US20160174566A1 - Methods, formulations, and kits for bacterial degradation - Google Patents

Methods, formulations, and kits for bacterial degradation Download PDF

Info

Publication number
US20160174566A1
US20160174566A1 US14/327,005 US201414327005A US2016174566A1 US 20160174566 A1 US20160174566 A1 US 20160174566A1 US 201414327005 A US201414327005 A US 201414327005A US 2016174566 A1 US2016174566 A1 US 2016174566A1
Authority
US
United States
Prior art keywords
spore
formulation
bacterial
reagent
contacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/327,005
Inventor
Adam Driks
Arunachlam Muthaiyan
Derrell McPherson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loyola University Chicago
Original Assignee
Loyola University Chicago
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loyola University Chicago filed Critical Loyola University Chicago
Priority to US14/327,005 priority Critical patent/US20160174566A1/en
Assigned to LOYOLA UNIVERSITY OF CHICAGO reassignment LOYOLA UNIVERSITY OF CHICAGO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DRIKS, ADAM
Publication of US20160174566A1 publication Critical patent/US20160174566A1/en
Priority to US15/707,372 priority patent/US10375955B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/94Pancreatin

Definitions

  • the present invention generally relates to the field of bacteriology. More particularly, this invention relates to methods and formulations for degrading bacterial spores (e.g., neutralizing, destroying, or killing bacterial spores), wherein the formulations contain low-toxicity, human-compatible, and materials-compatible reagents and are conducive to safe and facile containment, delivery, and application by a human.
  • degrading bacterial spores e.g., neutralizing, destroying, or killing bacterial spores
  • the formulations contain low-toxicity, human-compatible, and materials-compatible reagents and are conducive to safe and facile containment, delivery, and application by a human.
  • Anthrax is an acute disease caused by exposure to the bacterium Bacillus anthracis. Most forms of the disease are lethal, affecting both humans and animals. Like many other members of the genus Bacillus, Bacillus anthracis can form dormant endospores which are often referred to as “spores.” These dormant spores are able to survive in harsh conditions for decades or even centuries. When these dormant spores are inhaled, ingested, or come into contact with a skin lesion on a host, they may become reactivated and rapidly multiply.
  • Bacillus anthracis spores can be utilized as an effective biological weapon.
  • technologies to destroy or decontaminate Bacillus anthracis culture facilities are a major national security need.
  • large quantities of bleach or other toxic chemical reagents are required to degrade Bacillus anthracis spores and cultures for the production of spores.
  • a primary approach to the decontamination of a Bacillus anthracis culture facility is the application of a spore-degrading chemical reagent into the facility.
  • the chemical reagent must be sufficiently easy to transport and handle (e.g., low human toxicity and easily contained) so that it may be safely delivered in potentially challenging operational environments. Harsh, reactive chemical reagents that may endanger operators and require special equipment are undesirable, as are chemical reagents that may degrade equipment or other inert materials within the operational environment, referred to herein as reagents that do not have high materials-compatibility.
  • Clostridium difficile spores are the primary causative agent of the major hospital-associated disease Clostridium difficile infection (CDI). Therefore, control of CDI in the hospital environment would significantly enhance patient health. Suitable cleaning methods are those that are capable of destroying CDI spores without harming individuals (including humans and animals), such as the patients and healthcare workers within the hospital environment. Current methods for control of CDI spores utilize chemical reagents that are too harsh (such as bleach) or insufficiently sporocidal (such as alcohol) to be optimally effective.
  • methodologies capable of decontaminating environments containing bacterial spores including but not limited to Bacillus anthracis spores and/or Clostridium difficile spores, preferably by degrading (e.g., neutralizing, destroying, or killing) the spores.
  • degrading e.g., neutralizing, destroying, or killing
  • such methodologies preferably utilize formulations whose constituents are nontoxic, human-compatible, and have high materials-compatibility, while also being conducive to safe and facile containment, delivery, and application by humans.
  • the present invention provides methodologies, formulations, and kits suitable for decontaminating environments containing bacterial spores by degrading the spores, and in particular killing the spores, which as used herein refers to the spores being rendered incapable of germinating.
  • formulations are provided that are suitable for killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents, and possibly an exosporium surrounding the spore coat.
  • the formulations contain papain, at least one germinant, and optionally one or more additional enzymes.
  • a method for killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents, and possibly an exosporium surrounding the spore coat.
  • the method includes contacting the spore with a formulation containing papain, at least one germinant, and optionally one or more additional enzymes.
  • the spore is contacted by the formulation for a duration sufficient to kill the spore, or for a duration sufficient to render the spore susceptible to being killed by a reagent and then contacting the spore with the reagent for a duration sufficient to kill the spore.
  • Another aspect of the invention is to kill a bacterial spore by contacting the spore with the formulation described above to render the spore susceptible to being killed by a reagent that is a mild decontamination reagent and would be unable to kill the spore without the spore first being rendered susceptible by the formulation.
