
    527 4-[1-(3-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 473
    (M + H)+
    528 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4- (ESI(+))
    methoxybenzoyl)piperidin-4-yl]benzamide m/e 469
    (M + H)+
    529 4-[1-(4-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 473
    (M + H)+
    530 4-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 475
    (M + H)+
    531 4-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 403
    (M + H)+
    532 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-propanoylpiperidin-4- (ESI(+))
    yl)benzamide m/e 391
    (M + H)+
    533 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2- (ESI(+))
    yl)carbonyl]piperidin-4-yl}benzamide m/e 442
    (M + H)+
    534 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methylbutanoyl)piperidin-4-yl]benzamide m/e 419
    (M + H)+
    535 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 440
    (M + H)+
    536 4-[1-(2,3-dimethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 433
    (M + H)+
    537 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3- (ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 440
    (M + H)+
    538 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1- (ESI(+))
    methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide m/e 417
    (M + H)+
    539 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    methoxybenzoyl)piperidin-4-yl]benzamide m/e 469
    (M + H)+
    699 4-[1-(2-chlorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 473
    (M + H)+
    700 4-[1-(2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 475
    (M + H)+
    701 4-[1-(3,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 475
    (M + H)+
    702 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3- (ESI(+))
    (trifluoromethyl)benzoyl]piperidin-4-yl}benzamide m/e 507
    (M + H)+
    703 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3- (ESI(+))
    (trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide m/e 523
    (M + H)+
    704 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4- (ESI(+))
    (trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide m/e 523
    (M + H)+
    705 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[4- (ESI(+))
    (trifluoromethyl)benzoyl]piperidin-4-yl}benzamide m/e 507
    (M + H)+
    706 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2- (ESI(+))
    (trifluoromethoxy)benzoyl]piperidin-4-yl}benzamide m/e 523
    (M + H)+
    707 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylacetyl)piperidin- (ESI(+))
    4-yl]benzamide m/e 453
    (M + H)+
    708 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2- (ESI(+))
    (trifluoromethyl)benzoyl]piperidin-4-yl}benzamide m/e 507
    (M + H)+
    737 4-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 464
    (M + H)+
    913 4-{1-[(2-chloropyridin-3-yl)carbonyl]piperidin-4-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 474
    (M + H)+
    914 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3-methylbut-2- ESI(+))
    enoyl)piperidin-4-yl]benzamide m/e 417
    (M + H)+
    915 4-[1-(3-fluoro-4-methoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 487
    (M + H)+
    916 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methylcyclopent-1- ESI(+))
    en-1-yl)carbonyl]piperidin-4-yl}benzamide m/e 443
    (M + H)+
    917 4-[1-(2-ethylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- ESI(+))
    ylmethyl)benzamide m/e 433
    (M + H)+
    918 4-{1-[(4-fluorophenoxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 487
    (M + H)+
    919 4-[1-(3,5-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 499
    (M + H)+
    920 4-[1-(cyclohex-3-en-1-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 443
    (M + H)+
    921 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2- ESI(+))
    methoxyphenyl)acetyl]piperidin-4-yl}benzamide m/e 483
    (M + H)+
    922 4-[1-(3-hydroxy-2-phenylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 483
    (M + H)+
    923 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- ESI(+))
    methylbenzoyl)piperidin-4-yl]benzamide m/e 453
    (M + H)+
    924 4-[1-(2-acetylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7- ESI(+))
    ylmethyl)benzamide m/e 481
    (M + H)+
    925 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[2- ESI(+))
    (methoxymethyl)benzoyl]piperidin-4-yl}benzamide m/e 483
    (M + H)+
    926 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- ESI(+))
    phenylpropanoyl)piperidin-4-yl]benzamide m/e 467
    (M + H)+
    927 4-[1-(2,6-dimethoxybenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 499
    (M + H)+
    928 4-[1-(N,N-diethyl-beta-alanyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 462
    (M + H)+
    929 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[(2- ESI(+))
    methylpropyl)sulfonyl]acetyl}piperidin-4-yl)benzamide m/e 497
    (M + H)+
    930 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- ESI(+))
    phenoxypropanoyl)piperidin-4-yl]benzamide m/e 483
    (M + H)+
    931 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-({[(1R,2S)-2- ESI(+))
    methylcyclohexyl]oxy}acetyl)piperidin-4-yl]benzamide m/e 489
    (M + H)+
    932 4-{1-[(2-chloro-6-methylpyridin-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 488
    (M + H)+
    933 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3- ESI(+))
    methoxyphenyl)acetyl]piperidin-4-yl}benzamide m/e 483
    (M + H)+
    934 4-[1-(2-chloro-4-cyanobenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 498
    (M + H)+
    935 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-2-methylbut-2- ESI(+))
    enoyl]piperidin-4-yl}benzamide m/e 417
    (M + H)+
    936 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5- ESI(+))
    methylphenyl)acetyl]piperidin-4-yl}benzamide m/e 497
    (M + H)+
    937 4-[1-(2-hydroxy-3-methylbenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 469
    (M + H)+
    959 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H- ESI(+))
    pyrazol-3-yl]carbonyl}piperidin-4-yl)benzamide m/e 471
    (M + H)+
    960 4-{1-[(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)carbonyl]piperidin- ESI(+))
    4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 483
    (M + H)+
    961 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-4,5,6,7- ESI(+))
    tetrahydro-2H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide m/e 497
    (M + H)+
    962 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-2,1- ESI(+))
    benzoxazol-3-ylcarbonyl)piperidin-4-yl]benzamide m/e 484
    (M + H)+
    963 4-{1-[(3-fluoro-6-methylpyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 472
    (M + H)+
    964 4-{1-[(2-chloro-3-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 492
    (M + H)+
    965 4-{1-[(3-chloropyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 474
    (M + H)+
    966 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(pyridin-2- ESI(+))
    yl)cyclopropyl]carbonyl}piperidin-4-yl)benzamide m/e 480
    (M + H)+
    967 4-{1-[(1-cyclopentyl-1H-pyrazol-3-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    968 4-{1-[2-(3-fluorophenoxy)propanoyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 501
    (M + H)+
    969 4-(1-{[1-(difluoromethyl)-1H-pyrazol-5-yl]carbonyl}piperidin-4- ESI(+))
    yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 479
    (M + H)+
    970 4-[1-(3,4-dihydro-2H-chromen-6-ylcarbonyl)piperidin-4-yl]-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 495
    (M + H)+
    971 4-{1-[(cyclohexyloxy)acetyl]piperidin-4-yl}-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 475
    (M + H)+
    972 4-{1-[(2-chloropyridin-3-yl)acetyl]piperidin-4-yl}-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 488
    (M + H)+
    973 4-{1-[(5-cyclopropyl-1,2-oxazol-3-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 470
    (M + H)+
    974 4-[1-(2H-chromen-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 493
    (M + H)+
    975 4-{1-[(3,5-difluoropyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 476
    (M + H)+
    976 4-[1-(2,3-dihydro-1,4-benzodioxin-2-ylcarbonyl)piperidin-4-yl]-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    977 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4- ESI(+))
    methoxycyclohexyl)carbonyl]piperidin-4-yl}benzamide m/e 475
    (M + H)+
    978 4-[1-(2,3-dihydro-1,4-benzodioxin-5-ylcarbonyl)piperidin-4-yl]-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    979 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-4- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 490
    (M + H)+
    980 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-1,3- ESI(+))
    benzoxazol-6-yl)carbonyl]piperidin-4-yl}benzamide m/e 494
    (M + H)+
    981 4-{1-[(1-tert-butyl-3-methyl-1H-pyrazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 499
    (M + H)+
    982 4-{1-[(1-cyanocyclopentyl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 456
    (M + H)+
    983 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thieno[3,2-b]pyridin-2- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 496
    (M + H)+
    984 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinolin-7- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 490
    (M + H)+
    985 4-[1-(5-cyano-2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 482
    (M + H)+
    986 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(5,6,7,8- ESI(+))
    tetrahydroquinolin-3-ylcarbonyl)piperidin-4-yl]benzamide m/e 494
    (M + H)+
    987 4-[1-(3,4-dihydro-2H-pyrano[2,3-b]pyridin-6-ylcarbonyl)piperidin- ESI(+))
    4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 496
    (M + H)+
    988 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-7- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 490
    (M + H)+
    989 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(quinoxalin-2- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 491
    (M + H)+
    990 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(2- ESI(+))
    methoxypyridin-3-yl)prop-2-enoyl]piperidin-4-yl}benzamide m/e 496
    (M + H)+
    991 -(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2E)-3-(pyridin-2- ESI(+))
    yl)prop-2-enoyl]piperidin-4-yl}benzamide m/e 466
    (M + H)+
    992 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(8-methylimidazo[1,2- ESI(+))
    a]pyridin-2-yl)carbonyl]piperidin-4-yl}benzamide m/e 493
    (M + H)+
    993 4-{1-[(2-ethoxypyridin-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 484
    (M + H)+
    994 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-4,5,6,7- ESI(+))
    tetrahydro-1H-indazol-3-yl)carbonyl]piperidin-4-yl}benzamide m/e 497
    (M + H)+
    995 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methyl-4H-furo[3,2- ESI(+))
    b]pyrrol-5-yl)carbonyl]piperidin-4-yl}benzamide m/e 482
    (M + H)+
    996 4-[1-(3-cyano-5-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 482
    (M + H)+
    997 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(isoquinolin-8- ESI(+))
    ylcarbonyl)piperidin-4-yl]benzamide m/e 490
    (M + H)+
    998 4-{1-[(4-cyanophenyl)acetyl]piperidin-4-yl}-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 478
    (M + H)+
    999 4-[1-(3-cyano-4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 482
    (M + H)+
    1000 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4,5,6,7-tetrahydro-1,3- ESI(+))
    benzothiazol-2-ylcarbonyl)piperidin-4-yl]benzamide m/e 500
    (M + H)+
    1001 4-[1-(1,3-benzothiazol-2-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 496
    (M + H)+
    1002 4-{1-[(3-ethyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 458
    (M + H)+
    1003 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[3-methyl-1-(prop-2- ESI(+))
    en-1-yl)-1H-pyrazol-5-yl]carbonyl}piperidin-4-yl)benzamide m/e 483
    (M + H)+
    1004 4-[1-(1,2,3-benzothiadiazol-5-ylcarbonyl)piperidin-4-yl]-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    1005 4-{1-[(2-ethyl-1,3-thiazol-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 474
    (M + H)+
    1006 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2- ESI(+))
    yl)pyrimidin-4-yl]carbonyl}piperidin-4-yl)benzamide m/e 483
    (M + H)+
    1007 4-{1-[(5,6-dimethylpyridin-3-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 468
    (M + H)+
    1008 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2- ESI(+))
    yl)tetrahydro-2H-pyran-4-yl]carbonyl}piperidin-4-yl)benzamide m/e 489
    (M + H)+
    1009 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methoxy-6- ESI(+))
    methylbenzoyl)piperidin-4-yl]benzamide m/e 483
    (M + H)+
    1010 4-[1-(1,3-benzothiazol-7-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 496
    (M + H)+
    1061 4-{1-[(2-chloro-5-fluoropyridin-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 493
    (M + H)+
    1062 4-{1-[(3-cyclopropyl-1,2-oxazol-5-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 471
    (M + H)+
    1063 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{l-[(3-methoxythiophen-2- ESI(+))
    yl)carbonyl]piperidin-4-yl}benzamide m/e 476
    (M + H)+
    1064 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-methyl-5-(propan-2- ESI(+))
    yl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide m/e 486
    (M + H)+
    1084 4-{1-[(2-cyclopropyl-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 486
    (M + H)+
    1085 4-[1-(1,3-benzothiazol-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 496
    (M + H)+
    1086 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol- ESI(+))
    6-yl)carbonyl]piperidin-4-yl}benzamide m/e 493
    (M + H)+
    1087 4-{1-[(4-chloro-1,3-dimethyl-1H-pyrazol-5-yl)carbonyl]piperidin-4- ESI(+))
    yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 491
    (M + H)+
    1088 4-{1-[(5-ethylpyridin-2-yl)carbonyl]piperidin-4-yl}-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 468
    (M + H)+
    1089 4-{1-[(3-chloro-5-cyanopyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 499
    (M + H)+
    1090 4-{1-[(1-cyano-3-methylcyclobutyl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 456
    (M + H)+
    1091 4-{1-[(1,5-diethyl-1H-1,2,3-triazol-4-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 486
    (M + H)+
    1092 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxythiophen-2- ESI(+))
    yl)carbonyl]piperidin-4-yl}benzamide m/e 475
    (M + H)+
    1093 4-{1-[(5-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 470
    (M + H)+
    1094 4-{1-[(5-cyclopropylpyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 480
    (M + H)+
    1095 4-[1-(4-cyano-2,6-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 500
    (M + H)+
    1096 4-(1-{[1-ethyl-3-(propan-2-yl)-1H-pyrazol-4-yl]carbonyl}piperidin- ESI(+))
    4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 499
    (M + H)+
    1097 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[1-(propan-2-yl)-1H- ESI(+))
    pyrazol-3-yl]acetyl}piperidin-4-yl)benzamide m/e 485
    (M + H)+
    1098 4-[1-(1-benzofuran-3-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 479
    (M + H)+
    1099 Example 1099 ESI(+))
    N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methyl-5,6,7,8- m/e 497
    tetrahydroimidazo[1,5-a]pyridin-1-yl)carbonyl]piperidin-4- (M + H)+
    yl}benzamide
    1100 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(4-methoxy-5- ESI(+))
    methylpyridin-2-yl)carbonyl]piperidin-4-yl}benzamide m/e 484
    (M + H)+
    1101 4-{1-[(1-cyclopentyl-1H-pyrazol-5-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    1102 4-{1-[(4-chloro-1,3-thiazol-5-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 480
    (M + H)+
    1103 4-{1-[(3-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 470
    (M + H)+
    1104 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[4-(propan-2- ESI(+))
    yl)pyrimidin-5-yl]carbonyl}piperidin-4-yl)benzamide m/e 483
    (M + H)+
    1105 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-5-propyl- ESI(+))
    1H-pyrazol-4-yl)carbonyl]piperidin-4-yl}benzamide m/e 485
    (M + H)+
    1106 4-{1-[2-(3-cyclopropyl-1H-pyrazol-1-yl)propanoyl]piperidin-4-yl}- ESI(+))
    N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 497
    (M + H)+
    1107 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2,3-dihydro- ESI(+))
    1-benzofuran-7-yl)carbonyl]piperidin-4-yl}benzamide m/e 495
    (M + H)+
    1108 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3- ESI(+))
    thiazol-4-yl]carbonyl}piperidin-4-yl)benzamide m/e 488
    (M + H)+
    1109 4-(1-{[1-(difluoromethyl)-5-methyl-1H-pyrazol-3- ESI(+))
    yl]carbonyl}piperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7- m/e 493
    ylmethyl)benzamide (M + H)+
    1110 4-{1-[(4-cyanothiophen-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 470
    (M + H)+
    1111 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazolo[1,5-a]pyridin- ESI(+))
    2-ylcarbonyl)piperidin-4-yl]benzamide m/e 479
    (M + H)+
    1112 4-[1-(1-benzofuran-5-ylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 479
    (M + H)+
    1113 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2-(propan-2-yl)-1,3- ESI(+))
    oxazol-4-yl]carbonyl}piperidin-4-yl)benzamide m/e 472
    (M + H)+
    1114 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methoxy-5- ESI(+))
    methylpyridin-3-yl)carbonyl]piperidin-4-yl}benzamide m/e 484
    (M + H)+
    1115 4-{1-[(5,6-dimethoxypyridin-2-yl)carbonyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 500
    (M + H)+
    1116 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol- ESI(+))
    4-yl)carbonyl]piperidin-4-yl}benzamide m/e 493
    (M + H)+
    1117 4-{1-[(2-ethylpiperidin-1-yl)(oxo)acetyl]piperidin-4-yl}-N- ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 502
    (M + H)+
    1118 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2-methyl-2H-indazol- ESI(+))
    6-yl)carbonyl]piperidin-4-yl}benzamide m/e 493
    (M + H)+
    1119 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-indazol- ESI(+))
    4-yl)carbonyl]piperidin-4-yl}benzamide m/e 493
    (M + H)+
    1120 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-{[2- ESI(+))
    (trifluoromethyl)furan-3-yl]carbonyl}piperidin-4-yl)benzamide m/e 497
    (M + H)+
  • Example 240 4-[(4-cyanobenzyl)(3-methoxypropanoyl)amino]-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 215, substituting 3-methoxypropanoyl chloride for 2-cyclopentylacetyl chloride in Example 215B. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.08 (t, J=5.8 Hz, 1H), 8.46 (dd, J=1.9, 0.9 Hz, 1H), 7.94 (dd, J=1.2, 0.6 Hz, 1H), 7.91-7.85 (m, 2H), 7.79-7.73 (m, 2H), 7.56-7.49 (m, 2H), 7.43-7.39 (m, 2H), 7.38-7.33 (m, 2H), 7.20 (dd, J=9.2, 1.7 Hz, 1H), 5.00 (bs, 2H), 4.45 (d, J=5.8 Hz, 2H), 3.54 (t, J=6.2 Hz, 2H), 3.17 (s, 3H), 2.43-2.35 (m, 2H); MS (ESI(+)) m/e 468 (M+H)+.
  • Example 241 5-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 241A 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • A solution of 5-bromothiophene-2-carboxylic acid (1.279 g, 6.18 mmol), imidazo[1,2-a]pyridin-7-ylmethanamine (1 g, 6.79 mmol), 1-hydroxybenzotriazole hydrate (1.041 g, 6.79 mmol) and N-methylmorpholine (1.698 ml, 15.44 mmol) in dimethylformamide (20 ml) at room temperature was treated with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.131 g, 11.12 mmol). The mixture was stirred overnight and poured into a gently stirred round-bottom flask containing water (100 ml) and ethyl acetate (30 ml). The resulting bilayer suspension was stirred for several minutes, filtered and washed with water then minimal ethyl acetate to give the title compound after drying.
  • Example 241B tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline.
  • Example 241C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 241D 5-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting acetyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.13-9.06 (m, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.72 (d, J=3.9 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.38 (s, 1H), 7.15 (t, J=4.2 Hz, 1H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.28-6.21 (m, 1H), 4.46 (d, J=5.9 Hz, 2H), 4.15-4.04 (m, 2H), 3.61 (dt, J=11.3, 5.6 Hz, 2H), 2.63-2.35 (m, 2H), 2.07-1.99 (m, 3H); MS (ESI)(+)) m/e 381 (M+H)+.
  • Example 242 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting methanesulfonyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.15-9.07 (m, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.73 (d, J=3.9 Hz, 1H), 7.51 (s, 1H), 7.38 (bs, 1H), 7.17 (d, J=3.9 Hz, 1H), 6.83 (d, J=7.0 Hz, 1H), 6.28 (bs, 1H), 4.49-4.43 (m, 2H), 3.88-3.82 (m, 2H), 3.29-3.07 (m, 2H), 2.93 (s, 3H), 2.65-2.41 (m, 2H); MS (ESI)(+)) m/e 417 (M+H)+.
  • Example 246 5-[1-(cyclopropylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting cyclopropyl sulfonyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.10 (t, J=6.0 Hz, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.73 (d, J=3.9 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.38 (s, 1H), 7.17 (d, J=3.9 Hz, 1H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.28 (bs, 1H), 4.46 (d, J=5.9 Hz, 2H), 3.95-3.89 (m, 2H), 3.43 (t, J=5.7 Hz, 2H), 2.73-2.56 (m, 3H), 1.26-0.89 (m, 4H); MS (ESI)(+)) m/e 443 (M+H)+.
  • Example 250 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[(4R)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]thiophene-2-carboxamide
  • A solution of 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide (84 mg, 0.25 mmol), (R)-4-isopropyloxazolidin-2-one (32 mg, 0.25 mmol), N,N-dimethylethane-1,2-diamine (2 mg, 0.025 mmol), copper(I) iodide (5 mg, 0.025 mmol) and potassium carbonate (121 mg, 0.88 mmol) in dioxane (1 ml) was stirred at 110° C. overnight. Concentration and reverse phase chromatography provided the title compound. 1H NMR (400 MHz, methanol-d4) δ ppm 9.13 (t, J=5.3 Hz, 1H), 8.74 (d, J=5.5 Hz, 1H), 8.17 (s, 1H), 7.99 (s, 1H), 7.79 (s, 1H), 7.62 (d, J=4.1 Hz, 1H), 7.47 (d, J=7.0 Hz, 1H), 6.77 (d, J=4.2 Hz, 1H), 4.72 (s, 2H), 4.61-4.42 (m, 3H), 2.46 (ddd, J=10.2, 6.9, 3.5 Hz, 1H), 1.00 (d, J=7.0 Hz, 3H), 0.85 (d, J=6.8 Hz, 3H); (APCI(+)) m/e 385 (M+H)+.
  • Example 257 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methoxyacetyl)piperidin-4-yl]thiophene-2-carboxamide Example 257A tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 257B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 257C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methoxyacetyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and methoxyacetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.39 (d, J=7.0 Hz, 1H), 7.79 (s, 1H), 7.60 (d, J=3.8 Hz, 1H), 7.53 (d, J=1.3 Hz, 1H), 7.44 (s, 1H), 6.96 (d, J=3.8 Hz, 1H), 6.92 (dd, J=7.1, 1.2 Hz, 1H), 4.58 (bs, 2H), 3.85-3.76 (m, 2H), 3.03 (tt, J=11.8, 3.8 Hz, 1H), 2.97-2.82 (m, 5H), 2.18-2.09 (m, 2H), 1.96 (s, 1H), 1.86-1.71 (m, 2H); MS (ESI(+)) m/e 413 (M+H)+.
  • TABLE 14
    The following Examples were prepared essentially as described in Example
    257, substituting the appropriate carboxylic acid in Example 257C.
    Ex Name MS
    258 5-(1-acetylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 383
    (M + H)+
    259 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2- (ESI(+))
    methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide m/e 411
    (M + H)+
    260 5-[1-(cyclopropylcarbonyl)piperidin-4-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 409
    (M + H)+
    261 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydrofuran-3- (ESI(+))
    ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide m/e 439
    (M + H)+
    262 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4- (ESI(+))
    ylacetyl)piperidin-4-yl]thiophene-2-carboxamide m/e 467
    (M + H)+
    263 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3- (ESI(+))
    methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide m/e 425
    (M + H)+
    264 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(1,2-oxazol-5- (ESI(+))
    ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide m/e 436
    (M + H)+
    879 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-methyl-2-(piperazin- (ESI(+))
    1-yl)propanoyl]piperidin-4-yl}thiophene-2-carboxamide m/e 495
    (M + H)+
    887 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 481
    (M + H)+
    888 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 481
    (M + H)+
  • Example 266 5-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 250, substituting 5-(hydroxymethyl)oxazolidin-2-one for (R)-4-isopropyloxazolidin-2-one. 1H NMR (400 MHz, methanol-d4) δ ppm 9.10 (s, 1H), 8.74 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.0 Hz, 1H), 7.98 (d, J=2.1 Hz, 1H), 7.78 (s, 1H), 7.60 (d, J=4.2 Hz, 1H), 7.52-7.41 (m, 1H), 6.60 (d, J=4.2 Hz, 1H), 4.84 (s, 1H), 4.71 (d, J=4.2 Hz, 2H), 4.16 (t, J=9.1 Hz, 1H), 3.98 (dd, J=8.9, 6.2 Hz, 1H), 3.88 (dd, J=12.7, 3.0 Hz, 1H), 3.69 (dd, J=12.7, 3.6 Hz, 1H); (APCI(+)) m/e 373 (M+H)+.
  • Example 267 5-[(4R)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 250, substituting (R)-5-hydroxyoxazolidin-2-one for (R)-4-isopropyloxazolidin-2-one. 1H NMR (400 MHz, methanol-d4) δ ppm 9.10 (t, J=6.1 Hz, 1H), 8.73 (d, J=6.9 Hz, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.98 (d, J=2.0 Hz, 1H), 7.78 (s, 1H), 7.61 (d, J=4.2 Hz, 1H), 7.46 (d, J=7.7 Hz, 1H), 6.68 (d, J=4.2 Hz, 1H), 4.71 (s, 2H), 4.62 (t, J=5.7 Hz, 1H), 4.15 (dd, J=10.9, 5.3 Hz, 1H), 3.83 (d, J=10.9 Hz, 1H), 2.97 (dd, J=17.7, 6.2 Hz, 1H), 2.50 (d, J=18.2 Hz, 1H); (APCI(+)) m/e 357 (M+H)+.
  • Example 268 5-[(4S)-4-hydroxy-2-oxopyrrolidin-1-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 250, substituting (S)-5-hydroxyoxazolidin-2-one for (R)-4-isopropyloxazolidin-2-one. 1H NMR (400 MHz, methanol-d4) δ ppm 9.10 (t, J=5.7 Hz, 1H), 8.74 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.0 Hz, 1H), 7.98 (d, J=2.1 Hz, 1H), 7.78 (s, 1H), 7.61 (d, J=4.2 Hz, 1H), 7.46 (d, J=7.0 Hz, 1H), 6.68 (d, J=4.2 Hz, 1H), 4.71 (s, 2H), 4.62 (t, J=5.7 Hz, 1H), 4.15 (dd, J=10.9, 5.3 Hz, 1H), 3.83 (d, J=11.0 Hz, 1H), 2.97 (dd, J=17.6, 6.2 Hz, 1H), 2.50 (d, J=16.8 Hz, 1H); (APCI(+)) m/e 357 (M+H)+.
  • Example 271 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(methylsulfonyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting methanesulfonyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, methanol-d4) δ ppm 8.39 (d, J=7.0 Hz, 1H), 7.79 (s, 1H), 7.60 (d, J=3.8 Hz, 1H), 7.53 (d, J=1.3 Hz, 1H), 7.44 (s, 1H), 6.96 (d, J=3.8 Hz, 1H), 6.92 (dd, J=7.1, 1.2 Hz, 1H), 4.58 (bs, 2H), 3.85-3.76 (m, 2H), 3.03 (tt, J=11.8, 3.8 Hz, 1H), 2.97-2.82 (m, 5H), 2.18-2.09 (m, 2H), 1.96 (s, 1H), 1.86-1.71 (m, 2H); MS (ESI(+)) m/e 419 (M+H)+.
  • Example 274 N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide Example 274A tert-butyl 4-(3-(imidazo[1,2-a]pyridin-6-ylmethyl)ureido)phenylcarbamate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-aminophenylcarbamate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 274B 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-6-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-(imidazo[1,2-a]pyridin-6-ylmethyl)ureido)phenylcarbamate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 274C N-(4-{[(imidazo[1,2-a]pyridin-6-ylmethyl)carbamoyl]amino}phenyl)-4-methylpentanamide
  • The title compound was prepared as described in Example 1A, substituting 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-6-ylmethyl)urea for 3-methylbutan-1-amine and 4-methylpentanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.70 (s, 1H), 8.50 (s, 1H), 8.43 (s, 1H), 7.94 (s, 1H), 7.53 (m, 2H), 7.43 (m, 2H), 7.30 (m, 2H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 6.61 (t, J=5.9 Hz, 1H), 4.28 (d, J=5.8 Hz, 2H), 2.26 (t, J=7.6 Hz, 2H), 1.60-1.40 (m, 3H), 0.89 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 380 (M+H)+.
  • TABLE 15
    The following Examples were prepared essentially as described in Example
    274, substituting the appropriate carboxylic acid in Example 274C.
    Ex Name 1H NMR MS
    275 3-cyclopentyl-N- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.69 (s, (ESI(+))
    (4-{[(imidazo[1,2- 1H), 8.48 (s, 1H), 8.43 (s, 1H), 7.94 (s, 1H), m/e 406
    a]pyridin-6- 7.53 (m, 2H), 7.43 (m, 2H), 7.30 (m, 2H), 7.20 (M + H)+
    ylmethyl)carba- (dd, J = 9.2, 1.7 Hz, 1H), 6.60 (t, J = 5.9 Hz,
    moyl]amino}phenyl) 1H), 4.28 (d, J = 5.8 Hz, 2H), 2.26 (t, J = 7.6
    propanamide Hz, 2H), 1.75 (m, 3H), 1.66-1.39 (m, 6H),
    1.08 (m, 2H)
    276 N-(4- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.36 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.53 (s, 1H), 8.43 (s, 1H), 7.94 (s, 1H), m/e 382
    a]pyridin-6- 7.53 (m, 2H), 7.49 (m, 2H), 7.33 (m, 2H), 7.21 (M + H)+
    ylmethyl)carba- (dd, J = 9.2, 1.7 Hz, 1H), 6.62 (t, J = 5.9 Hz,
    moyl]amino}phenyl)- 1H), 4.28 (d, J = 5.9 Hz, 2H), 3.97 (s, 2H), 3.67
    2-(propan-2- (m, 1H), 1.16 (d, J = 6.1 Hz, 6H)
    yloxy)acetamide
    277 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.74 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.50 (s, 1H), 8.44 (d, J = 1.5 Hz, 1H), 7.96 m/e 394
    a]pyridin-6- (s, 1H), 7.54 (m, 2H), 7.44 (m, 2H), 7.31 (m, (M + H)+
    ylmethyl)carba- 2H), 7.22 (dd, J = 9.2, 1.7 Hz, 1H), 6.61 (t, J =
    moyl]amino}phenyl)- 5.9 Hz, 1H), 4.28 (d, J = 5.9 Hz, 2H), 4.12 (m,
    2-(tetrahydrofuran- 1H), 3.74 (m, 1H), 3.60 (m, 1H), 2.47 (m, 1H),
    2-yl)acetamide 2.39 (m, 1H), 1.98 (m, 1H), 1.81 (m, 2H), 1.49
    (m, 1H)
    278 N-(4- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.72 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.50 (s, 1H), 8.43 (s, 1H), 7.94 (s, 1H), m/e 408
    a]pyridin-6- 7.53 (m, 2H), 7.43 (m, 2H), 7.31 (m, 2H), 7.21 (M + H)+
    ylmethyl)carba- (dd, J = 9.2, 1.7 Hz, 1H), 6.60 (t, J = 5.9 Hz,
    moyl]amino}phenyl)- 1H), 4.28 (d, J = 5.9 Hz, 2H), 3.82 (m, 2H),
    2-(tetrahydro- 3.29 (m, 2H), 2.20 (d, J = 7.1 Hz, 2H), 2.01 (m,
    2H-pyran-4- 1H), 1.57 (m, 2H), 1.25 (m, 2H)
    yl)acetamide
    279 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.73 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.49 (s, 1H), 8.42 (s, 1H), 7.94 (s, 1H), m/e 414
    a]pyridin-6- 7.53 (m, 2H), 7.42 (m, 2H), 7.35-7.15 (m, 8H), (M + H)+
    ylmethyl)carba- 6.60 (t, J = 5.9 Hz, 1H), 4.28 (d, J = 5.8 Hz,
    moyl]amino}phenyl)- 2H), 2.89 (t, J = 7.3 Hz, 2H), 2.57 (t, J = 5.7 Hz,
    3-phenylpropanamide 2H)
    280 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.69 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.52 (s, 1H), 8.47 (d, J = 7.0 Hz, 1H), 7.87 m/e 380
    a]pyridin-7- (s, 1H), 7.50 (bs, 1H), 7.42 (m, 2H), 7.37 (s, (M + H)+
    ylmethyl)carba- 1H), 7.30 (m, 2H), 6.82 (dd, J = 7.0, 1.5 Hz,
    moyl]amino}phenyl)- 1H), 6.63 (t, J = 6.0 Hz, 1H), 4.31 (d, J = 5.9
    4-methylpentanamide Hz, 2H), 2.25 (t, J = 7.6 Hz, 2H), 1.60-1.41
    (m, 3H), 0.88 (d, J = 6.4 Hz, 6H)
    281 3-cyclopentyl-N- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.69 (s, (ESI(+))
    (4-{[(imidazo[1,2- 1H), 8.53 (s, 1H), 8.48 (d, J = 6.9 Hz, 1H), 7.88 m/e 406
    a]pyridin-7- (bs, 1H), 7.52 (bs, 1H), 7.44 (m, 2H), 7.37 (s, (M + H)+
    ylmethyl)carba- 1H), 7.31 (m, 2H), 6.83 (dd, J = 6.9, 1.4 Hz,
    moyl]amino}phenyl) 1H), 6.64 (t, J = 6.0 Hz, 1H), 4.32 (d, J = 5.9
    propanamide Hz, 2H), 2.27 (t, J = 7.6 Hz, 2H), 1.74 (m, 3H),
    1.65-1.40 (m, 6H), 1.09 (m, 2H)
    282 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.37 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.59 (s, 1H), 8.49 (m, 1H), 7.89 (s, 1H), m/e 382
    a]pyridin-7- 7.50 (m, 3H), 7.39 (s, 1H), 7.34 (m, 2H), 6.84 (M + H)+
    ylmethyl)carba- (dd, J = 6.9, 1.6 Hz, 1H), 6.68 (t, J = 6.0 Hz,
    moyl]amino}phenyl)- 1H), 4.33 (d, J = 6.0 Hz, 2H), 3.98 (s, 2H), 3.67
    2-(propan-2- (m, 1H), 1.16 (d, J = 6.1 Hz, 6H)
    yloxy)acetamide
    283 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.73 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.54 (s, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 394
    a]pyridin-7- (s, 1H), 7.51 (s, 1H), 7.44 (m, 2H), 7.38 (bs, (M + H)+
    ylmethyl)carba- 1H), 7.32 (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz,
    moyl]amino}phenyl)- 1H), 6.65 (t, J = 6.0 Hz, 1H), 4.32 (d, J = 5.9
    2-(tetrahydrofuran- Hz, 2H), 4.16 (m, 1H), 3.76 (m, 1H), 3.60 (m,
    2-yl)acetamide 1H), 2.50 (m, 1H), 2.39 (m, 1H), 1.99 (m, 1H),
    1.83 (m, 2H), 1.53 (m, 1H)
    284 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.72 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.53 (s, 1H), 8.48 (d, J = 6.9 Hz, 1H), 7.88 m/e 408
    a]pyridin-7- (bs, 1H), 7.51 (bs, 1H), 7.44 (m, 2H), 7.38 (bs, (M + H)+
    ylmethyl)carba- 1H), 7.32 (m, 2H), 6.83 (m, 1H), 6.65 (m, 1H),
    moyl]amino}phenyl)- 4.32 (m, 2H), 3.82 (m, 2H), 3.33 (m, 2H), 2.20
    2-(tetrahydro- (d, J = 7.1 Hz, 2H), 1.97 (m, 1H), 1.58 (m, 2H),
    2H-pyran-4- 1.23 (m, 2H)
    yl)acetamide
    285 N-(4- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.74 (s, (ESI(+))
    {[(imidazo[1,2- 1H), 8.54 (s, 1H), 8.49 (d, J = 6.9 Hz, 1H), 7.89 m/e 414
    a]pyridin-7- (bs, 1H), 7.52 (bs, 1H), 7.42 (m, 3H), 7.35- (M + H)+
    ylmethyl)carba- 7.22 (m, 6H), 7.17 (m, 1H), 6.84 (d, J = 7.6 Hz,
    moyl]amino}phenyl)- 1H), 6.65 (t, J = 6.0 Hz, 1H), 4.32 (d, J = 5.9
    3-phenylpropanamide Hz, 2H), 2.90 (t, J = 7.7 Hz, 2H), 2.58 (t, J = 7.7
    Hz, 2H)
  • Example 290 tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate Example 290A 1-(4-bromo-2-fluorophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1C, substituting 4-bromo-2-fluoroaniline for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 290B tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromo-2-fluorophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.53-8.46 (m, 2H), 8.09 (t, J=8.7 Hz, 1H), 7.91-7.88 (m, 1H), 7.54-7.50 (m, 1H), 7.42-7.37 (m, 1H), 7.33-7.24 (m, 1H), 7.21-7.08 (m, 2H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 6.17-6.10 (m, 1H), 4.35 (d, J=5.8 Hz, 2H), 4.01-3.94 (m, 2H), 3.55-3.47 (m, 2H), 2.46-2.36 (m, 2H), 1.42 (s, 9H); MS (ESI(+)) m/e 466 (M+H)+.
  • Example 291 tert-butyl (3S)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate Example 291A (S)-tert-butyl 3-(4-nitrophenoxy)pyrrolidine-1-carboxylate
  • (S)-Tert-butyl 3-hydroxypyrrolidine-1-carboxylate (10 g, 53.4 mmol) was dissolved in 1-fluoro-4-nitrobenzene (13.94 g, 99 mmol). An aqueous solution of 5.9N potassium hydroxide (77 ml, 452 mmol) was added followed by addition of tetrabutylammonium bromide (2.238 g, 6.94 mmol). The reaction mixture was stirred at 40° C. for 24 hours and then cooled, diluted with water and extracted with ethyl acetate. The combined organic layers were dried with sodium sulfate, filtered and concentrated to give the title compound.
  • Example 291B (S)-tert-butyl 3-(4-aminophenoxy)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting (S)-tert-butyl 3-(4-nitrophenoxy)pyrrolidine-1-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 291C tert-butyl (3S)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting (S)-tert-butyl 3-(4-aminophenoxy)pyrrolidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.51-8.44 (m, 2H), 7.88-7.86 (m, 1H), 7.53-7.49 (m, 1H), 7.40-7.27 (m, 3H), 6.86-6.80 (m, 3H), 6.63 (t, J=6.0 Hz, 1H), 4.93-4.84 (m, 1H), 4.32 (d, J=6.0 Hz, 2H), 3.55-3.28 (m, 4H), 2.16-1.94 (m, 2H), 1.42-1.36 (m, 9H); MS (ESI(+)) m/e 452 (M+H)+.
  • Example 292 tert-butyl {2-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}carbamate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(tert-butoxycarbonylamino)-3-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.26 (s, 1H), 9.08 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.91-7.78 (m, 2H), 7.76-7.68 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (bs, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.49 (d, J=5.8 Hz, 2H), 1.48 (s, 9H); MS (ESI(+)) m/e 385 (M+H)+.
  • Example 297 2-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide Example 297A tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiazol-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 4-bromoaniline.
  • Example 297B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiazol-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 297C 2-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.27 (t, J=5.9 Hz, 1H), 8.50 (d, J=7.1 Hz, 1H), 8.41 (s, 1H), 7.89 (s, 1H), 7.38-7.56 (m, 7H), 6.85 (dd, J=6.8, 1.7 Hz, 1H), 6.56-6.89 (m, 1H), 4.49 (d, J=5.8 Hz, 2H), 4.08-4.40 (m, 2H), 3.74-3.92 (m, 1H), 3.44-3.66 (m, 1H), 2.66 (s, 2H); MS (ESI(+)) m/e 444 (M+H)+.
  • Example 298 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide Example 298A 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-bromobenzoic acid for 4-nitrobenzoic acid.
  • Example 298B 4-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 51A, substituting 1-(2-hydroxy-2-methylpropyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.05 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.19 (d, J=0.8 Hz, 1H), 7.97 (d, J=0.7 Hz, 1H), 7.95-7.86 (m, 3H), 7.73-7.66 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.42-7.37 (m, 1H), 6.87 (dd, J=7.0, 1.7 Hz, 1H), 4.73 (s, 1H), 4.51 (d, J=5.8 Hz, 2H), 4.04 (s, 2H), 1.10 (s, 6H); MS (ESI(+)) m/e 390 (M+H)+.
  • Example 299 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-phenylthiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.14 (t, J=6.0 Hz, 1H), 8.50 (dd, J=7.1, 0.7 Hz, 1H), 7.91-7.88 (m, 1H), 7.84 (d, J=3.9 Hz, 1H), 7.72 (dt, J=8.3, 2.4 Hz, 2H), 7.57 (d, J=3.9 Hz, 1H), 7.53 (d, J=1.2 Hz, 1H), 7.49-7.33 (m, 4H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 4.50 (d, J=5.8 Hz, 2H); MS (ESI(+)) m/e 334 (M+H).
  • Example 301 tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.06 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.87 (m, 3H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (m, 3H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.50 (d, J=5.9 Hz, 2H), 3.72 (dd, J=10.3, 7.5 Hz, 1H), 3.47 (m, 2H), 3.20 (m, 2H), 2.21 (m, 1H), 1.97 (m, 1H), 1.41 (m, 9H); (ESI(+)) m/e 421 (M+H)+.
  • Example 302 tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 3-(4-aminophenyl)pyrrolidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.61 (s, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (d, J=1.1 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.36 (m, 3H), 7.14 (m, 2H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 6.69 (t, J=6.0 Hz, 1H), 4.33 (d, J=6.0 Hz, 2H), 3.65 (dd, J=10.2, 7.5 Hz, 1H), 3.46 (m, 1H), 3.21 (m, 2H), 3.09 (m, 1H), 2.12 (m, 1H), 1.89 (m, 1H), 1.41 (m, 9H); (ESI(+)) m/e 436 (M+H)+.
  • Example 303 N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)biphenyl-2-sulfonamide Example 303A tert-butyl 4-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)phenylcarbamate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-aminophenylcarbamate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 303B 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)phenylcarbamate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 303C N-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)biphenyl-2-sulfonamide
  • In a 4 mL vial was mixed 1-(4-aminophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea (50 mg, 0.178 mmol) in anhydrous tetrahydrofuran (2 mL). To this mixture at room temperature was added 60% sodium hydride (24.88 mg, 0.622 mmol). The reaction was stirred about 30 minutes and biphenyl-2-sulfonyl chloride (53.9 mg, 0.213 mmol) was added. The reaction mixture stirred overnight at room temperature and was quenched with saturated ammonium chloride and water. The aqueous solution was extracted with dichloromethane and 10% methanol/dichloromethane. The organic layers were combined, concentrated and purified by normal phase chromatography to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.74 (bs, 1H), 8.56 (s, 1H), 8.47 (dd, J=6.9, 0.9 Hz, 1H), 7.95 (dd, J=7.8, 1.4 Hz, 1H), 7.87 (dd, J=1.2, 0.6 Hz, 1H), 7.62 (m, 1H), 7.54 (m, 1H), 7.51 (m, 1H), 7.38 (m, 4H), 7.30-7.20 (m, 5H), 6.82 (m, 3H), 6.66 (t, J=6.0 Hz, 1H), 4.30 (d, J=6.0 Hz, 2H); (ESI(+)) m/e 498 (M+H)+.
  • Example 306 1-{2-fluoro-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea Example 306A 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 306B 1-{2-fluoro-4-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, methanol-d4) δ ppm 8.74 (d, J=7.0 Hz, 1H), 8.19-8.15 (m, 1H), 8.00-7.96 (m, 1H), 7.92 (t, J=8.5 Hz, 1H), 7.81-7.77 (m, 1H), 7.50-7.44 (m, 1H), 7.28-7.16 (m, 2H), 6.17-6.11 (m, 1H), 4.61 (bs, 2H), 4.30-4.15 (m, 2H), 3.79 (t, J=5.7 Hz, 2H), 3.08-2.90 (m, 1H), 2.62-2.45 (m, 2H), 1.17-1.08 (m, 6H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 307 1-{2-fluoro-4-[1-(tetrahydrofuran-2-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and tetrahydrofuran-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, methanol-d4) δ ppm 8.74 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.2 Hz, 1H), 7.98 (d, J=2.2 Hz, 1H), 7.92 (t, J=8.5 Hz, 1H), 7.80 (bs, 1H), 7.47 (dd, J=7.0, 1.5 Hz, 1H), 7.28-7.16 (m, 2H), 6.17-6.09 (m, 1H), 4.84-4.70 (m, 1H), 4.61 (bs, 2H), 4.34-4.12 (m, 2H), 4.01-3.68 (m, 4H), 2.67-2.47 (m, 2H), 2.29-1.88 (m, 4H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 314 tert-butyl 4-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate Example 314A 2-(4-bromophenyl)-N-(imidazo[1,2-a]pyridin-6-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-amine for 3-methylbutan-1-amine and 2-(4-bromophenyl)acetic acid for 4-nitrobenzoic acid.
  • Example 314B tert-butyl 4-{4-[2-(imidazo[1,2-a]pyridin-6-ylamino)-2-oxoethyl]phenyl}-3,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2-(4-bromophenyl)-N-(imidazo[1,2-a]pyridin-6-yl)acetamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.25 (s, 1H), 9.20-9.16 (m, 1H), 7.98-7.94 (m, 1H), 7.58-7.48 (m, 2H), 7.44-7.36 (m, 2H), 7.35-7.28 (m, 2H), 7.16 (dd, J=9.6, 2.0 Hz, 1H), 6.16-6.09 (m, 1H), 4.05-3.94 (m, 2H), 3.66 (s, 2H), 3.53 (t, J=5.7 Hz, 2H), 2.49-2.40 (m, 2H), 1.42 (s, 9H); MS (ESI(+)) m/e 433 (M+H)+.
  • Example 315 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]benzamide
  • The title compound was prepared as described in Example 51A, substituting 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (t, J=5.9 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 8.27 (s, 1H), 8.00-7.86 (m, 4H), 7.69 (d, J=8.4 Hz, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (d, J=1.5 Hz, 1H), 6.87 (dd, J=7.0, 1.7 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 3.94 (d, J=7.1 Hz, 2H), 2.15 (dp, J=13.6, 6.8 Hz, 1H), 0.87 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 374 (M+H)+.
  • Example 318 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(propan-2-yloxy)phenyl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 2-(3-isopropoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (t, J=6.0 Hz, 1H), 8.49 (dd, J=7.0, 0.8 Hz, 1H), 8.19 (d, J=0.4 Hz, 1H), 7.89 (d, J=0.8 Hz, 1H), 7.86 (d, J=0.5 Hz, 1H), 7.75 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.24 (d, J=3.9 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=5.8 Hz, 2H), 4.13 (d, J=6.6 Hz, 2H), 3.09-2.83 (m, 4H), 2.47-2.40 (m, 1H), 2.14-1.96 (m, 1H), 1.88-1.69 (m, 1H), 1.69-1.54 (m, 1H), 1.37-1.14 (m, 1H).
  • Example 319 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and tetrahydro-2H-pyran-4-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.26 (t, J=5.9 Hz, 1H), 8.50 (d, J=6.8 Hz, 1H), 8.40 (s, 1H), 7.89 (s, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.42 (s, 1H), 6.84 (dd, J=7.1, 1.7 Hz, 1H), 6.72-6.79 (m, 1H), 4.49 (d, J=5.8 Hz, 2H), 4.32 (s, 1H), 4.16 (s, 1H), 3.81-3.89 (m, 2H), 3.73 (s, 2H), 3.36-3.47 (m, 1H), 2.83-3.05 (m, 1H), 2.65 (s, 1H), 2.38-2.54 (m, 2H), 1.50-1.69 (m, 4H); MS (ESI(+)) m/e 452 (M+H)+.
  • Example 320 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.26 (t, J=5.9 Hz, 1H), 8.50 (d, J=7.1 Hz, 1H), 8.40 (s, 1H), 7.89 (s, 1H), 7.53 (s, 1H), 7.42 (s, 1H), 6.84 (dd, J=7.1, 1.7 Hz, 1H), 6.76 (s, 1H), 4.49 (d, J=5.8 Hz, 2H), 4.29 (s, 1H), 4.16 (s, 1H), 3.62-3.74 (m, 2H), 2.81-3.03 (m, 1H), 2.60-2.69 (m, 1H), 2.50-2.58 (m, 1H), 1.02 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 410 (M+H)+.
  • Example 321 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide Example 321A (S)-tert-butyl 3-(4-(benzyloxycarbonyl)phenoxy)pyrrolidine-1-carboxylate
  • To a stirred solution of (R)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate (1 g, 5.34 mmol) in tetrahydrofuran (38.1 ml) was added benzyl 4-hydroxybenzoate (1.341 g, 5.87 mmol) and triphenylphosphine polymer bound (4.45 g, 8.01 mmol). The reaction mixture was cooled to 0° C. and a solution of (E)-diisopropyl diazene-1,2-dicarboxylate (1.367 ml, 6.94 mmol) in tetrahydrofuran (5 mL) was added dropwise over 15 minutes. The reaction was allowed to stir at room temperature for 16 hours and the mixture was filtered. The solids were washed with dichloromethane, and the combined filtrates were concentrated and purified by normal phase chromatography to give the title compound.
  • Example 321B (S)-4-(1-(tert-butoxycarbonyl)pyrrolidin-3-yloxy)benzoic acid
  • The title compound was prepared as described in Example 1B, substituting (R)-tert-butyl 3-(4-(benzyloxycarbonyl)phenoxy)pyrrolidine-1-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 321C (S)-tert-butyl 3-(4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)phenoxy)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and (S)-4-(1-(tert-butoxycarbonyl)pyrrolidin-3-yloxy)benzoic acid for 4-nitrobenzoic acid.
  • Example 321D (S)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide
  • The title compound was prepared as described in Example 28A, substituting (S)-tert-butyl 3-(4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)phenoxy)pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 321E N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide
  • The title compound was prepared as described in Example 1A, substituting (S)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6, Temp=90° C.) δ ppm 8.67-8.59 (m, 1H), 8.41 (d, J=6.9 Hz, 1H), 7.90-7.84 (m, 2H), 7.81 (s, 1H), 7.50-7.46 (m, 1H), 7.38 (s, 1H), 7.03-6.97 (m, 2H), 6.83 (dd, J=6.9, 1.7 Hz, 1H), 5.17-5.04 (m, 1H), 4.49 (d, J=5.9 Hz, 2H), 3.91-3.36 (m, 5H), 2.31-1.98 (m, 2H), 1.63-1.49 (m, 1H), 1.38-1.23 (m, 1H), 1.00 (d, J=6.7 Hz, 3H), 0.89-0.74 (m, 3H); MS (ESI(+)) m/e 421 (M+H)+.
  • TABLE 16
    The following Examples were prepared essentially as described in Example
    321, substituting the appropriate carboxylic acid in Example 321E.
    Ex Name MS
    339 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3R)- (ESI(+))
    tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide m/e 435
    (M + H)+
    340 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2R)- (ESI(+))
    tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide m/e 435
    (M + H)+
    341 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(2S)- (ESI(+))
    tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide m/e 435
    (M + H)+
    342 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H- (ESI(+))
    pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}benzamide m/e 449
    (M + H)+
    343 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(tetrahydro-2H- (ESI(+))
    pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}benzamide m/e 463
    (M + H)+
    346 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3S)-1-[(3S)- (ESI(+))
    tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide m/e 435
    (M + H)+
    347 4-{[(3S)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 419
    (M + H)+
    348 4-{[(3S)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3-yl]oxy}- (ESI(+))
    N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 423
    (M + H)+
    349 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(3-methoxy-2- (ESI(+))
    methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide m/e 437
    (M + H)+
    350 4-{[(3S)-1-butanoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 407
    (M + H)+
    351 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3S)-1-(2- (ESI(+))
    methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide m/e 407
    (M + H)+
    352 4-{[(3S)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 405
    (M + H)+
    353 4-{[(3S)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 441
    (M + H)+
    354 4-{[(3S)-1-(3-hydroxy-3-methylbutanoyl)pyrrolidin-3-yl]oxy}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)benzamide m/e 437
    (M + H)+
  • Example 322 tert-butyl 4-[4-(imidazo[1,2-a]pyridin-7-ylcarbamoyl)phenyl]piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-amine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.36 (s, 1H), 8.47 (d, J=7.3 Hz, 1H), 8.15-8.10 (m, 1H), 7.94-7.87 (m, 2H), 7.83 (s, 1H), 7.50-7.40 (m, 3H), 7.24 (dd, J=7.3, 2.1 Hz, 1H), 4.16-4.05 (m, 2H), 2.94-2.66 (m, 3H), 1.84-1.73 (m, 2H), 1.65-1.41 (m, 11H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 323 tert-butyl 4-[4-(imidazo[1,2-a]pyridin-6-ylcarbamoyl)phenyl]piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-amine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.27 (s, 1H), 9.36-9.31 (m, 1H), 8.03 (s, 1H), 7.95-7.88 (m, 2H), 7.60-7.52 (m, 2H), 7.47-7.35 (m, 3H), 4.15-4.04 (m, 2H), 2.95-2.66 (m, 3H), 1.83-1.73 (m, 2H), 1.65-1.45 (m, 2H), 1.42 (s, 9H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 324 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(2-methylpropanoyl)amino]oxetan-3-yl}thiophene-2-carboxamide Example 324A 5-(3-(1,1-dimethylethylsulfinamido)oxetan-3-yl)thiophene-2-carboxylic acid
  • Butyllithium (6.16 ml, 15.41 mmol) was added dropwise to a stirred solution of diisopropylamine (1.919 ml, 13.69 mmol) in tetrahydrofuran (10 ml) at −78° C. The solution was allowed to warm to room temperature and then added dropwise by syringe to a stirred −78° C. solution of thiophene-2-carboxylic acid (0.877 g, 6.85 mmol) in tetrahydrofuran (30 ml). The resulting suspension was stirred for 40 minutes at −78° C. when a solution of 2-methyl-N-(oxetan-3-ylidene)propane-2-sulfinamide (1 g, 5.71 mmol) in tetrahydrofuran (10 ml) was added dropwise. After the addition was complete, the reaction mixture was allowed to warm to room temperature, quenched with saturated ammonium chloride and diluted with a water to dissolve the remaining solids. The aqueous solution was extracted with ethyl acetate, adjusted to pH 2 by addition of 1N aqueous hydrochloric acid and re-extracted with ethyl acetate and methylene chloride. The organic extracts were dried with magnesium sulfate, filtered, concentrated and purified by normal phase chromatography to give the title compound.
  • Example 324B 5-(3-(1,1-dimethylethylsulfinamido)oxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(3-(1,1-dimethylethylsulfinamido)oxetan-3-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 324C 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • 5-(3-(1,1-Dimethylethylsulfinamido)oxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide (432 mg, 1 mmol) in 10 ml methanol was treated with 4N aqueous HCl in dioxane (0.75 ml, 3 mmol) and the mixture was stirred for 2 hours. Concentration provided the title compound.
  • Example 324D
  • The title compound was prepared as described in Example 1A, substituting 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03-9.10 (m, 2H), 8.48 (d, J=7.1 Hz, 1H), 7.89 (s, 1H), 7.71 (d, J=4.0 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.38 (s, 1H), 7.22 (d, J=4.0 Hz, 1H), 6.83 (dd, J=6.9, 1.8 Hz, 1H), 4.80 (d, J=6.7 Hz, 2H), 4.71 (d, J=6.7 Hz, 2H), 4.46 (d, J=6.0 Hz, 2H), 2.40-2.48 (m, 1H), 1.05 (d, J=7.1 Hz, 6H); MS (ESI(+)) m/e 399 (M+H)+.
  • Example 325 5-[3-(benzoylamino)oxetan-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.70 (s, 1H), 9.05 (t, J=5.9 Hz, 1H), 8.47 (d, J=6.8 Hz, 1H), 7.87-7.93 (m, 3H), 7.72 (d, J=3.7 Hz, 1H), 7.56-7.62 (m, 1H), 7.48-7.55 (m, 3H), 7.37 (s, 1H), 7.29 (d, J=3.7 Hz, 1H), 6.82 (dd, J=7.1, 1.7 Hz, 1H), 5.01 (d, J=6.8 Hz, 2H), 4.80 (d, J=7.1 Hz, 2H), 4.45 (d, J=5.8 Hz, 2H); MS (ESI(+)) m/e 433 (M+H)+.
  • Example 326 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{3-[(tetrahydrofuran-3-ylacetyl)amino]oxetan-3-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 2-(tetrahydrofuran-3-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.22 (s, 1H), 9.07 (t, J=6.0 Hz, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.89 (s, 1H), 7.71 (d, J=3.6 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.38 (s, 1H), 7.22 (d, J=4.0 Hz, 1H), 6.83 (dd, J=7.1, 1.6 Hz, 1H), 4.81 (d, J=6.7 Hz, 2H), 4.72 (d, J=6.7 Hz, 2H), 4.46 (d, J=6.0 Hz, 2H), 3.56-3.80 (m, 3H), 2.23-2.30 (m, 2H), 1.89-2.04 (m, 1H), 1.45-1.58 (m, 1H); MS (ESI(+)) m/e 441 (M+H)+.
  • Example 327 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[3-(pentanoylamino)oxetan-3-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and pentanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.11 (s, 1H), 9.05 (t, J=5.9 Hz, 1H), 8.48 (dd, J=7.0, 0.8 Hz, 1H), 7.88 (s, 1H), 7.70 (d, J=4.1 Hz, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.38 (s, 1H), 7.21 (d, J=3.7 Hz, 1H), 6.83 (dd, J=7.1, 1.7 Hz, 1H), 4.80 (d, J=6.8 Hz, 2H), 4.71 (d, J=6.8 Hz, 2H), 4.46 (d, J=5.8 Hz, 2H), 2.17 (t, J=7.5 Hz, 2H), 1.44-1.57 (m, 2H), 1.22-1.37 (m, 2H), 0.84-0.92 (m, 3H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 328 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)phenyl]urea Example 328A (R)-tert-butyl 3-(4-nitrophenoxy)pyrrolidine-1-carboxylate
  • (R)-Tert-butyl 3-hydroxypyrrolidine-1-carboxylate (10 g, 53.4 mmol) was dissolved in 1-fluoro-4-nitrobenzene (13.94 g, 99 mmol). An aqueous solution of 5.9N potassium hydroxide (77 ml, 452 mmol) was added followed by addition of tetrabutylammonium bromide (2.238 g, 6.94 mmol). The reaction mixture was stirred at 40° C. for 24 hours, cooled, diluted with water and extracted with ethyl acetate. The combined organic layers were dried with sodium sulfate, filtered and concentrated to give the title compound.
  • Example 328B (R)-tert-butyl 3-(4-aminophenoxy)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting (R)-tert-butyl 3-(4-nitrophenoxy)pyrrolidine-1-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 328C tert-butyl (3S)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting (R)-tert-butyl 3-(4-aminophenoxy)pyrrolidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 328D (R)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(pyrrolidin-3-yloxy)phenyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl (3S)-3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 328E 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3S)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)phenyl]urea
  • The title compound was prepared as described in Example 1A, substituting (R)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(pyrrolidin-3-yloxy)phenyl)urea for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.76-8.70 (m, 1H), 8.19-8.12 (m, 1H), 8.00-7.94 (m, 1H), 7.81-7.75 (m, 1H), 7.46 (d, J=7.0 Hz, 1H), 7.34-7.25 (m, 2H), 6.92-6.82 (m, 2H), 5.07-4.95 (m, 1H), 4.58 (bs, 2H), 3.84-3.61 (m, 3H), 3.60-3.45 (m, 1H), 2.67-2.45 (m, 1H), 2.31-2.06 (m, 2H), 1.72-1.57 (m, 1H), 1.50-1.35 (m, 1H), 1.12-1.00 (m, 3H), 0.94-0.85 (m, 3H); MS (ESI(+)) m/e 436 (M+H)+.
  • TABLE 17
    The following Examples were prepared essentially as described
    in Example 328, substituting the appropriate alcohol in Example
    328A and the appropriate carboxylic acid in Example 328E.
    Ex Name MS
    329 1-(4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}phenyl)-3-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)urea m/e 456
    (M + H)+
    330 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(2- (ESI(+))
    methylpropanoyl)pyrrolidin-3-yl]oxy}phenyl)urea m/e 422
    (M + H)+
    331 1-(4-{[(3R)-1-(cyclopropylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 420
    (M + H)+
    332 1-(4-{[(3R)-1-(cyclopropylacetyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 434
    (M + H)+
    333 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H- (ESI(+))
    pyran-4-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea m/e 464
    (M + H)+
    334 1-(4-{[(3R)-1-(2-hydroxy-2-methylpropanoyl)pyrrolidin-3- (ESI(+))
    yl]oxy}phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 438
    (M + H)+
    335 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2R)- (ESI(+))
    tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea m/e 450
    (M + H)+
    336 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[(2S)- (ESI(+))
    tetrahydrofuran-2-ylcarbonyl]pyrrolidin-3-yl}oxy)phenyl]urea m/e 450
    (M + H)+
    337 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1- (ESI(+))
    (tetrahydrofuran-3-ylcarbonyl)pyrrolidin-3-yl]oxy}phenyl)urea m/e 450
    (M + H)+
    338 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[(3R)-1-(tetrahydro-2H- (ESI(+))
    pyran-4-ylacetyl)pyrrolidin-3-yl]oxy}phenyl)urea m/e 478
    (M + H)+
    689 1-(4-{[(3R)-1-(2-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 474
    (M + H)+
    690 1-(4-{[(3R)-1-(3-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 474
    (M + H)+
    691 1-(4-{[(3R)-1-(4-fluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 474
    (M + H)+
    692 1-(4-{[(3R)-1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 492
    (M + H)+
    693 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-({(3R)-1-[4- (ESI(+))
    (trifluoromethyl)benzoyl]pyrrolidin-3-yl}oxy)phenyl]urea m/e 524
    (M + H)+
    694 1-(4-{[(3R)-1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 492
    (M + H)+
    695 1-(4-{[(3R)-1-(2-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
    696 1-(4-{[(3R)-1-(4-chlorobenzoyl)pyrrolidin-3-yl]oxy}phenyl)-3- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)urea m/e 490
    (M + H)+
  • Example 355 2-(4-benzoylpiperazin-1-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting phenyl(piperazin-1-yl)methanone for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.86 (t, J=6.0 Hz, 1H), 8.48 (d, J=6.7 Hz, 1H), 7.90 (s, 1H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.41-7.50 (m, 5H), 7.37 (s, 1H), 6.82 (dd, J=7.1, 1.6 Hz, 1H), 4.43 (d, J=5.6 Hz, 2H), 3.41-3.82 (m, 8H); MS (ESI(+)) m/e 447 (M+H)+.
  • Example 356 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(propan-2-yl)piperazin-1-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting 1-isopropylpiperazine for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.80 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.87 (s, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.37 (s, 1H), 6.81 (dd, J=7.1, 1.7 Hz, 1H), 4.42 (d, J=6.1 Hz, 2H), 3.41-3.48 (m, 4H), 2.64-2.79 (m, 1H), 2.51-2.57 (m, 4H), 0.98 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 385 (M+H)+.
  • Example 357 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[4-(2-methoxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as in Example 53B, substituting 1-(2-methoxyethyl)piperazine for 4-cyanobenzylamine and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 2-bromo-N-(imidazo[1,2-a]pyridin-6-yl)thiazole-5-carboxamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.82 (t, J=6.0 Hz, 1H), 8.48 (d, J=6.7 Hz, 1H), 7.88 (s, 1H), 7.88 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 6.81 (dd, J=7.1, 1.6 Hz, 1H), 4.43 (d, J=6.0 Hz, 2H), 3.42-3.48 (m, 6H), 3.24 (s, 3H), 2.51-2.56 (m, 6H); MS (ESI(+)) m/e 401 (M+H)+.
  • Example 358 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide Example 358A methyl 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)benzoate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(methoxycarbonyl)benzoic acid for 4-nitrobenzoic acid.
  • Example 358B 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)benzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)benzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 358C N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide
  • The title compound was prepared as described in Example 1A, substituting 3-methylbutan-1-amine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.15 (t, J=5.8 Hz, 1H), 8.55-8.47 (m, 2H), 8.00-7.84 (m, 5H), 7.54 (dd, J=5.1, 4.1 Hz, 2H), 7.23 (dd, J=9.3, 1.7 Hz, 1H), 4.48 (d, J=5.8 Hz, 2H), 3.30-3.21 (m, 2H), 1.62 (dp, J=13.3, 6.6 Hz, 1H), 1.49-1.37 (m, 2H), 0.91 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 365 (M+H)+.
  • Example 359 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide
  • The title compound was prepared as described in Example 1A, substituting (S)-(tetrahydrofuran-3-yl)methanamine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-6-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.15 (t, J=5.8 Hz, 1H), 8.68 (t, J=5.7 Hz, 1H), 8.49 (bs, 1H), 8.03-7.85 (m, 5H), 7.58-7.50 (m, 2H), 7.23 (dd, J=9.1, 1.7 Hz, 1H), 4.49 (d, J=5.8 Hz, 2H), 3.80-3.56 (m, 4H), 3.48 (dd, J=8.5, 5.2 Hz, 1H), 3.28-3.17 (m, 1H), 2.03-1.87 (m, 1H), 1.68-1.46 (m, 1H), 1.37-1.09 (m, 1H); MS (ESI(+)) m/e 379 (M+H)+.
  • Example 360 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea Example 360A 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-6-ylmethyl)urea
  • The title compound was prepared as described in Example 3A, substituting 1-isocyanato-4-bromobenzene for 1-isocyanato-4-nitrobenzene and imidazo[1,2-a]pyridin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 360B 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea
  • The title compound was prepared as described in Example 51A, substituting 1-propyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-6-ylmethyl)urea for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.59 (s, 1H), 8.44 (s, 1H), 8.04 (s, 1H), 7.95 (s, 1H), 7.76 (s, 1H), 7.57-7.50 (m, 2H), 7.48-7.32 (m, 4H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 6.65 (t, J=5.9 Hz, 1H), 4.30 (d, J=5.8 Hz, 2H), 4.04 (t, J=6.9 Hz, 2H), 1.87-1.73 (m, 2H), 0.84 (t, J=7.3 Hz, 3H); MS (ESI(+)) m/e 375 (M+H)+.
  • Example 361 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-phenyl-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 51A, substituting phenyl boronic acid for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.34 (t, J=5.8 Hz, 1H), 8.56-8.48 (m, 2H), 8.05-7.95 (m, 2H), 7.90 (d, J=0.8 Hz, 1H), 7.60-7.49 (m, 4H), 7.45 (s, 1H), 6.87 (dd, J=7.0, 1.6 Hz, 1H), 4.52 (d, J=5.7 Hz, 2H); MS (ESI(+)) m/e 335 (M+H).
  • Example 362 1-(imidazo[1,2-a]pyridin-6-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 51A, substituting 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-6-ylmethyl)urea for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.59 (s, 1H), 8.44 (d, J=1.6 Hz, 1H), 8.03 (d, J=0.8 Hz, 1H), 7.97-7.93 (m, 1H), 7.77 (d, J=0.8 Hz, 1H), 7.57-7.50 (m, 2H), 7.44-7.35 (m, 4H), 7.21 (dd, J=9.2, 1.7 Hz, 1H), 6.65 (t, J=5.9 Hz, 1H), 4.30 (d, J=5.8 Hz, 2H), 3.90 (d, J=7.2 Hz, 2H), 2.19-2.06 (m, 1H), 0.85 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 389 (M+H)+.
  • Example 364 tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 3-(4-aminophenyl)azetidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, 1H), 8.48 (m, 1H), 7.88 (s, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.39 (m, 3H), 7.19 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.70 (t, J=6.0 Hz, 1H), 4.33 (d, J=6.0 Hz, 2H), 4.20 (m, 2H), 3.78 (m, 2H), 3.71 (m, 1H), 1.40 (s, 9H); (ESI(+)) m/e 422 (M+H)+.
  • Example 365 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yloxy)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.95 (t, J=6.0 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 7.06 (m, 2H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 4.67 (m, 1H), 4.49 (d, J=5.9 Hz, 2H), 3.67 (m, 2H), 3.18 (m, 2H), 1.92 (m, 2H), 1.52 (m, 2H), 1.41 (s, 9H); (ESI(+)) m/e 451 (M+H)+.
  • Example 366 tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenoxy)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.47 (m, 2H), 7.88 (d, J=1.1 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 7.30 (m, 2H), 6.85 (m, 3H), 6.62 (t, J=6.0 Hz, 1H), 4.42 (m, 1H), 4.32 (d, J=6.0 Hz, 2H), 3.64 (m, 2H), 3.15 (m, 2H), 1.86 (m, 2H), 1.51 (m, 2H), 1.40 (s, 9H); (ESI(+)) m/e 466 (M+H)+.
  • Example 367 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide Example 367A N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 367B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)pyrrolidin-3-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (m, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.42 (m, 3H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 4.50 (d, J=5.9 Hz, 2H), 3.90-3.66 (m, 1H), 3.63-3.20 (m, 4H), 2.70 (m, 1H), 2.38-2.18 (m, 1H), 2.10-1.90 (m, 1H), 1.01 (m, 6H); (ESI(+)) m/e 391 (M+H)+.
  • TABLE 18
    The following Examples were prepared essentially as described in Example
    367, substituting the appropriate carboxylic acid in Example 367B.
    Ex Name 1H NMR MS
    368 N-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.87 (m, m/e 405
    ylmethyl)-4-{1- 3H), 7.52 (d, J = 1.2 Hz, 1H), 7.41 (m, 3H), (M + H)+
    [(2S)-2- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.50 (d, J = 5.9
    methylbutanoyl]pyrrolidin- Hz, 2H), 3.90-3.66 (m, 1H), 3.63-3.20 (m,
    3-yl}benzamide 4H), 2.51 (m, 1H), 2.38-2.18 (m, 1H), 2.10-
    1.90 (m, 1H), 1.57 (m, 1H), 1.34 (m, 1H),
    1.01 (m, 3H), 0.86 (m, 3H)
    369 4-[1- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    (cyclopropylacetyl) (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (m, m/e 403
    pyrrolidin-3-yl]-N- 3H), 7.52 (d, J = 1.2 Hz, 1H), 7.42 (m, 3H), (M + H)+
    (imidazo[1,2- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.50 (d, J = 5.9
    a]pyridin-7- Hz, 2H), 3.88 (m, 1H), 3.61 (m, 1H), 3.60-
    ylmethyl)benzamide 3.20 (m, 3H), 2.35-2.15 (m, 3H), 2.10-1.88
    (m, 1H), 1.99 (m, 1H), 0.44 (m, 2H), 0.12 (m,
    2H)
    370 4-(1- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    benzoylpyrrolidin- (m, 1H), 8.48 (t, J = 6.2 Hz, 1H), 7.88 (m, m/e 425
    3-yl)-N- 3H), 7.55 (m, 2H), 7.54-7.34 (m, 7H), 6.85 (M + H)+
    (imidazo[1,2- (m, 1H), 4.50 (m, 2H), 4.00 (m, 1H), 3.73 (m,
    a]pyridin-7- 1H), 3.65-3.40 (m, 3H), 2.38-2.22 (m, 1H),
    ylmethyl)benzamide 2.15-1.94 (m, 1H)
    371 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.89 (m, m/e 421
    ylmethyl)-4-{1- 3H), 7.52 (d, J = 1.2 Hz, 1H), 7.41 (m, 3H), (M + H)+
    [(propan-2- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 4.51 (d, J = 5.9
    yloxy)acetyl]pyrrolidin- Hz, 2H), 4.05 (d, J = 4.5 Hz, 2H), 3.95-3.81
    3-yl}benzamide (m, 1H), 3.70-3.55 (m, 2H), 3.55-3.20 (m,
    3H), 2.38-2.18 (m, 1H), 2.08-1.88 (m, 1H),
    1.11 (m, 6H)
    372 4-[1-(2-hydroxy-2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    methylpropanoyl)pyrrolidin- (t, J = 6.0 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), m/e 407
    3-yl]-N- 7.88 (m, 3H), 7.52 (d, J = 1.2 Hz, 1H), 7.42 (M + H)+
    (imidazo[1,2- (m, 2H), 7.38 (m, 1H), 6.85 (dd, J = 7.0, 1.6
    a]pyridin-7- Hz, 1H), 5.15 (m, 1H), 4.50 (d, J = 5.9 Hz,
    ylmethyl)benzamide 2H), 4.34 (m, 1H), 3.85-3.65 (m, 1H), 3.59
    (m, 3H), 2.35-2.10 (m, 1H), 2.05-1.86 (m,
    1H), 1.30 (m, 6H);)
    373 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (m, m/e 419
    ylmethyl)-4-{1- 3H), 7.52 (s, 1H), 7.45-7.35 (m, 3H), 6.85 (M + H)+
    [(2R)- (d, J = 7.1 Hz, 1H), 4.55 (m, 1H), 4.50 (m,
    tetrahydrofuran-2- 2H), 4.10-3.93 (m, 1H), 3.90-3.65 (m, 3H),
    ylcarbonyl]pyrrolidin- 3.65-3.20 (m, 3H) 2.37-2.19 (m, 1H), 2.10-
    3-yl}benzamide 1.76 (m, 5H)
    374 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.08 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (m, 1H), 7.88 (m, 3H), 7.52 (s, m/e 419
    ylmethyl)-4-{1- 1H), 7.45-7.37 (m, 3H), 6.85 (dd, J = 7.0, (M + H)+
    [(2S)- 1.6 Hz, 1H), 4.55 (m, 1H), 4.50 (m, 2H), 4.10-
    tetrahydrofuran-2- 3.93 (m, 1H), 3.90-3.65 (m, 3H), 3.65-
    ylcarbonyl]pyrrolidin- 3.20 (m, 3H) 2.37-2.19 (m, 1H), 2.10-1.75
    3-yl}benzamide (m, 5H)
    375 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.08 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.89 (m, m/e 419
    ylmethyl)-4-{1- 3H), 7.52 (s, 1H), 7.46 (m, 1H), 7.41 (m, 1H), (M + H)+
    [(3S)- 7.38 (m, 1H), 6.85 (d, J = 7.1 Hz, 1H), 4.51
    tetrahydrofuran-3- (m, 2H), 4.10-3.93 (m, 1H), 3.95-3.80 (m,
    ylcarbonyl]pyrrolidin- 2H), 3.65-3.20 (m, 6H), 2.36-2.20 (m, 1H),
    3-yl}benzamide 2.14-1.85 (m, 4H)
    376 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (m, m/e 433
    ylmethyl)-4-[1- 3H), 7.51 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), (M + H)+
    (tetrahydro-2H- 7.41 (m, 2H), 6.85 (m, 1H), 4.51 (d, J = 3.0
    pyran-4- Hz, 2H), 3.88 (m, 3H), 3.75 (m, .55 (m, 2H),
    ylcarbonyl)pyrrolidin- 3.55-3.20 (m, 3H), 2.71 (m, 1H), 2.39-2.19
    3-yl]benzamide (m, 1H), 2.10-1.85 (m, 1H), 1.59 (m, 4H)
    377 4-[1-(1,4-dioxan-2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    ylcarbonyl)pyrrolidin- (m, 1H), 8.48 (d, J = 7.1 Hz, 1H), 7.89 (m, m/e 435
    3-yl]-N- 3H), 7.52 (s, 1H), 7.43 (m, 2H), 7.38 (s, 1H), (M + H)+
    (imidazo[1,2- 6.85 (d, J = 7.1 Hz, 1H), 4.51 (dd, J = 5.8, 2.9
    a]pyridin-7- Hz, 2H), 4.27 (m, 2H), 4.15-4.00 (m, 1H),
    ylmethyl)benzamide 3.90-3.70 (m, 4H), 3.70-3.20 (m, 5H); 2.39-
    2.19 (m, 1H), 2.15-1.88 (m, 1H)
    378 N-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 (ESI(+))
    a]pyridin-7- (m, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (m, m/e 447
    ylmethyl)-4-[1- 3H), 7.52 (s, 1H), 7.42 (m, 2H), 7.38 (s, 1H), (M + H)+
    (tetrahydro-2H- 6.85 (d, J = 7.1 Hz, 1H), 4.51 (m, 2H), 3.95
    pyran-4- (m, 1H), 3.83 (m, 3H), 3.63 (m, 1H), 3.47 (m,
    ylacetyl)pyrrolidin- 2H), 3.45-3.20 (m, 2H), 2.38-2.15 (m, 3H),
    3-yl]benzamide 2.10-1.90 (m, 2H), 1.56 (m, 2H), 1.21 (m, 2H)
    488 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 431
    ylmethyl)-4-[1- (M + H)+
    (thiophen-2-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    562 4-[1-(4- (ESI(+))
    fluorobenzo- m/e 443
    yl)pyrrolidin-3-yl]- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)benzamide
    580 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 403
    ylmethyl)-4-{1-[(2- (M + H)+
    methylcyclopropyl)
    carbonyl]pyrrolidin-
    3-yl}benzamide
    581 4-[1- (ESI(+))
    (cyclopentylacetyl)pyrrolidin- m/e 431
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    582 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 419
    ylmethyl)-4-[1-(3- (M + H)+
    methylpentanoyl)pyrrolidin-
    3-yl]benzamide
    583 4-[1- (ESI(+))
    (cyclopentylcarbon- m/e 417
    yl)pyrrolidin- (M + H)+
    3-yl]-N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)benzamide
    584 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 403
    ylmethyl)-4-{1-[(1- (M + H)+
    methylcyclopropyl)
    carbonyl]pyrrolidin-
    3-yl}benzamide
    585 4-[1-(2,2- (ESI(+))
    dimethylpropanoyl) m/e 405
    pyrrolidin-3-yl]-N- (M + H)+
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)benzamide
    586 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 432
    ylmethyl)-4-[1-(1,3- (M + H)+
    thiazol-5-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    587 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 455
    ylmethyl)-4-[1-(2- (M + H)+
    methoxybenzoyl)pyrrolidin-
    3-yl]benzamide
    588 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 432
    ylmethyl)-4-[1-(1,3- (M + H)+
    thiazol-4-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    589 4-[1-(2- (ESI(+))
    fluorobenzoyl)pyrrolidin- m/e 443
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    590 4-[1-(furan-2- (ESI(+))
    ylcarbonyl)pyrrolidin- m/e 415
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    591 4-[1-(3- (ESI(+))
    fluorobenzoyl)pyrrolidin- m/e 443
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    592 4-[1-(2,4- (ESI(+))
    difluorobenzoyl)pyrrolidin- m/e 461
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    593 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 429
    ylmethyl)-4-{1-[(1- (M + H)+
    methyl-1H-pyrazol-3-
    yl)carbonyl]pyrrolidin-
    3-yl}benzamide
    594 4-[1-(2- (ESI(+))
    chlorobenzoyl)pyrrolidin- m/e 459
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    595 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 439
    ylmethyl)-4-[1-(2- (M + H)+
    methylbenzoyl)pyrrolidin-
    3-yl]benzamide
    596 4-[1-(4- (ESI(+))
    chlorobenzoyl)pyrrolidin- m/e 459
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    597 4-[1-(3- (ESI(+))
    chlorobenzoyl)pyrrolidin- m/e 459
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    598 4-[1-(2,2- (ESI(+))
    dimethylbutanoyl)pyrrolidin- m/e 419
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    599 4-[1-(3,5- (ESI(+))
    difluorobenzoyl)pyrrolidin- m/e 461
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    600 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 439
    ylmethyl)-4-[1-(4- (M + H)+
    methylbenzoyl)pyrrolidin-
    3-yl]benzamide
    601 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 405
    ylmethyl)-4-[1-(3- (M + H)+
    methylbutanoyl)pyrrolidin-
    3-yl]benzamide
    602 4-[1-(3,3- (ESI(+))
    dimethylbutanoyl)pyrrolidin- m/e 419
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    603 4-[1-(3- (ESI(+))
    cyanobenzoyl)pyrrolidin- m/e 450
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    604 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 455
    ylmethyl)-4-[1-(3- (M + H)+
    methoxybenzoyl)pyrrolidin-
    3-yl]benzamide
    605 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 455
    ylmethyl)-4-[1-(4- (M + H)+
    methoxybenzoyl)pyrrolidin-
    3-yl]benzamide
    606 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 428
    ylmethyl)-4-{1-[(1- (M + H)+
    methyl-1H-pyrrol-2-
    yl)carbonyl]pyrrolidin-
    3-yl}benzamide
    607 4-[1- (ESI(+))
    (cyclohexylacetyl)pyrrolidin- m/e 445
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    608 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 426
    ylmethyl)-4-[1- (M + H)+
    (pyridin-4-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    609 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 426
    ylmethyl)-4-[1- (M + H)+
    (pyridin-3-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    610 4-[1- (ESI(+))
    (cyclohexylcarbon- m/e 431
    yl)pyrrolidin-3-yl]-N- (M + H)+
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)benzamide
    611 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 426
    ylmethyl)-4-[1- (M + H)+
    (pyridin-2-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    612 4-[1-(furan-3- (ESI(+))
    ylcarbonyl)pyrrolidin- m/e 415
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    613 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 432
    ylmethyl)-4-[1-(1,3- (M + H)+
    thiazol-2-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    614 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 445
    ylmethyl)-4-{1-[(1- (M + H)+
    methylcyclohexyl)car-
    bonyl]pyrrolidin-
    3-yl}benzamide
    615 4-[1-(2,3- (ESI(+))
    dimethylbutanoyl)pyrrolidin- m/e 419
    3-yl]-N-(imidazo[1,2- (M + H)+
    a]pyridin-7-
    ylmethyl)benzamide
    616 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 439
    ylmethyl)-4-[1-(3- (M + H)+
    methylbenzoyl)pyrrolidin-
    3-yl]benzamide
    617 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 431
    ylmethyl)-4-[1- (M + H)+
    (thiophen-3-
    ylcarbonyl)pyrrolidin-
    3-yl]benzamide
    618 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 509
    ylmethyl)-4-{1-[3- (M + H)+
    (trifluorome-
    thoxy)benzoyl]pyrrolidin-
    3-yl}benzamide
    619 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 445
    ylmethyl)-4-{1-[(3- (M + H)+
    methylthiophen-2-
    yl)carbonyl]pyrrolidin-
    3-yl}benzamide
    620 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 493
    ylmethyl)-4-{1-[3- (M + H)+
    (trifluorometh-
    yl)benzoyl]pyrrolidin-
    3-yl}benzamide
    731 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 439
    ylmethyl)-4-[1- (M + H)+
    (phenylacetyl)pyrrolidin-
    3-yl]benzamide
    732 N-(imidazo[1,2- (ESI(+))
    a]pyridin-7- m/e 467
    ylmethyl)-4-[1-(2- (M + H)+
    methyl-2-
    phenylpropanoyl)pyrrolidin-
    3-yl]benzamide
    733 4-{1- (ESI(+))
    [difluoro(phenyl)ace- m/e 475
    tyl]pyrrolidin-3-yl}- (M + H)+
    N-(imidazo[1,2-
    a]pyridin-7-
    ylmethyl)benzamide
  • Example 379 1-[4-(1-acetylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea Example 379A 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(pyrrolidin-3-yl)phenyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 379B 1-[4-(1-acetylpyrrolidin-3-yl)phenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(pyrrolidin-3-yl)phenyl)urea for 3-methylbutan-1-amine and acetic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, J=6.4 Hz, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (m, 3H), 7.16 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.69 (m, 1H), 4.33 (d, J=6.0 Hz, 2H), 3.89-3.73 (m, 1H), 3.65-3.45 (m, 3H), 3.10 (m, 1H), 2.29-2.11 (m, 1H), 2.00-1.80 (m, 1H), 1.91 (s, 3H); (ESI(+)) m/e 378 (M+H)+.
  • Table 19
  • The following Examples were prepared essentially as described in Example 379, substituting the appropriate carboxylic acid in Example 379B.
  • Ex Name 1H NMR MS
    380 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, (ESI(+))
    a]pyridin-7- J = 6.5 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 406
    ylmethyl)-3-{4- (s, 1H), 7.51 (s, 1H), 7.36 (m, 3H), 7.16 (m, (M + H)+
    [1-(2- 2H), 6.83 (d, J = 7.1 Hz, 1H), 6.70 (m, 1H),
    methylpropanoyl) 4.33 (d, J = 6.0 Hz, 2H), 3.80-3.65 (m, 1H),
    pyrrolidin-3- 3.60-3.48 (m, 1H), 3.45-3.20 (m, 2H), 3.13
    yl]phenyl}urea (m, 1H), 2.68 (m, 1H), 2.30-2.10 (m, 1H),
    2.05-1.80 (m, 1H), 1.00 (m, 6H)
    381 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, (ESI(+))
    a]pyridin-7- J = 6.5 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 420
    ylmethyl)-3-(4- (s, 1H), 7.52 (s, 1H), 7.37 (m, 3H), 7.17 (m, (M + H)+
    {1-[(2S)-2- 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.69 (t, J =
    methylbutanoyl]pyrro- 6.0 Hz, 1H), 4.33 (d, J = 6.0 Hz, 2H), 3.95-
    lidin-3- 3.75 (m, 1H), 3.70-3.45 (m, 2H), 3.45-3.20
    yl}phenyl)urea (m, 1H), 3.20 (m, 1H), 2.30-2.11 (m, 1H),
    2.05-1.80 (m, 1H), 1.55 (m, 1H), 1.25 (m,
    2H), 0.96 (m, 3H), 0.87 (m, 3H)
    382 1-{4-[1- - 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (ESI(+))
    (cyclopropyl- (d, J = 4.1 Hz, 1H), 8.49 (d, J = 7.0 Hz, 1H), m/e 418
    acetyl)pyrrolidin-3- 7.89 (s, 1H), 7.52 (s, 1H), 7.37 (m, 3H), 7.16 (M + H)+
    yl]phenyl}-3- (m, 2H), 6.84 (d, J = 7.1 Hz, 1H), 6.69 (t, J =
    (imidazo[1,2- 6.0 Hz, 1H), 4.33 (d, J = 6.0 Hz, 2H), 3.80 (m,
    a]pyridin-7- 1H), 3.58 (m, 1H), 3.45 (m, 1H), 3.40-3.20
    ylmethyl)urea (m, 1H), 3.12 (m, 1H), 2.27-2.11 (m, 3H),
    1.99-1.81 (m, 1H), 0.98 (m, 1H), 0.44 (m,
    2H), 0.11 (m, 2H)
    383 1-[4-(1- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (m, (ESI(+))
    benzoylpyrrolidin- 1H), 8.48 (d, J = 6.1 Hz, 1H), 7.88 (d, J = 3.0 m/e 440
    3-yl)phenyl]-3- Hz, 1H), 7.53 (m, 3H), 7.50-7.35 (m, 5H), (M + H)+
    (imidazo[1,2- 7.34 (d, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.13 (d, J =
    a]pyridin-7- 8.2 Hz, 1H), 6.83 (m, 1H), 6.68 (m, 1H), 4.33
    ylmethyl)urea (d, J = 14.1 Hz, 2H), 3.68 (m, 1H), 3.60-3.45
    (m, 2H), 3.40-3.20 (m, 2H), 2.29-2.13 (m,
    1H) 2.07-1.90 (m, 1H)
    384 1-(imidazo[1,2- - 1H NMR (500 MHz, DMSO-d6) δ ppm 8.63 (ESI(+))
    a]pyridin-7- (d, J = 6.0 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), m/e 436
    ylmethyl)-3-(4- 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (m, 3H), 7.16 (M + H)+
    {1-[(propan-2- (m, 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.70 (m,
    yloxy)acetyl]pyrro- 1H), 4.33 (d, J = 6.0 Hz, 2H), 4.03 (d, J = 5.4
    lidin-3- Hz, 2H), 3.90-3.74 (m, 1H), 3.68-3.52 (m,
    yl}phenyl)urea 2H), 3.47 (m, 1H), 3.40-3.20 (m, 1H), 3.16
    (m, 1H), 2.29-2.11 (m, 1H), 2.00-1.73 (m,
    1H), 1.10 (m, 6H)
    385 1-{4-[1-(2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.65 (d, (ESI(+))
    hydroxy-2- J = 6.0 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 422
    methylpropanoyl) (s, 1H), 7.51 (s, 1H), 7.37 (m, 3H), 7.16 (m, (M + H)+
    pyrrolidin-3- 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.73 (m,
    yl]phenyl}-3- 1H), 5.18 (bs, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    (imidazo[1,2- 4.28 (m, 1H), 3.80-3.60 (m, 1H), 3.60-3.10
    a]pyridin-7- (m, 3H), 2.25-2.08 (m, 1H), 1.97-1.73 (m,
    ylmethyl)urea 1H), 1.30 (m, 6H)
    386 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, (ESI(+))
    a]pyridin-7- J = 5.7 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 434
    ylmethyl)-3-(4- (s, 1H), 7.51 (s, 1H), 7.37 (m, 3H), 7.16 (m, (M + H)+
    {1-[(2R)- 2H), 6.83 (d, J = 6.2 Hz, 1H), 6.69 (t, J = 6.0
    tetrahydrofuran-2- Hz, 1H), 4.53 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    ylcarbonyl]pyrro- 3.85-3.64 (m, 3H), 3.63-3.45 (m, 1H), 3.45-
    lidin-3- 3.20 (m, 2H), 3.16 (m, 1H), 2.29-2.10 (m,
    yl}phenyl)urea 1H), 2.08-1.92 (m, 2H), 1.91-1.73 (m, 3H)
    387 1-(imidazo[1,2- - 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (ESI(+))
    a]pyridin-7- (d, J = 5.6 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), m/e 434
    ylmethyl)-3-(4- 7.88 (s, 1H), 7.51 (s, 1H), 7.36 (m, 3H), 7.16 (M + H)+
    {1-[(2S)- (m, 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.69 (t,
    tetrahydrofuran-2- J = 6.0 Hz, 1H), 4.53 (m, 1H), 4.33 (d, J = 6.0
    ylcarbonyl]pyrro- Hz, 2H), 3.84-3.64 (m, 3H), 3.63-3.45 (m,
    lidin-3- 1H), 3.45-3.20 (m, 2H), 3.16 (m, 1H), 2.29-
    yl}phenyl)urea 2.10 (m, 1H), 2.05-1.85 (m, 5H)
    388 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.63 (d, (ESI(+))
    a]pyridin-7- J = 6.7 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 434
    ylmethyl)-3-(4- (s, 1H), 7.52 (s, 1H), 7.37 (m, 3H), 7.17 (m, (M + H)+
    {1-[(3S)- 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.70 (m,
    tetrahydrofuran-3- 1H), 4.33 (d, J = 6.0 Hz, 2H), 3.97-3.84 (m,
    ylcarbonyl]pyrro- 2H), 3.80-3.63 (m, 4H), 3.62-3.46 (m, 1H),
    lidin-3- 3.45-3.10 (m, 3H), 2.29-2.10 (m, 1H), 2.09-
    yl}phenyl)urea 1.83 (m, 3H)
    389 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, (ESI(+))
    a]pyridin-7- J = 7.5 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 448
    ylmethyl)-3-{4- (s, 1H), 7.51 (s, 1H), 7.36 (m, 3H), 7.16 (m, (M + H)+
    [1-(tetrahydro- 2H), 6.83 (d, J = 7.1 Hz, 1H), 6.69 (t, J = 6.0
    2H-pyran-4- Hz, 1H), 4.33 (d, J = 6.0 Hz, 2H), 3.90-3.70
    ylcarbonyl)pyrro- (m, 3H), 3.55 (m, 1H), 3.45-3.20 (m, 3H),
    lidin-3- 3.15 (m, 1H), 2.70 (m, 1H), 2.28-2.11 (m,
    yl]phenyl}urea 1H), 2.00-1.82 (m, 1H), 1.57 (m, 4H)
    390 1-{4-[1-(1,4- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.62 (d, (ESI(+))
    dioxan-2- J = 7.5 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 m/e 450
    ylcarbonyl)pyrro- (s, 1H), 7.51 (s, 1H), 7.37 (m, 3H), 7.16 (m, (M + H)+
    lidin-3-yl]phenyl}- 2H), 6.83 (d, J = 7.1 Hz, 1H), 6.70 (t, J = 6.0
    3-(imidazo[1,2- Hz, 1H), 4.33 (d, J = 6.0 Hz, 2H), 4.25 (m, 1H),
    a]pyridin-7- 3.85-3.70 (m, 3H), 3.70-3.60 (m, 2H), 3.60-
    ylmethyl)urea 3.45 (m, 3H), 3.45-3.15 (m, 3H), 2.28-2.11
    (m, 1H), 2.00-1.80 (m, 1H)
    391 1-(imidazo[1,2- - 1H NMR (400 MHz, DMSO-d6) δ ppm 8.62 (ESI(+))
    a]pyridin-7- (d, J = 5.5 Hz, 1H), 8.48 (d, J = 7.0 Hz, 1H), m/e 462
    ylmethyl)-3-{4- 7.88 (s, 1H), 7.51 (s, 1H), 7.36 (m, 3H), 7.16 (M + H)+
    [1-(tetrahydro- (m, 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.69 (t,
    2H-pyran-4- J = 6.0 Hz, 1H), 4.33 (d, J = 5.9 Hz, 2H), 3.90-
    ylacetyl)pyrro- 3.72 (m, 3H), 3.67-3.40 (m, 2H), 3.27-3.08
    lidin-3- (m, 2H), 3.14 (m, 1H), 2.28-2.10 (m, 3H),
    yl]phenyl}urea 2.00-1.80 (m, 3H), 1.59 (m, 2H), 1.17 (m, 2H)
    392 1-(imidazo[1,2- - 1H NMR (400 MHz, DMSO-d6) δ ppm 8.65 (ESI(+))
    a]pyridin-7- (d, J = 6.1 Hz, 1H), 8.48 (d, J = 6.9 Hz, 1H), m/e 463
    ylmethyl)-3-{4- 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 736 (m, (M + H)+
    [1-(morpholin-4- 3H), 7.16 (m, 2H), 6.83 (dd, J = 6.9, 1.7 Hz,
    ylacetyl)pyrro- 1H), 6.72 (td, J = 6.0, 2.3 Hz, 1H), 4.33 (d, J =
    lidin-3- 5.9 Hz, 2H), 3.74 (m, 1H), 3.55 (m, 4H), 3.45-
    yl]phenyl}urea 3.20 (m, 2H), 3.17 (s, 2H), 3.13-3.03 (m, 2H),
    2.44 (m, 4H), 2.30-2.10 (m, 1H), 2.00-1.80
    (m, 1H)
  • Example 393 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide Example 393A methyl 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(methoxycarbonyl)benzoic acid for 4-nitrobenzoic acid.
  • Example 393B 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 393C N-(imidazo[1,2-a]pyridin-6-ylmethyl)-N′-(3-methylbutyl)benzene-1,4-dicarboxamide
  • The title compound was prepared as described in Example 1A, substituting 3-methylbutan-1-amine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.25-9.11 (m, 1H), 8.57-8.37 (m, 2H), 8.04-7.81 (m, 5H), 7.51 (t, J=2.6 Hz, 1H), 7.41 (t, J=2.9 Hz, 1H), 6.87 (dd, J=7.0, 1.7 Hz, 1H), 4.58-4.38 (m, 2H), 3.29-3.25 (m, 2H), 1.71-1.56 (m, 1H), 1.53-1.31 (m, 2H), 0.91 (d, J=6.5 Hz, 6H); MS (ESI(+)) m/e 365 (M+H)+.
  • Example 394 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-N′-[(3S)-tetrahydrofuran-3-ylmethyl]benzene-1,4-dicarboxamide
  • The title compound was prepared as described in Example 1A, substituting (S)-(tetrahydrofuran-3-yl)methanamine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.21 (t, J=5.9 Hz, 1H), 8.69 (t, J=5.7 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.07-7.71 (m, 5H), 7.52 (d, J=1.2 Hz, 1H), 7.41 (s, 1H), 6.87 (dd, J=7.0, 1.7 Hz, 1H), 4.52 (d, J=5.9 Hz, 2H), 3.80-3.56 (m, 4H), 3.48 (dd, J=8.5, 5.2 Hz, 1H), 2.02-1.87 (m, 1H), 1.68-1.53 (m, 1H), 1.32-1.00 (m, 2H); MS (ESI(+)) m/e 379 (M+H)+.
  • Example 396 4-{[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]amino}-N-(tetrahydro-2H-pyran-2-ylmethyl)benzamide
  • A solution of 4-(3-imidazo[1,2-a]pyridin-6-ylureido)-N-((tetrahydro-2H-pyran-2-yl)methyl)benzamide (0.016 g, 0.041 mmol) in chloroform (0.813 ml) was treated with N-chlorosuccinimide (5.70 mg, 0.043 mmol) and the reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was concentrated under a stream of nitrogen and purified using normal phase chromatography to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.11 (s, 1H), 9.02 (s, 1H), 8.89-8.85 (m, 1H), 8.35 (t, J=5.8 Hz, 1H), 7.85-7.79 (m, 2H), 7.69-7.60 (m, 2H), 7.58-7.52 (m, 2H), 7.19 (dd, J=9.5, 2.0 Hz, 1H), 3.91-3.83 (m, 1H), 3.46-3.19 (m, 4H), 1.80-1.73 (m, 1H), 1.66-1.57 (m, 1H), 1.49-1.36 (m, 3H), 1.26-1.09 (m, 1H); MS (ESI(+)) m/e 428 (M+H)+.
  • Example 398 N-[(3-chloroimidazo[1,2-a]pyridin-6-yl)methyl]-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 396, substituting N-[(3-imidazo[1,2-a]pyridin-6-yl)methyl]-4-[(tetrahydrofuran-3-ylacetyl)amino]benzamide for 4-(3-imidazo[1,2-a]pyridin-6-ylureido)-N-((tetrahydro-2H-pyran-2-yl)methyl)benzamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.15 (s, 1H), 8.95 (t, J=5.8 Hz, 1H), 8.30-8.25 (m, 1H), 7.87-7.80 (m, 2H), 7.71-7.59 (m, 4H), 7.35 (dd, J=9.3, 1.7 Hz, 1H), 4.54 (d, J=5.8 Hz, 2H), 3.86-3.58 (m, 3H), 3.38-3.30 (m, 1H), 2.62-2.52 (m, 1H), 2.47-2.39 (m, 2H), 2.10-1.95 (m, 1H), 1.62-1.46 (m, 1H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 399 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 399A 5-(4-hydroxytetrahydro-2H-pyran-4-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 324A, substituting dihydro-2H-pyran-4(3H)-one for N-(oxetan-3-ylidene)propane-2-sulfinamide.
  • Example 399B 5-(4-hydroxytetrahydro-2H-pyran-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(4-hydroxytetrahydro-2H-pyran-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.66 (d, J=3.7 Hz, 1H), 7.52 (s, 1H), 7.37 (s, 1H), 7.02 (d, J=3.7 Hz, 1H), 6.83 (dd, J=7.0, 1.5 Hz, 1H), 5.67 (s, 1H), 4.46 (d, J=6.1 Hz, 2H), 3.63-3.77 (m, 4H), 1.89-2.04 (m, 2H), 1.69 (d, J=11.9 Hz, 2H); MS (ESI(+)) m/e 358 (M+H)+.
  • Example 400 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 400A 5-(1-(tert-butoxycarbonyl)-3-hydroxyazetidin-3-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 324A, substituting tert-butyl 3-oxoazetidine-1-carboxylate for N-(oxetan-3-ylidene)propane-2-sulfinamide.
  • Example 400B tert-butyl 3-hydroxy-3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(tert-butoxycarbonyl)-3-hydroxyazetidin-3-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 400C 5-(3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-hydroxy-3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 400D 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.06 (t, J=6.0 Hz, 1H), 8.49 (d, J=7.1 Hz, 1H), 7.89 (s, 1H), 7.72 (d, J=3.6 Hz, 1H), 7.52 (s, 1H), 7.38 (s, 1H), 7.18 (d, J=3.6 Hz, 1H), 6.90 (s, 1H), 6.83 (dd, J=6.9, 1.4 Hz, 1H), 4.47 (d, J=6.0 Hz, 2H), 4.41 (d, J=9.1 Hz, 1H), 4.32 (d, J=9.1 Hz, 1H), 4.05 (dd, J=17.5, 9.9 Hz, 2H), 2.46-2.57 (m, 1H), 1.00 (d, J=7.1 Hz, 6H); MS (ESI(+)) m/e 399 (M+H)+.
  • Example 401 5-(1-benzoyl-3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.05 (t, J=5.8 Hz, 1H), 8.48 (d, J=6.1 Hz, 1H), 7.88 (s, 1H), 7.73 (d, J=3.7 Hz, 1H), 7.66-7.71 (m, 2H), 7.43-7.54 (m, 4H), 7.38 (d, J=1.0 Hz, 1H), 7.26 (d, J=3.7 Hz, 1H), 6.93 (s, 1H), 6.83 (dd, J=7.1, 1.7 Hz, 1H), 4.46 (d, J=6.1 Hz, 2H), 4.23-4.63 (br. m, 4H); MS (ESI(+)) m/e 433 (M+H)+.
  • Example 402 tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)azetidin-3-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.09 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.91 (m, 3H), 7.52 (d, J=1.2 Hz, 1H), 7.45 (m, 2H), 7.38 (s, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.26 (m, 2H), 3.87 (m, 3H), 1.41 (s, 9H); (ESI(+)) m/e 407 (M+H)+.
  • Example 403 tert-butyl 4-hydroxy-4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate Example 403A 5-(1-(tert-butoxycarbonyl)-4-hydroxypiperidin-4-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 324A, substituting tert-butyl 3-oxopiperidine-1-carboxylate for N-(oxetan-3-ylidene)propane-2-sulfinamide.
  • Example 403B tert-butyl 4-hydroxy-4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(tert-butoxycarbonyl)-4-hydroxypiperidin-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.98 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.65 (d, J=4.1 Hz, 1H), 7.51 (d, J=1.0 Hz, 1H), 7.37 (s, 1H), 7.01 (d, J=3.7 Hz, 1H), 6.83 (dd, J=7.0, 1.5 Hz, 1H), 5.72 (s, 1H), 4.46 (d, J=5.8 Hz, 2H), 3.75-3.86 (m, 2H), 1.71-1.86 (m, 2H), 1.41 (s, 9H), 1.21-1.30 (m, 2H), 0.94 (d, J=5.8 Hz, 2H); MS (ESI(+)) m/e 457 (M+H)+.
  • Example 404 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[5-(piperidin-1-ylcarbonyl)-1,3-thiazol-2-yl]urea Example 404A ethyl 2-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)thiazole-5-carboxylate
  • The title compound was prepared as described in Example 1C, substituting ethyl 2-aminothiazole-5-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 404B 2-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)thiazole-5-carboxylic acid
  • The title compound was prepared as described in Example 4B, substituting ethyl 2-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)thiazole-5-carboxylate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 404C 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[5-(piperidin-1-ylcarbonyl)-1,3-thiazol-2-yl]urea
  • The title compound was prepared as described in Example 1A, substituting piperidine for 3-methylbutan-1-amine and 2-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)thiazole-5-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.91 (s, 1H), 8.49 (d, J=7.1 Hz, 1H), 7.89 (s, 1H), 7.62 (s, 1H), 7.52 (d, J=0.8 Hz, 1H), 7.39 (s, 1H), 7.11-7.18 (m, 1H), 6.83 (dd, J=6.9, 1.4 Hz, 1H), 4.39 (d, J=6.0 Hz, 2H), 3.54-3.61 (m, 4H), 1.47-1.67 (m, 6H); MS (ESI(+)) m/e 385 (M+H)+.
  • Example 405 5-{3-hydroxy-1-[(2S)-2-methylbutanoyl]azetidin-3-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) ppm 9.06 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.72 (d, J=4.1 Hz, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.38 (s, 1H), 7.16 (dd, J=7.0, 3.9 Hz, 1H), 6.89 (s, 1H), 6.83 (dd, J=7.0, 1.5 Hz, 1H), 4.46 (d, J=6.1 Hz, 2H), 4.35-4.42 (m, 1H), 4.32 (d, J=8.8 Hz, 1H), 4.09 (dd, J=10.5, 4.4 Hz, 1H), 4.03 (d, J=10.2 Hz, 1H), 2.25-2.38 (m, 1H), 1.49 (s, 1H), 1.23-1.38 (m, 1H), 0.99 (d, J=6.8 Hz, 3H), 0.80-0.88 (m, 3H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 406 5-[3-hydroxy-1-(tetrahydro-2H-pyran-4-ylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-hydroxyazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 2-(tetrahydro-2H-pyran-4-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (t, J=6.0 Hz, 1H), 8.49 (d, J=7.0 Hz, 1H), 7.89 (s, 1H), 7.72 (d, J=4.0 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.38 (s, 1H), 7.18 (d, J=4.0 Hz, 1H), 6.89 (s, 1H), 6.83 (dd, J=7.0, 1.5 Hz, 1H), 4.47 (d, J=5.8 Hz, 2H), 4.37 (d, J=9.2 Hz, 1H), 4.26-4.40 (m, 2H), 4.05-4.11 (m, 1H), 4.00-4.10 (m, 2H), 3.78-3.84 (m, 2H), 2.04-2.07 (m, 2H), 1.85-1.97 (m, 1H), 1.53-1.62 (m, 2H), 1.15-1.28 (m, 2H); MS (ESI(+)) m/e 455 (M+H)+.
  • Example 407 2-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}-N-(3-methylbutyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 3-methylbutan-1-amine for 3-methylbutan-1-amine and 2-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)thiazole-5-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.49 (d, J=7.8 Hz, 1H), 8.21 (t, J=5.9 Hz, 1H), 7.88-7.89 (m, J=1.4 Hz, 1H), 7.87 (s, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.39 (s, 1H), 7.18 (t, J=5.8 Hz, 1H), 6.83 (dd, J=6.8, 1.7 Hz, 1H), 4.38 (d, J=6.1 Hz, 2H), 3.16-3.25 (m, 2H), 1.52-1.67 (m, 1H), 1.38 (q, J=6.9 Hz, 2H), 0.83-0.91 (m, 7H); MS (ESI(+)) m/e 387 (M+H)+.
  • Example 408 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(3-{[(2S)-2-methylbutanoyl]amino}oxetan-3-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(3-aminooxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.11 (s, 1H), 9.05 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.8 Hz, 1H), 7.88 (s, 1H), 7.71 (d, J=3.7 Hz, 1H), 7.52 (s, 1H), 7.38 (s, 1H), 7.22 (d, J=3.7 Hz, 1H), 6.83 (dd, J=7.1, 1.7 Hz, 1H), 4.77-4.83 (m, 2H), 4.72 (dd, J=6.4, 4.4 Hz, 2H), 4.46 (d, J=5.8 Hz, 2H), 2.19-2.29 (m, 1H), 1.46-1.66 (m, 1H), 1.26-1.43 (m, 1H), 1.03 (d, J=6.8 Hz, 3H), 0.85 (t, J=7.3 Hz, 3H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 409 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide Example 409A 1-(4-hydroxypiperidin-1-yl)-3-methylbutan-1-one
  • The title compound was prepared as described in Example 52A, substituting 3-methylbutanoyl chloride for 2-cyclopentylacetyl chloride and piperidin-4-ol for methyl 4-aminobenzoate.
  • Example 409B ethyl 1-(1-(3-methylbutanoyl)piperidin-4-yl)-1H-pyrazole-3-carboxylate
  • A solution of 1-(hydroxypiperidin-1-yl)-3-methylbutan-1-one (793 mg, 4.28 mmol), ethyl 1H-pyrazole-4-carboxylate (500 mg, 3.57 mmol) and cyanomethylenetributylphosphorane (1.03 g, 4.28 mmol) in toluene (20 ml) was stirred overnight at 85° C. The solvent was removed and the crude mixture was purified by normal phase chromatography to give the title compound.
  • Example 409C 1-(1-(3-methylbutanoyl)piperidin-4-yl)-1H-pyrazole-3-carboxylic acid
  • The title compound was prepared as described in Example 4B, substituting ethyl 1-(1-(3-methylbutanoyl)piperidin-4-yl)-1H-pyrazole-3-carboxylate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 409D N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1-[1-(3-methylbutanoyl)piperidin-4-yl]-1H-pyrazole-3-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 1-(1-(3-methylbutanoyl)piperidin-4-yl)-1H-pyrazole-3-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.10 (t, J=6.0 Hz, 1H), 8.50 (dd, J=7.0, 0.9 Hz, 1H), 7.93-7.86 (m, 1H), 7.57-7.47 (m, 2H), 7.41 (s, 1H), 6.92 (d, J=2.0 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 5.45-5.28 (m, 1H), 4.57-4.43 (m, 3H), 3.99 (d, J=14.0 Hz, 1H), 3.20-3.03 (m, 1H), 2.70-2.53 (m, 1H), 2.32-2.11 (m, 3H), 2.09-1.68 (m, 4H), 0.91 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 408 (M+H).
  • Example 424 1-{4-[(1-acetylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea Example 424A tert-butyl 3-(4-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)phenoxy)azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 3-(4-aminophenoxy)azetidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine.
  • Example 424B 1-(4-(azetidin-3-yloxy)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(4-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)phenoxy)azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 424C 1-{4-[(1-acetylazetidin-3-yl)oxy]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(4-(azetidin-3-yloxy)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.50 (m, 2H), 7.88 (s, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (m, 1H), 7.33 (m, 2H), 6.83 (dd, J=6.9, 1.6 Hz, 1H), 6.74 (m, 2H), 6.63 (t, J=6.0 Hz, 1H), 4.93 (m, 1H), 4.51 (m, 1H), 4.32 (d, J=6.0 Hz, 2H), 4.24 (m, 1H), 4.04 (dd, J=9.6, 4.1 Hz, 1H), 3.72 (dd, J=10.5, 4.0 Hz, 1H), 1.78 (s, 3H); (ESI(+)) m/e 380 (M+H)+.
  • TABLE 20
    The following Examples were prepared essentially as described in Example
    424, substituting the appropriate carboxylic acid in Example 424C.
    Ex Name 1H NMR MS
    425 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 m/e 408
    ylmethyl)-3-(4- (m, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, 1.7 Hz, (M + H)+
    {[1-(2- 1H), 6.75 (m, 2H), 6.63 (t, J = 6.0 Hz, 1H), 4.95
    methylpropanoyl)azetidin- (m, 1H), 4.57 (dd, J = 9.4, 6.4 Hz, 1H), 4.32 (d, J =
    3- 6.0 Hz, 2H), 4.25 (dd, J = 10.5, 6.5 Hz, 1H),
    yl]oxy}phenyl)urea 4.08 (dd, J = 9.4, 3.9 Hz, 1H), 3.73 (dd, J = 10.5,
    4.0 Hz, 1H), 2.47 (m, 1H), 0.97 (m, 6H)
    426 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (d, J = 1.1 Hz, 1H), 7.51 (d, J = 1.2 Hz, m/e 422
    ylmethyl)-3-[4- 1H), 7.37 (m, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, (M + H)+
    ({1-[(2S)-2- 1.6 Hz, 1H), 6.75 (m, 2H), 6.64 (t, J = 6.0 Hz,
    methylbutanoyl]azetidin- 1H), 4.95 (m, 1H), 4.56 (dd, J = 9.4, 6.5 Hz, 1H),
    3- 4.32 (d, J = 6.0 Hz, 2H), 4.26 (m, 1H), 4.08 (m,
    yl}oxy)phenyl]urea 1H), 3.74 (m, 1H), 2.28 (m, 1H), 1.47 (m, 1H),
    1.28 (m, 1H), 0.95 (m, 3H), 0.81 (m, 3H)
    427 1-(4-{[1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    (cyclopro- 2H), 7.90 (s, 1H), 7.54 (d, J = 1.2 Hz, 1H), 7.39 m/e 420
    pylacetyl)azetidin-3- (s, 1H), 7.33 (m, 2H), 6.86 (dd, J = 7.0, 1.6 Hz, (M + H)+
    yl]oxy}phenyl)- 1H), 6.74 (m, 2H), 6.64 (t, J = 6.0 Hz, 1H), 4.94
    3-(imidazo[1,2- (m, 1H), 4.50 (dd, J = 9.6, 6.6 Hz, 1H), 4.33 (d, J =
    a]pyridin-7- 6.0 Hz, 2H), 4.26 (dd, J = 10.5, 6.5 Hz, 1H),
    ylmethyl)urea 4.03 (dd, J = 9.4, 3.9 Hz, 1H), 3.74 (dd, J = 10.5,
    3.9 Hz, 1H), 2.02 (d, J = 6.8 Hz, 2H), 0.92 (m,
    1H), 0.43 (m, 2H), 0.10 (m, 2H)
    428 1-{4-[(1- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    benzoylazetidin- 2H), 7.88 (s, 1H), 7.65 (m, 2H), 7.52 (m, 2H), m/e 442
    3- 7.45 (m, 2H), 7.37 (m, 1H), 7.33 (m, 2H), 6.83 (M + H)+
    yl)oxy]phenyl}- (dd, J = 6.9, 1.6 Hz, 1H), 6.75 (m, 2H), 6.63 (t, J =
    3-(imidazo[1,2- 6.0 Hz, 1H), 5.00 (m, 1H), 4.67 (m, 1H), 4.51
    a]pyridin-7- (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 4.26 (m, 1H),
    ylmethyl)urea 3.97 (m, 1H)
    429 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 m/e 438
    ylmethyl)-3-[4- (s, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz, (M + H)+
    ({1-[(propan-2- 1H), 6.74 (m, 2H), 6.64 (t, J = 6.0 Hz, 1H), 4.96
    yloxy)acetyl]azetidin- (m, 1H), 4.60 (dd, J = 10.1, 6.4 Hz, 1H), 4.30 (m,
    3- 3H), 4.11 (dd, J = 10.1, 3.9 Hz, 1H), 3.94 (s, 2H),
    yl}oxy)phenyl]urea 3.77 (dd, J = 10.7, 3.8 Hz, 1H), 3.58 (m, 1H), 1.09
    (d, J = 6.1 Hz, 6H)
    430 1-(4-{[1-(2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.48 (m, (ESI(+))
    hydroxy-2- 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.38 (s, 1H), 7.33 m/e 424
    methylpropanoyl)azetidin- (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz, 1H), 6.74 (m, (M + H)+
    3- 2H), 6.63 (t, J = 6.0 Hz, 1H), 5.13 (s, 1H), 4.91
    yl]oxy}phenyl)- (m, 1H), 4.78 (m, 1H), 4.32 (d, J = 6.0 Hz, 3H),
    3-(imidazo[1,2- 4.26 (m, 1H), 3.73 (m, 1H), 1.25 (s, 6H)
    a]pyridin-7-
    ylmethyl)urea
    431 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 m/e 436
    ylmethyl)-3-[4- (s, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz, (M + H)+
    ({1-[(2R)- 1H), 6.74 (m, 2H), 6.63 (t, J = 6.0 Hz, 1H), 4.95
    tetrahydrofuran- (m, 1H), 4.66 (m, 1H), 4.31 (m, 4H), 4.13 (m,
    2- 1H), 3.75 (m, 3H), 2.03 (m, 1H), 1.93 (m, 1H),
    ylcarbonyl]azetidin- 1.81 (m, 2H)
    3-
    yl}oxy)phenyl]urea
    432 1-(imidazo[1,2- - 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 m/e 436
    ylmethyl)-3-[4- (s, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz, (M + H)+
    ({1-[(2S)- 1H), 6.74 (m, 2H), 6.64 (t, J = 6.0 Hz, 1H), 4.95
    tetrahydrofuran- (m, 1H), 4.66 (m, 1H), 4.3123 (m, 4H), 4.13 (m,
    2- 1H), 3.75 (m, 3H), 2.03 (m, 1H), 1.93 (m, 1H),
    ylcarbonyl]azetidin- 1.81 (m, 2H)
    3-
    yl}oxy)phenyl]urea
    433 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.48 (m, (ESI(+))
    a]pyridin-7- 2H), 7.88 (d, J = 1.1 Hz, 1H), 7.51 (d, J = 1.2 Hz, m/e 450
    ylmethyl)-3-(4- 1H), 7.37 (s, 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, (M + H)+
    {[1-(tetrahydro- 1.7 Hz, 1H), 6.74 (m, 2H), 6.64 (t, J = 6.0 Hz,
    2H-pyran-4- 1H), 4.95 (m, 1H), 4.60 (dd, J = 9.4, 6.5 Hz, 1H),
    ylcarbonyl)azetidin- 4.32 (d, J = 6.0 Hz, 3H), 4.26 (m, 1H), 4.11 (dd, J =
    3- 9.5, 3.8 Hz, 1H), 3.84 (m, 2H), 3.74 (dd, J =
    yl]oxy}phenyl)urea 10.6, 3.9 Hz, 1H), 3.36-3.26 (m, 2H), 1.57 (m, 4H)
    434 1-(4-{[1-(1,4- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.48 (d, (ESI(+))
    dioxan-2- 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (s, 1H), 7.33 m/e 452
    ylcarbonyl)azetidin- (m, 2H), 6.83 (dd, J = 6.9, 1.6 Hz, 1H), 6.74 (m, (M + H)+
    3- 2H), 6.64 (t, J = 6.0 Hz, 1H), 4.96 (m, 1H), 4.69
    yl]oxy}phenyl)- (m, 1H), 4.30 (m, 3H), 4.18 (m, 2H), 3.76 (m,
    3-(imidazo[1,2- 3H), 3.65-3.45 (m, 4H)
    a]pyridin-7-
    ylmethyl)urea
    435 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.51 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (dd, J = 6.9, 0.9 Hz, 1H), 7.88 (d, J = m/e 464
    ylmethyl)-3-(4- 1.1 Hz, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, (M + H)+
    {[1-(tetrahydro- 1H), 7.33 (m, 2H), 6.83 (dd, J = 6.9, 1.7 Hz, 1H),
    2H-pyran-4- 6.74 (m, 2H), 6.64 (t, J = 6.0 Hz, 1H), 4.94 (m,
    ylacetyl)azetidin- 1H), 4.52 (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 4.25
    3- (m, 1H), 4.04 (dd, J = 9.5, 3.9 Hz, 1H), 3.76 (m,
    yl]oxy}phenyl)urea 3H), 3.27 (m, 2H), 2.02 (d, J = 1.9 Hz, 2H), 1.87
    (m, 1H), 1.54 (m, 2H), 1.19 (m, 2H)
  • Example 436 tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 321A-C, substituting (S)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate for (R)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate in Example 321A. 1H NMR (400 MHz, methanol-d4) δ ppm 8.41-8.35 (m, 1H), 7.91-7.83 (m, 2H), 7.81-7.76 (m, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.47-7.43 (m, 1H), 7.06-6.98 (m, 2H), 6.93 (dd, J=7.1, 1.5 Hz, 1H), 5.12-5.05 (m, 1H), 4.62 (bs, 2H), 3.68-3.39 (m, 4H), 2.25-2.13 (m, 2H), 1.49-1.43 (m, 9H).; MS (ESI(+)) m/e 437 (M+H)+.
  • Example 438 1-[4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea Example 438A 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)-3,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 438B 1-[4-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.77-8.70 (m, 1H), 8.19-8.15 (m, 1H), 8.00-7.96 (m, 1H), 7.95-7.88 (m, 1H), 7.80 (s, 1H), 7.53-7.41 (m, 6H), 7.30-7.15 (m, 2H), 6.26-5.95 (m, 1H), 4.61 (bs, 2H), 4.41-4.31 (m, 1H), 4.17-4.08 (m, 1H), 4.02-3.93 (m, 1H), 3.69-3.59 (m, 1H), 2.67-2.52 (m, 2H); MS (ESI(+)) m/e 470 (M+H)+.
  • Example 439 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]phenyl}-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(2-fluoro-4-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and 2-(tetrahydro-2H-pyran-4-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.74 (dd, J=7.0, 0.9 Hz, 1H), 8.18-8.15 (m, 1H), 7.98 (d, J=2.2 Hz, 1H), 7.92 (t, J=8.5 Hz, 1H), 7.82-7.78 (m, 1H), 7.47 (dd, J=7.0, 1.6 Hz, 1H), 7.28-7.15 (m, 2H), 6.16-6.10 (m, 1H), 4.61 (bs, 2H), 4.25-4.16 (m, 2H), 3.96-3.87 (m, 2H), 3.83-3.72 (m, 2H), 3.48-3.37 (m, 2H), 2.61-2.54 (m, 1H), 2.53-2.46 (m, 1H), 2.45-2.34 (m, 2H), 2.11-1.97 (m, 1H), 1.73-1.62 (m, 2H), 1.42-1.27 (m, 2H); MS (ESI(+)) m/e 492 (M+H)+.
  • Example 442 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)urea Example 442A 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(piperidin-4-yloxy)phenyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenoxy)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 442B 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-{[1-(2-methylpropanoyl)piperidin-4-yl]oxy}phenyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(piperidin-4-yloxy)phenyl)urea for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (m, 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (s, 1H), 7.31 (m, 2H), 6.87 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.62 (t, J=6.0 Hz, 1H), 4.48 (m, 1H), 4.32 (d, J=6.0 Hz, 2H), 3.85 (m, 1H), 3.74 (m, 1H), 3.35 (m, 1H), 3.22 (m, 1H), 2.88 (m, 1H), 1.88 (m, 2H), 1.49 (m, 2H), 0.99 (d, J=6.7 Hz, 6H); (ESI(+)) m/e 436 (M+H).
  • TABLE 21
    The following Examples were prepared essentially as described in Example
    442, substituting the appropriate carboxylic acid in Example 442B.
    Ex Name 1H NMR MS
    443 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    a]pyridin-7- (m, 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (s, m/e 450
    ylmethyl)-3-[4-({1- 1H), 7.31 (m, 2H), 6.87 (m, 2H), 6.83 (dd, J = (M + H)+
    [(2S)-2- 7.0, 1.6 Hz, 1H), 6.65 (t, J = 6.0 Hz, 1H), 4.49
    methylbutanoyl]piper- (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.84 (m,
    idin-4- 2H), 3.26 (m, 2H), 2.72 (m, 1H), 1.90 (m,
    yl}oxy)phenyl]urea 2H), 1.51 (m, 3H), 1.29 (m, 1H), 0.97 (d, J =
    6.7 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H)
    444 1-(4-{[1- - 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    (cyclopropylacetyl) (m, 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.37 (s, m/e 448
    piperidin-4- 1H), 7.31 (m, 2H), 6.87 (m, 2H), 6.83 (dd, J = (M + H)+
    yl]oxy}phenyl)-3- 7.0, 1.6 Hz, 1H), 6.62 (t, J = 6.0 Hz, 1H), 4.47
    (imidazo[1,2- (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.85 (m,
    a]pyridin-7- 1H), 3.66 (m, 1H), 3.30 (m, 1H), 3.22 (m,
    ylmethyl)urea 1H), 2.26 (d, J = 6.8 Hz, 2H), 1.91 (m, 2H),
    1.50 (m, 2H), 0.95 (m, 1H), 0.44 (m, 2H),
    0.11 (m, 2H)
    445 1-{4-[(1- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    benzoylpiperidin-4- (m, 2H), 7.88 (s, 1H), 7.51 (s, 1H), 7.44 (m, m/e 470
    yl)oxy]phenyl}-3- 3H), 7.40 (m, 2H), 7.37 (m, 1H), 7.31 (m, (M + H)+
    (imidazo[1,2- 2H), 6.87 (m, 2H), 6.83 (dd, J = 7.0, 1.6 Hz,
    a]pyridin-7- 1H), 6.63 (t, J = 6.0 Hz, 1H), 4.52 (m, 1H),
    ylmethyl)urea 4.31 (d, J = 6.0 Hz, 2H), 3.96 (m, 1H), 3.52
    (m, 1H), 3.45-3.20 (m, 2H), 1.91 (m, 2H),
    1.59 (m, 2H)
    446 1-(imidazo[1,2- 1H NMR (400 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    a]pyridin-7- (m, 2H), 7.88 (m, 1H), 7.51 (d, J = 1.2 Hz, m/e 466
    ylmethyl)-3-[4-({1- 1H), 7.37 (m, 1H), 7.31 (m, 2H), 6.87 (m, (M + H)+
    [(propan-2- 2H), 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.64 (m,
    yloxy)acetyl]piper- 1H), 4.49 (m, 1H), 4.32 (d, J = 6.0 Hz, 2H),
    idin-4- 4.08 (s, 2H), 3.82 (m, 1H), 3.67 (m, 1H),
    yl}oxy)phenyl]urea 3.59(m, 1H), 3.40-3.15 (m, 2H), 1.90 (m,
    2H), 1.52 (m, 2H), 1.10 (d, J = 6.1 Hz, 6H)
    447 1-(4-{[1-(2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    hydroxy-2- (m, 2H), 7.88 (s, 1H), 7.52 (d, J = 1.2 Hz, m/e 452
    methylpropanoyl)piper- 1H), 7.38 (s, 1H), 7.30 (m, 2H), 6.87 (m, 2H), (M + H)+
    idin-4- 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.62 (t, J = 6.0
    yl]oxy}phenyl)-3- Hz, 1H), 5.39 (s, 1H), 4.48 (m, 1H), 4.32 (d, J =
    (imidazo[1,2- 6.0 Hz, 2H), 4.10-3.40 (m, 2H), 3.40-
    a]pyridin-7- 3.15 (m, 2H), 1.90 (m, 2H), 1.54 (m, 2H),
    ylmethyl)urea 1.31 (s, 6H)
    448 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.49 (ESI(+))
    a]pyridin-7- (m, 2H), 7.90 (s, 1H), 7.54 (d, J = 1.2 Hz, m/e 464
    ylmethyl)-3-[4-({1- 1H), 7.39 (s, 1H), 7.31 (m, 2H), 6.86 (m, 3H), (M + H)+
    [(2R)- 6.62 (t, J = 6.0 Hz, 1H), 4.67 (m, 1H), 4.48
    tetrahydrofuran-2- (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.78 (m,
    ylcarbonyl]piper- 4H), 3.45-3.15 (m, 2H), 2.10-1.75 (m, 6H),
    idin-4- 1.53 (m, 2H)
    yl}oxy)phenyl]urea
    449 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    a]pyridin-7- (m, 2H), 7.89 (s, 1H), 7.52 (d, J = 1.2 Hz, m/e 464
    ylmethyl)-3-[4-({1- 1H), 7.38 (s, 1H), 7.31 (m, 2H), 6.87 (m, 2H), (M + H)+
    [(2S)- 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.62 (t, J = 6.0
    tetrahydrofuran-2- Hz, 1H), 4.67 (m, 1H), 4.48 (m, 1H), 4.32 (d,
    ylcarbonyl]piper- J = 6.0 Hz, 2H), 3.78 (m, 4H), 3.45-3.16 (m,
    idin-4- 2H), 2.09-1.92 (m, 2H), 2.09-1.92 (m, 4H),
    yl}oxy)phenyl]urea 1.53 (m, 2H)
    450 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    a]pyridin-7- (m, 2H), 7.88 (s, 1H), 7.51 (d, J = 1.2 Hz, m/e 478
    ylmethyl)-3-(4-{[1- 1H), 7.38 (s, 1H), 7.31 (m, 2H), 6.87 (m, 2H), (M + H)+
    (tetrahydro-2H- 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.62 (t, J = 6.0
    pyran-4- Hz, 1H), 4.48 (m, 1H), 4.32 (d, J = 6.0 Hz,
    ylcarbonyl)piper- 2H), 3.88-3.71 (m, 4H), 3.38 (m, 2H), 3.34-
    idin-4- 3.16 (m, 1H), 3.22 (m, 1H), 2.89 (m, 1H),
    yl]oxy}phenyl)urea 1.91 (m, 2H), 1.67-1.40 (m, 6H)
    451 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.48 (ESI(+))
    a]pyridin-7- (m, 2H), 7.88 (s, 1H), 7.52 (bs, 1H), 7.38 (bs, m/e 492
    ylmethyl)-3-(4-{[1- 1H), 7.31 (m, 2H), 6.87 (m, 2H), 6.83 (dd, J = (M + H)+
    (tetrahydro-2H- 7.0, 1.5 Hz, 1H), 6.62 (t, J = 6.0 Hz, 1H), 4.47
    pyran-4- (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.89-3.75
    ylacetyl)piper- (m, 3H), 3.70 (m, 1H), 3.40-3.17 (m, 4H),
    idin-4- 2.26 (m, 2H), 1.89 (m, 3H), 1.60-1.40 (m,
    yl]oxy}phenyl)urea 4H), 1.19 (m, 2H)
    726 1-(4-{[1-(3- (ESI(+))
    fluorobenzoyl)piper- m/e 488
    idin-4- (M + H)+
    yl]oxy}phenyl)-3-
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)urea
    727 1-(4-{[1-(2,4- (ESI(+))
    difluorobenzoyl)piper- m/e 506
    idin-4- (M + H)+
    yl]oxy}phenyl)-3-
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)urea
    728 1-(4-{[1-(2,5- (ESI(+))
    difluorobenzoyl)piper- m/e 506
    idin-4- (M + H)+
    yl]oxy}phenyl)-3-
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)urea
    729 1-(4-{[1-(3,4- (ESI(+))
    difluorobenzoyl)piper- m/e 506
    idin-4- (M + H)+
    yl]oxy}phenyl)-3-
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)urea
    730 1-(4-{[1-(3,5-
    difluorobenzoyl)piper- (ESI(+))
    idin-4- m/e 506
    yl]oxy}phenyl)-3- (M + H)+
    (imidazo[1,2-
    a]pyridin-7-
    ylmethyl)urea
  • Example 452 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)azetidin-3-yl]phenyl}urea Example 452A 1-(4-(azetidin-3-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(4-(3-(imidazo[1,2-a]pyridin-7-ylmethyl)ureido)phenyl)azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 452B 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropanoyl)azetidin-3-yl]phenyl}urea
  • The title compound was prepared as described in Example 1A, substituting 1-(4-(azetidin-3-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.51 (s, 1H), 7.39 (m, 3H), 7.22 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.70 (t, J=6.0 Hz, 1H), 4.52 (m, 1H), 4.33 (d, J=6.0 Hz, 2H), 4.20 (m, 1H), 4.08 (dd, J=8.5, 5.3 Hz, 1H), 3.76 (m, 2H), 2.49 (m, 1H), 0.99 (d, J=6.8 Hz, 6H); (ESI(+)) m/e 392 (M+H)+.
  • TABLE 22
    The following Examples were prepared essentially as described in Example
    452, substituting the appropriate carboxylic acid in Example 452B.
    Ex Name 1H NMR MS
    453 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.52 m/e 406
    ylmethyl)-3-(4- (s, 1H), 7.40 (m, 3H), 7.22 (m, 2H), 6.84 (dd, J = (M + H)+
    {1-[(2S)-2- 7.0, 1.6 Hz, 1H), 6.70 (m, 1H), 4.52 (m, 1H),
    methylbutan- 4.33 (d, J = 6.0 Hz, 2H), 4.21 (m, 1H), 4.06 (m,
    oyl]azetidin-3- 1H), 3.76 (m, 2H), 2.27 (m, 1H), 1.50 (m, 1H),
    yl}phenyl)urea 1.30 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.84 (t, J =
    7.4 Hz, 3H)
    454 1-{4-[1- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, (ESI(+))
    (cyclopropylace- 1H), 8.49 (d, J = 7.0 Hz, 1H), 7.89 (s, 1H), 7.53 m/e 404
    tyl)azetidin-3- (d, J = 1.2 Hz, 1H), 7.40 (m, 3H), 7.22 (m, 2H), (M + H)+
    yl]phenyl}-3- 6.85 (dd, J = 7.0, 1.6 Hz, 1H), 6.70 (t, J = 6.0
    (imidazo[1,2- Hz, 1H), 4.45 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    a]pyridin-7- 4.20 (m, 1H), 4.04 (m, 1H), 3.75 (m, 2H), 2.02
    ylmethyl)urea (d, J = 6.8 Hz, 2H), 0.94 (m, 1H), 0.44 (m, 2H),
    0.11 (m, 2H)
    455 1-[4-(1- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.68 (s, (ESI(+))
    benzoylazetidin- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.68 m/e 426
    3-yl)phenyl]-3- (m, 2H), 7.52 (m, 2H), 7.46 (m, 2H), 7.40 (m, (M + H)+
    (imidazo[1,2- 3H), 7.26 (m, 2H), 6.83 (dd, J = 7.0, 1.6 Hz,
    a]pyridin-7- 1H), 6.72 (t, J = 6.0 Hz, 1H), 464 (m, 1H), 4.44
    ylmethyl)urea (m, 1H), 4.33 (d, J = 6.0 Hz, 2H), 4.27 (m, 1H),
    3.98 (m, 1H), 3.85 (m, 1H)
    456 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.67 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.51 m/e 422
    ylmethyl)-3-(4- (d, J = 1.2 Hz, 1H), 7.40 (m, 3H), 7.22 (m, 2H), (M + H)+
    {1-[(propan-2- 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.71 (t, J = 6.0
    yloxy)ace- Hz, 1H), 4.56 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    tyl]azetidin-3- 4.24 (m, 1H), 4.13 (m, 1H), 3.95 (s, 2H), 3.79
    yl}phenyl)urea (m, 2H), 3.59 (m, 1H), 1.10 (d, J = 6.1 Hz, 6H)
    457 1-{4-[1-(2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, (ESI(+))
    hydroxy-2- 1H), 8.50 (d, J = 7.0 Hz, 1H), 7.90 (s, 1H), 7.54 m/e 408
    methylpropanoyl) (d, J = 1.2 Hz, 1H), 7.40 (m, 3H), 7.21 (m, 2H), (M + H)+
    azetidin-3- 6.86 (dd, J = 7.0, 1.6 Hz, 1H), 6.70 (t, J = 6.0
    yl]phenyl}-3- Hz, 1H), 5.09 (s, 1H), 4.75 (m, 1H), 4.32 (m,
    (imidazo[1,2- 3H), 4.22 (m, 1H), 3.74 (m, 2H), 1.27 (s, 6H)
    a]pyridin-7-
    ylmethyl)urea
    458 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.73 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.51 m/e 420
    ylmethyl)-3-(4- (s, 1H), 7.40 (m, 3H), 7.22 (m, 2H), 6.83 (dd, J = (M + H)+
    (1-[(2R)- 7.0, 1.6 Hz, 1H), 6.78 (t, J = 6.0 Hz, 1H), 4.60
    tetrahydrofuran-2- (m, 1H), 4.37 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    ylcarbon- 4.24 (m, 1H), 4.16 (m, 1H), 3.86-3.69 (m,
    yl]azetidin-3- 4H), 2.04 (m, 1H), 1.96 (m, 1H), 1.82 (m, 2H)
    yl}phenyl)urea
    459 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.51 m/e 420
    ylmethyl)-3-(4- (s, 1H), 7.40 (m, 3H), 7.22 (m, 2H), 6.83 (dd, J = (M + H)+
    {1-[(2S)- 7.0, 1.6 Hz, 1H), 6.74-6.67 (m, 1H), 4.60
    tetrahydrofuran-2- (m, 1H), 4.37 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    ylcarbon- 4.23 (m, 1H), 4.15 (m, 1H), 3.85-3.69 (m,
    yl]azetidin-3- 4H), 2.04 (m, 1H), 1.96 (m, 1H), 1.81 (m, 2H)
    yl}phenyl)urea
    460 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.67 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.51 m/e 434
    ylmethyl)-3-{4- (d, J = 1.1 Hz, 1H), 7.40 (m, 3H), 7.22 (m, 2H), (M + H)+
    [1-(tetrahydro- 6.83 (dd, J = 7.0, 1.6 Hz, 1H), 6.71 (t, J = 6.0
    2H-pyran-4- Hz, 1H), 4.54 (m, 1H), 4.33 (d, J = 6.0 Hz, 2H),
    ylcarbon- 4.21 (m, 1H), 4.13 (m, 1H), 3.85 (m, 2H), 3.77
    yl)azetidin-3- (m, 2H), 3.40-3.25 (m, 2H), 2.50 (m, 1H),
    yl]phenyl}urea 1.58 (m, 4H)
    461 1-(imidazo[1,2- 1H NMR (500 MHz, DMSO-d6) δ ppm 8.70 (s, (ESI(+))
    a]pyridin-7- 1H), 8.48 (d, J = 7.0 Hz, 1H), 7.88 (s, 1H), 7.51 m/e 448
    ylmethyl)-3-{4- (s, 1H), 7.40 (m, 3H), 7.21 (m, 2H), 6.83 (dd, J = (M + H)+
    [1-(tetrahydro- 7.0, 1.6 Hz, 1H), 6.75 (t, J = 6.0 Hz, 1H), 4.47
    2H-pyran-4- (m, 1H), 4.33 (d, J = 6.0 Hz, 2H), 4.19 (m, 1H),
    ylacetyl)azetidin- 4.05 (m, 1H), 3.85-3.69 (m, 4H), 3.28 (m,
    3-yl]phenyl}urea 2H), 2.03 (d, J = 1.8 Hz, 2H), 1.90 (m, 1H),
    1.57 (m, 2H), 1.21 (m, 2H)
  • Example 462 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide Example 462A methyl 4-(2-cyclopentylacetamido)-2-fluorobenzoate
  • The title compound was prepared as described in Example 52A, substituting 2-cyclopentylacetyl chloride for 2-cyclopentylacetyl chloride and methyl 4-amino-2-fluorobenzoate for methyl 4-aminobenzoate.
  • Example 462B 4-(2-cyclopentylacetamido)-2-fluorobenzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-(2-cyclopentylacetamido)-2-fluorobenzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 462C 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)-2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (501 MHz, DMSO-d6) δ ppm 10.24 (s, 1H), 8.70-8.63 (m, 1H), 8.46 (s, 1H), 7.95 (s, 1H), 7.74-7.62 (m, 2H), 7.58-7.50 (m, 2H), 7.32 (dd, J=8.5, 1.9 Hz, 1H), 7.24 (dd, J=9.2, 1.7 Hz, 1H), 4.45 (d, J=5.9 Hz, 2H), 2.37-2.31 (m, 2H), 2.31-2.15 (m, 1H), 1.81-1.69 (m, 2H), 1.67-1.45 (m, 4H), 1.25-1.12 (m, 2H); MS (ESI(+)) m/e 395 (M+H)+.
  • Example 464 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[6-(morpholin-4-yl)pyridin-3-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 4-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)morpholine for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.34 (t, J=6.0 Hz, 1H), 8.87 (d, J=7.0 Hz, 1H), 8.51 (d, J=2.5 Hz, 1H), 8.33 (d, J=2.2 Hz, 1H), 8.15 (d, J=2.1 Hz, 1H), 7.90 (dd, J=8.9, 2.6 Hz, 1H), 7.85 (d, J=3.9 Hz, 1H), 7.81 (s, 1H), 7.50-7.44 (m, 2H), 6.94 (d, J=9.0 Hz, 1H), 4.67 (d, J=5.9 Hz, 2H), 3.75-3.66 (m, 4H), 3.57-3.49 (m, 4H); MS (ESI(+)) m/e 420 (M+H).
  • Example 467 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide Example 467A tert-butyl 3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 467B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(pyrrolidin-3-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 467C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(pyrrolidin-3-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.4 Hz, 1H), 8.48 (d, J=6.8 Hz, 1H), 7.88 (s, 1H), 7.68 (dd, J=3.9, 2.2 Hz, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.37 (s, 1H), 7.02 (dd, J=8.1, 3.7 Hz, 1H), 6.82 (dd, J=7.0, 1.5 Hz, 1H), 4.46 (d, J=5.8 Hz, 2H), 3.22-3.94 (m, 5H), 2.21-2.42 (m, 1H), 2.10-2.17 (m, 2H), 1.86-2.09 (m, 2H), 0.86-0.95 (m, 6H); MS (ESI(+)) m/e 411 (M+H)+.
  • TABLE 23
    The following Examples were prepared essentially as described in Example
    467, using an appropriate carboxylic acid in Example 467C.
    Ex Name MS
    540 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3- (ESI(+))
    trifluoropropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 437
    (M + H)+
    541 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2- (ESI(+))
    methylpropanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 397
    (M + H)+
    542 5-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 431
    (M + H)+
    717 5-[1-(cyclopropylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 395
    (M + H)+
    718 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4- (ESI(+))
    methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 445
    (M + H)+
    756 5-[1-(cyclopropylacetyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 409
    (M + H)+
    757 5-[1-(2-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 465
    (M + H)+
    758 5-{1-[(4-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 463
    (M + H)+
    759 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3- (ESI(+))
    methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 461
    (M + H)+
    760 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2- (ESI(+))
    methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 461
    (M + H)+
    761 5-{1-[(3-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 463
    (M + H)+
    762 5-[1-(3-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 449
    (M + H)+
    763 5-[1-(4-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 449
    (M + H)+
    764 5-{1-[(3,5-difluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 481
    (M + H)+
    765 5-{1-[(2-fluorophenyl)acetyl]pyrrolidin-3-yl}-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 463
    (M + H)+
    766 5-[1-(4-cyanobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 456
    (M + H)+
    767 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methyloxetan-3- (ESI(+))
    yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 425
    (M + H)+
    768 5-[1-(3,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 467
    (M + H)+
    769 5-[1-(cyclopentylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 421
    (M + H)+
    770 5-[1-(4-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 465
    (M + H)+
    771 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrro1-2- (ESI(+))
    yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 434
    (M + H)+
    772 5-[1-(2,4-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 467
    (M + H)+
    773 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-4- (ESI(+))
    ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 432
    (M + H)+
    774 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-2- (ESI(+))
    ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 432
    (M + H)+
    775 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol- (ESI(+))
    4-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 435
    (M + H)+
    776 5-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 449
    (M + H)+
    777 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2E)-2-methylpent-2- (ESI(+))
    enoyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 423
    (M + H)+
    778 5-{1-[(2,5-dimethylfuran-3-yl)carbonyl]pyrrolidin-3-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 449
    (M + H)+
    779 5-[1-(3-chlorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 465
    (M + H)+
    780 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-propanoylpyrrolidin-3- (ESI(+))
    yl)thiophene-2-carboxamide m/e 383
    (M + H)+
    781 5-{1-[(1-cyanocyclopropyl)carbonyl]pyrrolidin-3-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 420
    (M + H)+
    782 5-(1-butanoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)thiophene-2-carboxamide m/e 397
    (M + H)+
    783 5-[1-(furan-2-ylcarbonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 421
    (M + H)+
    784 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4- (ESI(+))
    methoxybenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 461
    (M + H)+
    785 5-[1-(2,5-difluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)thiophene-2-carboxamide m/e 467
    (M + H)+
    786 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(thiophen-2- (ESI(+))
    ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 437
    (M + H)+
    787 5-[1-(2,2-dimethylpropanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 411
    (M + H)+
    788 5-[1-(3, 3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 425
    (M + H)+
    791 5-[1-(2,2-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 425
    (M + H)+
    792 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyrazin-2- (ESI(+))
    ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 433
    (M + H)+
    793 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylthiophen-2- (ESI(+))
    yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 451
    (M + H)+
    794 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2- (ESI(+))
    methylbenzoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 445
    (M + H)+
    795 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1- (ESI(+))
    methylcyclopropyl)carbonyl]pyrrolidin-3-yl}thiophene-2- m/e 409
    carboxamide (M + H)+
    796 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4- (ESI(+))
    trifluorobutanoyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 451
    (M + H)+
    797 5-{1-[(3,5-dimethyl-1,2-oxazo1-4-yl)carbonyl]pyrrolidin-3-yl}-N- (ESI(+))
    (imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 450
    (M + H)+
    798 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(pyridin-3- (ESI(+))
    ylcarbonyl)pyrrolidin-3-yl]thiophene-2-carboxamide m/e 432
    (M + H)+
    799 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(1-methyl-1H-pyrazol- (ESI(+))
    5-yl)carbonyl]pyrrolidin-3-yl}thiophene-2-carboxamide m/e 435
    (M + H)+
    800 5-[1-(2,3-dimethylbutanoyl)pyrrolidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)thiophene-2-carboxamide m/e 425
    (M + H)+
  • Example 468 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropanoyl)amino]cyclobutyl}thiophene-2-carboxamide Example 468A 5-(1-(1,1-dimethylethylsulfinamido)cyclobutyl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 324A, substituting N-cyclobutylidene-2-methylpropane-2-sulfinamide for N-(oxetan-3-ylidene)propane-2-sulfinamide.
  • Example 468B 5-(1-(1,1-dimethylethylsulfinamido)cyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(1,1-dimethylethylsulfinamido)cyclobutyl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 468C 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared in Example 324C, substituting 5-(1-(1,1-dimethylethylsulfinamido)cyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 5-(3-(1,1-dimethylethylsulfinamido)oxetan-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide.
  • Example 468D
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.97 (t, J=5.9 Hz, 1H), 8.53 (s, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.63 (d, J=3.7 Hz, 1H), 7.52 (d, J=1.4 Hz, 1H), 7.38 (s, 1H), 7.04 (d, J=3.7 Hz, 1H), 6.82 (dd, J=6.8, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 2.36-2.48 (m, 5H), 1.86-2.01 (m, 2H), 0.99 (d, J=6.8 Hz, 6H); MS (ESI(+)) m/e 397 (M+H)+.
  • Example 469 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3-methylbutanoyl)amino]cyclobutyl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.97 (t, J=5.9 Hz, 1H), 8.59 (s, 1H), 8.48 (d, J=7.8 Hz, 1H), 7.88 (s, 1H), 7.63 (d, J=4.1 Hz, 1H), 7.51 (d, J=1.0 Hz, 1H), 7.37 (s, 1H), 7.05 (d, J=3.7 Hz, 1H), 6.82 (dd, J=7.1, 1.7 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 2.39-2.47 (m, 4H), 1.83-2.03 (m, 5H), 0.87 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 470 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1-{[(2S)-2-methylbutanoyl]amino}cyclobutyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.97 (t, J=6.1 Hz, 1H), 8.57 (s, 1H), 8.47 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.63 (d, J=4.1 Hz, 1H), 7.51 (d, J=1.4 Hz, 1H), 7.37 (s, 1H), 7.04 (d, J=3.7 Hz, 1H), 6.82 (dd, J=7.0, 1.5 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 2.37-2.49 (m, 4H), 2.13-2.26 (m, 1H), 1.84-2.01 (m, 2H), 1.40-1.59 (m, 1H), 1.20-1.36 (m, 1H), 0.97 (d, J=6.8 Hz, 3H), 0.82 (t, J=7.3 Hz, 3H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 471 5-[1-(benzoylamino)cyclobutyl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.17 (s, 1H), 8.98 (t, J=5.9 Hz, 1H), 8.46 (d, J=6.1 Hz, 1H), 7.84-7.90 (m, 3H), 7.65 (d, J=4.1 Hz, 1H), 7.43-7.57 (m, 4H), 7.37 (s, 1H), 7.14 (d, J=4.1 Hz, 1H), 6.81 (dd, J=6.8, 1.7 Hz, 1H), 4.44 (d, J=6.1 Hz, 2H), 2.61-2.73 (m, 2H), 2.50-2.60 (m, 2H), 1.91-2.07 (m, 2H); MS (ESI(+)) m/e 431 (M+H)+.
  • Example 472 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3,3,3-trifluoropropanoyl)amino]cyclobutyl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3,3,3-trifluoropropanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.08 (s, 1H), 9.00 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.8 Hz, 1H), 7.88 (s, 1H), 7.65 (d, J=3.7 Hz, 1H), 7.52 (s, 1H), 7.38 (s, 1H), 7.07 (d, J=3.7 Hz, 1H), 6.83 (dd, J=6.8, 1.7 Hz, 1H), 4.46 (d, J=5.8 Hz, 2H), 3.19-3.36 (m, 2H), 2.43-2.53 (m, 4H), 1.86-2.03 (m, 2H); MS (ESI(+)) m/e 437 (M+H)+.
  • Example 473 N-(1-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}cyclobutyl)tetrahydro-2H-pyran-4-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(1-aminocyclobutyl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and tetrahydro-2H-pyran-4-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.97 (t, J=6.1 Hz, 1H), 8.60 (s, 1H), 8.48 (d, J=7.1 Hz, 1H), 7.88 (s, 1H), 7.63 (d, J=3.7 Hz, 1H), 7.51 (d, J=1.0 Hz, 1H), 7.37 (s, 1H), 7.04 (d, J=3.7 Hz, 1H), 6.82 (dd, J=7.0, 1.5 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 3.81-3.89 (m, 2H), 3.24-3.36 (m, 2H), 2.33-2.48 (m, 5H), 1.84-2.00 (m, 2H), 1.47-1.65 (m, 4H); MS (ESI(+)) m/e 439 (M+H)+.
  • Example 474 tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)azetidin-3-yloxy)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.98 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.89 (m, 3H), 7.51 (d, J=1.1 Hz, 1H), 7.37 (s, 1H), 6.92 (m, 2H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 5.06 (m, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.33 (m, 2H), 3.80 (m, 2H), 1.39 (s, 9H); MS (ESI(+)) m/e 423 (M+H)+.
  • Example 485 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide Example 485A tert-butyl 4-((4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiophen-2-yl)-1H-pyrazol-1-yl)methyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)piperidine-1-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline.
  • Example 485B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(piperidin-4-ylmethyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-((4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiophen-2-yl)-1H-pyrazol-1-yl)methyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate. 1H NMR (300 MHz, methanol-d4) δ 8.76 (dd, J=7.1, 0.9 Hz, 1H), 8.19 (dd, J=2.2, 0.7 Hz, 1H), 8.07 (s, 1H), 8.00 (d, J=2.2 Hz, 1H), 7.83 (d, J=0.6 Hz, 2H), 7.72 (d, J=3.8 Hz, 1H), 7.49 (dd, J=7.0, 1.6 Hz, 1H), 7.22 (d, J=3.9 Hz, 1H), 4.75 (s, 2H), 4.15 (d, J=7.0 Hz, 2H), 3.48-3.36 (m, 2H), 3.08-2.91 (m, 2H), 2.37-2.15 (m, 1H), 1.85 (d, J=14.0 Hz, 2H), 1.63-1.43 (m, 2H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 486 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea Example 486A 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • To a solution of imidazo[1,2-a]pyridin-7-ylmethanamine (500 mg, 3.40 mmol) in dichloromethane (17 ml) at room temperature was added 1-bromo-4-isocyanatobenzene (680 mg, 3.40 mmol) as a single portion. The resulting suspension was stirred overnight and then filtered with dichloromethane washes to give the title compound.
  • Example 486B 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methylpropyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 51A, substituting substituting 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-propyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.62 (s, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 8.02 (d, J=0.8 Hz, 1H), 7.88 (dd, J=1.2, 0.7 Hz, 1H), 7.77 (d, J=0.8 Hz, 1H), 7.54-7.34 (m, 6H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.69 (t, J=6.0 Hz, 1H), 4.34 (d, J=5.9 Hz, 2H), 3.90 (d, J=7.1 Hz, 2H), 2.21-2.04 (m, 1H), 0.86 (d, J=6.7 Hz, 6H). MS (ESI(+)) m/e 389 (M+H)+.
  • Example 487 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-[4-(1-propyl-1H-pyrazol-4-yl)phenyl]urea
  • The title compound was prepared as described in Example 51A, substituting 1-propyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ 8.62 (s, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 8.04 (d, J=0.8 Hz, 1H), 7.90-7.86 (m, 1H), 7.76 (d, J=0.8 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.46-7.35 (m, 5H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.69 (t, J=6.0 Hz, 1H), 4.34 (d, J=5.9 Hz, 2H), 4.04 (t, J=6.9 Hz, 2H), 1.91-1.73 (m, 2H), 1.26-1.05 (m, 1H), 0.85 (t, J=7.4 Hz, 3H); MS (ESI(+)) m/e 375 (M+H)+.
  • Example 489 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-phenoxybenzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-phenoxybenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.95 (m, 2H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.44 (m, 2H), 7.38 (s, 1H), 7.22 (m, 1H), 7.14-6.98 (m, 4H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.50 (d, J=5.9 Hz, 2H); MS (ESI(+)) m/e 344 (M+H)+.
  • Example 490 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide Example 490A 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 490B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpropanoyl)azetidin-3-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting -(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and 2-methylpropanoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.10 (t, J=5.9 Hz, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.91 (m, 3H), 7.52 (d, J=1.0 Hz, 1H), 7.48 (m, 2H), 7.38 (s, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.58 (t, J=8.6 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.26 (t, J=9.0 Hz, 1H), 4.18 (dd, J=8.4, 6.0 Hz, 1H), 3.92 (m, 1H), 3.84 (m, 1H), 3.17 (d, J=5.0 Hz, 1H), 1.00 (dd, J=6.8, 1.6 Hz, 6H); MS (ESI(+)) m/e 377 (M+H)+.
  • TABLE 24
    The following Examples were prepared essentially as described in Example
    490, using an appropriate carboxylic acid in Example 490B.
    Ex Name MS
    547 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2S)-2- (ESI(+))
    methylbutanoyl]azetidin-3-yl}benzamide m/e 391
    (M + H)+
    548 4-[1-(cyclopropylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 389
    (M + H)+
    549 4-(1-benzoylazetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 411
    (M + H)+
    550 4-[1-(2-hydroxy-2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 393
    (M + H)+
    551 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(tetrahydro-2H-pyran-4- (ESI(+))
    ylacetyl)azetidin-3-yl]benzamide m/e 433
    (M + H)+
    552 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-2- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 417
    (M + H)+
    628 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(2- (ESI(+))
    methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide m/e 389
    (M + H)+
    629 4-[1-(cyclopentylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 417
    (M + H)+
    630 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methylpentanoyl)azetidin-3-yl]benzamide m/e 405
    (M + H)+
    631 4-[1-(cyclopentylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 403
    (M + H)+
    632 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1- (ESI(+))
    methylcyclopropyl)carbonyl]azetidin-3-yl}benzamide m/e 389
    (M + H)+
    633 4-[1-(2,2-dimethylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2- (ESI(+))
    a]pyridin-7-ylmethyl)benzamide m/e 391
    (M + H)+
    634 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazo1-5- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 418
    (M + H)+
    635 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrazin-2- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 413
    (M + H)+
    636 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    methoxybenzoyl)azetidin-3-yl]benzamide m/e 441
    (M + H)+
    637 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazo1-4- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 418
    (M + H)+
    638 4-[1-(2-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 429
    (M + H)+
    639 4-[1-(furan-2-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 401
    (M + H)+
    640 4-[1-(3-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 429
    (M + H)+
    641 4-[1-(2,4-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 447
    (M + H)+
    642 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrazol- (ESI(+))
    3-yl)carbonyl]azetidin-3-yl}benzamide m/e 415
    (M + H)+
    643 4-[1-(2-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 445
    (M + H)+
    644 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2- (ESI(+))
    methylbenzoyl)azetidin-3-yl]benzamide m/e 425
    (M + H)+
    645 4-[1-(4-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 445
    (M + H)+
    646 4-[1-(3-chlorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 445
    (M + H)+
    647 4-[1-(2,2-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 405
    (M + H)+
    648 4-[1-(3,5-difluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 447
    (M + H)+
    649 4-[1-(4-fluorobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 429
    (M + H)+
    650 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4- (ESI(+))
    methylbenzoyl)azetidin-3-yl]benzamide m/e 425
    (M + H)+
    651 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methylbutanoyl)azetidin-3-yl]benzamide m/e 391
    (M + H)+
    652 4-[1-(3,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 405
    (M + H)+
    653 4-[1-(3-cyanobenzoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 436
    (M + H)+
    654 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methoxybenzoyl)azetidin-3-yl]benzamide m/e 441
    (M + H)+
    655 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(4- (ESI(+))
    methoxybenzoyl)azetidin-3-yl]benzamide m/e 441
    (M + H)+
    565 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1-methyl-1H-pyrrol-2- (ESI(+))
    yl)carbonyl]azetidin-3-yl}benzamide m/e 414
    (M + H)+
    657 4-[1-(cyclohexylacetyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 431
    (M + H)+
    658 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-4- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 412
    (M + H)+
    659 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-3- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 412
    (M + H)+
    660 4-[1-(cyclohexylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 417
    (M + H)+
    661 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyridin-2- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 412
    (M + H)+
    662 4-[1-(furan-3-ylcarbonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7- (ESI(+))
    ylmethyl)benzamide m/e 401
    (M + H)+
    663 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 413
    (M + H)+
    664 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(1,3-thiazol-2- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 418
    (M + H)+
    665 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(1- (ESI(+))
    methylcyclohexyl)carbonyl]azetidin-3-yl} benzamide m/e 431
    (M + H)+
    666 4-[1-(2,3-dimethylbutanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin- (ESI(+))
    7-ylmethyl)benzamide m/e 405
    (M + H)+
    667 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(3- (ESI(+))
    methylbenzoyl)azetidin-3-yl]benzamide m/e 425
    (M + H)+
    668 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(thiophen-3- (ESI(+))
    ylcarbonyl)azetidin-3-yl]benzamide m/e 417
    (M + H)+
    669 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3- (ESI(+))
    (trifluoromethoxy)benzoyl]azetidin-3-yl}benzamide m/e 495
    (M + H)+
    670 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[(3-methylthiophen-2- (ESI(+))
    yl)carbonyl]azetidin-3-yl}benzamide m/e 431
    (M + H)+
    671 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[3- (ESI(+))
    (trifluoromethyl)benzoyl]azetidin-3-yl}benzamide m/e 479
    (M + H)+
  • Example 491 tert-butyl 4-{4-[(3-chloroimidazo[1,2-a]pyridin-6-yl)carbamoyl]phenyl}piperidine-1-carboxylate
  • A solution of tert-butyl 4-(4-(imidazo[1,2-a]pyridin-6-ylcarbamoyl)phenyl)piperidine-1-carboxylate (0.015 g, 0.036 mmol) in chloroform (0.618 ml) and methanol (0.095 ml) was treated with N-chlorosuccinimide (5.24 mg, 0.039 mmol) and the reaction was stirred at ambient temperature for 16 hours. The reaction mixture was concentrated under a stream of warm nitrogen. The residue was purified by normal phase flash chromatography to provide the title compound. 1H NMR (500 MHz, methanol-d4) δ ppm 9.23 (s, 1H), 7.93 (d, J=8.3 Hz, 2H), 7.62-7.51 (m, 3H), 7.42 (d, J=8.3 Hz, 2H), 4.27-4.19 (m, 2H), 2.96-2.76 (m, 3H), 1.90-1.82 (m, 2H), 1.70-1.57 (m, 2H), 1.48 (s, 9H); MS (ESI(+)) m/e 455 (M+H)+.
  • Example 492 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide Example 492A (R)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl (3R)-3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 492B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(3R)-1-(2-methylpropanoyl)pyrrolidin-3-yl]oxy}benzamide
  • The title compound was prepared as described in Example 1A, substituting (R)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.2 Hz, 1H), 7.99 (d, J=2.2 Hz, 1H), 7.94-7.86 (m, 2H), 7.80 (bs, 1H), 7.48 (dd, J=7.0, 1.6 Hz, 1H), 7.11-7.01 (m, 2H), 5.23-5.11 (m, 1H), 4.76 (s, 2H), 3.92-3.47 (m, 4H), 2.87-2.64 (m, 1H), 2.36-2.16 (m, 2H), 1.16-1.01 (m, 6H); MS (ESI(+)) m/e 407 (M+H)+.
  • Example 493 4-{[(3R)-1-benzoylpyrrolidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting (R)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.74 (t, J=6.6 Hz, 1H), 8.20-8.14 (m, 1H), 8.01-7.96 (m, 1H), 7.92 (d, J=8.7 Hz, 1H), 7.85 (d, J=8.6 Hz, 1H), 7.82-7.76 (m, 1H), 7.59-7.39 (m, 6H), 7.10 (d, J=8.6 Hz, 1H), 7.00 (d, J=8.6 Hz, 1H), 5.24-5.07 (m, 1H), 4.75 (d, J=12.3 Hz, 2H), 3.99-3.70 (m, 3H), 3.66-3.56 (m, 1H), 2.39-2.19 (m, 2H); MS (ESI(+)) m/e 441 (M+H)+.
  • Example 494 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(3S)-tetrahydrofuran-3-ylcarbonyl]pyrrolidin-3-yl}oxy)benzamide
  • The title compound was prepared as described in Example 1A, substituting (R)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide for 3-methylbutan-1-amine and (S)-tetrahydrofuran-3-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.19-8.15 (m, 1H), 8.01-7.97 (m, 1H), 7.93-7.86 (m, 2H), 7.82-7.77 (m, 1H), 7.51-7.45 (m, 1H), 7.10-7.01 (m, 2H), 5.23-5.12 (m, 1H), 4.75 (s, 2H), 4.05-3.92 (m, 1H), 3.94-3.63 (m, 7H), 3.57-3.34 (m, 1H), 2.40-2.29 (m, 1H), 2.27-1.97 (m, 3H); MS (ESI(+)) m/e 435 (M+H)+.
  • Example 495 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({(3R)-1-[(2S)-2-methylbutanoyl]pyrrolidin-3-yl}oxy)benzamide
  • The title compound was prepared as described in Example 1A, substituting (R)—N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yloxy)benzamide for 3-methylbutan-1-amine and (S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.2 Hz, 1H), 7.99 (d, J=2.2 Hz, 1H), 7.94-7.86 (m, 2H), 7.82-7.77 (m, 1H), 7.48 (d, J=7.1 Hz, 1H), 7.10-7.00 (m, 2H), 5.22-5.11 (m, 1H), 4.76 (s, 2H), 3.91-3.49 (m, 4H), 2.70-2.49 (m, 1H), 2.35-2.17 (m, 2H), 1.73-1.59 (m, 1H), 1.50-1.36 (m, 1H), 1.14-1.03 (m, 3H), 0.93-0.86 (m, 3H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 496 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-phenoxyphenyl)urea
  • The title compound was prepared as described in Example 1C, substituting 4-phenoxyaniline for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.68 (s, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (t, J=0.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.44 (m, 2H), 7.39 (m, 1H), 7.34 (m, 2H), 7.07 (m, 1H), 6.93 (m, 4H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.70 (t, J=6.0 Hz, 1H), 4.34 (d, J=6.0 Hz, 2H); MS (ESI(+)) m/e 359 (M+H)+.
  • Example 497 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 497A 5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 51A, substituting 5-bromothiophene-2-carboxylic acid for 4-bromoaniline.
  • Example 497B 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.11 (t, J=6.0 Hz, 1H), 8.90 (dd, J=7.1, 1.0 Hz, 1H), 8.46 (s, 1H), 8.15 (d, J=0.9 Hz, 1H), 7.81 (s, 1H), 7.75 (d, J=3.9 Hz, 1H), 7.71-7.64 (m, 1H), 7.23 (d, J=3.8 Hz, 1H), 7.16 (dd, J=7.1, 1.8 Hz, 1H), 4.58 (d, J=5.8 Hz, 2H), 3.93 (d, J=7.1 Hz, 2H), 2.20-2.04 (m, 1H), 0.86 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 381 (M+H)+.
  • Example 543 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide Example 543A 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 2-bromothiazole-5-carboxylic acid for 4-nitrobenzoic acid.
  • Example 543B tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiazol-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 2-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiazole-5-carboxamide for 4-bromoaniline.
  • Example 543C tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiazol-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiazol-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 543D N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(piperidin-4-yl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)thiazol-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 543E N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(piperidin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.23 (t, J=6.0 Hz, 1H), 8.49 (d, J=7.0 Hz, 1H), 8.33 (s, 1H), 7.89 (bs, 1H), 7.52 (d, J=1.0 Hz, 1H), 7.40 (bs, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=6.1 Hz, 2H), 4.44 (d, J=13.4 Hz, 1H), 4.02 (d, J=13.1 Hz, 1H), 3.34-3.27 (m, 1H), 3.19 (t, J=11.9 Hz, 1H), 2.95-2.84 (m, 1H), 2.72 (t, J=12.1 Hz, 1H), 2.13-2.02 (m, 2H), 1.68-1.43 (m, 2H), 1.04-0.96 (m, 6H); MS (ESI(+)) m/e 412 (M+H)+.
  • Example 544 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)piperidin-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(piperidin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ππμ9.23 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.33 (s, 1H), 7.92-7.87 (m, 1H), 7.53 (d, J=1.2 Hz, 1H), 7.40 (d, J=1.6 Hz, 1H), 6.84 (dd, J=6.9, 1.7 Hz, 1H), 4.51-4.41 (m, 3H), 3.96 (d, J=13.8 Hz, 1H), 3.34-3.24 (m, 1H), 3.16 (t, J=11.7 Hz, 1H), 2.71 (t, J=12.2 Hz, 1H), 2.21 (dd, J=7.0, 2.3 Hz, 2H), 2.10-2.00 (m, 2H), 1.61 (qd, J=12.7, 4.3 Hz, 1H), 1.49 (qd, J=12.5, 4.4 Hz, 1H), 0.90 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 426 (M+H)+.
  • Example 545 2-(1-benzoylpiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(piperidin-4-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.24 (t, J=5.9 Hz, 1H), 8.49 (d, J=7.0 Hz, 1H), 8.34 (s, 1H), 7.89 (s, 1H), 7.53 (d, J=1.1 Hz, 1H), 7.43 (ddd, J=9.6, 6.8, 3.7 Hz, 6H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.48 (d, J=5.9 Hz, 1H), 3.72-3.58 (m, 1H), 3.26-3.13 (m, 1H), 3.06-2.91 (m, 1H), 2.17-1.95 (m, 2H), 1.72-1.62 (m, 2H); MS (ESI(+)) m/e 446 (M+H)+.
  • Example 546 4-[(cyclopentylacetyl)amino]-N-([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.78-8.72 (m, 1H), 8.40 (s, 1H), 7.90-7.83 (m, 2H), 7.75-7.67 (m, 3H), 7.25 (dd, J=7.0, 1.8 Hz, 1H), 4.75-4.69 (m, 2H), 2.44-2.25 (m, 3H), 1.95-1.76 (m, 2H), 1.78-1.50 (m, 4H), 1.35-1.17 (m, 2H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 553 5-[4-hydroxy-1-(3-methylbutanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 553A 5-(4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-hydroxy-4-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophen-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 553B 5-[3-hydroxy-1-(2-methylpropanoyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 2-methylpropanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.98 (t, J=6.0 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.87 (m, 1H), 7.65 (d, J=3.8 Hz, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 7.00 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 5.76 (s, 1H), 4.46 (d, J=5.9 Hz, 2H), 4.33-4.23 (m, 1H), 3.81-3.71 (m, 1H), 2.99-2.85 (m, 1H), 2.21 (d, J=7.0 Hz, 2H), 2.07-1.91 (m, 1H), 1.86-1.71 (m, 4H), 0.94-0.87 (m, 6H); MS (ESI(+)) m/e 441 (M+H)+.
  • Example 554 5-[4-hydroxy-1-(2-methylpropanoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.98 (s, 1H), 8.48 (d, J=7.0 Hz, 1H), 7.88 (s, 1H), 7.65 (d, J=3.8 Hz, 1H), 7.51 (d, J=1.1 Hz, 1H), 7.37 (s, 1H), 7.01 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 5.77 (s, 1H), 4.46 (d, J=5.6 Hz, 2H), 4.33-4.22 (m, 1H), 3.88-3.74 (m, 1H), 2.98-2.82 (m, 2H), 1.82 (s, 4H), 1.05-0.96 (m, 6H); MS (ESI(+)) m/e 427 (M+H)+.
  • Example 555 5-[1-(3,3-dimethylbutanoyl)-4-hydroxypiperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3,3-dimethylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.98 (t, J=5.8 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.91-7.86 (m, 1H), 7.65 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 7.00 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 5.76 (s, 1H), 4.46 (d, J=6.0 Hz, 2H), 4.38-4.28 (m, 1H), 3.89-3.78 (m, 1H), 2.97-2.85 (m, 1H), 2.38-2.13 (m, 3H), 1.86-1.71 (m, 4H), 0.99 (s, 9H); MS (ESI(+)) m/e 455 (M+H)+.
  • Example 556 5-(1-benzoyl-4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 5-(4-hydroxypiperidin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.98 (s, 1H), 8.48 (d, J=6.2 Hz, 1H), 7.88 (s, 1H), 7.66 (d, J=3.8 Hz, 1H), 7.53-7.35 (m, 7H), 7.06 (d, J=3.8 Hz, 1H), 6.83 (d, J=7.0 Hz, 1H), 5.83 (s, 1H), 4.46 (d, J=5.9 Hz, 3H), 4.52-4.26 (m, 1H), 1.93 (s, 5H); MS (ESI(+)) m/e 461 (M+H)+.
  • Example 557 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide Example 557A tert-butyl 3-(4-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)phenyl)azetidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)azetidin-3-yl)benzoic acid for 4-nitrobenzoic acid.
  • Example 557B 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(4-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)phenyl)azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 557C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)azetidin-3-yl]benzamide
  • In a 4 mL vial was mixed 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide bis(2,2,2-trifluoroacetate) (60 mg, 0.112 mmol) in anhydrous tetrahydrofuran (2 mL) at room temperature. To this mixture was added in portions 60% sodium hydride in mineral oil (22.45 mg, 0.561 mmol). This heterogeneous mixture was stirred 1 hour. To this was added propane-2-sulfonyl chloride (0.015 mL, 0.135 mmol) at and reaction mixture was stirred for 3 hours. The mixture was quenched with water, and product was extracted with 10% methanol/dichloromethane. The organic layers were combined, concentrated and purified by normal phase chromatography to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (m, 1H), 8.47 (d, J=7.0 Hz, 1H), 7.90 (m, 3H), 7.48 (m, 3H), 7.37 (s, 1H), 6.84 (m, 1H), 4.50 (d, J=5.9 Hz, 2H), 4.22 (m, 2H), 3.93 (m, 3H), 3.48 (m, 1H), 1.25 (d, J=5.9 Hz, 6H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 558 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide Example 558A 4-(azetidin-3-yloxy)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenoxy}azetidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 558B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[1-(2-methylpropanoyl)azetidin-3-yl]oxy}benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-(azetidin-3-yloxy)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (m, 1H), 6.95 (m, 2H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 5.11 (m, 1H), 4.64 (dd, J=9.5, 6.4 Hz, 1H), 4.49 (d, J=5.8 Hz, 2H), 4.32 (dd, J=10.4, 6.3 Hz, 1H), 4.09 (m, 1H), 3.78 (dd, J=10.6, 3.9 Hz, 1H), 2.48 (m, 1H), 0.98 (t, J=6.7 Hz, 6H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 559 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-({1-[(2S)-2-methylbutanoyl]azetidin-3-yl}oxy)benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-(azetidin-3-yloxy)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and (2S)-2-methylbutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 6.95 (m, 2H), 6.85 (dd, J=6.9, 1.6 Hz, 1H), 5.11 (dd, J=6.4, 3.5 Hz, 1H), 4.63 (dd, J=9.5, 6.5 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.33 (m, 1H), 4.11 (m, 1H), 3.79 (m, 1H), 2.29 (m, 1H), 1.50 (m, 1H), 1.28 (m, 1H), 0.97 (t, J=6.0 Hz, 3H), 0.82 (m, 3H); MS (ESI(+)) m/e 407 (M+H)+.
  • Example 560 4-{[1-(cyclopropylacetyl)azetidin-3-yl]oxy}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-(azetidin-3-yloxy)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and cyclopropylacetic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 6.94 (m, 2H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 5.10 (m, 1H), 4.57 (dd, J=9.5, 6.5 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.33 (dd, J=10.6, 6.5 Hz, 1H), 4.08 (dd, J=9.6, 3.8 Hz, 1H), 3.78 (dd, J=10.6, 3.9 Hz, 1H), 2.03 (d, J=6.8 Hz, 2H), 0.91 (m, 1H), 0.44 (m, 2H), 0.10 (m, 2H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 561 4-[(1-benzoylazetidin-3-yl)oxy]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting 4-(azetidin-3-yloxy)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.99 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.90 (m, 3H), 7.66 (m, 2H), 7.59-7.42 (m, 4H), 7.37 (s, 1H), 6.95 (m, 2H), 6.84 (dd, J=6.9, 1.7 Hz, 1H), 5.17 (m, 1H), 4.71 (m, 1H), 4.57 (m, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.33 (m, 1H), 4.02 (m, 1H); MS (ESI(+)) m/e 427 (M+H)+.
  • Example 563 tert-butyl 4-{4-[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.11 (t, J=5.9 Hz, 1H), 8.89 (dd, J=7.0, 0.9 Hz, 1H), 8.44 (s, 1H), 7.89-7.83 (m, 2H), 7.67-7.65 (m, 1H), 7.40-7.34 (m, 2H), 7.15 (dd, J=7.0, 1.8 Hz, 1H), 4.62-4.57 (m, 2H), 4.14-4.03 (m, 2H), 2.91-2.67 (m, 3H), 1.82-1.71 (m, 2H), 1.60-1.37 (m, 11H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 564 2-cyclopentyl-N-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)acetamide
  • The title compound was prepared as described in Example 1C, substituting N-(4-aminophenyl)-2-cyclopentylacetamide for 4-amino-N-isopentylbenzamide and [1,2,4]triazolo[1,5-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.68 (s, 1H), 8.89 (d, J=7.0 Hz, 1H), 8.64 (s, 1H), 8.45 (s, 1H), 7.65 (s, 1H), 7.47-7.41 (m, 2H), 7.34-7.28 (m, 2H), 7.14 (dd, J=7.0, 1.8 Hz, 1H), 6.78 (t, J=6.0 Hz, 1H), 4.42 (d, J=6.0 Hz, 2H), 2.29-2.15 (m, 3H), 1.79-1.68 (m, 2H), 1.66-1.43 (m, 4H), 1.24-1.11 (m, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 565 tert-butyl 4-(4-{[([1,2,4]triazolo[1,5-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide and [1,2,4]triazolo[1,5-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.89 (d, J=7.0 Hz, 1H), 8.66 (s, 1H), 8.45 (s, 1H), 7.64 (s, 1H), 7.36-7.30 (m, 2H), 7.14 (dd, J=7.0, 1.8 Hz, 1H), 7.12-7.07 (m, 2H), 6.80 (t, J=6.0 Hz, 1H), 4.43 (d, J=6.0 Hz, 2H), 4.10-4.00 (m, 2H), 2.90-2.63 (m, 2H), 2.66-2.54 (m, 1H), 1.75-1.67 (m, 2H), 1.49-1.35 (s, 11H); MS (ESI(+)) m/e 451 (M+H)+.
  • Example 566 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-1-ylcarbonyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting piperidine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.18 (t, J=5.9 Hz, 1H), 8.49 (d, J=7.0 Hz, 1H), 7.96 (m, 2H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.47 (m, 2H), 7.40 (s, 1H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 4.52 (d, J=5.9 Hz, 2H), 3.59 (m, 2H), 3.24 (m, 2H), 1.66-1.38 (m, 6H); MS (ESI(+)) m/e 363 (M+H)+.
  • Example 567 4-[1-(ethylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 557C, substituting ethane sulfonyl chloride for propane-2-sulfonyl chloride. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.10 (t, J=6.0 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.93 (m, 2H), 7.88 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.49 (m, 2H), 7.39 (s, 1H), 6.86 (dd, J=7.0, 1.6 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.23 (m, 2H), 3.95 (m, 3H), 3.19 (q, J=7.3 Hz, 2H), 1.25 (t, J=7.3 Hz, 3H); MS (ESI(+)) m/e 399 (M+H)+.
  • Example 568 4-[1-(cyclopropylsulfonyl)azetidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 557C, substituting cyclopropane sulfonyl chloride for propane-2-sulfonyl chloride. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.10 (t, J=6.0 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.93 (m, 2H), 7.88 (m, 1H), 7.52 (d, J=1.1 Hz, 1H), 7.50 (m, 2H), 7.39 (s, 1H), 6.86 (dd, J=7.0, 1.6 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.26 (t, J=7.7 Hz, 2H), 3.99 (m, 3H), 2.85 (m, 1H), 1.06 (m, 2H), 0.97 (m, 2H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 569 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)azetidin-3-yl]benzamide
  • The title compound was prepared as described in Example 557C, substituting benzene sulfonyl chloride for propane-2-sulfonyl chloride. —1H NMR (500 MHz, DMSO-d6) δ ppm 9.04 (t, J=5.9 Hz, 1H), 8.47 (m, 1H), 7.92-7.82 (m, 4H), 7.75 (m, 4H), 7.51 (d, J=1.2 Hz, 1H), 7.36 (s, 1H), 7.97 (m, 2H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 4.47 (d, J=5.9 Hz, 2H), 4.16 (m, 2H), 3.79 (m, 1H), 3.67 (m, 2H); MS (ESI(+)) m/e 447 (M+H)+.
  • Example 570 propan-2-yl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate
  • To a suspension N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide (0.103 g, 0.249 mmol) in dichloromethane (2 ml) was added N-methylmorpholine (0.110 ml, 0.997 mmol) followed by isopropylchloroformate (0.374 ml, 0.374 mmol). A second portion of isopropylchloroformate (0.4 ml) was added and after 1 hour the mixture was directly purified by normal phase chromatography to give the title compound. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.05 (t, J=6.0 Hz, 1H), 8.51 (d, J=7.0 Hz, 1H), 7.92 (s, 1H), 7.68 (d, J=3.8 Hz, 1H), 7.56 (d, J=1.2 Hz, 1H), 7.40 (d, J=1.4 Hz, 1H), 6.96 (d, J=3.8 Hz, 1H), 6.88 (dd, J=7.0, 1.7 Hz, 1H), 4.78 (hept, J=6.2 Hz, 1H), 4.47 (d, J=5.9 Hz, 2H), 4.05 (d, J=12.9 Hz, 2H), 3.10-2.97 (m, 1H), 2.98-2.81 (m, 2H), 2.01-1.88 (m, 2H), 1.57-1.38 (m, 2H), 1.19 (d, J=6.2 Hz, 6H); MS (ESI(+)) m/e 427 (M+H)+.
  • Example 571 2-methylpropyl 4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 570, substituting isobutyl carbonochloridate for isopropyl carbonochloridate. 1H NMR (300 MHz, DMSO-d6) δ 8.99 (t, J=6.0 Hz, 1H), 8.48 (dd, J=7.0, 0.9 Hz, 1H), 7.88 (t, J=1.0 Hz, 1H), 7.67 (d, J=3.9 Hz, 1H), 7.51 (d, J=1.1 Hz, 1H), 7.37 (s, 1H), 6.96 (d, J=3.1 Hz, 1H), 6.82 (dd, J=7.0, 1.8 Hz, 1H), 4.46 (d, J=5.8 Hz, 2H), 4.06 (d, J=13.3 Hz, 2H), 3.79 (d, J=6.6 Hz, 2H), 3.13-2.97 (m, 1H), 2.97-2.80 (m, 2H), 2.03-1.77 (m, 3H), 1.48 (qd, J=12.5, 4.2 Hz, 2H), 0.89 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 441 (M+H)+.
  • Example 572 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 3,3,3-trifluoropropanoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.0 Hz, 1H), 8.48 (dd, J=6.9, 1.0 Hz, 1H), 7.88 (t, J=1.0 Hz, 1H), 7.67 (d, J=3.8 Hz, 1H), 7.51 (d, J=1.3 Hz, 1H), 7.40-7.33 (m, 1H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.46 (d, J=6.3 Hz, 2H), 3.90 (d, J=13.8 Hz, 1H), 3.66 (q, J=11.0 Hz, 2H), 3.23-3.04 (m, 2H), 2.71 (td, J=12.8, 2.6 Hz, 1H), 2.07-1.88 (m, 2H), 1.71-1.31 (m, 2H); MS (ESI(+)) m/e 451 (M+H)+.
  • Example 573 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]piperidin-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2-methylpropane-1-sulfonyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=6.0 Hz, 1H), 8.48 (d, J=6.9 Hz, 1H), 7.89 (s, 1H), 7.68 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.1 Hz, 1H), 7.38 (s, 1H), 6.98 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.46 (d, J=6.0 Hz, 2H), 3.71-3.59 (m, 2H), 2.99 (tt, J=11.6, 3.6 Hz, 1H), 2.94-2.82 (m, 4H), 2.20-2.08 (m, 1H), 2.08-1.97 (m, 2H), 1.62 (qd, J=12.6, 4.1 Hz, 2H), 1.04 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 461 (M+H)+.
  • Example 574 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 4,4,4-trifluorobutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.0 Hz, 1H), 8.48 (d, J=6.8 Hz, 1H), 7.89 (s, 1H), 7.68 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.41-7.34 (m, 1H), 6.96 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.54-4.38 (m, 3H), 4.02-3.88 (m, 1H), 3.12 (tdt, J=11.3, 7.9, 3.1 Hz, 2H), 2.76-2.41 (m, 5H), 2.06-1.88 (m, 2H), 1.58 (qd, J=12.3, 4.0 Hz, 1H), 1.42 (qd, J=12.5, 4.2 Hz, 1H); MS (ESI(+)) m/e 465 (M+H)+.
  • Example 575 N-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide
  • A solution of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(1-isobutyrylpiperidin-4-yl)benzamide (0.025 g, 0.062 mmol) in chloroform (1.030 ml) was treated with N-chlorosuccinimide (9.49 mg, 0.071 mmol) and the reaction was stirred at ambient temperature for 16 hours. The reaction was concentrated under a stream of warm nitrogen. The residue was purified by normal phase chromatography to give the title compound. 1H NMR (500 MHz, methanol-d4) δ ppm 8.67 (d, J=7.0 Hz, 1H), 8.11 (s, 1H), 7.89-7.83 (m, 2H), 7.81 (s, 1H), 7.57 (dd, J=7.1, 1.5 Hz, 1H), 7.43-7.37 (m, 2H), 4.80-4.75 (m, 2H), 4.75-4.67 (m, 1H), 4.25-4.16 (m, 1H), 3.28-3.18 (m, 1H), 3.07-2.88 (m, 2H), 2.79-2.66 (m, 1H), 2.02-1.85 (m, 2H), 1.75-1.53 (m, 2H), 1.17-1.08 (m, 6H); MS (ESI(+)) m/e 439 (M+H)+.
  • Example 576 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-methyltetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (t, J=6.0 Hz, 1H), 8.49 (dd, J=7.1, 1.0 Hz, 1H), 8.13 (s, 1H), 7.89 (t, J=1.0 Hz, 1H), 7.81 (s, 1H), 7.74 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.3 Hz, 1H), 7.43-7.36 (m, 1H), 7.23 (d, J=3.8 Hz, 1H), 6.85 (dd, J=7.1, 1.7 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.04 (s, 2H), 3.68 (dt, J=11.8, 4.6 Hz, 2H), 3.52 (ddd, J=11.9, 9.1, 3.0 Hz, 2H), 1.51 (ddd, J=13.4, 9.2, 4.2 Hz, 2H), 1.24 (dt, J=13.4, 4.0 Hz, 2H), 0.96 (s, 3H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 577 5-[1-(2-cyano-2-methylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 2,2-dimethyl-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)propanenitrile and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ 9.05 (t, J=6.0 Hz, 1H), 8.49 (dd, J=6.8, 1.0 Hz, 1H), 8.19 (d, J=0.7 Hz, 1H), 7.92 (s, 1H), 7.90-7.88 (m, 1H), 7.76 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.1 Hz, 1H), 7.43-7.36 (m, 1H), 7.27 (d, J=3.8 Hz, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.48 (d, J=5.7 Hz, 2H), 4.35 (s, 2H), 1.35 (s, 6H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 578
  • 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • Example 578A 1-(5-bromo-4-chlorothiophen-2-yl)ethanone
  • 2-Bromo-3-chlorothiophene (10.7 g, 51.5 mmol) was dissolved in dichloromethane (73.5 ml). The flask was equipped with a desiccant filled drying tube and the solution was chilled in an ice bath. Acetyl chloride (6.06 g, 77 mmol) was added followed by addition of aluminum trichloride (8.24 g, 61.8 mmol) over about 2 minutes (reaction bubbled vigorously as aluminum trichloride was added). The reaction mixture was stirred overnight, allowing to warm to room temperature, and then added cautiously and with stirring to a 1-L beaker containing ˜200 mL sat sodium bicarbonate. The mixture was stirred for 30 minutes and diluted with dichloromethane (A100 mL). The layers were separated and the organic layer was washed with aqueous saturated sodium bicarbonate, water, and brine. The combined organic layers were dried with sodium sulfate, filtered, and concentrated to give a crude solid. This material was recrystallized from hot hexanes to give the title compound.
  • Example 578B 5-bromo-4-chlorothiophene-2-carboxylic acid
  • Sodium hydroxide (50% in water) (5.82 ml, 110 mmol) was added to water (15 ml), and the mixture was chilled to 0° C. Bromine solution (1.669 ml, 32.6 mmol) was added, followed by dropwise addition of a solution of 1-(5-bromo-4-chlorothiophen-2-yl)ethanone (2.4 g, 10.02 mmol) in dioxane (18 ml). The mixture was stirred for 1.5 hours at room temperature, washed with dichloromethane, and then the aqueous phase was adjusted to pH 1 using 4N aqueous HCl. The precipitated solid was collected by filtration to give the title compound.
  • Example 578C 4-chloro-5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 51A, substituting 5-bromo-4-chlorothiophene-2-carboxylic acid for 4-bromoaniline.
  • Example 578D 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-chloro-5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.17 (t, J=5.9 Hz, 1H), 8.50 (d, J=7.0 Hz, 1H), 8.31 (s, 1H), 7.93-7.88 (m, 2H), 7.83 (s, 1H), 7.53 (d, J=1.1 Hz, 1H), 7.42 (s, 1H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 3.98 (d, J=7.2 Hz, 2H), 2.20-2.08 (m, 1H), 0.86 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 414 (M+H)+.
  • Example 579 4-chloro-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(3R)-tetrahydrofuran-3-ylmethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and (R)-4-chloro-5-(1-((tetrahydrofuran-3-yl)methyl)-1H-pyrazol-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.17 (t, J=6.0 Hz, 1H), 8.50 (d, J=7.0 Hz, 1H), 8.28 (s, 1H), 7.93-7.88 (m, 2H), 7.83 (s, 1H), 7.53 (d, J=1.2 Hz, 1H), 7.42 (s, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.28-4.15 (m, 3H), 3.78-3.72 (m, 1H), 3.67-3.61 (m, 1H), 1.98-1.90 (m, 1H), 1.84-1.70 (m, 2H), 1.65-1.57 (m, 1H); MS (ESI(+)) m/e 442 (M+H)+.
  • Example 621 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide Example 621A N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromothiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 5-bromothiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 621B 5-[1-(2-hydroxy-2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 2-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)propan-2-ol for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromothiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.9 Hz, 1H), 8.88 (s, 1H), 8.48 (s, 1H), 8.04 (d, J=0.5 Hz, 1H), 7.84 (dd, J=9.2, 0.7 Hz, 1H), 7.79 (d, J=0.5 Hz, 1H), 7.71 (d, J=3.9 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.22 (d, J=3.9 Hz, 1H), 4.72 (s, 1H), 4.54 (d, J=5.8 Hz, 2H), 4.03 (s, 2H), 1.08 (s, 6H); MS (ESI(+)) m/e 397 (M+H)+.
  • Example 622 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-methyltetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromothiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.9 Hz, 1H), 8.88 (s, 1H), 8.48 (s, 1H), 8.04 (d, J=0.5 Hz, 1H), 7.84 (dd, J=9.2, 0.7 Hz, 1H), 7.79 (d, J=0.5 Hz, 1H), 7.71 (d, J=3.9 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.22 (d, J=3.9 Hz, 1H), 4.72 (s, 1H), 4.54 (d, J=5.8 Hz, 2H), 4.03 (s, 2H), 1.08 (s, 6H); MS (ESI(+)) m/e 437 (M+H)+.
  • Example 623 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)azetidin-3-yl]benzamide
  • The title compound was prepared as described in Example 557C, substituting methane sulfonyl chloride for propane-2-sulfonyl chloride. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.11 (t, J=6.0 Hz, 1H), 8.49 (m, 1H), 7.91 (m, 2H), 7.88 (m, 1H), 7.52 (m, 2H), 7.49 (m, 1H), 7.39 (s, 1H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.23 (m, 2H), 3.95 (m, 3H), 3.08 (s, 3H); MS (ESI(+)) m/e 385 (M+H)+.
  • Example 624 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(methylsulfonyl)pyrrolidin-3-yl]benzamide
  • The title compound was prepared as described in Example 557C, substituting methane sulfonyl chloride for propane-2-sulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide. H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (m, 3H), 7.52 (d, J=1.2 Hz, 1H), 7.45 (m, 2H), 7.38 (m, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 3.73 (dd, J=9.6, 7.5 Hz, 1H), 3.47 (m, 2H), 3.35 (m, 1H), 3.19 (t, J=9.6 Hz, 1H), 2.97 (s, 3H), 2.31 (m, 1H), 2.02 (m, 1H); MS (ESI(+)) m/e 399 (M+H)+.
  • Example 625 4-[1-(ethylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 557C, substituting ethane sulfonyl chloride for propane-2-sulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide. H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (m, 3H), 7.52 (d, J=1.2 Hz, 1H), 7.45 (m, 2H), 7.38 (s, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.50 (d, J=5.9 Hz, 2H), 3.75 (dd, J=9.5, 7.5 Hz, 1H), 3.50 (m, 2H), 3.38 (m, 1H), 3.26-3.12 (m, 3H), 2.32 (m, 1H), 2.03 (m, 1H), 1.24 (t, J=7.3 Hz, 3H); MS (ESI(+)) m/e 413 (M+H)+.
  • Example 626 4-[1-(cyclopropylsulfonyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 557C, substituting cyclopropane sulfonyl chloride for propane-2-sulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.88 (m, 3H), 7.51 (d, J=1.2 Hz, 1H), 7.45 (m, 2H), 7.38 (m, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 4.50 (d, J=5.9 Hz, 2H), 3.79 (dd, J=9.7, 7.5 Hz, 1H), 3.53 (m, 2H), 3.43 (m, 1H), 3.23 (m, 1H), 2.78 (m, 1H), 2.34 (m, 1H), 2.01 (m, 1H), 0.98 (m, 4H); MS (ESI(+)) m/e 425 (M+H)+.
  • Example 627 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)pyrrolidin-3-yl]benzamide
  • The title compound was prepared as described in Example 557C, substituting benzene sulfonyl chloride for propane-2-sulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.04 (t, J=5.9 Hz, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.87 (m, 3H), 7.81 (m, 2H), 7.74 (m, 1H), 7.66 (m, 2H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (m, 1H), 7.25 (m, 2H), 6.84 (dd, J=6.9, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 3.72 (dd, J=9.8, 7.5 Hz, 1H), 3.46 (m, 1H), 3.26 (m, 2H), 3.11 (m, 1H), 2.17 (m, 1H), 1.78 (m, 1H); MS (ESI(+)) m/e 461 (M+H)+.
  • Example 672 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)pyrrolidin-3-yl]benzamide
  • The title compound was prepared as described in Example 557C, substituting propane-2-sulfonyl chloride for propane-2-sulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(pyrrolidin-3-yl)benzamide for 4-(azetidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide. 1H NMR (501 MHz, DMSO-d6) δ ppm 9.04 (t, J=6.0 Hz, 1H), 8.47 (d, J=6.9 Hz, 1H), 7.87 (m, 3H), 7.50 (d, J=1.2 Hz, 1H), 7.43 (m, 2H), 7.37 (s, 1H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 3.77 (m, 1H), 3.52 (m, 2H), 3.42 (m, 2H), 3.25 (m, 1H), 2.30 (m, 1H), 2.04 (m, 1H), 1.25 (dd, J=6.8, 1.4 Hz, 6H); MS (ESI(+)) m/e 427 (M+H)+.
  • Example 673 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(2-methoxyethyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 51A, substituting 1-(2-methoxyethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.66 (s, 1H), 8.50 (d, J=7.0 Hz, 1H), 8.01 (s, 1H), 7.90 (s, 1H), 7.77 (s, 1H), 7.54 (s, 1H), 7.40 (m, 5H), 6.87 (dd, J=7.0, 1.6 Hz, 1H), 6.71 (t, J=6.0 Hz, 1H), 4.34 (d, J=6.0 Hz, 2H), 4.23 (t, J=5.3 Hz, 2H), 3.69 (t, J=5.3 Hz, 2H), 3.23 (s, 3H); MS (ESI(+)) m/e 391 (M+H)+.
  • Example 674 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydrofuran-2-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 51A, substituting 1-(tetrahydrofuran-2-ylmethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.64 (s, 1H), 8.47 (d, J=7.0 Hz, 1H), 8.00 (s, 1H), 7.87 (s, 1H), 7.77 (s, 1H), 7.50 (d, J=1.2 Hz, 1H), 7.40 (m, 5H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.70 (t, J=6.0 Hz, 1H), 4.33 (d, J=6.0 Hz, 2H), 4.13 (m, 3H), 3.74 (m, 1H), 3.62 (m, 1H), 1.91 (m, 1H), 1.76 (m, 2H), 1.60 (m, 1H); MS (ESI(+)) m/e 417 (M+H)+.
  • Example 675 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-{4-[1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-pyrazol-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 51A, substituting 1-(tetrahydro-2H-pyran-4-ylmethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 1-(4-bromophenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.64 (s, 1H), 8.47 (d, J=7.0 Hz, 1H), 8.02 (s, 1H), 7.87 (s, 1H), 7.77 (d, J=0.8 Hz, 1H), 7.50 (d, J=1.2 Hz, 1H), 7.40 (m, 5H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.70 (t, J=6.0 Hz, 1H), 4.32 (d, J=5.9 Hz, 2H), 3.98 (d, J=7.1 Hz, 2H), 3.81 (m, 2H), 3.23 (m, 2H), 2.05 (m, 1H), 1.40 (m, 2H), 1.23 (m, 2H); MS (ESI(+)) m/e 431 (M+H)+.
  • Example 676 5-[1-(1,4-dioxan-2-ylmethyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((1,4-dioxan-2-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromothiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.9 Hz, 1H), 8.90-8.85 (m, 1H), 8.48 (s, 1H), 8.12 (s, 1H), 7.84 (dd, J=9.2, 0.8 Hz, 1H), 7.82 (d, J=0.6 Hz, 1H), 7.71 (d, J=3.9 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.22 (d, J=3.9 Hz, 1H), 4.54 (d, J=5.8 Hz, 2H), 4.20-4.12 (m, 2H), 3.95-3.83 (m, 1H), 3.74 (dd, J=11.4, 2.5 Hz, 2H), 3.68-3.60 (m, 1H), 3.59-3.39 (m, 2H), 3.29-3.21 (m, 1H); MS (ESI(+)) m/e 425 (M+H)+.
  • Example 677 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.0 Hz, 1H), 8.48 (dd, J=7.0, 0.8 Hz, 1H), 7.91-7.85 (m, 1H), 7.67 (d, J=3.8 Hz, 1H), 7.55-7.35 (m, 4H), 7.34-7.25 (m, 2H), 6.98 (dd, J=3.8, 0.5 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.60 (d, J=13.2 Hz, 1H), 4.46 (d, J=5.9 Hz, 2H), 3.45 (d, J=12.7 Hz, 1H), 3.28-3.08 (m, 2H), 2.93 (td, J=12.8, 2.5 Hz, 1H), 2.00 (dd, J=43.2, 12.5 Hz, 2H), 1.68-1.39 (m, 2H); MS (ESI(+)) m/e 463 (M+H)+.
  • Example 678 tert-butyl 4-{4-[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.00-8.96 (m, 1H), 8.51-8.46 (m, 1H), 8.04-8.00 (m, 1H), 7.89-7.81 (m, 2H), 7.81-7.77 (m, 1H), 7.39-7.32 (m, 2H), 4.68 (s, 2H), 4.27-4.16 (m, 2H), 2.97-2.70 (m, 3H), 1.92-1.78 (m, 2H), 1.71-1.50 (m, 2H), 1.48 (s, 9H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 679 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.19 (d, J=0.9 Hz, 1H), 8.65 (d, J=1.2 Hz, 1H), 8.20 (d, J=1.1 Hz, 1H), 8.03 (d, J=1.5 Hz, 1H), 7.90-7.83 (m, 2H), 7.73-7.66 (m, 2H), 4.74 (s, 2H), 2.44-2.22 (m, 3H), 1.92-1.76 (m, 2H), 1.76-1.49 (m, 4H), 1.35-1.14 (m, 2H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 680 tert-butyl 4-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyrazin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (500 MHz, methanol-d4) δ ppm 8.99-8.95 (m, 1H), 8.48-8.44 (m, 1H), 8.02 (s, 1H), 7.81-7.77 (m, 1H), 7.33-7.26 (m, 2H), 7.15-7.09 (m, 2H), 4.49 (s, 2H), 4.22-4.14 (m, 2H), 2.92-2.73 (m, 2H), 2.74-2.58 (m, 1H), 1.82-1.74 (m, 2H), 1.61-1.41 (m, 11H); MS (ESI(+)) m/e 451 (M+H)+.
  • Example 681 2-cyclopentyl-N-(4-{[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]amino}phenyl)acetamide
  • The title compound was prepared as described in Example 1C, substituting N-(4-aminophenyl)-2-cyclopentylacetamide for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyrazin-6-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (500 MHz, methanol-d4) δ ppm 9.17-9.13 (m, 1H), 8.60 (s, 1H), 8.18 (s, 1H), 7.99 (d, J=1.5 Hz, 1H), 7.46-7.40 (m, 2H), 7.35-7.29 (m, 2H), 4.56 (bs, 2H), 2.37-2.23 (m, 3H), 1.90-1.77 (m, 2H), 1.77-1.49 (m, 4H), 1.34-1.17 (m, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 682 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide
  • A solution of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide (0.05 g, 0.150 mmol) in tetrahydrofuran (1.246 ml) was treated with sodium hydride (0.018 g, 0.449 mmol) in 3 portions. The reaction was stirred at ambient temperature for 45 minutes and became a partially homogeneous solution. Benzenesulfonyl chloride (0.021 ml, 0.164 mmol) was added and the mixture was stirred for 16 hours. The reaction was treated with 0.1 mL water and was concentrated under a stream of nitrogen. Reverse-phase chromatography provided the title compound. 1H NMR (500 MHz, methanol-d4) δ ppm 8.73 (dd, J=7.0, 0.9 Hz, 1H), 8.15 (dd, J=2.2, 0.8 Hz, 1H), 7.97 (d, J=2.2 Hz, 1H), 7.89-7.75 (m, 5H), 7.73-7.59 (m, 3H), 7.46 (dd, J=7.0, 1.6 Hz, 1H), 7.37-7.31 (m, 2H), 4.75 (s, 2H), 3.96-3.88 (m, 2H), 2.67-2.52 (m, 1H), 2.48-2.37 (m, 2H), 1.95-1.72 (m, 4H); MS (ESI(+)) m/e 475 (M+H)+.
  • Example 683 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 682, substituting propane-2-sulfonyl chloride for benzenesulfonyl chloride. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.17 (d, J=2.2 Hz, 1H), 7.99 (d, J=2.2 Hz, 1H), 7.89-7.83 (m, 2H), 7.80 (s, 1H), 7.49 (dd, J=7.0, 1.6 Hz, 1H), 7.43-7.37 (m, 2H), 4.77 (s, 2H), 3.95-3.87 (m, 2H), 3.38-3.29 (m, 1H), 3.12-3.00 (m, 2H), 2.89-2.75 (m, 1H), 1.95-1.86 (m, 2H), 1.82-1.68 (m, 2H), 1.34 (d, J=6.8 Hz, 6H); MS (ESI(+)) m/e 417 (M+H)+.
  • Example 684 4-[1-(cyclopropylsulfonyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide
  • The title compound was prepared as described in Example 682, substituting cyclopropanesulfonyl chloride for benzenesulfonyl chloride. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (dd, J=7.0, 0.9 Hz, 1H), 8.19-8.15 (m, 1H), 7.98 (d, J=2.2 Hz, 1H), 7.90-7.84 (m, 2H), 7.80 (s, 1H), 7.48 (dd, J=7.0, 1.6 Hz, 1H), 7.45-7.38 (m, 2H), 4.77 (s, 2H), 3.92-3.84 (m, 2H), 3.07-2.96 (m, 2H), 2.86-2.73 (m, 1H), 2.57-2.46 (m, 1H), 2.00-1.91 (m, 2H), 1.88-1.73 (m, 2H), 1.13-0.99 (m, 4H); MS (ESI(+)) m/e 439 (M+H)+.
  • Example 685 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 685A tert-butyl 5-formylthiophene-2-carboxylate
  • 5-Formylthiophene-2-carboxylic acid (5.3 g, 33.9 mmol) was taken up in tetrahydrofuran (100 ml) and boc-anhydride (16.30 g, 74.7 mmol) was added, followed by N,N-dimethylaminopyridine (0.829 g, 6.79 mmol). The mixture was stirred overnight at room temperature, during which time the reaction became a dark, purplish color. It was diluted with sat sodium bicarbonate and extracted with ether. The organic layers were dried sodium sulfate, concentrated then purified by normal phase chromatography to give the title compound.
  • Example 685B (S,E)-tert-butyl 5-(((tert-butylsulfinyl)imino)methyl)thiophene-2-carboxylate
  • tert-Butyl 5-formylthiophene-2-carboxylate (2 g, 9.42 mmol) and (S)-2-methylpropane-2-sulfinamide (1.370 g, 11.31 mmol) were dissolved in dichloromethane (100 ml). The mixture was chilled in an ice bath to which was added tetraethoxytitanium (8.7 ml, 41.5 mmol). The mixture was allowed to warm to room temperature overnight with stirring.
  • The mixture was poured into a large Erlenmeyer flask with 200 mL dichloromethane and was diluted with 18 mL H2O. After vigorous stirring for 30 minutes the suspension was filtered through diatomaceous earth and the filtrate was concentrated. Purification using normal phase chromatography provided the title compound.
  • Example 685C tert-butyl 5-((R)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate and tert-butyl 5-((S)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate
  • (S,E)-tert-Butyl 5-((tert-butylsulfinylimino)methyl)thiophene-2-carboxylate (1 g, 3.17 mmol) was dissolved in dichloromethane (15.85 ml) and chilled to −45° C. in an acetone bath to which dry ice had been added to achieve the desired temperature. Isobutylmagnesium bromide (2.0M in diethyl ether; 3.17 ml, 6.34 mmol) was added dropwise over −5 minutes. The mixture was stirred for 4 hours keeping the temperature between −40° C. and −50° C. by periodic addition of dry ice and then warmed to room temperature overnight. The mixture was quenched with saturated ammonium chloride (exothermic, bubbling) and extracted with dichloromethane (three times; considerable emulsion formed). The organic extracts were dried with sodium sulfate, filtered, concentrated and chromatographed to provide both tert-butyl 5-((R)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate and tert-butyl 5-((S)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate as separate compounds.
  • Example 685D (R)-tert-butyl 5-(1-amino-3-methylbutyl)thiophene-2-carboxylate
  • The title compound was prepared as described in Example 324C, substituting tert-butyl 5-((R)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate for tert-butyl 5-((R)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate.
  • Example 685E (R)-5-(1-(cyclopropanecarboxamido)-3-methylbutyl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 1A, substituting (R)-tert-butyl 5-(1-amino-3-methylbutyl)thiophene-2-carboxylate for 3-methylbutan-1-amine and cyclopropanecarboxylic acid for 4-nitrobenzoic acid followed by acidic deprotection as described in Example 28A, substituting (R)-tert-butyl 5-(1-(cyclopropanecarboxamido)-3-methylbutyl)thiophene-2-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 685F 5-{(1R)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and (R)-5-(1-(cyclopropanecarboxamido)-3-methylbutyl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.0 Hz, 1H), 8.55 (d, J=8.4 Hz, 1H), 8.48 (d, J=7.4 Hz, 1H), 7.88 (d, J=1.1 Hz, 1H), 7.64 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 6.98 (d, J=3.8 Hz, 1H), 6.82 (dd, J=7.0, 1.7 Hz, 1H), 5.11 (td, J=8.8, 5.0 Hz, 1H), 4.46 (d, J=5.9 Hz, 2H), 1.80-1.52 (m, 4H), 0.95-0.83 (m, 6H), 0.75-0.59 (m, 4H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 686 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{(1R)-3-methyl-1-[(tetrahydrofuran-3-ylacetyl)amino]butyl}thiophene-2-carboxamide
  • The title compound was described as in Example 685, substituting 2-(tetrahydrofuran-3-yl)acetic acid for cyclopropanecarboxylic acid in Example 685E. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.0 Hz, 1H), 8.48 (d, J=7.0 Hz, 1H), 8.39 (d, J=8.5 Hz, 1H), 7.88 (s, 1H), 7.64 (d, J=3.7 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 6.97 (d, J=3.8 Hz, 1H), 6.82 (dd, J=7.0, 1.7 Hz, 1H), 5.16-5.05 (m, 1H), 4.45 (d, J=5.9 Hz, 2H), 3.76-3.51 (m, 3H), 3.29-3.21 (m, 1H), 2.29-2.16 (m, 3H), 2.02-1.86 (m, 1H), 1.78-1.40 (m, 4H), 0.99-0.77 (m, 6H); MS (ESI(+)) m/e 455 (M+H)+.
  • Example 687 5-{(1S)-1-[(cyclopropylcarbonyl)amino]-3-methylbutyl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was described as in Example 685, substituting butyl 5-((S)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate for tert-butyl 5-((R)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)thiophene-2-carboxylate in Example 685D. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04-8.96 (m, 1H), 8.55 (d, J=8.4 Hz, 1H), 8.48 (dd, J=7.0, 0.9 Hz, 1H), 7.88 (s, 1H), 7.64 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.1 Hz, 1H), 7.37 (s, 1H), 6.98 (d, J=3.8 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 5.17-5.05 (m, 1H), 4.46 (d, J=5.9 Hz, 2H), 1.77-1.44 (m, 4H), 1.01-0.77 (m, 6H), 0.66 (d, J=7.2 Hz, 4H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 688 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide Example 688A ethyl 2-(piperidin-4-yl)thiazole-5-carboxylate
  • Ethyl 3-ethoxyacrylate (1.50 g, 10.38 mml) was dissolved in dioxane/water and chilled to −10° C. N-Bromosuccinimide (2.03 g, 11.42 mmol) was added and the mixture was stirred 1 hour at room temperature. tert-Butyl 4-carbamothioylpiperidine-1-carboxylate (2.54 g, 10.38 mmol) was added and the mixture was heated at 100° C. for 1 hour. The reaction mixture was poured into 25 mL saturated ammonium hydroxide and extracted with dichloromethane. The combined organic layers were washed with brine, dried with sodium sulfate, filtered, and concentrated. Normal phase chromatography provided the title compound.
  • Example 688B ethyl 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate
  • Ethyl 2-(piperidin-4-yl)thiazole-5-carboxylate (100 mg, 0.416 mmol), 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (21 mg, 0.033 mmol), bis(dibenzylideneacetone)palladium(0) (15 mg, 0.017 mmol) and cesium carbonate (678 mg, 2.081 mmol) were placed in a pressure tube capped with a septum and degassed with nitrogen by passing a stream through the vessel for 30 minutes. Separately, bromobenzene (68.6 mg, 0.437 mmol) was dissolved in toluene (2 ml) and the solution was degassed by bubbling nitrogen for 30 minutes. The bromobenzene solution was added to the solid mixture and the sealed tube was heated to 100° C. overnight. The mixture was partitioned between dichloromathane and water and the combined organic layers were concentrated and purified by normal phase chromatography to give the title compound.
  • Example 688C lithium 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate
  • A solution of ethyl 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate (31 mg, 0.098 mmol) in 1 ml of 1:1 tetrahydrofuran/methanol was treated with 1M aqueous LiOH (0.11 ml, 0.11 mol) and stirred at 65° C. for 3 hours. The mixture was taken to dryness and used directly in the next step.
  • Example 688D N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(1-phenylpiperidin-4-yl)-1,3-thiazole-5-carboxamide
  • Lithium 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate (28.8 mg, 0.098 mmol), imidazo[1,2-a]pyridin-7-ylmethanamine (17.31 mg, 0.118 mmol), 4-methylmorpholine (49.6 mg, 0.490 mmol) and 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (55.9 mg, 0.147 mmol) were combined in a vial with dichloromethane (2.5 ml) and the reaction was stirred overnight. The mixture was partitioned between dichloromethane and saturated sodium bicarbonate. The organic layers were dried with sodium sulfate, filtered, and concentrated. Trituration of the crude material with dichloromethane provided the title compound. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.21 (t, J=5.9 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 8.34 (s, 1H), 7.91-7.88 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.43-7.38 (m, 1H), 7.26-7.16 (m, 2H), 7.01-6.93 (m, 2H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.81-6.72 (m, 1H), 4.48 (d, J=5.9 Hz, 2H), 3.81-3.73 (m, 2H), 3.24-3.01 (m, 1H), 2.90-2.78 (m, 2H), 2.19-2.09 (m, 2H), 1.90-1.73 (m, 2H); MS (ESI(+)) m/e 418 (M+H)+.
  • Example 697 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(pyridin-2-yl)piperidin-4-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 688, substituting 2-bromopyridine for bromobenzene in Example 688B. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.21 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.33 (s, 1H), 8.13-8.09 (m, 1H), 7.89 (s, 1H), 7.55-7.48 (m, 2H), 7.40 (s, 1H), 6.86 (d, J=8.7 Hz, 1H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.61 (dd, J=6.9, 5.1 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.40-4.32 (m, 2H), 3.03-2.92 (m, 2H), 2.14-2.05 (m, 2H), 1.68 (qd, J=12.5, 3.9 Hz, 2H); MS (ESI(+)) m/e 419 (M+H)+.
  • Example 698 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-fluorotetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=6.0 Hz, 1H), 8.49 (d, J=7.1 Hz, 1H), 8.11 (s, 1H), 7.89 (s, 1H), 7.85 (s, 1H), 7.75 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.26 (d, J=3.9 Hz, 1H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.42 (d, J=21.4 Hz, 2H), 3.74 (ddd, J=11.4, 4.6, 2.9 Hz, 2H), 3.51 (td, J=11.3, 2.0 Hz, 2H), 1.92-1.64 (m, 2H), 1.55 (t, J=11.8 Hz, 2H); MS (ESI(+)) m/e 440 (M+H)+.
  • Example 734 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide Example 734A 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-bromofuran-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 734B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-methyltetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and bromide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.89 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 8.13 (d, J=0.5 Hz, 1H), 7.91-7.86 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.17 (d, J=3.6 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.67 (d, J=3.5 Hz, 1H), 4.49 (d, J=6.0 Hz, 2H), 4.07 (s, 2H), 3.68 (dt, J=11.5, 4.5 Hz, 2H), 3.51 (ddd, J=11.9, 9.3, 3.0 Hz, 2H), 1.51 (ddd, J=13.4, 9.2, 4.2 Hz, 2H), 1.33-1.15 (m, 2H), 0.96 (s, 3H); MS (ESI(+)) m/e 420 (M+H)+.
  • Example 735 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide Example 735A tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)furan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline.
  • Example 735B tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl) furan-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)furan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 735C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)furan-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)furan-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 735D 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.85 (t, J=6.1 Hz, 1H), 8.47 (dd, J=7.0, 0.8 Hz, 1H), 7.92-7.83 (m, 1H), 7.55-7.45 (m, 2H), 7.41 (td, J=7.5, 1.5 Hz, 1H), 7.37 (s, 1H), 7.34-7.25 (m, 2H), 7.06 (d, J=3.4 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 6.33 (dd, J=3.5, 0.7 Hz, 1H), 4.53 (d, J=13.4 Hz, 1H), 4.44 (d, J=6.0 Hz, 2H), 3.44 (d, J=13.0 Hz, 1H), 3.19 (t, J=12.8 Hz, 1H), 3.11-2.90 (m, 2H), 2.09 (d, J=11.0 Hz, 1H), 1.94 (d, J=11.9 Hz, 1H), 1.73-1.42 (m, 2H); MS (ESI(+)) m/e 447 (M+H)+.
  • Example 736 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(piperidin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.84 (t, J=6.1 Hz, 1H), 8.47 (dd, J=7.0, 0.8 Hz, 1H), 7.94-7.82 (m, 1H), 7.51 (d, J=1.2 Hz, 1H), 7.42-7.33 (m, 1H), 7.05 (d, J=3.4 Hz, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 6.31 (dd, J=3.4, 0.6 Hz, 1H), 4.44 (d, J=6.0 Hz, 3H), 4.06-3.90 (m, 1H), 3.21-3.07 (m, 1H), 3.07-2.77 (m, 2H), 2.77-2.59 (m, 1H), 2.06-1.90 (m, 2H), 1.61-1.37 (m, 2H), 0.99 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 395 (M+H)+.
  • Example 738 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2,2,2-trifluoroethyl)-1H-pyrazol-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.21 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.33 (s, 1H), 8.13-8.09 (m, 1H), 7.89 (s, 1H), 7.55-7.48 (m, 2H), 7.40 (s, 1H), 6.86 (d, J=8.7 Hz, 1H), 6.83 (dd, J=7.0, 1.6 Hz, 1H), 6.61 (dd, J=6.9, 5.1 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.40-4.32 (m, 2H), 3.03-2.92 (m, 2H), 2.14-2.05 (m, 2H), 1.68 (qd, J=12.5, 3.9 Hz, 2H); MS (ESI(+)) m/e 390 (M+H)+.
  • Example 739 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}acetamide
  • The title compound was prepared as described in Example 1A, substituting N-(4-aminophenyl)-2-cyclopentylacetamide for 3-methylbutan-1-amine and 2-(imidazo[1,2-a]pyridin-7-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 8.75 (dd, J=6.9, 1.0 Hz, 1H), 8.21-8.16 (m, 1H), 8.01 (d, J=2.1 Hz, 1H), 7.89 (s, 1H), 7.55-7.45 (m, 5H), 3.99 (s, 2H), 2.39-2.24 (m, 3H), 1.91-1.76 (m, 2H), 1.78-1.46 (m, 4H), 1.39-1.15 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 740 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.88 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 8.15 (s, 1H), 7.90-7.86 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.17 (d, J=3.5 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.65 (d, J=3.5 Hz, 1H), 4.49 (d, J=6.1 Hz, 2H), 3.95 (d, J=7.2 Hz, 2H), 2.21-2.05 (m, 1H), 0.85 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 364 (M+H)+.
  • Example 741 5-(1-benzyl-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-benzyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.92 (t, J=6.1 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.27 (d, J=0.7 Hz, 1H), 7.93 (d, J=0.7 Hz, 1H), 7.89 (t, J=0.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.41-7.23 (m, 6H), 7.17 (d, J=3.5 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.68 (d, J=3.5 Hz, 1H), 5.39 (s, 2H), 4.49 (d, J=6.1 Hz, 2H); MS (ESI(+)) m/e 398 (M+H)+.
  • Example 742 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting (S)-1-((tetrahydrofuran-2-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.94 (t, J=6.1 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.15 (s, 1H), 7.89 (s, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.17 (d, J=3.5 Hz, 1H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 6.68 (d, J=3.5 Hz, 1H), 4.49 (d, J=6.1 Hz, 2H), 4.28-4.09 (m, 3H), 3.78-3.69 (m, 1H), 3.68-3.55 (m, 1H), 2.01-1.88 (m, 1H), 1.85-1.66 (m, 2H), 1.66-1.54 (m, 1H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 743 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2R)-tetrahydrofuran-2-ylmethyl]-1H-pyrazol-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting (R)-1-((tetrahydrofuran-2-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.94 (t, J=6.1 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.15 (s, 1H), 7.89 (s, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.17 (d, J=3.5 Hz, 1H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 6.68 (d, J=3.5 Hz, 1H), 4.49 (d, J=6.1 Hz, 2H), 4.28-4.07 (m, 3H), 3.78-3.69 (m, 1H), 3.68-3.59 (m, 1H), 2.01-1.88 (m, 1H), 1.85-1.66 (m, 2H), 1.66-1.54 (m, 1H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 744 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide Example 744A tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)furan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline.
  • Example 744B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)furan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 744C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (t, J=5.3 Hz, 1H), 8.49 (dd, J=7.0, 0.7 Hz, 1H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.13 (d, J=3.5 Hz, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.58 (d, J=3.0 Hz, 1H), 6.53 (s, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.25 (s, 1H), 4.13 (s, 1H), 3.66 (dd, J=12.2, 6.1 Hz, 2H), 3.01-2.82 (m, 1H), 2.47 (bs, 1H), 2.36 (bs, 1H), 1.09-0.86 (m, 6H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 745 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (dd, J=8.8, 5.7 Hz, 1H), 8.49 (dd, J=7.0, 0.5 Hz, 1H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.13 (dd, J=3.4, 2.1 Hz, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.58 (dd, J=6.2, 3.5 Hz, 1H), 6.52 (d, J=15.2 Hz, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.17 (dd, J=21.3, 2.5 Hz, 2H), 3.74-3.53 (m, 2H), 2.45 (bs, 1H), 2.37 (bs, 1H), 2.27 (d, J=7.0 Hz, 1H), 2.22 (d, J=6.9 Hz, 1H), 2.06-1.94 (m, 1H), 0.91 (dd, J=6.5, 5.3 Hz, 6H); MS (ESI(+)) m/e 407 (M+H)+.
  • Example 746 5-(1-benzoyl-1,2,3,6-tetrahydropyridin-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.62 (t, J=5.4 Hz, 1H), 8.44-8.39 (m, 1H), 7.81 (s, 1H), 7.51-7.35 (m, 7H), 7.08 (d, J=3.5 Hz, 1H), 6.82 (dd, J=7.0, 1.6 Hz, 1H), 6.53 (d, J=3.5 Hz, 1H), 6.50-6.43 (m, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.20 (d, J=2.1 Hz, 2H), 3.64 (t, J=5.3 Hz, 2H), 2.52-2.46 (m, 2H); MS (ESI(+)) m/e 427 (M+H)+.
  • Example 747 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[4-(2-methylpropyl)phenyl]furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 4-isobutylphenylboronic acid for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.08 (t, J=6.1 Hz, 1H), 8.49 (dd, J=6.9, 0.8 Hz, 1H), 7.92-7.87 (m, 1H), 7.87-7.79 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.45-7.38 (m, 1H), 7.25 (d, J=8.3 Hz, 2H), 7.21 (d, J=3.6 Hz, 1H), 7.04 (d, J=3.6 Hz, 1H), 6.87 (dd, J=7.0, 1.7 Hz, 1H), 4.51 (d, J=6.0 Hz, 2H), 2.49-2.46 (m, 2H), 1.86 (dp, J=13.4, 6.8 Hz, 1H), 0.87 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 374 (M+H)+.
  • Example 748 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2S)-2-methylbutanoyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and (2S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (t, J=5.0 Hz, 1H), 8.49 (dd, J=7.0, 0.6 Hz, 1H), 7.89 (s, 1H), 7.52 (d, J=1.1 Hz, 1H), 7.39 (s, 1H), 7.13 (d, J=3.5 Hz, 1H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 6.61-6.56 (m, 1H), 6.53 (d, J=9.8 Hz, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.35-4.07 (m, 2H), 3.75-3.58 (m, 2H), 2.90-2.62 (m, 1H), 2.48-2.30 (m, 2H), 1.57 (dt, J=24.3, 8.8 Hz, 1H), 1.32 (dt, J=13.1, 6.8 Hz, 1H), 0.99 (dd, J=9.6, 6.8 Hz, 3H), 0.81 (q, J=7.1 Hz, 3H); MS (ESI(+)) m/e 407 (M+H)+.
  • Example 749 5-[1-(3,3-dimethylbutanoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and 3,3-dimethylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.00 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.7 Hz, 1H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.13 (t, J=3.4 Hz, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.57 (dd, J=6.1, 3.6 Hz, 1H), 6.51 (d, J=23.1 Hz, 1H), 4.47 (d, J=6.0 Hz, 2H), 4.19 (dd, J=31.4, 2.4 Hz, 2H), 3.73-3.62 (m, 2H), 2.41 (d, J=31.8 Hz, 2H), 2.28 (d, J=17.4 Hz, 2H), 0.99 (d, J=7.2 Hz, 9H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 750 5-[1-(cyclopropylacetyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and cyclopropylacetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05-8.93 (m, 1H), 8.49 (dd, J=7.0, 0.8 Hz, 1H), 7.90-7.87 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (bs, 1H), 7.13 (d, J=3.5 Hz, 1H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 6.58 (dd, J=6.9, 3.5 Hz, 1H), 6.55-6.48 (m, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.15 (d, J=8.4 Hz, 2H), 3.63 (dt, J=18.3, 5.7 Hz, 2H), 2.48-2.35 (m, 2H), 2.35-2.27 (m, 2H), 1.03-0.91 (m, 1H), 0.49-0.41 (m, 2H), 0.12 (dq, J=10.2, 5.0 Hz, 2H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 751 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{1-[(2-methylpropyl)sulfonyl]pyrrolidin-3-yl}-1,3-thiazole-5-carboxamide Example 751A tert-butyl 3-(5-formylthiazol-2-yl)pyrrolidine-1-carboxylate
  • tert-Butyl 3-carbamothioylpyrrolidine-1-carboxylate (5 g, 21.71 mmol), 2-chloromalonaldehyde (3.70 g, 34.7 mmol) and magnesium carbonate (1.830 g, 21.71 mmol) were combined in dioxane (100 ml). The mixture was heated to 60° C. for 3 hours, stirred overnight at room temperature and then filtered through a pad of diatomaceous earth, rinsing with dichloromethane. The filtrate was concentrated in vacuo and then purified by normal phase chromatography to provide the title compound.
  • Example 751B 2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)thiazole-5-carboxylic acid
  • tert-Butyl 3-(5-formylthiazol-2-yl)pyrrolidine-1-carboxylate (3.65 g, 12.93 mmol) was suspended in water (35 ml) and t-butanol (60 ml). Sodium dihydrogenphosphate (2.094 g, 17.45 mmol) was added, followed by 2-methylbut-2-ene (5.34 ml, 50.4 mmol). After 5 minutes, sodium chlorite (2.92 g, 32.3 mmol) was added in portions over about 5 minutes (mildly exothermic). The reaction was stirred for 1 hour at room temperature, then additional 2-methyl-2-butene (2 mL) was added. After stirring for 2 hours at room temperature, the reaction was concentrated and water (100 mL) was added. The mixture was adjusted to pH 2 by addition of 1N hydrochloric acid, then extracted dichloromethane. The organic extracts were dried over sodium sulfate, filtered and concentrated to provide the title compound.
  • Example 751C tert-butyl 3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiazol-2-yl)pyrrolidine-1-carboxylate
  • The title compound was prepared as described in Example 688D, substituting 2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)thiazole-5-carboxylic acid for lithium 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate.
  • Example 751D N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 3-(5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiazol-2-yl)pyrrolidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 751E N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-{1-[(2-methylpropyl)sulfonyl]pyrrolidin-3-yl}-1,3-thiazole-5-carboxamide
  • N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide, 2.7-trifluoroacetic acid (150 mg, 0.236 mmol) was dissolved in N,N-dimethylformamide (0.7 mL). Triethylamine (0.3 mL, 2.152 mmol) was added, followed by 2-methylpropane-1-sulfonyl chloride (74.0 mg, 0.472 mmol) and the reaction was stirred overnight at room temperature. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic extracts were dried with sodium sulfate, filtered, and concentrated and purified by normal phase chromatography to give the title compound. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.24 (t, J=5.9 Hz, 1H), 8.49 (d, J=7.0 Hz, 1H), 8.35 (s, 1H), 7.89 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.41 (s, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 3.91 (p, J=7.2 Hz, 1H), 3.74 (dd, J=9.8, 7.3 Hz, 1H), 3.51-3.35 (m, 3H), 2.99 (d, J=6.6 Hz, 2H), 2.46-2.33 (m, 1H), 2.24-2.03 (m, 2H), 1.03 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 448 (M+H)+.
  • Example 752 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(phenylsulfonyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 682, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.20 (t, J=5.9 Hz, 1H), 8.50 (dd, J=7.0, 0.9 Hz, 1H), 8.21 (s, 1H), 7.89 (t, J=0.9 Hz, 1H), 7.84-7.77 (m, 2H), 7.74-7.65 (m, 1H), 7.65-7.57 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (bs, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.47 (d, J=5.9 Hz, 2H), 3.80-3.59 (m, 2H), 3.44-3.31 (m, 3H), 2.32-2.17 (m, 1H), 2.06-1.93 (m, 1H); MS (ESI(+)) m/e 468 (M+H)+.
  • Example 753 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(2-methylpropyl)sulfonyl]-1,2,3,6-tetrahydropyridin-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 682, substituting 2-methylpropane sulfonyl chloride for benzenesulfonyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04-8.96 (m, 1H), 8.48 (dd, J=6.9, 0.9 Hz, 1H), 7.89-7.87 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.13 (d, J=3.5 Hz, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.62-6.57 (m, 1H), 6.56-6.51 (m, 1H), 4.47 (d, J=6.1 Hz, 2H), 3.97-3.91 (m, 2H), 3.40 (t, J=5.7 Hz, 2H), 2.97 (d, J=6.5 Hz, 2H), 2.54-2.48 (m, 2H), 2.19-2.05 (m, 1H), 1.07-1.01 (m, 6H); MS (ESI(+)) m/e 443 (M+H)+.
  • Example 754 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.10-9.01 (m, 2H), 8.53 (d, J=1.3 Hz, 1H), 8.18-8.16 (m, 1H), 8.14 (d, J=0.5 Hz, 1H), 7.83-7.79 (m, 2H), 7.76 (d, J=3.9 Hz, 1H), 7.22 (d, J=3.9 Hz, 1H), 4.54 (d, J=5.7 Hz, 2H), 3.92 (d, J=7.2 Hz, 2H), 2.13 (dp, J=13.6, 6.7 Hz, 1H), 0.85 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 381 (M+H)+.
  • Example 755 tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidine-1-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-methyl-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)piperidine-1-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (t, J=6.0 Hz, 1H), 8.49 (dd, J=7.0, 0.8 Hz, 1H), 8.13 (s, 1H), 7.91-7.86 (m, 1H), 7.81 (d, J=0.4 Hz, 1H), 7.74 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.23 (d, J=3.8 Hz, 1H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=5.8 Hz, 2H), 4.02 (s, 2H), 3.65-3.50 (m, 2H), 3.19-3.02 (m, 2H), 1.47-1.34 (m, 11H), 1.30-1.15 (m, 2H), 0.93 (s, 3H); MS (ESI(+)) m/e 535 (M+H)+.
  • Example 789 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate. 1H NMR (500 MHz, DMSO-d6) δ ppm 14.80 (s, 1H), 9.65 (t, J=6.0 Hz, 1H), 9.20 (s, 1H), 8.99 (s, 1H), 8.91 (d, J=7.0 Hz, 1H), 8.36 (d, J=2.0 Hz, 1H), 8.21 (s, 1H), 8.17 (d, J=2.1 Hz, 1H), 7.96 (d, J=3.9 Hz, 1H), 7.86 (s, 1H), 7.84 (s, 1H), 7.51 (dd, J=7.0, 1.4 Hz, 1H), 7.28 (d, J=3.8 Hz, 1H), 4.64 (d, J=5.8 Hz, 2H), 4.10 (s, 2H), 3.19-3.12 (m, 2H), 3.04-2.96 (m, 2H), 1.74-1.59 (m, 2H), 1.57-1.46 (m, 2H), 0.96 (s, 3H); MS (ESI(+)) m/e 435 (M+H)+.
  • Example 790 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-fluorotetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 8.97 (t, J=6.1 Hz, 1H), 8.50 (dd, J=13.4, 3.5 Hz, 1H), 8.16 (s, 1H), 7.94 (s, 1H), 7.92 (s, 1H), 7.56 (d, J=1.1 Hz, 1H), 7.43 (s, 1H), 7.18 (d, J=3.5 Hz, 1H), 6.89 (dd, J=7.0, 1.5 Hz, 1H), 6.71 (d, J=6.4 Hz, 1H), 4.51 (d, J=6.1 Hz, 2H), 4.46 (d, J=21.9 Hz, 2H), 3.81-3.70 (m, 2H), 3.56-3.45 (m, 2H), 1.89-1.68 (m, 2H), 1.53 (t, J=11.7 Hz, 2H); MS (ESI(+)) m/e 424 (M+H)+.
  • Example 801 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(phenylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 682, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.97 (t, J=6.1 Hz, 1H), 8.47 (d, J=6.5 Hz, 1H), 7.88 (s, 1H), 7.85-7.78 (m, 2H), 7.75-7.68 (m, 1H), 7.69-7.60 (m, 2H), 7.51 (d, J=1.2 Hz, 1H), 7.37 (s, 1H), 7.10 (d, J=3.5 Hz, 1H), 6.82 (dd, J=7.0, 1.7 Hz, 1H), 6.54 (d, J=3.5 Hz, 1H), 6.46-6.43 (m, 1H), 4.46 (d, J=6.1 Hz, 2H), 3.79-3.74 (m, 2H), 3.28-3.21 (m, 2H), 2.45 (s, 2H); MS (ESI(+)) m/e 463 (M+H)+.
  • Example 802 2-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(piperidin-4-yl)thiazole-5-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.23 (t, J=5.9 Hz, 1H), 8.49 (d, J=6.9 Hz, 1H), 8.34 (s, 1H), 7.89 (s, 1H), 7.56-7.36 (m, 4H), 7.35-7.25 (m, 2H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 4.61-4.52 (m, 1H), 4.48 (d, J=5.9 Hz, 2H), 3.51-3.39 (m, 1H), 3.42-3.34 (m, 1H), 3.23 (t, J=12.1 Hz, 1H), 3.01 (td, J=12.7, 2.9 Hz, 1H), 2.21-2.13 (m, 1H), 2.08-1.97 (m, 1H), 1.77-1.54 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 803 5-[1-(2-fluorobenzoyl)-1,2,3,6-tetrahydropyridin-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)furan-2-carboxamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.66-8.58 (m, 1H), 8.45-8.39 (m, 1H), 7.81 (s, 1H), 7.54-7.44 (m, 2H), 7.43-7.36 (m, 2H), 7.31-7.21 (m, 2H), 7.08 (d, J=3.5 Hz, 1H), 6.82 (dd, J=6.9, 1.7 Hz, 1H), 6.53 (d, J=3.4 Hz, 1H), 6.48 (bs, 1H), 4.47 (d, J=6.1 Hz, 2H), 4.41-3.34 (m, 4H), 2.52-2.37 (m, 2H); MS (ESI(+)) m/e 445 (M+H)+.
  • Example 804 2-[1-(2-fluorobenzoyl)pyrrolidin-3-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.95-8.88 (m, 1H), 8.43 (d, J=7.0 Hz, 1H), 8.32-8.17 (m, 1H), 7.82 (s, 1H), 7.53-7.35 (m, 4H), 7.30-7.19 (m, 2H), 6.85-6.78 (m, 1H), 4.50-4.44 (m, 2H), 4.05-3.23 (m, 5H), 2.45-2.11 (m, 2H); MS (ESI(+)) m/e 450 (M+H)+.
  • Example 805 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(2-methylpropanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.28-9.19 (m, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 8.34 (d, J=2.4 Hz, 1H), 7.91-7.87 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.41 (s, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.11-3.33 (m, 5H), 3.17 (d, J=5.2 Hz, 1H), 2.74-2.59 (m, 1H), 2.46-2.00 (m, 6H), 1.03-0.97 (m, 1H); MS (ESI(+)) m/e 398 (M+H)+.
  • Example 806 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-[1-(3-methylbutanoyl)pyrrolidin-3-yl]-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.28-9.19 (m, 1H), 8.49 (d, J=7.0 Hz, 1H), 8.34 (d, J=2.4 Hz, 1H), 7.91-7.87 (m, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.43-7.38 (m, 1H), 6.83 (dd, J=7.0, 1.7 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 3.97-3.72 (m, 2H), 3.70-3.46 (m, 2H), 3.17 (d, J=5.1 Hz, 1H), 2.45-1.91 (m, 5H), 0.94-0.86 (m, 6H); MS (ESI(+)) m/e 412 (M+H)+.
  • Example 807 2-(1-benzoylpyrrolidin-3-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)-1,3-thiazole-5-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyridin-7-ylmethyl)-2-(pyrrolidin-3-yl)thiazole-5-carboxamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.94-8.87 (m, 1H), 8.43 (d, J=6.9 Hz, 1H), 8.27 (s, 1H), 8.23-8.16 (m, 1H), 7.82 (s, 1H), 7.52-7.38 (m, 6H), 6.81 (dd, J=6.9, 1.7 Hz, 1H), 4.47 (d, J=5.8 Hz, 2H), 3.94-3.84 (m, 2H), 3.76-3.53 (m, 3H), 2.44-2.34 (m, 1H), 2.24-2.14 (m, 1H); MS (ESI(+)) m/e 432 (M+H)+.
  • Example 808 tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate Example 808A tert-butyl 4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate
  • 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.500 g, 2.58 mmol), tert-butyl 4-(2-hydroxyethyl)piperazine-1-carboxylate (0.593 g, 2.58 mmol) and 2-(tributylphosphoranylidene)acetonitrile (0.746 g, 3.09 mmol) were stirred together in toluene (10 ml) at 85° C. overnight. The reaction was concentrated and purified by normal phase chromatography to give the title compound.
  • Example 808B tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.02 (t, J=6.0 Hz, 1H), 8.53-8.45 (m, 1H), 8.16 (s, 1H), 7.89 (d, J=0.7 Hz, 1H), 7.79 (d, J=0.5 Hz, 1H), 7.74 (d, J=3.8 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.22 (d, J=3.9 Hz, 1H), 6.84 (dd, J=7.0, 1.6 Hz, 1H), 4.48 (d, J=5.9 Hz, 2H), 4.23 (t, J=6.5 Hz, 2H), 3.29-3.25 (m, 2H), 2.74 (t, J=6.6 Hz, 2H), 2.42-2.33 (m, 4H), 1.38 (s, 9H); MS (ESI(+)) m/e 536 (M+H)+.
  • Example 809 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-[2-(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.34 (t, J=5.9 Hz, 1H), 8.94 (s, 2H), 8.87 (d, J=7.0 Hz, 1H), 8.33 (dd, J=2.1, 0.7 Hz, 1H), 8.22 (d, J=0.8 Hz, 1H), 8.15 (d, J=2.1 Hz, 1H), 7.87 (d, J=0.8 Hz, 1H), 7.82 (d, J=3.9 Hz, 1H), 7.79 (s, 1H), 7.47 (dd, J=7.0, 1.5 Hz, 1H), 7.27 (d, J=3.8 Hz, 1H), 4.65 (d, J=5.9 Hz, 2H), 4.43-4.34 (m, 2H), 3.22-3.16 (m, 6H), 2.98-2.89 (m, 4H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 810 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide Example 810A N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromofuran-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 5-bromofuran-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 810B 5-{1-[(4-fluorotetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-fluorotetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromofuran-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.93 (t, J=6.0 Hz, 1H), 8.90-8.85 (m, 1H), 8.48 (s, 1H), 8.13 (s, 1H), 7.92 (d, J=0.5 Hz, 1H), 7.84 (dd, J=9.2, 0.7 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.16 (d, J=3.6 Hz, 1H), 6.70 (d, J=3.5 Hz, 1H), 4.56 (d, J=6.0 Hz, 2H), 4.45 (d, J=21.8 Hz, 2H), 3.82-3.66 (m, 2H), 3.51 (td, J=11.2, 2.0 Hz, 2H), 1.92-1.63 (m, 2H), 1.60-1.42 (m, 2H); MS (ESI(+)) m/e 425 (M+H)+.
  • Example 811 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide Example 811A N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{4-[(imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 811B N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.24 (s, 1H), 8.72-8.68 (m, 1H), 8.27-8.23 (m, 1H), 8.11-8.07 (m, 1H), 7.88-7.82 (m, 2H), 7.41-7.35 (m, 2H), 4.76 (s, 2H), 4.75-4.66 (m, 1H), 4.24-4.15 (m, 1H), 3.29-3.18 (m, 1H), 3.06-2.85 (m, 2H), 2.78-2.64 (m, 1H), 2.02-1.84 (m, 2H), 1.74-1.52 (m, 2H), 1.17-1.07 (m, 6H); MS (ESI(+)) m/e 406 (M+H)+.
  • Example 812 4-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 4-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.29-9.25 (m, 1H), 8.72 (d, J=1.4 Hz, 1H), 8.27 (d, J=1.7 Hz, 1H), 8.12 (d, J=1.7 Hz, 1H), 7.89-7.83 (m, 2H), 7.55-7.45 (m, 2H), 7.44-7.38 (m, 2H), 7.25-7.16 (m, 2H), 4.87-4.84 (m, 1H), 4.77 (s, 2H), 3.90-3.79 (m, 1H), 3.33-3.19 (m, 1H), 3.03-2.89 (m, 2H), 2.07-1.61 (m, 4H); MS (ESI(+)) m/e 458 (M+H)+.
  • Example 813 4-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 2,5-difluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.23 (s, 1H), 8.69 (s, 1H), 8.24 (d, J=1.6 Hz, 1H), 8.07 (d, J=1.6 Hz, 1H), 7.89-7.83 (m, 2H), 7.43-7.36 (m, 2H), 7.31-7.15 (m, 3H), 4.84-4.73 (m, 3H), 3.71-3.62 (m, 1H), 3.36-3.24 (m, 1H), 3.04-2.90 (m, 2H), 2.04-1.95 (m, 1H), 1.92-1.61 (m, 3H); MS (ESI(+)) m/e 476 (M+H)+.
  • Example 814 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 1-methylcyclopropanecarboxylic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.28 (s, 1H), 8.73 (s, 1H), 8.28 (d, J=1.7 Hz, 1H), 8.13 (d, J=1.7 Hz, 1H), 7.89-7.83 (m, 2H), 7.42-7.36 (m, 2H), 4.78 (s, 2H), 4.62-4.53 (m, 2H), 3.20-2.70 (m, 3H), 1.97-1.89 (m, 2H), 1.72-1.57 (m, 2H), 1.33 (s, 3H), 0.96-0.89 (m, 2H), 0.71-0.58 (m, 2H); MS (ESI(+)) m/e 418 (M+H)+.
  • Example 815 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 3,3,3-trifluoropropanoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 9.22 (d, J=1.4 Hz, 1H), 8.68 (d, J=1.4 Hz, 1H), 8.23 (d, J=1.9 Hz, 1H), 8.06 (d, J=1.6 Hz, 1H), 7.89-7.82 (m, 2H), 7.42-7.34 (m, 2H), 4.81-4.65 (m, 3H), 4.11-3.99 (m, 1H), 3.62-3.44 (m, 2H), 3.37-3.21 (m, 1H), 3.01-2.86 (m, 1H), 2.85-2.71 (m, 1H), 1.99-1.85 (m, 2H), 1.85-1.54 (m, 2H); MS (ESI(+)) m/e 446 (M+H)+.
  • Example 816 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3-methylbutanoyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (500 MHz, methanol-d4) δ ppm 99.24 (d, J=1.4 Hz, 1H), 8.70 (d, J=1.4 Hz, 1H), 8.25 (d, J=1.7 Hz, 1H), 8.09 (d, J=1.7 Hz, 1H), 7.89-7.82 (m, 2H), 7.41-7.34 (m, 2H), 4.79-4.66 (m, 3H), 4.19-4.07 (m, 1H), 3.30-3.16 (m, 1H), 3.00-2.85 (m, 1H), 2.80-2.63 (m, 1H), 2.36-2.29 (m, 2H), 2.17-2.00 (m, 1H), 2.01-1.84 (m, 2H), 1.75-1.50 (m, 2H), 0.99 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 420 (M+H)+.
  • Example 817 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(propan-2-ylsulfonyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 682, substituting propane-2-sulfonyl chloride for benzenesulfonyl chloride and N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (500 MHz, methanol-d4) δ ppm 9.21 (d, J=1.4 Hz, 1H), 8.67 (d, J=1.4 Hz, 1H), 8.22 (d, J=1.6 Hz, 1H), 8.05 (d, J=1.6 Hz, 1H), 7.89-7.82 (m, 2H), 7.40-7.35 (m, 2H), 4.85-4.79 (m, 1H), 4.75 (s, 2H), 3.96-3.85 (m, 2H), 3.12-3.00 (m, 2H), 2.88-2.74 (m, 1H), 1.95-1.85 (m, 2H), 1.84-1.65 (m, 2H), 1.33 (d, J=6.8 Hz, 6H); MS (ESI(+)) m/e 442 (M+H)+.
  • Example 818 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-isobutyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.7 Hz, 1H), 7.89 (s, 1H), 7.54-7.51 (m, 2H), 7.41 (s, 1H), 7.30 (d, J=3.6 Hz, 1H), 6.96 (d, J=3.6 Hz, 1H), 6.85 (dd, J=7.0, 1.6 Hz, 1H), 6.76 (d, J=1.9 Hz, 1H), 4.50 (d, J=6.0 Hz, 2H), 4.22 (d, J=7.3 Hz, 2H), 2.04 (dp, J=13.8, 6.8 Hz, 1H), 0.81 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 364 (M+H)+.
  • Example 819 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide Example 819A 5-(1-isobutyl-1H-pyrazol-4-yl)furan-2-carboxylic acid
  • The title compound was prepared as described in Example 51A, substituting 5-bromofuran-2-carboxylic acid for 4-bromoaniline.
  • Example 819B N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 5-(1-isobutyl-1H-pyrazol-4-yl)furan-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.05-9.02 (m, 1H), 8.90 (t, J=6.0 Hz, 1H), 8.52 (d, J=1.4 Hz, 1H), 8.19-8.14 (m, 2H), 7.90-7.88 (m, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.17 (d, J=3.5 Hz, 1H), 6.65 (d, J=3.5 Hz, 1H), 4.56 (d, J=5.9 Hz, 2H), 3.96 (d, J=7.1 Hz, 2H), 2.20-2.07 (m, 1H), 0.85 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 365 (M+H)+.
  • Example 820 5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 5-(1-isobutyl-1H-pyrazol-4-yl)furan-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.94-8.85 (m, 2H), 8.48 (s, 1H), 8.14 (s, 1H), 7.87 (s, 1H), 7.84 (d, J=9.1 Hz, 1H), 7.66 (dd, J=9.1, 1.7 Hz, 1H), 7.16 (d, J=3.5 Hz, 1H), 6.64 (d, J=3.5 Hz, 1H), 4.56 (d, J=6.0 Hz, 2H), 3.95 (d, J=7.1 Hz, 2H), 2.21-1.97 (m, 1H), 0.90-0.76 (m, 6H); MS (ESI(+)) m/e 365 (M+H)+.
  • Example 821 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(3-methylbutyl)-1H-pyrazol-5-yl]furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-isopentyl-1H-pyrazol-5-ylboronic acid for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.03 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.8 Hz, 1H), 7.89 (s, 1H), 7.58-7.43 (m, 2H), 7.43-7.37 (m, 1H), 7.30 (d, J=3.5 Hz, 1H), 6.95 (d, J=3.6 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.73 (d, J=1.9 Hz, 1H), 4.50 (d, J=6.0 Hz, 2H), 4.44-4.36 (m, 2H), 1.68-1.38 (m, 3H), 0.84 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 822 5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-methyltetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-bromofuran-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.95-8.83 (m, 2H), 8.48 (s, 1H), 8.15-8.09 (m, 1H), 7.88 (d, J=0.4 Hz, 1H), 7.83 (dd, J=9.2, 0.7 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.16 (d, J=3.5 Hz, 1H), 6.66 (d, J=3.5 Hz, 1H), 4.56 (d, J=6.0 Hz, 2H), 4.06 (s, 2H), 3.68 (dt, J=11.4, 4.5 Hz, 2H), 3.51 (ddd, J=11.9, 9.3, 2.9 Hz, 2H), 1.50 (ddd, J=13.4, 9.2, 4.2 Hz, 2H), 1.31-1.17 (m, 2H), 0.96 (s, 3H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 823 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide Example 823A Methyl 5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophene-2-carboxylate
  • The title compound was prepared as described in Example 688D, substituting 5-(methoxycarbonyl)thiophene-2-carboxylic acid for lithium 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate.
  • Example 823B Lithium 5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophene-2-carboxylate
  • The title compound was prepared as described in Example 688C, substituting methyl 5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophene-2-carboxylate for ethyl 2-(1-phenylpiperidin-4-yl)thiazole-5-carboxylate.
  • Example 823C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting), (R)-2-(methoxymethyl)pyrrolidine for 3-methylbutan-1-amine and lithium 5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophene-2-carboxylate for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.23 (t, J=6.0 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.88 (m, 1H), 7.79 (d, J=4.0 Hz, 1H), 7.60 (d, J=4.0 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.42-7.39 (m, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.35-4.23 (m, 1H), 3.78-3.65 (m, 2H), 3.26 (s, 3H), 2.02-1.81 (m, 4H); MS (ESI(+)) m/e 399 (M+H)+.
  • Example 824 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting), 2-isobutylpyrrolidine for 3-methylbutan-1-amine and lithium 5-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)thiophene-2-carboxylate for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.23 (t, J=6.0 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.90-7.88 (m, 1H), 7.79 (d, J=4.0 Hz, 1H), 7.60 (d, J=4.0 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.42-7.39 (m, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 4.49 (d, J=5.9 Hz, 2H), 4.35-4.23 (m, 1H), 3.78-3.65 (m, 2H), 3.26 (s, 3H), 2.02-1.81 (m, 4H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 825 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-neopentyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.89 (t, J=6.1 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 8.11 (d, J=0.5 Hz, 1H), 7.95-7.83 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.46-7.34 (m, 1H), 7.17 (d, J=3.4 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.66 (d, J=3.5 Hz, 1H), 4.49 (d, J=6.0 Hz, 2H), 3.95 (s, 2H), 0.92 (s, 9H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 826 4-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.08-9.00 (m, 2H), 8.49 (d, J=1.4 Hz, 1H), 8.16-8.13 (m, 1H), 7.92-7.85 (m, 2H), 7.79 (d, J=1.0 Hz, 1H), 7.57-7.23 (m, 6H), 4.74-4.61 (m, 1H), 4.57 (d, J=5.7 Hz, 2H), 3.54-3.43 (m, 1H), 3.24-3.14 (m, 1H), 3.00-2.79 (m, 2H), 1.97-1.84 (m, 1H), 1.82-1.47 (m, 3H); MS (ESI(+)) m/e 458 (M+H)+.
  • Example 827 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide Example 827A tert-butyl 4-(5-(ethoxycarbonyl)thiophen-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and ethyl 5-bromothiophene-2-carboxylate for 4-bromoaniline.
  • Example 827B tert-butyl 4-(5-(ethoxycarbonyl)thiophen-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(5-(ethoxycarbonyl)thiophen-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 827C 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)thiophene-2-carboxylic acid
  • In a 250 mL round bottom flask was mixed tert-butyl 4-(5-(ethoxycarbonyl)thiophen-2-yl)piperidine-1-carboxylate (5.00 g, 14.73 mmol) in tetrahydrofuran (50 ml). Aqueous 4N NaOH (38.41 ml, 73.6 mmol) solution was added along with some methanol (10 ml) to get a single phase solution. The mixture was stirred overnight at room temperature. The solvents were removed to give a white slurry that was diluted with water and adjusted to pH of 5 with 1N aqueous hydrochloric acid. Filtration provided the title compound.
  • Example 827D tert-butyl 4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)thiophen-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 827E N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)thiophen-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 827F 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05 (m, 2H), 8.50 (d, J=1.5 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.7 Hz, 1H), 7.50 (m, 1H), 7.43 (m, 1H), 7.31 (m, 2H), 6.98 (d, J=3.8 Hz, 1H), 4.60 (m, 1H), 4.52 (d, J=5.8 Hz, 2H), 3.45 (m, 1H), 3.18 (m, 2H), 2.93 (m, 1H), 2.12-1.85 (m, 2H), 1.52 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 828 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 4-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05 (m, 2H), 8.51 (d, J=1.4 Hz, 1H), 8.16 (t, J=0.8 Hz, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.70 (d, J=3.8 Hz, 1H), 7.49 (m, 2H), 7.28 (m, 2H), 6.99 (dd, J=3.7, 0.8 Hz, 1H), 4.54 (m, 1H), 4.52 (d, J=5.8 Hz, 2H), 3.65 (m, 1H), 3.15 (m, 2H), 2.93 (m, 1H), 1.97 (m, 2H), 1.59 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 829 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2,4-difluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 7.52 (m, 1H), 7.37 (td, J=9.7, 2.4 Hz, 1H), 7.19 (td, J=8.5, 2.5 Hz, 1H), 6.98 (d, J=3.8 Hz, 1H), 4.58 (m, 1H), 4.52 (d, J=5.8 Hz, 2H), 3.43 (m, 1H), 3.17 (m, 2H), 2.92 (m, 1H), 2.00 (m, 2H), 1.52 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 830 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2,5-difluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.04 (m, 2H), 8.51 (d, J=1.5 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.1 Hz, 1H), 7.70 (d, J=3.8 Hz, 1H), 7.56 (m, 1H), 7.36 (m, 2H), 6.98 (d, J=3.8 Hz, 1H), 4.57 (m, 1H), 4.52 (d, J=5.8 Hz, 2H), 3.46 (m, 1H), 3.17 (m, 2H), 2.93 (m, 1H), 2.02 (m, 2H), 1.55 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 831 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide Example 831A tert-butyl 4-(5-(([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)carbamoyl)thiophen-2-yl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 831B N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(5-(([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)carbamoyl)thiophen-2-yl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 831C 5-[1-(2-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.50 (m, 1H), 7.42 (m, 1H), 7.31 (m, 2H), 6.97 (dd, J=3.7, 0.8 Hz, 1H), 4.60 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.45 (m, 1H), 3.17 (m, 2H), 2.93 (m, 1H), 2.07 (m, 1H), 1.93 (m, 1H), 1.54 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 832 5-[1-(3-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 3-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.66 (m, 2H), 7.50 (m, 1H), 7.34-7.22 (m, 3H), 6.98 (d, J=3.8 Hz, 1H), 4.55 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.56 (m, 1H), 3.13 (m, 2H), 2.91 (m, 1H), 1.97 (m, 2H), 1.60 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 833 5-[1-(4-fluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 4-fluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.47 (m, 2H), 7.27 (m, 2H), 6.98 (dd, J=3.7, 0.8 Hz, 1H), 4.55 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.62 (m, 1H), 3.14 (m, 2H), 2.91 (m, 1H), 1.97 (m, 2H), 1.58 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 834 5-[1-(2,4-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2,4-difluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (m, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.52 (m, 1H), 7.36 (td, J=9.7, 2.4 Hz, 1H), 7.19 (m, 1H), 6.97 (dd, J=3.8, 0.8 Hz, 1H), 4.57 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.46 (m, 1H), 3.18 (m, 2H), 2.92 (m, 1H), 2.07 (m, 1H), 1.93 (m, 1H), 1.52 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 835 5-[1-(2,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 2,5-difluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.37 (m, 3H), 6.97 (dd, J=3.7, 0.8 Hz, 1H), 4.57 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.46 (m, 1H), 3.19 (m, 2H), 2.93 (m, 1H), 2.13 (m, 1H), 1.92 (m, 1H), 1.54 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 836 5-[1-(3,5-difluorobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 52A, substituting 3,5-difluorobenzoyl chloride for 2-cyclopentylacetyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for methyl 4-aminobenzoate. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.34 (tt, J=9.4, 2.4 Hz, 1H), 7.19 (m, 2H), 6.98 (dd, J=3.8, 0.8 Hz, 1H), 4.55 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.55 (m, 1H), 3.15 (m, 2H), 2.90 (m, 1H), 2.03 (m, 1H), 1.90 (m, 1H), 1.61 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 837 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(2-methylpropanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (m, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.49 (m, 1H), 4.02 (m, 1H), 3.13 (m, 2H), 2.90 (m, 1H), 2.64 (m, 1H), 1.99 (m, 2H), 1.43 (m, 2H), 1.00 (m, 6H); MS (ESI(+)) m/e 412 (M+H)+.
  • Example 838 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(3-methylbutanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.49 (m, 1H), 3.96 (m, 1H), 3.10 (m, 2H), 2.64 (m, 1H), 2.21 (d, J=7.0 Hz, 2H), 1.99 (m, 3H), 1.43 (m, 2H), 0.90 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 426 (M+H)+.
  • Example 839 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (1-methylcyclopropyl)carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (d, J=0.9 Hz, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 6.97 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.33 (m, 2H), 3.11 (m, 1H), 2.93 (m, 2H), 1.99 (m, 2H), 1.47 (m, 2H), 1.23 (s, 3H), 0.80 (m, 2H), 0.54 (m, 2H); MS (ESI(+)) m/e 424 (M+H)+.
  • Example 840 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 4,4,4-trifluorobutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.47 (m, 1H), 3.94 (m, 1H), 3.13 (m, 2H), 2.66 (m, 3H), 2.50 (m, 2H), 1.97 (m, 2H), 1.57 (m, 1H), 1.41 (m, 1H); MS (ESI(+)) m/e 466 (M+H)+.
  • Example 841 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and tetrahydro-2H-pyran-4-ylcarboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (m, 2H), 8.50 (d, J=1.4 Hz, 1H), 8.16 (s, 1H), 7.80 (d, J=1.0 Hz, 1H), 7.69 (d, J=3.8 Hz, 1H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.47 (m, 1H), 4.07 (m, 1H), 3.84 (m, 2H), 3.40 (m, 2H), 3.13 (m, 2H), 2.89 (m, 1H), 2.64 (m, 1H), 1.98 (m, 2H), 1.77-1.30 (m, 6H); MS (ESI(+)) m/e 454 (M+H)+.
  • Example 842 5-[1-(2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.86 (s, 1H), 8.47 (s, 1H), 7.83 (d, J=9.1 Hz, 1H), 7.64 (m, 2H), 6.96 (d, J=3.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.47 (m, 1H), 4.02 (m, 1H), 3.12 (m, 2H), 2.88 (m, 1H), 2.63 (m, 1H), 1.99 (m, 2H), 1.43 (m, 2H), 1.00 (m, 6H); MS (ESI(+)) m/e 412 (M+H)+.
  • Example 843 5-[1-(3-methylbutanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.47 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.95 (dd, J=3.7, 0.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.48 (m, 1H), 3.96 (m, 1H), 3.10 (m, 2H), 2.63 (m, 1H), 2.21 (m, 2H), 1.98 (m, 3H), 1.43 (m, 2H), 0.90 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 426 (M+H)+.
  • Example 844 5-{1-[(2S)-2-methylbutanoyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (2S)-2-methylbutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.47 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.95 (d, J=3.8 Hz, 1H), 4.52 (d, J=5.8 Hz, 2H), 4.49 (m, 1H), 4.05 (m, 1H), 3.13 (m, 2H), 2.69 (m, 2H), 1.99 (m, 2H), 1.61-1.18 (m, 4H), 0.98 (m, 3H), 0.82 (m, 3H); MS (ESI(+)) m/e 426 (M+H)+.
  • Example 845 5-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (1-methylcyclopropyl)carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.47 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.96 (dd, J=3.7, 0.9 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.33 (m, 2H), 3.10 (m, 1H), 2.92 (m, 2H), 1.98 (m, 2H), 1.47 (m, 2H), 1.23 (s, 3H), 0.80 (m, 2H), 0.53 (m, 2H); MS (ESI(+)) m/e 424 (M+H)+.
  • Example 846 N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 3,3,3-trifluoropropanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.9 Hz, 1H), 8.86 (m, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.65 (m, 2H), 6.95 (dd, J=3.7, 0.9 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.45 (m, 1H), 3.90 (m, 1H), 3.66 (m, 2H), 3.13 (m, 2H), 2.70 (m, 1H), 1.97 (m, 2H), 1.57 (m, 1H), 1.42 (m, 1H); MS (ESI(+)) m/e 452 (M+H)+.
  • Example 847 N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-[1-(4,4,4-trifluorobutanoyl)piperidin-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 4,4,4-trifluorobutanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.8 Hz, 1H), 8.86 (m, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.95 (dd, J=3.7, 0.8 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.47 (m, 1H), 3.94 (m, 1H), 3.12 (m, 2H), 2.65 (m, 3H), 2.50 (m, 2H), 1.96 (m, 2H), 1.57 (m, 1H), 1.41 (m, 1H); MS (ESI(+)) m/e 466 (M+H)+.
  • Example 848 5-{1-[(4,4-difluorocyclohexyl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (4,4-difluorocyclohexyl)carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.8 Hz, 1H), 8.86 (m, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.48 (m, 1H), 4.06 (m, 1H), 3.13 (m, 2H), 2.82 (m, 1H), 2.65 (m, 1H), 2.10-1.80 (m, 6H), 1.80-1.30 (m, 6H); MS (ESI(+)) m/e 488 (M+H)+.
  • Example 849 5-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazlo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and tetrahydro-2H-pyran-4-ylcarboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.86 (m, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.95 (dd, J=3.7, 0.8 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.48 (m, 1H), 4.06 (m, 1H), 3.84 (m, 2H), 3.38 (m, 2H), 3.12 (m, 2H), 2.89 (m, 1H), 2.64 (m, 1H), 1.98 (m, 2H), 1.65-1.30 (m, 6H); MS (ESI(+)) m/e 454 (M+H)+.
  • Example 850 5-[1-(2-hydroxy-2-methylpropanoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 2-hydroxy-2-methylpropanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.8 Hz, 1H), 8.86 (m, 1H), 8.47 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.95 (dd, J=3.7, 0.8 Hz, 1H), 5.39 (s, 1H), 5.00-4.30 (m, 2H), 4.53 (d, J=5.8 Hz, 2H), 3.10 (m, 1H), 3.10-2.60 (m, 2H), 1.96 (m, 2H), 1.50 (m, 2H), 1.32 (s, 6H); MS (ESI(+)) m/e 428 (M+H)+.
  • Example 851 5-{1-[(1-methylpiperidin-4-yl)carbonyl]piperidin-4-yl}-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and (1-methylpiperidin-4-yl)carboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.8 Hz, 1H), 8.85 (s, 1H), 8.47 (s, 1H), 7.83 (d, J=9.1 Hz, 1H), 7.64 (m, 2H), 6.95 (d, J=3.8 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 4.48 (m, 1H), 4.00 (m, 1H), 3.04 (m, 4H), 2.80-2.57 (m, 4H), 2.13 (s, 3H), 2.07-1.80 (m, 4H), 1.81-0.93 (m, 4H); MS (ESI(+)) m/e 467 (M+H)+.
  • Example 852 5-[1-(2-cyanobenzoyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and 2-cyanobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.02 (t, J=5.8 Hz, 1H), 8.86 (m, 1H), 8.47 (s, 1H), 7.95 (m, 1H), 7.82 (m, 2H), 7.70-7.57 (m, 4H), 6.96 (dd, J=3.7, 0.8 Hz, 1H), 4.61 (m, 1H), 4.52 (d, J=5.8 Hz, 2H), 3.35 (m, 1H), 3.14 (m, 2H), 2.97 (m, 1H), 2.09 (m, 1H), 1.89 (m, 1H), 1.60 (m, 2H); MS (ESI(+)) m/e 471 (M+H)+.
  • Example 853 5-[1-(pyridin-2-ylcarbonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for 3-methylbutan-1-amine and pyridin-2-ylcarboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.8 Hz, 1H), 8.86 (m, 1H), 8.59 (m, 1H), 8.48 (s, 1H), 7.92 (td, J=7.7, 1.7 Hz, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 7.57 (dt, J=7.7, 1.1 Hz, 1H), 7.47 (m, 1H), 6.97 (dd, J=3.7, 0.8 Hz, 1H), 4.58 (m, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.72 (m, 1H), 3.17 (m, 2H), 2.93 (m, 1H), 2.08 (m, 1H), 1.91 (m, 1H), 1.58 (m, 2H); MS (ESI(+)) m/e 447 (M+H)+.
  • Example 854 2-cyclopentyl-N-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}acetamide
  • The title compound was prepared as described in Example 1A, substituting N-(4-aminophenyl)-2-cyclopentylacetamide for 3-methylbutan-1-amine and 2-(imidazo[1,2-a]pyridin-6-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.12 (bs, 1H), 9.77 (bs, 1H), 8.47-8.44 (m, 1H), 7.94 (s, 1H), 7.58-7.43 (m, 6H), 7.19 (dd, J=9.2, 1.7 Hz, 1H), 3.64 (bs, 2H), 2.30-2.19 (m, 3H), 1.82-1.65 (m, 2H), 1.66-1.43 (m, 4H), 1.26-1.08 (m, 2H); MS (ESI(+)) m/e 377 (M+H)+.
  • Example 855 tert-butyl 4-{4-[(imidazo[1,2-b]pyridazin-6-ylmethyl)carbamoyl]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-b]pyridazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.15 (t, J=5.9 Hz, 1H), 8.24 (s, 1H), 8.07 (d, J=9.3 Hz, 1H), 7.88-7.82 (m, 2H), 7.75 (d, J=1.2 Hz, 1H), 7.41-7.34 (m, 2H), 7.20 (d, J=9.3 Hz, 1H), 4.63 (d, J=5.8 Hz, 2H), 4.13-4.03 (m, 2H), 2.91-2.67 (m, 3H), 1.80-1.72 (m, 2H), 1.61-1.44 (m, 2H), 1.42 (s, 9H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 856 4-[(cyclopentylacetyl)amino]-N-(imidazo[1,2-b]pyridazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-b]pyridazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.38 (d, J=1.9 Hz, 1H), 8.28 (dd, J=9.4, 0.7 Hz, 1H), 8.07 (d, J=1.9 Hz, 1H), 7.90-7.84 (m, 2H), 7.79-7.66 (m, 3H), 4.91-4.79 (m, 2H), 2.43-2.25 (m, 3H), 1.92-1.78 (m, 2H), 1.79-1.50 (m, 4H), 1.33-1.18 (m, 2H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 857 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 857A methyl 5-(3-cyclopropylpropioloyl)thiophene-2-carboxylate
  • Methyl 5-(chlorocarbonyl)thiophene-2-carboxylate (500 mg, 2.443 mmol) was dissolved in triethylamine (5 mL) and the suspension was degassed with nitrogen. Copper(I) iodide (40 mg, 0.210 mmol) and bistriphenylphosphine palladium chloride (40 mg, 0.057 mmol) were added followed by ethynylcyclopropane (162 mg, 2.443 mmol). The mixture was stirred overnight, diluted with methanol and concentrated to dryness. The crude material was partitioned between dichloromethane and water. The organic extracts were dried with sodium sulfate, filtered, concentrated and purified by normal phase chromatography to afford the title compound.
  • Example 857B methyl 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)thiophene-2-carboxylate
  • Methyl 5-(3-cyclopropylpropioloyl)thiophene-2-carboxylate (100 mg, 0.427 mmol) was dissolved in N,N-dimethylformamide (2 mL), and the solution was cooled to 0° C. Benzylhydrazine hydrochloride (74.5 mg, 0.470 mmol) was added followed by potassium carbonate (77 mg, 0.555 mmol). The mixture was stirred at 0° C. until the ice bath melted and was stirred overnight at room temperature. The solution was partitioned between water and ethyl acetate. The organic extract was dried with sodium sulfate, filtered, concentrated and purified by normal phase chromatography to afford the title compound.
  • Example 857C 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)thiophene-2-carboxylic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)thiophene-2-carboxylate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 857D 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 5-(1-benzyl-3-cyclopropyl-1H-pyrazol-5-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (t, J=5.9 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 7.91-7.87 (m, 1H), 7.74 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.42-7.24 (m, 5H), 7.23-7.15 (m, 2H), 6.84 (dd, J=7.0, 1.7 Hz, 1H), 6.38 (s, 1H), 5.44 (bs, 2H), 4.47 (d, J=5.9 Hz, 2H), 1.94-1.81 (m, 1H), 0.97-0.86 (m, 2H), 0.72-0.59 (m, 2H); MS (ESI(+)) m/e 454 (M+H)+.
  • Example 858 5-[1-(2,2-dimethylpropyl)-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide Example 858A 5-bromo-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 5-bromothiophene-2-carboxylic acid for 4-nitrobenzoic acid.
  • Example 858B
  • The title compound was prepared as described in Example 51A, substituting 1-neopentyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.10-8.99 (m, 2H), 8.53 (d, J=1.3 Hz, 1H), 8.17 (d, J=0.9 Hz, 1H), 8.10 (d, J=0.5 Hz, 1H), 7.82-7.78 (m, 2H), 7.76 (d, J=3.8 Hz, 1H), 7.23 (d, J=3.9 Hz, 1H), 4.54 (d, J=5.7 Hz, 2H), 3.92 (s, 2H), 0.92 (s, 9H); MS (ESI(+)) m/e 395 (M+H)+.
  • Example 859 5-[1-(propan-2-ylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 682, substituting propane-2-sulfonyl chloride for benzenesulfonyl chloride and N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.03 (t, J=5.8 Hz, 1H), 8.86 (d, J=1.5 Hz, 1H), 8.48 (s, 1H), 7.83 (dd, J=9.1, 0.9 Hz, 1H), 7.64 (m, 2H), 6.97 (dd, J=3.7, 0.9 Hz, 1H), 4.53 (d, J=5.8 Hz, 2H), 3.71 (m, 2H), 3.25 (m, 1H), 3.02 (m, 3H), 2.00 (m, 2H), 1.56 (m, 2H), 1.22 (d, J=6.8 Hz, 6H); MS (ESI(+)) m/e 448 (M+H)+.
  • Example 860 5-[1-(phenylsulfonyl)piperidin-4-yl]-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 682, substituting N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)-5-(piperidin-4-yl)thiophene-2-carboxamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.01 (t, J=5.9 Hz, 1H), 8.85 (s, 1H), 8.47 (s, 1H), 7.83 (d, J=9.1 Hz, 1H), 7.81-7.69 (m, 3H), 7.71-7.55 (m, 4H), 6.90 (d, J=3.8 Hz, 1H), 4.51 (d, J=5.8 Hz, 2H), 3.73 (m, 2H), 2.84 (m, 1H), 2.37 (m, 2H), 1.99 (m, 2H), 1.61 (m, 2H); MS (ESI(+)) m/e 482 (M+H)+.
  • Example 861 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[(4-methyltetrahydro-2H-pyran-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-((4-methyltetrahydro-2H-pyran-4-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.09-9.01 (m, 2H), 8.53 (d, J=1.4 Hz, 1H), 8.18-8.15 (m, 1H), 8.13 (d, J=0.5 Hz, 1H), 7.83-7.79 (m, 2H), 7.76 (d, J=3.9 Hz, 1H), 7.23 (d, J=3.9 Hz, 1H), 4.54 (d, J=5.7 Hz, 2H), 4.04 (s, 2H), 3.68 (dt, J=11.4, 4.5 Hz, 2H), 3.51 (ddd, J=11.8, 9.2, 2.9 Hz, 2H), 1.50 (ddd, J=13.4, 9.1, 4.1 Hz, 2H), 1.33-1.18 (m, 2H), 0.96 (s, 3H); MS (ESI(+)) m/e 437 (M+H)+.
  • Example 862 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 3-methylbutan-1-amine and 2-(imidazo[1,2-a]pyridin-6-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 10.14 (s, 1H), 8.52 (s, 1H), 8.01 (d, J=1.3 Hz, 1H), 7.65-7.58 (m, 2H), 7.54-7.47 (m, 2H), 7.31 (dd, J=9.2, 1.7 Hz, 1H), 7.20-7.13 (m, 2H), 4.11-3.99 (m, 2H), 3.68 (s, 2H), 2.89-2.54 (m, 3H), 1.76-1.66 (m, 2H), 1.53-1.32 (m, 11H); MS (ESI(+)) m/e 435 (M+H)+.
  • Example 863 N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide Example 863A 2-(imidazo[1,2-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-6-ylacetyl)amino]phenyl}piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 863B N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.77 (s, 1H), 8.21 (d, J=2.2 Hz, 1H), 8.03 (d, J=2.1 Hz, 1H), 8.01-7.94 (m, 1H), 7.93-7.87 (m, 1H), 7.55-7.35 (m, 4H), 7.33-7.26 (m, 1H), 7.25-7.17 (m, 3H), 4.83-4.74 (m, 1H), 3.91 (s, 2H), 3.68-3.58 (m, 1H), 3.30-3.18 (m, 1H), 3.02-2.78 (m, 2H), 2.01-1.91 (m, 1H), 1.87-1.50 (m, 3H); MS (ESI(+)) m/e 457 (M+H)+.
  • Example 864 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(phenylsulfonyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 682, substituting N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide. 1H NMR (400 MHz, methanol-d4) δ ppm 9.04-8.96 (m, 1H), 8.51 (s, 1H), 8.05 (s, 1H), 7.85-7.79 (m, 5H), 7.73-7.66 (m, 1H), 7.67-7.59 (m, 2H), 7.35-7.28 (m, 2H), 4.72-4.67 (m, 2H), 3.96-3.88 (m, 2H), 2.63-2.51 (m, 1H), 2.48-2.37 (m, 2H), 1.93-1.85 (m, 2H), 1.86-1.72 (m, 2H); MS (ESI(+)) m/e 476 (M+H)+.
  • Example 865 2-(imidazo[1,2-a]pyridin-6-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.77 (d, J=1.4 Hz, 1H), 8.21 (dd, J=2.2, 0.7 Hz, 1H), 8.03 (d, J=2.2 Hz, 1H), 8.01-7.94 (m, 1H), 7.93-7.87 (m, 1H), 7.53-7.47 (m, 2H), 7.23-7.17 (m, 2H), 4.73-4.64 (m, 1H), 4.21-4.13 (m, 1H), 3.91 (s, 2H), 3.27-3.14 (m, 1H), 2.99 (hept, J=6.7 Hz, 1H), 2.88-2.74 (m, 1H), 2.76-2.63 (m, 1H), 1.96-1.81 (m, 2H), 1.71-1.45 (m, 2H), 1.16-1.07 (m, 6H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 866 N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-6-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and 2,4-difluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.77 (d, J=1.4 Hz, 1H), 8.23-8.18 (m, 1H), 8.03 (d, J=2.2 Hz, 1H), 8.01-7.94 (m, 1H), 7.93-7.87 (m, 1H), 7.54-7.42 (m, 3H), 7.25-7.19 (m, 2H), 7.13-7.05 (m, 2H), 4.84-4.74 (m, 2H), 3.91 (s, 2H), 3.68-3.59 (m, 1H), 3.30-3.20 (m, 1H), 3.02-2.79 (m, 1H), 2.00-1.91 (m, 1H), 1.88-1.52 (m, 3H); MS (ESI(+)) m/e 475 (M+H)+.
  • Example 877 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}benzamide Example 877A methyl 4-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)benzoate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(methoxycarbonyl)benzoic acid for 4-nitrobenzoic acid.
  • Example 877B 4-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)benzoic acid
  • The title compound was prepared as described in Example 4B, substituting methyl 4-((imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl)benzoate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 877C N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(2-methylpropyl)pyrrolidin-1-yl]carbonyl}benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-isobutylpyrrolidine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.17 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.95 (d, J=8.2 Hz, 2H), 7.89 (d, J=1.2 Hz, 1H), 7.56 (d, J=8.0 Hz, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 6.86 (dd, J=7.0, 1.7 Hz, 1H), 4.52 (d, J=5.9 Hz, 2H), 4.25-4.14 (m, 1H), 3.58-3.51 (m, 1H), 3.51-3.38 (m, 1H), 2.09-1.53 (m, 5H), 1.33-1.17 (m, 2H), 0.94 (d, J=6.4 Hz, 6H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 878 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[(2R)-2-(methoxymethyl)pyrrolidin-1-yl]carbonyl}benzamide
  • The title compound was prepared as described in Example 1A, substituting (2R)-2-(methoxymethyl)pyrrolidine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.18 (t, J=4.8 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 7.95 (d, J=8.3 Hz, 2H), 7.88 (s, 1H), 7.57 (d, J=7.7 Hz, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 6.86 (dd, J=7.0, 1.6 Hz, 1H), 4.52 (d, J=5.9 Hz, 2H), 3.62-2.88 (br m, 8H), 2.05-1.64 (br m, 4H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 881 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(phenylsulfonyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-7-ylmethanamine for 3-methylbutan-1-amine and 4-(phenylsulfonyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.53 (t, J=5.9 Hz, 1H), 8.83 (d, J=6.9 Hz, 1H), 8.30 (d, J=2.1 Hz, 1H), 8.16-8.07 (m, 5H), 8.03-7.97 (m, 2H), 7.80-7.61 (m, 4H), 7.46 (dd, J=6.9, 1.6 Hz, 1H), 4.68 (d, J=5.8 Hz, 2H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 882 4-(phenylsulfonyl)-N-([1,2,4]triazolo[1,5-a]pyridin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting [1,2,4]triazolo[1,5-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(phenylsulfonyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.32 (t, J=5.8 Hz, 1H), 8.92-8.87 (m, 1H), 8.49-8.46 (m, 1H), 8.07 (m, 4H), 8.01-7.95 (m, 2H), 7.85-7.78 (m, 1H), 7.75-7.67 (m, 1H), 7.68-7.60 (m, 3H), 4.57 (d, J=5.7 Hz, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 889 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}furan-2-carboxamide Example 889A tert-butyl 4-(2-(4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)furan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)furan-2-carboxamide for 4-bromoaniline.
  • Example 889B N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}furan-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(2-(4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)furan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.70 (s, 2H), 9.28 (t, J=6.1 Hz, 1H), 8.87 (d, J=6.7 Hz, 1H), 8.33 (s, 2H), 8.15 (d, J=2.1 Hz, 1H), 8.00 (s, 1H), 7.82 (s, 1H), 7.49 (dd, J=7.0, 1.5 Hz, 1H), 7.26 (d, J=3.5 Hz, 1H), 6.72 (d, J=3.5 Hz, 1H), 4.73-4.59 (m, 4H), 3.66-3.56 (m, 2H), 3.41 (d, J=11.4 Hz, 8H); MS (ESI(+)) m/e 420 (M+H)+.
  • Example 892 5-(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 857, substituting methylhydrazine for benzylhydrazine in Example 857B. 1H NMR (300 MHz, DMSO-d6) δ 9.04 (t, J=6.0 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 7.89 (s, 1H), 7.73 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.30 (d, J=3.8 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.32 (s, 1H), 4.47 (d, J=5.9 Hz, 2H), 3.84 (s, 3H), 1.97-1.84 (m, 1H), 1.04-0.89 (m, 2H), 0.75-0.63 (m, 2H); MS (ESI(+)) m/e 378 (M+H)+.
  • Example 893 5-[3-cyclopropyl-1-(2-methoxyethyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 857, substituting (2-methoxyethyl)hydrazine for benzylhydrazine in Example 857B. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.04 (t, J=6.0 Hz, 1H), 8.49 (dd, J=7.0, 1.0 Hz, 1H), 7.89 (s, 1H), 7.73 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.31 (d, J=3.8 Hz, 1H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.31 (s, 1H), 4.47 (d, J=5.9 Hz, 2H), 4.33 (t, J=5.5 Hz, 2H), 3.73 (t, J=5.5 Hz, 2H), 3.24 (s, 3H), 2.00-1.87 (m, 1H), 1.01-0.92 (m, 2H), 0.72-0.63 (m, 2H); MS (ESI(+)) m/e 422 (M+H)+.
  • Example 894 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide Example 894A tert-butyl 4-(2-(4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)thiophen-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline.
  • Example 894B N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-5-{1-[2-(piperazin-1-yl)ethyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(2-(4-(5-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)thiophen-2-yl)-1H-pyrazol-1-yl)ethyl)piperazine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.52 (s, 2H), 9.28-9.17 (m, 2H), 8.68 (d, J=1.2 Hz, 1H), 8.36-8.30 (m, 1H), 8.27 (d, J=0.4 Hz, 1H), 8.05 (d, J=1.4 Hz, 1H), 7.91 (d, J=0.5 Hz, 1H), 7.81 (d, J=3.9 Hz, 1H), 7.27 (d, J=3.9 Hz, 1H), 4.71-4.48 (m, 2H), 4.07 (s, 8H), 3.37 (s, 4H); MS (ESI(+)) m/e 437 (M+H)+.
  • Example 897 N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(phenylsulfonyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(phenylsulfonyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.38 (t, J=5.8 Hz, 1H), 9.11 (s, 1H), 8.61-8.57 (m, 1H), 8.18 (s, 1H), 8.16-8.03 (m, 4H), 8.04-7.97 (m, 2H), 7.93-7.89 (m, 1H), 7.76-7.68 (m, 1H), 7.70-7.61 (m, 2H), 4.60 (d, J=5.7 Hz, 2H); MS (ESI(+)) m/e 393 (M+H)+.
  • Example 898 N-(imidazo[1,2-a]pyridin-6-ylmethyl)-4-(phenylsulfonyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyridin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(phenylsulfonyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.47 (t, J=5.8 Hz, 1H), 8.82 (s, 1H), 8.35-8.30 (m, 1H), 8.19-8.14 (m, 1H), 8.12-8.08 (m, 4H), 8.05-7.88 (m, 4H), 7.76-7.68 (m, 1H), 7.68-7.60 (m, 2H), 4.61 (d, J=5.8 Hz, 2H); MS (ESI(+)) m/e 392 (M+H)+.
  • Example 899 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting 1-isobutyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.24 (t, J=5.9 Hz, 1H), 8.51 (dd, J=7.0, 0.7 Hz, 1H), 7.90 (d, J=0.8 Hz, 1H), 7.87 (d, J=3.9 Hz, 1H), 7.57-7.49 (m, 2H), 7.43 (s, 1H), 7.39 (d, J=3.9 Hz, 1H), 6.87 (dd, J=7.0, 1.6 Hz, 1H), 6.56 (d, J=1.9 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 4.08 (d, J=7.4 Hz, 2H), 2.09 (dp, J=13.8, 6.9 Hz, 1H), 0.80 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 380 (M+H)+.
  • Example 900 tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 3-methylbutan-1-amine and 2-(imidazo[1,2-a]pyridin-7-yl)acetic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.16 (s, 1H), 8.55 (d, J=6.9 Hz, 1H), 7.97 (s, 1H), 7.65-7.53 (m, 2H), 7.53-7.47 (m, 2H), 7.20-7.13 (m, 2H), 7.01-6.95 (m, 1H), 4.09-4.00 (m, 2H), 3.72 (s, 2H), 2.87-2.55 (m, 3H), 1.76-1.67 (m, 2H), 1.50-1.35 (m, 11H); MS (ESI(+)) m/e 435 (M+H)+.
  • Example 901 N-[(3-chloroimidazo[1,2-a]pyrazin-6-yl)methyl]-4-[(cyclopentylacetyl)amino]benzamide
  • The title compound was prepared as described in Example 396, substituting 4-(2-cyclopentylacetamido)-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide for 4-(3-imidazo[1,2-a]pyridin-6-ylureido)-N-((tetrahydro-2H-pyran-2-yl)methyl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.07 (s, 1H), 9.09 (s, 1H), 8.95 (t, J=5.7 Hz, 1H), 8.28 (s, 1H), 7.95 (s, 1H), 7.87-7.81 (m, 2H), 7.69-7.63 (m, 2H), 4.61 (d, J=5.6 Hz, 2H), 2.38-2.12 (m, 3H), 1.80-1.64 (m, 2H), 1.66-1.40 (m, 4H), 1.25-1.09 (m, 2H); MS (ESI(+)) m/e 412 (M+H)+.
  • Example 902 N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide Example 902A 2-(imidazo[1,2-a]pyridin-7-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 902B N-{4-[1-(2,4-difluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-7-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and 2,4-difluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.29 (s, 1H), 8.84 (d, J=6.9 Hz, 1H), 8.31 (d, J=1.9 Hz, 1H), 8.14 (d, J=2.1 Hz, 1H), 7.89 (s, 1H), 7.56-7.47 (m, 3H), 7.47-7.40 (m, 1H), 7.42-7.31 (m, 1H), 7.23-7.15 (m, 3H), 4.68-4.60 (m, 1H), 3.95 (bs, 2H), 3.58-3.44 (m, 1H), 3.26-3.09 (m, 1H), 2.94-2.70 (m, 2H), 1.94-1.81 (m, 1H), 1.79-1.40 (m, 3H); MS (ESI(+)) m/e 475 (M+H)+.
  • Example 903 2-(imidazo[1,2-a]pyridin-7-yl)-N-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-7-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.28 (s, 1H), 8.84 (d, J=6.9 Hz, 1H), 8.34-8.28 (m, 1H), 8.18-8.14 (m, 1H), 7.89 (s, 1H), 7.55-7.43 (m, 3H), 7.22-7.16 (m, 2H), 4.60-4.50 (m, 1H), 4.09-4.00 (m, 1H), 3.96 (s, 2H), 3.18-3.01 (m, 1H), 2.96-2.82 (m, 1H), 2.79-2.67 (m, 1H), 2.63-2.50 (m, 1H), 1.87-1.70 (m, 2H), 1.57-1.30 (m, 2H), 1.07-0.93 (m, 6H); MS (ESI(+)) m/e 405 (M+H)+.
  • Example 904 1-[(3-chloroimidazo[1,2-a]pyridin-7-yl)methyl]-3-{4-[1-(2-methylpropanoyl)piperidin-4-yl]phenyl}urea
  • The title compound was prepared as described in Example 396, substituting 1-(imidazo[1,2-a]pyridin-7-ylmethyl)-3-(4-(1-isobutyrylpiperidin-4-yl)phenyl)urea for 4-(3-imidazo[1,2-a]pyridin-6-ylureido)-N-((tetrahydro-2H-pyran-2-yl)methyl)benzamide. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.31 (bs, 1H), 8.24 (d, J=7.0 Hz, 1H), 7.58 (s, 1H), 7.46 (s, 1H), 7.35-7.29 (m, 2H), 7.12-7.02 (m, 3H), 6.62-6.55 (m, 1H), 4.38 (d, J=6.0 Hz, 2H), 4.36-4.19 (m, 2H), 2.93-2.62 (m, 4H), 1.85-1.77 (m, 2H), 1.53-1.37 (m, 2H), 1.03 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 454 (M+H)+.
  • Example 905 N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-(imidazo[1,2-a]pyridin-7-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.18 (d, J=2.2 Hz, 1H), 8.00 (d, J=2.2 Hz, 1H), 7.89 (s, 1H), 7.56-7.35 (m, 5H), 7.33-7.25 (m, 1H), 7.25-7.17 (m, 3H), 4.83-4.74 (m, 1H), 3.99 (s, 2H), 3.68-3.59 (m, 1H), 3.31-3.18 (m, 1H), 3.03-2.76 (m, 2H), 2.00-1.92 (m, 1H), 1.87-1.51 (m, 3H); MS (ESI(+)) m/e 457 (M+H)+.
  • Example 906 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-methyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 857, substituting 4-methylpent-1-yne for ethynylcyclopropane in Example 857A and methylhydrazine for benzylhydrazine in Example 857B. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.05 (t, J=5.9 Hz, 1H), 8.49 (dd, J=6.9, 0.9 Hz, 1H), 7.89 (s, 1H), 7.74 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.40 (s, 1H), 7.35 (d, J=3.8 Hz, 1H), 6.85 (dd, J=6.9, 1.7 Hz, 1H), 6.46 (s, 1H), 4.48 (d, J=5.9 Hz, 2H), 3.75 (s, 3H), 2.54-2.51 (m, 2H), 1.96-1.84 (m, 1H), 0.94 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 394 (M+H)+.
  • Example 907 5-[1-benzyl-3-(2-methylpropyl)-1H-pyrazol-5-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 857, substituting 4-methylpent-1-yne for ethynylcyclopropane in Example 857A. 1H NMR (300 MHz, DMSO-d6) δ ppm 9.05 (t, J=5.8 Hz, 1H), 8.49 (dd, J=7.0, 0.9 Hz, 1H), 7.89 (s, 1H), 7.76 (d, J=3.9 Hz, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.42-7.38 (m, 2H), 7.37-7.23 (m, 3H), 7.17-7.11 (m, 2H), 6.85 (dd, J=7.0, 1.7 Hz, 1H), 6.56 (s, 1H), 5.35 (bs, 2H), 4.48 (d, J=5.9 Hz, 2H), 2.49-2.45 (m, 2H), 1.87-1.74 (m, 1H), 0.87 (d, J=6.6 Hz, 6H); MS (ESI(+)) m/e 470 (M+H)+.
  • Example 908 4-[(cyclopentylacetyl)amino]-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)-2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.27 (s, 1H), 9.13 (s, 1H), 8.73-8.65 (m, 1H), 8.59-8.56 (m, 1H), 8.24 (s, 1H), 7.94-7.91 (m, 1H), 7.75-7.67 (m, 2H), 7.34 (dd, J=8.5, 1.9 Hz, 1H), 4.59 (d, J=5.8 Hz, 2H), 2.37-2.32 (m, 2H), 2.32-2.16 (m, 1H), 1.82-1.68 (m, 2H), 1.67-1.44 (m, 4H), 1.26-1.10 (m, 2H); MS (ESI(+)) m/e 396 (M+H)+.
  • Example 909 N-(2,5-difluorobenzyl)-N′-(imidazo[1,2-a]pyridin-7-ylmethyl)benzene-1,4-dicarboxamide
  • The title compound was prepared as described in Example 1A, substituting 2,5-difluorobenzyl amine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.42 (t, J=5.9 Hz, 1H), 9.20 (t, J=5.8 Hz, 1H), 8.83 (d, J=6.9 Hz, 1H), 8.29 (d, J=2.0 Hz, 1H), 8.10 (d, J=2.0 Hz, 1H), 8.04-8.00 (m, 4H), 7.78 (s, 1H), 7.45 (dd, J=6.9, 1.6 Hz, 1H), 7.32-7.12 (m, 3H), 4.69 (d, J=5.8 Hz, 2H), 4.52 (d, J=5.7 Hz, 2H); MS (ESI(+)) m/e 421 (M+H)+.
  • Example 910 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{[2-(propan-2-yl)pyrrolidin-1-yl]carbonyl}benzamide
  • The title compound was prepared as described in Example 1A, substituting (propan-2-yl)pyrrolidine for 3-methylbutan-1-amine and 4-(imidazo[1,2-a]pyridin-7-ylmethylcarbamoyl)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.44-9.36 (m, 1H), 8.86 (d, J=6.9 Hz, 1H), 8.31 (d, J=2.1 Hz, 1H), 8.14 (d, J=2.1 Hz, 1H), 8.01-7.95 (m, 2H), 7.80 (s, 1H), 7.65-7.59 (m, 2H), 7.49 (d, J=7.6 Hz, 1H), 4.69 (d, J=5.8 Hz, 2H), 4.15-4.05 (m, 1H), 3.47-3.19 (m, 2H), 2.39-2.26 (m, 1H), 1.96-1.57 (m, 4H), 0.93-0.85 (m, 6H); MS (ESI(+)) m/e 391 (M+H)+.
  • Example 911 N-{4-[5-(2,2-dimethylpropyl)-1,3,4-oxadiazol-2-yl]phenyl}-2-(imidazo[1,2-a]pyridin-7-yl)acetamide Example 911A N′-(3,3-dimethylbutanoyl)-4-nitrobenzohydrazide
  • A suspension of 4-nitrobenzohydrazide (0.500 g, 2.76 mmol), and 4-methylmorpholine (0.455 ml, 4.14 mmol) were stirred in dichloromethane (20 ml). 3,3-Dimethylbutanoyl chloride (0.422 ml, 3.04 mmol) was added and the reaction mixture was stirred for 2 hours. Normal phase chromatography of the crude reaction mixture gave the title compound.
  • Example 911B 2-neopentyl-5-(4-nitrophenyl)-1,3,4-oxadiazole
  • A mixture of N′-(3,3-dimethylbutanoyl)-4-nitrobenzohydrazide (0.556 g, 1.991 mmol) and methyl N-(triethylammoniumsulfonyl)carbamate (0.572 g, 2.389 mmol) in tetrahydrofuran (10 ml) was heated to 120° C. in a microwave (Biotage Initiator) for 45 minutes. The crude reaction mixture was concentrated and purified by normal phase chromatography to give the title compound.
  • Example 911C 4-(5-neopentyl-1,3,4-oxadiazol-2-yl)aniline
  • The title compound was prepared as described in Example 1B, substituting 2-neopentyl-5-(4-nitrophenyl)-1,3,4-oxadiazole for tert-butyl 4-(4-(1-(benzyloxycarbonyl)azetidine-3-carboxamido)phenoxy)piperidine-1-carboxylate.
  • Example 911D N-{4-[5-(2,2-dimethylpropyl)-1,3,4-oxadiazol-2-yl]phenyl}-1-(pyridazin-3-yl)azetidine-3-carboxamide
  • The title compound was prepared as described in Example 1A, substituting 4-(5-neopentyl-1,3,4-oxadiazol-2-yl)aniline for tert-butyl 4-(4-aminophenoxy)piperidine-1-carboxylate and 2-(imidazo[1,2-a]pyridin-7-yl)acetic acid for 1-(benzyloxycarbonyl)azetidine-3-carboxylic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.55 (s, 1H), 8.49 (d, J=7.0 Hz, 1H), 7.96-7.89 (m, 3H), 7.86-7.79 (m, 2H), 7.53 (d, J=1.1 Hz, 1H), 7.49 (s, 1H), 6.88 (dd, J=7.0, 1.6 Hz, 1H), 3.77 (s, 2H), 2.82 (s, 2H), 1.02 (s, 9H); MS (ESI(+)) m/e 390 (M+H)+.
  • Example 912 tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate Example 912A tert-butyl 4-(4-amino-3-fluorophenyl)-5,6-dihydropyridine-1(2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-2-fluoroaniline for 4-bromoaniline.
  • Example 912B tert-butyl 4-(4-amino-3-fluorophenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(4-amino-3-fluorophenyl)-5,6-dihydropyridine-1(2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 912C tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1C, substituting tert-butyl 4-(4-amino-3-fluorophenyl)piperidine-1-carboxylate for 4-amino-N-isopentylbenzamide and imidazo[1,2-a]pyridin-7-ylmethanamine for imidazo[1,2-a]pyridin-6-amine. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.49 (d, J=7.0 Hz, 1H), 8.37 (d, J=2.3 Hz, 1H), 7.97 (t, J=8.5 Hz, 1H), 7.88 (s, 1H), 7.52 (d, J=1.2 Hz, 1H), 7.39 (s, 1H), 7.12-7.04 (m, 2H), 7.00-6.94 (m, 1H), 6.82 (dd, J=7.0, 1.6 Hz, 1H), 4.35 (d, J=5.9 Hz, 2H), 4.10-4.01 (m, 2H), 2.89-2.56 (m, 3H), 1.77-1.68 (m, 2H), 1.41 (s, 11H); MS (ESI(+)) m/e 468 (M+H)+.
  • Example 958 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrrolidin-1-ylcarbonyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1068, substituting pyrrolidine-1-carbonyl chloride for piperidine-1-carbonyl chloride. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.28-9.21 (m, 1H), 8.85 (d, J=7.0 Hz, 1H), 8.31 (d, J=2.1 Hz, 1H), 8.13 (d, J=2.1 Hz, 1H), 7.91-7.85 (m, 2H), 7.77 (s, 1H), 7.47 (dd, J=7.0, 1.6 Hz, 1H), 7.43-7.36 (m, 2H), 4.67 (d, J=5.8 Hz, 2H), 3.83-3.75 (m, 2H), 3.35-3.23 (m, 4H), 2.85-2.72 (m, 3H), 1.81-1.69 (m, 6H), 1.71-1.53 (m, 2H); MS (ESI(+)) m/e 432 (M+H)+.
  • Example 1067 tert-butyl 4-{3-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting tert-butyl 4-(4-amino-3-fluorophenyl)piperidine-1-carboxylate for 3-methylbutan-1-amine and 2-(imidazo[1,2-a]pyridin-7-yl)acetic acid hydrochloride for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.97 (s, 1H), 8.58 (d, J=6.9 Hz, 1H), 8.00 (s, 1H), 7.77-7.67 (m, 2H), 7.58 (d, J=1.4 Hz, 1H), 7.15 (dd, J=12.2, 1.9 Hz, 1H), 7.06-6.99 (m, 2H), 4.10-4.01 (m, 2H), 3.82 (bs, 2H), 2.94-2.58 (m, 3H), 1.78-1.69 (m, 2H), 1.53-1.36 (m, 11H); MS (ESI(+)) m/e 453 (M+H)+.
  • Example 1068 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(piperidin-1-ylcarbonyl)piperidin-4-yl]benzamide
  • A solution of piperidine-1-carbonyl chloride (0.033 g, 0.224 mmol) in N-methyl-2-pyrrolidinone (1 mL) was treated with N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-(piperidin-4-yl)benzamide (0.05 g, 0.150 mmol) and triethylamine (0.042 ml, 0.299 mmol) and the reaction mixture was stirred at room temperature for 18 hours. The mixture was purified by reverse-phase HPLC to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.24 (t, J=5.9 Hz, 1H), 8.84 (d, J=7.0 Hz, 1H), 8.30 (d, J=2.1 Hz, 1H), 8.13 (d, J=2.1 Hz, 1H), 7.91-7.84 (m, 2H), 7.76 (s, 1H), 7.50-7.44 (m, 1H), 7.42-7.36 (m, 2H), 4.67 (d, J=5.8 Hz, 2H), 3.71-3.62 (m, 2H), 3.16-3.10 (m, 4H), 2.89-2.68 (m, 3H), 1.81-1.72 (m, 2H), 1.68-1.44 (m, 8H); MS (ESI(+)) m/e 446 (M+H)+.
  • Example 1069 1-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea Example 1069A 1-(2-fluoro-4-(piperidin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-fluoro-4-{[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]amino}phenyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate.
  • Example 1069B 1-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea
  • The title compound was prepared as described in Example 1A, substituting 1-(2-fluoro-4-(piperidin-4-yl)phenyl)-3-(imidazo[1,2-a]pyridin-7-ylmethyl)urea for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.73 (d, J=7.0 Hz, 1H), 8.16 (d, J=2.1 Hz, 1H), 7.99-7.95 (m, 1H), 7.85-7.77 (m, 2H), 7.50-7.39 (m, 6H), 7.11-6.99 (m, 2H), 4.84-4.72 (m, 1H), 4.60 (bs, 2H), 3.93-3.73 (m, 1H), 3.29-3.15 (m, 1H), 3.00-2.76 (m, 2H), 2.03-1.84 (m, 1H), 1.83-1.53 (m, 3H); MS (ESI(+)) m/e 472 (M+H)+.
  • TABLE 25
    The following Examples were prepared essentially
    as described in Example 1069, substituting an appropriate
    carboxylic acid in Example 1069B.
    Ex Name MS
    1070 1-{4-[1-(2,2-dimethylpropanoyl)piperidin-4-yl]-2- (ESI(+))
    fluorophenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 452
    ylmethyl)urea (M + H)+
    1071 1-{4-[1-(3,3-dimethylbutanoyl)piperidin-4-yl]-2- (ESI(+))
    fluorophenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 466
    ylmethyl)urea (M + H)+
    1072 1-{2-fluoro-4-[1-(4-methylpentanoyl)piperidin-4- (ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 466
    ylmethyl)urea (M + H)+
    1073 1-(2-fluoro-4-{1-[(2S)-2-methylbutanoyl]piperidin-4- (ESI(+))
    yl}phenyl)-3-(imidazo[1,2-a]pyridin-7- m/e 452
    ylmethyl)urea (M + H)+
    1074 1-{2-fluoro-4-[1-(tetrahydro-2H-pyran-4-ylcarbon- (ESI(+))
    yl)piperidin-4-yl]phenyl}-3-(imidazo[1,2- m/e 480
    a]pyridin-7-ylmethyl)urea (M + H)+
    1075 1-{2-fluoro-4-[1-(pyridin-2-ylcarbonyl)piperidin-4- (ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 473
    ylmethyl)urea (M + H)+
    1076 1-{4-[1-(2-cyanobenzoyl)piperidin-4-yl]-2- (ESI(+))
    fluorophenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 497
    ylmethyl)urea (M + H)+
    1078 1-{2-fluoro-4-[1-(2-methylpropanoyl)piperidin-4- (ESI(+))
    yl]phenyl}-3-(imidazo[1,2-a]pyridin-7- m/e 438
    ylmethyl)urea (M + H)+
  • Example 1077 4-{4-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]phenyl}-N,N-dimethylpiperidine-1-carboxamide
  • The title compound was prepared as described in Example 1068, substituting N,N-dimethylamine-1-carbonyl chloride for piperidine-1-carbonyl chloride. 1H NMR (400 MHz, methanol-d4) δ ppm 8.75 (d, J=7.0 Hz, 1H), 8.19-8.15 (m, 1H), 8.01-7.97 (m, 1H), 7.89-7.83 (m, 2H), 7.80 (s, 1H), 7.51-7.46 (m, 1H), 7.44-7.38 (m, 2H), 4.77 (s, 2H), 3.85-3.76 (m, 2H), 2.98-2.77 (m, 9H), 1.90-1.81 (m, 2H), 1.81-1.66 (m, 2H); MS (ESI(+)) m/e 406 (M+H)+.
  • Example 1079 4-[(cyclopentylacetyl)amino]-N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]benzamide
  • The title compound was prepared as described in Example 1A, substituting (7-fluoroimidazo[1,2-a]pyridin-6-yl)methanamine for 3-methylbutan-1-amine and 4-(2-cyclopentylacetamido)benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, DMSO-d6) δ ppm 10.08 (s, 1H), 8.87 (t, J=5.5 Hz, 1H), 8.56 (d, J=7.3 Hz, 1H), 7.96 (s, 1H), 7.88-7.82 (m, 2H), 7.71-7.64 (m, 2H), 7.52 (d, J=1.2 Hz, 1H), 7.46-7.39 (m, 1H), 4.49 (d, J=5.5 Hz, 2H), 2.36-2.30 (m, 2H), 2.31-2.15 (m, 1H), 1.81-1.68 (m, 2H), 1.68-1.43 (m, 4H), 1.26-1.10 (m, 2H); MS (ESI(+)) m/e 395 (M+H)+.
  • Example 1080 N-[(7-fluoroimidazo[1,2-a]pyridin-6-yl)methyl]-5-[1-(2-methylpropyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • The title compound was prepared as described in Example 1A, substituting (7-fluoroimidazo[1,2-a]pyridin-6-yl)methanamine for 3-methylbutan-1-amine and 5-(1-isobutyl-1H-pyrazol-4-yl)thiophene-2-carboxylic acid for 4-nitrobenzoic acid. 1H NMR (300 MHz, DMSO-d6) δ ppm 8.93 (t, J=5.5 Hz, 1H), 8.58 (d, J=7.7 Hz, 1H), 8.14 (d, J=0.8 Hz, 1H), 7.98 (s, 1H), 7.80 (d, J=0.8 Hz, 1H), 7.73 (d, J=3.8 Hz, 1H), 7.53 (d, J=1.3 Hz, 1H), 7.44 (d, J=11.0 Hz, 1H), 7.21 (d, J=3.8 Hz, 1H), 4.48 (d, J=5.5 Hz, 2H), 3.92 (d, J=7.2 Hz, 2H), 2.21-2.05 (m, 1H), 0.85 (d, J=6.7 Hz, 6H); MS (ESI(+)) m/e 398 (M+H)+.
  • Example 1081 N-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-2-(imidazo[1,2-a]pyridin-7-yl)acetamide Example 1081A N-(2-fluoro-4-(piperidin-4-yl)phenyl)-2-(imidazo[1,2-a]pyridin-7-yl)acetamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-{3-fluoro-4-[(imidazo[1,2-a]pyridin-7-ylacetyl)amino]phenyl}piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 1081B N-[4-(1-benzoylpiperidin-4-yl)-2-fluorophenyl]-2-(imidazo[1,2-a]pyridin-7-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting N-(2-fluoro-4-(piperidin-4-yl)phenyl)-2-(imidazo[1,2-a]pyridin-7-yl)acetamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, methanol-d4) δ ppm 8.75 (dd, J=6.9, 0.9 Hz, 1H), 8.19 (dd, J=2.2, 0.8 Hz, 1H), 8.00 (d, J=2.2 Hz, 1H), 7.91 (s, 1H), 7.78 (t, J=8.2 Hz, 1H), 7.53-7.38 (m, 6H), 7.16-7.04 (m, 2H), 4.83-4.69 (m, 1H), 4.06 (s, 2H), 3.91-3.79 (m, 1H), 3.30-3.14 (m, 1H), 3.03-2.81 (m, 2H), 2.07-1.54 (m, 4H); MS (ESI(+)) m/e 457 (M+H)+.
  • Example 1154 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(pyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide
  • The title compound was prepared as described in Example 51A, substituting 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1 (2H)-yl)pyrimidine for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO d6) δ ppm 9.32 (t, J=5.9 Hz, 1H), 8.90-8.80 (m, 2H), 8.38 (dd, J=7.5, 1.2 Hz, 1H), 8.31 (d, J=2.0 Hz, 1H), 8.14 (d, J=2.1 Hz, 1H), 7.95 (d, J=8.5 Hz, 2H), 7.80 (s, 1H), 7.63 (d, J=8.4 Hz, 2H), 7.47 (dd, J=7.0, 1.5 Hz, 1H), 7.32-7.18 (m, 1H), 6.48-6.40 (m, 1H), 4.68 (d, J=5.8 Hz, 2H), 4.57-4.47 (m, 2H), 4.19-4.04 (m, 2H), 2.74-2.64 (m, 2H); MS (ESI(+)) m/e 411 (M+H)+.
  • Example 1155 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-[1-(2-methylpyrimidin-4-yl)-1,2,3,6-tetrahydropyridin-4-yl]benzamide
  • The title compound was prepared as described in Example 51A, substituting 2-methyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1 (2H)-yl)pyrimidine for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.07-8.95 (m, 1H), 8.78 (dd, J=7.0, 0.5 Hz, 1H), 8.28-8.16 (m, 2H), 8.00 (d, J=2.0 Hz, 1H), 7.97-7.87 (m, 2H), 7.80-7.74 (m, 1H), 7.63-7.54 (m, 2H), 7.40 (dd, J=7.0, 1.5 Hz, 1H), 7.04 (d, J=7.4 Hz, 1H), 6.41-6.31 (m, 1H), 4.66 (m, 2H), 4.47 (m, 2H), 4.10 (t, J=5.8 Hz, 2H), 2.77-2.64 (m, 2H), 2.55 (s, 3H); MS (ESI(+)) m/e 425 (M+H)+.
  • Example 1156 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-4-{1-[6-(trifluoromethyl)pyrimidin-4-yl]-1,2,3,6-tetrahydropyridin-4-yl}benzamide
  • The title compound was prepared as described in Example 51A, substituting 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1 (2H)-yl)-6-(trifluoromethyl)pyrimidine for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 4-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)benzamide for 4-bromoaniline. 1H NMR (400 MHz, DMSO-d6) δ ppm 9.30 (t, J=5.9 Hz, 1H), 8.84 (d, J=6.9 Hz, 1H), 8.68 (s, 1H), 8.29 (d, J=2.0 Hz, 1H), 8.11 (d, J=2.1 Hz, 1H), 7.99-7.89 (m, 2H), 7.77 (s, 1H), 7.72-7.58 (m, 2H), 7.45 (dd, J=7.0, 1.5 Hz, 1H), 7.38-7.20 (m, 1H), 6.43 (m, 1H), 4.67 (d, J=5.8 Hz, 2H), 4.53-4.31 (m, 2H), 4.13-3.92 (m, 2H), 2.70-2.62 (m, 2H); MS (ESI(+)) m/e 479 (M+H)+.
  • Example 1157 5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide Example 1157A 5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]decane-1-carboxylic acid
  • In a 50 mL round-bottomed flask, bromine (3 mL) was cooled to 0 OC and iron (0.56 g) was added. The mixture was stirred at 0 OC for 30 minutes. 3,5-Dimethyladamantane-1-carboxylic acid (0.5 g) was added. The mixture was stirred at room temperature overnight. After adding ice and 6N aqueous HCl (10 mL), ethyl acetate (20 mL), and saturated aqueous sodium sulfite were added. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with saturated sodium sulfite and dried over sodium sulfate. After filtration and removal of the solvent, the product was used directly in the next step.
  • Example 1157B 5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]dec-1-ylmethanol
  • To a solution of 5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]decane-1-carboxylic acid (4.57 g, 15.9 mmol) in tetrahydrofuran (10 mL) was added borane tetrahydrofuran complex (50 mL, 1 M in THF) dropwise and the mixture was stirred at room temperature for 14 hours. The reaction mixture was quenched with methanol, concentrated and purified by normal phase chromatography to provide the title compound.
  • Example 1157C 1-(5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl)-1H-pyrazole
  • To a solution of the 5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]dec-1-ylmethanol (8.0 g, 29.3 mmol) in toluene (60 mL) was added 1H-pyrazole (1.55 g, 22.7 mmol) and cyanomethylenetributylphosphorane (2.0 g, 29.3 mmol) under nitrogen. After the addition, the mixture was stirred at 90° C. overnight. The reaction mixture was then concentrated, and the residue was purified by normal phase chromatography to give the title compound.
  • Example 1157D 2-{[3,5-dimethyl-7-(1H-pyrazol-1-ylmethyl)tricyclo[3.3.1.13,7]dec-1-yl]oxy}ethanol
  • To a solution of 1-(5-bromo-3,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl)-1H-pyrazole (4.5 g) in ethane-1,2-diol (12 mL) was added triethylamine (3 mL) under nitrogen. The mixture was heated to 150 OC in a Biotage Initiator microwave reactor for 45 minutes. The mixture was poured over water and extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried with sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography to give the title compound.
  • Example 1157E 2-({3,5-dimethyl-7-[(5-methyl-1H-pyrazol-1-yl)methyl]tricyclo[3.3.1.13,7]dec-1-yl}oxy)ethanol
  • To a cold (−78° C.) solution of the 2-{[3,5-dimethyl-7-(1H-pyrazol-1-ylmethyl)tricyclo[3.3.1.13,7]dec-1-yl]oxy}ethanol (3.69 g) in tetrahydrofuran (50 mL) was added n-butyllithium (20 mL, 2.5 M in hexane) under nitrogen. The mixture was stirred at −78° C. for 1.5 hours. Iodomethane (10 mL) was added by syringe, and the mixture was stirred for an additional 3 hours. The reaction mixture was then quenched by the addition of aqueous ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried with sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography to give the title compound.
  • Example 1157F 1-({3,5-dimethyl-7-[2-(hydroxy)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-4-iodo-5-methyl-1H-pyrazole
  • To a solution of the 2-({3,5-dimethyl-7-[(5-methyl-1H-pyrazol-1-yl)methyl]tricyclo[3.3.1.13,7]dec-1-yl}oxy)ethanol (3.5 g, 11 mmol) in N,N-dimethylformamide (30 ml) was added N-iodosuccinimide (3.2 g, 14.22 mmol). The mixture was stirred at room temperature for 1.5 hours. The reaction mixture was then diluted with ethyl acetate and washed with aqueous sodium thiosulfate, water and brine. After drying over anhydrous sodium sulfate, the mixture was filtered and concentrated. The residue was purified by normal phase chromatography to give the title compound.
  • Example 1157G 2-({3-[(4-iodo-5-methyl-1H-pyrazol-1-yl)methyl]-5,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl}oxy)ethyl methanesulfonate
  • To a cold (0° C.) solution of 1-({3,5-dimethyl-7-[2-(hydroxy)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-4-iodo-5-methyl-1H-pyrazole (2.1 g) in methylene chloride (30 mL) was added triethylamine (1.42 g) followed by methanesulfonyl chloride (0.542 g). The mixture was stirred at room temperature for 1.5 hours and then was diluted with ethyl acetate. The layers were separated, and the organic layer was washed with water and brine, dried with sodium sulfate, filtered and concentrated to give the title compound, which was used in the next step without further purification.
  • Example 1157H 1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-4-iodo-5-methyl-1H-pyrazole
  • A solution of 2-({3-[(4-iodo-5-methyl-1H-pyrazol-1-yl)methyl]-5,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl}oxy)ethyl methanesulfonate (2.5 g) in 2 M methylamine in methanol (15 mL) was heated to 100° C. for 20 minutes in a Biotage Initiator microwave reactor. The reaction mixture was concentrated, and the residue was diluted with ethyl acetate. The organic layer was washed with saturated aqueous sodium bicarbonate solution, water and brine. The organic layer was dried with sodium sulfate, filtered and concentrated to give the title compound which was used in the next reaction without further purification.
  • Example 1157I tert-butyl[2-({3-[(4-iodo-5-methyl-1H-pyrazol-1-yl)methyl]-5,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl}oxy)ethyl]methylcarbamate
  • To a solution of 1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-4-iodo-5-methyl-1H-pyrazole (2.2 g) in tetrahydrofuran (30 mL) was added Boc-anhydride (1.26 g) and a catalytic amount of 4-dimethylaminopyridine. The mixture was stirred at room temperature for 1.5 hours and diluted with ethyl acetate. The solution was washed with saturated aqueous sodium bicarbonate, water and brine. The organic layer was dried with sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography to give the title compound
  • Example 1157J tert-butyl {2-[(3,5-dimethyl-7-{[5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl]methyl}tricyclo[3.3.1.13,7]dec-1-yl)oxy]ethyl}methylcarbamate
  • To a solution of tert-butyl[2-({3-[(4-iodo-5-methyl-1H-pyrazol-1-yl)methyl]-5,7-dimethyltricyclo[3.3.1.13,7]dec-1-yl}oxy)ethyl]methylcarbamate (2.8 g, 5.02 mmol) in dioxane (40 ml) was added bis(benzonitrile)palladium(II) chloride (96 mg, 0.251 mmol), S-Phos (206 mg, 0.502 mmol), and pinacolborane (2 mL) followed by triethylamine (2.5 mL, 5.25 mmol) under nitrogen. The mixture was stirred at reflux overnight. The reaction mixture was then diluted with ethyl acetate and washed with water and brine. After drying (anhydrous sodium sulfate), the solution was filtered and concentrated and the residue was purified by normal phase chromatographyto give the title compound.
  • Example 1157K 5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • The title compound was prepared as described in Example 51A, substituting tert-butyl {2-[(3,5-dimethyl-7-{[5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl]methyl}tricyclo[3.3.1.13,7]dec-1-yl)oxy]ethyl}methylcarbamate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and 5-bromo-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide for 4-bromoaniline followed by deprotection as described in Example 28A. 1H NMR (400 MHz, DMSO-d6) δ 9.50 (t, J=5.9 Hz, 1H), 8.88 (d, J=7.0 Hz, 1H), 8.76-8.64 (m, 2H), 8.34 (d, J=2.0 Hz, 1H), 8.16 (d, J=2.1 Hz, 1H), 7.93 (d, J=3.9 Hz, 1H), 7.83 (s, 1H), 7.76 (s, 1H), 7.49 (dd, J=7.0, 1.3 Hz, 1H), 7.23 (d, J=3.9 Hz, 1H), 4.65 (d, J=5.8 Hz, 2H), 3.92 (s, 2H), 3.63-3.55 (m, 2H), 3.04-2.91 (m, 2H), 2.51 (dd, J=6.0, 3.7 Hz, 3H), 2.45 (s, 3H), 1.42 (s, 2H), 1.31 (dd, J=27.3, 11.4 Hz, 4H), 1.16 (q, J=12.5 Hz, 4H), 1.07-0.99 (m, 2H), 0.87 (s, 6H); MS (ESI(+)) m/e 587 (M+H)+.
  • Example 1158 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide Example 1158A tert-butyl 4-(3-fluoro-4-(methoxycarbonyl)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate
  • The title compound was prepared as described in Example 51A, substituting tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate for 1-isobutyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole and methyl 4-bromo-2-fluorobenzoate for 4-bromoaniline.
  • Example 1158B tert-butyl 4-(3-fluoro-4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1B, substituting tert-butyl 4-(3-fluoro-4-(methoxycarbonyl)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate for N-isopentyl-4-nitrobenzamide.
  • Example 1158C 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-fluorobenzoic acid
  • The title compound was prepared as described in Example 4B, substituting tert-butyl 4-(3-fluoro-4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate for methyl 4-(3-imidazo[1,2-a]pyridin-6-ylureido)benzoate.
  • Example 1158D tert-butyl 4-(3-fluoro-4-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting imidazo[1,2-a]pyrazin-6-ylmethanamine for 3-methylbutan-1-amine and 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-fluorobenzoic acid for 4-nitrobenzoic acid.
  • Example 1158E 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(3-fluoro-4-((imidazo[1,2-a]pyrazin-6-ylmethyl)carbamoyl)phenyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 1158F 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-{1-[(1-methylcyclopropyl)carbonyl]piperidin-4-yl}benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 1-methylcyclopropanecarboxylic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, METHANOL-d4) δ ppm 9.27 (s, 1H), 8.72 (s, 1H), 8.28 (d, J=1.5 Hz, 1H), 8.11 (d, J=1.6 Hz, 1H), 7.78 (t, J=7.9 Hz, 1H), 7.27-7.11 (m, 2H), 4.79 (s, 2H), 4.63-4.51 (m, 2H), 3.23-2.72 (m, 3H), 1.99-1.88 (m, 2H), 1.71-1.54 (m, 2H), 1.33 (s, 3H), 1.02-0.83 (m, 2H), 0.73-0.55 (m, 2H); MS (ESI(+)) m/e 436 (M+H)+.
  • Example 1159 4-(1-benzoylpiperidin-4-yl)-2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and benzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, METHANOL-d4) δ ppm 9.28-9.20 (m, 1H), 8.74-8.65 (m, 1H), 8.30-8.21 (m, 1H), 8.13-8.05 (m, 1H), 7.79 (t, J=7.9 Hz, 1H), 7.51-7.40 (m, 5H), 7.29-7.14 (m, 2H), 4.85-4.72 (m, 3H), 3.94-3.76 (m, 1H), 3.30-3.14 (m, 1H), 3.05-2.86 (m, 2H), 2.07-1.60 (m, 4H); MS (ESI(+)) m/e 458 (M+H)+.
  • Example 1160 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(2-methylpropanoyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and isobutyric acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, METHANOL-d4) δ ppm 9.26 (s, 1H), 8.75-8.66 (m, 1H), 8.31-8.22 (m, 1H), 8.14-8.06 (m, 1H), 7.78 (t, J=8.0 Hz, 1H), 7.27-7.10 (m, 2H), 4.79 (s, 2H), 4.75-4.66 (m, 1H), 4.26-4.14 (m, 1H), 3.29-3.15 (m, 1H), 3.09-2.86 (m, 2H), 2.79-2.61 (m, 1H), 2.05-1.85 (m, 2H), 1.74-1.48 (m, 2H), 1.18-1.05 (m, 6H); MS (ESI(+)) m/e 424 (M+H)+.
  • Example 1161 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-[1-(3,3,3-trifluoropropanoyl)piperidin-4-yl]benzamide
  • The title compound was prepared as described in Example 1A, substituting 2-fluoro-N-(imidazo[1,2-a]pyrazin-6-ylmethyl)-4-(piperidin-4-yl)benzamide for 3-methylbutan-1-amine and 3,3,3-trifluoropropanoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, METHANOL-d4) δ ppm 9.24 (s, 1H), 8.74-8.65 (m, 1H), 8.30-8.21 (m, 1H), 8.13-8.04 (m, 1H), 7.78 (t, J=7.9 Hz, 1H), 7.27-7.10 (m, 2H), 4.78 (s, 2H), 4.72-4.64 (m, 1H), 4.14-4.00 (m, 1H), 3.63-3.45 (m, 2H), 3.30-3.21 (m, 1H), 3.03-2.86 (m, 1H), 2.77 (m, 1H), 1.98-1.86 (m, 2H), 1.65 (m, 2H); MS (ESI(+)) m/e 464 (M+H)+.
  • Example 1162 N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)acetamide Example 1162A tert-butyl 4-(4-(2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)acetamido)phenyl)piperidine-1-carboxylate
  • The title compound was prepared as described in Example 1A, substituting tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate for 3-methylbutan-1-amine and 2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)acetic acid hydrochloride for 4-nitrobenzoic acid.
  • Example 1162B 2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide
  • The title compound was prepared as described in Example 28A, substituting tert-butyl 4-(4-(2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)acetamido)phenyl)piperidine-1-carboxylate for tert-butyl 4-(4-(3-imidazo[1,2-a]pyridin-6-ylureido)phenyl)-5,6-dihydropyridine-1(2H)-carboxylate.
  • Example 1162C N-{4-[1-(2-fluorobenzoyl)piperidin-4-yl]phenyl}-2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)acetamide
  • The title compound was prepared as described in Example 1A, substituting 2-([1,2,4]triazolo[4,3-a]pyridin-6-yl)-N-(4-(piperidin-4-yl)phenyl)acetamide for 3-methylbutan-1-amine and 2-fluorobenzoic acid for 4-nitrobenzoic acid. 1H NMR (400 MHz, METHANOL-d4) δ ppm 10.28-10.20 (m, 1H), 9.30 (s, 1H), 8.54 (s, 1H), 7.85-7.74 (m, 1H), 7.63-7.46 (m, 4H), 7.41-7.31 (m, 3H), 7.31-7.20 (m, 2H), 4.77-4.65 (m, 1H), 3.75 (s, 2H), 3.56-3.46 (m, 1H), 3.30-3.15 (m, 1H), 2.99-2.75 (m, 2H), 1.97-1.86 (m, 1H), 1.81-1.49 (m, 3H); MS (ESI(+)) m/e 458 (M+H)+.
  • Example 1163 N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-1-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide
  • A solution of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide (0.100 g, 0.197 mmol) in N,N-dimethylformamide (2 ml) was added tert-butyl 4-(2-bromoethyl)piperazine-1-carboxylate (0.058 g, 0.197 mmol) followed by N,N-diisopropylethylamine (0.138 ml, 0.788 mmol) and the reaction was stirred overnight. The reaction mixture was purified directly using normal phase chromatography and the resulting material was treated with HCl in dioxane (4M) for 2 hours then concentrated to give the title compound as a hydrochloride salt. 1H NMR (500 MHz, DMSO-d6) δ 14.64 (s, 1H), 10.40 (s, 1H), 9.72 (s, 1H), 9.54 (t, J=6.0 Hz, 1H), 8.89 (d, J=6.9 Hz, 1H), 8.34 (d, J=1.8 Hz, 1H), 8.22 (s, 1H), 8.16 (d, J=2.1 Hz, 1H), 7.91 (d, J=3.9 Hz, 1H), 7.87 (s, 1H), 7.83 (s, 1H), 7.50 (dd, J=7.0, 1.4 Hz, 1H), 7.28 (d, J=3.8 Hz, 1H), 4.64 (d, J=5.8 Hz, 2H), 4.23-3.54 (m, 10H), 3.35 (d, J=38.3 Hz, 8H), 1.72 (d, J=77.7 Hz, 4H), 0.98 (s, 3H); MS (ESI(+)) m/e 547 (M+H)+.
  • Example 1164 S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine
  • A suspension of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide (0.100 g, 0.197 mmol) and 4-methylmorpholine (0.108 ml, 0.985 mmol) in N,N-diisopropylethylamine (0.5 ml) was added to 2,5-dioxopyrrolidin-1-yl 2-bromoacetate (0.056 g, 0.236 mmol) in N,N-diisopropylethylamine (0.5 ml) and stirred at room temperature. After 1 hour, (R)-2-amino-3-mercaptopropanoic acid (0.119 g, 0.985 mmol) as a solution in water (1 ml) was added. After stirring an additional 1 hour, a few drops of TFA were added to form a homogeneous solution which was purified by revere phase chromatography. The product containing peaks were lyophilized to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ 9.30 (t, J=6.0 Hz, 1H), 8.86 (d, J=7.0 Hz, 1H), 8.44 (bs, 2H), 8.32 (d, J=2.0 Hz, 1H), 8.18-8.11 (m, 2H), 7.86-7.77 (m, 3H), 7.46 (dd, J=7.0, 1.5 Hz, 1H), 7.27 (dd, J=3.7, 1.8 Hz, 1H), 4.65 (d, J=5.8 Hz, 2H), 4.21-4.13 (m, 1H), 4.13-4.02 (m, 2H), 4.02-3.92 (m, 1H), 3.87-3.57 (m, 3H), 3.42-3.29 (m, 1H), 3.29-3.18 (m, 1H), 3.10 (dd, J=14.6, 4.7 Hz, 1H), 2.98 (dd, J=14.6, 7.6 Hz, 1H), 1.60-1.18 (m, 4H), 0.96 (s, 3H); MS (ESI(+)) m/e 596 (M+H)+.
  • Example 1165 5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide
  • A suspension of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide (0.139 g, 0.274 mmol), 2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azaicosan-20-oic acid (0.100 g, 0.274 mmol), 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (0.104 g, 0.274 mmol) and 4-methylmorpholine (0.105 ml, 0.958 mmol) was stirred at room temperature for 3 hours. The reaction mixture was purified directly by normal phase chromatography and the resulting material was treated with HCl/dioxane (4 M) then concentrated to give the title compound as a hydrochloride salt. 1H NMR (400 MHz, DMSO-d6) δ 14.71 (s, 1H), 9.58 (t, J=6.0 Hz, 1H), 8.89 (d, J=7.0 Hz, 1H), 8.35 (d, J=1.9 Hz, 1H), 8.16 (d, J=2.1 Hz, 2H), 8.06 (s, 3H), 7.92 (d, J=3.9 Hz, 1H), 7.83 (s, 2H), 7.50 (dd, J=7.0, 1.2 Hz, 1H), 7.26 (d, J=3.8 Hz, 1H), 4.64 (d, J=5.8 Hz, 2H), 4.05 (s, 2H), 3.80 (dd, J=11.8, 6.8 Hz, 2H), 3.66-3.58 (m, 4H), 3.55 (dd, J=9.2, 4.4 Hz, 4H), 3.50 (t, J=7.5 Hz, 8H), 3.37-3.26 (m, 1H), 3.23-3.13 (m, 1H), 2.99-2.90 (m, 2H), 2.55 (t, J=6.6 Hz, 2H), 1.53-1.19 (m, 4H), 0.95 (s, 3H); MS (ESI(+)) m/e 682 (M+H)+.
  • Example 1166 S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-L-cysteine
  • A suspension of N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-{1-[(4-methylpiperidin-4-yl)methyl]-1H-pyrazol-4-yl}thiophene-2-carboxamide (0.050 g, 0.099 mmol) and 4-methylmorpholine (0.054 ml, 0.493 mmol) in N,N-diisopropylethylamine (0.5 ml) was added to 2,5-dioxopyrrolidin-1-yl 3-(2-bromoacetamido)propanoate (0.036 g, 0.118 mmol) in N,N-diisopropylethylamine (0.5 ml) and the mixture was stirred at room temperature. After 1 hour, (R)-2-amino-3-mercaptopropanoic acid (0.060 g, 0.493 mmol) as a solution in water (1 ml) was added. After 1 hour, a few drops of TFA were added to form a homogeneous solution and the mixture was purified by chromatography to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ 9.28 (t, J=5.9 Hz, 1H), 8.85 (d, J=7.0 Hz, 1H), 8.47 (s, 2H), 8.30 (d, J=1.9 Hz, 1H), 8.21 (t, J=5.6 Hz, 1H), 8.17-8.09 (m, 2H), 7.84 (s, 1H), 7.81-7.74 (m, 2H), 7.44 (dd, J=7.0, 1.1 Hz, 1H), 7.27 (d, J=3.8 Hz, 1H), 4.65 (d, J=5.8 Hz, 2H), 4.20 (dd, J=7.5, 4.3 Hz, 1H), 4.06 (s, 2H), 3.90-3.78 (m, 2H), 3.35-2.94 (m, 8H), 2.59-2.41 (m, 2H), 1.57-1.19 (m, 4H), 0.95 (s, 3H); MS (ESI(+)) m/e 667 (M+H)+.

Claims (3)

1-10. (canceled)
11. A method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia in a patient, said method comprising administering to the patient a therapeutically effective amount of a compound or a therapeutically acceptable salt thereof, selected from the group consisting of:
5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-1-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine;
5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide; and
S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-L-cysteine.
12. A method of treating inflammatory and tissue repair disorders; particularly rheumatoid arthritis, inflammatory bowel disease, asthma and COPD (chronic obstructive pulmonary disease), osteoarthritis, osteoporosis and fibrotic diseases; dermatosis, including psoriasis, atopic dermatitis and ultra-violet induced skin damage; autoimmune diseases including systemic lupus erythematosis, multiple sclerosis, psoriatic arthritis, ankylosing spondylitis, tissue and organ rejection, Alzheimer's disease, stroke, athersclerosis, restenosis, diabetes, glomerulonephritis, cancer, particularly wherein the cancer is selected from breast, prostate, lung, colon, cervix, ovary, skin, CNS, bladder, pancreas, leukemia, lymphoma or Hodgkin's disease, cachexia, inflammation associated with infection and certain viral infections, including Acquired Immune Deficiency Syndrome (AIDS), adult respiratory distress syndrome, and ataxia telengiectasia or spleen cancer in a patient, said method comprising administering to the patient therapeutically effective amount of the compound or a therapeutically acceptable salt thereof, selected from the group consisting of:
5-[1-({3,5-dimethyl-7-[2-(methylamino)ethoxy]tricyclo[3.3.1.13,7]dec-1-yl}methyl)-5-methyl-1H-pyrazol-4-yl]-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide;
N-(imidazo[1,2-a]pyridin-7-ylmethyl)-5-[1-({4-methyl-[2-(piperazin-1-yl)ethyl]piperidin-4-yl}methyl)-1H-pyrazol-4-yl]thiophene-2-carboxamide;
S-(2-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-2-oxoethyl)-L-cysteine;
5-(1-{[1-(15-amino-4,7,10,13-tetraoxapentadecan-1-oyl)-4-methylpiperidin-4-yl]methyl}-1H-pyrazol-4-yl)-N-(imidazo[1,2-a]pyridin-7-ylmethyl)thiophene-2-carboxamide; and
S-{2-[(3-{4-[(4-{5-[(imidazo[1,2-a]pyridin-7-ylmethyl)carbamoyl]thiophen-2-yl}-1H-pyrazol-1-yl)methyl]-4-methylpiperidin-1-yl}-3-oxopropyl)amino]-2-oxoethyl}-1-cysteine; and a therapeutically effective amount of one additional therapeutic agent or more than one additional therapeutic agent.
US14/878,858 2012-05-11 2015-10-08 Nampt inhibitors Abandoned US20170135994A9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/878,858 US20170135994A9 (en) 2012-05-11 2015-10-08 Nampt inhibitors

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261645679P 2012-05-11 2012-05-11
US201261718998P 2012-10-26 2012-10-26
US201361779626P 2013-03-13 2013-03-13
US13/891,349 US9193723B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US13/891,366 US9187472B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US14/878,858 US20170135994A9 (en) 2012-05-11 2015-10-08 Nampt inhibitors

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/891,349 Division US9193723B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US13/891,366 Division US9187472B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors

Publications (2)

Publication Number Publication Date
US20160184282A1 true US20160184282A1 (en) 2016-06-30
US20170135994A9 US20170135994A9 (en) 2017-05-18

Family

ID=48576512

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/891,366 Active US9187472B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US13/891,349 Active US9193723B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US14/878,836 Abandoned US20160184281A1 (en) 2012-05-11 2015-10-08 Nampt inhibitors
US14/878,858 Abandoned US20170135994A9 (en) 2012-05-11 2015-10-08 Nampt inhibitors

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/891,366 Active US9187472B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US13/891,349 Active US9193723B2 (en) 2012-05-11 2013-05-10 NAMPT inhibitors
US14/878,836 Abandoned US20160184281A1 (en) 2012-05-11 2015-10-08 Nampt inhibitors

Country Status (25)

Country Link
US (4) US9187472B2 (en)
EP (1) EP2847192A1 (en)
JP (1) JP2015516435A (en)
KR (1) KR20150007349A (en)
CN (1) CN104428301A (en)
AR (1) AR091022A1 (en)
AU (1) AU2013259344A1 (en)
BR (1) BR112014028042A2 (en)
CA (1) CA2873060A1 (en)
CL (1) CL2014003026A1 (en)
CO (1) CO7151512A2 (en)
CR (1) CR20140573A (en)
DO (1) DOP2014000253A (en)
EC (1) ECSP14030779A (en)
HK (2) HK1208221A1 (en)
IL (1) IL235354A0 (en)
MX (1) MX2014013734A (en)
PE (1) PE20150224A1 (en)
PH (1) PH12014502513A1 (en)
RU (1) RU2014150049A (en)
SG (1) SG11201407372UA (en)
TW (1) TW201350481A (en)
UA (1) UA114323C2 (en)
WO (1) WO2013170112A1 (en)
ZA (1) ZA201407904B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428301A (en) * 2012-05-11 2015-03-18 艾伯维公司 NAMPT inhibitors
US9266891B2 (en) 2012-11-16 2016-02-23 Boehringer Ingelheim International Gmbh Substituted [1,2,4]triazolo[4,3-A]pyrazines that are BRD4 inhibitors
TW201625578A (en) 2014-04-18 2016-07-16 千禧製藥公司 Quinoxaline compounds and uses thereof
TW201625641A (en) * 2014-05-22 2016-07-16 健臻公司 NAMPT inhibitors and methods
RU2725979C2 (en) * 2014-06-25 2020-07-08 Ф. Хоффманн-Ля Рош Аг Imidazo[1,2-a]pyrazin-1-yl-benzamides for treating spinal muscular atrophy
AU2015293534A1 (en) * 2014-07-23 2017-02-02 Aurigene Discovery Technologies Limited 4,5-dihydroisoxazole derivatives as NAMPT inhibitors
CA2974078A1 (en) 2015-01-20 2016-07-28 Millennium Pharmaceuticals, Inc. Quinazoline and quinoline compounds and uses thereof
PE20181496A1 (en) 2015-10-23 2018-09-18 Vifor Int Ag NOVELTY FERROPORTIN INHIBITORS
EP3438091A4 (en) * 2016-03-30 2019-11-27 Ajinomoto Co., Inc. Compound having enhancing activity for glucagon-like peptide-1 receptor actions
EP3279192A1 (en) * 2016-08-05 2018-02-07 Centre Hospitalier Universitaire Vaudois (CHUV) Piperidine derivatives for use in the treatment of pancreatic cancer
US11638762B2 (en) 2016-10-18 2023-05-02 Seagen Inc. Targeted delivery of nicotinamide adenine dinucleotide salvage pathway inhibitors
JOP20180036A1 (en) 2017-04-18 2019-01-30 Vifor Int Ag Novel ferroportin-inhibitor salts
WO2018201087A1 (en) 2017-04-27 2018-11-01 Seattle Genetics, Inc. Quaternized nicotinamide adenine dinucleotide salvage pathway inhibitor conjugates
GB201908453D0 (en) * 2019-06-12 2019-07-24 Enterprise Therapeutics Ltd Compounds for treating respiratory disease
WO2021032935A1 (en) * 2019-08-21 2021-02-25 Kalvista Pharmaceuticals Limited Enzyme inhibitors
AU2020406139A1 (en) 2019-12-20 2022-06-30 Bayer Aktiengesellschaft Substituted thiophene carboxamides, thiophene carboxylic acids and derivatives thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264444A1 (en) * 2008-02-20 2009-10-22 Sultan Chowdhury Organic compounds
US20130303511A1 (en) * 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
WO2014111871A1 (en) * 2013-01-17 2014-07-24 Aurigene Discovery Technologies Limited 4,5-dihydroisoxazole derivatives as nampt inhibitors

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115155A (en) 1993-09-09 2003-04-30 Upjohn Co Substituted oxazine and thiazine oxazolidinone antimicrobials.
EP1019385B1 (en) 1995-09-15 2004-01-14 PHARMACIA & UPJOHN COMPANY Aminoaryl oxazolidinone n-oxides
DE19624659A1 (en) 1996-06-20 1998-01-08 Klinge Co Chem Pharm Fab New pyridylalkene and pyridylalkanoic acid amides
DE19624668A1 (en) 1996-06-20 1998-02-19 Klinge Co Chem Pharm Fab Use of pyridylalkane, pyridylalken or pyridylalkynamides
US20030220234A1 (en) 1998-11-02 2003-11-27 Selvaraj Naicker Deuterated cyclosporine analogs and their use as immunodulating agents
GB9918037D0 (en) 1999-07-30 1999-09-29 Biochemie Gmbh Organic compounds
EP1348434A1 (en) 2002-03-27 2003-10-01 Fujisawa Deutschland GmbH Use of pyridyl amides as inhibitors of angiogenesis
WO2005016928A1 (en) * 2003-08-15 2005-02-24 Banyu Pharmaceutical Co., Ltd. Imidazopyridine derivatives
WO2005085252A1 (en) * 2004-03-04 2005-09-15 Biofocus Discovery Limited Imidazo ‘1,2-a’ pyrazine compounds which interact with protein kinases
US7307163B2 (en) 2004-04-19 2007-12-11 Symed Labs Limited Process for the preparation of linezolid and related compounds
US7429661B2 (en) 2004-07-20 2008-09-30 Symed Labs Limited Intermediates for linezolid and related compounds
EP1778685B1 (en) * 2004-08-02 2008-03-26 Schwarz Pharma Ag Indolizine carboxamides and the aza and diaza derivatives thereof
WO2006039164A2 (en) 2004-09-29 2006-04-13 Amr Technology, Inc. Novel cyclosporin analogues and their pharmaceutical uses
TW200716636A (en) 2005-05-31 2007-05-01 Speedel Experimenta Ag Heterocyclic spiro-compounds
US7514068B2 (en) 2005-09-14 2009-04-07 Concert Pharmaceuticals Inc. Biphenyl-pyrazolecarboxamide compounds
WO2008026018A1 (en) 2006-09-01 2008-03-06 Topotarget Switzerland Sa New method for the treatment of inflammatory diseases
US8796267B2 (en) 2006-10-23 2014-08-05 Concert Pharmaceuticals, Inc. Oxazolidinone derivatives and methods of use
EP2121641B1 (en) 2007-02-15 2014-09-24 F. Hoffmann-La Roche AG 2-aminooxazolines as taar1 ligands
KR20100105802A (en) 2007-04-19 2010-09-29 콘서트 파마슈티컬즈, 인크. Deuterated morpholinyl compounds
US7531685B2 (en) 2007-06-01 2009-05-12 Protia, Llc Deuterium-enriched oxybutynin
US20090131485A1 (en) 2007-09-10 2009-05-21 Concert Pharmaceuticals, Inc. Deuterated pirfenidone
US20090118238A1 (en) 2007-09-17 2009-05-07 Protia, Llc Deuterium-enriched alendronate
US20090088416A1 (en) 2007-09-26 2009-04-02 Protia, Llc Deuterium-enriched lapaquistat
US20090082471A1 (en) 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched fingolimod
EP2209774A1 (en) 2007-10-02 2010-07-28 Concert Pharmaceuticals Inc. Pyrimidinedione derivatives
US20090105338A1 (en) 2007-10-18 2009-04-23 Protia, Llc Deuterium-enriched gabexate mesylate
WO2009051782A1 (en) 2007-10-18 2009-04-23 Concert Pharmaceuticals Inc. Deuterated etravirine
WO2009055006A1 (en) 2007-10-26 2009-04-30 Concert Pharmaceuticals, Inc. Deuterated darunavir
EP2098231A1 (en) 2008-03-05 2009-09-09 Topotarget Switzerland SA Use of NAD formation inhibitors for the treatment of ischemia-reperfusion injury
BR112013004858A8 (en) * 2010-09-03 2018-01-02 Forma Tm Llc 4 - {[(pyridin-3-yl-methyl) aminocarbonyl] amino} benzene sulfone derivatives as nampt inhibitors for therapy of diseases such as cancer
AU2011295725B2 (en) * 2010-09-03 2015-03-26 Forma Tm, Llc. Novel compounds and compositions for the inhibition of NAMPT
BR112013025792A2 (en) * 2011-04-05 2018-04-24 Pfizer Ltd PYRROID-RELATED KINASE INHIBITORS [2,3-D] PYRIMIDINE TROPOMISINE
WO2012154194A1 (en) 2011-05-09 2012-11-15 Forma Tm, Llc Piperidine derivatives and compositions for the inhibition of nicotinamide phosphoribosyltransferase (nampt)
CN104125947A (en) * 2011-12-21 2014-10-29 生物区欧洲有限公司 Heterocyclic urea compounds
JP2015508785A (en) * 2012-03-02 2015-03-23 ジェネンテック, インコーポレイテッド Pyridinyl and pyrimidinyl sulfoxide and sulfone derivatives
SG11201405054PA (en) * 2012-03-02 2014-09-26 Genentech Inc Amido-benzyl sulfone and sulfoxide derivatives
WO2013127268A1 (en) * 2012-03-02 2013-09-06 Genentech,Inc. Amido-benzyl sulfone and sulfonamide derivatives
WO2013130943A1 (en) * 2012-03-02 2013-09-06 Genentech, Inc. Alkyl-and di-substituted amido-benzyl sulfonamide derivatives
WO2013130935A1 (en) * 2012-03-02 2013-09-06 Genentech, Inc. Amido-benzyl sulfoxide derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264444A1 (en) * 2008-02-20 2009-10-22 Sultan Chowdhury Organic compounds
US20130303511A1 (en) * 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
US9187472B2 (en) * 2012-05-11 2015-11-17 Abbvie Inc. NAMPT inhibitors
US9193723B2 (en) * 2012-05-11 2015-11-24 Abbvie Inc. NAMPT inhibitors
WO2014111871A1 (en) * 2013-01-17 2014-07-24 Aurigene Discovery Technologies Limited 4,5-dihydroisoxazole derivatives as nampt inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Galli; Cancer Res, 2010, 70, 8-11. *

Also Published As

Publication number Publication date
CR20140573A (en) 2015-02-25
TW201350481A (en) 2013-12-16
MX2014013734A (en) 2015-06-10
CA2873060A1 (en) 2013-11-14
US20130303508A1 (en) 2013-11-14
EP2847192A1 (en) 2015-03-18
HK1208221A1 (en) 2016-02-26
US20170135994A9 (en) 2017-05-18
DOP2014000253A (en) 2015-01-15
US9187472B2 (en) 2015-11-17
PE20150224A1 (en) 2015-03-08
CL2014003026A1 (en) 2014-12-26
JP2015516435A (en) 2015-06-11
HK1208450A1 (en) 2016-03-04
CN104428301A (en) 2015-03-18
US9193723B2 (en) 2015-11-24
SG11201407372UA (en) 2014-12-30
AU2013259344A1 (en) 2014-11-13
RU2014150049A (en) 2016-07-10
IL235354A0 (en) 2014-12-31
CO7151512A2 (en) 2014-12-29
UA114323C2 (en) 2017-05-25
US20130303511A1 (en) 2013-11-14
US20160184281A1 (en) 2016-06-30
ECSP14030779A (en) 2015-09-30
PH12014502513A1 (en) 2014-12-15
KR20150007349A (en) 2015-01-20
BR112014028042A2 (en) 2017-06-27
ZA201407904B (en) 2017-08-30
WO2013170112A1 (en) 2013-11-14
AR091022A1 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
US8975398B2 (en) NAMPT inhibitors
US9187472B2 (en) NAMPT inhibitors
US10093624B2 (en) NAMPT and ROCK inhibitors
US20120122924A1 (en) Nampt inhibitors
EP2776393B1 (en) Nampt inhibitors
WO2013170113A1 (en) Nampt inhibitors
US9073922B2 (en) Pyrrolo[2,3-B]pyridine CDK9 kinase inhibitors
US9796708B2 (en) Pyrrolo [2,3-B] pyridine CDK9 kinase inhibitors
US9334264B2 (en) NAMPT inhibitors
US9758511B2 (en) NAMPT inhibitors
US20170253562A1 (en) Nampt Inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION