US20160171987A1 - System and method for compressed audio enhancement - Google Patents

System and method for compressed audio enhancement Download PDF

Info

Publication number
US20160171987A1
US20160171987A1 US14/863,368 US201514863368A US2016171987A1 US 20160171987 A1 US20160171987 A1 US 20160171987A1 US 201514863368 A US201514863368 A US 201514863368A US 2016171987 A1 US2016171987 A1 US 2016171987A1
Authority
US
United States
Prior art keywords
audio data
digitally encoded
compressed
enhanced
encoded audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/863,368
Inventor
Robert W. Reams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Psyx Research Inc
Original Assignee
Psyx Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psyx Research Inc filed Critical Psyx Research Inc
Priority to US14/863,368 priority Critical patent/US20160171987A1/en
Priority to PCT/US2015/065936 priority patent/WO2016100422A1/en
Priority to PCT/US2016/021976 priority patent/WO2016149085A2/en
Publication of US20160171987A1 publication Critical patent/US20160171987A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • G10L21/0205
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0324Details of processing therefor
    • G10L21/034Automatic adjustment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/06Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/165Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/60Receiver circuitry for the reception of television signals according to analogue transmission standards for the sound signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/01Input selection or mixing for amplifiers or loudspeakers

Definitions

  • the present disclosure relates generally to audio processing, and more specifically to a system and method for compressed audio enhacement that improves the perceived quality of the compressed audio signal to the listener.
  • a system for processing digitally-encoded audio data includes a compressed audio source device providing a sequence of frames of compressed digital audio data.
  • a compressed audio enhancement system receives the sequence of frames of compressed digital audio data and generates enhanced audio data by adding masked digital audio data to the sequence of frames of compressed digital audio data, where the masked digital audio data has an energy level sufficient to keep a kinocilia of a listener active.
  • One or more speakers configured to receive the enhanced audio data and to generate sound waves using the enhanced audio data.
  • FIG. 1 is a diagram of a frequency diagram showing the effect of compressed audio processing in accordance with the present disclosure
  • FIG. 2 is a diagram of a system for enhancing compressed audio data with controlled modulation distortion in accordance with an exemplary embodiment of the present disclosure
  • FIG. 3 is a diagram of a system for providing modulation distortion in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 4 is a diagram of an algorithm for processing compressed audio data to provide kinocilia stimulation, in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 1 is a diagram of a frequency diagram 100 showing the effect of compressed audio processing in accordance with the present disclosure.
  • Frequency diagram 100 shows a frequency distribution for compressed audio data with frequency components at +/ ⁇ Fl, F 2 and F 3 . These frequency components are relatively sparse.
  • Frequency diagram 100 also shows a frequency distribution for enhanced compressed audio data with frequency components centered at +/ ⁇ Fl, F 2 and F 3 and associated modulation distortion components in a range around the centered frequency components.
  • the modulation distortion components are represented as having an essentially flat profile, a Gaussian distribution, an exponential decay or any suitable profile can also or alternatively be used.
  • the magnitude of the modulation distortion components is also at least 13 dB below the signal magnitude, in order to mask the modulation distortion components from perception by the user.
  • modulation distortion is avoided.
  • the present disclosure recognizes that kinocilia require a certain level of stimulation to remain in an active state, and otherwise will go into a dormant state, until a threshold level of audio energy causes them to switch from the dormant state to the active state.
  • the kinocilia can be stimulated to remain in the active state, even if the audio signals are masked by being more than 13 dB in magnitude relative to a major frequency component.
  • modulation distortion in this manner enhances the audio listening experience, because the kinocilia remain active and can detect frequency components of the compressed audio data that would otherwise not have sufficient energy to switch them out of the dormant state.
  • FIG. 2 is a diagram of a system 200 for enhancing compressed audio data with controlled modulation distortion in accordance with an exemplary embodiment of the present disclosure.
  • System 200 includes compressed audio source device 202 , compressed audio enhancement 204 and speakers 206 , each of which are specialized devices or apparatuses that can be implemented in hardware or a suitable combination of hardware and software.
  • “hardware” can include a combination of discrete components, an integrated circuit, an application-specific integrated circuit, a field programmable gate array, or other suitable hardware.
  • “software” can include one or more objects, agents, threads, lines of code, subroutines, separate software applications, two or more lines of code or other suitable software structures operating in two or more software applications, on one or more processors (where a processor includes a microcomputer or other suitable controller, memory devices, input-output devices, displays, data input devices such as a keyboard or a mouse, peripherals such as printers and speakers, associated drivers, control cards, power sources, network devices, docking station devices, or other suitable devices operating under control of software systems in conjunction with the processor or other devices), or other suitable software structures.
  • software can include one or more lines of code or other suitable software structures operating in a general purpose software application, such as an operating system, and one or more lines of code or other suitable software structures operating in a specific purpose software application.
  • the term “couple” and its cognate terms, such as “couples” and “coupled,” can include a physical connection (such as a copper conductor), a virtual connection (such as through randomly assigned memory locations of a data memory device), a logical connection (such as through logical gates of a semiconducting device), other suitable connections, or a suitable combination of such connections.
  • Compressed audio source device 202 provides a stream of digitally-encoded audio data, such as frames of encoded digital data, from a memory storage device such as a random access memory that has been configured to store digitally-encoded audio data, from an optical data storage medium that has been configured to store digitally-encoded audio data, from a network connection that has been configured to provide digitally-encoded audio data, or in other suitable manners.
  • Compressed audio source device 302 can be implemented as a special purpose device such an audio music player, a cellular telephone, an automobile audio system or other suitable audio systems that are configured to provide streaming compressed audio data.
  • Compressed audio enhancement 204 is coupled to compressed audio source device 202 , such as by using a wireless or wireline data communications medium.
  • Compressed audio enhancement 204 enhances the compressed audio data for a listener by introducing modulation distortion or by otherwise introducing audio signal components that are masked by the compressed audio signal data but which are of sufficient magnitude to stimulate the kinocilia of the listener, so as to prevent the kinocilia from switching to a dormant state that requires a substantially higher amount of energy to switch back to an active state than might be provided by the compressed audio data at any given instant.
  • compressed audio enhancement 204 improves the ability of the listener to hear the audio signals encoded in the compressed audio data.
  • Speakers 206 receive the enhanced compressed audio data and generate sound waves that can be perceived by a listener. Speakers 206 can be implemented as mono speakers, stereo speakers, N.1 surround speakers, automobile speakers, headphone speakers, cellular telephone speakers, sound bar speakers, computer speakers or other suitable speakers.
  • system 200 enhances compressed and digitally-encoded audio data by introducing additional frequency components that are masked by the compressed and digitally-encoded audio data, but which are of a sufficient magnitude to keep the listener's kinocilia active. In this manner, the listener is able to hear additional compressed and digitally-encoded audio data signals that would otherwise not be perceived, which results in an improved listening experience.
  • FIG. 3 is a diagram of a system 300 for providing modulation distortion in accordance with an exemplary embodiment of the present disclosure.
  • System 300 includes high pass filter 302 , low pass filter 304 , Hilbert transform 306 , summation unit 308 , high pass filter 310 and modulation distortion 312 , each of which can be implemented in hardware or a suitable combination of hardware and software.
  • High pass filter 302 is configured to receive compressed and digitally-encoded audio data signals and to filter out low frequency components from the signal.
  • high pass filter 302 can be implemented as a high-pass order 1 Butterworth filter having a 118 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Low pass filter 304 is coupled to high pass filter 302 and is configured to receive the filtered, compressed and digitally-encoded audio data signals and to filter out high frequency components from the signal.
  • low pass filter 304 can be implemented as a low-pass order 4 Butterworth filter having a 10400 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Hilbert transform 306 is coupled to low pass filter 304 and is configured to receive the filtered, compressed and digitally-encoded audio data signals and to apply a Hilbert transform to the signal.
  • Hilbert transform 306 can be implemented using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software, and can receive a split output from low pass filter 304 and can apply a Hilbert +/ ⁇ 90 degree phase shift to each output.
  • Summation unit 308 is coupled to Hilbert transform 306 and is configured to square each split output signal and to then take the square root of the sum, in order to obtain an absolute value of the signal.
  • High pass filter 310 is coupled to summation unit 308 and is configured to filter out low frequency components from the signal.
  • high pass filter 310 can be implemented as a high-pass order 2 Butterworth filter having a 1006 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Modulation distortion 312 is coupled to high pass filter 310 and is configured to receive the filtered and compressed audio signal data and to add modulation distortion to the data.
  • modulation distortion 312 can be implemented using a downward expander of the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • the downward expander can be implemented as a software system operating on a specialized processor that has a plurality of settings, such as a threshold setting, a ratio setting, a knee depth setting, an attack time setting, a decay time setting and other suitable settings.
  • These settings can be selected to optimize the generation of modulation distortion in the vicinity of the frequency components of the compressed audio data, such as by setting the threshold setting to a range of ⁇ 23 dB +/ ⁇ 20%, the ratio setting to range of 1.0 to 1.016 dB/dB +/ ⁇ 20%, the knee depth setting to 0 dB +/ ⁇ 20%, the attack time setting to 0.01 milliseconds +/ ⁇ 20%, the decay time setting to 3 milliseconds +/ ⁇ 20% or in other suitable manners.
  • the attack time may have the greatest influence on generation of phase distortion, and a setting of 1 millisecond or less can be preferable.
  • modulation distortion can result in the generation of modulation distortion, which is typically avoided, but which is used in this exemplary embodiment specifically to cause the compressed and digitally-encoded audio data to have modulation distortion signals that are below a perceptual threshold by virtue of being masked by the encoded signal components.
  • the encoded signal components change over time, the kinocilia in the frequency range surrounding the encoded signal components are stimulated enough to prevent them from switching from an active state to a dormant state, thus ensuring that they are able to detect encoded audio signals that are at a magnitude that would otherwise be insufficient to cause dormant kinocilia to switch to an active state.
  • the output of modulation distortion 312 can be provided to an amplifier, a speaker or other suitable devices.
  • system 300 provides optimal audio signal processing for compressed audio data to provide a level of modulation distortion that is below a perceptual level but which is sufficient to improve the quality of the listening experience, by providing sufficient stimulation to the kinocilia to prevent them from switching from an active to a dormant state. In this manner, the listening experience is improved, because the listener can perceive audio signals that would otherwise not be perceived.
  • FIG. 4 is a diagram of an algorithm 400 for processing compressed audio data to provide kinocilia stimulation, in accordance with an exemplary embodiment of the present disclosure.
  • Algorithm 400 can be implemented in hardware or a suitable combination of hardware and software, and can be one or more software systems operating on a special purpose processor.
  • Algorithm 400 begins at 402 , where compressed audio data is received from a source device.
  • a frame of the compressed audio data can be received at an input port to an audio data processing system and stored to a buffer device, such as random access memory that has been configured to store audio data.
  • a processor can be configured to sense the presence of the audio data, such as by checking a flag or other suitable mechanism that is used to indicate that audio data is available for processing. The algorithm then proceeds to 404 .
  • low frequency components are removed from the audio data.
  • a high pass filter can be used to filter out low frequency components from the audio data, such as a high-pass order 1 Butterworth filter having a 118 Hz corner frequency or other suitable filters.
  • the filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners.
  • the algorithm then proceeds to 406 .
  • a low pass filter can be used to filter out high frequency components from the signal, such as a low-pass order 4 Butterworth filter having a 10400 Hz corner frequency or other suitable filters.
  • the filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners.
  • the algorithm then proceeds to 408 .
  • Hilbert filtering is performed on the low pass filtered data, to generate two sets of data having a +/ ⁇ 90 degree phase shift.
  • the Hilbert filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners.
  • the algorithm then proceeds to 410 .
  • the absolute value of the signal is obtained, such as by using a summation unit that is configured to square each set of data and to then take the square root of the sum, in order to obtain an absolute value of the signal, or in other suitable manners.
  • the absolute value audio data can then be stored in a new buffer, in the same buffer or in other suitable manners.
  • the algorithm then proceeds to 412 .
  • the absolute value data is filtered to remove low frequency components from the signal, such as by using a high-pass order 2 Butterworth filter having a 1006 Hz corner frequency or in other suitable manners.
  • the filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners.
  • the algorithm then proceeds to 414 .
  • modulation distortion is generated in the audio data, such as by processing the audio data using a downward expander having a threshold setting of ⁇ 23 dB, a ratio setting of 1.016 dB/dB, a knee depth setting of 0 dB, an attack time setting of 0.01 milliseconds, a decay time setting of 3 milliseconds or other suitable settings.
  • exemplary settings can result in the generation of modulation distortion, which is typically avoided, but which is used in this exemplary embodiment specifically to cause the compressed and digitally-encoded audio data to have modulation distortion signals that are below a perceptual threshold by virtue of being masked by the encoded signal components.
  • the kinocilia in the frequency range surrounding the encoded signal components are stimulated enough to prevent them from switching from an active state to a dormant state, thus ensuring that they are able to detect encoded audio signals that are at a magnitude that would otherwise be insufficient to cause dormant kinocilia to switch to an active state.
  • the algorithm then proceeds to 416 .
  • the processed audio data is output to an amplifier, a speaker or other suitable devices.
  • the processed audio data can be stored in a buffer and can be retrieved periodically for provision to a digital signal processor, a digital to analog converter, an amplifier or other suitable devices for generation of an analog signal that is provided to speakers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Television Receiver Circuits (AREA)

Abstract

A system for processing digitally-encoded audio data comprising a compressed audio source device providing a sequence of frames of compressed digital audio data. A compressed audio enhancement system configured to receive the sequence of frames of compressed digital audio data and to generate enhanced audio data by adding masked digital audio data to the sequence of frames of compressed digital audio data, where the masked digital audio data has an energy level sufficient to keep a kinocilia of a listener active. One or more speakers configured to receive the enhanced audio data and to generate sound waves using the enhanced audio data.