  • kits containing the formulation or components thereof described above include kits containing the formulation or components thereof described above.
  • methodologies, formulations, and kits described above preferably include the ability to use gentle, human-compatible, and materials-compatible reagents in a spore decontamination or destruction method.
  • the reagents include natural degradative enzymes that, in combination with germinants, are capable of killing spores or at least rendering the spores susceptible to destruction with other agents, for example, one or more mild decontaminating chemicals.
  • the methodologies, formulations, and kits are highly conducive for use in environments in which individuals could be harmed during a treatment operation, for example, when treating surfaces of a hospital or a bacterial weaponization facility, and if used to directly treat the skin of individuals requiring decontamination.
  • FIG. 1 shows the ability of a formulation containing papain, pancreatin and pronase to breach the exosporium and spore coat of Bacillus anthracis spores, eliminate the cortex, and severely damage the spore interior.
  • FIG. 2 shows Bacillus anthracis spores following treatment with a formulation containing papain as the sole enzyme and with the germinants L-alanine and inosine.
  • FIGS. 3 and 4 evidence the efficacy of a formulation containing papain, pancreatin and pronase in destruction of Clostridium difficile spores.
  • the present invention provides methodologies, formulations, and kits for use in decontamination treatments directed at certain bacterial spores, which includes Bacillus anthracis spores and Clostridium difficile spores and may extend to spores of other bacterial species.
  • Preferred constituents of such formulations function in combination to degrade such spores for the ultimate purpose of killing the spores, yet are nontoxic and relatively easy to contain, transport, and deliver so as to minimize any negative impact to humans and non-living materials that may be contacted by the formulations during a treatment.
  • Spores of particular interest to the invention can generally be described as having a spore coat surrounding a spore cortex and spore contents, and may further have an exosporium as its protective outermost layer surrounding the spore coat. Breaching the spore coat (which contains proteins, etc.) and, if present, the exosporium (which contains glycoprotein, proteins, etc.), renders the spore susceptible to attack by conventional decontamination reagents, and in some instances, as in the case of Bacillus anthracis , will kill the spore.
  • a particularly notable aspect of the invention is that by breaching its spore coat, a spore can be rendered susceptible to being killed by a reagent that would otherwise be unable to kill the spore.
  • Formulations utilized in the methodologies are capable of degrading the spore coat and (if present) the exosporium of a bacterial spore to render its spore cortex and spore contents susceptible to attack.
  • the formulations are enzyme-based solutions that contain, as active reagent components, at least one enzyme and at least one germinant.
  • germinant is understood to refer to one or more molecules specific to causing the germination of a dormant spore of a particular bacterial species, for example, Bacillus anthracis or Clostridium difficile.
  • the formulation is introduced to a bacterial spore desired to be killed.
  • the enzyme Upon introduction of the enzyme-based formulation, the enzyme (or enzymes) and germinant (or germinants) act in combination to destroy or kill the spore. If required, the spore can be killed by continued exposure to the enzyme-based formulation and/or by the introduction of another agent, which is preferably (though not necessarily) mild and nontoxic.
  • the formulations may consist of the enzyme(s) and germinant(s) alone or contain the enzyme(s) and germinant(s) in combination with additional components, such as suitable carriers, stabilizers, emulsifiers, encapsulation systems, dispersal agents, and/or diluents that may be inert or active.
  • additional components such as suitable carriers, stabilizers, emulsifiers, encapsulation systems, dispersal agents, and/or diluents that may be inert or active.
  • the formulation may contain glycerol to facilitate dispersal, and/or the formulation may be encapsulated in a gelatin, which may act as a stabilizer.
  • the formulation is ultimately effective in the form of a liquid, but may initially comprise individual components that may be in the form of one or more liquids or a combination of one or more liquids and solids.
  • solids encompasses powders that are or become dissolved in a liquid prior to use of the formulation.
  • the formulation and its individual components can be contained and/or delivered in the form of a kit adapted to contain, deliver, and/or dispense an effective amount of the formulation in a single treatment, which can be single occurrence of short duration (entirely dispensed at one time) or continuous over a period of time, or as a series of intermittent doses.
  • Dispensing of the formulation can entail the direct application of the formulation or combinations of its individual components onto a surface, or releasing the formulation into an existing liquid suspension of spores.
  • kit includes systems that allow for the storage, transport, and/or delivery of the formulation and/or any of its components in any combination.
  • a kit may include a single enclosure containing the entire formulation, or multiple enclosures containing individual components of the formulation in any combination.
  • dose and variants thereof in reference to the formulation and use thereof means an amount administered to an environment in need of treatment.
  • the term “effective amount” refers to an amount of the formulation that is sufficient to at least compromise the spore such that the spore can then be killed by continued exposure to the formulation or by the introduction of one or more other agents that differ from the formulation.
