US20160163707A1 - Epitaxially grown silicon germanium channel finfet with silicon underlayer - Google Patents

Epitaxially grown silicon germanium channel finfet with silicon underlayer Download PDF

Info

Publication number
US20160163707A1
US20160163707A1 US15/016,612 US201615016612A US2016163707A1 US 20160163707 A1 US20160163707 A1 US 20160163707A1 US 201615016612 A US201615016612 A US 201615016612A US 2016163707 A1 US2016163707 A1 US 2016163707A1
Authority
US
United States
Prior art keywords
layer
underlayer
source drain
channel layer
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/016,612
Inventor
Kangguo Cheng
Eric C.T. Harley
Judson R. Holt
Gauri V. Karve
Yue Ke
Derrick Liu
Timothy J. McArdle
Shogo Mochizuki
Alexander Reznicek
Melissa Alyson Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alsephina Innovations Inc
Original Assignee
GlobalFoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalFoundries Inc filed Critical GlobalFoundries Inc
Priority to US15/016,612 priority Critical patent/US20160163707A1/en
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARLEY, ERIC C.T., KARVE, GAURI V., LIU, DERRICK, REZNICEK, ALEXANDER, MCARDLE, TIMOTHY J., CHENG, KANGGUO, KE, YUE, MOCHIZUKI, SHOGO, HOLT, JUDSON R., SMITH, MELISSA A.
Publication of US20160163707A1 publication Critical patent/US20160163707A1/en
Assigned to ALSEPHINA INNOVATIONS INC. reassignment ALSEPHINA INNOVATIONS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Definitions

  • the present invention relates generally to semiconductor devices, and more particularly to an epitaxially grown silicon germanium (SiGe) channel FinFET with a silicon (Si) underlayer for a source drain recess etch stop.
  • SiGe silicon germanium
  • Integrated circuit (IC) devices such as fin field effect transistors (FinFETs) are widely used in logic, memory, processors, and other integrated circuit devices.
  • FinFETs fin field effect transistors
  • the short channel effect As the size of the active region of FinFETs continues to decrease, the influence of the source drain region on an electric field or potential in the channel region may increase, known as the short channel effect. Maintaining mobility improvement and short channel control as integrated circuit device dimensions continue to scale down continues to be a challenge in semiconductor device fabrication.
  • a method for epitaxially growing a FinFET comprising: providing a semiconductor substrate, wherein the semiconductor substrate includes at least an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer; regrowing a portion of the channel layer using epitaxial growth; etching one or more recesses into the channel layer and the underlayer to form a plurality of fins; forming a gate structure and a set of spacers, wherein the set of spacers are formed on sidewalls of the gate structure; etching a source drain region into the channel layer; and forming a source drain material in the source drain region using epitaxial growth.
  • a semiconductor structure comprising: a channel layer disposed on a semiconductor substrate, wherein the semiconductor substrate comprises at least an underlayer; a plurality of fins patterned in the channel layer and the underlayer, wherein a first set of the plurality of fins are in an NFET region and a second set of the plurality of fins are in a PFET region; a gate structure and a set of spacers, wherein a portion of the gate structure and the set of spacers are disposed around the plurality of fins; and a source drain region formed adjacent to the gate structure, wherein a source drain material is present in the source drain region.
  • FIG. 1 depicts a cross-sectional view of a starting substrate of a semiconductor, in accordance with an embodiment of the present invention
  • FIG. 2 depicts a cross-sectional view of epitaxial growth on the starting substrate of FIG. 1 , in accordance with an embodiment of the present invention
  • FIG. 3 depicts a cross-sectional view of etching selected parts of the semiconductor, in accordance with an embodiment of the present invention
  • FIG. 4 depicts a cross-sectional view of the semiconductor of FIG. 3 after a wet etch process, in accordance with an embodiment of the present invention
  • FIG. 5 depicts a cross-sectional view of epitaxial regrowth for an NFET, in accordance with an embodiment of the present invention
  • FIG. 6 depicts a cross-sectional view of the formation of fins, in accordance with an embodiment of the present invention.
  • FIGS. 7A and 7B depict cross-sectional views of the formation of a gate structure around the fins of FIG. 6 , in accordance with an embodiment of the present invention
  • FIGS. 8A and 8B depict cross-sectional views of the formation of a source drain region adjacent to the gate structure of FIGS. 7A and 7B , in accordance with an embodiment of the present invention
  • FIGS. 9A and 9B depict cross-sectional views of a wet etch process of the source drain region of FIGS. 8A and 8B , in accordance with an embodiment of the present invention.
  • FIGS. 10A and 10B depict cross-sectional views of the epitaxial regrowth of a source drain material in the source drain region of FIGS. 9A and 9B , in accordance with an embodiment of the present invention.
  • Embodiments of the present invention provide a fabrication process for an epitaxially grown SiGe channel FinFET with a Si underlayer for a source drain recess etch stop.
  • Detailed description of embodiments of the claimed structures and methods are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the claimed structures and methods that may be embodied in various forms.
  • each of the examples given in connection with the various embodiments is intended to be illustrative, and not restrictive.
  • the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the methods and structures of the present disclosure.
  • references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described.
  • the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, and derivatives thereof shall relate to the disclosed structures and methods, as oriented in the drawing figures.
  • the terms “on”, “over”, “overlying”, “atop”, “positioned on”, or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements, such as an interface structure, may be present between the first element and the second element.
  • FIG. 1 depicts a cross-sectional view of an example of a starting substrate on which an epitaxially grown SiGe channel FinFET with a Si underlayer may be formed.
  • the starting substrate may be any substrate known in the art, for example, a silicon-on-insulator (SOI) substrate.
  • SOI silicon-on-insulator
  • the starting substrate is a thin SOI, including layer 104 , layer 102 , and layer 101 .
  • Layer 104 is composed of thin Si, with a thickness of approximately 20 nm to 100 nm, with 50 nm to 70 nm being more typical. In this exemplary embodiment, layer 104 has a thickness of at least 5 nm to 10 nm.
  • Layer 102 is a buried oxide (BOX), composed of Si02, with a typical thickness from 100 nm to 150 nm (approximately 145 nm thick in this embodiment).
  • Layer 104 and layer 102 are disposed on layer 101 (approximately 875 micrometers in thickness), which is composed of, for example, Si.
  • a zero-level PFET counter-doping diode implant may be used to form a diode and prevent current leakage through the underlying Si layer by n-doping the Si layer.
  • a masked implant e.g., an oxide or nitride hard mask
  • the possible detrimental effects of the Si underlayer in the gate region are reduced or eliminated.
  • a small amount of carbon may be added to layer 104 during epitaxial deposition. This relieves strain on the system to stop dislocation formation during the epitaxial growth or subsequent high thermal budget processing. It also provides a junction profile definition by stopping dopants (e.g., boron) from diffusing into the SiGe channel underneath the gate.
  • dopants e.g., boron
  • FIG. 2 depicts a cross-sectional view of the substrate after epitaxial growth of channel layer 106 .
  • layer 106 is epitaxially grown on the top surface of layer 104 , to a thickness of approximately 30 nm to 100 nm, with a thickness of 40 nm to 60 nm being more typical.
  • layer 106 is composed of, for example, SiGe, and may have 20% to 50% of Ge density, with 25% to 30% of Ge density being preferred.
  • FIG. 3 depicts a cross-sectional view of the substrate after the deposition of hard mask 108 and a timed etch.
  • hard mask 108 is deposited over the top surface of layer 106 , using known deposition techniques.
  • Hard mask 108 may be composed of an oxide, a nitride, an oxynitride, or any suitable masking material.
  • layer 106 is partially etched, so that a thickness of approximately 5 nm to 10 nm of layer 106 remains.
  • reactive ion etching RIE
  • any suitable etching technique may be used to completely remove layer 106 in one processing step.
  • Hot SCl uses a hydrogen peroxide (H 2 0 2 ), ammonium hydroxide (NH 4 QH), and ⁇ lionized water solution, in a 1:1:5 ratio, held at a temperature of approximately 70° C.
  • the etch rate is approximately 0.3 nm/min. at 70° C. Adjusting the temperature allows the etch rate to be controlled.
  • the hydrogen peroxide promotes the formation of an oxide, while the ammonium hydroxide slowly etches the oxide, stopping with high selectivity on layer 104 .
  • a diode implantation process may occur after the wet etching process.
  • FIG. 5 depicts a cross-sectional view of the substrate after layer 110 is regrown on layer 104 .
  • a Si epitaxial layer 110 is regrown on layer 104 , so that layer 104 and layer 110 are both composed of Si, facilitating low strain and low defect epitaxy.
  • a planarization process such as chemical mechanical polishing (CMP) is used to remove hard mask 108 .
  • layer 110 is epitaxially regrown for an NFET (region 103 ) and may be composed of a material with a low percentage (20%-30%) of Ge, for example, SiGe.
  • layer 110 may be composed of any III-V material, for example, InP, GaAs, or InGaAs.
  • fins 107 are formed.
  • a set of fins 107 are in NFET region 103 and a set of fins 107 are in PFET region 105 .
  • fins 107 may be formed using any standard integration processes, for example, a recessed and regrown PFET or use of replacement fins.
  • fins 107 in NFET region 103 are composed of the same material as layer 104 (i.e., Si).
  • layer 110 may be composed of any Ill-V material or a low percentage Ge material, as discussed above.
  • FIGS. 7A and 7B depict a perpendicular view through fins 107 and a parallel view through gates 110 , respectively, after the formation of gates 112 and spacers 114 .
  • Gates 112 and spacers 114 may be formed using standard processes in the art. Gates 112 may be formed around a central portion of fins 107 . Gates 112 may include a gate electrode, a dielectric layer, and a gate hard mask (not shown). Spacers 114 may subsequently be formed on the sides of gates 112 at a perpendicular orientation relative to fins 107 . Spacers 114 may be composed of a dielectric, such as a nitride, oxide, oxynitride, or a combination thereof.
  • source drain regions 116 are depicted, in accordance with an embodiment of the present invention.
  • source drain regions 116 are formed by etching the semiconductor substrate using a timed reactive ion etch (RIE) process known in the art.
  • RIE reactive ion etch
  • the depth of the RIE is approximately 50% to 80% of the overall thickness of layer 106 . This helps in alleviating any possibility of etch punch through into layer 102 .
  • FIGS. 9A and 9B depict the further etching of source drain regions 116 , in accordance with an embodiment of the present invention.
  • a wet etch such as an SCl wet etch (as described above) is used to further etch out layer 106 , to form source drain regions 116 .
  • SCl wet etch isotropic (i.e., uniform in all directions)
  • spacers 114 are undercut, leading to improved stress and junction proximity.
  • a thermal mixing process is employed after the formation of source drain regions 116 .
  • the thermal mixing process allows the Ge to diffuse into the Si, forming a SiGe region at the bottom of the device, which creates a uniform SiGe channel material leading to an improved device variability.
  • the thermal mixing is performed by annealing the semiconductor to a temperature sufficient enough to cause diffusion of the Ge out of the epitaxial SiGe layer 106 , and into the Si underlayer (layer 104 ).
  • the thermal mixing process is performed at a temperature range from 800° C. to 1200° C., with a preferred temperature range from 900° C. to 1050° C.
  • the semiconductor is held in an inert atmosphere during the thermal mixing process, which includes at least one inert gas, such as N 2 , Ar, He, Xe, Kr, or Ne, for a time period ranging from 1 minute to 30 minutes, depending on the thermal mixing temperature used.
  • the semiconductor is held at a temperature of approximately 950° C. for 3 minutes to 10 minutes.
  • FIGS. 10A and 10B depict the epitaxial regrowth of source drain material 118 in source drain regions 116 , in accordance with an embodiment of the present invention.
  • source drain material 118 is composed of SiGe, where Ge has a concentration, for example, between 30% and 60%.
  • epitaxial growth in the source drain regions 116 is completed in one processing step. In other embodiments, epitaxial growth may be completed in more than one processing step. For example, for a PFET, a buffer layer (not depicted) may first be grown with one doping concentration. A second main layer (not depicted) is then grown, for example, SiGe with a second doping concentration.
  • the second doping concentration is higher than the first doping concentration.
  • a third capping layer (not depicted) is grown which may be composed of SiGe or Si, for example.
  • the doping concentration of the third capping layer may be the same as the doping concentration of the second layer, or may be a higher doping concentration than the second layer.
  • Si or carbon doped silicon Si:C may be used for the growth material, where the C content is approximately 1% to 4%, with a preferred C content of 1% to 2.5%.
  • the fabrication steps depicted above may be included on a semiconductor substrate, consisting of many devices and one or more wiring levels, to form an integrated circuit chip.
  • the resulting integrated circuit chip(s) can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case, the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections).
  • a single chip package such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier
  • a multichip package such as a ceramic carrier that has either or both surface interconnections or buried interconnections.
  • the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product.
  • the end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications, to advanced computer products having a display, a keyboard or other input device, and a central processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.

Description

    PRIORITY
  • This application claims priority to previous U.S. patent application Ser. No. 14/561,395 filed May 23, 2013, which is hereby incorporated by reference
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to semiconductor devices, and more particularly to an epitaxially grown silicon germanium (SiGe) channel FinFET with a silicon (Si) underlayer for a source drain recess etch stop.
  • Integrated circuit (IC) devices, such as fin field effect transistors (FinFETs), are widely used in logic, memory, processors, and other integrated circuit devices. As the size of the active region of FinFETs continues to decrease, the influence of the source drain region on an electric field or potential in the channel region may increase, known as the short channel effect. Maintaining mobility improvement and short channel control as integrated circuit device dimensions continue to scale down continues to be a challenge in semiconductor device fabrication.
  • SUMMARY
  • According to one embodiment of the present invention, a method for epitaxially growing a FinFET is provided, the method comprising: providing a semiconductor substrate, wherein the semiconductor substrate includes at least an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer; regrowing a portion of the channel layer using epitaxial growth; etching one or more recesses into the channel layer and the underlayer to form a plurality of fins; forming a gate structure and a set of spacers, wherein the set of spacers are formed on sidewalls of the gate structure; etching a source drain region into the channel layer; and forming a source drain material in the source drain region using epitaxial growth.
  • According to another embodiment of the present invention, a semiconductor structure is provided, the semiconductor structure comprising: a channel layer disposed on a semiconductor substrate, wherein the semiconductor substrate comprises at least an underlayer; a plurality of fins patterned in the channel layer and the underlayer, wherein a first set of the plurality of fins are in an NFET region and a second set of the plurality of fins are in a PFET region; a gate structure and a set of spacers, wherein a portion of the gate structure and the set of spacers are disposed around the plurality of fins; and a source drain region formed adjacent to the gate structure, wherein a source drain material is present in the source drain region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a cross-sectional view of a starting substrate of a semiconductor, in accordance with an embodiment of the present invention;
  • FIG. 2 depicts a cross-sectional view of epitaxial growth on the starting substrate of FIG. 1, in accordance with an embodiment of the present invention;
  • FIG. 3 depicts a cross-sectional view of etching selected parts of the semiconductor, in accordance with an embodiment of the present invention;
  • FIG. 4 depicts a cross-sectional view of the semiconductor of FIG. 3 after a wet etch process, in accordance with an embodiment of the present invention;
  • FIG. 5 depicts a cross-sectional view of epitaxial regrowth for an NFET, in accordance with an embodiment of the present invention;
  • FIG. 6 depicts a cross-sectional view of the formation of fins, in accordance with an embodiment of the present invention;
  • FIGS. 7A and 7B depict cross-sectional views of the formation of a gate structure around the fins of FIG. 6, in accordance with an embodiment of the present invention;
  • FIGS. 8A and 8B depict cross-sectional views of the formation of a source drain region adjacent to the gate structure of FIGS. 7A and 7B, in accordance with an embodiment of the present invention;
  • FIGS. 9A and 9B depict cross-sectional views of a wet etch process of the source drain region of FIGS. 8A and 8B, in accordance with an embodiment of the present invention; and
  • FIGS. 10A and 10B depict cross-sectional views of the epitaxial regrowth of a source drain material in the source drain region of FIGS. 9A and 9B, in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Embodiments of the present invention provide a fabrication process for an epitaxially grown SiGe channel FinFET with a Si underlayer for a source drain recess etch stop. Detailed description of embodiments of the claimed structures and methods are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the claimed structures and methods that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments is intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the methods and structures of the present disclosure.
  • References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described.
  • For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, and derivatives thereof shall relate to the disclosed structures and methods, as oriented in the drawing figures. The terms “on”, “over”, “overlying”, “atop”, “positioned on”, or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements, such as an interface structure, may be present between the first element and the second element. The terms “direct contact”, “directly on”, or “directly over” mean that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating, or semiconductor layers at the interface of the two elements. The terms “connected” or “coupled” mean that one element is directly connected or coupled to another element, or intervening elements may be present. The terms “directly connected” or “directly coupled” mean that one element is connected or coupled to another element without any intermediary elements present.
  • Referring now to the figures, FIG. 1 depicts a cross-sectional view of an example of a starting substrate on which an epitaxially grown SiGe channel FinFET with a Si underlayer may be formed. The starting substrate may be any substrate known in the art, for example, a silicon-on-insulator (SOI) substrate. In this exemplary embodiment, the starting substrate is a thin SOI, including layer 104, layer 102, and layer 101. Layer 104 is composed of thin Si, with a thickness of approximately 20 nm to 100 nm, with 50 nm to 70 nm being more typical. In this exemplary embodiment, layer 104 has a thickness of at least 5 nm to 10 nm. Layer 102 is a buried oxide (BOX), composed of Si02, with a typical thickness from 100 nm to 150 nm (approximately 145 nm thick in this embodiment). Layer 104 and layer 102 are disposed on layer 101 (approximately 875 micrometers in thickness), which is composed of, for example, Si. In another embodiment, a zero-level PFET counter-doping diode implant may be used to form a diode and prevent current leakage through the underlying Si layer by n-doping the Si layer. By using a masked implant (e.g., an oxide or nitride hard mask) before the NFET/PFET epitaxial deposition step (depicted in FIG. 2), the possible detrimental effects of the Si underlayer in the gate region (discussed below) are reduced or eliminated.
  • In other embodiments, a small amount of carbon (i.e., less than 1%), may be added to layer 104 during epitaxial deposition. This relieves strain on the system to stop dislocation formation during the epitaxial growth or subsequent high thermal budget processing. It also provides a junction profile definition by stopping dopants (e.g., boron) from diffusing into the SiGe channel underneath the gate.
  • FIG. 2 depicts a cross-sectional view of the substrate after epitaxial growth of channel layer 106. In this exemplary embodiment, layer 106 is epitaxially grown on the top surface of layer 104, to a thickness of approximately 30 nm to 100 nm, with a thickness of 40 nm to 60 nm being more typical. In a preferred embodiment, layer 106 is composed of, for example, SiGe, and may have 20% to 50% of Ge density, with 25% to 30% of Ge density being preferred.
  • FIG. 3 depicts a cross-sectional view of the substrate after the deposition of hard mask 108 and a timed etch. In this exemplary embodiment, hard mask 108 is deposited over the top surface of layer 106, using known deposition techniques. Hard mask 108 may be composed of an oxide, a nitride, an oxynitride, or any suitable masking material. After the deposition of hard mask 108, layer 106 is partially etched, so that a thickness of approximately 5 nm to 10 nm of layer 106 remains. In this exemplary embodiment, reactive ion etching (RIE) is used to selectively recess layer 106. In other embodiments, any suitable etching technique may be used to completely remove layer 106 in one processing step.
  • Referring now to FIG. 4, a cross-sectional view of the substrate after a wet etch process is depicted. In this exemplary embodiment, a hot SCl wet etch is used, where layer 106 is etched down to layer 104. Hot SCl uses a hydrogen peroxide (H202), ammonium hydroxide (NH4QH), and <lionized water solution, in a 1:1:5 ratio, held at a temperature of approximately 70° C. The etch rate is approximately 0.3 nm/min. at 70° C. Adjusting the temperature allows the etch rate to be controlled. The hydrogen peroxide promotes the formation of an oxide, while the ammonium hydroxide slowly etches the oxide, stopping with high selectivity on layer 104. In other embodiments, after the wet etching process, a diode implantation process may occur.
  • FIG. 5 depicts a cross-sectional view of the substrate after layer 110 is regrown on layer 104. In this exemplary embodiment, a Si epitaxial layer 110 is regrown on layer 104, so that layer 104 and layer 110 are both composed of Si, facilitating low strain and low defect epitaxy. In one embodiment, after the epitaxial regrowth of layer 104, a planarization process, such as chemical mechanical polishing (CMP), is used to remove hard mask 108. In other embodiments, layer 110 is epitaxially regrown for an NFET (region 103) and may be composed of a material with a low percentage (20%-30%) of Ge, for example, SiGe. In yet another embodiment, layer 110 may be composed of any III-V material, for example, InP, GaAs, or InGaAs.
  • Referring now to FIG. 6, fins 107 are formed. In this exemplary embodiment, a set of fins 107 are in NFET region 103 and a set of fins 107 are in PFET region 105. It should be noted that a “set” may refer to any number of fins 107, including a single fin. In other embodiments, fins 107 may be formed using any standard integration processes, for example, a recessed and regrown PFET or use of replacement fins. In this exemplary embodiment, fins 107 in NFET region 103 are composed of the same material as layer 104 (i.e., Si). In other embodiments, layer 110 may be composed of any Ill-V material or a low percentage Ge material, as discussed above.
  • FIGS. 7A and 7B depict a perpendicular view through fins 107 and a parallel view through gates 110, respectively, after the formation of gates 112 and spacers 114. Gates 112 and spacers 114 may be formed using standard processes in the art. Gates 112 may be formed around a central portion of fins 107. Gates 112 may include a gate electrode, a dielectric layer, and a gate hard mask (not shown). Spacers 114 may subsequently be formed on the sides of gates 112 at a perpendicular orientation relative to fins 107. Spacers 114 may be composed of a dielectric, such as a nitride, oxide, oxynitride, or a combination thereof.
  • Referring now to FIGS. 8A and 8B the formation of source drain regions 116 is depicted, in accordance with an embodiment of the present invention. In this exemplary embodiment, source drain regions 116 are formed by etching the semiconductor substrate using a timed reactive ion etch (RIE) process known in the art. The depth of the RIE is approximately 50% to 80% of the overall thickness of layer 106. This helps in alleviating any possibility of etch punch through into layer 102.
  • FIGS. 9A and 9B depict the further etching of source drain regions 116, in accordance with an embodiment of the present invention. In this exemplary embodiment, a wet etch, such as an SCl wet etch (as described above), is used to further etch out layer 106, to form source drain regions 116. As the hot SCl wet etch is isotropic (i.e., uniform in all directions), spacers 114 are undercut, leading to improved stress and junction proximity.
  • In other embodiments, a thermal mixing process is employed after the formation of source drain regions 116. The thermal mixing process allows the Ge to diffuse into the Si, forming a SiGe region at the bottom of the device, which creates a uniform SiGe channel material leading to an improved device variability. The thermal mixing is performed by annealing the semiconductor to a temperature sufficient enough to cause diffusion of the Ge out of the epitaxial SiGe layer 106, and into the Si underlayer (layer 104). In this exemplary embodiment, the thermal mixing process is performed at a temperature range from 800° C. to 1200° C., with a preferred temperature range from 900° C. to 1050° C. The semiconductor is held in an inert atmosphere during the thermal mixing process, which includes at least one inert gas, such as N2, Ar, He, Xe, Kr, or Ne, for a time period ranging from 1 minute to 30 minutes, depending on the thermal mixing temperature used. In a preferred embodiment, the semiconductor is held at a temperature of approximately 950° C. for 3 minutes to 10 minutes.
  • FIGS. 10A and 10B depict the epitaxial regrowth of source drain material 118 in source drain regions 116, in accordance with an embodiment of the present invention. In this exemplary embodiment, source drain material 118 is composed of SiGe, where Ge has a concentration, for example, between 30% and 60%. In this exemplary embodiment, epitaxial growth in the source drain regions 116 is completed in one processing step. In other embodiments, epitaxial growth may be completed in more than one processing step. For example, for a PFET, a buffer layer (not depicted) may first be grown with one doping concentration. A second main layer (not depicted) is then grown, for example, SiGe with a second doping concentration. In a preferred embodiment, the second doping concentration is higher than the first doping concentration. A third capping layer (not depicted) is grown which may be composed of SiGe or Si, for example. The doping concentration of the third capping layer may be the same as the doping concentration of the second layer, or may be a higher doping concentration than the second layer. Alternatively, for an NFET, Si or carbon doped silicon (Si:C) may be used for the growth material, where the C content is approximately 1% to 4%, with a preferred C content of 1% to 2.5%.
  • Having described embodiments for an epitaxially grown SiGe channel FinFET with a Si underlayer for a source drain region etch stop and methods of fabrication (which are intended to be illustrative and not limiting), it is noted that modifications and variations may be made by persons skilled in the art in light of the above teachings. It is, therefore, to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention, as outlined by the appended claims.
  • In certain embodiments, the fabrication steps depicted above may be included on a semiconductor substrate, consisting of many devices and one or more wiring levels, to form an integrated circuit chip. The resulting integrated circuit chip(s) can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case, the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case, the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications, to advanced computer products having a display, a keyboard or other input device, and a central processor.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

Claims (7)

What is claimed is:
1. A semiconductor structure comprising:
a channel layer disposed on a semiconductor substrate, wherein the semiconductor substrate comprises at least an underlayer;
a plurality of fins patterned in the channel layer and the underlayer, wherein a first set of the plurality of fins are in an NFET region and a second set of the plurality of fins are in a PFET region;
a gate structure and a set of spacers, wherein a portion of the gate structure and the set of spacers are disposed around the plurality of fins; and
a source drain region formed adjacent to the gate structure, wherein a source drain material is present in the source drain region.
2. The semiconductor structure of claim 1, wherein the underlayer comprises Si, and wherein the underlayer has a thickness that is greater than or equal to 5 nm and less than or equal to 10 nm.
3. The semiconductor structure of claim 1, wherein the channel layer comprises at least one of: Si, SiGe, and III-V a material.
4. The semiconductor structure of claim 11, wherein the set of spacers are configured to be undercut.
5. The semiconductor structure of claim 11, wherein the source drain material comprises SiGe, and wherein the SiGe has a concentration that is greater than or equal to 30% Ge and less than or equal to 60% Ge.
6. The semiconductor structure of claim 1, wherein the underlayer comprises Si and less than 1% carbon. The semiconductor structure of claim 1, wherein the channel layer comprises SiGe, and wherein the SiGe has a density that is greater than or equal to 20% Ge and less than or equal to 50% Ge.
8. The semiconductor structure of claim 1, wherein the channel layer has a thickness that is greater than or equal to 30 nm and less than or equal to 100 nm.
US15/016,612 2014-12-05 2016-02-05 Epitaxially grown silicon germanium channel finfet with silicon underlayer Abandoned US20160163707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/016,612 US20160163707A1 (en) 2014-12-05 2016-02-05 Epitaxially grown silicon germanium channel finfet with silicon underlayer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/561,395 US9287264B1 (en) 2014-12-05 2014-12-05 Epitaxially grown silicon germanium channel FinFET with silicon underlayer
US15/016,612 US20160163707A1 (en) 2014-12-05 2016-02-05 Epitaxially grown silicon germanium channel finfet with silicon underlayer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/561,395 Division US9287264B1 (en) 2014-12-05 2014-12-05 Epitaxially grown silicon germanium channel FinFET with silicon underlayer

Publications (1)

Publication Number Publication Date
US20160163707A1 true US20160163707A1 (en) 2016-06-09

Family

ID=55450234

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/561,395 Active US9287264B1 (en) 2014-12-05 2014-12-05 Epitaxially grown silicon germanium channel FinFET with silicon underlayer
US15/016,612 Abandoned US20160163707A1 (en) 2014-12-05 2016-02-05 Epitaxially grown silicon germanium channel finfet with silicon underlayer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/561,395 Active US9287264B1 (en) 2014-12-05 2014-12-05 Epitaxially grown silicon germanium channel FinFET with silicon underlayer

Country Status (1)

Country Link
US (2) US9287264B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735275B2 (en) * 2015-12-18 2017-08-15 International Business Machines Corporation Channel replacement and bimodal doping scheme for bulk finFET threshold voltage modulation with reduced performance penalty
DE102016119024B4 (en) * 2015-12-29 2023-12-21 Taiwan Semiconductor Manufacturing Co. Ltd. Method of fabricating a FinFET device with flat top epitaxial elements
US10490552B2 (en) * 2015-12-29 2019-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET device having flat-top epitaxial features and method of making the same
US9935186B1 (en) * 2016-09-21 2018-04-03 International Business Machines Corporation Method of manufacturing SOI lateral Si-emitter SiGe base HBT
US10049936B2 (en) 2016-12-15 2018-08-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having merged epitaxial features with Arc-like bottom surface and method of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161694A1 (en) * 2011-12-23 2013-06-27 International Business Machines Corporation Thin hetereostructure channel device
US20140264592A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Co. Ltd. Barrier Layer for FinFET Channels
US20150137263A1 (en) * 2013-11-15 2015-05-21 Jae-Hwan Lee Semiconductor device having fin-type field effect transistor and method of manufacturing the same
US20150236114A1 (en) * 2014-02-17 2015-08-20 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and formation thereof
US20150318282A1 (en) * 2014-05-05 2015-11-05 Samsung Electronics Co., Ltd. Multiple Channel Length Finfets with Same Physical Gate Length

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933183B2 (en) 2003-12-09 2005-08-23 International Business Machines Corporation Selfaligned source/drain FinFET process flow
KR100630764B1 (en) 2005-08-30 2006-10-04 삼성전자주식회사 Gate all around semiconductor and method of manufacturing the same
US8658505B2 (en) 2011-12-14 2014-02-25 International Business Machines Corporation Embedded stressors for multigate transistor devices
US8541286B2 (en) * 2012-02-17 2013-09-24 GlobalFoundries, Inc. Methods for fabricating integrated circuits
US8629512B2 (en) 2012-03-28 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Gate stack of fin field effect transistor with slanted sidewalls
US8932936B2 (en) 2012-04-17 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a FinFET device
US8697515B2 (en) * 2012-06-06 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a FinFET device
US9728464B2 (en) 2012-07-27 2017-08-08 Intel Corporation Self-aligned 3-D epitaxial structures for MOS device fabrication
US20140103455A1 (en) 2012-10-17 2014-04-17 International Business Machines Corporation FET Devices with Oxide Spacers
US8815684B2 (en) 2012-12-07 2014-08-26 International Business Machines Corporation Bulk finFET with super steep retrograde well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161694A1 (en) * 2011-12-23 2013-06-27 International Business Machines Corporation Thin hetereostructure channel device
US20140264592A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Co. Ltd. Barrier Layer for FinFET Channels
US20150137263A1 (en) * 2013-11-15 2015-05-21 Jae-Hwan Lee Semiconductor device having fin-type field effect transistor and method of manufacturing the same
US20150236114A1 (en) * 2014-02-17 2015-08-20 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and formation thereof
US20150318282A1 (en) * 2014-05-05 2015-11-05 Samsung Electronics Co., Ltd. Multiple Channel Length Finfets with Same Physical Gate Length

Also Published As

Publication number Publication date
US9287264B1 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US10622261B2 (en) FinFET devices with unique shape and the fabrication thereof
US9514995B1 (en) Implant-free punch through doping layer formation for bulk FinFET structures
KR101629085B1 (en) Passivated and faceted for fin field effect transistor
US9368411B2 (en) Method for the formation of fin structures for FinFET devices
US10236293B2 (en) FinFET CMOS with silicon fin N-channel FET and silicon germanium fin P-channel FET
US9941406B2 (en) FinFETs with source/drain cladding
US20160163707A1 (en) Epitaxially grown silicon germanium channel finfet with silicon underlayer
US8748983B2 (en) Embedded source/drain MOS transistor
US8895381B1 (en) Method of co-integration of strained-Si and relaxed Si or strained SiGe FETs on insulator with planar and non-planar architectures
US10170471B2 (en) Bulk fin formation with vertical fin sidewall profile
KR20120022464A (en) Method of fabricating semiconductor device
KR101705414B1 (en) Semiconductor structure and manufacturing method thereof
US10748899B2 (en) Epitaxial source and drain structures for high voltage devices
CN103871893A (en) BULK FIN FET WITH SUPER STEEP RETROGRADE WELL and manufacturing method of same
US8828812B2 (en) Silicon-germanium heterojunction tunnel field effect transistor and preparation method thereof
US20140302653A1 (en) Finlike Structures and Methods of Making Same
US9209024B2 (en) Back-end transistors with highly doped low-temperature contacts
US20190288012A1 (en) Implementing a hybrid finfet device and nanowire device utilizing selective sgoi
KR101824776B1 (en) A method of removing threading dislocation defect from a fin feature of iii-v group semiconductor material
US9455141B2 (en) Silicon-germanium fin of height above critical thickness
US9184179B2 (en) Thin channel-on-insulator MOSFET device with n+ epitaxy substrate and embedded stressor
US20190165134A1 (en) Heterogeneous semiconductor device substrates with high quality epitaxy
US9722045B2 (en) Buffer layer for modulating Vt across devices
EP3093881B1 (en) Method for manufacturing a cmos device
US9209065B1 (en) Engineered substrate and device for co-integration of strained silicon and relaxed silicon

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHENG, KANGGUO;HARLEY, ERIC C.T.;HOLT, JUDSON R.;AND OTHERS;SIGNING DATES FROM 20151221 TO 20160204;REEL/FRAME:037677/0627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ALSEPHINA INNOVATIONS INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049709/0871

Effective date: 20181126