Description

    RELATED APPLICATIONS
  • The present application claims priority to and benefit of U.S. Provisional Patent Application No. 62/092,603, filed on Dec. 16, 2014, U.S. Provisional Patent Application No. 62/133,167, filed on Mar. 13, 2015, U.S. Provisional Patent Application No. 62/156,061, filed on May 1, 2015, and U.S. Provisional Patent Application No. 62/156,065, filed on May 1, 2015, each of which are hereby incorporated by reference for all purposes as if set forth herein in their entirety.
  • TECHNICAL FIELD
  • The present disclosure relates generally to audio processing, and more specifically to a system and method for compressed audio enhacement that improves the perceived quality of the compressed audio signal to the listener.
  • BACKGROUND OF THE INVENTION
  • Compressed audio data is notoriously poor in quality. Despite this problem, no known solutions exist to improve the listener experience.
  • SUMMARY OF THE INVENTION
  • A system for processing digitally-encoded audio data is provided that includes a compressed audio source device providing a sequence of frames of compressed digital audio data. A compressed audio enhancement system receives the sequence of frames of compressed digital audio data and generates enhanced audio data by adding masked digital audio data to the sequence of frames of compressed digital audio data, where the masked digital audio data has an energy level sufficient to keep a kinocilia of a listener active. One or more speakers configured to receive the enhanced audio data and to generate sound waves using the enhanced audio data.
  • Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • Aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views, and in which:
  • FIG. 1 is a diagram of a frequency diagram showing the effect of compressed audio processing in accordance with the present disclosure;
  • FIG. 2 is a diagram of a system for enhancing compressed audio data with controlled modulation distortion in accordance with an exemplary embodiment of the present disclosure;
  • FIG. 3 is a diagram of a system for providing modulation distortion in accordance with an exemplary embodiment of the present disclosure; and
  • FIG. 4 is a diagram of an algorithm for processing compressed audio data to provide kinocilia stimulation, in accordance with an exemplary embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the description that follows, like parts are marked throughout the specification and drawings with the same reference numerals. The drawing figures might not be to scale and certain components can be shown in generalized or schematic form and identified by commercial designations in the interest of clarity and conciseness.
  • FIG. 1 is a diagram of a frequency diagram 100 showing the effect of compressed audio processing in accordance with the present disclosure. Frequency diagram 100 shows a frequency distribution for compressed audio data with frequency components at +/−Fl, F2 and F3. These frequency components are relatively sparse. Frequency diagram 100 also shows a frequency distribution for enhanced compressed audio data with frequency components centered at +/−Fl, F2 and F3 and associated modulation distortion components in a range around the centered frequency components. Although the modulation distortion components are represented as having an essentially flat profile, a Gaussian distribution, an exponential decay or any suitable profile can also or alternatively be used. The magnitude of the modulation distortion components is also at least 13 dB below the signal magnitude, in order to mask the modulation distortion components from perception by the user.
  • Typically, modulation distortion is avoided. However, the present disclosure recognizes that kinocilia require a certain level of stimulation to remain in an active state, and otherwise will go into a dormant state, until a threshold level of audio energy causes them to switch from the dormant state to the active state. By generating modulation distortion, the kinocilia can be stimulated to remain in the active state, even if the audio signals are masked by being more than 13 dB in magnitude relative to a major frequency component. The use of modulation distortion in this manner enhances the audio listening experience, because the kinocilia remain active and can detect frequency components of the compressed audio data that would otherwise not have sufficient energy to switch them out of the dormant state.
  • FIG. 2 is a diagram of a system 200 for enhancing compressed audio data with controlled modulation distortion in accordance with an exemplary embodiment of the present disclosure. System 200 includes compressed audio source device 202, compressed audio enhancement 204 and speakers 206, each of which are specialized devices or apparatuses that can be implemented in hardware or a suitable combination of hardware and software.
  • As used herein, “hardware” can include a combination of discrete components, an integrated circuit, an application-specific integrated circuit, a field programmable gate array, or other suitable hardware. As used herein, “software” can include one or more objects, agents, threads, lines of code, subroutines, separate software applications, two or more lines of code or other suitable software structures operating in two or more software applications, on one or more processors (where a processor includes a microcomputer or other suitable controller, memory devices, input-output devices, displays, data input devices such as a keyboard or a mouse, peripherals such as printers and speakers, associated drivers, control cards, power sources, network devices, docking station devices, or other suitable devices operating under control of software systems in conjunction with the processor or other devices), or other suitable software structures. In one exemplary embodiment, software can include one or more lines of code or other suitable software structures operating in a general purpose software application, such as an operating system, and one or more lines of code or other suitable software structures operating in a specific purpose software application. As used herein, the term “couple” and its cognate terms, such as “couples” and “coupled,” can include a physical connection (such as a copper conductor), a virtual connection (such as through randomly assigned memory locations of a data memory device), a logical connection (such as through logical gates of a semiconducting device), other suitable connections, or a suitable combination of such connections.
  • Compressed audio source device 202 provides a stream of digitally-encoded audio data, such as frames of encoded digital data, from a memory storage device such as a random access memory that has been configured to store digitally-encoded audio data, from an optical data storage medium that has been configured to store digitally-encoded audio data, from a network connection that has been configured to provide digitally-encoded audio data, or in other suitable manners. Compressed audio source device 302 can be implemented as a special purpose device such an audio music player, a cellular telephone, an automobile audio system or other suitable audio systems that are configured to provide streaming compressed audio data.
  • Compressed audio enhancement 204 is coupled to compressed audio source device 202, such as by using a wireless or wireline data communications medium. Compressed audio enhancement 204 enhances the compressed audio data for a listener by introducing modulation distortion or by otherwise introducing audio signal components that are masked by the compressed audio signal data but which are of sufficient magnitude to stimulate the kinocilia of the listener, so as to prevent the kinocilia from switching to a dormant state that requires a substantially higher amount of energy to switch back to an active state than might be provided by the compressed audio data at any given instant. By keeping the kinocilia in an active state, compressed audio enhancement 204 improves the ability of the listener to hear the audio signals encoded in the compressed audio data.
  • Speakers 206 receive the enhanced compressed audio data and generate sound waves that can be perceived by a listener. Speakers 206 can be implemented as mono speakers, stereo speakers, N.1 surround speakers, automobile speakers, headphone speakers, cellular telephone speakers, sound bar speakers, computer speakers or other suitable speakers.
  • In operation, system 200 enhances compressed and digitally-encoded audio data by introducing additional frequency components that are masked by the compressed and digitally-encoded audio data, but which are of a sufficient magnitude to keep the listener's kinocilia active. In this manner, the listener is able to hear additional compressed and digitally-encoded audio data signals that would otherwise not be perceived, which results in an improved listening experience.
  • FIG. 3 is a diagram of a system 300 for providing modulation distortion in accordance with an exemplary embodiment of the present disclosure. System 300 includes high pass filter 302, low pass filter 304, Hilbert transform 306, summation unit 308, high pass filter 310 and modulation distortion 312, each of which can be implemented in hardware or a suitable combination of hardware and software.
  • High pass filter 302 is configured to receive compressed and digitally-encoded audio data signals and to filter out low frequency components from the signal. In one exemplary embodiment, high pass filter 302 can be implemented as a high-pass order 1 Butterworth filter having a 118 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Low pass filter 304 is coupled to high pass filter 302 and is configured to receive the filtered, compressed and digitally-encoded audio data signals and to filter out high frequency components from the signal. In one exemplary embodiment, low pass filter 304 can be implemented as a low-pass order 4 Butterworth filter having a 10400 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Hilbert transform 306 is coupled to low pass filter 304 and is configured to receive the filtered, compressed and digitally-encoded audio data signals and to apply a Hilbert transform to the signal. In one exemplary embodiment, Hilbert transform 306 can be implemented using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software, and can receive a split output from low pass filter 304 and can apply a Hilbert +/−90 degree phase shift to each output.
  • Summation unit 308 is coupled to Hilbert transform 306 and is configured to square each split output signal and to then take the square root of the sum, in order to obtain an absolute value of the signal.
  • High pass filter 310 is coupled to summation unit 308 and is configured to filter out low frequency components from the signal. In one exemplary embodiment, high pass filter 310 can be implemented as a high-pass order 2 Butterworth filter having a 1006 Hz corner frequency, using the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software.
  • Modulation distortion 312 is coupled to high pass filter 310 and is configured to receive the filtered and compressed audio signal data and to add modulation distortion to the data. In one exemplary embodiment, modulation distortion 312 can be implemented using a downward expander of the Audio Weaver design environment from DSP Concepts or other suitable design environments, hardware or hardware and software. In this exemplary embodiment, the downward expander can be implemented as a software system operating on a specialized processor that has a plurality of settings, such as a threshold setting, a ratio setting, a knee depth setting, an attack time setting, a decay time setting and other suitable settings. These settings can be selected to optimize the generation of modulation distortion in the vicinity of the frequency components of the compressed audio data, such as by setting the threshold setting to a range of −23 dB +/−20%, the ratio setting to range of 1.0 to 1.016 dB/dB +/−20%, the knee depth setting to 0 dB +/−20%, the attack time setting to 0.01 milliseconds +/−20%, the decay time setting to 3 milliseconds +/−20% or in other suitable manners. In general, the attack time may have the greatest influence on generation of phase distortion, and a setting of 1 millisecond or less can be preferable. These exemplary settings can result in the generation of modulation distortion, which is typically avoided, but which is used in this exemplary embodiment specifically to cause the compressed and digitally-encoded audio data to have modulation distortion signals that are below a perceptual threshold by virtue of being masked by the encoded signal components. As the encoded signal components change over time, the kinocilia in the frequency range surrounding the encoded signal components are stimulated enough to prevent them from switching from an active state to a dormant state, thus ensuring that they are able to detect encoded audio signals that are at a magnitude that would otherwise be insufficient to cause dormant kinocilia to switch to an active state. The output of modulation distortion 312 can be provided to an amplifier, a speaker or other suitable devices.
  • In operation, system 300 provides optimal audio signal processing for compressed audio data to provide a level of modulation distortion that is below a perceptual level but which is sufficient to improve the quality of the listening experience, by providing sufficient stimulation to the kinocilia to prevent them from switching from an active to a dormant state. In this manner, the listening experience is improved, because the listener can perceive audio signals that would otherwise not be perceived.
  • FIG. 4 is a diagram of an algorithm 400 for processing compressed audio data to provide kinocilia stimulation, in accordance with an exemplary embodiment of the present disclosure. Algorithm 400 can be implemented in hardware or a suitable combination of hardware and software, and can be one or more software systems operating on a special purpose processor.
  • Algorithm 400 begins at 402, where compressed audio data is received from a source device. In one exemplary embodiment, a frame of the compressed audio data can be received at an input port to an audio data processing system and stored to a buffer device, such as random access memory that has been configured to store audio data. In addition, a processor can be configured to sense the presence of the audio data, such as by checking a flag or other suitable mechanism that is used to indicate that audio data is available for processing. The algorithm then proceeds to 404.
  • At 404, low frequency components are removed from the audio data. In one exemplary embodiment, a high pass filter can be used to filter out low frequency components from the audio data, such as a high-pass order 1 Butterworth filter having a 118 Hz corner frequency or other suitable filters. The filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners. The algorithm then proceeds to 406.
  • At 406, high frequency components are removed from the audio data. In one exemplary embodiment, a low pass filter can be used to filter out high frequency components from the signal, such as a low-pass order 4 Butterworth filter having a 10400 Hz corner frequency or other suitable filters. The filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners. The algorithm then proceeds to 408.
  • At 408, Hilbert filtering is performed on the low pass filtered data, to generate two sets of data having a +/−90 degree phase shift. The Hilbert filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners. The algorithm then proceeds to 410.
  • At 410, the absolute value of the signal is obtained, such as by using a summation unit that is configured to square each set of data and to then take the square root of the sum, in order to obtain an absolute value of the signal, or in other suitable manners. The absolute value audio data can then be stored in a new buffer, in the same buffer or in other suitable manners. The algorithm then proceeds to 412.
  • At 412, the absolute value data is filtered to remove low frequency components from the signal, such as by using a high-pass order 2 Butterworth filter having a 1006 Hz corner frequency or in other suitable manners. The filtered audio data can then be stored in a new buffer, in the same buffer or in other suitable manners. The algorithm then proceeds to 414.
  • At 414, modulation distortion is generated in the audio data, such as by processing the audio data using a downward expander having a threshold setting of −23 dB, a ratio setting of 1.016 dB/dB, a knee depth setting of 0 dB, an attack time setting of 0.01 milliseconds, a decay time setting of 3 milliseconds or other suitable settings. These exemplary settings can result in the generation of modulation distortion, which is typically avoided, but which is used in this exemplary embodiment specifically to cause the compressed and digitally-encoded audio data to have modulation distortion signals that are below a perceptual threshold by virtue of being masked by the encoded signal components. As the encoded signal components change over time, the kinocilia in the frequency range surrounding the encoded signal components are stimulated enough to prevent them from switching from an active state to a dormant state, thus ensuring that they are able to detect encoded audio signals that are at a magnitude that would otherwise be insufficient to cause dormant kinocilia to switch to an active state. The algorithm then proceeds to 416.
  • At 416, the processed audio data is output to an amplifier, a speaker or other suitable devices. In one exemplary embodiment, the processed audio data can be stored in a buffer and can be retrieved periodically for provision to a digital signal processor, a digital to analog converter, an amplifier or other suitable devices for generation of an analog signal that is provided to speakers.
  • It should be emphasized that the above-described embodiments are merely examples of possible implementations. Many variations and modifications may be made to the above-described embodiments without departing from the principles of the present disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims (20)

What is claimed is:
1. A system for processing digitally-encoded audio data comprising:
a compressed audio source device providing a sequence of frames of compressed digital audio data;
a compressed audio enhancement system configured to receive the sequence of frames of compressed digital audio data and to generate enhanced audio data by adding masked digital audio data to the sequence of frames of compressed digital audio data, where the masked digital audio data has an energy level sufficient to keep a kinocilia of a listener active; and
one or more speakers configured to receive the enhanced audio data and to generate sound waves using the enhanced audio data.
2. The system of claim 1 wherein the compressed audio enhancement system comprises a high pass filter configured to remove low frequency components of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data.
3. The system of claim 1 wherein the compressed audio enhancement system comprises a low pass filter configured to remove high frequency components of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data.
4. The system of claim 1 wherein the compressed audio enhancement system comprises a Hilbert transform configured to apply a phase shift to the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data.
5. The system of claim 1 wherein the compressed audio enhancement system comprises an absolute value processor configured to generate an absolute value of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data.
6. The system of claim 1 wherein generation of the enhanced audio data comprises generating modulation distortion of the enhanced audio data.
7. The system of claim 1 wherein generation of the enhanced audio data comprises generating modulation distortion for one or more frequency components of the enhanced audio data, wherein the modulation distortion has a magnitude at least 13 dB lower than the associated frequency component.
8. The system of claim 1 wherein generation of the enhanced audio data comprises generating modulation distortion for one or more frequency components of the enhanced audio data, the modulation distortion having a frequency range centered at each of the associated frequency components, wherein the modulation distortion has a magnitude at least 13 dB lower than the associated frequency component.
9. The system of claim 1 wherein the compressed audio enhancement system comprises a downward expander.
10. The system of claim 1 wherein the compressed audio enhancement system comprises a downward expander having an attack time of less than one millisecond.
11. A method for processing digitally-encoded audio data comprising:
receiving digitally encoded audio data at an audio processing system;
modifying the digitally encoded audio data to add additional perceptually-masked audio data having an energy sufficient to prevent kinocilia of a listener from becoming dormant; and
generating sound waves with a sound wave generating device using the modified digitally encoded audio data.
12. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises filtering low frequency components of the digitally encoded audio data from the digitally encoded audio data.
13. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises filtering high frequency components of the digitally encoded audio data from the digitally encoded audio data.
14. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises applying a Hilbert transform to the digitally encoded audio data.
15. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises determining an absolute value of the digitally encoded audio data.
16. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises adding modulation distortion to the digitally encoded audio data.
17. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises processing the digitally encoded audio data with a downward expander.
18. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises processing the digitally encoded audio data with a downward expander having an attack time of less than 1 millisecond.
19. The method of claim 11 wherein modifying the digitally encoded audio data to add the additional perceptually-masked audio data having the energy sufficient to prevent the kinocilia of the listener from becoming dormant comprises adding modulation distortion to the digitally encoded audio data having a magnitude of at least 13 dB less than a magnitude of an associated audio frequency component.
20. In a system for processing digitally-encoded audio data that has a compressed audio source device providing a sequence of frames of compressed digital audio data, a compressed audio enhancement system configured to receive the sequence of frames of compressed digital audio data and to generate enhanced audio data by adding masked digital audio data to the sequence of frames of compressed digital audio data, where the masked digital audio data has an energy level sufficient to keep a kinocilia of a listener active, one or more speakers configured to receive the enhanced audio data and to generate sound waves using the enhanced audio data, a high pass filter configured to remove low frequency components of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data, a low pass filter configured to remove high frequency components of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data, a Hilbert transform configured to apply a phase shift to the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data, an absolute value processor configured to generate an absolute value of the sequence of frames of compressed digital audio data prior to generation of the enhanced audio data, wherein generation of the enhanced audio data comprises generating modulation distortion of the enhanced audio data, wherein generation of the enhanced audio data comprises generating modulation distortion for one or more frequency components of the enhanced audio data, wherein generation of the enhanced audio data comprises generating modulation distortion for one or more frequency components of the enhanced audio data, the modulation distortion having a frequency range centered at each of the associated frequency components, wherein the modulation distortion has a magnitude at least 13 dB lower than the associated frequency component, wherein the compressed audio enhancement system comprises a downward expander having an attack time of less than one millisecond, a method, comprising:
receiving digitally encoded audio data at an audio processing system;
modifying the digitally encoded audio data to add additional perceptually-masked audio data having an energy sufficient to prevent kinocilia of a listener from becoming dormant;
generating sound waves with a sound wave generating device using the modified digitally encoded audio data;
filtering low frequency components of the digitally encoded audio data from the digitally encoded audio data;
filtering high frequency components of the digitally encoded audio data from the digitally encoded audio data;
applying a Hilbert transform to the digitally encoded audio data;
determining an absolute value of the digitally encoded audio data;
adding modulation distortion to the digitally encoded audio data;
processing the digitally encoded audio data with a downward expander having an attack time of less than 1millisecond; and
adding modulation distortion to the digitally encoded audio data having a magnitude of at least 13 dB less than a magnitude of an associated audio frequency component.
US14/863,368 2014-12-16 2015-09-23 System and method for compressed audio enhancement Abandoned US20160171987A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/863,368 US20160171987A1 (en) 2014-12-16 2015-09-23 System and method for compressed audio enhancement
PCT/US2015/065936 WO2016100422A1 (en) 2014-12-16 2015-12-16 System and method for enhancing compressed audio data
PCT/US2016/021976 WO2016149085A2 (en) 2015-03-13 2016-03-11 System and method for dynamic recovery of audio data and compressed audio enhancement

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462092603P 2014-12-16 2014-12-16
US201562133167P 2015-03-13 2015-03-13
US201562156065P 2015-05-01 2015-05-01
US201562156061P 2015-05-01 2015-05-01
US14/863,368 US20160171987A1 (en) 2014-12-16 2015-09-23 System and method for compressed audio enhancement

Publications (1)

Publication Number Publication Date
US20160171987A1 true US20160171987A1 (en) 2016-06-16

Family

ID=56111772

Family Applications (7)

Application Number Title Priority Date Filing Date
US14/863,350 Active US9852744B2 (en) 2014-12-16 2015-09-23 System and method for dynamic recovery of audio data
US14/863,357 Active US9691408B2 (en) 2014-12-16 2015-09-23 System and method for dynamic equalization of audio data
US14/863,376 Active US9830927B2 (en) 2014-12-16 2015-09-23 System and method for decorrelating audio data
US14/863,365 Active US9875756B2 (en) 2014-12-16 2015-09-23 System and method for artifact masking
US14/863,374 Abandoned US20160173808A1 (en) 2014-12-16 2015-09-23 System and method for level control at a receiver
US14/863,368 Abandoned US20160171987A1 (en) 2014-12-16 2015-09-23 System and method for compressed audio enhancement
US15/634,586 Abandoned US20170294890A1 (en) 2014-12-16 2017-06-27 System and method for dynamic equalization of audio data

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US14/863,350 Active US9852744B2 (en) 2014-12-16 2015-09-23 System and method for dynamic recovery of audio data
US14/863,357 Active US9691408B2 (en) 2014-12-16 2015-09-23 System and method for dynamic equalization of audio data
US14/863,376 Active US9830927B2 (en) 2014-12-16 2015-09-23 System and method for decorrelating audio data
US14/863,365 Active US9875756B2 (en) 2014-12-16 2015-09-23 System and method for artifact masking
US14/863,374 Abandoned US20160173808A1 (en) 2014-12-16 2015-09-23 System and method for level control at a receiver

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/634,586 Abandoned US20170294890A1 (en) 2014-12-16 2017-06-27 System and method for dynamic equalization of audio data

Country Status (2)

Country Link
US (7) US9852744B2 (en)
WO (1) WO2016100422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060746A (en) * 2016-08-18 2016-10-26 佛山博智医疗科技有限公司 Portable player with multichannel hearing compensation function
WO2021035189A1 (en) * 2019-08-21 2021-02-25 Subpac, Inc. Tactile audio enhancement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852744B2 (en) * 2014-12-16 2017-12-26 Psyx Research, Inc. System and method for dynamic recovery of audio data
EP3171362B1 (en) * 2015-11-19 2019-08-28 Harman Becker Automotive Systems GmbH Bass enhancement and separation of an audio signal into a harmonic and transient signal component
EP3185589B1 (en) * 2015-12-22 2024-02-07 Oticon A/s A hearing device comprising a microphone control system
US10374566B2 (en) * 2016-07-29 2019-08-06 Maxim Integrated Products, Inc. Perceptual power reduction system and method
JP2019062514A (en) 2016-12-26 2019-04-18 キヤノン株式会社 Audio processing apparatus and method of controlling same
US10121489B1 (en) * 2017-07-21 2018-11-06 Htc Corporation Method, device, and non-transitory computer readable storage medium for processing audio signal
US10530318B2 (en) * 2017-11-30 2020-01-07 Apple Inc. Audio system having variable reset volume
CN108389590B (en) * 2018-02-06 2021-08-03 广东电网有限责任公司惠州供电局 Time-frequency joint voice top cutting detection method
US10728667B2 (en) * 2018-10-19 2020-07-28 Ernest Michael Poholek Active channel crossover system
US11019301B2 (en) 2019-06-25 2021-05-25 The Nielsen Company (Us), Llc Methods and apparatus to perform an automated gain control protocol with an amplifier based on historical data corresponding to contextual data
US11133787B2 (en) 2019-06-25 2021-09-28 The Nielsen Company (Us), Llc Methods and apparatus to determine automated gain control parameters for an automated gain control protocol

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737434A (en) * 1996-08-26 1998-04-07 Orban, Inc. Multi-band audio compressor with look-ahead clipper
US20020009000A1 (en) * 2000-01-18 2002-01-24 Qdesign Usa, Inc. Adding imperceptible noise to audio and other types of signals to cause significant degradation when compressed and decompressed
US20020147595A1 (en) * 2001-02-22 2002-10-10 Frank Baumgarte Cochlear filter bank structure for determining masked thresholds for use in perceptual audio coding
US20040024588A1 (en) * 2000-08-16 2004-02-05 Watson Matthew Aubrey Modulating one or more parameters of an audio or video perceptual coding system in response to supplemental information
US20060262938A1 (en) * 2005-05-18 2006-11-23 Gauger Daniel M Jr Adapted audio response
US20070238415A1 (en) * 2005-10-07 2007-10-11 Deepen Sinha Method and apparatus for encoding and decoding
US20090198500A1 (en) * 2007-08-24 2009-08-06 Qualcomm Incorporated Temporal masking in audio coding based on spectral dynamics in frequency sub-bands
US20110235813A1 (en) * 2005-05-18 2011-09-29 Gauger Jr Daniel M Adapted Audio Masking
US20120316869A1 (en) * 2011-06-07 2012-12-13 Qualcomm Incoporated Generating a masking signal on an electronic device

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1541004A (en) * 1975-11-07 1979-02-21 Nat Res Dev Hearing aid
US4243840A (en) * 1978-12-22 1981-01-06 Teledyne Industries, Inc. Loudspeaker system
US4922537A (en) * 1987-06-02 1990-05-01 Frederiksen & Shu Laboratories, Inc. Method and apparatus employing audio frequency offset extraction and floating-point conversion for digitally encoding and decoding high-fidelity audio signals
US5953049A (en) * 1996-08-02 1999-09-14 Lucent Technologies Inc. Adaptive audio delay control for multimedia conferencing
US6449368B1 (en) * 1997-03-14 2002-09-10 Dolby Laboratories Licensing Corporation Multidirectional audio decoding
KR19980076752A (en) * 1997-04-14 1998-11-16 윤종용 Broadcast signal receiving method and receiving device for automatically switching screen and sound
US6760448B1 (en) * 1999-02-05 2004-07-06 Dolby Laboratories Licensing Corporation Compatible matrix-encoded surround-sound channels in a discrete digital sound format
US6961432B1 (en) * 1999-04-29 2005-11-01 Agere Systems Inc. Multidescriptive coding technique for multistream communication of signals
US6741874B1 (en) * 2000-04-18 2004-05-25 Motorola, Inc. Method and apparatus for reducing echo feedback in a communication system
US7046812B1 (en) * 2000-05-23 2006-05-16 Lucent Technologies Inc. Acoustic beam forming with robust signal estimation
US20020122468A1 (en) * 2001-01-12 2002-09-05 Terion, Inc. Quasi orthogonal hybrid walsh-PN codes for CDMA application in HF modems
JP3984842B2 (en) * 2002-03-12 2007-10-03 松下電器産業株式会社 Howling control device
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
US20040098149A1 (en) * 2002-11-15 2004-05-20 Chuan Liu Digital audio sampling scheme
US7395210B2 (en) * 2002-11-21 2008-07-01 Microsoft Corporation Progressive to lossless embedded audio coder (PLEAC) with multiple factorization reversible transform
US7191025B2 (en) * 2002-12-20 2007-03-13 Texas Instruments Incorporated Variable digital high and low pass filters
BRPI0409327B1 (en) * 2003-04-17 2018-02-14 Koninklijke Philips N.V. DEVICE FOR GENERATING AN OUTPUT AUDIO SIGNAL BASED ON AN INPUT AUDIO SIGNAL, METHOD FOR PROVIDING AN OUTPUT AUDIO SIGNAL BASED ON AN APPARATUS AUDIO SIGNAL
US7158632B2 (en) * 2003-08-20 2007-01-02 Intel Corporation Adaptive scaling and echo reduction
JP2005136647A (en) * 2003-10-30 2005-05-26 New Japan Radio Co Ltd Bass booster circuit
DE10355146A1 (en) * 2003-11-26 2005-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for generating a bass channel
KR100528876B1 (en) * 2003-12-15 2005-11-16 삼성전자주식회사 Apparatus for sharpening image adaptively to multi-video formats and method thereof
US7929708B2 (en) * 2004-01-12 2011-04-19 Dts, Inc. Audio spatial environment engine
US7394903B2 (en) * 2004-01-20 2008-07-01 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal
JP2006019770A (en) * 2004-05-31 2006-01-19 Toshiba Corp Broadcast receiving apparatus and broadcast receiving method, and sound reproducing apparatus and sound reproducing method
US9281794B1 (en) * 2004-08-10 2016-03-08 Bongiovi Acoustics Llc. System and method for digital signal processing
PL1810280T3 (en) * 2004-10-28 2018-01-31 Dts Inc Audio spatial environment engine
KR100707186B1 (en) 2005-03-24 2007-04-13 삼성전자주식회사 Audio coding and decoding apparatus and method, and recoding medium thereof
US20070223740A1 (en) * 2006-02-14 2007-09-27 Reams Robert W Audio spatial environment engine using a single fine structure
DE602006010323D1 (en) * 2006-04-13 2009-12-24 Fraunhofer Ges Forschung decorrelator
DK2011234T3 (en) * 2006-04-27 2011-03-14 Dolby Lab Licensing Corp Audio amplification control using specific-volume-based auditory event detection
US8712061B2 (en) * 2006-05-17 2014-04-29 Creative Technology Ltd Phase-amplitude 3-D stereo encoder and decoder
US20080049950A1 (en) * 2006-08-22 2008-02-28 Poletti Mark A Nonlinear Processor for Audio Signals
JP4972742B2 (en) * 2006-10-17 2012-07-11 国立大学法人九州工業大学 High-frequency signal interpolation method and high-frequency signal interpolation device
KR101329308B1 (en) * 2006-11-22 2013-11-13 삼성전자주식회사 Method for enhancing Bass of Audio signal and apparatus therefore, Method for calculating fundamental frequency of audio signal and apparatus therefor
US8345887B1 (en) * 2007-02-23 2013-01-01 Sony Computer Entertainment America Inc. Computationally efficient synthetic reverberation
JP5213339B2 (en) * 2007-03-12 2013-06-19 アルパイン株式会社 Audio equipment
JP4986182B2 (en) * 2007-03-20 2012-07-25 日本電気株式会社 Acoustic processing system, method and mobile phone terminal for electronic equipment
US8611557B2 (en) * 2007-08-17 2013-12-17 J. Craig Oxford Method and apparatus for audio processing
US20090052676A1 (en) * 2007-08-20 2009-02-26 Reams Robert W Phase decorrelation for audio processing
US8103005B2 (en) * 2008-02-04 2012-01-24 Creative Technology Ltd Primary-ambient decomposition of stereo audio signals using a complex similarity index
US8645144B2 (en) * 2008-04-24 2014-02-04 Broadcom Corporation Audio signal shaping for playback by audio devices
JP5202090B2 (en) * 2008-05-07 2013-06-05 アルパイン株式会社 Surround generator
US20090319901A1 (en) * 2008-06-20 2009-12-24 Brian David Johnson Aggregration of multiple media types of user consumption habits and device preferences
EP4372744A1 (en) 2008-07-11 2024-05-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder, audio decoder, methods for encoding and decoding an audio signal, audio stream and computer program
JP5282469B2 (en) * 2008-07-25 2013-09-04 ヤマハ株式会社 Voice processing apparatus and program
TWI413109B (en) * 2008-10-01 2013-10-21 Dolby Lab Licensing Corp Decorrelator for upmixing systems
US8280068B2 (en) * 2008-10-03 2012-10-02 Adaptive Sound Technologies, Inc. Ambient audio transformation using transformation audio
PT2945159T (en) * 2008-12-15 2018-06-26 Fraunhofer Ges Forschung Audio encoder and bandwidth extension decoder
EP2436176A4 (en) * 2009-05-27 2012-11-28 Nokia Corp Spatial audio mixing arrangement
US9071214B2 (en) * 2009-06-11 2015-06-30 Invensense, Inc. Audio signal controller
US9083288B2 (en) * 2009-06-11 2015-07-14 Invensense, Inc. High level capable audio amplification circuit
US20110300874A1 (en) * 2010-06-04 2011-12-08 Apple Inc. System and method for removing tdma audio noise
US20110317841A1 (en) * 2010-06-25 2011-12-29 Lloyd Trammell Method and device for optimizing audio quality
US20120076324A1 (en) * 2010-09-23 2012-03-29 AudioControl, Inc. System and methods for applying bass compensation in an automobile
EP2521377A1 (en) * 2011-05-06 2012-11-07 Jacoti BVBA Personal communication device with hearing support and method for providing the same
WO2012094335A1 (en) * 2011-01-04 2012-07-12 Srs Labs, Inc. Immersive audio rendering system
US9130683B2 (en) * 2011-03-07 2015-09-08 Texas Instruments Incorporated Silence based attenuation for enhanced idle-channel FM or other receiver co-existence with a coexisting radio and circuits, processes, and systems
US8805312B2 (en) * 2011-04-06 2014-08-12 Texas Instruments Incorporated Methods, circuits, systems and apparatus providing audio sensitivity enhancement in a wireless receiver, power management and other performances
DK2544463T3 (en) * 2011-07-04 2018-07-02 Gn Hearing As Binaural compressor for directions
EP2560161A1 (en) * 2011-08-17 2013-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optimal mixing matrices and usage of decorrelators in spatial audio processing
DE102011082310A1 (en) * 2011-09-07 2013-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and electroacoustic system for reverberation time extension
KR101803293B1 (en) * 2011-09-09 2017-12-01 삼성전자주식회사 Signal processing apparatus and method for providing 3d sound effect
DE112011105624B4 (en) * 2011-09-15 2023-03-02 Mitsubishi Electric Corp. Dynamic range control device
US20130077795A1 (en) * 2011-09-28 2013-03-28 Texas Instruments Incorporated Over-Excursion Protection for Loudspeakers
CN103918030B (en) * 2011-09-29 2016-08-17 杜比国际公司 High quality detection in the FM stereo radio signal of telecommunication
US9161150B2 (en) * 2011-10-21 2015-10-13 Panasonic Intellectual Property Corporation Of America Audio rendering device and audio rendering method
US20130129117A1 (en) * 2011-11-21 2013-05-23 Henrik Thomsen Audio amplification circuit
US8953901B2 (en) * 2012-01-12 2015-02-10 Sony Corporation Method and system for applying filter to image
US9173020B2 (en) * 2012-03-27 2015-10-27 Htc Corporation Control method of sound producing, sound producing apparatus, and portable apparatus
US20130262687A1 (en) * 2012-03-29 2013-10-03 Ryan L. Avery Connecting a mobile device as a remote control
EP2939443B1 (en) * 2012-12-27 2018-02-14 DTS, Inc. System and method for variable decorrelation of audio signals
US9571054B2 (en) * 2013-02-28 2017-02-14 Rovi Guides, Inc. Systems and methods for dynamically adjusting volume based on media content
US9060223B2 (en) * 2013-03-07 2015-06-16 Aphex, Llc Method and circuitry for processing audio signals
US9099980B2 (en) * 2013-05-06 2015-08-04 Pratt & Whitney Canada Corp Dynamically detecting resonating frequencies of resonating structures
WO2015017223A1 (en) * 2013-07-29 2015-02-05 Dolby Laboratories Licensing Corporation System and method for reducing temporal artifacts for transient signals in a decorrelator circuit
CN105531761B (en) * 2013-09-12 2019-04-30 杜比国际公司 Audio decoding system and audio coding system
EP3138353B1 (en) * 2014-04-30 2019-08-21 Motorola Solutions, Inc. Method and apparatus for discriminating between voice signals
US9852744B2 (en) * 2014-12-16 2017-12-26 Psyx Research, Inc. System and method for dynamic recovery of audio data

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737434A (en) * 1996-08-26 1998-04-07 Orban, Inc. Multi-band audio compressor with look-ahead clipper
US20020009000A1 (en) * 2000-01-18 2002-01-24 Qdesign Usa, Inc. Adding imperceptible noise to audio and other types of signals to cause significant degradation when compressed and decompressed
US20040024588A1 (en) * 2000-08-16 2004-02-05 Watson Matthew Aubrey Modulating one or more parameters of an audio or video perceptual coding system in response to supplemental information
US20020147595A1 (en) * 2001-02-22 2002-10-10 Frank Baumgarte Cochlear filter bank structure for determining masked thresholds for use in perceptual audio coding
US20060262938A1 (en) * 2005-05-18 2006-11-23 Gauger Daniel M Jr Adapted audio response
US20110235813A1 (en) * 2005-05-18 2011-09-29 Gauger Jr Daniel M Adapted Audio Masking
US20070238415A1 (en) * 2005-10-07 2007-10-11 Deepen Sinha Method and apparatus for encoding and decoding
US20090198500A1 (en) * 2007-08-24 2009-08-06 Qualcomm Incorporated Temporal masking in audio coding based on spectral dynamics in frequency sub-bands
US20120316869A1 (en) * 2011-06-07 2012-12-13 Qualcomm Incoporated Generating a masking signal on an electronic device
US8972251B2 (en) * 2011-06-07 2015-03-03 Qualcomm Incorporated Generating a masking signal on an electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060746A (en) * 2016-08-18 2016-10-26 佛山博智医疗科技有限公司 Portable player with multichannel hearing compensation function
WO2021035189A1 (en) * 2019-08-21 2021-02-25 Subpac, Inc. Tactile audio enhancement
US11340704B2 (en) 2019-08-21 2022-05-24 Subpac, Inc. Tactile audio enhancement

Also Published As

Publication number Publication date
US20160171968A1 (en) 2016-06-16
US20170294890A1 (en) 2017-10-12
US9875756B2 (en) 2018-01-23
US9852744B2 (en) 2017-12-26
US20160173808A1 (en) 2016-06-16
US9830927B2 (en) 2017-11-28
WO2016100422A1 (en) 2016-06-23
US20160173995A1 (en) 2016-06-16
US9691408B2 (en) 2017-06-27
US20160173979A1 (en) 2016-06-16
US20160171985A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US20160171987A1 (en) System and method for compressed audio enhancement
US10057703B2 (en) Apparatus and method for sound stage enhancement
EP3061268B1 (en) Method and mobile device for processing an audio signal
US9928728B2 (en) Scheme for embedding a control signal in an audio signal using pseudo white noise
TW201943288A (en) System and method for stereo field enhancement in two-channel audio systems
US10547927B1 (en) Systems and methods for processing an audio signal for replay on stereo and multi-channel audio devices
CN103929692B (en) Audio information processing method and electronic equipment
US20150325115A1 (en) Scheme for embedding a control signal in an audio signal
US9794716B2 (en) Adaptive diffuse signal generation in an upmixer
US9794717B2 (en) Audio signal processing apparatus and audio signal processing method
JP7335282B2 (en) Audio enhancement in response to compression feedback
US10547926B1 (en) Systems and methods for processing an audio signal for replay on stereo and multi-channel audio devices
CN107666639B (en) Perceptual power reduction system and method
WO2016149085A2 (en) System and method for dynamic recovery of audio data and compressed audio enhancement
US20170078793A1 (en) Inversion Speaker and Headphone for Music Production
CN107959906A (en) Audio Enhancement Method and audio strengthening system
CN111405419B (en) Audio signal processing method, device and readable storage medium
Rao Decorrelation performance of reproduced sound field by multichannel loudspeaker system
RU2020130069A (en) METHODS AND DEVICES FOR CONTROL OF LOW AUDIO FREQUENCIES
TW201833906A (en) Sound processing device and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION