US20160157296A1 - Mesh network based automated upload of content to aircraft - Google Patents

Mesh network based automated upload of content to aircraft Download PDF

Info

Publication number
US20160157296A1
US20160157296A1 US15/014,333 US201615014333A US2016157296A1 US 20160157296 A1 US20160157296 A1 US 20160157296A1 US 201615014333 A US201615014333 A US 201615014333A US 2016157296 A1 US2016157296 A1 US 2016157296A1
Authority
US
United States
Prior art keywords
vehicle
content
manager
wireless
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/014,333
Inventor
Bryan Adrian Lauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gogo LLC
Original Assignee
Gogo LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gogo LLC filed Critical Gogo LLC
Priority to US15/014,333 priority Critical patent/US20160157296A1/en
Assigned to GOGO LLC reassignment GOGO LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAUER, BRYAN ADRIAN
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT SUPPLEMENTAL PATENT SECURITY AGREEMENT Assignors: GOGO LLC
Publication of US20160157296A1 publication Critical patent/US20160157296A1/en
Assigned to GOGO LLC reassignment GOGO LLC RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL AT REEL/FRAME NO. 038528/0104 Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: GOGO LLC
Priority to US15/873,179 priority patent/US10512118B2/en
Assigned to GOGO LLC reassignment GOGO LLC RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 039381/0484 Assignors: U.S. BANK NATIONAL ASSOCIATION
Priority to US16/665,905 priority patent/US11044785B2/en
Priority to US17/349,121 priority patent/US11765788B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/40Arrangements for broadcast specially adapted for accumulation-type receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • H04H20/62Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast for transportation systems, e.g. in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/76Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet
    • H04H60/78Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by source locations or destination locations
    • H04H60/80Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by source locations or destination locations characterised by transmission among terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • This invention relates to InFlight Entertainment Content which is delivered to passengers on a vehicle (e.g., an aircraft) and, in particular, to a communication system that provides vehicles or other aircraft with high speed delivery of new InFlight Entertainment Content via a mesh network to enable InFlight Entertainment Content to be populated on the Content Manager which is located on the aircraft by wirelessly transferring InFlight Entertainment Content files from other aircraft or from a central Content Manager.
  • a vehicle e.g., an aircraft
  • a communication system that provides vehicles or other aircraft with high speed delivery of new InFlight Entertainment Content via a mesh network to enable InFlight Entertainment Content to be populated on the Content Manager which is located on the aircraft by wirelessly transferring InFlight Entertainment Content files from other aircraft or from a central Content Manager.
  • the Content Manager guides the exchange of InFlight Entertainment Content data among the aircraft as well as from the Content Manager to the aircraft to automatically distribute InFlight Entertainment Content to the aircraft in an efficient and timely manner. Included in this process is the ability to multicast data from the Content Manager to multiple aircraft in a single transmission, thereby obtaining InFlight Entertainment Content delivery efficiency by populating multiple aircraft via a single transmission from the Content Manager. Furthermore, the Content Manager can supplement this process via transmissions to the aircraft, when in flight, over the existing Air To Ground link.
  • the users' portable wireless personal communication devices such as those belonging to aircraft crew, passengers, and the like (collectively termed “users” herein), can be made a temporary node in the mesh network and used to transport content onboard the aircraft or function as a relay point between a source and the next device in the network, as is described below.
  • InFlight Entertainment Content includes movies, music, WEB pages, catalogs, magazines, and any other data that the aircraft passengers may wish to view on their wireless personal communication devices while in flight on the aircraft.
  • FIG. 1 illustrates the Automated Content Upload System in block diagram form
  • FIG. 2 illustrates a typical airport configuration with multiple aircraft parked at gates
  • FIG. 3 illustrates a map of aircraft interconnections in the network
  • FIG. 4 illustrates in flow diagram form the operation of the Automated Content Upload System in defining wireless interconnections among multiple aircraft located at an airport;
  • FIG. 5 illustrates, in flow diagram form, the operation of the Automated Content Upload System in loading InFlight Entertainment Content to multiple aircraft located at an airport.
  • the Automated Content Upload System 100 functions to network a plurality of Aircraft 221 - 228 together when they are located at an airport and/or parked at the Gates 211 G, 212 G of an airport.
  • FIG. 1 illustrates the Automated Content Upload System 100 in block diagram form.
  • the Automated Content Upload System 100 includes a Content Manager 101 , which is the repository of InFlight Entertainment Content, as well as the source of control of the mesh network that is established among the aircraft parked at the airport.
  • the Automated Content Upload System 100 also includes one or more Terrestrial Wireless Portals 102 , 103 which provide the radio frequency links between the Content Manager 101 and the Aircraft 221 - 228 (as well as users' Wireless Personal Communication Devices 104 , 105 ).
  • the Content Manager 101 guides the exchange of InFlight Entertainment Content data among the Aircraft 221 - 228 as well as from the Content Manager 101 to the Aircraft 221 - 228 to automatically distribute InFlight Entertainment Content to the Aircraft 221 - 228 in an efficient and timely manner.
  • the Automated Content Upload System 100 has a plurality of the following attributes:
  • a mesh network is a local area network (LAN) that employs one of two connection arrangements: full mesh topology or partial mesh topology.
  • full mesh topology each node is connected directly to each of the others.
  • partial mesh topology some nodes may be connected to all the others, but some of the nodes are connected only to those other nodes with which they exchange the most data.
  • the mesh network topology is a peer-to-peer system where a node can send and receive messages, but each node also functions as a router and can relay messages for its neighbors. Through this relaying process, a packet of data finds its way to its ultimate destination, passing through intermediate nodes with reliable communication links. If node fails in this network, the messages are automatically routed through alternative paths.
  • the Automated Content Upload System 100 includes not only a processor, termed Content Manager 101 , but also one or more Terrestrial Wireless Portals 102 , 103 which function to wirelessly communicate with the Aircraft 221 - 228 .
  • the Content Manager 101 includes an associated Content Memory 111 which functions to store InFlight Entertainment Content for distribution to Aircraft 221 - 228 as well as a Network Map 112 which identifies the communication connections among the Aircraft 221 - 228 and, optionally, users' Wireless Personal Communication Devices 104 , 105 .
  • the Content Manager 101 also includes an Aircraft Content Schedule Table 113 which lists data that identifies the individual aircraft and the content that is presently scheduled to be resident in this aircraft's Aircraft Content Memory 234 .
  • Content Manager 101 can determine what content needs to be loaded on a particular Aircraft 221 by comparing a list of content presently stored in this aircraft's Aircraft Content Memory 234 and content presently scheduled to be resident in this aircraft's Aircraft Content Memory 234 as noted in Aircraft Content Schedule Table 113 .
  • Each Aircraft 221 - 228 includes an Aircraft Content Network Manager 221 A that consists of a server which implements the aircraft-centric portion of the Automated Content Upload System 100 .
  • the Aircraft Content Network Manager 221 A includes an Aircraft Content Memory 234 that stores the content for distribution to the passengers onboard this aircraft.
  • the Aircraft Content Network Manager 221 A also includes an Aircraft Query Generator 231 for wirelessly polling nearby aircraft to establish and update the mesh network that is used to exchange content among the Aircraft 221 - 228 and from Content Manager 101 to identified Aircraft 221 - 228 .
  • Aircraft Network Memory 232 maintains a record of the nearby aircraft in wireless communication range of the Aircraft 221 , and Aircraft Node Registration 233 is a process that shares the collected Aircraft Network Memory content and a list of content stored in the Aircraft Content Memory 234 with the Content Manager 101 , as described below.
  • FIG. 2 illustrates a typical airport configuration with multiple Aircraft 221 - 228 parked at Gates 211 G, 212 G.
  • a Terrestrial Wireless Portal 102 may be physically installed at a location of an airport terminal building serving a plurality of gates, such as location 211 in the familiar ‘multi-horseshoe’ topography, diagrammatically illustrated in FIG. 1 .
  • the airport may be equipped with one or more additional Terrestrial Wireless Portal 103 locations, shown at 212 in FIG. 1 , in order to ensure complete gate coverage.
  • the locations of Terrestrial Wireless Portals 102 , 103 are such that, regardless of its location, each of Aircraft 221 - 228 is assured of having a wireless terrestrial data link with a Terrestrial Wireless Portal 102 , 103 of the Automated Content Upload System 100 .
  • the spacing between Terrestrial Wireless Portals 102 , 103 is such as to provide overlapping terrestrial link communication coverage, as indicated by overlapping circles 214 and 215 , whose respective radii encompass the entirety of their associated multi-gate areas 216 and 217 .
  • the mesh network In order to support communication among the Aircraft 221 - 228 and with the Content Manager 101 , the mesh network must be established and periodically updated as aircraft arrive and depart from their respective gates and users flow through the terminals and aircraft. As an example, assume that a mesh network among Aircraft 221 - 226 and Content Manager 101 is established and presently active.
  • the process of creation of a network can be understood by describing the process of adding a new node to an existing network and then extrapolating this process to the case where no network is initially active.
  • FIG. 4 illustrates in flow diagram form the operation of the Automated Content Upload System 100 in defining wireless interconnections among multiple Aircraft 221 - 228 located at an airport, as shown diagrammatically in FIG. 3 .
  • This process of adding a node to the network entails the newly arrived Aircraft 221 at step 401 activating Aircraft Query Generator 231 to transmit one or more messages over a selected frequency band to establish communications with one or more of the Aircraft 222 located at the airport. If, at step 402 , the newly arrived Aircraft 221 fails to locate any other aircraft, then this is an error condition, since the network must contain two or more nodes. Therefore, processing advances to step 403 where an error indication is generated to indicate that the network configuration has failed.
  • the newly arrived Aircraft 221 receives one or more responses to its transmitted query and stores the identity of the responding Aircraft 222 , 223 in its Aircraft Network Memory 232 at step 405 . If this responding Aircraft ( 222 , for example) has not previously been detected by the newly arrived Aircraft 221 , then the number of primary proximate nodes has changed and processing returns to step 404 where the next responsive response (from Aircraft 223 , for example) is received and analyzed as noted above. The steps 404 - 406 are repeated until all of the responses received by newly arrived Aircraft 221 have been processed.
  • Aircraft 222 , 223 that are proximate to the newly arrived Aircraft 221 are identified and their identities stored in the Aircraft Network Memory 232 of newly arrived Aircraft 221 .
  • the identified nodes that are proximate to and communicable with newly arrived Aircraft 221 form the sub-network for the newly arrived Aircraft 221 within the composite mesh network.
  • all individual Aircraft 222 to 223 have their own sub-networks of nodes which are respectively communicable to themselves, respectively.
  • the newly arrived Aircraft 221 then activates Aircraft Node Registration 233 to establish a communication link at step 407 with the Content Manager 101 via the Terrestrial Wireless Portal 102 .
  • the newly arrived Aircraft 221 downloads the data gathered from the above-noted sub-network determination process and stored in Aircraft Network Memory 232 to the Content Manager 101 , which stores mapping data in Network Map 112 from each aircraft indicative of the other airport resident aircraft with which each aircraft can communicate.
  • the Content Manager 101 maintains a multi-dimensional map which charts the interconnections among the aircraft that support the exchange of data.
  • FIG. 3 illustrates a map of aircraft interconnections in the network as stored in Network Map 112 .
  • the incorporation of users' wireless personal communication devices 104 , 105 into the mesh network is not described, although the process is substantially the same as that articulated for aircraft. Since crew members can be identified and their respective flight assignments predetermined, it is advantageous to load content onto their wireless personal communication devices and have these devices propagate content as the crew members move among their respective aircraft assignments. Thus, the propagation of content is significantly enhanced by the addition of a multitude of crew members to the content propagation process. In addition, the crew members' wireless personal communication devices can upload content to the aircraft while the crew member is onboard and the aircraft is in flight. Thus, the temporal and spatial extent of the content loading process is expanded, even though the aircraft has left the terminal, since the content load process continues.
  • aircraft can include users' wireless personal communication devices as one embodiment of a content delivery node.
  • This node is mobile and is not constrained to be located at a particular gate in the terminal; in fact, it is expected to roam throughout the airport and be resident in various aircraft and at various gates during their tenure at this airport.
  • the users' wireless personal communication devices are part of the network in the form of mobile repositories of content, with their physical movement from one aircraft to another or from the airport terminal to an aircraft results in the content being available to load into the content memory of the aircraft on which the user is located.
  • the users' wireless personal communication devices typically do not “store and forward” content via wireless links as the aircraft do; they do store content and manually position themselves inside an aircraft to download the content to the aircraft content memory.
  • FIG. 5 illustrates in flow diagram form the operation of the Automated Content Upload System 100 in loading InFlight Entertainment Content to multiple aircraft located at an airport.
  • aircraft associate with other aircraft at the gates via aircraft-to-aircraft wireless links.
  • each aircraft has a “thin link” to the Content Manager 101 via the Terrestrial Wireless Portal 102 , 103 and a fat WiFi pipe to the aircraft it is meshed with.
  • the Content Manager 101 pushes data to specific aircraft via the Terrestrial Wireless Portal 102 , 103 ; and these aircraft push the received content (or content already stored on the aircraft) to other aircraft, as identified to the aircraft, via the WiFi mesh.
  • the Content Manager 101 stores each aircraft's location, mesh connectivity, mesh link performance, Terrestrial Wireless Portal link performance, as well as a list of content that is stored on the aircraft and a list of content that presently should be stored on the aircraft.
  • the Content Manager 101 also knows the Terrestrial Wireless Portal 102 , 103 data budget remaining for the month.
  • Content Processor 106 of the Content Manager 101 identifies an Aircraft 221 which requires delivery of a selected InFlight Entertainment Content file which is stored in Content Manager Memory 111 .
  • Content Processor 106 makes this determination by comparing a list of content presently stored in this aircraft's Aircraft Content Memory 234 and content presently scheduled to be resident in this aircraft's Aircraft Content Memory 234 as noted in Aircraft Content Schedule Table 113 .
  • Content Manager 101 at step 502 , activates a wireless connection to Aircraft 221 via Terrestrial Wireless Portal 103 .
  • Content Manager 101 then, at step 503 , transfers the selected InFlight Entertainment Content file to Aircraft 221 via Terrestrial Wireless Portal 103 .
  • Another file transfer mode is executed airplane-to-airplane when Content Manager 101 at step 511 identifies a first Aircraft 228 which has stored in its content memory a selected InFlight Entertainment Content file.
  • the Content Manager 101 identifies a second Aircraft 221 which does not have the selected InFlight Entertainment Content file stored in its content memory.
  • Content Manager 101 reviews the mesh network aircraft interconnection maps, as described above and, at step 514 , maps a wireless path through the mesh network from the first Aircraft 228 to the second Aircraft 221 , which includes a link through a bridge node (Aircraft 222 ) to enable the data transfer to take place.
  • Aircraft Content Manager 101 transmits control data to Aircraft 221 , 222 , and 228 to initiate the transfer of the selected InFlight Entertainment Content file from the content memory of the first Aircraft 228 to the bridge node Aircraft 222 at step 516 , which forwards the selected InFlight Entertainment Content file to the second Aircraft 221 at step 517 , which stores the selected InFlight Entertainment Content file in its Aircraft Content Memory 334 at step 518 .
  • the transfer of the selected InFlight Entertainment Content file as described above is effected more quickly.
  • the use of the aircraft as data transfer elements reduces the processing load on the Content Manager 101 .
  • Content Manager 101 can use data multicasting to transfer the selected InFlight Entertainment Content file to multiple target aircraft in a single file transfer operation.
  • Content Manager 101 in the transmission of control data to Aircraft 221 , 222 , and 228 at step 515 defines a data multicast mode, rather than a point-to-point transmission as described above.
  • This control data causes the first Aircraft 228 to initiate the transfer of the selected InFlight Entertainment Content file from the content memory of the first Aircraft 228 to the bridge node Aircraft 222 at step 516 , which stores the selected InFlight Entertainment Content file in its content memory at step 519 and forwards the selected InFlight Entertainment Content file to the second Aircraft 221 at step 517 , which stores the selected InFlight Entertainment Content file in its Aircraft Content Memory 334 at step 518 .
  • the Content Manager 101 typically has a plurality of design goals:
  • the Automated Content Upload System networks a plurality of vehicles together when they are parked at a particular location. Communications among the vehicles is guided by a content manager, resident at or near a particular location (e.g., an airport), which maintains data representative of vehicle content data presently stored on each vehicle and the list of scheduled vehicle content data available on each vehicle.
  • the content manager guides the exchange of vehicle content data among the vehicles, as well as from the content manager to the vehicle, to automatically distribute vehicle content data in an efficient and timely manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

The Automated Content Upload System networks a plurality of vehicles together when they are parked at a particular location. Communications among the vehicles is guided by a content manager, resident at or near a particular location (e.g., an airport), which maintains data representative of vehicle content data presently stored on each vehicle and the list of scheduled vehicle content data available on each vehicle. The content manager guides the exchange of vehicle content data among the vehicles, as well as from the content manager to the vehicle, to automatically distribute vehicle content data to the vehicle efficiently and timely. This process includes the ability to multicast data from the content manager to multiple vehicles in a single transmission, obtaining content delivery efficiency, populating multiple vehicles via a single transmission from the content manager. Furthermore, the content manager can supplement this process via transmissions to the vehicle over an air-to-ground link.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation application that claims priority to and the benefit of the filing date of U.S. application Ser. No. 14/553,641, filed Nov. 25, 2014 and entitled “MESH NETWORK BASED AUTOMATED UPLOAD OF CONTENT TO AIRCRAFT,” which is a continuation application that claims priority to and the benefit of the filing date U.S. application Ser. No. 13/544,742, filed Jul. 9, 2012, which issued as U.S. Pat. No. 8,934,893 on Jan. 13, 2015, and is entitled “MESH NETWORK BASED AUTOMATED UPLOAD OF CONTENT TO AIRCRAFT,” the entire disclosure of each of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to InFlight Entertainment Content which is delivered to passengers on a vehicle (e.g., an aircraft) and, in particular, to a communication system that provides vehicles or other aircraft with high speed delivery of new InFlight Entertainment Content via a mesh network to enable InFlight Entertainment Content to be populated on the Content Manager which is located on the aircraft by wirelessly transferring InFlight Entertainment Content files from other aircraft or from a central Content Manager.
  • BACKGROUND OF THE INVENTION
  • It is a problem in the field of providing in-vehicle entertainment to provide passengers on with the most current content for delivery either to the passenger's wireless personal communication devices or vehicle-based displays. Supplemental communications typically fail to provide sufficient bandwidth to transmit all content from terrestrial sites to vehicles while traveling. As a result, content may typically be manually loaded onto a content server via portable media (USB sticks). Thus, every content update requires a visit to a vehicle by maintenance personnel.
  • Another method of loading content on traveling vehicles is via wireless download (3G Cellular/4G Cellular/WiFi connectivity). However, the issues with wireless connectivity are the data file size of multimedia or entertainment content (1 GB/movie), the extent of wireless coverage, and the cost of wireless service; it can be very costly to go down this path vs. manually swapping out USB sticks.
  • Therefore, there presently is no reliable, effective, cost-efficient way of delivering content to traveling vehicles.
  • BRIEF SUMMARY OF THE INVENTION
  • The above-described problems are solved and a technical advance achieved in the field by the present Mesh Network Based Automated Upload of Content To Aircraft (termed “Automated Content Upload System” herein) which functions to network a plurality of aircraft, and optionally user wireless personal communication devices, together when they are on the ground at an airport, typically when parked at the gates of an airport. The communications among the aircraft are guided by a Content Manager, typically resident at or near the airport, which maintains data representative of the InFlight Entertainment Content presently stored on each aircraft, as well as the list of scheduled InFlight Entertainment Content that is to be available on each aircraft. The Content Manager guides the exchange of InFlight Entertainment Content data among the aircraft as well as from the Content Manager to the aircraft to automatically distribute InFlight Entertainment Content to the aircraft in an efficient and timely manner. Included in this process is the ability to multicast data from the Content Manager to multiple aircraft in a single transmission, thereby obtaining InFlight Entertainment Content delivery efficiency by populating multiple aircraft via a single transmission from the Content Manager. Furthermore, the Content Manager can supplement this process via transmissions to the aircraft, when in flight, over the existing Air To Ground link. Finally, the users' portable wireless personal communication devices, such as those belonging to aircraft crew, passengers, and the like (collectively termed “users” herein), can be made a temporary node in the mesh network and used to transport content onboard the aircraft or function as a relay point between a source and the next device in the network, as is described below.
  • In addition, the term “InFlight Entertainment Content” includes movies, music, WEB pages, catalogs, magazines, and any other data that the aircraft passengers may wish to view on their wireless personal communication devices while in flight on the aircraft.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the Automated Content Upload System in block diagram form;
  • FIG. 2 illustrates a typical airport configuration with multiple aircraft parked at gates;
  • FIG. 3 illustrates a map of aircraft interconnections in the network;
  • FIG. 4 illustrates in flow diagram form the operation of the Automated Content Upload System in defining wireless interconnections among multiple aircraft located at an airport; and
  • FIG. 5 illustrates, in flow diagram form, the operation of the Automated Content Upload System in loading InFlight Entertainment Content to multiple aircraft located at an airport.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The Automated Content Upload System 100 functions to network a plurality of Aircraft 221-228 together when they are located at an airport and/or parked at the Gates 211G, 212G of an airport. FIG. 1 illustrates the Automated Content Upload System 100 in block diagram form. The Automated Content Upload System 100 includes a Content Manager 101, which is the repository of InFlight Entertainment Content, as well as the source of control of the mesh network that is established among the aircraft parked at the airport. The Automated Content Upload System 100 also includes one or more Terrestrial Wireless Portals 102, 103 which provide the radio frequency links between the Content Manager 101 and the Aircraft 221-228 (as well as users' Wireless Personal Communication Devices 104, 105).
  • The Content Manager 101 guides the exchange of InFlight Entertainment Content data among the Aircraft 221-228 as well as from the Content Manager 101 to the Aircraft 221-228 to automatically distribute InFlight Entertainment Content to the Aircraft 221-228 in an efficient and timely manner. The Automated Content Upload System 100 has a plurality of the following attributes:
    • 1. Locate, identify and communicate with all aircraft (network nodes) via Terrestrial Wireless Portals;
    • 2. Perform network registration of each aircraft in an autonomous, automatic manner;
    • 3. Authenticate aircraft (network nodes) on the network to ensure they are legitimate network nodes;
    • 4. Establish regular “all is well” internal communications to verify network health;
    • 5. Establish self-test algorithms in order to verify network functionality;
    • 6. Able to relay data from aircraft to the next; and
    • 7. Able to download content data to multiple aircraft even though data entry into the network is at a single point.
    • 8. Locate, identify, and authenticate users for qualification as temporary mobile nodes in the network.
    Network Topology
  • A mesh network is a local area network (LAN) that employs one of two connection arrangements: full mesh topology or partial mesh topology. In the full mesh topology, each node is connected directly to each of the others. In the partial mesh topology, some nodes may be connected to all the others, but some of the nodes are connected only to those other nodes with which they exchange the most data. The mesh network topology is a peer-to-peer system where a node can send and receive messages, but each node also functions as a router and can relay messages for its neighbors. Through this relaying process, a packet of data finds its way to its ultimate destination, passing through intermediate nodes with reliable communication links. If node fails in this network, the messages are automatically routed through alternative paths.
  • Physical Orientation of the Network
  • As shown in FIG. 1, the Automated Content Upload System 100 includes not only a processor, termed Content Manager 101, but also one or more Terrestrial Wireless Portals 102, 103 which function to wirelessly communicate with the Aircraft 221-228. The Content Manager 101 includes an associated Content Memory 111 which functions to store InFlight Entertainment Content for distribution to Aircraft 221-228 as well as a Network Map 112 which identifies the communication connections among the Aircraft 221-228 and, optionally, users' Wireless Personal Communication Devices 104, 105. The Content Manager 101 also includes an Aircraft Content Schedule Table 113 which lists data that identifies the individual aircraft and the content that is presently scheduled to be resident in this aircraft's Aircraft Content Memory 234. Thus, Content Manager 101 can determine what content needs to be loaded on a particular Aircraft 221 by comparing a list of content presently stored in this aircraft's Aircraft Content Memory 234 and content presently scheduled to be resident in this aircraft's Aircraft Content Memory 234 as noted in Aircraft Content Schedule Table 113.
  • Each Aircraft 221-228 includes an Aircraft Content Network Manager 221A that consists of a server which implements the aircraft-centric portion of the Automated Content Upload System 100. The Aircraft Content Network Manager 221A includes an Aircraft Content Memory 234 that stores the content for distribution to the passengers onboard this aircraft. The Aircraft Content Network Manager 221A also includes an Aircraft Query Generator 231 for wirelessly polling nearby aircraft to establish and update the mesh network that is used to exchange content among the Aircraft 221-228 and from Content Manager 101 to identified Aircraft 221-228. Aircraft Network Memory 232 maintains a record of the nearby aircraft in wireless communication range of the Aircraft 221, and Aircraft Node Registration 233 is a process that shares the collected Aircraft Network Memory content and a list of content stored in the Aircraft Content Memory 234 with the Content Manager 101, as described below.
  • FIG. 2 illustrates a typical airport configuration with multiple Aircraft 221-228 parked at Gates 211G, 212G. Typically, but not necessarily, a Terrestrial Wireless Portal 102 may be physically installed at a location of an airport terminal building serving a plurality of gates, such as location 211 in the familiar ‘multi-horseshoe’ topography, diagrammatically illustrated in FIG. 1. Where an airport contains multiple terminals or has a large number of gates distributed over a substantial airport area, the airport may be equipped with one or more additional Terrestrial Wireless Portal 103 locations, shown at 212 in FIG. 1, in order to ensure complete gate coverage.
  • The locations of Terrestrial Wireless Portals 102, 103 are such that, regardless of its location, each of Aircraft 221-228 is assured of having a wireless terrestrial data link with a Terrestrial Wireless Portal 102, 103 of the Automated Content Upload System 100. The spacing between Terrestrial Wireless Portals 102, 103 is such as to provide overlapping terrestrial link communication coverage, as indicated by overlapping circles 214 and 215, whose respective radii encompass the entirety of their associated multi-gate areas 216 and 217.
  • Mesh Network Creation
  • In order to support communication among the Aircraft 221-228 and with the Content Manager 101, the mesh network must be established and periodically updated as aircraft arrive and depart from their respective gates and users flow through the terminals and aircraft. As an example, assume that a mesh network among Aircraft 221-226 and Content Manager 101 is established and presently active. The process of creation of a network can be understood by describing the process of adding a new node to an existing network and then extrapolating this process to the case where no network is initially active.
  • FIG. 4 illustrates in flow diagram form the operation of the Automated Content Upload System 100 in defining wireless interconnections among multiple Aircraft 221-228 located at an airport, as shown diagrammatically in FIG. 3. This process of adding a node to the network entails the newly arrived Aircraft 221 at step 401 activating Aircraft Query Generator 231 to transmit one or more messages over a selected frequency band to establish communications with one or more of the Aircraft 222 located at the airport. If, at step 402, the newly arrived Aircraft 221 fails to locate any other aircraft, then this is an error condition, since the network must contain two or more nodes. Therefore, processing advances to step 403 where an error indication is generated to indicate that the network configuration has failed.
  • Otherwise, at step 404, the newly arrived Aircraft 221 receives one or more responses to its transmitted query and stores the identity of the responding Aircraft 222, 223 in its Aircraft Network Memory 232 at step 405. If this responding Aircraft (222, for example) has not previously been detected by the newly arrived Aircraft 221, then the number of primary proximate nodes has changed and processing returns to step 404 where the next responsive response (from Aircraft 223, for example) is received and analyzed as noted above. The steps 404-406 are repeated until all of the responses received by newly arrived Aircraft 221 have been processed. At this juncture, all of the Aircraft 222, 223 that are proximate to the newly arrived Aircraft 221 are identified and their identities stored in the Aircraft Network Memory 232 of newly arrived Aircraft 221. The identified nodes that are proximate to and communicable with newly arrived Aircraft 221 form the sub-network for the newly arrived Aircraft 221 within the composite mesh network. In a like manner, all individual Aircraft 222 to 223 have their own sub-networks of nodes which are respectively communicable to themselves, respectively.
  • The newly arrived Aircraft 221 then activates Aircraft Node Registration 233 to establish a communication link at step 407 with the Content Manager 101 via the Terrestrial Wireless Portal 102. The newly arrived Aircraft 221 downloads the data gathered from the above-noted sub-network determination process and stored in Aircraft Network Memory 232 to the Content Manager 101, which stores mapping data in Network Map 112 from each aircraft indicative of the other airport resident aircraft with which each aircraft can communicate. The Content Manager 101 maintains a multi-dimensional map which charts the interconnections among the aircraft that support the exchange of data. FIG. 3 illustrates a map of aircraft interconnections in the network as stored in Network Map 112.
  • For the sake of simplicity, the incorporation of users' wireless personal communication devices 104, 105 into the mesh network is not described, although the process is substantially the same as that articulated for aircraft. Since crew members can be identified and their respective flight assignments predetermined, it is advantageous to load content onto their wireless personal communication devices and have these devices propagate content as the crew members move among their respective aircraft assignments. Thus, the propagation of content is significantly enhanced by the addition of a multitude of crew members to the content propagation process. In addition, the crew members' wireless personal communication devices can upload content to the aircraft while the crew member is onboard and the aircraft is in flight. Thus, the temporal and spatial extent of the content loading process is expanded, even though the aircraft has left the terminal, since the content load process continues.
  • The following description is aircraft-centric for simplicity of description, but the use of the term “aircraft” can include users' wireless personal communication devices as one embodiment of a content delivery node. This node is mobile and is not constrained to be located at a particular gate in the terminal; in fact, it is expected to roam throughout the airport and be resident in various aircraft and at various gates during their tenure at this airport. Thus, the users' wireless personal communication devices are part of the network in the form of mobile repositories of content, with their physical movement from one aircraft to another or from the airport terminal to an aircraft results in the content being available to load into the content memory of the aircraft on which the user is located. Thus, the users' wireless personal communication devices typically do not “store and forward” content via wireless links as the aircraft do; they do store content and manually position themselves inside an aircraft to download the content to the aircraft content memory.
  • Content Data Distribution
  • FIG. 5 illustrates in flow diagram form the operation of the Automated Content Upload System 100 in loading InFlight Entertainment Content to multiple aircraft located at an airport. In the Automated Content Upload System 100, as described above, aircraft associate with other aircraft at the gates via aircraft-to-aircraft wireless links. Thus, each aircraft has a “thin link” to the Content Manager 101 via the Terrestrial Wireless Portal 102, 103 and a fat WiFi pipe to the aircraft it is meshed with. At this point, the Content Manager 101 pushes data to specific aircraft via the Terrestrial Wireless Portal 102, 103; and these aircraft push the received content (or content already stored on the aircraft) to other aircraft, as identified to the aircraft, via the WiFi mesh.
  • The Content Manager 101 stores each aircraft's location, mesh connectivity, mesh link performance, Terrestrial Wireless Portal link performance, as well as a list of content that is stored on the aircraft and a list of content that presently should be stored on the aircraft. The Content Manager 101 also knows the Terrestrial Wireless Portal 102, 103 data budget remaining for the month.
  • Thus, at step 501, Content Processor 106 of the Content Manager 101 identifies an Aircraft 221 which requires delivery of a selected InFlight Entertainment Content file which is stored in Content Manager Memory 111. Content Processor 106 makes this determination by comparing a list of content presently stored in this aircraft's Aircraft Content Memory 234 and content presently scheduled to be resident in this aircraft's Aircraft Content Memory 234 as noted in Aircraft Content Schedule Table 113. Content Manager 101, at step 502, activates a wireless connection to Aircraft 221 via Terrestrial Wireless Portal 103. Content Manager 101 then, at step 503, transfers the selected InFlight Entertainment Content file to Aircraft 221 via Terrestrial Wireless Portal 103. Another file transfer mode is executed airplane-to-airplane when Content Manager 101 at step 511 identifies a first Aircraft 228 which has stored in its content memory a selected InFlight Entertainment Content file. At step 512, the Content Manager 101 identifies a second Aircraft 221 which does not have the selected InFlight Entertainment Content file stored in its content memory. At step 513, Content Manager 101 reviews the mesh network aircraft interconnection maps, as described above and, at step 514, maps a wireless path through the mesh network from the first Aircraft 228 to the second Aircraft 221, which includes a link through a bridge node (Aircraft 222) to enable the data transfer to take place. Content Manager 101, at step 515, transmits control data to Aircraft 221, 222, and 228 to initiate the transfer of the selected InFlight Entertainment Content file from the content memory of the first Aircraft 228 to the bridge node Aircraft 222 at step 516, which forwards the selected InFlight Entertainment Content file to the second Aircraft 221 at step 517, which stores the selected InFlight Entertainment Content file in its Aircraft Content Memory 334 at step 518.
  • Since the bandwidth of the aircraft-to-aircraft WiFi link is greater than the bandwidth of the Terrestrial Wireless Portals 102, 103, the transfer of the selected InFlight Entertainment Content file as described above is effected more quickly. In addition, the use of the aircraft as data transfer elements reduces the processing load on the Content Manager 101. Furthermore, Content Manager 101 can use data multicasting to transfer the selected InFlight Entertainment Content file to multiple target aircraft in a single file transfer operation. Thus, Content Manager 101 in the transmission of control data to Aircraft 221, 222, and 228 at step 515 defines a data multicast mode, rather than a point-to-point transmission as described above. This control data causes the first Aircraft 228 to initiate the transfer of the selected InFlight Entertainment Content file from the content memory of the first Aircraft 228 to the bridge node Aircraft 222 at step 516, which stores the selected InFlight Entertainment Content file in its content memory at step 519 and forwards the selected InFlight Entertainment Content file to the second Aircraft 221 at step 517, which stores the selected InFlight Entertainment Content file in its Aircraft Content Memory 334 at step 518.
  • The Content Manager 101 typically has a plurality of design goals:
    • 1. Minimize the amount of content downloaded over the Terrestrial Wireless Portal;
    • 2. Minimize time to get content on aircraft;
    • 3. Ability to prioritize content distribution (what is high priority, what is low);
    • 4. Each aircraft checks neighboring aircraft inventory and synchronizes/updates content without the need for Content Manager interaction; and
    • 5. File Transfer methods must support frequent breaks in connectivity and file transfer resumption from different sources (servers).
    Summary
  • The Automated Content Upload System networks a plurality of vehicles together when they are parked at a particular location. Communications among the vehicles is guided by a content manager, resident at or near a particular location (e.g., an airport), which maintains data representative of vehicle content data presently stored on each vehicle and the list of scheduled vehicle content data available on each vehicle. The content manager guides the exchange of vehicle content data among the vehicles, as well as from the content manager to the vehicle, to automatically distribute vehicle content data in an efficient and timely manner.

Claims (20)

What is claimed:
1. A content network manager resident on a first vehicle from among a plurality of vehicles, the content network manager being from among a set of content network managers, each content network manager from among the set of content network managers being resident on a respective vehicle from among the plurality of vehicles, the content network manager comprising:
a vehicle content memory configured to store vehicle content data for distribution to passengers onboard the first vehicle;
a network memory, configured to store respective identities of vehicles that respond to a wireless query transmitted by the content network manager, to define a vehicle sub-network including (i) the first vehicle, and (ii) vehicles from among the plurality of vehicles that respond to the wireless query transmitted by the content network manager; and
a vehicle node generator configured to transmit the vehicle data to a content manager via a terrestrial wireless portal, the vehicle data being indicative of (i) vehicle content data stored in the vehicle content memory, (ii) vehicle content data stored in one or more wireless communication devices, the one or more wireless communication devices being detected by the each content network manager using a wireless communication query, and (iii) data indicative of vehicles included in the vehicle sub-network,
wherein the content manager is configured to store the vehicle content data for the plurality of vehicles and includes a content processor configured to transmit, in response to receiving the vehicle data from the vehicle node generator, control signals to the first vehicle to cause the first vehicle to wirelessly distribute, to a second vehicle from among the plurality of vehicles, identified vehicle content data of at least one of (i) the vehicle content memory of the first vehicle, or (ii) the one or more wireless communication devices detected by the content network manager of the first vehicle.
2. The content network manager of claim 1, wherein the content manager further includes a vehicle content schedule table configured to store data indicative of vehicle content presently scheduled to be resident in the vehicle content memory of the content network manager.
3. The content network manager of claim 2, wherein the vehicle content presently scheduled to be resident in the vehicle content memory of the each content network manager as indicated by the vehicle content schedule table is compared, by the content processor, to a list of vehicle content that is presently stored in the vehicle content memory of each content network manager that is associated with each respective vehicle from among the plurality of vehicles.
4. The content network manager of claim 1, wherein the content manager is further configured to map a wireless path from the first vehicle to the second vehicle to wirelessly distribute the identified vehicle content data, and
wherein the wireless path includes at least one additional vehicle which functions as a bridge between the first vehicle and the second vehicle.
5. The content network manager of claim 4, wherein the wireless path includes a series of vehicles, each of which (i) stores and forwards the identified vehicle content data, or (ii) functions as a respective bridge to pass the identified vehicle content data along the wireless path.
6. The content network manager of claim 1, wherein each content network manager further includes a vehicle query generator that is configured to detect a presence of other vehicles within wireless communications range of each respective vehicle content network manager.
7. The content network manager of claim 1, wherein at least a portion of the vehicle content data for distribution to the passengers onboard the first vehicle is received from the content manager via a wireless air-to-ground link.
8. The content network manager of claim 1, wherein at least a portion of the vehicle content data stored at the one or more wireless communication devices is transmitted to the one or more wireless communication devices from the content manager via the terrestrial wireless portal.
9. An automated content upload method, comprising:
operating, by one or more processors, a respective vehicle content network manager resident in each of a plurality of vehicles, the respective vehicle content network manager storing respective vehicle content data for distribution to passengers on each of the plurality of vehicles;
transmitting, by one or more processors, a wireless query on a predetermined frequency band;
storing, by one or more processors, identities of vehicles that respond to the transmitted wireless query to define a vehicle sub-network including (i) vehicles transmitting the wireless query, and (ii) vehicles that respond to the transmitted wireless query;
detecting, by one or more processors, a presence of one or more wireless communication devices having respective vehicle content data stored thereon;
storing, in a vehicle content memory, the respective vehicle content data of the detected one or more wireless communication devices; and
transmitting, to a content manager via a terrestrial wireless portal, vehicle data indicative of (i) the respective vehicle content data stored in the vehicle content memory, (ii) the respective vehicle content data of the detected one or more wireless communication devices, and (iii) data indicative of vehicles in the vehicle sub-network,
wherein the act of transmitting causes the content manager to transmit one or more control signals in response to receiving the vehicle data from the respective vehicle content network manager, to a first vehicle to cause the first vehicle to wirelessly distribute, to a second vehicle, identified vehicle content data that is stored in the vehicle content memory of the first vehicle.
10. The automated content upload method of claim 9, wherein operating the respective vehicle content network manager further comprises:
activating a vehicle query generator to detect a presence of other vehicles located within wireless communications range of the respective vehicle content network manager.
11. The automated content upload method of claim 9, wherein operating the respective vehicle content network manager further comprises:
receiving, from the content manager via a wireless air-to-ground link, at least a portion of the respective vehicle content data for distribution to the passengers on each of the plurality of vehicles.
12. The automated content upload method of claim 11, wherein receiving the at least the portion of the respective vehicle content data from the content manager comprises:
receiving vehicle content data that has been multicast, by the content manager, to multiple vehicles included in the plurality of vehicles.
13. A vehicle content network manager, resident in a first vehicle from among a plurality of vehicles, the vehicle content network manager comprising:
a vehicle content memory configured to store vehicle content data for distribution to passengers onboard the first vehicle;
a vehicle query generator configured to detect a presence of other vehicles within wireless communications range of the first vehicle by transmitting a wireless query on a predetermined frequency band;
a vehicle network memory configured to store a respective identity of each other vehicle that responds to the transmitted wireless query to define a vehicle sub-network that includes (i) the first vehicle, and (ii) vehicles that respond to the transmitted wireless query; and
a vehicle node generator configured to transmit, to a content manager via a terrestrial wireless portal, vehicle data including (i) data indicative of vehicle content data stored in the vehicle content memory, (ii) vehicle content data obtained from one or more wireless communication devices, the wireless communication devices being configured to store vehicle content data thereon, and (iii) data indicative of wireless connectivity, via the vehicle sub-network, between the first vehicle and a second vehicle.
14. The vehicle content network manager of claim 13, wherein:
the terrestrial wireless portal is configured to establish bidirectional data communications between the content manager and each of the plurality of vehicles; and
the content manager is configured to respond to the vehicle data transmitted by the vehicle node generator by transmitting control signals to the first vehicle to cause the first vehicle to wirelessly distribute identified vehicle content data stored in the vehicle content memory of the first vehicle to the second vehicle via a vehicle-to-vehicle wireless link.
15. The vehicle content network manager of claim 13, wherein the content manager further includes a vehicle content schedule table configured to store data indicative of vehicle content data presently scheduled to be resident in the vehicle content memory of the first vehicle.
16. The vehicle content network manager of claim 13, wherein the content manager is further configured to map a wireless path from the first vehicle to the second vehicle to wirelessly distribute the identified vehicle content data, and
wherein the wireless path includes at least one additional vehicle that functions as a bridge between the first vehicle and the second vehicle.
17. The vehicle content network manager of claim 13, wherein the wireless path includes a series of vehicles, each of which is (i) configured to store and forward identified vehicle content data, or (ii) function as a bridge to pass the identified vehicle content data along the wireless path via respective vehicle-to-vehicle wireless links.
18. The vehicle content network manager of claim 13, wherein at least a portion of the vehicle content data for distribution to the passengers onboard the first vehicle is received from the content manager via a wireless air-to-ground link.
19. The vehicle content network manager of claim 18, wherein the at least the portion of the vehicle content data is multicast by the content manager to more than one vehicle from among the plurality of vehicles.
20. The vehicle content network manager of claim 13, wherein the vehicle content data stored at the one or more wireless communication devices is received at the one or more wireless communication devices from the content manager via the terrestrial wireless portal.
US15/014,333 2012-07-09 2016-02-03 Mesh network based automated upload of content to aircraft Abandoned US20160157296A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/014,333 US20160157296A1 (en) 2012-07-09 2016-02-03 Mesh network based automated upload of content to aircraft
US15/873,179 US10512118B2 (en) 2012-07-09 2018-01-17 Mesh network based automated upload of content to aircraft
US16/665,905 US11044785B2 (en) 2012-07-09 2019-10-28 Mesh network based automated upload of content to aircraft
US17/349,121 US11765788B2 (en) 2012-07-09 2021-06-16 Mesh network based automated upload of content to aircraft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/544,742 US8934893B2 (en) 2012-07-09 2012-07-09 Mesh network based automated upload of content to aircraft
US14/553,641 US9287999B2 (en) 2012-07-09 2014-11-25 Mesh network based automated upload of content to aircraft
US15/014,333 US20160157296A1 (en) 2012-07-09 2016-02-03 Mesh network based automated upload of content to aircraft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/553,641 Continuation US9287999B2 (en) 2012-07-09 2014-11-25 Mesh network based automated upload of content to aircraft

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/873,179 Continuation US10512118B2 (en) 2012-07-09 2018-01-17 Mesh network based automated upload of content to aircraft

Publications (1)

Publication Number Publication Date
US20160157296A1 true US20160157296A1 (en) 2016-06-02

Family

ID=49878871

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/544,742 Active 2032-08-31 US8934893B2 (en) 2012-07-09 2012-07-09 Mesh network based automated upload of content to aircraft
US14/553,641 Active US9287999B2 (en) 2012-07-09 2014-11-25 Mesh network based automated upload of content to aircraft
US15/014,333 Abandoned US20160157296A1 (en) 2012-07-09 2016-02-03 Mesh network based automated upload of content to aircraft
US15/873,179 Active US10512118B2 (en) 2012-07-09 2018-01-17 Mesh network based automated upload of content to aircraft
US16/665,905 Active US11044785B2 (en) 2012-07-09 2019-10-28 Mesh network based automated upload of content to aircraft
US17/349,121 Active 2032-08-16 US11765788B2 (en) 2012-07-09 2021-06-16 Mesh network based automated upload of content to aircraft

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/544,742 Active 2032-08-31 US8934893B2 (en) 2012-07-09 2012-07-09 Mesh network based automated upload of content to aircraft
US14/553,641 Active US9287999B2 (en) 2012-07-09 2014-11-25 Mesh network based automated upload of content to aircraft

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/873,179 Active US10512118B2 (en) 2012-07-09 2018-01-17 Mesh network based automated upload of content to aircraft
US16/665,905 Active US11044785B2 (en) 2012-07-09 2019-10-28 Mesh network based automated upload of content to aircraft
US17/349,121 Active 2032-08-16 US11765788B2 (en) 2012-07-09 2021-06-16 Mesh network based automated upload of content to aircraft

Country Status (6)

Country Link
US (6) US8934893B2 (en)
EP (1) EP2870764A4 (en)
CN (2) CN107846479A (en)
AU (1) AU2013289121B2 (en)
CA (1) CA2881518C (en)
WO (1) WO2014011310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512118B2 (en) 2012-07-09 2019-12-17 Gogo Llc Mesh network based automated upload of content to aircraft

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369991B2 (en) * 2013-11-08 2016-06-14 Gogo Llc Hybrid communications for devices on vehicles
US9654807B2 (en) 2015-03-27 2017-05-16 Thales, Inc. Aircraft communications system with adaptive streaming video and associated methods
US10070153B2 (en) 2015-03-27 2018-09-04 Thales, Inc. Aircraft communications system storing video content while on the ground and associated methods
US9749662B2 (en) 2015-03-27 2017-08-29 Thales, Inc. Aircraft communications system storing video content while airborne and associated methods
US9848317B2 (en) * 2015-11-25 2017-12-19 Viasat, Inc. Multicast handover for mobile communications
US20180027037A1 (en) * 2016-07-22 2018-01-25 Panasonic Avionics Corporation Mobile device-based content loader for entertainment system
US10348832B2 (en) * 2016-07-29 2019-07-09 Panasonic Avionics Corporation Methods and systems for sharing content on a transportation vehicle
US9967172B2 (en) 2016-10-11 2018-05-08 Panasonic Avionics Corporation Methods and systems for content loading and offloading to and from a transportation vehicle
US10171556B2 (en) 2016-11-02 2019-01-01 Panasonic Avionics Corporation Systems and methods for distributing recorded messages to a vehicle public announcement system
DE102017204216A1 (en) * 2017-03-14 2018-09-20 Airbus Operations Gmbh System and method for temporary and local content sharing
US10097615B1 (en) * 2017-06-13 2018-10-09 Kitty Hawk Corporation Method for vehicle data collection
JP7038190B2 (en) 2017-07-28 2022-03-17 サフラン パッセンジャー イノベーションズ, エルエルシー Delivery content for aircraft
US10714592B2 (en) * 2017-10-30 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
US11089106B2 (en) 2018-12-06 2021-08-10 Ge Aviation Systems Llc Aircraft monitoring system and method of collecting data in an aircraft
CN109861848B (en) * 2019-01-04 2022-04-22 北京全路通信信号研究设计院集团有限公司 Rail transit network construction method and system based on data bus
US11777604B2 (en) * 2019-01-22 2023-10-03 Product Development Technologies, Inc. Gate-based optical data transmission
US11172240B2 (en) * 2019-11-04 2021-11-09 Panasonic Avionics Corporation Content loading through ad-hoc wireless networks between aircraft on the ground
US11102183B2 (en) * 2019-11-14 2021-08-24 Hughes Network Systems, Llc Satellite based internet of things network
US20220132283A1 (en) * 2020-10-22 2022-04-28 Akamai Technologies Inc. Identification and coordination of opportunities for vehicle to vehicle wireless content sharing
US11743525B2 (en) 2021-06-24 2023-08-29 Gogo Business Aviation Llc Methods and systems for dynamically loading content onto in-vehicle content-delivery systems
US11532186B1 (en) 2021-08-18 2022-12-20 Beta Air, Llc Systems and methods for communicating data of a vehicle
US12022135B2 (en) 2022-09-09 2024-06-25 Hcl Technologies Limited Method and system for providing media content to in-flight wireless media servers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599691B1 (en) * 2000-01-28 2009-10-06 Rockwell Collins, Inc. System and method for internet access on a mobile platform
US20100333164A1 (en) * 2008-03-20 2010-12-30 Mark Alan Schultz System and method for controlling playback time for stored transport stream data in a multi-channel broadcast multimedia system
USRE42536E1 (en) * 1997-12-12 2011-07-12 At&T Mobility Ii Llc High bandwidth delivery and internet access for airborne passengers
US20120030717A1 (en) * 2007-09-12 2012-02-02 Proximetry, Inc. Systems and Methods for Prioritizing Wireless Commuinication of Aircraft
US20120090011A1 (en) * 2009-06-05 2012-04-12 Panasonic Corporation Content upload system and content distribution server
US20150079897A1 (en) * 2012-07-09 2015-03-19 Gogo Llc Mesh network based automated upload of content to aircraft

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054593B2 (en) * 2000-09-28 2006-05-30 The Boeing Company Return link design for PSD limited mobile satellite communication systems
US7110783B2 (en) * 2002-04-17 2006-09-19 Microsoft Corporation Power efficient channel scheduling in a wireless network
KR20070085720A (en) * 2004-11-04 2007-08-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Hdd-based commercial airplane entertainment system
US7280825B2 (en) * 2004-12-28 2007-10-09 Live Tv, Llc Aircraft in-flight entertainment system including low power transceivers and associated methods
WO2008033534A2 (en) 2006-09-15 2008-03-20 Thales Avionics, Inc. System and method for wirelessly transferring content to and from an aircraft
US20080155597A1 (en) * 2006-12-26 2008-06-26 Shlomo Turgeman Vehicle tv and content router
CN101868923B (en) * 2007-09-24 2015-04-01 松下航空电子公司 System and method for receiving broadcast content on a mobile platform during travel
JPWO2009084135A1 (en) * 2007-12-28 2011-05-12 三菱電機株式会社 Navigation device
EP2250574A4 (en) * 2008-01-28 2013-09-25 Gogo Llc Customizing content for delivery to a passenger in an airborne wireless cellular network
US9003500B2 (en) * 2009-03-13 2015-04-07 Hti Ip, Llc Method and system for facilitating synchronizing media content between a vehicle device and a user device
JP5709359B2 (en) * 2009-04-07 2015-04-30 ソニー株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
GB201008085D0 (en) * 2010-05-14 2010-06-30 Bluebox Avionics Ltd Aircraft interface
US9975175B2 (en) 2013-01-16 2018-05-22 General Electric Company Metallic structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42536E1 (en) * 1997-12-12 2011-07-12 At&T Mobility Ii Llc High bandwidth delivery and internet access for airborne passengers
US7599691B1 (en) * 2000-01-28 2009-10-06 Rockwell Collins, Inc. System and method for internet access on a mobile platform
US20120030717A1 (en) * 2007-09-12 2012-02-02 Proximetry, Inc. Systems and Methods for Prioritizing Wireless Commuinication of Aircraft
US20100333164A1 (en) * 2008-03-20 2010-12-30 Mark Alan Schultz System and method for controlling playback time for stored transport stream data in a multi-channel broadcast multimedia system
US20120090011A1 (en) * 2009-06-05 2012-04-12 Panasonic Corporation Content upload system and content distribution server
US20150079897A1 (en) * 2012-07-09 2015-03-19 Gogo Llc Mesh network based automated upload of content to aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512118B2 (en) 2012-07-09 2019-12-17 Gogo Llc Mesh network based automated upload of content to aircraft
US11044785B2 (en) 2012-07-09 2021-06-22 Gogo Business Aviation Llc Mesh network based automated upload of content to aircraft
US11765788B2 (en) 2012-07-09 2023-09-19 Gogo Business Aviation Llc Mesh network based automated upload of content to aircraft

Also Published As

Publication number Publication date
US20140011441A1 (en) 2014-01-09
CN104641656B (en) 2018-01-26
CA2881518A1 (en) 2014-01-16
US9287999B2 (en) 2016-03-15
EP2870764A4 (en) 2016-03-02
US11044785B2 (en) 2021-06-22
EP2870764A1 (en) 2015-05-13
US20210315055A1 (en) 2021-10-07
US10512118B2 (en) 2019-12-17
WO2014011310A1 (en) 2014-01-16
CN107846479A (en) 2018-03-27
CN104641656A (en) 2015-05-20
US20180146505A1 (en) 2018-05-24
US8934893B2 (en) 2015-01-13
US20150079897A1 (en) 2015-03-19
CA2881518C (en) 2020-04-28
AU2013289121A1 (en) 2015-02-26
AU2013289121B2 (en) 2017-07-20
US11765788B2 (en) 2023-09-19
US20200068654A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US11765788B2 (en) Mesh network based automated upload of content to aircraft
Tareque et al. On the routing in flying ad hoc networks
Sahingoz Networking models in flying ad-hoc networks (FANETs): Concepts and challenges
JP6755336B2 (en) Systems and methods for managing data routing and replication in the download direction in a network of moving objects
BR112020002122A2 (en) method and apparatus for managing handover transfer from satellite beam to aircraft in a satellite communication system comprising a plurality of satellite beams
US20110149849A1 (en) Wireless black box communication systems and methods
EP2985926A1 (en) Radio aircraft network with an operator station storing aircraft and ground-based stations locations and establishing a path between the aircraft and the ground stations based on the locations.
CN107079237A (en) Selectable storage and deletion in mobile content transmission network
US10879997B2 (en) System and method for bi-directional communication of data between servers on-board and off-board a vehicle
KR102017390B1 (en) Adaptive uav deployment method using path stitching
US10694429B2 (en) System and method for managing data connectivity links for aviation vehicles
Hussen et al. Predictive geographic multicast routing protocol in flying ad hoc networks
US11172240B2 (en) Content loading through ad-hoc wireless networks between aircraft on the ground
Alioua et al. dSDiVN: a distributed software-defined networking architecture for infrastructure-less vehicular networks
KR101334131B1 (en) Bundle data relaying method for Swarming UAVs
EP4187880B1 (en) Airline peer-to-peer data transfer method
Radley et al. RETRACTED ARTICLE: Multi Information Amount Movement Aware-Routing in FANET: Flying Ad-hoc Networks
CN114026797A (en) Integrated access and backhaul from high altitude platforms
US20080318519A1 (en) Wireless network system and relay node
CN110460350A (en) The method and networking component that device, the multi-client of mobile transceiver sample
KR101779700B1 (en) Packet data transferring method using mobile equipment and stationary node and determining method for routing path including mobile equipment and stationary node
Ghazzai et al. Data routing challenges in UAV-assisted vehicular ad hoc networks
Oliveira et al. Over-The-Air updates for Software Defined Vehicle services with IPFS
Treeprapin et al. Effective node deployment in sparse mobile sensor networks
Singh A contribution to communication management in private unmanned aerial vehicle networks

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOGO LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAUER, BRYAN ADRIAN;REEL/FRAME:037657/0429

Effective date: 20150113

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: SUPPLEMENTAL PATENT SECURITY AGREEMENT;ASSIGNOR:GOGO LLC;REEL/FRAME:038528/0104

Effective date: 20160425

AS Assignment

Owner name: GOGO LLC, ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL AT REEL/FRAME NO. 038528/0104;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:039070/0439

Effective date: 20160614

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:GOGO LLC;REEL/FRAME:039381/0484

Effective date: 20160614

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GOGO LLC, ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 039381/0484;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:049013/0360

Effective date: 20190425