  • compositions particularly effective for attacking Bacillus anthracis and Clostridium difficile spores require the enzyme papain.
  • papain refers to any of a number of extracts, usually commercially-available and obtained from the papaya plant, that contain the protease papain (as well as potentially other substances).
  • the formulation further contains pancreatin and/or pronase as additional enzymes.
  • Pancreatin and pronase refer to any of a number of preparations of digestive enzymes, particularly (though not necessarily) protease, that are usually commercially available.
  • Pancreatin is commonly understood to comprise the digestive enzymes amylase, lipase and protease, a notable example of the last being trypsin.
  • Pronase is commonly known as a proteolytic enzyme obtained from Streptomyces griseus and containing mixtures of proteases. Papain, pancreatin, and pronase are typically available in liquid and/or powder form. When these enzymes are used together in a formulation, the liquid or powder forms are combined in water or a conventional enzyme buffer (such as a tris buffer), enabling the formulation to be applied to spores in liquid form. Individual spores can be sufficiently compromised by the enzyme-based formulation to cause death to the spores, or death can occur as a result of subsequent exposure to one or more decontamination reagents, preferred examples of which are relatively mild decontamination reagents such as ethanol or a mild detergent.
  • decontamination reagents preferred examples of which are relatively mild decontamination reagents such as ethanol or a mild detergent.
  • papain, pancreatin, and pronase are nontoxic to humans, as are the germinants of interest to the present invention.
  • containment, delivery, and dispensing of the individual reagents and a formulation containing any combination of these reagents are relatively facile and simple, and can be accomplished in a wide range of environments and situations.
  • the formulations containing the reagents can be useful in environments such as hospitals where numerous individuals, including patients, doctors, and staff, may inadvertently come into contact with the formulation, or in harsh environments in which containment, transport, and application of the formulation can be challenging to the individuals performing decontamination with the formulation.
  • formulations containing papain, pancreatin and pronase as reagents were shown to be effective treatments for Bacillus anthracis spores.
  • enzyme-based formulations containing papain, pancreatin and pronase were effective in killing Bacillus anthracis spores without necessitating any subsequent treatments.
  • three one-hour applications of the three-enzyme formulation are applied successively. Thin-section electron microscopy demonstrated that the formulation breached the exosporium and spore coat, eliminated the cortex, and severely damaged the spore interior ( FIG. 1 ).
  • a kill rate of over 3 log 10 was routinely achieved with formulations containing papain, pancreatin and pronase as reagents and the low levels of germinants already resin in one or more of the enzyme preparations.
  • FIG. 2 shows Bacillus anthracis spores treated by this formulation.
  • the exosporium seen in FIG. 2 appears contiguous (though not completely intact, as discussed below), the coat is partially disassembled, and the cortex is not present.
  • the spore interior is swollen and appears punctate, consistent with the rehydration that is typical during germination.
  • Clostridium difficile spores were treated with a formulation containing papain, pancreatin and pronase as reagents.
  • a six day-old biofilm culture of Clostridium difficile strain BI17 was used. Cells grown on four filters were pooled together and washed three times with sterile water. Cells were then divided into three tubes and spun down. Each tube was treated according to a separate experimental protocol: Tube 1 (negative control): Incubated at about 65° C. for about one-half hour in a water bath to kill vegetative cells, and then left at room temperature for about three hours.
  • Tube 3 1 ml of the formulation was added. Thereafter, incubated for about three hours at about 40° C., replacing the formulation every hour.
  • FIG. 3 is a graph showing the data in a “classic” manner that emphasizes the standard errors of the mean.
  • FIG. 4 is a graph showing the distribution of the spore count data. Two slides per sample were counted, for a total of about thirty to thirty-five fields. FIGS. 3 and 4 clearly evidence the efficacy of the formulation in destruction of Clostridium difficile spores.
  • spores had been rendered sufficiently susceptible by the formulation to allow the spores to be killed by further treatment with a different reagent, preferably a relatively gentle reagent, nonlimiting examples of which include ethanol or a mild detergent.
  • a different reagent preferably a relatively gentle reagent, nonlimiting examples of which include ethanol or a mild detergent.
  • an effective formulation for the destruction of bacterial spores for example, such as Bacillus anthracis spores and Clostridium difficile spores, introduces at least 10 mg/ml of papain, and for Bacillus anthracis at least 100 mM of L-alanine and/or at least 50 mM of inosine, and optionally at least 10 mg/ml of another enzyme such as pancreatin and/or pronase to a solution containing up to about 10 7 spores per milliliter.
  • a dose of the formulation to a volume of bacterial spores should be sufficient to at least reduce viability by 10 5 logs over a reasonable time frame.
  • dosage will depend upon a variety of factors, including the condition of the spores, amount of spores, concentration and types of reagents in the formulation, number of treatments, etc.
  • the size of the dose also will be determined by the route, timing and frequency of administration as well as the existence, nature, and extent of any adverse side effects that might accompany the administration of the formulation and the desired destructive effect. Appropriate dosing may be determined empirically from experimental trials.

Abstract

Methodologies, formulations, and kits suitable for decontaminating environments containing bacterial spores by degrading the spores. Formulations contain papain, at least one germinant, and optionally one or more additional enzymes. Methods for killing a bacterial spore include contacting a bacterial spore with the formulation for a duration sufficient to kill the spore, or for a duration sufficient to render the spore susceptible to being killed by a reagent and then contacting the spore with the reagent for a duration sufficient to kill the spore.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/843,952, filed Jul. 9, 2013, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention generally relates to the field of bacteriology. More particularly, this invention relates to methods and formulations for degrading bacterial spores (e.g., neutralizing, destroying, or killing bacterial spores), wherein the formulations contain low-toxicity, human-compatible, and materials-compatible reagents and are conducive to safe and facile containment, delivery, and application by a human.
  • Anthrax is an acute disease caused by exposure to the bacterium Bacillus anthracis. Most forms of the disease are lethal, affecting both humans and animals. Like many other members of the genus Bacillus, Bacillus anthracis can form dormant endospores which are often referred to as “spores.” These dormant spores are able to survive in harsh conditions for decades or even centuries. When these dormant spores are inhaled, ingested, or come into contact with a skin lesion on a host, they may become reactivated and rapidly multiply.
  • Due to their lethal effects and rugged tenacity in a wide range of environments, Bacillus anthracis spores (anthrax spores) can be utilized as an effective biological weapon. Correspondingly, technologies to destroy or decontaminate Bacillus anthracis culture facilities are a major national security need. Generally, large quantities of bleach or other toxic chemical reagents are required to degrade Bacillus anthracis spores and cultures for the production of spores. A primary approach to the decontamination of a Bacillus anthracis culture facility is the application of a spore-degrading chemical reagent into the facility. For this approach to be practical, the chemical reagent must be sufficiently easy to transport and handle (e.g., low human toxicity and easily contained) so that it may be safely delivered in potentially challenging operational environments. Harsh, reactive chemical reagents that may endanger operators and require special equipment are undesirable, as are chemical reagents that may degrade equipment or other inert materials within the operational environment, referred to herein as reagents that do not have high materials-compatibility.
  • Clostridium difficile spores are the primary causative agent of the major hospital-associated disease Clostridium difficile infection (CDI). Therefore, control of CDI in the hospital environment would significantly enhance patient health. Suitable cleaning methods are those that are capable of destroying CDI spores without harming individuals (including humans and animals), such as the patients and healthcare workers within the hospital environment. Current methods for control of CDI spores utilize chemical reagents that are too harsh (such as bleach) or insufficiently sporocidal (such as alcohol) to be optimally effective.
  • Accordingly, there are various needs for methodologies capable of decontaminating environments containing bacterial spores, including but not limited to Bacillus anthracis spores and/or Clostridium difficile spores, preferably by degrading (e.g., neutralizing, destroying, or killing) the spores. In addition, such methodologies preferably utilize formulations whose constituents are nontoxic, human-compatible, and have high materials-compatibility, while also being conducive to safe and facile containment, delivery, and application by humans.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present invention provides methodologies, formulations, and kits suitable for decontaminating environments containing bacterial spores by degrading the spores, and in particular killing the spores, which as used herein refers to the spores being rendered incapable of germinating.
  • According to one aspect of the invention, formulations are provided that are suitable for killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents, and possibly an exosporium surrounding the spore coat. The formulations contain papain, at least one germinant, and optionally one or more additional enzymes.
  • According to another aspect of the invention, a method is provided for killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents, and possibly an exosporium surrounding the spore coat. The method includes contacting the spore with a formulation containing papain, at least one germinant, and optionally one or more additional enzymes. The spore is contacted by the formulation for a duration sufficient to kill the spore, or for a duration sufficient to render the spore susceptible to being killed by a reagent and then contacting the spore with the reagent for a duration sufficient to kill the spore.
  • Another aspect of the invention is to kill a bacterial spore by contacting the spore with the formulation described above to render the spore susceptible to being killed by a reagent that is a mild decontamination reagent and would be unable to kill the spore without the spore first being rendered susceptible by the formulation.
  • Other aspects of the invention include kits containing the formulation or components thereof described above.
  • Technical effects of methodologies, formulations, and kits described above preferably include the ability to use gentle, human-compatible, and materials-compatible reagents in a spore decontamination or destruction method. The reagents include natural degradative enzymes that, in combination with germinants, are capable of killing spores or at least rendering the spores susceptible to destruction with other agents, for example, one or more mild decontaminating chemicals. As such, the methodologies, formulations, and kits are highly conducive for use in environments in which individuals could be harmed during a treatment operation, for example, when treating surfaces of a hospital or a bacterial weaponization facility, and if used to directly treat the skin of individuals requiring decontamination.
  • Other aspects and advantages of this invention will be better appreciated from the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the ability of a formulation containing papain, pancreatin and pronase to breach the exosporium and spore coat of Bacillus anthracis spores, eliminate the cortex, and severely damage the spore interior.
  • FIG. 2 shows Bacillus anthracis spores following treatment with a formulation containing papain as the sole enzyme and with the germinants L-alanine and inosine.
  • FIGS. 3 and 4 evidence the efficacy of a formulation containing papain, pancreatin and pronase in destruction of Clostridium difficile spores.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides methodologies, formulations, and kits for use in decontamination treatments directed at certain bacterial spores, which includes Bacillus anthracis spores and Clostridium difficile spores and may extend to spores of other bacterial species. Preferred constituents of such formulations function in combination to degrade such spores for the ultimate purpose of killing the spores, yet are nontoxic and relatively easy to contain, transport, and deliver so as to minimize any negative impact to humans and non-living materials that may be contacted by the formulations during a treatment.
  • Spores of particular interest to the invention can generally be described as having a spore coat surrounding a spore cortex and spore contents, and may further have an exosporium as its protective outermost layer surrounding the spore coat. Breaching the spore coat (which contains proteins, etc.) and, if present, the exosporium (which contains glycoprotein, proteins, etc.), renders the spore susceptible to attack by conventional decontamination reagents, and in some instances, as in the case of Bacillus anthracis, will kill the spore. A particularly notable aspect of the invention is that by breaching its spore coat, a spore can be rendered susceptible to being killed by a reagent that would otherwise be unable to kill the spore.
  • Formulations utilized in the methodologies are capable of degrading the spore coat and (if present) the exosporium of a bacterial spore to render its spore cortex and spore contents susceptible to attack. The formulations are enzyme-based solutions that contain, as active reagent components, at least one enzyme and at least one germinant. As used herein, the term “germinant” is understood to refer to one or more molecules specific to causing the germination of a dormant spore of a particular bacterial species, for example, Bacillus anthracis or Clostridium difficile. The formulation is introduced to a bacterial spore desired to be killed. Upon introduction of the enzyme-based formulation, the enzyme (or enzymes) and germinant (or germinants) act in combination to destroy or kill the spore. If required, the spore can be killed by continued exposure to the enzyme-based formulation and/or by the introduction of another agent, which is preferably (though not necessarily) mild and nontoxic.
  • The formulations may consist of the enzyme(s) and germinant(s) alone or contain the enzyme(s) and germinant(s) in combination with additional components, such as suitable carriers, stabilizers, emulsifiers, encapsulation systems, dispersal agents, and/or diluents that may be inert or active. As nonlimiting examples, the formulation may contain glycerol to facilitate dispersal, and/or the formulation may be encapsulated in a gelatin, which may act as a stabilizer.
  • The formulation is ultimately effective in the form of a liquid, but may initially comprise individual components that may be in the form of one or more liquids or a combination of one or more liquids and solids. The term “solids” encompasses powders that are or become dissolved in a liquid prior to use of the formulation. The formulation and its individual components can be contained and/or delivered in the form of a kit adapted to contain, deliver, and/or dispense an effective amount of the formulation in a single treatment, which can be single occurrence of short duration (entirely dispensed at one time) or continuous over a period of time, or as a series of intermittent doses. Dispensing of the formulation can entail the direct application of the formulation or combinations of its individual components onto a surface, or releasing the formulation into an existing liquid suspension of spores. In the context of treating an environment or individual, the term “kit” includes systems that allow for the storage, transport, and/or delivery of the formulation and/or any of its components in any combination. For example, a kit may include a single enclosure containing the entire formulation, or multiple enclosures containing individual components of the formulation in any combination. As used herein, the term “dose” and variants thereof in reference to the formulation and use thereof means an amount administered to an environment in need of treatment. In addition, the term “effective amount” refers to an amount of the formulation that is sufficient to at least compromise the spore such that the spore can then be killed by continued exposure to the formulation or by the introduction of one or more other agents that differ from the formulation.
  • Formulations particularly effective for attacking Bacillus anthracis and Clostridium difficile spores require the enzyme papain. As used herein, papain refers to any of a number of extracts, usually commercially-available and obtained from the papaya plant, that contain the protease papain (as well as potentially other substances). In certain embodiments of the invention, the formulation further contains pancreatin and/or pronase as additional enzymes. Pancreatin and pronase refer to any of a number of preparations of digestive enzymes, particularly (though not necessarily) protease, that are usually commercially available. Pancreatin is commonly understood to comprise the digestive enzymes amylase, lipase and protease, a notable example of the last being trypsin. Pronase is commonly known as a proteolytic enzyme obtained from Streptomyces griseus and containing mixtures of proteases. Papain, pancreatin, and pronase are typically available in liquid and/or powder form. When these enzymes are used together in a formulation, the liquid or powder forms are combined in water or a conventional enzyme buffer (such as a tris buffer), enabling the formulation to be applied to spores in liquid form. Individual spores can be sufficiently compromised by the enzyme-based formulation to cause death to the spores, or death can occur as a result of subsequent exposure to one or more decontamination reagents, preferred examples of which are relatively mild decontamination reagents such as ethanol or a mild detergent.
  • Notably, papain, pancreatin, and pronase are nontoxic to humans, as are the germinants of interest to the present invention. As such, containment, delivery, and dispensing of the individual reagents and a formulation containing any combination of these reagents are relatively facile and simple, and can be accomplished in a wide range of environments and situations.
  • Because the reagents discussed above are nontoxic, human-compatible, and materials-compatible, the formulations containing the reagents can be useful in environments such as hospitals where numerous individuals, including patients, doctors, and staff, may inadvertently come into contact with the formulation, or in harsh environments in which containment, transport, and application of the formulation can be challenging to the individuals performing decontamination with the formulation.
  • In one investigation leading to the present invention, formulations containing papain, pancreatin and pronase as reagents were shown to be effective treatments for Bacillus anthracis spores. In particular, enzyme-based formulations containing papain, pancreatin and pronase were effective in killing Bacillus anthracis spores without necessitating any subsequent treatments. In this investigation, three one-hour applications of the three-enzyme formulation are applied successively. Thin-section electron microscopy demonstrated that the formulation breached the exosporium and spore coat, eliminated the cortex, and severely damaged the spore interior (FIG. 1). Further analysis and observations relating to this investigation led to the conclusion that a low level of one or more germinants was present in the formulation, possibly L-alanine in the pancreatin, and that the ability of the formulation to damage and, thereby, kill spores depended, at least in part, on the presence of one or more germinants in the formulation, indicating that a component of efficient enzyme-based spore killing is the ability to induce germination. Overall, the investigation indicated that, for the investigated three-enzyme formulation to cause significant damage to any spore structure, at least some germination must take place. Based on analysis of spore viability using counting of colony forming units, a kill rate of over 3 log10 was routinely achieved with formulations containing papain, pancreatin and pronase as reagents and the low levels of germinants already resin in one or more of the enzyme preparations.
  • Subsequent investigations combined papain (without any other enzymes) with germinants appropriate for Bacillus anthracis (specifically, L-alanine and inosine). FIG. 2 shows Bacillus anthracis spores treated by this formulation. In these spores, the exosporium seen in FIG. 2 appears contiguous (though not completely intact, as discussed below), the coat is partially disassembled, and the cortex is not present. The spore interior is swollen and appears punctate, consistent with the rehydration that is typical during germination. Based on analysis of spore viability using counting of colony forming units, a kill rate of over 5 log10 was routinely produced with formulations containing papain as the sole enzyme and L-alanine and inosine as germinants. As a result, it was inferred that most if not all the spores in FIG. 2 were killed. In these spores, it was also inferred that the exosporium had become porous to papain and, most likely, the papain has reached the spore interior and, by doing so, has killed the spore. Overall, the data indicated that, as in the prior formulation containing combinations of papain, pancreatin and pronase as enzyme reagents, at least some germination is essential for significant spore damage.
  • In another investigation, Clostridium difficile spores were treated with a formulation containing papain, pancreatin and pronase as reagents. A six day-old biofilm culture of Clostridium difficile strain BI17 was used. Cells grown on four filters were pooled together and washed three times with sterile water. Cells were then divided into three tubes and spun down. Each tube was treated according to a separate experimental protocol: Tube 1 (negative control): Incubated at about 65° C. for about one-half hour in a water bath to kill vegetative cells, and then left at room temperature for about three hours. Tube 2 (negative control): Incubated at about 40° C. for about three hours in a buffer used for enzyme preparation. Tube 3: 1 ml of the formulation was added. Thereafter, incubated for about three hours at about 40° C., replacing the formulation every hour.
  • Each tube was then washed with water two times to remove reagents and resuspended in about 50 μl of water to concentrate the spores, which were then counted by light microscopy. FIG. 3 is a graph showing the data in a “classic” manner that emphasizes the standard errors of the mean. FIG. 4 is a graph showing the distribution of the spore count data. Two slides per sample were counted, for a total of about thirty to thirty-five fields. FIGS. 3 and 4 clearly evidence the efficacy of the formulation in destruction of Clostridium difficile spores.
  • In view of the above, the investigations demonstrated that formulations described herein were effective for destruction of Clostridium difficile and Bacillus anthracis spores. Although an understanding of the mechanism by which the formulations provides this effect is not necessary to practice the present invention and the present invention is not limited to any particular mechanism of action, the presence of one or more germinants in the formulations was concluded to have allowed the enzymes (either papain alone or in combination with the additional enzymes pancreatin and pronase) to penetrate and/or degrade or destroy the exosporium and to degrade or destroy the spore coats of the spores, after which the spores were killed as a result of continued treatment with the formulation. However, as a result of the spore coat and exosporium being compromised by the formulation, it was concluded that the spores had been rendered sufficiently susceptible by the formulation to allow the spores to be killed by further treatment with a different reagent, preferably a relatively gentle reagent, nonlimiting examples of which include ethanol or a mild detergent.
  • Based on the experiments described above, it is believed that an effective formulation for the destruction of bacterial spores, for example, such as Bacillus anthracis spores and Clostridium difficile spores, introduces at least 10 mg/ml of papain, and for Bacillus anthracis at least 100 mM of L-alanine and/or at least 50 mM of inosine, and optionally at least 10 mg/ml of another enzyme such as pancreatin and/or pronase to a solution containing up to about 107 spores per milliliter. A dose of the formulation to a volume of bacterial spores, in the context of the present invention, should be sufficient to at least reduce viability by 105 logs over a reasonable time frame. One skilled in the art will recognize that dosage will depend upon a variety of factors, including the condition of the spores, amount of spores, concentration and types of reagents in the formulation, number of treatments, etc. The size of the dose also will be determined by the route, timing and frequency of administration as well as the existence, nature, and extent of any adverse side effects that might accompany the administration of the formulation and the desired destructive effect. Appropriate dosing may be determined empirically from experimental trials.
  • While the invention has been described in terms of specific embodiments, it is apparent that other forms could be adopted by one skilled in the art. For example, the enzyme-based formulations could be modified appropriately to act on bacterial spores of species other than those discussed herein, and various containment and/or delivery parameters could be used. Therefore, the scope of the invention is to be limited only by the following claims.

Claims (24)

1. A formulation for killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents and optionally an exosporium surrounding the spore coat, the formulation containing papain, at least one germinant, and optionally one or more additional enzymes.
2. The formulation according to claim 1, wherein the at least one germinant comprises at least one of L-alanine and inosine.
3. The formulation according to claim 1, wherein the formulation contains at least one of the additional enzymes.
4. The formulation according to claim 1, wherein the at least one additional enzyme is pancreatin or pronase.
5. The formulation according to claim 1, wherein the formulation does not contain an enzyme other than papain.
6. A method of killing a bacterial spore by contacting the spore with the formulation of claim 1.
7. The method of claim 6, wherein the bacterial spore is contacted by the formulation for a duration sufficient to kill the spore.
8. The method of claim 6, wherein the contacting step comprises contacting the spore with the formulation for a duration sufficient to render the spore susceptible to being killed by a reagent, and the method further comprises contacting the spore with the reagent for a duration sufficient to kill the spore.
9. The method according to claim 6, wherein the bacterial spore is a Bacillus anthracis spore.
10. The method according to claim 6, wherein the bacterial spore is a Clostridium difficile spore.
11. A kit comprising the formulation of claim 1.
12. The kit according to claim 11, the kit further comprising at least one decontamination reagent chosen from the group consisting of ethanol and mild detergents.
13. A method of killing a bacterial spore having a spore coat surrounding a spore cortex and spore contents and optionally an exosporium surrounding the spore coat, the method comprising:
contacting the spore with a formulation containing papain, at least one germinant, and optionally one or more additional enzymes, the spore being contacted for a duration sufficient to kill the spore or for a duration sufficient to render the spore susceptible to being killed by a reagent and then contacting the spore with the reagent for a duration sufficient to kill the spore.
14. The method according to claim 13, wherein the bacterial spore is killed by contacting the spore with the formulation and then contacting the spore with the reagent, wherein the formulation renders the spore susceptible to being killed by the reagent and the reagent would be unable to kill the spore without the spore first being rendered susceptible by the formulation.
15. The method according to claim 13, wherein the reagent is chosen from the group consisting of ethanol and mild detergents.
16. The method according to claim 13, wherein the bacterial spore is a Bacillus anthracis spore.
17. The method according to claim 13, wherein the bacterial spore is a Clostridium difficile spore.
18. The method according to claim 13, wherein the contacting step comprises breaching the spore coat of the bacterial spore with the papain.
19. The method according to claim 13, wherein the contacting step comprises at least partially inducing germination of the bacterial spore with the at least one germinant.
20. The method according to claim 13, wherein the formulation contains at least 10 milligrams of papain per milliliter of a solution containing up to 107 of the bacterial spores per milliliter of the solution.
21. The method according to claim 13, wherein the formulation contains at least 50 mM of the at least one germinant to a solution containing up to 107 of the bacterial spores per milliliter of the solution.
22. The method according to claim 13, wherein the bacterial spore is present in a facility and the contacting step comprises dispensing the formulation within the facility to kill a plurality of the bacterial spore.
23. The method according to claim 22, wherein the facility is a hospital and the formulation is applied to surfaces within the hospital.
24. The method according to claim 22, wherein the facility produces weaponized bacteria and the formulation is dispersed within the environment of the facility.
US14/327,005 2013-07-09 2014-07-09 Methods, formulations, and kits for bacterial degradation Abandoned US20160174566A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/327,005 US20160174566A1 (en) 2013-07-09 2014-07-09 Methods, formulations, and kits for bacterial degradation
US15/707,372 US10375955B2 (en) 2013-07-09 2017-09-18 Methods, formulations, and kits for bacterial degradation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361843952P 2013-07-09 2013-07-09
US14/327,005 US20160174566A1 (en) 2013-07-09 2014-07-09 Methods, formulations, and kits for bacterial degradation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/707,372 Division US10375955B2 (en) 2013-07-09 2017-09-18 Methods, formulations, and kits for bacterial degradation

Publications (1)

Publication Number Publication Date
US20160174566A1 true US20160174566A1 (en) 2016-06-23

Family

ID=56127953

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/327,005 Abandoned US20160174566A1 (en) 2013-07-09 2014-07-09 Methods, formulations, and kits for bacterial degradation
US15/707,372 Expired - Fee Related US10375955B2 (en) 2013-07-09 2017-09-18 Methods, formulations, and kits for bacterial degradation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/707,372 Expired - Fee Related US10375955B2 (en) 2013-07-09 2017-09-18 Methods, formulations, and kits for bacterial degradation

Country Status (1)

Country Link
US (2) US20160174566A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077446A (en) * 1933-05-02 1937-04-20 Wallerstein Leo Process of maturing and ripening beers and ales

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670178A (en) * 1985-09-09 1987-06-02 Allergan Pharmaceuticals, Inc. Method for the simultaneous cleaning and disinfecting of contact lenses
US20090311395A1 (en) * 2005-12-09 2009-12-17 Cervin Marguerite A ACYL Transferase Useful for Decontamination

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077446A (en) * 1933-05-02 1937-04-20 Wallerstein Leo Process of maturing and ripening beers and ales

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Khaparde et al., Bioresource Technology, 78:1-4, 2001 *

Also Published As

Publication number Publication date
US20180027808A1 (en) 2018-02-01
US10375955B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
Khan et al. Challenges of antibiotic resistance biofilms and potential combating strategies: a review
Bjarnsholt et al. Applying insights from biofilm biology to drug development—can a new approach be developed?
Oliveira et al. Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model
CN102272162B (en) The composition of the peroral infection that treatment or prevention intestinal bacteria cause and method
Andersen et al. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant
Da Motta et al. Efficacy of chemical sterilization and storage conditions of gutta‐percha cones
Helgadóttir et al. Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma
Shaik et al. Comparative evaluation of antimicrobial efficacy of triple antibiotic paste and calcium hydroxide using chitosan as carrier against Candida albicans and Enterococcus faecalis: An: in vitro: study
Ercan et al. Nonequilibrium plasma‐activated antimicrobial solutions are broad‐spectrum and retain their efficacies for extended period of time
CN102300989B (en) Be used for the treatment of or prevent infection of staphylococcus aureus and composition and method for eradicating or reduce streptococcus aureus on the surface
Wei et al. Chronic wound biofilms: diagnosis and therapeutic strategies
SG176977A1 (en) Healthcare facility disinfecting process and system with oxygen/ozone mixture
Warnes et al. Lack of involvement of Fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces
Dostie et al. Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm
Andersen et al. Failure of dry mist of hydrogen peroxide 5% to kill Mycobacterium tuberculosis
CN101014372A (en) Sterilization method and sterilization apparatus
Shakya et al. A relative assessment of essential oil of Chrysopogon zizanioides and Matricaria chamomilla along with calcium hydroxide and chlorhexidine gel against Enterococcus faecalis in ex vivo root canal models
Qi et al. Staphylococcus aureus biofilm inhibition by high voltage prick electrostatic field (HVPEF) and the mechanism investigation
Celebi et al. The use of germinants to potentiate the sensitivity of Bacillus anthracis spores to peracetic acid
EP1432993B1 (en) In vitro evaluation method for priocidal (anti-prion) treatments
US10375955B2 (en) Methods, formulations, and kits for bacterial degradation
AU2002348517A1 (en) In vitro model for priocidal activity
Tweij-Thu-Alfeqar Razzaq et al. Sterilization of Surgical Tools: Removing Bacterial Endospores with a Combination of Povidone-iodine, Chlorhexidine Gluconate, Ethanol, and Methanol
Calvo-Guirado et al. Effectiveness of Chemical Disinfection in Discarding Pathogenic Bacteria of Human Particulate Tooth Graft: An: In vitro: Study
Ashok et al. Sterilization for biological products

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOYOLA UNIVERSITY OF CHICAGO, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DRIKS, ADAM;REEL/FRAME:035339/0200

Effective date: 20150402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION