US20160174895A1 - Systems and methods for imaging changes in tissue - Google Patents
Systems and methods for imaging changes in tissue Download PDFInfo
- Publication number
- US20160174895A1 US20160174895A1 US15/040,729 US201615040729A US2016174895A1 US 20160174895 A1 US20160174895 A1 US 20160174895A1 US 201615040729 A US201615040729 A US 201615040729A US 2016174895 A1 US2016174895 A1 US 2016174895A1
- Authority
- US
- United States
- Prior art keywords
- parametric
- parametric measurement
- measurement data
- data
- tissue region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 238000003384 imaging method Methods 0.000 title claims description 41
- 238000011282 treatment Methods 0.000 claims abstract description 96
- 230000004044 response Effects 0.000 claims abstract description 55
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 13
- 201000010099 disease Diseases 0.000 claims abstract description 12
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 8
- 210000001519 tissue Anatomy 0.000 claims description 121
- 206010028980 Neoplasm Diseases 0.000 claims description 111
- 238000005259 measurement Methods 0.000 claims description 80
- 239000008280 blood Substances 0.000 claims description 28
- 210000004369 blood Anatomy 0.000 claims description 28
- 230000001965 increasing effect Effects 0.000 claims description 23
- 201000011510 cancer Diseases 0.000 claims description 21
- 230000003247 decreasing effect Effects 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 15
- 230000002490 cerebral effect Effects 0.000 claims description 10
- 230000008728 vascular permeability Effects 0.000 claims description 6
- 230000012010 growth Effects 0.000 claims description 5
- 210000000056 organ Anatomy 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 210000000481 breast Anatomy 0.000 claims description 4
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 3
- 230000017531 blood circulation Effects 0.000 claims description 3
- 210000000988 bone and bone Anatomy 0.000 claims description 3
- 210000002216 heart Anatomy 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- 210000002307 prostate Anatomy 0.000 claims description 3
- 210000004100 adrenal gland Anatomy 0.000 claims description 2
- 210000003679 cervix uteri Anatomy 0.000 claims description 2
- 210000001072 colon Anatomy 0.000 claims description 2
- 210000002751 lymph Anatomy 0.000 claims description 2
- 210000001672 ovary Anatomy 0.000 claims description 2
- 210000000496 pancreas Anatomy 0.000 claims description 2
- 210000003899 penis Anatomy 0.000 claims description 2
- 210000000664 rectum Anatomy 0.000 claims description 2
- 210000003079 salivary gland Anatomy 0.000 claims description 2
- 210000001732 sebaceous gland Anatomy 0.000 claims description 2
- 210000003491 skin Anatomy 0.000 claims description 2
- 210000000952 spleen Anatomy 0.000 claims description 2
- 210000001550 testis Anatomy 0.000 claims description 2
- 210000001541 thymus gland Anatomy 0.000 claims description 2
- 210000001685 thyroid gland Anatomy 0.000 claims description 2
- 210000003437 trachea Anatomy 0.000 claims description 2
- 210000003932 urinary bladder Anatomy 0.000 claims description 2
- 210000004291 uterus Anatomy 0.000 claims description 2
- 238000013459 approach Methods 0.000 abstract description 17
- 230000036541 health Effects 0.000 abstract description 7
- 238000012544 monitoring process Methods 0.000 abstract description 7
- 238000004458 analytical method Methods 0.000 description 39
- 230000004083 survival effect Effects 0.000 description 32
- 238000002595 magnetic resonance imaging Methods 0.000 description 28
- 238000002560 therapeutic procedure Methods 0.000 description 27
- 238000001959 radiotherapy Methods 0.000 description 26
- 230000010412 perfusion Effects 0.000 description 23
- 230000008081 blood perfusion Effects 0.000 description 13
- 238000013517 stratification Methods 0.000 description 10
- 238000002512 chemotherapy Methods 0.000 description 9
- 239000000090 biomarker Substances 0.000 description 8
- 230000004075 alteration Effects 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 238000011227 neoadjuvant chemotherapy Methods 0.000 description 7
- 206010006187 Breast cancer Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 208000005017 glioblastoma Diseases 0.000 description 6
- 238000002203 pretreatment Methods 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000013535 dynamic contrast enhanced MRI Methods 0.000 description 4
- 230000000004 hemodynamic effect Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 210000004885 white matter Anatomy 0.000 description 4
- 206010018338 Glioma Diseases 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000002872 contrast media Substances 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 239000002547 new drug Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000003727 cerebral blood flow Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- IZOOGPBRAOKZFK-UHFFFAOYSA-K gadopentetate Chemical compound [Gd+3].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O IZOOGPBRAOKZFK-UHFFFAOYSA-K 0.000 description 2
- 230000002962 histologic effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000002721 intensity-modulated radiation therapy Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000001325 log-rank test Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 206010019695 Hepatic neoplasm Diseases 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 238000010824 Kaplan-Meier survival analysis Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010317 ablation therapy Methods 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 230000002137 anti-vascular effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 230000007762 localization of cell Effects 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002625 monoclonal antibody therapy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000009258 post-therapy Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 239000000092 prognostic biomarker Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002534 radiation-sensitizing agent Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4848—Monitoring or testing the effects of treatment, e.g. of medication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/414—Evaluating particular organs or parts of the immune or lymphatic systems
- A61B5/415—Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/414—Evaluating particular organs or parts of the immune or lymphatic systems
- A61B5/416—Evaluating particular organs or parts of the immune or lymphatic systems the spleen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0263—Measuring blood flow using NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/501—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
Definitions
- the present invention provides systems and methods for monitoring tissue regions.
- the present invention provides systems and methods for detecting changes in tissue regions over a period of time.
- the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region.
- the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- Cancer is a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these to spread, either by direct growth into adjacent tissue through invasion, or by implantation into distant sites by metastasis (where cancer cells are transported through the bloodstream or lymphatic system). Cancer may affect people at all ages, but risk tends to increase with age. It is one of the principal causes of death in developed countries.
- cancer There are many types of cancer. Severity of symptoms depends on the site and character of the malignancy and whether there is metastasis. A definitive diagnosis usually requires the histologic examination of tissue by a pathologist. This tissue is obtained by biopsy or surgery. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for the type of cancer pathology. Drugs that target specific cancers already exist for several types of cancer. If untreated, cancers may eventually cause illness and death, though this is not always the case.
- Cancer can be treated by surgery, chemotherapy, radiation therapy, immunotherapy, monoclonal antibody therapy or other methods.
- the choice of therapy depends upon the location and grade of the tumor and the stage of the disease, as well as the general state of the patient (performance status). A large number of experimental cancer treatments are also under development.
- Neoadjuvant chemotherapy in the treatment of breast cancer produces significant clinical benefit to patients (PR+CR rates >70%) (see, e.g., Early Breast Cancer Trialists' Collaborative Group: Polychemotherapy for early breast cancer: An overview of the randomized trials. Lancet 352, 930-942, 1998) and can be used to increase the numbers of patients eligible for a breast preservation procedure.
- Neoadjuvant chemotherapy has the benefit of allowing observation of chemoresponsiveness, and biological evaluation of the cancer both before and after chemotherapy administration.
- improved techniques for evaluating the effectiveness of a particular treatment are needed.
- improved techniques designed to evaluate the effectiveness of a particular treatment during the course of the treatment are needed and would provide for individualization of treatments. This would save patients from systemic toxicity from ineffective treatment and reduce costs to the health care system.
- improved techniques for evaluating candidate therapies are needed.
- the present invention provides systems and methods for monitoring tissue regions.
- the present invention provides systems and methods for detecting changes in tissue regions over a period of time.
- the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region.
- the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- the present invention utilizes imaging devices, control software, signal processing software, and display components that permit the collection of data, processing of data, and display of data according to any of the methods described herein.
- the systems may employ components configured together in a single device or may include multiple different devices in one or more locations. Where multiple devices are used, the device may be in wired or wireless communication with one another to permit the flow of data from device to device, as needed.
- the present invention also provides user interfaces that display data generated by the novel methods described herein. For example, in some embodiments, multi-color tissue representations are provided that reveal changes in tissue over time. The changes may be represented any number of other ways as well.
- the user interface is displayed on a computer monitor, a video monitor, a hand-held device, or any other desired display device.
- the present invention provides systems and methods utilizing a parametric response map approach (PRM) for qualitative and/or quantitative analysis of hemodynamic alterations of a tissue following treatment with a medical intervention (e.g., a drug).
- PRM parametric response map approach
- a medical intervention e.g., a drug
- the PRM method was applied to patients with grade III/IV glioma.
- Relative cerebral blood volume (rCBV) maps) were acquired pre-treatment and at 1 and 3 weeks following treatment.
- the PRM rCBV was found to predict patient response at 1 and 3 weeks from treatment initiation while the % rCBV was not.
- the PRM imaging biomarker provides a method for analysis of perfusion data with greater prognostic value than current approaches.
- the present invention provides methods for assessing the effectiveness of a treatment for a tissue region.
- the methods are not limited to particular manners of application.
- the methods comprise obtaining a first set of parametric measurement data for a tissue region with an MRI device or other imaging device, administering a treatment to the tissue region, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device, processing the sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes spatially aligned tissue regions as having altered parametric measurement properties or unaltered parametric measurement properties, and assessing the effectiveness of the administered treatment based on parametric measurement properties.
- the methods are not limited to a particular form of treatment.
- a form of treatment include, but are not limited to, chemotherapy, radiation therapy, targeted therapy, cryotherapy, hyperthermia, proton beam therapy, ablation therapy, coagulation therapy, ultrasound therapy, antivascular therapy, and antiangiogenic therapy.
- the present invention provides methods for determining the tumor burden for an individual comprising obtaining a first set of parametric measurement data for a large/whole body region with an MRI device or other imaging device, obtaining one or more subsequent sets of parametric measurement data for the large/whole region with the MRI device or other imaging device, processing the first and the one or more subsequent sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the large/whole region is generated, wherein the parametric response map images the multiple tumors within the individual, wherein the parametric response map characterizes the multiple tumors as having altered/unaltered parametric measurement properties; and determining changes in the tumor burden for the large/whole region.
- the present invention provides methods for treating an individual diagnosed with cancer or assessing a therapy, comprising identifying a treatment designed to target a tissue region within the individual, wherein the tissue region comprises a tumor, obtaining a first set of parametric measurement data for the tissue region with an MRI device or other imaging device, administering the treatment to the individual, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device, processing the sets of parametric measurement data with an parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes the tissue region as having altered or unaltered parametric measurement properties, and assessing the effectiveness of the administered treatment.
- the methods involve adapting the treatment, wherein the adapting comprises discontinuing or modifying the treatment if the parametric response map characterizes the treatment as ineffective, wherein the adapting comprises continuing the treatment if the parametric response map characterizes the treatment as effective.
- the present invention provides methods for following the temporal evolution of an untreated tissue region for the purpose of detecting a status change within the tissue region, comprising obtaining a first set of parametric measurement data for a tissue region with an MRI device or other imaging device, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device after obtaining the first set of parametric measurement data, processing the sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes spatially aligned tissue regions as having altered parametric measurement properties or unaltered parametric measurement properties, and assessing the temporal evolution of an untreated tissue region based on parametric measurement properties.
- the status change within the tissue region includes detecting a relapse, detecting the formation of a lesion, detecting changes in the growth pattern for the tissue region, detecting changes in the histological grade of the tissue region, detecting the spread of a tumor within the tissue region, detecting the presence of tumors within the region.
- the tissue region is a whole body.
- the tissue region is a malignant tumor, a benign tumor, an abnormal growth, an inflamed region, a cancerous region, an infected region, a diseased region, an organ rejection, and/or one or more organs (e.g., lung, prostate, breast, colon, rectum, bladder, ovaries, skin, liver, spine, bone, pancreas, cervix, lymph, thyroid, adrenal gland, salivary gland, sebaceous gland, testis, thymus gland, penis, uterus, trachea, heart, spleen).
- the tissue region is within a human being.
- the imaging systems and methods are not limited to collecting and analyzing a particular type of perfusion parameter.
- the systems and methods collect and analyze perfusion MRI parameters.
- the perfusion MRI parameters include, but are not limited to, absolute blood volume (e.g., absolute cerebral blood volume), relative blood volume (e.g., relative cerebral blood volume (PRM rCBV )), relative blood flow (e.g., relative cerebral blood flow (PRM rCBF )), vascular permeability (e.g., AUC, leakage space, PRM K trans ), extravascular leakage space (PRM Ve ), mean transit time data, and time to peak data.
- the systems and methods collect and analyze perfusion CT parameters.
- the systems and methods collect and analyze perfusion positron emission tomography (PET) parameters. In some embodiments, the systems and methods collect and analyze perfusion single photon emission computed tomography (SPECT) parameters. In some embodiments, the parametric measurement data is not apparent diffusion coefficient (ADC) data.
- PET perfusion positron emission tomography
- SPECT perfusion single photon emission computed tomography
- ADC apparent diffusion coefficient
- the altered parametric measurement properties comprise increased parametric measurement properties and decreased parametric measurement properties.
- the increased parametric measurement properties are displayed in a first color
- decreased parametric measurement properties are displayed in a second color
- unaltered parametric measurement properties are displayed in a third color.
- the increased parametric measurement properties are displayed in a first pattern
- decreased parametric measurement properties are displayed in a second pattern
- unaltered parametric measurement properties are displayed in a third pattern.
- the increased parametric measurement properties, decreased parametric measurement properties, and unaltered parametric measurement properties are displayed through a gradient of colors (e.g., a full spectrum of colors) (e.g., a gradient of gray scales).
- the treatment is assessed effective if the parametric response map characterizes a tissue region as comprising regions of increased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties. In some embodiments, the treatment is assessed effective if the parametric response map characterizes the tissue region as comprising regions of decreased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties.
- the treatment is assessed effective if the parametric response map characterizes the tissue region as comprising regions of increased and decreased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties.
- the systems and methods of the invention provide prognostic information for analyzing patient samples. This information is provided in a short time frame (e.g., less than a month, 14 days, 10 days, 8 days, 7 days, . . . ). This is a capability not realized with prior existing technologies, providing physicians and researchers with significant new options for detecting and monitor diseases and disorders and the effectiveness of therapies against these diseases and disorders.
- FIG. 1 shows generation of a functional parametric map. Schematic representation of tumor vasculature at pre- and post-treatment. Color-coding has been used to highlight regions of changed blood volume on PRM rCBV where red designates regions with increased blood volume as a result of increasing vessel number or size (red bordered insert); blue designates a decrease in blood volume from a loss or shrinkage in vessels (blue bordered insert); and green designates regions of unchanged blood.
- V D glioblastoma multiforme
- A Gd-enhanced T 1 -weighted MR image
- B rCBV map with color scale for rCBV
- C rCBV histogram of tumor, at 0, 1 and 3 weeks after initiation of radiotherapy. Location of tumor is designated by yellow arrow. Mean rCBV at 0, 1 and 3 weeks post-radiotherapy were 1.97, 1.95 and 2.13, respectively.
- FIG. 3 shows PRM rCBV results from the same non-responding patient as shown in FIG. 2 .
- A Representative slice of PRM rCBV color-coded ROI superimposed onto a Gd-enhanced T 1 -weighted MR image 1 and 3 weeks post-radiotherapy.
- B Scatter plot showing the distribution of rCBV pre and post-radiotherapy for the entire 3-dimensional tumor volume. Relative volumes at Week 1 were: V D (blue dots designate voxels where rCBV decreased) of 19.9% and V I (red dots designate voxels where rCBV increased) of 17.2%. Relative volumes at Week 3 were: V D of 15.7% and V I of 20.4%.
- V D glioblastoma multiforme
- A Gd-enhanced T 1 -weighted MR image
- B rCBV map with color scale for rCBV
- C rCBV histogram of tumor, at 0, 1 and 3 weeks post-radiotherapy. Location of tumor is designated by yellow arrow. Mean rCBV at 0, 1 and 3 weeks post-radiotherapy were 1.02, 1.00 and 0.84, respectively.
- FIG. 5 shows PRM rCBV results from the same responding patient as shown in FIG. 4 .
- A Representative slice of PRM rCBV color-coded ROI superimposed onto a Gd-enhanced T1-weighted MR image 1 and 3 weeks post-radiotherapy.
- B Scatter plot showing the distribution of rCBV pre and post-radiotherapy for the entire 3-dimensional tumor volume. Relative volumes at Week 1 were: V D (blue dots designate voxels where rCBV decreased) of 4.3% and V I (red dots designate voxels where rCBV increased) of 3.4%. Relative volumes at Week 3 were: V D of 4.6% and V I of 0.3%.
- FIG. 6 shows receiver operating characteristic (ROC) curves for V D (solid line) and V I (small dashed line) from PRM rCBV and % rCBV (large dashed line) for weeks 1 (A) and 3 (B) post-treatment.
- ROC receiver operating characteristic
- V D blue dots designate voxels where rCBF decreased
- V I red dots designate voxels where rCBF increased
- FIG. 9 shows mid-tumor axial images of the permeability constant (K trans ) and area under the curve (AUC) with corresponding PRM analyses for a breast cancer patient pre- (week 0) and post-treatment (week 1.5).
- PRM analysis includes PRM color-overlay and scatter plot. Thresholds, depicted as black lines in the scatter plots, were set to ⁇ 0.2 and ⁇ 1.2 for K trans and AUC, respectively.
- FIG. 10 shows co-registration of MRI studies in soft tissue sarcoma.
- FIG. 11 shows whole tumor versus PRM analysis of ADC.
- Whole tumor analysis shows a minimal increase in mean ADC during neoadjuvant chemotherapy for pelvic liposarcoma with extensive overlap of all histograms (pre-therapy, blue line; 1 week, green; 7 weeks, red).
- PRM scatter plots show notable changes in ADC ( ⁇ 12% of all voxels) after 1 week of therapy (middle) that increase even more by 7 weeks (right).
- FIG. 12 shows whole tumor region of interest (A1) and pseudocolor display of Ktrans values from a representative image on pre-therapy (B1), 1 week (C1), and 7 week (D1) DCE-MRI studies.
- Whole tumor mean values for Ktrans (E1) lose spatial heterogeneity of changes within the tumor, resulting in small overall changes following therapy.
- PRM analysis of 1 week (A2, C2) and 7 week (B2, D2) studies utilizes spatial heterogeneity to substantially increase detection of therapy-induced changes in Ktrans over time.
- the present invention provides systems and methods for monitoring tissue regions.
- the systems and methods of the present invention employ parametric response map approaches (PRM), using a number of different modalities (described herein as PRM x ), for assessing changes in tissue over time, including changes caused by medical interventions.
- PRM parametric response map approaches
- the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region.
- the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- the tissue region is within a living subject (e.g., dog, cat, human, gorilla, cow, sheep, rat, mouse, etc.). In some embodiments, the tissue region is within a living human being. In some embodiments, the tissue region is a diseased tissue region (e.g., a malignant tumor, a benign tumor, an abnormal growth, an inflamed region, a cancerous region, an infected region, an organ rejection). In some embodiments, the tissue region is a body region of the subject (e.g., lung, bone, heart, leg, foot, stomach, brain, neck, liver, breast). In some embodiments, the tissue region is the entire body of the subject.
- a diseased tissue region e.g., a malignant tumor, a benign tumor, an abnormal growth, an inflamed region, a cancerous region, an infected region, an organ rejection.
- the tissue region is a body region of the subject (e.g., lung, bone, heart, leg, foot, stomach, brain,
- the present invention is not limited to a particular type or manner of monitoring a tissue region.
- the monitoring of a particular tissue region is accomplished through obtaining data measurements for the tissue region at different time points (e.g., two time points, three time points, five time points, fifty time points, etc.) (e.g., before treatment, during treatment, after treatment) and the characterization of changes within the tissue region between data measurements.
- the present invention is not limited to a particular method for characterizing changes within the tissue region between data measurements.
- the characterization involves detecting one or more changes of a particular biological parameter within various regions within the tissue region.
- the present invention is not limited to detecting changes in a particular biological parameter within a tissue region.
- Examples of biological parameters within a tissue region that may be assessed for changes include, but are not limited to, changes in blood volume of the tissue region, changes in blood perfusion of the tissue region, changes in vascular leakage parameters of the tissue region, changes in density of the tissue region, changes in composition of the tissue region, changes in diffusion anisotropy-dependent parameters in the region, etc (see, also, e.g., Tofts, P. S. (1997) J Magn Reson Imaging 7, 91-101; Hylton, N. (2006) J Clin Oncol 24, 3293-3298 (2006); Tofts, P. S., et al. (1999) J Magn Reson Imaging 10, 223-232; Kiessling, F., et al., (2007) Curr Med Chem 14, 77-91).
- Dynamic contrast-enhanced (DCE) and dynamic susceptibility-weighted contrast (DSC) MRI methods provide information related to a variety of hemodynamic parameters including microvessel permeability-surface area product, blood volume, and blood flow (see, e.g., Ostergaard, L., et al., Magn Reson Med 36, 715-725 (1996); Rosen, et al., Magn Reson Med 14, 249-265 (1990); Brix, G., et al. Magn Reson Med 52, 420-429 (2004); Brix, G., et al. J Comput Assist Tomogr 15, 621-628 (1991); Hoffmann, U., Magn Reson Med 33, 506-514 (1995); Tofts, P.
- DCE dynamic susceptibility-weighted contrast
- the present invention is not limited to the collecting and analysis of a particular type of data for a tissue region.
- the tissue region is imaged at different time points for purposes of characterizing the tissue region.
- the imaging is used to determine physiological, morphological and/or anatomical changes within the tissue region.
- the imaging is used to determine one or more blood perfusion values within the tissue region.
- the imaging systems and methods are not limited to collecting and analyzing a particular type of perfusion parameter. In some embodiments, the systems and methods collect and analyze perfusion MRI parameters.
- the perfusion MRI parameters include, but are not limited to, relative cerebral blood volume (PRM rCBV ), vascular permeability (PRM K trans ), and extravascular leakage space (PRM Ve ).
- the systems and methods collect and analyze perfusion CT parameters.
- the systems and methods collect and analyze perfusion positron emission tomography (PET) parameters.
- the systems and methods collect and analyze perfusion single photon emission computed tomography (SPECT) parameters.
- PET perfusion positron emission tomography
- SPECT perfusion single photon emission computed tomography
- the parametric response map (PRM x ) was utilized as a novel, voxel-wise image analysis approach for quantification of hemodynamic alterations following treatment.
- the method was applied to patients with grade III/IV glioma.
- Relative cerebral blood volume (rCBV) maps were acquired pre-treatment and at 1 and 3 weeks following treatment.
- the standard approach of percent change in rCBV averaged over the tumor (% rCBV) and PRM rCBV were compared for prognostic effectiveness of patient outcome stratification based on overall survival.
- the PRM rCBV was found to predict patient treatment response at 1 and 3 weeks from treatment initiation.
- the PRM imaging biomarker provided a standardized method for analysis of perfusion data with greater prognostic value than current approaches.
- the present invention is not limited to a particular manner of implementing parametric response map (PRM x ) (where x is any type of parametric data) analysis within a tissue region.
- the present invention provides algorithms configured to correlate perfusion MRI parameter measurements (e.g., relative cerebral blood volume (PRM rCBV ), vascular permeability (PRM K trans ), and extravascular leakage space (PRM Ve )) taken at different times.
- perfusion MRI parameter measurements e.g., relative cerebral blood volume (PRM rCBV ), vascular permeability (PRM K trans ), and extravascular leakage space (PRM Ve )
- an algorithm is provided in a system with an MRI device such that upon imaging of a particular tissue region with the MRI device, a PRM image is automatically generated.
- the algorithm is configured to automatically generate a PRM for a particular tissue region.
- a PRM for a particular tissue region distinguishes between regions within the tissue region with different measured parameters (e.g., blood perfusion, relative cerebral blood volume, vascular permeability, extravascular leakage space).
- measured parameters e.g., blood perfusion, relative cerebral blood volume, vascular permeability, extravascular leakage space.
- distinguished changes are presented within a tissue region image on a display as color differences (e.g., red indicating increased blood perfusion, blue indicating decreased blood perfusion, green indicating unchanged blood perfusion) (e.g., varied color or other gradient schemes distinguishing between, for example, ultra-high blood perfusion alteration, moderately-high blood perfusion alteration, minimally-high blood perfusion alteration, and no blood perfusion alteration) (see, e.g., Examples I-IV, below).
- the systems and methods are used to quantify changes in tissue regions, where the existence of or degree of change is prognostic or otherwise indicative of disease state, response to therapy, or another desired tissue status criteria of interest.
- the systems and methods of the present invention provide an improvement over, for example, whole-tumor average methods.
- PRM x retains spatio-regional alterations in perfusion parameter measurements (e.g., perfusion MRI parameter measurements) (e.g., cerebral blood volume values) following, for example, a treatment initiation.
- perfusion parameter measurements e.g., perfusion MRI parameter measurements
- cerebral blood volume values e.g., cerebral blood volume values
- An increase in, for example, rCBV above a specified threshold corresponds to a significant increase in the microvascular density or enlargement of blood vessel diameter (e.g., blood volume) within the tumor, in which case these voxels would be color coded, for example, red in the PRM analysis approach applied to rCBV (PRM rCBV ).
- treatment may result in a significant reduction in rCBV within the tumor in which case voxels within those regions would be coded, for example, blue.
- Voxels in regions which were relatively unaffected by therapy would be coded, for example, green.
- the PRM rCBV analysis retains the spatial rCBV information as coded by color overlayed on anatomic images and also quantification of the total number of tumor voxels (on a percentage of total tumor volume or voxel number) which exhibited an increase (red: V I ), decrease (blue: V D ) or unchanged (green: V 0 ) rCBV values using scatter plot analysis.
- quantification of spatially altered perfusion parameter measurements is used as a prognostic imaging biomarker for early treatment response assessment.
- the present invention is not limited to a particular manner of using spatially altered perfusion parameter measurements as a prognostic imaging biomarker for early treatment response assessment.
- spatially altered perfusion parameter measurements are used as a prognostic imaging biomarker for early treatment response assessment correlation with overall patient survival.
- the present invention provides methods of treating a diseased tissue region (e.g., a malignant tumor).
- a diseased tissue region is administered a treatment directed toward the particular tissue region, and the treatment monitored over the course of the treatment with PRM x .
- a particular type of treatment is altered if the PRM x indicates that the tissue region is not responding to the treatment. Changes include, but are not limited to, changing medication, dosing, route of administration, frequency, and the like.
- the present invention provides methods for screening the effectiveness of types of treatment of diseased tissue regions (e.g., malignant tumors, benign tumors, etc.).
- types of treatment e.g., pharmaceutical treatment, radiation based treatment, chemotherapeutic treatment, radiation sensitizer treatment, gene therapy based treatment, cancer vaccine based treatment
- types of treatment designed to treat a particular tissue region are evaluated based upon the ability to effectively treat (e.g., reduce blood perfusion in a tumor; increase blood perfusion in a tumor; reduce the size of a tumor; increase/decrease vascular leakage parameters; increase/decrease the density of a tumor; increase/decrease the diffusion anisotropy-dependent parameters of a tumor) the tissue region as measured with PRM x at various time points.
- treatments identified as effective in treating a tissue region as measured with PRM x may be used to treat similar types of diseased tissue regions in the same individual and/or in other individuals presenting similar diseased tissue regions.
- PRM x is used to characterize an individual's disease (e.g., provide an overall prognosis).
- PRM x databases for similar tissue regions having similar disease patterns may be generated according to any number of variables (e.g., treatment response; blood perfusion change over a certain amount of time; overall treatment outcome; etc.).
- the PRM x database can be used to generate expected treatment plans based on expected treatment outcome for such a tissue region having such a disease.
- a health care professional obtains a PRM x for a patient's tissue region during and/or after a course of treatment and compares the PRM x with one or more PRM x from similar tissue regions from similar types of patients or from the same patient. In some embodiments, such a comparison is used to fine tune a treatment plan based on the expected treatment outcome as identified in the PRM x database.
- This example describes the materials and methods for Examples II and III.
- Radiotherapy was delivered using 3D-conformal therapy or Intensity Modulated Radiation Therapy (IMRT) with 6 MV or greater photons. Standard techniques were utilized with a 2.0-2.5 cm margin on either the enhancing region on gadolinium-enhanced scans or the abnormal signal on T 2 -weighted scans to 46-50 Gy with the central gross tumor treated to a final median dose of 70 Gy in 6-7 weeks (see, e.g., Chan, J. L., et al. J Clin Oncol 20, 1635-1642 (2002). Twenty-four, at week one, of these patients were treated on a phase 2 protocol of high-dose (>60 Gy) radiation therapy concurrent with temozolamide. Chemotherapy was delivered as dependent upon clinical circumstances.
- DSC dynamic susceptibility contrast
- Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was injected intravenously with a dose of 0.05 to 0.1 ml/kg as a bolus using a power injector at a rate of 2 mL/s, followed immediately by 15 cc of saline flush at the same rate. Subsequently a Gd-enhanced T 1 -weighted imaging was acquired. Cerebral blood volume (CBV) maps were generated from DSC T 2 *-weighted images (see, e.g., Cao, Y., et al. Int J Radiat Oncol Biol Phys 64, 876-885 (2006)).
- CBV maps were normalized to CBV values within white matter regions contralateral to the tumor to generate the relative CBV (rCBV).
- rCBV relative blood volume for both brain and tumor.
- the following guidelines were used to define the white matter regions of interest for normalization: (1) contralateral to tumor, (2) received ⁇ 30 Gy accumulated dose, and (3) as large as possible but avoiding regions with susceptibility artifacts and partial volume averaging.
- Pre- and post-treatment rCBV maps were co-registered to Gd-enhanced T 1 -weighted images acquired before RT using an automated mutual information and simplex optimization module (see, e.g., Meyer, C. R., et al. Med Image Anal 1, 195-206 (1997)).
- brain tumors manually contoured by a neuroradiologist, were defined within the enhancing regions of the tumor on the Gd-enhanced T 1 -weighted images. Shrinkage or growth of the tumor during the time between scans may have occurred; therefore, only voxels that were present in both the pre-RT and post-RT tumor volumes were included.
- the volume fractions within the tumor determined from PRM rCBV were V I , increasing rCBV, V D , decreasing rCBV, and V 0 , unchanged rCBV.
- the thresholds that designate a significant change in rCBV within a voxel were empirically calculated from seven different patients. Other thresholds may be used, as desired.
- a volume of interest within the contralateral brain containing normal gray and white matter was used to acquire a range of rCBV pre and three weeks post-therapy. Combining the data from all seven patients, linear least squares regression analysis was performed on the pre- and post-treatment rCBV values. The 95% confidence intervals were then determined from the results of the linear least squares analysis.
- ROC receiver operator characteristic
- This example describes a comparison between PRM rCBV and rCBV analysis of perfusion MR images.
- Results of rCBV analysis from a representative patient diagnosed with a glioblastoma multiforme non-responsive to radiotherapy are presented in FIG. 2 .
- the overall survival for this patient was 3 months from diagnosis.
- Signal hyperintensity in the Gd-enhanced T 1 -weighted image was observed along the rim of the tumor at weeks 0, 1 and 3 ( FIG. 2A ), corresponding to disruption of the blood-brain-barrier.
- Week 1 of treatment a slight attenuation in tumor rim enhancement was observed with a minor increase in enhancement within the core persisting through week 3.
- Tumor volume decreased slightly by 15% within the first week, and remained unchanged by the third week (week 0, 38 cc; week 1, 32 cc; week 3, 31 cc).
- the tumor Prior to treatment (week 0) the tumor consisted primarily of a high blood volume rim with a low blood volume core which was attenuated at week 1 and 3 following treatment initiation as shown in rCBV maps ( FIG. 2B ). Following normalization by contralateral white matter, the distribution of rCBV values ( FIG. 2C ) within the tumor at week 0 ranged from 0 to 6 with a mean of 1.97. Significant numbers of voxels found to have rCBV's less than 1 were localized within the tumor core ( FIG. 2B ). At week 1 of therapy, mean rCBV decreased by ⁇ 1% to 1.95 ( FIG. 2C ). As observed in FIG. 2B , a loss in rCBV along the tumor rim had occurred at week 1.
- the number of voxels with rCBV ⁇ 1 had also decreased from pre-treatment values, as a result of increased rCBV within the tumor core. This had offset the observed loss in high rCBV along the tumor rim when calculating the mean. Increased rCBV within the tumor core, which is observed as increased Gd-enhancement in FIG. 2A , was more pronounced by week 3 as evidenced by a right-shift ( FIG. 2C ) of the mean rCBV (2.13), generating a mean rCBV value slightly higher than pre-treatment levels.
- FIG. 3 Presented in FIG. 3 is a PRM rCBV color overlay on the Gd-enhanced T 1 -weighted image acquired at weeks 1 and 3 with the corresponding scatter plots quantitatively displaying the distribution of PRM rCBV voxels from the entire 3D tumor volume.
- the PRM rCBV analysis highlights regions where tumor blood volume change exceeded the ⁇ 1.23 thresholds.
- FIG. 3A Significant changes in PRM rCBV voxels were observed near the periphery of the tumor ( FIG. 3A ).
- Scatter plot analysis FIG. 3B ) revealed that at weeks 1 and 3, V I was found to be 17.2% and 20.4% while V D was determined to be 20.0% and 15.7% of the total tumor volume, respectively.
- FIGS. 4 and 5 A representative patient diagnosed with a glioblastoma multiforme who responded to radiotherapy is presented in FIGS. 4 and 5 .
- the overall survival of this patient was 20.4 months from diagnosis. Similar to the non-responsive patient, signal hyperintensity along the rim of the tumor was observed at week 0 and decreased slightly at weeks 1 and 3 in the Gd-enhanced T 1 -weighted images ( FIG. 4A ). Negligible changes in contrast enhancement were observed in the tumor core. Over the initial course of treatment the tumor volume increased at week 1 from 40 cc to 50 cc and to 54 cc at week 3.
- Regions of heterogeneity in the rCBV maps were not as apparent as in the Gd-enhanced T 1 -weighted images at weeks 0, 1 or 3.
- the distribution of rCBV values ranged from 0 to 3.
- Mean rCBV values were found to be 1.02 at week 0, 1.00 at week 1 and 0.84 at week 3.
- the percent difference of the mean rCBV over the entire tumor at week 3 was approximately ⁇ 18%.
- PRM rCBV analysis of this patient showed negligible changes at 1 and 3 weeks of therapy ( FIG. 5A ).
- FIG. 5B Shown in FIG. 5B are the corresponding scatter plots revealing V I and V D changed by 3.4% and 4.3%, respectively, at week 1.
- V I and V D were 0.3% and 4.6% of the tumor volume, respectively.
- PRM rCBV values in the therapeutically responsive patient were altered very little as compared with the non-responding patient.
- V I and % rCBV were found to be non-predictive with an ROC_AUC of 0.584 and 0.549, respectively.
- the approach must be insensitive to cutoff value. Therefore, the mean value of the cutoffs from weeks 1 and 3 for V D (6.4%) were used for the overall survival analysis.
- PRM rcBV measurements at weeks 1 and 3 exhibited a significant correlation with overall survival as shown in FIGS. 6C and D and Table 1.
- FIG. 7A shows a representative slice of PRM rCBF color-coded ROI superimposed onto a Gd-enhanced T 1 -weighted MR image 1 week post-radiotherapy.
- FIG. 7B shows a scatter plot showing the distribution of rCBF pre and post-radiotherapy for the entire 3-dimensional tumor volume. Relative volumes at week1 were: V D (blue dots designate voxels where rCBF decreased) of 14.1% and V I (red dots designate voxels where rCBF increased) of 3.5%.
- FIG. 8A shows receiver operator characteristic curves for V D (solid line) and V I (small dashed line) from PRM rCBF and % rCBF (large dashed line) for weeks 1 post-treatment.
- V I and % rCBF generated an ROC_AUC of 0.567 and 0.511, respectively.
- FIG. 9 shows mid-tumor axial images of the permeability constant (K trans ) and area under the curve (AUC) with corresponding PRM analyses, presented for a breast cancer patient pre- (week 0) and post-treatment (week 1.5).
- the PRM analysis includes PRM color-overlay and scatter plot. Thresholds, depicted as black lines in the scatter plots, were set to ⁇ 0.2 and ⁇ 1.2 for K trans and AUC, respectively.
- This example describes a particular technique for generating a parametric response map (PRM x ) for quantifying changes in tissue regions over a period of time and/or in response to therapeutic interventions.
- PRM x parametric response map
- images are acquired (e.g., MRI images; PET images; SPECT images; CT images) at different time points for a particular tissue region.
- the images obtained for the particular tissue region are spatially co-registered (see e.g., Lee et al., Neoplasia, 9(12):1003-1011 (2007); Meyer C R, et al., Med Image Anal. 1997; 1:195-206; and Kim, et al., Proc. Intl. Soc. Mag. Reson. Med. 8 (2000) 1765; each herein incorporated by reference in their entireties). Registration including rigid body, affine (linear) and/or warping image information from interval exams applied globally over the entire image sets and/or regionally over selected regions or areas.
- the error threshold is set. This step involves identification of the source of error. Acquisition error involves noise and artifacts. Co-Registration error involves misalignment of images.
- the procedure for setting the threshold involves drawing a region of interest around tissue with detailed contrast/heterogenous, good SNR/CNR, and anatomically and physiologically unchanged. The procedure also involves calculating a difference map (X post ⁇ X pre ), and determining 95% confidence interval (e.g., plotting X pre vs. X post and performing a linear regression to calculate the confidence interval).
- threshold voxel data is processed (e.g., Red: ⁇ X>threshold; Green: ⁇ threshold ⁇ X ⁇ threshold; Blue: ⁇ X ⁇ threshold).
- data is represented (e.g., Scatter Plot X pre vs. X post ; shows distribution of X following treatment) (e.g., color overlay of PRM is superimposed on high SNR/contrast image; shows voxel-wise variation in X).
- This example describes whole tumor and PRM analysis of ADC and DCE-MRI data in soft tissue sarcoma.
- PRM analysis enhances detection of therapy-induced changes in soft tissue sarcoma
- diffusion and DCE-MRI was performed on a patient undergoing neoadjuvant chemotherapy with doxorubicin and ifosfamide.
- MRI studies after 1 and 7 weeks of therapy were co-registered with the pre-treatment examination.
- the use of warping registration methods accounted for the increase in tumor volume during neoadjuvant chemotherapy, as seen by precise alignment of pre- and 7-weeks post-treatment tumors on the checkerboard display ( FIG.
- PRM By incorporating spatial localization of Ktrans data and analyzing changes in these values on a voxel-by-voxel basis, PRM identified notably larger perturbations of Ktrans after 1 and 7 weeks of treatment. The patient had a favorable histologic response to chemotherapy. As such, PRM analysis of diffusion and DCE-MRI data enhances detection of therapy-induced changes in sarcomas relative to standard whole tumor analysis. In addition, PRM analysis permits identification of quantitative changes in MRI data that are early predictive biomarkers for response to neoadjuvant chemotherapy in bone and soft tissue sarcomas.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Physiology (AREA)
- Immunology (AREA)
- Software Systems (AREA)
- Vascular Medicine (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Biology (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
Abstract
Description
- The present application claims priority to U.S. Provisional Patent Application No. 61/032,825, filed Feb. 29, 2008, hereby incorporated by reference in its entirety.
- This invention was made with government support under Grant Nos. CA085878, CA083099, CA093990, and CA087634 awarded by the National Institutes of Health. The government has certain rights in the invention.
- The present invention provides systems and methods for monitoring tissue regions. In particular, the present invention provides systems and methods for detecting changes in tissue regions over a period of time. In some embodiments, the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region. In some embodiments, the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- Cancer is a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these to spread, either by direct growth into adjacent tissue through invasion, or by implantation into distant sites by metastasis (where cancer cells are transported through the bloodstream or lymphatic system). Cancer may affect people at all ages, but risk tends to increase with age. It is one of the principal causes of death in developed countries.
- There are many types of cancer. Severity of symptoms depends on the site and character of the malignancy and whether there is metastasis. A definitive diagnosis usually requires the histologic examination of tissue by a pathologist. This tissue is obtained by biopsy or surgery. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for the type of cancer pathology. Drugs that target specific cancers already exist for several types of cancer. If untreated, cancers may eventually cause illness and death, though this is not always the case.
- Cancer can be treated by surgery, chemotherapy, radiation therapy, immunotherapy, monoclonal antibody therapy or other methods. The choice of therapy depends upon the location and grade of the tumor and the stage of the disease, as well as the general state of the patient (performance status). A large number of experimental cancer treatments are also under development.
- Complete removal of the cancer without damage to the rest of the body is the goal of treatment. Sometimes this can be accomplished by surgery, but the propensity of cancers to invade adjacent tissue or to spread to distant sites by microscopic metastasis often limits its effectiveness. The effectiveness of chemotherapy is often limited by toxicity to other tissues in the body. Radiation can also cause damage to normal tissue.
- One problem with current methods for treating the various forms of cancer is the inability to detect how well a particular type of therapy is working. For example, neoadjuvant chemotherapy in the treatment of breast cancer produces significant clinical benefit to patients (PR+CR rates >70%) (see, e.g., Early Breast Cancer Trialists' Collaborative Group: Polychemotherapy for early breast cancer: An overview of the randomized trials. Lancet 352, 930-942, 1998) and can be used to increase the numbers of patients eligible for a breast preservation procedure. Neoadjuvant chemotherapy has the benefit of allowing observation of chemoresponsiveness, and biological evaluation of the cancer both before and after chemotherapy administration.
- The ability to observe an individual's tumor response is of increasing importance in this time of rapid development of new and more targeted drugs against cancer. It is essential to determine which new drugs will benefit patients. However, clinical benefit is an endpoint that can take years to accurately determine, and therefore surrogate endpoints for clinical benefit are often used in the evaluation of new drugs. Because of its positive association with disease free survival, pathologic complete response to neoadjuvant chemotherapy has become a widely utilized surrogate endpoint for breast cancer regimens. Pathologic complete response can be evaluated approximately 3-6 months after treatment begins, but it would be useful to have a surrogate for clinical benefit that would be evaluable at an even earlier time point.
- As such, improved techniques for evaluating the effectiveness of a particular treatment are needed. In addition, improved techniques designed to evaluate the effectiveness of a particular treatment during the course of the treatment are needed and would provide for individualization of treatments. This would save patients from systemic toxicity from ineffective treatment and reduce costs to the health care system. Thus, further, improved techniques for evaluating candidate therapies are needed.
- The present invention provides systems and methods for monitoring tissue regions. In particular, the present invention provides systems and methods for detecting changes in tissue regions over a period of time. In some embodiments, the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region. In some embodiments, the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- In some embodiments, the present invention utilizes imaging devices, control software, signal processing software, and display components that permit the collection of data, processing of data, and display of data according to any of the methods described herein. The systems may employ components configured together in a single device or may include multiple different devices in one or more locations. Where multiple devices are used, the device may be in wired or wireless communication with one another to permit the flow of data from device to device, as needed. In some embodiments, the present invention also provides user interfaces that display data generated by the novel methods described herein. For example, in some embodiments, multi-color tissue representations are provided that reveal changes in tissue over time. The changes may be represented any number of other ways as well. In some embodiments, the user interface is displayed on a computer monitor, a video monitor, a hand-held device, or any other desired display device.
- In some embodiments, the present invention provides systems and methods utilizing a parametric response map approach (PRM) for qualitative and/or quantitative analysis of hemodynamic alterations of a tissue following treatment with a medical intervention (e.g., a drug). Experiments conducted during the development of embodiments of the invention demonstrated the ability of these approaches to provide meaningful information at surprisingly early time points following initiation of an intervention. For example, the PRM method was applied to patients with grade III/IV glioma. Relative cerebral blood volume (rCBV) maps) were acquired pre-treatment and at 1 and 3 weeks following treatment. The standard approach of percent change in rCBV averaged over the tumor (% rCBV) and PRMrCBV were compared for prognostic effectiveness of patient outcome stratification based on overall survival. The PRMrCBV was found to predict patient response at 1 and 3 weeks from treatment initiation while the % rCBV was not. As such, the PRM imaging biomarker provides a method for analysis of perfusion data with greater prognostic value than current approaches.
- In certain embodiments, the present invention provides methods for assessing the effectiveness of a treatment for a tissue region. The methods are not limited to particular manners of application. In some embodiments, the methods comprise obtaining a first set of parametric measurement data for a tissue region with an MRI device or other imaging device, administering a treatment to the tissue region, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device, processing the sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes spatially aligned tissue regions as having altered parametric measurement properties or unaltered parametric measurement properties, and assessing the effectiveness of the administered treatment based on parametric measurement properties. The methods are not limited to a particular form of treatment. Examples of a form of treatment include, but are not limited to, chemotherapy, radiation therapy, targeted therapy, cryotherapy, hyperthermia, proton beam therapy, ablation therapy, coagulation therapy, ultrasound therapy, antivascular therapy, and antiangiogenic therapy.
- In certain embodiments, the present invention provides methods for determining the tumor burden for an individual comprising obtaining a first set of parametric measurement data for a large/whole body region with an MRI device or other imaging device, obtaining one or more subsequent sets of parametric measurement data for the large/whole region with the MRI device or other imaging device, processing the first and the one or more subsequent sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the large/whole region is generated, wherein the parametric response map images the multiple tumors within the individual, wherein the parametric response map characterizes the multiple tumors as having altered/unaltered parametric measurement properties; and determining changes in the tumor burden for the large/whole region.
- In certain embodiments, the present invention provides methods for treating an individual diagnosed with cancer or assessing a therapy, comprising identifying a treatment designed to target a tissue region within the individual, wherein the tissue region comprises a tumor, obtaining a first set of parametric measurement data for the tissue region with an MRI device or other imaging device, administering the treatment to the individual, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device, processing the sets of parametric measurement data with an parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes the tissue region as having altered or unaltered parametric measurement properties, and assessing the effectiveness of the administered treatment. In some embodiments, the methods involve adapting the treatment, wherein the adapting comprises discontinuing or modifying the treatment if the parametric response map characterizes the treatment as ineffective, wherein the adapting comprises continuing the treatment if the parametric response map characterizes the treatment as effective.
- In certain embodiments, the present invention provides methods for following the temporal evolution of an untreated tissue region for the purpose of detecting a status change within the tissue region, comprising obtaining a first set of parametric measurement data for a tissue region with an MRI device or other imaging device, obtaining one or more subsequent sets of parametric measurement data for the tissue region with the MRI device or other imaging device after obtaining the first set of parametric measurement data, processing the sets of parametric measurement data with a parametric response map algorithm such that a parametric response map for the tissue region is generated, wherein the parametric response map characterizes spatially aligned tissue regions as having altered parametric measurement properties or unaltered parametric measurement properties, and assessing the temporal evolution of an untreated tissue region based on parametric measurement properties. In some embodiments, the status change within the tissue region includes detecting a relapse, detecting the formation of a lesion, detecting changes in the growth pattern for the tissue region, detecting changes in the histological grade of the tissue region, detecting the spread of a tumor within the tissue region, detecting the presence of tumors within the region.
- The methods are not limited to a particular tissue region. In some embodiments, the tissue region is a whole body. In some embodiments, the tissue region is a malignant tumor, a benign tumor, an abnormal growth, an inflamed region, a cancerous region, an infected region, a diseased region, an organ rejection, and/or one or more organs (e.g., lung, prostate, breast, colon, rectum, bladder, ovaries, skin, liver, spine, bone, pancreas, cervix, lymph, thyroid, adrenal gland, salivary gland, sebaceous gland, testis, thymus gland, penis, uterus, trachea, heart, spleen). In some embodiments, the tissue region is within a human being.
- The imaging systems and methods are not limited to collecting and analyzing a particular type of perfusion parameter. In some embodiments, the systems and methods collect and analyze perfusion MRI parameters. In some embodiments, the perfusion MRI parameters include, but are not limited to, absolute blood volume (e.g., absolute cerebral blood volume), relative blood volume (e.g., relative cerebral blood volume (PRMrCBV)), relative blood flow (e.g., relative cerebral blood flow (PRMrCBF)), vascular permeability (e.g., AUC, leakage space, PRMK trans), extravascular leakage space (PRMVe), mean transit time data, and time to peak data. In some embodiments, the systems and methods collect and analyze perfusion CT parameters. In some embodiments, the systems and methods collect and analyze perfusion positron emission tomography (PET) parameters. In some embodiments, the systems and methods collect and analyze perfusion single photon emission computed tomography (SPECT) parameters. In some embodiments, the parametric measurement data is not apparent diffusion coefficient (ADC) data.
- In some embodiments, the altered parametric measurement properties comprise increased parametric measurement properties and decreased parametric measurement properties. In some embodiments, the increased parametric measurement properties are displayed in a first color, decreased parametric measurement properties are displayed in a second color, and unaltered parametric measurement properties are displayed in a third color. In some embodiments, the increased parametric measurement properties are displayed in a first pattern, decreased parametric measurement properties are displayed in a second pattern, and unaltered parametric measurement properties are displayed in a third pattern. In some embodiments, the increased parametric measurement properties, decreased parametric measurement properties, and unaltered parametric measurement properties are displayed through a gradient of colors (e.g., a full spectrum of colors) (e.g., a gradient of gray scales).
- In some embodiments, the treatment is assessed effective if the parametric response map characterizes a tissue region as comprising regions of increased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties. In some embodiments, the treatment is assessed effective if the parametric response map characterizes the tissue region as comprising regions of decreased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties. In some embodiments, the treatment is assessed effective if the parametric response map characterizes the tissue region as comprising regions of increased and decreased parametric measurement properties, wherein the treatment is assessed ineffective if the parametric response map characterizes the tissue region as comprising regions of unchanged parametric measurement properties.
- The systems and methods of the invention provide prognostic information for analyzing patient samples. This information is provided in a short time frame (e.g., less than a month, 14 days, 10 days, 8 days, 7 days, . . . ). This is a capability not realized with prior existing technologies, providing physicians and researchers with significant new options for detecting and monitor diseases and disorders and the effectiveness of therapies against these diseases and disorders.
-
FIG. 1 shows generation of a functional parametric map. Schematic representation of tumor vasculature at pre- and post-treatment. Color-coding has been used to highlight regions of changed blood volume on PRMrCBV where red designates regions with increased blood volume as a result of increasing vessel number or size (red bordered insert); blue designates a decrease in blood volume from a loss or shrinkage in vessels (blue bordered insert); and green designates regions of unchanged blood. -
FIG. 2 shows a patient with a glioblastoma multiforme designated by VD from PRMrCBV stratification as a non-responder (survival time=2.9 months). (A) Gd-enhanced T1-weighted MR image, (B) rCBV map with color scale for rCBV and (C) rCBV histogram of tumor, at 0, 1 and 3 weeks after initiation of radiotherapy. Location of tumor is designated by yellow arrow. Mean rCBV at 0, 1 and 3 weeks post-radiotherapy were 1.97, 1.95 and 2.13, respectively. -
FIG. 3 shows PRMrCBV results from the same non-responding patient as shown inFIG. 2 . (A) Representative slice of PRMrCBV color-coded ROI superimposed onto a Gd-enhanced T1-weighted MR image Week 1 were: VD (blue dots designate voxels where rCBV decreased) of 19.9% and VI (red dots designate voxels where rCBV increased) of 17.2%. Relative volumes atWeek 3 were: VD of 15.7% and VI of 20.4%. -
FIG. 4 shows a patient with a glioblastoma multiforme designated by VD from PRMrCBV stratification as a responder (survival time=20.4 months). (A) Gd-enhanced T1-weighted MR image, (B) rCBV map with color scale for rCBV and (C) rCBV histogram of tumor, at 0, 1 and 3 weeks post-radiotherapy. Location of tumor is designated by yellow arrow. Mean rCBV at 0, 1 and 3 weeks post-radiotherapy were 1.02, 1.00 and 0.84, respectively. -
FIG. 5 shows PRMrCBV results from the same responding patient as shown inFIG. 4 . (A) Representative slice of PRMrCBV color-coded ROI superimposed onto a Gd-enhanced T1-weighted MR image Week 1 were: VD (blue dots designate voxels where rCBV decreased) of 4.3% and VI (red dots designate voxels where rCBV increased) of 3.4%. Relative volumes atWeek 3 were: VD of 4.6% and VI of 0.3%. -
FIG. 6 shows receiver operating characteristic (ROC) curves for VD (solid line) and VI (small dashed line) from PRMrCBV and % rCBV (large dashed line) for weeks 1 (A) and 3 (B) post-treatment. Kaplan-Meier survival plots for overall survival are presented as a function of VD from PRMrCBV stratification at weeks 1 (C) and 3 (D) post-treatment. Solid line indicates VD≦cutoff and dotted line indicates VD>cutoff (cutoff=6.4%; p=0.009). -
FIG. 7 shows a patient with a glioblastoma multiforme designated by VD from PRMrCBF stratification as a non-responder (survival time=6 months). Results from non-responding patient. (A) Representative slice of PRMrCBF color-coded ROI superimposed onto a Gd-enhanced T1-weighted MR image 1 week post-radiotherapy. (B) Scatter plot showing the distribution of rCBF pre and post-radiotherapy for the entire 3-dimensional tumor volume. Relative volumes atWeek 1 were: VD (blue dots designate voxels where rCBF decreased) of 14.1% and VI (red dots designate voxels where rCBF increased) of 3.5%. -
FIG. 8 shows (A) receiver operator characteristic curves for VD (solid line) and VI (small dashed line) from PRMrCBF and % rCBF (large dashed line) forweeks 1 post-treatment and (B) Kaplan-Meier survival plot for overall survival are presented as a function of VD from PRMrCBF stratification atweeks 1 post-treatment. Solid line indicates VD≦cutoff and dotted line indicates VD>cutoff (cutoff=4.15%; p=0.001). -
FIG. 9 shows mid-tumor axial images of the permeability constant (Ktrans) and area under the curve (AUC) with corresponding PRM analyses for a breast cancer patient pre- (week 0) and post-treatment (week 1.5). PRM analysis includes PRM color-overlay and scatter plot. Thresholds, depicted as black lines in the scatter plots, were set to ±0.2 and ±1.2 for Ktrans and AUC, respectively. -
FIG. 10 shows co-registration of MRI studies in soft tissue sarcoma. A) Fat-suppressed T2-weighted image of pelvic liposarcoma prior to treatment. B) Overlay of post- and pre-treatment scans based only on rigid body structures shows distortion of the tumor because of increases in volume over time. C) Checkerboard display of alternating images from pre- and 7-week post-treatment studies after post-processing using mutual information and warping shows precise registration of anatomic features within the tumor for subsequent PRM analysis. -
FIG. 11 shows whole tumor versus PRM analysis of ADC. (Left) Whole tumor analysis shows a minimal increase in mean ADC during neoadjuvant chemotherapy for pelvic liposarcoma with extensive overlap of all histograms (pre-therapy, blue line; 1 week, green; 7 weeks, red). (Middle and Right) PRM scatter plots show notable changes in ADC (≈12% of all voxels) after 1 week of therapy (middle) that increase even more by 7 weeks (right). -
FIG. 12 shows whole tumor region of interest (A1) and pseudocolor display of Ktrans values from a representative image on pre-therapy (B1), 1 week (C1), and 7 week (D1) DCE-MRI studies. Whole tumor mean values for Ktrans (E1) lose spatial heterogeneity of changes within the tumor, resulting in small overall changes following therapy. PRM analysis of 1 week (A2, C2) and 7 week (B2, D2) studies utilizes spatial heterogeneity to substantially increase detection of therapy-induced changes in Ktrans over time. - The present invention provides systems and methods for monitoring tissue regions. The systems and methods of the present invention employ parametric response map approaches (PRM), using a number of different modalities (described herein as PRMx), for assessing changes in tissue over time, including changes caused by medical interventions. In some embodiments, the systems and methods of the present invention are used to evaluate the effectiveness of a particular treatment of a tissue region. In some embodiments, the systems and methods of the present invention provide a parametric response map approach for detecting and analyzing changes in tissue regions over a period of time to detect and monitor disease or tissue health and to monitor the impact of therapeutic interventions.
- The present invention is not limited to the monitoring of a particular tissue region. In some embodiments, the tissue region is within a living subject (e.g., dog, cat, human, gorilla, cow, sheep, rat, mouse, etc.). In some embodiments, the tissue region is within a living human being. In some embodiments, the tissue region is a diseased tissue region (e.g., a malignant tumor, a benign tumor, an abnormal growth, an inflamed region, a cancerous region, an infected region, an organ rejection). In some embodiments, the tissue region is a body region of the subject (e.g., lung, bone, heart, leg, foot, stomach, brain, neck, liver, breast). In some embodiments, the tissue region is the entire body of the subject.
- The present invention is not limited to a particular type or manner of monitoring a tissue region. In some embodiments, the monitoring of a particular tissue region is accomplished through obtaining data measurements for the tissue region at different time points (e.g., two time points, three time points, five time points, fifty time points, etc.) (e.g., before treatment, during treatment, after treatment) and the characterization of changes within the tissue region between data measurements. The present invention is not limited to a particular method for characterizing changes within the tissue region between data measurements. In some embodiments, the characterization involves detecting one or more changes of a particular biological parameter within various regions within the tissue region. The present invention is not limited to detecting changes in a particular biological parameter within a tissue region. Examples of biological parameters within a tissue region that may be assessed for changes include, but are not limited to, changes in blood volume of the tissue region, changes in blood perfusion of the tissue region, changes in vascular leakage parameters of the tissue region, changes in density of the tissue region, changes in composition of the tissue region, changes in diffusion anisotropy-dependent parameters in the region, etc (see, also, e.g., Tofts, P. S. (1997) J
Magn Reson Imaging 7, 91-101; Hylton, N. (2006) J Clin Oncol 24, 3293-3298 (2006); Tofts, P. S., et al. (1999) JMagn Reson Imaging 10, 223-232; Kiessling, F., et al., (2007)Curr Med Chem 14, 77-91). Functional imaging approaches complement, for example, anatomical MRI scans and are increasingly used in clinical practice for diagnosis and treatment response assessment (see, e.g., O'Connor, J. P., et al., Br J Cancer 96, 189-195 (2007); Zahra, M. A., et al.,Lancet Oncol 8, 63-74 (2007); Cao, Y., et al. Int J Radiat Oncol Biol Phys 64, 876-885 (2006)). Dynamic contrast-enhanced (DCE) and dynamic susceptibility-weighted contrast (DSC) MRI methods provide information related to a variety of hemodynamic parameters including microvessel permeability-surface area product, blood volume, and blood flow (see, e.g., Ostergaard, L., et al., Magn Reson Med 36, 715-725 (1996); Rosen, et al.,Magn Reson Med 14, 249-265 (1990); Brix, G., et al. Magn Reson Med 52, 420-429 (2004); Brix, G., et al. J Comput Assist Tomogr 15, 621-628 (1991); Hoffmann, U., Magn Reson Med 33, 506-514 (1995); Tofts, P. S.; JMagn Reson Imaging 7, 91-101 (1997); Degani, H.,Nat Med 3, 780-782 (1997)). Several rudimentary analyses of the signal- or concentration-time curves following contrast agent administration have been described including slope of the curve, time to peak, maximum peak enhancement, wash out and area under the curve (see, e.g., Galbraith, S. M., et al. NMR Biomed 15, 132-142 (2002); Hylton, N. J Clin Oncol 24, 3293-3298 (2006); Thomas, A. L., et al. J Clin Oncol 23, 4162-4171 (2005); Xiong, H. Q., et al. Invest New Drugs 22, 459-466 (2004)). These descriptive parameters have been used in routine clinical applications primarily for tumor tissue characterization. Relatively complex pharmacokinetic modeling is required to derive physiological parameters, though these models tend to be based on simplifying assumptions and regimes where exchange of contrast material between the vascular space and interstitium is either flow limited, or permeability limited (see, e.g., Tofts, P. S., et al. JMagn Reson Imaging 10, 223-232 (1999); Eyal, E. & Degani, H. NMR Biomed (2007)). This requirement has led to the development of a diverse compilation of contrast agents for the purpose of increasing overall signal enhancement and blood pool localization as well as numerous mathematical models (see, e.g., Kiessling, F.,Curr Med Chem 14, 77-91 (2007)). It has been suggested that validation and routine use of perfusion MRI as a biomarker of treatment response will require standardization of acquisition and quantification methods, with the latter being the more difficult due to the diverse number of methods (see, e.g., Hylton, N. J Clin Oncol 24, 3293-3298 (2006)). The lack of consensus for a standardized post-processing approach for analysis of perfusion MRI data is in part due to the need for a relatively large clinical data set to evaluate and compare the accuracy of different quantification methods used to compute pharmacokinetic parameters along with available clinical outcome measures (e.g., overall survival) as the gold standard. - The present invention is not limited to the collecting and analysis of a particular type of data for a tissue region. In some embodiments, the tissue region is imaged at different time points for purposes of characterizing the tissue region. In some embodiments, the imaging is used to determine physiological, morphological and/or anatomical changes within the tissue region. In some embodiments, the imaging is used to determine one or more blood perfusion values within the tissue region. The imaging systems and methods are not limited to collecting and analyzing a particular type of perfusion parameter. In some embodiments, the systems and methods collect and analyze perfusion MRI parameters. In some embodiments, the perfusion MRI parameters include, but are not limited to, relative cerebral blood volume (PRMrCBV), vascular permeability (PRMK trans), and extravascular leakage space (PRMVe). In some embodiments, the systems and methods collect and analyze perfusion CT parameters. In some embodiments, the systems and methods collect and analyze perfusion positron emission tomography (PET) parameters. In some embodiments, the systems and methods collect and analyze perfusion single photon emission computed tomography (SPECT) parameters.
- In experiments conducted during the course of development of embodiments for the present invention, the parametric response map (PRMx) was utilized as a novel, voxel-wise image analysis approach for quantification of hemodynamic alterations following treatment. For example, the method was applied to patients with grade III/IV glioma. Relative cerebral blood volume (rCBV) maps were acquired pre-treatment and at 1 and 3 weeks following treatment. The standard approach of percent change in rCBV averaged over the tumor (% rCBV) and PRMrCBV were compared for prognostic effectiveness of patient outcome stratification based on overall survival. The PRMrCBV was found to predict patient treatment response at 1 and 3 weeks from treatment initiation. Indeed, the PRM imaging biomarker provided a standardized method for analysis of perfusion data with greater prognostic value than current approaches.
- The present invention is not limited to a particular manner of implementing parametric response map (PRMx) (where x is any type of parametric data) analysis within a tissue region. In some embodiments, the present invention provides algorithms configured to correlate perfusion MRI parameter measurements (e.g., relative cerebral blood volume (PRMrCBV), vascular permeability (PRMK trans), and extravascular leakage space (PRMVe)) taken at different times. In some embodiments, an algorithm is provided in a system with an MRI device such that upon imaging of a particular tissue region with the MRI device, a PRM image is automatically generated. In some embodiments, the algorithm is configured to automatically generate a PRM for a particular tissue region. In some embodiments, a PRM for a particular tissue region distinguishes between regions within the tissue region with different measured parameters (e.g., blood perfusion, relative cerebral blood volume, vascular permeability, extravascular leakage space). In some embodiments, such distinguished changes are presented within a tissue region image on a display as color differences (e.g., red indicating increased blood perfusion, blue indicating decreased blood perfusion, green indicating unchanged blood perfusion) (e.g., varied color or other gradient schemes distinguishing between, for example, ultra-high blood perfusion alteration, moderately-high blood perfusion alteration, minimally-high blood perfusion alteration, and no blood perfusion alteration) (see, e.g., Examples I-IV, below).
- In some embodiments, the systems and methods are used to quantify changes in tissue regions, where the existence of or degree of change is prognostic or otherwise indicative of disease state, response to therapy, or another desired tissue status criteria of interest. The systems and methods of the present invention provide an improvement over, for example, whole-tumor average methods. Indeed, PRMx retains spatio-regional alterations in perfusion parameter measurements (e.g., perfusion MRI parameter measurements) (e.g., cerebral blood volume values) following, for example, a treatment initiation. For example,
FIG. 1 shows that a tumor environment may have three local hemodynamic outcomes throughout the course of therapy. An increase in, for example, rCBV above a specified threshold corresponds to a significant increase in the microvascular density or enlargement of blood vessel diameter (e.g., blood volume) within the tumor, in which case these voxels would be color coded, for example, red in the PRM analysis approach applied to rCBV (PRMrCBV). Alternatively, treatment may result in a significant reduction in rCBV within the tumor in which case voxels within those regions would be coded, for example, blue. Voxels in regions which were relatively unaffected by therapy would be coded, for example, green. In some embodiments, the PRMrCBV analysis retains the spatial rCBV information as coded by color overlayed on anatomic images and also quantification of the total number of tumor voxels (on a percentage of total tumor volume or voxel number) which exhibited an increase (red: VI), decrease (blue: VD) or unchanged (green: V0) rCBV values using scatter plot analysis. - In some embodiments, quantification of spatially altered perfusion parameter measurements is used as a prognostic imaging biomarker for early treatment response assessment. The present invention is not limited to a particular manner of using spatially altered perfusion parameter measurements as a prognostic imaging biomarker for early treatment response assessment. In some embodiments, spatially altered perfusion parameter measurements are used as a prognostic imaging biomarker for early treatment response assessment correlation with overall patient survival.
- In some embodiments, the present invention provides methods of treating a diseased tissue region (e.g., a malignant tumor). In such embodiments, a diseased tissue region is administered a treatment directed toward the particular tissue region, and the treatment monitored over the course of the treatment with PRMx. In some embodiments, a particular type of treatment is altered if the PRMx indicates that the tissue region is not responding to the treatment. Changes include, but are not limited to, changing medication, dosing, route of administration, frequency, and the like.
- In some embodiments, the present invention provides methods for screening the effectiveness of types of treatment of diseased tissue regions (e.g., malignant tumors, benign tumors, etc.). In such embodiments, types of treatment (e.g., pharmaceutical treatment, radiation based treatment, chemotherapeutic treatment, radiation sensitizer treatment, gene therapy based treatment, cancer vaccine based treatment) designed to treat a particular tissue region are evaluated based upon the ability to effectively treat (e.g., reduce blood perfusion in a tumor; increase blood perfusion in a tumor; reduce the size of a tumor; increase/decrease vascular leakage parameters; increase/decrease the density of a tumor; increase/decrease the diffusion anisotropy-dependent parameters of a tumor) the tissue region as measured with PRMx at various time points. In some embodiments, treatments identified as effective in treating a tissue region as measured with PRMx may be used to treat similar types of diseased tissue regions in the same individual and/or in other individuals presenting similar diseased tissue regions.
- In some embodiments, PRMx is used to characterize an individual's disease (e.g., provide an overall prognosis). For example, PRMx databases for similar tissue regions having similar disease patterns (e.g., liver tumors resulting from liver cancer) may be generated according to any number of variables (e.g., treatment response; blood perfusion change over a certain amount of time; overall treatment outcome; etc.). The PRMx database can be used to generate expected treatment plans based on expected treatment outcome for such a tissue region having such a disease. In some embodiments, a health care professional obtains a PRMx for a patient's tissue region during and/or after a course of treatment and compares the PRMx with one or more PRMx from similar tissue regions from similar types of patients or from the same patient. In some embodiments, such a comparison is used to fine tune a treatment plan based on the expected treatment outcome as identified in the PRMx database.
- The following examples are offered to illustrate various embodiments of the invention, but should not be viewed as limiting the scope of the invention.
- This example describes the materials and methods for Examples II and III.
- Patients
- Patients with pathologically proven grade III/IV gliomas were enrolled on a protocol of intra-treatment MRI. Informed consent was obtained. Fourty-four patients were evaluated pre-therapy, one week and three weeks post-treatment initiation. Radiotherapy (RT) was delivered using 3D-conformal therapy or Intensity Modulated Radiation Therapy (IMRT) with 6 MV or greater photons. Standard techniques were utilized with a 2.0-2.5 cm margin on either the enhancing region on gadolinium-enhanced scans or the abnormal signal on T2-weighted scans to 46-50 Gy with the central gross tumor treated to a final median dose of 70 Gy in 6-7 weeks (see, e.g., Chan, J. L., et al.
J Clin Oncol 20, 1635-1642 (2002). Twenty-four, at week one, of these patients were treated on aphase 2 protocol of high-dose (>60 Gy) radiation therapy concurrent with temozolamide. Chemotherapy was delivered as dependent upon clinical circumstances. - MRI Scans
- MRI scans were performed one week prior to and one and three weeks after the start of radiation with follow-up scans every 2-3 months. All images were acquired on either a 1.5 T MRI system (General Electric Medical Systems, Milwaukee, Wis.) (n=30 patients) or a 3 T Philips Achieva system (Philips Medical Systems, Best, The Netherlands) (n=14 patients). For dynamic susceptibility contrast (DSC) imaging, 14 to 20 slices of dynamic T2*-weighted images were acquired by a gradient-echo echo-planar imaging pulse sequence (TR=1.5 to 2 s, TE=50 to 60 ms, field of view 220×220 mm2, matrix 128×128,
flip angle 60°, and 4 to 6 mm thickness and 0 mm gap). Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was injected intravenously with a dose of 0.05 to 0.1 ml/kg as a bolus using a power injector at a rate of 2 mL/s, followed immediately by 15 cc of saline flush at the same rate. Subsequently a Gd-enhanced T1-weighted imaging was acquired. Cerebral blood volume (CBV) maps were generated from DSC T2*-weighted images (see, e.g., Cao, Y., et al. Int J Radiat Oncol Biol Phys 64, 876-885 (2006)). - To assess differences in tumor blood volume during RT and between patients, CBV maps were normalized to CBV values within white matter regions contralateral to the tumor to generate the relative CBV (rCBV). For simplicity in notation, relative blood volume for both brain and tumor are denoted by “rCBV.” The following guidelines were used to define the white matter regions of interest for normalization: (1) contralateral to tumor, (2) received <30 Gy accumulated dose, and (3) as large as possible but avoiding regions with susceptibility artifacts and partial volume averaging.
- Image Analysis
- Pre- and post-treatment rCBV maps were co-registered to Gd-enhanced T1-weighted images acquired before RT using an automated mutual information and simplex optimization module (see, e.g., Meyer, C. R., et al. Med Image Anal 1, 195-206 (1997)). Following co-registration, brain tumors, manually contoured by a neuroradiologist, were defined within the enhancing regions of the tumor on the Gd-enhanced T1-weighted images. Shrinkage or growth of the tumor during the time between scans may have occurred; therefore, only voxels that were present in both the pre-RT and post-RT tumor volumes were included.
- The parametric response map of rCBV (PRMrCBV) was determined by first calculating the difference between the rCBV (ΔrCBV=Post rCBV−Pre rCBV) for each voxel within the tumor pre-RT and at
weeks - Statistical Analysis
- A receiver operator characteristic (ROC) curve analysis was performed for correlation of the representative imaging parameters with patient survival one year from diagnosis across all thresholds. The area under the ROC curve (ROC_AUC) was obtained to distinguish which continuous variables (VI, VD and % rCBV) were predictive measures of outcome. For parameters whose ROC_AUC was statistically significant, cutoffs were selected based on optimal values of sensitivity and specificity. Patient population was then stratified based on the ROC cutoffs. Kaplan-Meier survival curves and the log-rank test were used to characterize and compare the groups in terms of overall survival. All statistical computations were performed with a statistical software package (SPSS Software Products, Chicago, Ill.), and results were declared statistically significant at the two-sided 5% comparison-wise significance level (p<0.05).
- This example describes a comparison between PRMrCBV and rCBV analysis of perfusion MR images. Results of rCBV analysis from a representative patient diagnosed with a glioblastoma multiforme non-responsive to radiotherapy are presented in
FIG. 2 . The overall survival for this patient was 3 months from diagnosis. Signal hyperintensity in the Gd-enhanced T1-weighted image was observed along the rim of the tumor atweeks FIG. 2A ), corresponding to disruption of the blood-brain-barrier. Atweek 1 of treatment, a slight attenuation in tumor rim enhancement was observed with a minor increase in enhancement within the core persisting throughweek 3. Tumor volume decreased slightly by 15% within the first week, and remained unchanged by the third week (week 0, 38 cc;week 1, 32 cc;week 3, 31 cc). - Prior to treatment (week 0) the tumor consisted primarily of a high blood volume rim with a low blood volume core which was attenuated at
week FIG. 2B ). Following normalization by contralateral white matter, the distribution of rCBV values (FIG. 2C ) within the tumor atweek 0 ranged from 0 to 6 with a mean of 1.97. Significant numbers of voxels found to have rCBV's less than 1 were localized within the tumor core (FIG. 2B ). Atweek 1 of therapy, mean rCBV decreased by <1% to 1.95 (FIG. 2C ). As observed inFIG. 2B , a loss in rCBV along the tumor rim had occurred atweek 1. The number of voxels with rCBV<1 had also decreased from pre-treatment values, as a result of increased rCBV within the tumor core. This had offset the observed loss in high rCBV along the tumor rim when calculating the mean. Increased rCBV within the tumor core, which is observed as increased Gd-enhancement inFIG. 2A , was more pronounced byweek 3 as evidenced by a right-shift (FIG. 2C ) of the mean rCBV (2.13), generating a mean rCBV value slightly higher than pre-treatment levels. - Presented in
FIG. 3 is a PRMrCBV color overlay on the Gd-enhanced T1-weighted image acquired atweeks weeks FIG. 3A ). Scatter plot analysis (FIG. 3B ) revealed that atweeks - A representative patient diagnosed with a glioblastoma multiforme who responded to radiotherapy is presented in
FIGS. 4 and 5 . The overall survival of this patient was 20.4 months from diagnosis. Similar to the non-responsive patient, signal hyperintensity along the rim of the tumor was observed atweek 0 and decreased slightly atweeks FIG. 4A ). Negligible changes in contrast enhancement were observed in the tumor core. Over the initial course of treatment the tumor volume increased atweek 1 from 40 cc to 50 cc and to 54 cc atweek 3. - Regions of heterogeneity in the rCBV maps (
FIG. 4B ) were not as apparent as in the Gd-enhanced T1-weighted images atweeks FIG. 4C ), the distribution of rCBV values ranged from 0 to 3. Mean rCBV values were found to be 1.02 atweek 0, 1.00 atweek 1 and 0.84 atweek 3. The percent difference of the mean rCBV over the entire tumor atweek 3 was approximately −18%. - PRMrCBV analysis of this patient showed negligible changes at 1 and 3 weeks of therapy (
FIG. 5A ). Shown inFIG. 5B are the corresponding scatter plots revealing VI and VD changed by 3.4% and 4.3%, respectively, atweek 1. Atweek 3, VI and VD were 0.3% and 4.6% of the tumor volume, respectively. Clearly the PRMrCBV values in the therapeutically responsive patient were altered very little as compared with the non-responding patient. - As part of the imaging clinical trial design, overall survival data were obtained for this patient population for use as a clinical outcome correlate to evaluate the prognostic accuracy of each of the measured imaging biomarker parameters. Receiver operating characteristic (ROC) analysis was accomplished to select optimized thresholds for correlation analysis with overall survival from parameters whose area under the ROC curve (ROC— AUC) was found to be statistically significant. Of each of the three imaging biomarker parameters, VD was found to be significantly predictive of survival at one year with an AUC of 0.754 (p=0.004) resulting in a cutoff of 6.8% (
FIG. 6A and Table 1). VI and % rCBV generated an ROC_AUC of 0.528 and 0.557, respectively, which are both equivalent to a random conjecture (Table 1). As shown inFIG. 6B and Table 1, VD atweek 3 was again significantly predictive of survival at one year with an ROC_AUC of 0.710 (p=0.012) and a cutoff of 5.9%. VI and % rCBV were found to be non-predictive with an ROC_AUC of 0.584 and 0.549, respectively. For PRM to be suitable for clinical use the approach must be insensitive to cutoff value. Therefore, the mean value of the cutoffs fromweeks - PRMrcBV measurements at
weeks FIGS. 6C and D and Table 1. Patients whose VD was below or equal to the mean cutoff (6.4%) had a significantly longer median survival than patients whose VD was above the cutoff. Similar results for VD were observed atweek 3. -
TABLE 1 ROC and Survival Analysis Results Median Parameter ROC_AUC Survival (n) p value VD 0.754 20.4/10.2 0.009 (p = 0.004) (17/27) VI 0.528 — — % rCBV 0.557 — — VD 0.720 35.1/8.1 0.004 (p = 0.012) (18/26) VI 0.584 — — % rCBV 0.549 — — Area under the ROC curve (ROC_AUC) and significant p values were generated from the ROC analysis. The mean of the optimal cutoffs at weeks Median survival and group populations (in parentheses) were presented for significant results (p values) generated from Kaplan-Meier and log-rank test. Median survival is split based on stratification of parameter: left value is ≦ cutoff; and right value is > cutoff. Statistical significance was assessed at p < 0.05.
Experiments were accomplished to demonstrate the PRM technique with various imaging parameters and tumor types and within a variety of host tissues. - The procedure for PRM using relative cerebral blood flow (PRMrCBF), was analogous as described for PRMrCBV in Example I. Presented here are the results of the PRMrCBF analysis at one week.
FIG. 7 shows a patient with a glioblastoma multiforme designated by VD from PRMrCBF stratification as a non-responder (survival time=6 months).FIG. 7A shows a representative slice of PRMrCBF color-coded ROI superimposed onto a Gd-enhanced T1-weighted MR image 1 week post-radiotherapy.FIG. 7B shows a scatter plot showing the distribution of rCBF pre and post-radiotherapy for the entire 3-dimensional tumor volume. Relative volumes at week1 were: VD (blue dots designate voxels where rCBF decreased) of 14.1% and VI (red dots designate voxels where rCBF increased) of 3.5%. -
FIG. 8A shows receiver operator characteristic curves for VD (solid line) and VI (small dashed line) from PRMrCBF and % rCBF (large dashed line) forweeks 1 post-treatment. VD was found to be significantly predictive of survival at one year with an ROC_AUC of 0.704 (cutoff=4.15%, p=0.021). VI and % rCBF generated an ROC_AUC of 0.567 and 0.511, respectively. Kaplan-Meier survival plot,FIG. 8B , for overall survival is presented as a function of VD from PRMrCBF stratification atweeks 1 post-treatment. Solid line indicates VD≦cutoff and dotted line indicates VD>cutoff (cutoff=4.15%; p=0.001). - The current demonstration is to highlight the versatility of the PRM approach.
FIG. 9 shows mid-tumor axial images of the permeability constant (Ktrans) and area under the curve (AUC) with corresponding PRM analyses, presented for a breast cancer patient pre- (week 0) and post-treatment (week 1.5). The PRM analysis includes PRM color-overlay and scatter plot. Thresholds, depicted as black lines in the scatter plots, were set to ±0.2 and ±1.2 for Ktrans and AUC, respectively. - This example describes a particular technique for generating a parametric response map (PRMx) for quantifying changes in tissue regions over a period of time and/or in response to therapeutic interventions. The present invention is not limited to this particular technique.
- First, images are acquired (e.g., MRI images; PET images; SPECT images; CT images) at different time points for a particular tissue region.
- Second, the images obtained for the particular tissue region are spatially co-registered (see e.g., Lee et al., Neoplasia, 9(12):1003-1011 (2007); Meyer C R, et al., Med Image Anal. 1997; 1:195-206; and Kim, et al., Proc. Intl. Soc. Mag. Reson. Med. 8 (2000) 1765; each herein incorporated by reference in their entireties). Registration including rigid body, affine (linear) and/or warping image information from interval exams applied globally over the entire image sets and/or regionally over selected regions or areas.
- Third, the error threshold is set. This step involves identification of the source of error. Acquisition error involves noise and artifacts. Co-Registration error involves misalignment of images. The procedure for setting the threshold involves drawing a region of interest around tissue with detailed contrast/heterogenous, good SNR/CNR, and anatomically and physiologically unchanged. The procedure also involves calculating a difference map (Xpost−Xpre), and determining 95% confidence interval (e.g., plotting Xpre vs. Xpost and performing a linear regression to calculate the confidence interval).
- Fourth, Difference Maps (Xpost−Xpre) following treatment are calculated.
- Fifth, threshold voxel data is processed (e.g., Red: ΔX>threshold; Green: −threshold≦ΔX≦threshold; Blue: ΔX≦−threshold).
- Sixth, data is represented (e.g., Scatter Plot Xpre vs. Xpost; shows distribution of X following treatment) (e.g., color overlay of PRM is superimposed on high SNR/contrast image; shows voxel-wise variation in X).
- This example describes whole tumor and PRM analysis of ADC and DCE-MRI data in soft tissue sarcoma. As proof-of-principle that PRM analysis enhances detection of therapy-induced changes in soft tissue sarcoma, diffusion and DCE-MRI was performed on a patient undergoing neoadjuvant chemotherapy with doxorubicin and ifosfamide. MRI studies after 1 and 7 weeks of therapy were co-registered with the pre-treatment examination. The use of warping registration methods accounted for the increase in tumor volume during neoadjuvant chemotherapy, as seen by precise alignment of pre- and 7-weeks post-treatment tumors on the checkerboard display (
FIG. 10 ) (see, e.g., Meyer C R, et al., Med Image Anal. 1997; 1:195-206; Kim, et al., Proc. Intl. Soc. Mag. Reson. Med. 8 (2000) 1765; Meyer, C R, (2006) Molecular Imaging 5(1):16-23; Kim, B, et al., (1997) NeuroImage 5(1):31-40; Collignon, A, et al., (1995) Lecture Notes in Computer Science 905: 195-204; Viola, P, et al., (1995) Alignment by maximization of mutual information, in Proceedings of 5th Intl. Conf. on Computer Vision, MIT, IEEE Press 95CH35744: 16-23; Bookstein, Fla. (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6):567-585; Jacobs, M, et al., (1999) Medical Physics 26(8):1568-1578; Pelizzari, C A, et al., (1987) J. Nucl. Med. 28(4):683; Besl, P J, et al., (1992) IEEE Trans. Pattern Analysis and Machine Intelligence 14(2):239-256; Lazebnik, R, et al., IEEE Trans Med Imaging 22(5):653-660; Breen, M, et al., J Mag Res Imag 18:90-102; Wilson, D, et al., (2004) M Breen, R Lazebnik, S Nour, J Lewin (2004) Radiofrequency thermal ablation: 3D MR histology correlation for localization of cell death in MR lesion images, in Proceedings of Internat Symp Biomed Imaging, Arlington, Va.: 1537-1540; Zarow, C, et al., J Neuorsci Methods 139:209-215; Park, H, et al., M Piert, A Kahn, R Shah, H Hussain, J Siddiqui, C Meyer (2008) Registration methodology for histological sections and ex vivo imaging of human prostate, Academic Radiology (accepted for publication); each herein incorporated by reference in their entireties). Using these co-registered images, therapy-induced changes in ADC and Ktrans by whole-tumor mean values and PRM of spatially-localized changes in these parameters within the tumor was analyzed. - Whole-tumor mean values for ADC increased only minimally after 1 and 7 weeks of therapy (<10% increase from baseline to 7 weeks). Histogram plots of whole tumor data were overlapping, further emphasizing the small dynamic range of standard whole-tumor analysis (
FIG. 11 ). By comparison, PRM showed significant changes in ADC in ≈12% of all tumor voxels within 1 week of therapy, increasing to almost 30% of the entire tumor by 7 weeks. PRM also showed enhanced detection of chemotherapy-induced changes in Ktrans as compared with standard whole tumor analysis. Chemotherapy produced minimal effects on mean values for Ktrans within the entire tumor volume (FIG. 12 ). By incorporating spatial localization of Ktrans data and analyzing changes in these values on a voxel-by-voxel basis, PRM identified notably larger perturbations of Ktrans after 1 and 7 weeks of treatment. The patient had a favorable histologic response to chemotherapy. As such, PRM analysis of diffusion and DCE-MRI data enhances detection of therapy-induced changes in sarcomas relative to standard whole tumor analysis. In addition, PRM analysis permits identification of quantitative changes in MRI data that are early predictive biomarkers for response to neoadjuvant chemotherapy in bone and soft tissue sarcomas. - All publications and patents mentioned in the above specification are herein incorporated by reference. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/040,729 US20160174895A1 (en) | 2008-02-29 | 2016-02-10 | Systems and methods for imaging changes in tissue |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3282508P | 2008-02-29 | 2008-02-29 | |
US12/395,194 US9289140B2 (en) | 2008-02-29 | 2009-02-27 | Systems and methods for imaging changes in tissue |
US15/040,729 US20160174895A1 (en) | 2008-02-29 | 2016-02-10 | Systems and methods for imaging changes in tissue |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/395,194 Continuation US9289140B2 (en) | 2008-02-29 | 2009-02-27 | Systems and methods for imaging changes in tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160174895A1 true US20160174895A1 (en) | 2016-06-23 |
Family
ID=41063806
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/395,194 Active 2031-12-16 US9289140B2 (en) | 2008-02-29 | 2009-02-27 | Systems and methods for imaging changes in tissue |
US15/040,729 Abandoned US20160174895A1 (en) | 2008-02-29 | 2016-02-10 | Systems and methods for imaging changes in tissue |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/395,194 Active 2031-12-16 US9289140B2 (en) | 2008-02-29 | 2009-02-27 | Systems and methods for imaging changes in tissue |
Country Status (6)
Country | Link |
---|---|
US (2) | US9289140B2 (en) |
EP (1) | EP2282672A4 (en) |
JP (1) | JP2011512963A (en) |
CN (1) | CN102083366B (en) |
CA (1) | CA2716940C (en) |
WO (1) | WO2010082944A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345885A (en) * | 2018-01-18 | 2018-07-31 | 浙江大华技术股份有限公司 | A kind of method and device of target occlusion detection |
US10803633B2 (en) | 2018-02-06 | 2020-10-13 | General Electric Company | Systems and methods for follow-up functional imaging |
US11250569B2 (en) * | 2019-11-04 | 2022-02-15 | GE Precision Healthcare LLC | Systems and methods for functional imaging follow-up evaluation using deep neural network |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7831075B2 (en) * | 2005-10-20 | 2010-11-09 | Case Western Reserve University | Imaging system |
WO2008128088A1 (en) | 2007-04-13 | 2008-10-23 | The Regents Of The University Of Michigan | Systems and methods for tissue imaging |
CA2716940C (en) | 2008-02-29 | 2016-01-19 | The Regents Of The University Of Michigan | Systems and methods for imaging changes in tissue |
EP2344982A4 (en) * | 2008-10-10 | 2012-09-19 | Sti Medical Systems Llc | Methods for tissue classification in cervical imagery |
WO2013003826A1 (en) | 2011-06-29 | 2013-01-03 | The Regents Of The University Of Michigan | Analysis of temporal changes in registered tomographic images |
US9053534B2 (en) | 2011-11-23 | 2015-06-09 | The Regents Of The University Of Michigan | Voxel-based approach for disease detection and evolution |
US20140354642A1 (en) * | 2011-12-07 | 2014-12-04 | Koninklijke Philips N.V. | Visualization of 3D Medical Perfusion Images |
US20130215146A1 (en) * | 2012-02-17 | 2013-08-22 | Canon Kabushiki Kaisha | Image-drawing-data generation apparatus, method for generating image drawing data, and program |
EP2831610B1 (en) * | 2012-03-29 | 2021-05-12 | Koninklijke Philips N.V. | Mri method for assigning individual pixels or voxels tissue - specific pet attenuation values |
EP2845023A1 (en) | 2012-05-04 | 2015-03-11 | The Regents of the University of Michigan | Mean diffusivity measurement corrections for gradient non-linearity |
US9471974B2 (en) * | 2012-05-18 | 2016-10-18 | Stc.Unm | Method and system for feature extraction and decision making from series of images |
US20140146048A1 (en) * | 2012-11-23 | 2014-05-29 | Xu Feng | Standardized geometric and physiologic space for visual and quantitative evaluation of tumor mri characteristics |
CN111580715B (en) * | 2013-03-27 | 2024-03-22 | 皇家飞利浦有限公司 | Preference view generation at the structural level based on user preferences |
US10010704B2 (en) * | 2013-08-23 | 2018-07-03 | Elwha Llc | Systems, methods, and devices for delivering treatment to a skin surface |
US9549703B2 (en) | 2013-11-27 | 2017-01-24 | Elwha Llc | Devices and methods for sampling and profiling microbiota of skin |
US9526480B2 (en) | 2013-11-27 | 2016-12-27 | Elwha Llc | Devices and methods for profiling microbiota of skin |
US9805171B2 (en) | 2013-08-23 | 2017-10-31 | Elwha Llc | Modifying a cosmetic product based on a microbe profile |
US20150057623A1 (en) * | 2013-08-23 | 2015-02-26 | Elwha Llc | Systems, Methods, and Devices for Delivering Treatment to a Skin Surface |
US10152529B2 (en) * | 2013-08-23 | 2018-12-11 | Elwha Llc | Systems and methods for generating a treatment map |
US9811641B2 (en) | 2013-08-23 | 2017-11-07 | Elwha Llc | Modifying a cosmetic product based on a microbe profile |
US9557331B2 (en) | 2013-08-23 | 2017-01-31 | Elwha Llc | Systems, methods, and devices for assessing microbiota of skin |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US9526450B2 (en) | 2013-11-27 | 2016-12-27 | Elwha Llc | Devices and methods for profiling microbiota of skin |
US9610037B2 (en) | 2013-11-27 | 2017-04-04 | Elwha Llc | Systems and devices for profiling microbiota of skin |
ITMO20130326A1 (en) * | 2013-11-29 | 2015-05-30 | Istituto Naz Tumori Fondazi One G Pascale | ANALYSIS METHOD |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US10827945B2 (en) | 2014-03-10 | 2020-11-10 | H. Lee. Moffitt Cancer Center And Research Institute, Inc. | Radiologically identified tumor habitats |
AU2015246630A1 (en) | 2014-04-15 | 2016-10-13 | 4DMedical Limited | Method of imaging |
US20160054410A1 (en) * | 2014-08-19 | 2016-02-25 | General Electric Company | System and method for locating and quantifying a biomarker for neurological disease |
EP2989988B1 (en) * | 2014-08-29 | 2017-10-04 | Samsung Medison Co., Ltd. | Ultrasound image display apparatus and method of displaying ultrasound image |
US10176339B2 (en) * | 2015-01-31 | 2019-01-08 | Jordan Patti | Method and apparatus for anonymized medical data analysis |
US20220015698A1 (en) * | 2015-09-28 | 2022-01-20 | Lan Jiang | Method of identifying tumor drug resistance during treatment |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US11723617B2 (en) | 2016-02-03 | 2023-08-15 | 4DMedical Limited | Method and system for imaging |
US10458895B2 (en) * | 2016-06-06 | 2019-10-29 | Case Western Reserve University | Predicting response to pemetrexed chemotherapy in non-small cell lung cancer (NSCLC) with baseline computed tomography (CT) shape and texture features |
US10650512B2 (en) | 2016-06-14 | 2020-05-12 | The Regents Of The University Of Michigan | Systems and methods for topographical characterization of medical image data |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
KR101914655B1 (en) | 2017-01-24 | 2018-11-02 | 이화여자대학교 산학협력단 | Method for providing information of diagnosing for colonic adenoma |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
JP2020508771A (en) | 2017-02-28 | 2020-03-26 | 4ディーエックス リミテッド | How to test and evaluate lung and vascular health |
EP3645111A1 (en) | 2017-06-30 | 2020-05-06 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
GB2567636B (en) * | 2017-10-17 | 2021-11-10 | Perspectum Diagnostics Ltd | Method and apparatus for imaging an organ |
EP3710110A1 (en) | 2017-11-16 | 2020-09-23 | Ebamed SA | Heart arrhythmia non-invasive treatment device and method |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6163152A (en) * | 1998-06-15 | 2000-12-19 | General Electric Company | Method and system for correcting errors in MR images due to regions of gradient non-uniformity for parametric imaging such as quantitative flow analysis |
US6845342B1 (en) * | 1999-05-21 | 2005-01-18 | The United States Of America As Represented By The Department Of Health And Human Services | Determination of an empirical statistical distribution of the diffusion tensor in MRI |
JP4018303B2 (en) * | 1999-12-07 | 2007-12-05 | 株式会社東芝 | Medical image processing device |
ATE438337T1 (en) * | 2000-02-02 | 2009-08-15 | Gen Hospital Corp | METHOD FOR EVALUATION NEW BRAIN TREATMENTS USING A TISSUE RISK MAP |
US6438401B1 (en) * | 2000-04-28 | 2002-08-20 | Alpha Intervention Technology, Inc. | Indentification and quantification of needle displacement departures from treatment plan |
US6909792B1 (en) * | 2000-06-23 | 2005-06-21 | Litton Systems, Inc. | Historical comparison of breast tissue by image processing |
US6567684B1 (en) * | 2000-11-08 | 2003-05-20 | Regents Of The University Of Michigan | Imaging system, computer, program product and method for detecting changes in rates of water diffusion in a tissue using magnetic resonance imaging (MRI) |
US20050283053A1 (en) * | 2002-01-30 | 2005-12-22 | Decharms Richard C | Methods for physiological monitoring, training, exercise and regulation |
WO2002061457A2 (en) | 2001-01-30 | 2002-08-08 | Decharms R Christopher | Methods for physiological monitoring, training, exercise and regulation |
US6579240B2 (en) * | 2001-06-12 | 2003-06-17 | Ge Medical Systems Global Technology Company, Llc | Ultrasound display of selected movement parameter values |
US6901277B2 (en) * | 2001-07-17 | 2005-05-31 | Accuimage Diagnostics Corp. | Methods for generating a lung report |
US7078897B2 (en) * | 2002-01-16 | 2006-07-18 | Washington University | Magnetic resonance method and system for quantification of anisotropic diffusion |
AU2003230164B2 (en) * | 2002-05-08 | 2008-05-01 | Yeda Research And Development Co. Ltd. | Sensitized online BOLD-MRI imaging method |
US6969991B2 (en) * | 2002-12-11 | 2005-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Correction of the effect of spatial gradient field distortions in diffusion-weighted imaging |
US20040254444A1 (en) | 2003-06-13 | 2004-12-16 | Craig Bittner | Use of MRI to screen normal risk, asymptomatic individuals for breast cancer |
US20050096530A1 (en) * | 2003-10-29 | 2005-05-05 | Confirma, Inc. | Apparatus and method for customized report viewer |
US7346203B2 (en) | 2003-11-19 | 2008-03-18 | General Electric Company | Methods and apparatus for processing image data to aid in detecting disease |
WO2006114658A2 (en) | 2005-04-28 | 2006-11-02 | Yeda Research And Development Co., Ltd | Lung cancer diagnosis using magnetic resonance imaging data obtained at three time points |
AR059339A1 (en) * | 2006-02-09 | 2008-03-26 | Chugai Pharmaceutical Co Ltd | CUMARINE DERIVATIVES FOR PROLIFERATIVE DISORDERS OF CELLS, PHARMACEUTICAL COMPOSITION AND THERAPEUTIC AGENT CONTAINING THEM |
US20080021301A1 (en) * | 2006-06-01 | 2008-01-24 | Marcela Alejandra Gonzalez | Methods and Apparatus for Volume Computer Assisted Reading Management and Review |
WO2008122056A2 (en) | 2007-04-02 | 2008-10-09 | Case Western Reserve University | Medical apparatus and method associated therewith |
WO2008128088A1 (en) * | 2007-04-13 | 2008-10-23 | The Regents Of The University Of Michigan | Systems and methods for tissue imaging |
WO2008154741A1 (en) | 2007-06-21 | 2008-12-24 | Cedara Software Corp. | Method and system for assessing a response to a treatment regimen |
US8134363B2 (en) * | 2007-07-20 | 2012-03-13 | Medical College Of Georgia Research Institute, Inc. | Test object for use with diffusion MRI and system and method of synthesizing complex diffusive geometries using novel gradient directions |
CA2716940C (en) | 2008-02-29 | 2016-01-19 | The Regents Of The University Of Michigan | Systems and methods for imaging changes in tissue |
JP2011515462A (en) * | 2008-03-27 | 2011-05-19 | アウククランド ウニセルビセス リミテッド | Substituted pyrimidines and triazines and their use in cancer therapy |
DE102008044901A1 (en) | 2008-08-29 | 2010-03-04 | Siemens Aktiengesellschaft | Method and device for selecting an irradiation plan and irradiation facility |
SG174527A1 (en) * | 2009-03-27 | 2011-11-28 | Pathway Therapeutics Inc | Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy |
US20100254584A1 (en) | 2009-04-07 | 2010-10-07 | Siemens Corporation | Automated method for assessment of tumor response to therapy with multi-parametric mri |
GB0906149D0 (en) | 2009-04-08 | 2009-05-20 | Cancer Res Inst Royal | Nuclear magnetic resonance imaging |
AR080945A1 (en) * | 2009-07-07 | 2012-05-23 | Pathway Therapeutics Inc | PIRIMIDINIL AND 1,3,5-TRIAZINIL BENZIMIDAZOLES AND ITS USE IN THERAPY AGAINST CANCER |
US20110077503A1 (en) | 2009-08-25 | 2011-03-31 | Medical University Of South Carolina | Automatic MRI Quantification of Structural Body Abnormalities |
TWI387445B (en) | 2009-09-17 | 2013-03-01 | Univ Nat Taiwan | Method for acquiring an image biomarker, method and apparatus for predicting a medical condition, and computer program product |
DE102010001577B4 (en) * | 2010-02-04 | 2012-03-08 | Siemens Aktiengesellschaft | Method for reducing distortions in diffusion imaging and magnetic resonance system |
WO2011137370A2 (en) | 2010-04-30 | 2011-11-03 | The Johns Hopkins University | Intelligent atlas for automatic image analysis of magnetic resonance imaging |
WO2013003826A1 (en) | 2011-06-29 | 2013-01-03 | The Regents Of The University Of Michigan | Analysis of temporal changes in registered tomographic images |
WO2013006506A1 (en) | 2011-07-01 | 2013-01-10 | The Regents Of The University Of Michigan | Pixel and voxel-based analysis of registered medical images for assessing bone integrity |
US9053534B2 (en) | 2011-11-23 | 2015-06-09 | The Regents Of The University Of Michigan | Voxel-based approach for disease detection and evolution |
EP2845023A1 (en) | 2012-05-04 | 2015-03-11 | The Regents of the University of Michigan | Mean diffusivity measurement corrections for gradient non-linearity |
-
2009
- 2009-02-27 CA CA2716940A patent/CA2716940C/en active Active
- 2009-02-27 JP JP2010548914A patent/JP2011512963A/en active Pending
- 2009-02-27 WO PCT/US2009/035532 patent/WO2010082944A2/en active Application Filing
- 2009-02-27 US US12/395,194 patent/US9289140B2/en active Active
- 2009-02-27 CN CN200980107936.1A patent/CN102083366B/en active Active
- 2009-02-27 EP EP09838524A patent/EP2282672A4/en not_active Ceased
-
2016
- 2016-02-10 US US15/040,729 patent/US20160174895A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345885A (en) * | 2018-01-18 | 2018-07-31 | 浙江大华技术股份有限公司 | A kind of method and device of target occlusion detection |
US10803633B2 (en) | 2018-02-06 | 2020-10-13 | General Electric Company | Systems and methods for follow-up functional imaging |
US11250569B2 (en) * | 2019-11-04 | 2022-02-15 | GE Precision Healthcare LLC | Systems and methods for functional imaging follow-up evaluation using deep neural network |
Also Published As
Publication number | Publication date |
---|---|
JP2011512963A (en) | 2011-04-28 |
WO2010082944A3 (en) | 2010-10-14 |
CA2716940C (en) | 2016-01-19 |
EP2282672A2 (en) | 2011-02-16 |
WO2010082944A2 (en) | 2010-07-22 |
US9289140B2 (en) | 2016-03-22 |
EP2282672A4 (en) | 2013-03-20 |
CA2716940A1 (en) | 2010-07-22 |
CN102083366B (en) | 2014-10-22 |
US20090234237A1 (en) | 2009-09-17 |
CN102083366A (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9289140B2 (en) | Systems and methods for imaging changes in tissue | |
Bisdas et al. | Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging | |
Server et al. | Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis | |
US8185186B2 (en) | Systems and methods for tissue imaging | |
Jackson et al. | Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma | |
Miles | Functional computed tomography in oncology | |
Jones et al. | Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment | |
Petrillo et al. | Standardized Index of Shape (SIS): a quantitative DCE-MRI parameter to discriminate responders by non-responders after neoadjuvant therapy in LARC | |
Thukral et al. | Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab—initial experience | |
Korporaal et al. | Phase‐based arterial input function measurements in the femoral arteries for quantification of dynamic contrast‐enhanced (DCE) MRI and comparison with DCE‐CT | |
Xu et al. | Distinction between postoperative recurrent glioma and delayed radiation injury using MR perfusion weighted imaging | |
Parker et al. | MRIW: parametric analysis software for contrast-enhanced dynamic MR imaging in cancer. | |
KR20110082067A (en) | Method and apparatus using magnetic resonance imaging for cancer identification | |
Palmowski et al. | Tumor perfusion assessed by dynamic contrast-enhanced MRI correlates to the grading of renal cell carcinoma: initial results | |
Mamata et al. | Clinical application of pharmacokinetic analysis as a biomarker of solitary pulmonary nodules: Dynamic contrast‐enhanced MR imaging | |
Bolcaen et al. | In vivo DCE-MRI for the discrimination between glioblastoma and radiation necrosis in rats | |
Wang et al. | Assessment of treatment response with diffusion-weighted MRI and dynamic contrast-enhanced MRI in patients with early-stage breast cancer treated with single-dose preoperative radiotherapy: initial results | |
Bullitt et al. | Abnormal vessel tortuosity as a marker of treatment response of malignant gliomas: preliminary report | |
Oberholzer et al. | Assessment of tumor microcirculation with dynamic contrast‐enhanced MRI in patients with esophageal cancer: initial experience | |
Eby et al. | Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and 15O-water positron emission tomography blood flow in breast cancer | |
Ng et al. | Clinical implementation of a free-breathing, motion-robust dynamic contrast-enhanced MRI protocol to evaluate pleural tumors | |
Paterson et al. | Study of diffusion weighted MRI as a predictive biomarker of response during radiotherapy for high and intermediate risk squamous cell cancer of the oropharynx: The MeRInO study | |
Wang et al. | Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis | |
Sergiacomi et al. | Acute COPD exacerbation: 3 T MRI evaluation of pulmonary regional perfusion–preliminary experience | |
Sun et al. | Retrospective assessment of at-risk myocardium in reperfused acute myocardial infarction patients using contrast‐enhanced balanced steady‐state free‐precession cardiovascular magnetic resonance at 3T with SPECT validation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, MICHIGA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSS, BRIAN D.;CHENEVERT, THOMAS;GALBAN, CRAIG J.;AND OTHERS;SIGNING DATES FROM 20090326 TO 20090331;REEL/FRAME:037817/0468 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |