US20160090554A1 - Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers - Google Patents

Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers Download PDF

Info

Publication number
US20160090554A1
US20160090554A1 US14/862,182 US201514862182A US2016090554A1 US 20160090554 A1 US20160090554 A1 US 20160090554A1 US 201514862182 A US201514862182 A US 201514862182A US 2016090554 A1 US2016090554 A1 US 2016090554A1
Authority
US
United States
Prior art keywords
mass
cleaning composition
group
sulfonate group
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/862,182
Inventor
Xiaoli Wang
Xianling ZHAI
Peng Qin
Xiaoyan Liu
Mark Allen Smerznak
Patrick Christopher STENGER
Bonny Kay LUI
Praveen Kumar Depa
William Coffin SHEAROUSE
Stacey Lee VOSTERS
Rachel Marie HILER
Akiko Hemmi
Hirotaka MIZOGUCHI
Rika Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2014/087376 external-priority patent/WO2016045026A1/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Assigned to THE PROCTER & GAMBLE COMPANY reassignment THE PROCTER & GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEMMI, AKIKO, MATSUMOTO, RIKA, MIZOGUCHI, Hirotaka, LIU, XIAOYAN, SMERZNAK, MARK, NIPPON SHOKUBAI CO., LTD., WANG, XIAOLI, ZHAI, Xianling, QIN, PENG, LUI, Bonny Kay, HILER, Rachel Marie, SHEAROUSE, William Coffin, VOSTERS, Stacey Lee, DEPA, PRAVEEN KUMAR, STENGER, PATRICK CHRISTOPHER
Publication of US20160090554A1 publication Critical patent/US20160090554A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate

Definitions

  • the present invention is in the field of cleaning compositions.
  • An important purpose of detergents and/or cleaning compositions is to remove soils and stains from fabrics to achieve consumer perceivable cleaning benefit.
  • the ability of a particular detergent or cleaning composition to remove soils and stains is determined not only by the surfactant activity level in the composition, but also by many others factors.
  • the wash water used with detergents or cleaning compositions may contain various metal ions (e.g., calcium or magnsium ions) that can chemically combine with surfactants in the wash to form insoluble precipitates, which not only render the surfactant ineffective for soil/stain remval, but also form scums that further soil the fabric surface. Therefore, water with a higher concentration of metal ions (i.e., hard water) presents a particularly challenging wash condition.
  • various metal ions e.g., calcium or magnsium ions
  • polymers have been used in detergents or cleaning compositions in recent years as detergent builders in augmenting the cleaning power of surfactants.
  • some polymers can bind calcium ions and/or other alkali earth metal ions in water, thereby improving the water hardness tolerance of the detergents or cleaning compositions and allowing either elimination or significant reduction of conventional phosphate and/or zeolite builders in such compositions.
  • Other polymers can effectively suspend soil particles (either inorganic or organic) that have already been removed from the fabric surface by surfactants, in the wash liquor and prevent their redeposition back onto the fabric surface during subsequent wash and rinse steps.
  • Water-soluble copolymers formed by polymerization of one or more monomers derived from unsaturated monocarboxylic acid, unsaturated polyalkylene glycol, and sulfonate group-containing hydrocarbons have demonstrated effectiveness as polymeric detergent builders.
  • JP2010-111792A discloses a group of copolymers containing structural units derived from sulfonate group-containing monomers, polyoxyalkylene monomers, and carboxylic acid monomers, which exhibited improved effectiveness in anti-soil redeposition and can be used in detergent or cleaning compositions to improve the overall cleaning performance thereof.
  • the present invention relates to a cleaning composition, preferably a laundry detergent composition and more preferably a liquid laundry detergent composition, which contains one or more alkoxylated polyalkyleneimines in combination with a sulfonate group-containing copolymer. It is a surprising and unexpected discovery of the present invention that when a sulfonate group-containing copolymer is combined with one or more alkoxylated polyalkyleneimines in a cleaning composition, the resulting cleaning composition exhibits significant improvement in its cleaning performance, more specifically its whiteness maintenance benefit, in comparison with compositions containing either the sulfonate group-containing copolymer alone or the one or more alkoxylated polyalkyleneimines alone.
  • the alkoxylated polyalkyleneimine used for practicing the present invention contains a polyalkyleneimine core having an average number-average molecular weight (MW PEI ) ranging from 100 to 100,000 Daltons, and at least one side chain bonded to a nitrogen atom in the polyalkyleneimine core.
  • the at least one side chain has an empirical formula (I) of:
  • EO is ethylene oxide
  • b has a weight average value ranging from 3 to 60
  • PO is propylene oxide
  • c has a weight average value ranging from 0 to 60
  • R is selected from the group consisting of hydrogen, C 1 -C 4 alkyls, and combinations thereof.
  • the alkoxylated polyalkyleneimine or polyalkyleneimines may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20% by total weight of the cleaning composition.
  • the sulfonate group-containing copolymer used for practicing the present invention contains at least three structural units, (a), (b), and (c).
  • the first structural unit (a) is derived from a sulfonate group-containing monomer (A).
  • the second structural unit (b) is derived from a polyoxyalkxylene monomer (B), which can be presented by formula (II) as follows:
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a direct bond, CH 2 , or CH 2 CH 2
  • Z may be the same or different and each Z represents a structural unit derived from a C 2 -C 20 alkylene oxide
  • n is from 1 to 200
  • R 0 represents hydrogen atom or a C 1 -C 30 organic group.
  • the third structural unit (c) is derived from a carboxyl group-containing monomer (C).
  • the sulfonate group-containing copolymer may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20% by total weight of the cleaning composition.
  • the cleaning composition of the present invention can be in any solid or liquid product form. It can be a laundry detergent composition, a hard surface cleaning composition, a hand dishwashing composition, or an automatic dishwashing composition.
  • the cleaning composition is in a liquid form and is more preferably in a single phase or multiphase unit dose form as encapsulated by a single compartment or multi-compartment water-solution pouch.
  • It may further comprise, in addition to the one or more alkoxylated polyalkyleneimines and the sulfonate group-containing copolymer as described hereinabove, one or more surfactants selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.
  • the surfactants comprise an anionic surfactant selected from the group consisting of alkyl benzene sulfonate, alkoxylated alkyl sulfates, alkyl sulfates, and mixtures thereof.
  • the present invention also relates to use of the above-described cleaning composition for treating fabrics to achieve improved whiteness maintenance benefit.
  • the term “substantially free of” or “substantially free from” means that the indicated material is present in an amount of no more than about 5 wt %, preferably no more than about 2%, and more preferably no more than about 1 wt % by weight of the composition.
  • the term “essentially free of” or “essentially free from” means that the indicated material is present in an amount of no more than about 0.1 wt % by weight of the composition, or preferably not present at an analytically detectible level in such composition. It may include compositions in which the indicated material is present only as an impurity of one or more of the materials deliberately added to such compositions.
  • cleaning composition As used herein the phrase “cleaning composition,” “detergent composition,” or “detergent or cleaning composition” are used interchangeably herein to refer to compositions and formulations designed for cleaning soiled material.
  • Such compositions include but are not limited to, laundry detergent compositions, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions, laundry prewash, laundry pretreat, laundry additives, spray products, dry cleaning agent or composition, laundry rinse additive, wash additive, post-rinse fabric treatment, ironing aid, dish washing compositions, hard surface cleaning compositions, unit dose formulation, delayed delivery formulation, detergent contained on or in a porous substrate or nonwoven sheet, and other suitable forms that may be apparent to one skilled in the art in view of the teachings herein.
  • the cleaning composition of the present invention is a liquid laundry or dish detergent composition, which is in a single phase or multiphase unit dose form as encapsulated by a single compartment or multi-compartment water-soluble pouch, e.g., formed by a water-soluble polymer such as polyvinyl alcohol (PVA) or copolymers thereof. More preferably, the cleaning composition of the present invention is a liquid laundry detergent composition designated for treating fabrics to achieve improved whiteness maintenance benefit.
  • PVA polyvinyl alcohol
  • laundry detergent means a liquid or solid composition, and includes, unless otherwise indicated, granular or powder-form all-purpose or “heavy-duty” washing agents, especially cleaning detergents as well as cleaning auxiliaries such as bleach additives or pretreat types.
  • the laundry detergent is a liquid laundry detergent composition.
  • the term “soiled material” refers non-specifically to any type of flexible material consisting of a network of natural or artificial fibers, including natural, artificial, and synthetic fibers, such as, but not limited to, cotton, linen, wool, polyester, nylon, silk, acrylic, and the like, as well as various blends and combinations.
  • Soiled material may further refer to any type of hard surface, including natural, artificial, or synthetic surfaces, such as, but not limited to, tile, granite, grout, glass, composite, vinyl, hardwood, metal, cooking surfaces, plastic, and the like, as well as blends and combinations.
  • water hardness or “hardness” means uncomplexed cations ion (i.e., Ca 2+ or Mg 2+ ) present in water that have the potential to precipitate under alkaline conditions, and thereby diminishing the surfactancy and cleaning capacity of surfactants.
  • high water hardness and “elevated water hardness” can be used interchangeably and are relative terms for the purposes of the present invention, and are intended to include, but not limited to, a hardness level containing at least 12 grams of calcium ion per gallon water (gpg, “American grain hardness” units).
  • the term “average molecular weight” typically refers to the weight average molecular weight of the polymer chains in a polymer composition, unless otherwise specified. Further, the “weight average molecular weight” or “average weight-average molecular weight” (M w ) of a polymer may be calculated using the equation:
  • N i is the number of molecules having a molecular weight M i .
  • the weight average molecular weight must be measured by the method described in the Test Methods section.
  • the “number average molecular weight” or “average number-average molecular weight” (M n ) of a polymer may be calculated using the equation:
  • N i is the number of molecules having a molecular weight M i .
  • the number average molecular weight can be determined in accordance with ASTM Method D6474-12 (2012).
  • the term “acid form equivalent” means that the proportion (compositional ratio) of the mass of each of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers of the sulfonate group-containing copolymer of the present invention, which is calculated as the proportion of the acid form of the each monomer. The same shall apply to calculation of the proportion of the mass of the structural unit derived from the monomer relative to the mass of the structural units derived from all monomers contained in the copolymer.
  • calculation of the proportion of the mass of sodium acrylate or a structural unit derived therefrom relative to the mass of all monomer components means calculation of the mass of acrylic acid, or the structural unit derived from acrylic acid, as an acid of sodium acrylate;
  • calculation of the proportion of the mass of sodium 3-allyloxy-2-hydroxypropanesulfonate or a structural unit derived therefrom relative to the mass of all monomer components means calculation of the mass of 3-allyloxy-2-hydroxypropanesulfonic acid, or the structural unit derived from 3-allyloxy-2-hydroxypropanesulfonic acid, as an acid of sodium 3-allyloxy-2-hydroxypropanesulfonate.
  • proportions of the masses of an amine salt group-containing monomer and an amine salt structure-containing structural unit may also be calculated as the proportions of the masses of an amine (amino group)-containing monomer and an amine structure (amino group structure)-containing structural unit, respectively.
  • the cleaning composition of the present invention contains at least one, and preferably two or more, alkoxylated polyalkyleneimines.
  • alkoxylated polyalkylenimines of the present invention may be represented as containing repeating units of formulae (1), (2), (3) and (4)
  • the alkoxylated polyalkyleneimines of the present invention can be considered as having a polyalkyleneimine core and at least one side chain bonded to a nitrogen atom in the polyalkyleneimine core.
  • the polyalkyleneimine core is formed by the repeating units of formulae (1), (2), (3) and (4) as described hereinabove, but minus the alkylenoxy units E.
  • the polyalkyleneimine core of the alkoxylated polyalkyleneimine of the present invention has an average number-average molecular weight (MW PEI ) ranging from about 100 to about 100,000 Daltons, preferably from about 100 to about 5000 Daltons, and more preferably from about 200 to about 1000 Daltons.
  • MW PEI average number-average molecular weight
  • the at least one side chain of the alkoxylated polyalkyleneimine which is formed by the alkylenoxy units E as described hereinabove, preferably has an inner polyethylene oxide block and an outer polypropylene oxide block, which can be represented by an empirical formula (I) of:
  • EO is ethylene oxide
  • b has a weight average value ranging from about 3 to about 60
  • PO is propylene oxide
  • c has a weight average value ranging from 0 to about 60
  • R is selected from the group consisting of hydrogen, C 1 -C 4 alkyls, and combinations thereof.
  • the cleaning composition may contain a first alkoxylated polyalkyleneimine, which has a polyalkyleneimine core with MW PEI ranging from about 100 to about 5000 Daltons, and preferably from about 200 to about 1000 Daltons; b ranges from about 5 to about 40, preferably from about 10 to about 30, more preferably from about 15 to 25; and wherein c is 0.
  • Said alkoxylated polyalkyleneimine can be represented by an empirical formula of (PEI) 200-1000 (EO) 15-25 .
  • the cleaning composition contains only such first alkoxylated polyalkyleneimine, i.e., without any other alkoxylated polyalkyleneimine.
  • the cleaning composition may contain a second alkoxylated polyalkyleneimine, which has a polyalkyleneimine core with MW PEI ranging from about 100 to about 5000 Daltons, and preferably from about 200 to about 1000 Daltons; b ranges from about 10 to about 50, preferably from about 15 to about 40, more preferably from about 20 to about 30; and wherein c ranges from about 1 to about 50, preferably from about 5 to about 40, and more preferably from about 10 to about 30.
  • Said first alkoxylated polyalkyleneimine can be represented by an empirical formula of (PEI) 200-1000 (EO) 20-30 (PO) 10-30 .
  • the cleaning composition contains only such second alkoxylated polyalkyleneimine, i.e., without the first alkoxylated polyalkyleneimine or any other alkoxylated polyalkyleneimine.
  • the cleaning composition contains both the first and second alkoxylated polyalkyleneimines
  • the weight ratio between such first and second alkoxylated polyalkyleneimines ranges from about 1:10 to about 10:1, preferably from about 1:5 to about 5:1, and more preferably from about 1:2 to about 2:1.
  • the cleaning composition of the present invention may comprise other alkoxylated polyalkyleneimines falling within the description provided hereinabove.
  • the alkoxylated polyalkyleneimine(s) may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20%, preferably from about 0.05% to about 15%, more preferably from about 0.1% to about 10%, and most preferably from about 0.5% to about 5%, by total weight of such cleaning composition.
  • the cleaning composition contains from about 0.1% to about 5% by weight of the first alkoxylated polyalkyleneimine, and from 0% to about 2% by weight of the second alkoxylated polyalkyleneimine.
  • the cleaning composition of the present invention further contains a sulfonate group-containing copolymer comprising: (i) a structural unit (a) derived from a sulfonate group-containing monomer (A); (ii) a structural unit (b) derived from a polyoxyalkylene monomer (B); and (iii) a structural unit (c) derived from a carboxyl group-containing monomer (C).
  • a sulfonate group-containing copolymer comprising: (i) a structural unit (a) derived from a sulfonate group-containing monomer (A); (ii) a structural unit (b) derived from a polyoxyalkylene monomer (B); and (iii) a structural unit (c) derived from a carboxyl group-containing monomer (C).
  • the sulfonate group-containing monomer (A) of the present invention which is also referred to as a sulfonate group-containing unsaturated monomer, is a monomer having a sulfonate group and a carbon-carbon double bond.
  • the sulfonate group is intended to include sulfonic acids and their salts. Examples of salts of sulfonic acids include, but are not particularly limited to: metal salts, ammonium salts, and organic amine salts of sulfonic acids.
  • Suitable metal salts preferably include, for example, alkali metal ions such as sodium ions or potassium ions; alkaline earth metal ions such as magnesium ions, calcium ions, strontium ions, or barium ions; aluminum ions; or ferric or ferrous ions.
  • Suitable organic amine salts preferably include organic amine groups such as, for example, an alkanolamine such as monoethanolamine, diethanolamine, or triethanolamine; an alkylamine such as monoethylamine, diethylamine, or triethylamine; or a polyamine such as ethylenediamine or triethylenediamine.
  • the salts of sulfonic acids are preferably potassium sulfonate, sodium sulfonate, ammonium sulfonate, or quaternary amines of sulfonic acids.
  • the sulfonate group-containing monomer (A) may contain one or more sulfonate groups.
  • the monomer (A) is represented by the following formula (III):
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents a direct bond, CH 2 , or CH 2 CH 2
  • X and Y each represent hydroxy or SO 3 M where M represents a hydrogen atom, Li, Na, or K, and at least one of X and Y is SO 3 M.
  • one of X and Y in the above formula (III) is a SO 3 M and the other is a hydroxy group. It is more preferred that X is a hydroxy group and Y is a SO 3 M. Further, M may represent an ammonium group or an organic amine group as mentioned hereinabove regarding the salts of sulfonic acid.
  • the term “direct bond” as used herein refers to a covalent bond directly connecting two adjacent atoms. Therefore, when R 4 is a direct bond, the carbon atom and the oxygen atom adjacent to R 4 are directly connected to each other by a covalent bond without any other atom in between.
  • Suitable examples of the sulfonate group-containing monomer (A) include, but are not limited to: compounds represented by the formula (III) as described hereinabove, 2-acrylamide-2-methylpropanesulfonic acid, styrene sulfonic acid, (meth)allylsulfonic acid, vinyl sulfonic acid, 2-(meth)allyloxyethylenesulfonic acid, and salts thereof.
  • compounds falling within the formula (III) as described hereinabove such as 3-(meth)allyloxy-2-hydroxypropanesulfonic acid and 3-(meth)allyloxy-1-hydroxypropanesulfonic acid as well as salts thereof are, are preferred examples of the sulfonate group-containing monomer (A) of the present invention because it has been observed that copolymers of the present invention having a structural unit derived from a compound represented by the formula (III) has improved anti-soil redeposition properties and increased preservation stability. In order to more successfully ensure the effect of the present invention enough, 3-allyloxy-2-hydroxypropanesulfonic acid and the sodium salt thereof are more preferred. Alternatively, 2-acrylamide-2-methylpropanesulfonic acid and the sodium salt there of are also preferred examples of the sulfonate group-container monomer (A) for the practice of the present invention.
  • the sulfonate group-containing copolymer contains preferably from about 1% to about 38% by mass in acid form equivalent of the structural unit (a) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from about 2% to about 30% by mass, still more preferably from about 3% to about 25% by mass, further more preferably from about 4% to about 20% by mass, particularly preferably from about 5% to about 18% by mass, and most preferably from about 5% to about 16% by mass.
  • the sulfonate group-containing copolymer preferably contains no more than about 1% by mass of the structural unit (a) derived from the sulfonate group-containing monomer (A) that has two or more sulfonate groups, in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
  • the structural unit (a) hereinabove is a copolymerized structural unit formed by radical polymerization of the sulfonate group-containing monomer represented by the formula (III), and the structural unit (a) itself can be represented by the following formula (IV):
  • the method for preparing the sulfonate group-containing monomer (A) is not particularly limited, and any suitable method can be used for the preparation.
  • any suitable method can be used for the preparation.
  • a method for adding a hydrogen sulfite to the glycidyl group of (meth)allylglycidyl ether is mentioned as an example of a simple method for the preparation.
  • the polyoxyalkylene monomer (B) of the present invention is characterized by having a structure represented by the following formula (II):
  • R 1 can be either a hydrogen atom or a methyl group
  • R 2 can be a direct bond, CH 2 , or CH 2 CH 2 .
  • R 1 and R 2 are respectively: (i) a hydrogen atom and CH 2 ; (ii) a methyl group and CH 2 ; or (iii) a methyl group and CH 2 CH 2 .
  • R 1 and R 2 are respectively a methyl group and CH 2 , or a methyl group and CH 2 CH 2 .
  • R 1 and R 2 are respectively a methyl group and CH 2 CH 2 .
  • Z represents one or more structural units, either the same or different from each other, and each of which is derived from a C 2 -C 20 alkylene oxide.
  • the number “n” represents the average number of alkylene oxide-derived structural repeating units Z, and it is from about 1 to about 200.
  • R 0 represents a hydrogen atom or a C 1 -C 30 organic group.
  • Examples of the organic group in R 0 include C 1 -C 30 alkyl, C 2 -C 30 alkenyl, and C 6 -C 30 aryl. These may further have a substituent group.
  • substituent group examples include heterocyclic rings, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, alkoxycarbonyl groups, aryloxycarbonyl groups, sulfamoyl groups, acyl groups, acyloxy groups, amide groups, carbamoyl groups, ureido groups, alkylsulfonyl groups, arylsulfonyl groups, amino groups, halogens, fluorohydrocarbon groups, cyano groups, nitro groups, hydroxy, mercapto, and silyl groups.
  • C 1 -C 30 organic group examples include methyl, ethyl, butyl, octyl, lauryl, cyclohexyl, phenyl, naphthyl, pyridyl, pyrimidyl, imidazolidyl, morpholyl, butenyl, pentenyl, hexenyl, heptenyl, methylcarbonyl, and ethylcarbonyl.
  • R 0 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • the structural unit Z derived from an alkylene oxide represents an oxyalkylene structural unit containing a ring-opening alkylene oxide.
  • the alkylene oxide is ethylene oxide (EO)
  • the structural unit Z is a —OCH 2 CH 2 — (oxyethylene) structural unit containing a ring-opening ethylene oxide.
  • the oxyalkylene structural unit Z is derived from an alkylene oxide having from about 2 to about 20 carbon atoms, preferably from about 2 to about 15 carbon atoms, more preferably from about 2 to about 10 carbon atoms, still more preferably from about 2 to about 5 carbon atoms, particularly preferably from about 2 to about 3 carbon atoms, and most preferably about 2 carbon atoms.
  • the structural unit Z derived from an alkylene oxide examples include structural units derived from compounds such as ethylene oxide (EO), propylene oxide (PO), isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide, styrene oxide, and 1,1-diphenyl ethylene oxide.
  • the structural unit Z is preferably derived from EO or PO (that is, oxyethylene or oxypropylene), and is more preferably oxyethylene.
  • Such a structural unit can contain a single species of oxyalkylene, or it may contain two or more species of oxyalkylenes.
  • a preferred polyoxyalkylene monomer (B) of the present invention mainly includes multiple repating structural units of oxyethylene (—O—CH 2 CH 2 —).
  • the phrase “mainly includes . . . oxyethylene” means that if two or more species of oxyalkylenes are present in the monomer, oxyethylene accounts for most of all oxyalkylenes (e.g., no less than about 50 mol %, or preferably no less than about 70 mol %, or more preferably no less than about 80 mol % or about 90 mol %, or most preferably about 100%, relative to 100 mol % of all oxyalkylaenes).
  • the proportion of the oxyethylene is not less than about 50 mol %, the hydrophilicity of the group formed by the oxyalkylene can be further improved.
  • n represents the average number of the alkylene oxide-derived structural repeating units Z, and it can range from about 1 to about 200, preferably from about 5 to about 100, more preferably from about 10 to about 80, and still more preferably from about 20 to about 80 or from about 25 to about 70, and most preferably from about 40 to about 60.
  • n is in the above preferred ranges, the compatibility with liquid detergents and the anti-redeposition properties of the resulting sulfonate group-containing copolymer tend to be improved.
  • the sulfonate group-containing copolymer of the present invention preferably contains from about 9% to about 76% by mass of the structural unit (b) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from about 10% to about 70% by mass, still more preferably from about 12% to about 65% by mass, further more preferably from about 15% to about 60% by mass, particularly preferably from about 18% to about 50% by mass or from about 20% to about 49% by mass, and most preferably from about 30% to about 45% by mass.
  • the weights of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers contained in all monomer components are calculated as the weights of their acids monomers.
  • the copolymer of the present invention is characterized by having the structural unit (b) derived from the polyoxyalkylene monomer (B) represented by the formula (II) hereinabove.
  • the structural unit (b) derived from the polyoxyalkylene monomer herein is a copolymerized structural unit formed by radical polymerization of the polyoxyalkylene monomer (B), and is represented by the following formula (V):
  • R 1 , R 2 , Z, n, and R 0 are all the same as defined hereinabove in formula (II).
  • the polyoxyalkylene monomer (B) of the present invention as described hereinabove may be produced by any suitable method.
  • it is produced by method (1) in which an alkylene oxide is added to an alcohol having a carbon-carbon double bond, such as allyl alcohol, methallyl alcohol, or isoprenol; alternatively, it is produced by method (2) in which a polyalkylene glycol is added to a halide having a carbon-carbon double bond, such as allyl chloride, methallyl chloride, isoprenyl chloride, or vinyl chloride.
  • an alkylene oxide is added to an alcohol having a carbon-carbon double bond by, for example, a) anionic polymerization in which a hydroxide of an alkali metal, a strong alkali such as an alkoxide, or alkylamine is used as a base catalyst, b) cationic polymerization in which a halide of a metal or metalloid, mineral acid, or acetic acid is used as a catalyst, or c) coordination polymerization in which a combination of an alkoxide of a metal such as aluminum, iron, or zinc, an alkaline-earth compound, and/or Lewis acid is used.
  • the alkylene oxide is added to the hydroxy group of the alcohol, and the length of the polyoxyalkylene chain so formed is determined by the charge ratio of the alkylene oxide and the alcohol added during the polymerization.
  • the polyoxyalkylene monomer (B) of the present invention as described hereinabove has good stability during polymerization. Accordingly, the anti-redeposition properties of the resulting copolymer are improved. Further, the polyoxyalkylene monomer (B) of the present invention as described hereinabove provides a copolymer with favorable temporal stability. Further, when processed into various products (compositions) for various applications, the copolymer of the present invention, i.e., containing the structural unit (b) derived from the polyoxyalkylene monomer (B) as described hereinabove, shows excellent stability, and whereby the resulting products preferably exhibit stable performance.
  • the carboxyl group-containing monomer (C) of the present invention which is also referred to as a carboxyl group-containing unsaturated monomer, is a monomer having a carboxyl group and a carbon-carbon double bond.
  • the carboxyl group is intended to include carboxylic acids and their salts.
  • the salts of the carboxylic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of carboxylic acids.
  • Preferred examples of metal ions in the metal salts include alkali metal ions such as sodium and potassium ions; alkaline earth metal ions such as magnesium, calcium, strontium, and barium ions; aluminum ions; and ferric or ferrous ions.
  • organic amine groups of the organic amine salts include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine; alkylamines such as monoethylamine, diethylamine, and triethylamine; polyamines such as ethylenediamine and triethylenediamine.
  • alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine
  • alkylamines such as monoethylamine, diethylamine, and triethylamine
  • polyamines such as ethylenediamine and triethylenediamine.
  • the salts of the carboxylic acids include lithium salts, potassium salts, sodium salts, ammonium salts, and quaternary amine salts.
  • carboxyl group-containing monomer (C) examples include (meth)acrylic acid, maleic acid and anhydride thereof, fumaric acid, itaconic acid, crotonic acid, 2-methylene glutaric acid, and salts thereof.
  • Particularly preferred carboxyl group-containing monomer (C) is (meth)acrylic acid, maleic acid or anhydride thereof, or a salt thereof, due to their high polymerizability and their ability to form a copolymer with high anti-redeposition properties.
  • Still more preferred carboxyl group-containing monomer (C) is acrylic acid, maleic acid or anhydride thereof, or a salt thereof.
  • Most preferred carboxyl group-containing monomer (C) is acrylic acid or its salt.
  • carboxyl group-containing monomer (C) is a compound that can form an acid anhydride, such as maleic acid
  • the monomer then may be in the acid anhydride form, such as maleic anhydride.
  • the carboxyl group-containing monomers described hereinabove may be used either alone or in combinations of two, three, four or more.
  • the sulfonate group-containing copolymer of the present invention contains from about 20% to about 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
  • the amount of the structural unit (c) is preferably from about 25% to about 85% by mass, more preferably from about 25% to about 80% by mass, still more preferably from about 25% to about 75% by mass, still more preferably from about 35% to about 73% by mass or from about 35% to about 70%, yet more preferably from about 35% to about 55%, and most preferably from about 40% to about 55% by mass.
  • the sulfonate group-containing polymer of the present invention having a proportion of the structural unit (c) of from about 20% to about 90% by mass has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition.
  • the proportion of the structural unit (c) is most preferably from about 40% to about 55% by mass.
  • the proportion of the mass of the carboxyl group-containing monomer that corresponds to a salt of an acid is calculated as the mass of the acid.
  • the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
  • the sulfonate group-containing copolymer of the present invention contains preferably from about 1% to about 100% by mass, more preferably from about 20% to about 100% by mass, still more preferably from about 50% to about 100% by mass, particularly preferably from about 80% to about 100% by mass, and most preferably 100% by mass, in acid form equivalent of a structural unit derived from a monocarboxylic acid such as (meth)acrylic acid in 100% by mass of the total of the structural unit (c) derived from the carboxyl group-containing monomer (C).
  • a monocarboxylic acid such as (meth)acrylic acid
  • the copolymer of the present invention contains the structural unit (c) derived from the carboxyl group-containing monomer (C).
  • the structural unit (c) is a copolymerized structural unit formed by radical polymerization of the carboxyl group-containing monomer (C).
  • the corresponding structural unit (c) is represented by —CH 2 —CH(COOH)— or —CH 2 —CH(COONa)—.
  • the sulfonate group-containing copolymer of the present invention may contain an additional structural unit (e) derived from a monomer (E) other than the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), and the carboxyl group-containing monomer (C).
  • the monomer (E) is not particularly limited, provided that it is copolymerizable with the monomers (A), (B), and (C).
  • suitable monomers (E) include, but are not limited to: hydroxy group-containing alkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and ⁇ -(hydroxymethyl)ethyl (meth)acrylate; alkyl (meth)acrylates prepared by esterification of (meth)acrylic acid with a C 1 -C 18 alcohol, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate; amino group-containing acrylates such as dimethylaminoeth
  • the structural unit (e) derived from the monomer (E) herein is a copolymerized structural unit formed by radical polymerization of the monomer (E).
  • the structural unit (e) is a structural unit represented by —CH 2 —CH(COOCH 3 )—.
  • the sulfonate group-containing copolymer may contain only one structure unit (e) or two or more structure units (e) as described hereinabove.
  • the copolymer of the present invention contains from 0% to about 30% by mass, more preferably from 0% to about 20% by mass, still more preferably from 0% to about 10% by mass, and most preferably 0% by mass of the structural unit (e) derived from the monomer (E) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
  • two or more of the structural units (a), (b), (c), and optionally (e) satisfy the above-described proportions (by mass) in the copolymer of the present invention. That is, the copolymer of the present invention containing a combination of the structural units (a), (b), (c) and optionally (e) with the above-described preferred proportions (by mass) is also a preferred embodiment of the copolymer of the present invention. The total of the proportions of the combination is 100% by mass.
  • the sulfonate group-containing copolymer as described hereinabove preferably contains from about 1% to about 38%, more preferably from about 4% to about 20% and most preferably from about 5% to about 16%, by mass in an acid form equivalent of the structural unit (a) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer. It may also contain from about 9% to about 76%, preferably from about 20% to about 49% and more preferably from about 30% to about 45%, by mass of the structural unit (b) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer.
  • the number “n” in formula (II), which represents the average number of repeating oxyalkylene unit Z, is preferably from about 5 to about 100, more preferably form about 10 to about 80, still more preferably from about 25 to 70, and most preferably from about 40 to about 60.
  • the sulfonate group-containing copolymer may also contain from about 20% to about 90%, preferably from about 25% to about 75% and more preferably from about 35% to about 55%, by mass in acid form equivalent of the structural unit (c) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer.
  • the sulfonate group-containing copolymer contains:
  • the sulfonate group-containing copolymer is characterized by a parameter of P ⁇ MW S ⁇ n that ranges from about 950,000 to about 800,000,000, in which:
  • the product of P ⁇ Mw ⁇ n is preferably not less than about 1,000,000, more preferably not less than about 1,500,000, and most preferably not less than about 2,000,000.
  • the product of P ⁇ Mw ⁇ n is preferably not more than about 500,000,000, more preferably not more than about 100,000,000. For example, it may preferably range from 1,000,000 to 50,000,000.
  • sulfonate group-containing copolymers characterized by such a parameter have improved adsorption for hydrophilic soil, which in turn leads to further improved anti-soil redeposition efficacy, especially against hydrophilic soil under wash conditions marked by higher water hardness (i.e., higher water hardness tolerance).
  • Cleaning compositions formulated with such sulfonate group-containing copolymers produce a low amount of salt precipitates and have a high washing effect even when used in an area where there is hard water with high concentrations of calcium ions and magnesium ions (for example, not less than 100 mg/L). The effect is particularly remarkable when the cleaning compositions contain an anionic surfactant such as LAS. Further, such cleaning compositions exhibit improved fabric whiteness maintenance benefit and/or satisfactory phase stability when in a liquid form.
  • the weight average molecular weight (MW S ) of the sulfonate group-containing copolymer is from about 20,000 to about 200,000, more preferably from about 22,000 to about 150,000, yet more preferably from about 25,000 to about 100,000, still more preferably from about 30,000 to about 80,000, and most preferably from about 30,000 to about 75,000.
  • MW S weight average molecular weight
  • the sulfonate group-containing polymer of the present invention with the specified weight average molecular weight MW S i.e., from about 20,000 to about 200,000 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high water hardness conditions.
  • the weight average molecular weight MW S of the copolymer is larger than about 200,000, the copolymer may become highly viscous and difficult to handle. On the other hand, if MW S is smaller than about 20,000, the anti-redeposition properties of the copolymer significantly deteriorate, resulting in poorer performance as a detergent builder.
  • the weight average molecular weight MW S of the sulfonate group-containing copolymer of the present invention is determined by the specific method used in the examples as described hereinafter.
  • the ratio by mass (P) of the structural unit (b) to the structural unit (a) in the sulfonate group-containing copolymer is preferably from about 1.2 to about 20, more preferably from about 1.3 to about 20, yet more preferably from about 1.5 to about 15, still more preferably from about 2 to about 10, and most preferably from about 2.5 to about 5.
  • the masses of the structural unit (a) and the structural unit (b) are calculated as the masses of the acid form equivalents of them, i.e., P is determined as a mass ratio of the acid form equivalent of the structural unit (b) to the acid form equivalent of the structural unit (a).
  • the ratio by mass of the structural unit (a) to the structural unit (b) to the structural unit (c) can also be expressed in the form of the proporationso of the structural units (a), (b), and (c), for example, preferably (1 to 38)/(9 to 76)/(20 to 90), more preferably (2 to 30)/(10 to 70)/(25 to 85), still more preferably (3 to 25)/(12 to 65)/(30 to 80), further more preferably (4 to 20)/(15 to 60)/(35 to 75), particularly preferably (5 to 18)/(18 to 50)/(40 to 73), still more preferably (5 to 16)/(20 to 49)/(43 to 70), and most preferably (5 to 16)/(30-45)/(40-55).
  • the total of the proportions of the structural units (a), (b), and (c) is 100% by mass.
  • the specific ratio by mass P of the structural unit (b) to the structural unit (a), i.e., from about 1.2 to about 20, contributes to the improved anti-soil redeposition properties of the copolymer of the present invention, particularly its improved anti-redeposition properties against hydrophilic soil under high water hardness conditions. Further, when the ratio by mass P is from about 3 to about 10, it is believed to improve the compatibility of the copolymer with liquid detergents as well as its anti-redeposition properties.
  • the sulfonate group-containing copolymer according to the present invention is characterized by a specific ratio by mass P of the structural unit (b) to the structural unit (a) that ranges from about 1.2 to about 20 and a specific weight average molecular weight MW S of the copolymer that ranges from about 20,000 to about 200,000, while the product of P ⁇ MW S is from about 25,000 to about 2,000,000.
  • An improved effect is observed between the ratio by mass P of the structural unit (b) to the structural unit (a) and the weight average molecular weight MW S of the copolymer, when the product of the ratio by mass P multiplied by the weight average molecular weight MW S is in a specific range of from about 25,000 to about 2,000,000.
  • the resulting sulfonate group-containing copolymer exhibits significantly improved anti-soil redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high water hardness conditions.
  • product of the ratio by mass P multiplied by the weight average molecular weight MW S may lead to unexpected improvement in the copolymer's compatibility with liquid detergents as well as the anti-redeposition properties.
  • the product of the ratio by mass P multiplied by the weight average molecular weight MW S ranges from about 50,000 to about 1,500,000, more preferably from about 70,000 to about 1,200,000, still more preferably from about 100,000 to about 1,000,000, yet still more preferably from about 120,000 to about 1,000,000, and most preferably from about 130,000 to about 1,200,000.
  • the number n of alkylene oxide-derived structural repeating units in the formula (II) of the structural unit (b) in the sulfonate group-containing copolymer also contributes to improvement of the anti-redeposition properties and liquid detergent compatibility of the copolymer, especially when it is provided within a specific range of from about 5 to about 100, preferably from about 10 to about 80, and more preferably from about 40 to about 60.
  • the sulfonate group-containing copolymers of the present invention as described hereinabove have improved anti-soil redeposition ability. Given their enhanced anti-soil redeposition properties, the sulfonate group-containing copolymers of the present invention are particularly useful for formulating laundry detergent compositions with improved whiteness maintenance performance and cleaning performance. Further, the sulfonate group-containing copolymers of the present invention exhibit satisfactory liquid detergent compatibility, which renders them useful for formulating liquid laundry detergent products with improved phase stability.
  • the cleaning composition of the present invention may contain one or more of the above-described sulfonate group-containing copolymers.
  • the sulfonate group-containing copolymer(s) may be present in such cleaning composition in an amount ranging from about 0.01% to about 20%, preferably from about 0.05% to about 15%, more preferably from about 0.1% to about 10%, and most preferably from about 0.5% to about 5%, by total weight of such cleaning composition.
  • the method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, and any known polymerization method or a modified method based thereon can be readily used.
  • the production method preferably involves copolymerizing monomer components including a sulfonate group-containing monomer (A), a polyoxyalkylene monomer (B), a carboxyl group-containing monomer (C), and optionally a monomer (E), which are the same as those described hereinabove.
  • monomer components including a sulfonate group-containing monomer (A), a polyoxyalkylene monomer (B), a carboxyl group-containing monomer (C), and optionally a monomer (E), which are the same as those described hereinabove.
  • the proportion of the sulfonate group-containing monomer (A) is, but not particularly limited to, preferably from about 1% to about 38% by mass, more preferably from about 2% to about 30% by mass, still more preferably from about 3% to about 25% by mass, further more preferably from about 4% to about 20% by mass, particularly preferably from about 5% to about 18% by mass, and most preferably from about 5% to about 16% by mass in acid form equivalent in 100% by mass of all the monomers.
  • the proportion of the polyoxyalkylene monomer (B) is, but not particularly limited to, preferably from about 9% to about 76% by mass, more preferably about 10% to about 70% by mass, still more preferably from about 12% to about 65% by mass, further preferably from about 15% to about 60% by mass, particularly preferably from about 18% to about 50% by mass, yet more preferably from about 20% to about 49%, and most preferably from about 30% to about 45% by mass in acid form equivalent in 100% by mass of all the monomers.
  • the proportion of the carboxyl group-containing monomer (C) is preferably from about 20% to about 90% by mass, more preferably from about 25% to about 85% by mass, still more preferably from about 25% to about 80% by mass, further more preferably from about 25% to about 75% by mass, particularly preferably from 35% to 73% by mass, yet more preferably from about 35% to about 70%, still more preferably from about 35% to about 55%, and most preferably from about 40% to about 55% by mass in acid form equivalent in 100% by mass of all the monomers.
  • the proportion of the monomer (E) is preferably from 0% to about 30% by mass, more preferably from 0% to about 20% by mass, still more preferably from 0% to about 10% by mass, and most preferably 0% by mass in 100% by mass of all the monomers.
  • the monomer components preferably contain two or more of the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), the carboxyl group-containing monomer (C), and optionally the monomer (E) in the above preferred proportions. That is, combination of the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), the carboxyl group-containing monomer (C), and optionally the monomer (E) in the above preferred proportions in all the monomers is also a preferred embodiment of the method of producing the sulfonate group-containing copolymer of the present invention.
  • the monomer components are preferably copolymerized using a polymerization initiator.
  • the amount of the polymerization initiator to be used in the polymerization reaction may be appropriately controlled depending on the amount of the monomer components to be used, and is not particularly limited.
  • a chain transfer agent for reducing the amount of the initiator, which can be, e.g., heavy metal ions
  • a catalyst for decomposing a polymerization initiator
  • a reducing compound e.g., organic compounds such as ferrocene or metal naphtenates, or inorganic reducing compounds
  • the combination of polymerization initiator, chain-transfer agent, and reaction accelerator is not particularly limited, and these may be selected from any of those described hereinabove.
  • a most preferred combination of the initiator and the chain transfer agent is the combination of one or more of persulfates and one or more of sulfites.
  • the copolymerization may be carried out by any method, such as the commonly used methods of solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization. Solution polymerization is particularly preferred. The copolymerization may be carried out either continuously or in batches. Known solvents may be used in such copolymerization.
  • a suitable alkali component e.g., alkali metal hydroxides, alkaline earth metal hydroxides, and organic amines
  • the degree of neutralization (final degree of neutralization) of the resulting sulfonate group-containing copolymer may be set within a predetermined range.
  • the final degree of neutralization is not particularly limited. This is because the final degree of neutralization of the copolymer varies depending on intended use. Accordingly, the final degree of neutralization may be set to an extremely wide range of from about 1 to about 100 mol %.
  • a copolymer composition formed by the copolymerization process described hereinabove essentially contains the sulfonate group-containing copolymer of the present invention.
  • the copolymer composition may contain unreacted monomers, unreacted or decomposed polymerization initiator, homopolymers formed by one out of three of the monomers described hereinabove, binary copolymers formed by two out of three of the monomers described hereinabove, a hydrogen sulfite adduct (which is an impurity derived from the carboxyl group-containing monomer which remains unpolymerized although the above hydrogen sulfite and/or the compound capable of producing a hydrogen sulfite as a chain transfer agent is added thereto), and the like. It is preferred that the copolymer composition so formed contains little or no unreacted monomers or homopolymers.
  • the present invention provides a cleaning composition, preferably a laundry detergent composition and more preferably a liquid laundry detergent composition, that contains the alkoxylated polyalkyleneimine(s) and the sulfonate group-containing copolymer as described hereinabove and optionally other adjunct ingredients.
  • the cleaning composition of the present invention can be in any solid or liquid product form, and it can be a laundry detergent composition, a hard surface cleaning composition, a hand dishwashing composition, and an automatic dishwashing composition.
  • the cleaning composition is preferably a liquid, and even more preferably it is in a single phase or multiphase unit dose form, i.e., the liquid cleaning composition is contained in a single compartment or multi-compartment water-soluble pouch.
  • the cleaning composition is in a single phase or multiphase unit dose form containing either a liquid automatic dishwashing composition or a liquid laundry detergent composition encapsulated in a single compartment or multi-compartment water-soluble pouch, which is formed, for example, by a water-soluble polymer such as polyvinvyl alcohol (PVA) and/or polyvinylpyrrolidone (PVP).
  • a water-soluble polymer such as polyvinvyl alcohol (PVA) and/or polyvinylpyrrolidone (PVP).
  • the cleaning composition When the cleaning composition is in the form of a liquid laundry detergent composition, it may further comprise one or more organic solvents, which can be present in an amount ranging from about 1 wt % to about 80 wt %, preferably from about 10 wt % to about 60 wt %, more preferably from about 15 wt % to about 50 wt %, and most preferably from about 20 wt % to about 45 wt %, by total weight of the composition.
  • one or more organic solvents which can be present in an amount ranging from about 1 wt % to about 80 wt %, preferably from about 10 wt % to about 60 wt %, more preferably from about 15 wt % to about 50 wt %, and most preferably from about 20 wt % to about 45 wt %, by total weight of the composition.
  • the solvent system of the present invention is particularly designed to stabilize the alkoxylated polyalkyleneimine(s) and the sulfonate group-containing copolymer of the present invention and minimize the risk of phase separation.
  • the solvent system of the present invention is composed mostly of diols, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, pentanediols, and combinations thereof.
  • the diols are present in the liquid laundry detergent composition of the present invention in a total amount ranging from about 2 wt % to about 50 wt %.
  • the composition contains ethylene, diethylene glycol, and/or propylene glycol in a total amount ranging from about 5 wt % to about 40 wt %. More preferably, the composition contains propylene glycol in the amount ranging from about 15 wt % to about 35 wt %.
  • organic solvents may also be present, which include, but are not limited to: methanol, ethanol, glycerin, sodium cumene sulfonate, potassium cumene sulfonate, ammonium cumene sulfonate, sodium toluene sulfonate, potassium toluene sulfonate, sodium xylene sulfonate, potassium xylene sulfonate, ammonium xylene sulfonate, or mixtures thereof.
  • Other lower alcohols such C 1 -C 4 alkanolamines, e.g., monoethanolamine and/or triethanolamine, may also be used.
  • the liquid laundry detergent compositions of the present invention also contain from about 5 wt % to about 20 wt %, preferably from 6 wt % to 18 wt %, more preferably from 8 wt % to 16 wt % of glycerin in addition to the diol(s).
  • the liquid laundry detergent composition of the present invention preferably contains water in combination with the above-mentioned organic solvent(s) as carrier(s).
  • water is present in the liquid laundry detergent compositions of the present invention in the amount ranging from about 20 wt % to about 70 wt %, preferably from about 25 wt % to 60 wt %, and more preferably from about 30 wt % to about 50 wt %.
  • water is absent and the composition is anhydrous.
  • Highly preferred compositions afforded by the present invention are clear, isotropic liquids.
  • the cleaning composition of the present invention contains one or more surfactants, which may be present in amounts ranging from about 1% to about 80%, more preferably from about 1% to about 50%, and more preferably from about 5% to about 30% by total weight of the compositions.
  • the specific forms of the surfactants and the adjunct cleaning additives are not particularly limited, and are appropriately selected based on common knowledge in the field of detergents.
  • the surfactants are selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.
  • Anionic surfactants are preferred.
  • Useful anionic surfactants can themselves be of several different types.
  • non-soap synthetic anionic surfactants are particularly suitable for use herein, which include the water-soluble salts, preferably the alkali metal, and ammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group (included in the term “alkyl” is the alkyl portion of acyl groups) containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • Examples of this group of synthetic anionic surfactants include, but are not limited to: a) the sodium, potassium and ammonium alkyl sulfates with either linear or branched carbon chains, especially those obtained by sulfating the higher alcohols (C 10 -C 20 carbon atoms), such as those produced by reducing the glycerides of tallow or coconut oil; b) the sodium, potassium and ammonium alkylethoxy sulfates with either linear or branched carbon chains, particularly those in which the alkyl group contains from about 10 to about 20, preferably from about 12 to about 18 carbon atoms, and wherein the ethoxylated chain has, in average, a degree of ethoxylation ranging from about 0.1 to about 5, preferably from about 0.3 to about 4, and more preferably from about 0.5 to about 3; c) the sodium and potassium alkyl benzene sulfonates in which the alkyl group contains from about 10 to about 20 carbon atoms in either a linear or
  • the anionic surfactants can be provided in the cleaning compositions of the present invention at levels ranging from about 1% to about 80%, more preferably from about 1% to about 50%, more preferably from about 5% to about 30%, and most preferably from 10% to 25%, by total weight of the compositions.
  • the cleaning composition of the present invention is a liquid laundry or dish detergent composition containing from about 1 wt % to about 50 wt % of one or more anionic surfactants selected from the group consisting of C 10 -C 20 linear alkyl benzene sulphonates, C 10 -C 20 linear or branched alkylethoxy sulfates having an average degree of ethoxylation ranging from 1 to 5, C 10 -C 20 linear or branched alkyl sulfates, C 10 -C 20 linear or branched alkyl ester sulfates, C 10 -C 20 linear or branched alkyl sulphonates, C 10 -C 20 linear or branched alkyl ester sulphonates, C 10 -C 20 linear or branched alkyl phosphates, C 10 -C 20 linear or branched alkyl phosphonates, C 10 -C 20 linear or branched alkyl carboxylates, and
  • said one or more anionic surfactants are selected from the group consisting of C 10 -C 20 linear alkyl benzene sulphonates, C 10 -C 20 linear or branched alkylethoxy sulfates having an average degree of ethoxylation ranging from about 1 to about 5, methyl ester sulfonates with a C 10 -C 20 linear or branched alkyl group, and mixtures thereof, and are present in an amount ranging from about 5 wt % to about 30 wt % of the liquid laundry or dish detergent composition.
  • Water-soluble salts of the higher fatty acids are also useful anionic surfactants in the cleaning compositions of the present invention.
  • Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids.
  • Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
  • the cleaning compositions of the present invention preferably contains soaps at a relatively low level, e.g., no more than about 3 wt %, more preferably not more than about 2 wt % or 1 wt %, and most preferably said cleaning composition is essentially free of soaps.
  • Nonionic surfactants can also be included into the surfactant systems of the present invention, which include those of the formula R 1 (OC 2 H 4 ) n OH, wherein R 1 is a C 8 -C 18 alkyl group or alkyl phenyl group, and n is from about 1 to about 80. Particularly preferred are C 8 -C 18 alkyl alkoxylated alcohols having an average degree of alkoxylation from about 1 to about 20.
  • the nonionic surfactants can be provided in the cleaning compositions at levels ranging from about 0.05 wt % to about 20 wt %, preferably from about 0.1 wt % to about 10 wt %, and most preferably from about 1 wt % to about 5 wt %.
  • the cleaning compositions contains nonionic surfactants at a relatively low level, e.g., no more than about 3 wt %, more preferably not more than about 2 wt % or 1 wt %, and most preferably said cleaning composition is essentially free of nonionic surfactants.
  • surfactants useful herein include amphoteric surfactants, zwitterionic surfactants and cationic surfactants. Such surfactants are well known for use in laundry or dish detergents and are typically present at levels from about 0.2 wt %, 0.5 wt % or 1 wt % to about 10 wt %, 20 wt % or 30 wt %.
  • the cleaning composition is a liquid dish detergent composition containing from about 0.5 wt % to about 20 wt % of one or more amphoteric and/or zwitterionic surfactants.
  • Preferred amphoteric surfactants are selected from the group consisting of amine oxide surfactants, such as, for example, alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide.
  • Amine oxide may have a linear or mid-branched alkyl moiety.
  • Typical linear amine oxides are characterized by a formula R 1 —N(R 2 )(R 3 )—O, wherein R 1 is a C 8-18 alkyl, and wherein R 2 and R 3 are independently selected from the group consisting of C 1-3 alkyls and C 1-3 hydroxyalkyls, such as methyl, ethyl, propyl, isopropyl, 2-hydroxethyl, 2-hydroxypropyl and 3-hydroxypropyl.
  • “mid-branched” means that the amine oxide has one alkyl moiety having n1 carbon atoms with one alkyl branch on the alkyl moiety having n2 carbon atoms.
  • the alkyl branch is located on the ⁇ carbon from the nitrogen on the alkyl moiety.
  • This type of branching for the amine oxide is also known in the art as an internal amine oxide.
  • the total sum of n1 and n2 is from about 10 to about 24 carbon atoms, preferably from about 12 to about 20, and more preferably from about 10 to about 16.
  • the number of carbon atoms for the one alkyl moiety (n1) should be approximately the same number of carbon atoms as the one alkyl branch (n2) such that the one alkyl moiety and the one alkyl branch are symmetric.
  • symmetric means that
  • Particularly preferred amphoteric surfactants are C 10 -C 14 alkyl dimethyl amine oxides.
  • Preferred zwitterionic surfactants are betaine surfactants, such as, for example, alkyl betaines, alkylamidobetaines, amidazoliniumbetaines, sulfobetaines (also referred to as sultaines) as well as phosphobetaines.
  • a particularly preferred betaine is cocoamidopropylbetaine.
  • the liquid detergent composition as described herein above may also contain an external structurant, which may be present in an amount ranging from about 0.001% to about 1.0%, preferably from about 0.05% to about 0.5%, more preferably from about 0.1% to about 0.3% by total weight of the composition.
  • Suitable external structurants include those described, for example, in US2007/169741 and US2005/0203213.
  • a particularly preferred external structurant for the practice of the present invention is hydrogenated castor oil, which is also referred to as trihydroxylstearin and is commercially available under the tradename Thixin®.
  • the liquid detergent composition further contains from about 0.1 wt % to about 5 wt %, preferably from about 0.5 wt % to about 3 wt %, more preferably from about 1 wt % to about 1.5 wt %, of one or more fatty acids and/or alkali salts thereof.
  • Suitable fatty acids and/or salts that can be used in the present invention include C 10 -C 22 fatty acids or alkali salts thereof.
  • alkali salts include monovalent or divalent alkali metal salts like sodium, potassium, lithium and/or magnesium salts as well as the ammonium and/or alkylammonium salts of fatty acids, preferably the sodium salt.
  • the balance of the cleaning composition of the present invention typically contains from about 5 wt % to about 70 wt %, or about 10 wt % to about 60 wt % adjunct ingredients.
  • Suitable adjunct ingredients for laundry detergent products include: builders, chelating agents, dye transfer inhibiting agents, dispersants, rheology modifiers, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, photobleaches, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, hueing agents, anti-microbial agents, free perfume oils, and/or pigments.
  • suitable examples of such other adjunct ingredients and levels of use are found in U.S. Pat. Nos. 5,576,282, 6,306,812, and 6,326,348. The precise nature of these adjunct ingredients and the levels thereof in the liquid laundry detergent composition will depend on factors like the specific type of the composition and the nature of the cleaning operation for which it is to be used.
  • Suitable adjunct ingredients for dish detergent products include: builders, chelants, conditioning polymers, cleaning polymers, surface modifying polymers, soil flocculating polymers, structurants, emmolients, humectants, skin rejuvenating actives, enzymes, carboxylic acids, scrubbing particles, bleach and bleach activators, perfumes, malodor control agents, pigments, dyes, opacifiers, beads, pearlescent particles, microcapsules, organic and inorganic cations such as alkaline earth metals such as Ca/Mg-ions and diamines, antibacterial agents, preservatives and pH adjusters and buffering means.
  • the cleaning composition of the present invention is provided in a powder form, it may also be especially preferred for the powder to comprise low levels, or even be essentially free, of builder.
  • the term “essentially free” means that the composition “comprises no deliberately added” amount of that ingredient.
  • the cleaning composition of the present invention comprises no builder.
  • the cleaning compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator. Such process typically involves mixing the essential and optional ingredients in any desired order to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like, thereby providing cleaning compositions containing ingredients in the requisite concentrations.
  • the cleaning composition herein is a liquid composition contained within a water-soluble film thereby forming a water-soluble pouch.
  • the pouch may be of such a size that it conveniently contains either a unit dose amount of the composition herein, suitable for the required operation, for example one wash, or only a partial dose, to allow a user greater flexibility to vary the amount used, e.g., depending on the size or degree of soiling of the wash load.
  • the water-soluble film of the pouch preferably comprises a polymer.
  • the film can be obtained from methods known in the art, e.g., by casting, blow molding, extrusion molding, injection molding of the polymer.
  • Non-limiting examples of the polymer for making the water-soluble film include: polyvinyl alcohols (PVAs), polyvinyl pyrrolidone, polyalkylene oxides, (modified) cellulose, (modified) cellulose-ethers or -esters or -amides, polycarboxylic acids and salts including polyacrylates, copolymers of maleic/acrylic acids, polyaminoacids or peptides, polyamides including polyacrylamide, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
  • PVAs polyvinyl alcohols
  • polyvinyl pyrrolidone polyalkylene oxides
  • the water-soluble film comprises a polymer selected from the group consisting of polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, polyvinyl alcohols, hydroxypropyl methyl cellulose (HPMC), and a combination thereof.
  • the water-soluble film comprises polyvinyl alcohol, e.g., M8639 available from MonoSol.
  • the pouch herein may comprise a single compartment or multiple compartments, preferably comprise multiple compartments, e.g., two compartments or three compartments.
  • one or more of the multiple compartments comprise the aforementioned anti-microbial laundry detergent composition.
  • the pouch comprises multiple films which form the multiple compartments, i.e., the inner volume of the multiple films is divided into the multiple compartments.
  • the pouch of the present invention can be made by any suitable processes known in the art.
  • the present invention includes methods of using the cleaning compositions described hereinabove for cleaning soiled material.
  • the cleaning compositions of the present invention are suited for use in laundry pretreatment applications, laundry cleaning applications, and home care applications.
  • Such methods include, but are not limited to, the steps of contacting the cleaning compositions in neat form or diluted in wash liquor, with at least a portion of a soiled material and then optionally rinsing the soiled material.
  • the soiled material may be subjected to a washing step prior to the optional rinsing step.
  • the method may include contacting the detergent or cleaning compositions described herein with soiled fabric. Following pretreatment, the soiled fabric may be laundered in a washing machine or otherwise rinsed.
  • Machine laundry methods may comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry cleaning composition in accord with the invention.
  • An “effective amount” of the cleaning composition means from about 20 g to about 300 g of product dissolved or dispersed in a wash solution of volume from about 5 L to about 65 L.
  • the water temperatures may range from about 5° C. to about 100° C.
  • the water to soiled material (e.g., fabric) ratio may be from about 1:1 to about 30:1.
  • the compositions may be employed at concentrations of from about 500 ppm to about 15,000 ppm in solution.
  • usage levels may also vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water, and the type of washing machine (e.g., top-loading, front-loading, top-loading, vertical-axis Japanese-type automatic washing machine).
  • the cleaning compositions herein may be used for laundering of fabrics at reduced wash temperatures.
  • These methods of laundering fabric comprise the steps of delivering a laundry detergent composition to water to form a wash liquor and adding a laundering fabric to said wash liquor, wherein the wash liquor has a temperature of from about 0° C. to about 20° C., or from about 0° C. to about 15° C., or from about 0° C. to about 9° C.
  • the fabric may be contacted to the water prior to, or after, or simultaneous with, contacting the laundry detergent composition with water.
  • nonwoven substrate can comprise any conventionally fashioned nonwoven sheet or web having suitable basis weight, caliper (thickness), absorbency, and strength characteristics.
  • suitable commercially available nonwoven substrates include those marketed under the tradenames SONTARA® by DuPont and POLYWEB® by James River Corp.
  • Hand washing/soak methods and combined handwashing with semi-automatic washing machines, are also included.
  • the weight average molecular weight of the sulfonate group-containing copolymers are determined by the technique of Gel Permeation Chromatography (GPC) under the following conditions.
  • a mixture of 1.0 g of a sulfonate group-containing polymer composition of the present invention and 1.0 g of water is left in an oven heated to 130° C. in nitrogen atmosphere for one hour so as to be dried.
  • the solids content (%) and volatile component content (%) are calculated from the weight difference before and after the drying step.
  • whiteness maintenance is intended to measure the ability of the laundry detergent to prevent loss in whiteness (i.e., whiteness maintenance) of fabrics.
  • Whiteness maintenance of fabrics is evaluated by image analysis after single or multi-cycle washes.
  • “whiteness” can be reported by its whiteness index, which is conveniently converted from CIELAB (an internationally recognized color scale system developed by CIE (“Commission Internationale de I'Eclairage”)).
  • CIE color scale for whiteness is the most commonly used whiteness index and refers to measurements made under D65 illumination, which is the standard representation of outdoor daylight.
  • whiteness is a single number index referencing the relative degree of whiteness (of near-white materials under specific lighting conditions), and the higher the number, the whiter the material.
  • the CIE whiteness index (L*) would be 100.
  • ⁇ W Average Whiteness of Treated Fabrics ⁇ Average Whiteness of Initial Fabrics
  • S Copolymers exemplary sulfonate group-containing copolymers that can be used for practicing the present invention:
  • Whiteness maintenance performance of an inventive polymer blend containing a PEI polymer and a sulfonate group-containing polymer according to the present invention is compared with that of a PEI polymer alone and with that of a sulfonate group-containing polymer alone.
  • ⁇ WI Whiteness Index
  • liquid laundry detergent compositions are prepared by traditional means known to those of ordinary skill in the art by mixing the following ingredients.
  • Q.S. Q.S. 1 AES can be AE 1.5 S, AE 2 S, and/or AE 3 S, in the amount ranging from 0-20%.
  • 2 LAS can be provided in the amount ranging from 0-20%.
  • 3 AE is a C12-14 alcohol ethoxylate, with an average degree of ethoxylation of 7-9, supplied by Huntsman, Salt Lake City, Utah, USA. It can be provided in the amount ranging from 0-10%.
  • 4 Proteases may be supplied by Genencor International, Palo Alto, California, USA (e.g., Purafect Prime ®, Excellase ®) or by Novozymes, Bagsvaerd, Denmark (e.g. Liquanase ®, Coronase ®).
  • Random graft copolymer is a polyvinyl acetate grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains.
  • the molecular weight of the polyethylene oxide backbone is about 6000 and the weight ratio of the polyethylene oxide to polyvinyl acetate is about 40 to 60 and no more than 1 grafting point per 50 ethylene oxide units, available from BASF as Sokalan PG101 ®.
  • Suitable Fluorescent Whitening Agents are for example, Tinopal ® AMS, Tinopal ® CBS-X, Sulphonated zinc phthalocyanine Ciba Specialty Chemicals, Basel, Switzerland. It can be provided in the amount ranging from 0-5%.
  • Suitable preservatives include methylisothiazolinone (MIT) or benzisothiazolinone (BIT), which can be provided in the amount ranging from 0-1%.
  • liquid detergent compositions are prepared and encapsulated in a multi-compartment pouch formed by a polyvinyl alcohol-film.

Abstract

A cleaning composition containing an alkoxylated polyalkyleneimine and a sulfonate group-containing copolymer is provided, which exhibits significant improved whiteness maintenance benefit when used to treat fabrics.

Description

    FIELD OF THE INVENTION
  • The present invention is in the field of cleaning compositions.
  • BACKGROUND OF THE INVENTION
  • An important purpose of detergents and/or cleaning compositions is to remove soils and stains from fabrics to achieve consumer perceivable cleaning benefit. The ability of a particular detergent or cleaning composition to remove soils and stains is determined not only by the surfactant activity level in the composition, but also by many others factors.
  • For example, the wash water used with detergents or cleaning compositions may contain various metal ions (e.g., calcium or magnsium ions) that can chemically combine with surfactants in the wash to form insoluble precipitates, which not only render the surfactant ineffective for soil/stain remval, but also form scums that further soil the fabric surface. Therefore, water with a higher concentration of metal ions (i.e., hard water) presents a particularly challenging wash condition. This challenge is further exacerbated by the recent change in consumers' laundering habits that are aiming at reducing energy consumption (e.g., by re-using wash water, such as re-using bath water for laundering) and improving environmental sustainability (e.g., by eliminating phosphate and/or zeolite builders and reducing total surfactant content in detergents) of the laundering processes. This brings additional challenges because re-used wash water tends to have harder (i.e., high concentrations of metal ions) and increased levels of soil contaminants, and elimination of phosphate and/or zeolite builder and reduction of total surfactant content in the detergent or cleaning compositions may lead to significant reduction in the cleaning performance.
  • Various polymers have been used in detergents or cleaning compositions in recent years as detergent builders in augmenting the cleaning power of surfactants. For example, some polymers can bind calcium ions and/or other alkali earth metal ions in water, thereby improving the water hardness tolerance of the detergents or cleaning compositions and allowing either elimination or significant reduction of conventional phosphate and/or zeolite builders in such compositions. Other polymers can effectively suspend soil particles (either inorganic or organic) that have already been removed from the fabric surface by surfactants, in the wash liquor and prevent their redeposition back onto the fabric surface during subsequent wash and rinse steps.
  • Water-soluble copolymers formed by polymerization of one or more monomers derived from unsaturated monocarboxylic acid, unsaturated polyalkylene glycol, and sulfonate group-containing hydrocarbons (such as those disclosed in Japanese Patent Application Publication Nos. JP2004-75977 and JP2010-111792A; U.S. Pat. No. 6,451,952 and U.S. Pat. No. 7,390,776) have demonstrated effectiveness as polymeric detergent builders. Specifically, JP2010-111792A discloses a group of copolymers containing structural units derived from sulfonate group-containing monomers, polyoxyalkylene monomers, and carboxylic acid monomers, which exhibited improved effectiveness in anti-soil redeposition and can be used in detergent or cleaning compositions to improve the overall cleaning performance thereof.
  • However, there is still room for further improvement in the cleaning performance of the afore-mentioned copolymers. In particular, there is a need for laundry detergent compositions with further improved fabric whiteness maintenance benefit (i.e., less reduction in fabric whiteness after repeated wearing and wash cycles over extended periods of time), in comparison with that currently enabled by the afore-mentioned copolymers.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a cleaning composition, preferably a laundry detergent composition and more preferably a liquid laundry detergent composition, which contains one or more alkoxylated polyalkyleneimines in combination with a sulfonate group-containing copolymer. It is a surprising and unexpected discovery of the present invention that when a sulfonate group-containing copolymer is combined with one or more alkoxylated polyalkyleneimines in a cleaning composition, the resulting cleaning composition exhibits significant improvement in its cleaning performance, more specifically its whiteness maintenance benefit, in comparison with compositions containing either the sulfonate group-containing copolymer alone or the one or more alkoxylated polyalkyleneimines alone.
  • The alkoxylated polyalkyleneimine used for practicing the present invention contains a polyalkyleneimine core having an average number-average molecular weight (MWPEI) ranging from 100 to 100,000 Daltons, and at least one side chain bonded to a nitrogen atom in the polyalkyleneimine core. The at least one side chain has an empirical formula (I) of:

  • -(EO)b(PO)c—R  (I)
  • While: EO is ethylene oxide; b has a weight average value ranging from 3 to 60; PO is propylene oxide; c has a weight average value ranging from 0 to 60; and R is selected from the group consisting of hydrogen, C1-C4 alkyls, and combinations thereof. The alkoxylated polyalkyleneimine or polyalkyleneimines (there can be two or more alkoxylated polyalkyleneimines in the same composition) may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20% by total weight of the cleaning composition.
  • The sulfonate group-containing copolymer used for practicing the present invention contains at least three structural units, (a), (b), and (c).
  • The first structural unit (a) is derived from a sulfonate group-containing monomer (A).
  • The second structural unit (b) is derived from a polyoxyalkxylene monomer (B), which can be presented by formula (II) as follows:
  • Figure US20160090554A1-20160331-C00001
  • while R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; Z may be the same or different and each Z represents a structural unit derived from a C2-C20 alkylene oxide; n is from 1 to 200; and R0 represents hydrogen atom or a C1-C30 organic group.
  • The third structural unit (c) is derived from a carboxyl group-containing monomer (C). The sulfonate group-containing copolymer may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20% by total weight of the cleaning composition.
  • The cleaning composition of the present invention can be in any solid or liquid product form. It can be a laundry detergent composition, a hard surface cleaning composition, a hand dishwashing composition, or an automatic dishwashing composition. Preferably, the cleaning composition is in a liquid form and is more preferably in a single phase or multiphase unit dose form as encapsulated by a single compartment or multi-compartment water-solution pouch. It may further comprise, in addition to the one or more alkoxylated polyalkyleneimines and the sulfonate group-containing copolymer as described hereinabove, one or more surfactants selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof. Preferably, the surfactants comprise an anionic surfactant selected from the group consisting of alkyl benzene sulfonate, alkoxylated alkyl sulfates, alkyl sulfates, and mixtures thereof.
  • The present invention also relates to use of the above-described cleaning composition for treating fabrics to achieve improved whiteness maintenance benefit.
  • These and other features of the present invention will become apparent to one skilled in the art upon review of the following detailed description when taken in conjunction with the appended claims. Note that preferred embodiments of the present invention include any combination of two or more of those preferred embodiments of the present invention as described hereinbelow.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • As used herein, the articles “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
  • As used herein, the term “substantially free of” or “substantially free from” means that the indicated material is present in an amount of no more than about 5 wt %, preferably no more than about 2%, and more preferably no more than about 1 wt % by weight of the composition.
  • As used therein, the term “essentially free of” or “essentially free from” means that the indicated material is present in an amount of no more than about 0.1 wt % by weight of the composition, or preferably not present at an analytically detectible level in such composition. It may include compositions in which the indicated material is present only as an impurity of one or more of the materials deliberately added to such compositions.
  • As used herein the phrase “cleaning composition,” “detergent composition,” or “detergent or cleaning composition” are used interchangeably herein to refer to compositions and formulations designed for cleaning soiled material. Such compositions include but are not limited to, laundry detergent compositions, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions, laundry prewash, laundry pretreat, laundry additives, spray products, dry cleaning agent or composition, laundry rinse additive, wash additive, post-rinse fabric treatment, ironing aid, dish washing compositions, hard surface cleaning compositions, unit dose formulation, delayed delivery formulation, detergent contained on or in a porous substrate or nonwoven sheet, and other suitable forms that may be apparent to one skilled in the art in view of the teachings herein. Such compositions may be used as a pre-cleaning treatment, a post-cleaning treatment, or may be added during the rinse or wash cycle of the cleaning process. The cleaning compositions may have a form selected from liquid, powder, single-phase or multi-phase unit dose or pouch form, tablet, gel, paste, bar, or flake. In a preferred embodiment of the present invention, the cleaning composition of the present invention is a liquid laundry or dish detergent composition, which is in a single phase or multiphase unit dose form as encapsulated by a single compartment or multi-compartment water-soluble pouch, e.g., formed by a water-soluble polymer such as polyvinyl alcohol (PVA) or copolymers thereof. More preferably, the cleaning composition of the present invention is a liquid laundry detergent composition designated for treating fabrics to achieve improved whiteness maintenance benefit.
  • As used herein, the term “laundry detergent” means a liquid or solid composition, and includes, unless otherwise indicated, granular or powder-form all-purpose or “heavy-duty” washing agents, especially cleaning detergents as well as cleaning auxiliaries such as bleach additives or pretreat types. In a preferred embodiment of the present invention, the laundry detergent is a liquid laundry detergent composition.
  • As used herein, the term “soiled material” refers non-specifically to any type of flexible material consisting of a network of natural or artificial fibers, including natural, artificial, and synthetic fibers, such as, but not limited to, cotton, linen, wool, polyester, nylon, silk, acrylic, and the like, as well as various blends and combinations. Soiled material may further refer to any type of hard surface, including natural, artificial, or synthetic surfaces, such as, but not limited to, tile, granite, grout, glass, composite, vinyl, hardwood, metal, cooking surfaces, plastic, and the like, as well as blends and combinations.
  • As used herein, the term “water hardness” or “hardness” means uncomplexed cations ion (i.e., Ca2+ or Mg2+) present in water that have the potential to precipitate under alkaline conditions, and thereby diminishing the surfactancy and cleaning capacity of surfactants. Further, the terms “high water hardness” and “elevated water hardness” can be used interchangeably and are relative terms for the purposes of the present invention, and are intended to include, but not limited to, a hardness level containing at least 12 grams of calcium ion per gallon water (gpg, “American grain hardness” units).
  • As used herein, the term “average molecular weight” typically refers to the weight average molecular weight of the polymer chains in a polymer composition, unless otherwise specified. Further, the “weight average molecular weight” or “average weight-average molecular weight” (Mw) of a polymer may be calculated using the equation:

  • M w=(Σi N i M i 2)/(Σi N i M i)
  • wherein Ni is the number of molecules having a molecular weight Mi. The weight average molecular weight must be measured by the method described in the Test Methods section.
  • As used herein, the “number average molecular weight” or “average number-average molecular weight” (Mn) of a polymer may be calculated using the equation:

  • M n=(Σi N i M i)(Σi N i)
  • wherein Ni is the number of molecules having a molecular weight Mi. The number average molecular weight can be determined in accordance with ASTM Method D6474-12 (2012).
  • As used herein, the term “acid form equivalent” means that the proportion (compositional ratio) of the mass of each of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers of the sulfonate group-containing copolymer of the present invention, which is calculated as the proportion of the acid form of the each monomer. The same shall apply to calculation of the proportion of the mass of the structural unit derived from the monomer relative to the mass of the structural units derived from all monomers contained in the copolymer. For example, calculation of the proportion of the mass of sodium acrylate or a structural unit derived therefrom relative to the mass of all monomer components means calculation of the mass of acrylic acid, or the structural unit derived from acrylic acid, as an acid of sodium acrylate; calculation of the proportion of the mass of sodium 3-allyloxy-2-hydroxypropanesulfonate or a structural unit derived therefrom relative to the mass of all monomer components means calculation of the mass of 3-allyloxy-2-hydroxypropanesulfonic acid, or the structural unit derived from 3-allyloxy-2-hydroxypropanesulfonic acid, as an acid of sodium 3-allyloxy-2-hydroxypropanesulfonate. Further, the proportions of the masses of an amine salt group-containing monomer and an amine salt structure-containing structural unit may also be calculated as the proportions of the masses of an amine (amino group)-containing monomer and an amine structure (amino group structure)-containing structural unit, respectively.
  • Alkoxylated Polyalkyleneimines
  • The cleaning composition of the present invention contains at least one, and preferably two or more, alkoxylated polyalkyleneimines.
  • The alkoxylated polyalkylenimines of the present invention may be represented as containing repeating units of formulae (1), (2), (3) and (4)
  • Figure US20160090554A1-20160331-C00002
  • wherein:
      • # in each case denotes one-half of a bond between a nitrogen atom and the free binding position of a group A1 of two adjacent repeating units of formulas (1), (2), (3) or (4);
      • A1 is independently selected from linear or branched C2-C6 alkylene; and
      • E is independently selected from alkylenoxy units of the formula (5):
  • Figure US20160090554A1-20160331-C00003
  • wherein:
      • * in each case denotes the bond to the nitrogen atom of the repeating unit of formula (1), (2) or (4);
      • A2 is in each case independently selected from 1,2-propylene, 1,2-butylene and 1,2-isobutylene;
      • R is in each case independently selected from hydrogen and C1-C4-alkyl;
      • m has an average value in the range of from 0 to about 2;
      • n has an average value in the range of from about 20 to about 50; and
      • p is a rational number from about 10 to about 50.
        Each individual alkoxylated polyalkyleneimine may consist of 1 repeating unit of formula (1), x repeating units of formula (2), y repeating units of formula (3) and y+1 repeating units of formula (4), wherein x and y in each case have a value in the range of from 0 to about 150; and the polymer has a degree of quaternization of from 0 to about 50%. For more information regarding the alkoxylated polyalkyleneimines, please see U.S. Pat. No. 8,097,579B and WO2006/108856A1.
  • In a simplified representation, the alkoxylated polyalkyleneimines of the present invention can be considered as having a polyalkyleneimine core and at least one side chain bonded to a nitrogen atom in the polyalkyleneimine core.
  • The polyalkyleneimine core is formed by the repeating units of formulae (1), (2), (3) and (4) as described hereinabove, but minus the alkylenoxy units E. The polyalkyleneimine core of the alkoxylated polyalkyleneimine of the present invention has an average number-average molecular weight (MWPEI) ranging from about 100 to about 100,000 Daltons, preferably from about 100 to about 5000 Daltons, and more preferably from about 200 to about 1000 Daltons.
  • The at least one side chain of the alkoxylated polyalkyleneimine, which is formed by the alkylenoxy units E as described hereinabove, preferably has an inner polyethylene oxide block and an outer polypropylene oxide block, which can be represented by an empirical formula (I) of:

  • -(EO)b(PO)c—R  (I)
  • while EO is ethylene oxide; b has a weight average value ranging from about 3 to about 60; PO is propylene oxide; c has a weight average value ranging from 0 to about 60; R is selected from the group consisting of hydrogen, C1-C4 alkyls, and combinations thereof.
  • In one embodiment of the present invention, the cleaning composition may contain a first alkoxylated polyalkyleneimine, which has a polyalkyleneimine core with MWPEI ranging from about 100 to about 5000 Daltons, and preferably from about 200 to about 1000 Daltons; b ranges from about 5 to about 40, preferably from about 10 to about 30, more preferably from about 15 to 25; and wherein c is 0. Said alkoxylated polyalkyleneimine can be represented by an empirical formula of (PEI)200-1000(EO)15-25. Preferably, not not necessarily, the cleaning composition contains only such first alkoxylated polyalkyleneimine, i.e., without any other alkoxylated polyalkyleneimine.
  • In another embodiment of the present invention, the cleaning composition may contain a second alkoxylated polyalkyleneimine, which has a polyalkyleneimine core with MWPEI ranging from about 100 to about 5000 Daltons, and preferably from about 200 to about 1000 Daltons; b ranges from about 10 to about 50, preferably from about 15 to about 40, more preferably from about 20 to about 30; and wherein c ranges from about 1 to about 50, preferably from about 5 to about 40, and more preferably from about 10 to about 30. Said first alkoxylated polyalkyleneimine can be represented by an empirical formula of (PEI)200-1000(EO)20-30(PO)10-30. Preferably, not not necessarily, the cleaning composition contains only such second alkoxylated polyalkyleneimine, i.e., without the first alkoxylated polyalkyleneimine or any other alkoxylated polyalkyleneimine.
  • In yet another embodiment of the present invention, the cleaning composition contains both the first and second alkoxylated polyalkyleneimines Preferably, the weight ratio between such first and second alkoxylated polyalkyleneimines ranges from about 1:10 to about 10:1, preferably from about 1:5 to about 5:1, and more preferably from about 1:2 to about 2:1. In addition to the first and second alkoxylated polyalkyleneimines, the cleaning composition of the present invention may comprise other alkoxylated polyalkyleneimines falling within the description provided hereinabove.
  • The alkoxylated polyalkyleneimine(s) may be present in the cleaning composition of the present invention in an amount ranging from about 0.01% to about 20%, preferably from about 0.05% to about 15%, more preferably from about 0.1% to about 10%, and most preferably from about 0.5% to about 5%, by total weight of such cleaning composition. In a particularly preferred embodiment of the present invention, the cleaning composition contains from about 0.1% to about 5% by weight of the first alkoxylated polyalkyleneimine, and from 0% to about 2% by weight of the second alkoxylated polyalkyleneimine.
  • Sulfonate Group-Containing Copolymer
  • As mentioned hereinabove, the cleaning composition of the present invention further contains a sulfonate group-containing copolymer comprising: (i) a structural unit (a) derived from a sulfonate group-containing monomer (A); (ii) a structural unit (b) derived from a polyoxyalkylene monomer (B); and (iii) a structural unit (c) derived from a carboxyl group-containing monomer (C).
  • Sulfonate Group-Containing Monomer (A)
  • The sulfonate group-containing monomer (A) of the present invention, which is also referred to as a sulfonate group-containing unsaturated monomer, is a monomer having a sulfonate group and a carbon-carbon double bond. The sulfonate group is intended to include sulfonic acids and their salts. Examples of salts of sulfonic acids include, but are not particularly limited to: metal salts, ammonium salts, and organic amine salts of sulfonic acids. Suitable metal salts preferably include, for example, alkali metal ions such as sodium ions or potassium ions; alkaline earth metal ions such as magnesium ions, calcium ions, strontium ions, or barium ions; aluminum ions; or ferric or ferrous ions. Suitable organic amine salts preferably include organic amine groups such as, for example, an alkanolamine such as monoethanolamine, diethanolamine, or triethanolamine; an alkylamine such as monoethylamine, diethylamine, or triethylamine; or a polyamine such as ethylenediamine or triethylenediamine. The salts of sulfonic acids are preferably potassium sulfonate, sodium sulfonate, ammonium sulfonate, or quaternary amines of sulfonic acids.
  • The sulfonate group-containing monomer (A) may contain one or more sulfonate groups. In one preferred but not necessary embodiment of the present invention, the monomer (A) is represented by the following formula (III):
  • Figure US20160090554A1-20160331-C00004
  • wherein R3 represents a hydrogen atom or a methyl group; R4 represents a direct bond, CH2, or CH2CH2; X and Y each represent hydroxy or SO3M where M represents a hydrogen atom, Li, Na, or K, and at least one of X and Y is SO3M.
  • It is preferred that one of X and Y in the above formula (III) is a SO3M and the other is a hydroxy group. It is more preferred that X is a hydroxy group and Y is a SO3M. Further, M may represent an ammonium group or an organic amine group as mentioned hereinabove regarding the salts of sulfonic acid. The term “direct bond” as used herein refers to a covalent bond directly connecting two adjacent atoms. Therefore, when R4 is a direct bond, the carbon atom and the oxygen atom adjacent to R4 are directly connected to each other by a covalent bond without any other atom in between.
  • Suitable examples of the sulfonate group-containing monomer (A) include, but are not limited to: compounds represented by the formula (III) as described hereinabove, 2-acrylamide-2-methylpropanesulfonic acid, styrene sulfonic acid, (meth)allylsulfonic acid, vinyl sulfonic acid, 2-(meth)allyloxyethylenesulfonic acid, and salts thereof. Specifically, compounds falling within the formula (III) as described hereinabove, such as 3-(meth)allyloxy-2-hydroxypropanesulfonic acid and 3-(meth)allyloxy-1-hydroxypropanesulfonic acid as well as salts thereof are, are preferred examples of the sulfonate group-containing monomer (A) of the present invention because it has been observed that copolymers of the present invention having a structural unit derived from a compound represented by the formula (III) has improved anti-soil redeposition properties and increased preservation stability. In order to more successfully ensure the effect of the present invention enough, 3-allyloxy-2-hydroxypropanesulfonic acid and the sodium salt thereof are more preferred. Alternatively, 2-acrylamide-2-methylpropanesulfonic acid and the sodium salt there of are also preferred examples of the sulfonate group-container monomer (A) for the practice of the present invention.
  • The sulfonate group-containing copolymer contains preferably from about 1% to about 38% by mass in acid form equivalent of the structural unit (a) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from about 2% to about 30% by mass, still more preferably from about 3% to about 25% by mass, further more preferably from about 4% to about 20% by mass, particularly preferably from about 5% to about 18% by mass, and most preferably from about 5% to about 16% by mass.
  • Further, the sulfonate group-containing copolymer preferably contains no more than about 1% by mass of the structural unit (a) derived from the sulfonate group-containing monomer (A) that has two or more sulfonate groups, in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
  • The structural unit (a) hereinabove is a copolymerized structural unit formed by radical polymerization of the sulfonate group-containing monomer represented by the formula (III), and the structural unit (a) itself can be represented by the following formula (IV):
  • Figure US20160090554A1-20160331-C00005
  • wherein R3, R4, X, and Y are all the same as defined hereinabove in formula (III).
  • The method for preparing the sulfonate group-containing monomer (A) is not particularly limited, and any suitable method can be used for the preparation. For example, a method for adding a hydrogen sulfite to the glycidyl group of (meth)allylglycidyl ether is mentioned as an example of a simple method for the preparation.
  • Polyoxyalkylene Monomer (B)
  • The polyoxyalkylene monomer (B) of the present invention is characterized by having a structure represented by the following formula (II):
  • Figure US20160090554A1-20160331-C00006
  • wherein R1 can be either a hydrogen atom or a methyl group, and R2 can be a direct bond, CH2, or CH2CH2. Preferably, R1 and R2 are respectively: (i) a hydrogen atom and CH2; (ii) a methyl group and CH2; or (iii) a methyl group and CH2CH2. More preferably, R1 and R2 are respectively a methyl group and CH2, or a methyl group and CH2CH2. Most preferably, R1 and R2 are respectively a methyl group and CH2CH2.
  • Z represents one or more structural units, either the same or different from each other, and each of which is derived from a C2-C20 alkylene oxide. The number “n” represents the average number of alkylene oxide-derived structural repeating units Z, and it is from about 1 to about 200.
  • R0 represents a hydrogen atom or a C1-C30 organic group. Examples of the organic group in R0 include C1-C30 alkyl, C2-C30 alkenyl, and C6-C30 aryl. These may further have a substituent group. Examples of the substituent group include heterocyclic rings, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, alkoxycarbonyl groups, aryloxycarbonyl groups, sulfamoyl groups, acyl groups, acyloxy groups, amide groups, carbamoyl groups, ureido groups, alkylsulfonyl groups, arylsulfonyl groups, amino groups, halogens, fluorohydrocarbon groups, cyano groups, nitro groups, hydroxy, mercapto, and silyl groups. Specific examples of the C1-C30 organic group include methyl, ethyl, butyl, octyl, lauryl, cyclohexyl, phenyl, naphthyl, pyridyl, pyrimidyl, imidazolidyl, morpholyl, butenyl, pentenyl, hexenyl, heptenyl, methylcarbonyl, and ethylcarbonyl. R0 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • In the formula (II), the structural unit Z derived from an alkylene oxide represents an oxyalkylene structural unit containing a ring-opening alkylene oxide. For example, in cases where the alkylene oxide is ethylene oxide (EO), the structural unit Z is a —OCH2CH2— (oxyethylene) structural unit containing a ring-opening ethylene oxide. The oxyalkylene structural unit Z is derived from an alkylene oxide having from about 2 to about 20 carbon atoms, preferably from about 2 to about 15 carbon atoms, more preferably from about 2 to about 10 carbon atoms, still more preferably from about 2 to about 5 carbon atoms, particularly preferably from about 2 to about 3 carbon atoms, and most preferably about 2 carbon atoms.
  • Examples of the structural unit Z derived from an alkylene oxide include structural units derived from compounds such as ethylene oxide (EO), propylene oxide (PO), isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide, styrene oxide, and 1,1-diphenyl ethylene oxide. In particular, the structural unit Z is preferably derived from EO or PO (that is, oxyethylene or oxypropylene), and is more preferably oxyethylene. Such a structural unit can contain a single species of oxyalkylene, or it may contain two or more species of oxyalkylenes.
  • A preferred polyoxyalkylene monomer (B) of the present invention mainly includes multiple repating structural units of oxyethylene (—O—CH2CH2—). In this case, the phrase “mainly includes . . . oxyethylene” means that if two or more species of oxyalkylenes are present in the monomer, oxyethylene accounts for most of all oxyalkylenes (e.g., no less than about 50 mol %, or preferably no less than about 70 mol %, or more preferably no less than about 80 mol % or about 90 mol %, or most preferably about 100%, relative to 100 mol % of all oxyalkylaenes). This allows smooth progress of polymerization in a production process, and provides excellent effects such as improvement in water solubility or anti-redeposition properties. If the proportion of the oxyethylene is not less than about 50 mol %, the hydrophilicity of the group formed by the oxyalkylene can be further improved.
  • In the formula (II), n represents the average number of the alkylene oxide-derived structural repeating units Z, and it can range from about 1 to about 200, preferably from about 5 to about 100, more preferably from about 10 to about 80, and still more preferably from about 20 to about 80 or from about 25 to about 70, and most preferably from about 40 to about 60. When n is in the above preferred ranges, the compatibility with liquid detergents and the anti-redeposition properties of the resulting sulfonate group-containing copolymer tend to be improved.
  • The sulfonate group-containing copolymer of the present invention preferably contains from about 9% to about 76% by mass of the structural unit (b) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from about 10% to about 70% by mass, still more preferably from about 12% to about 65% by mass, further more preferably from about 15% to about 60% by mass, particularly preferably from about 18% to about 50% by mass or from about 20% to about 49% by mass, and most preferably from about 30% to about 45% by mass. In the calculation of the total weight of all structural units derived from all monomers in the present invention, the weights of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers contained in all monomer components are calculated as the weights of their acids monomers.
  • The copolymer of the present invention is characterized by having the structural unit (b) derived from the polyoxyalkylene monomer (B) represented by the formula (II) hereinabove. The structural unit (b) derived from the polyoxyalkylene monomer herein is a copolymerized structural unit formed by radical polymerization of the polyoxyalkylene monomer (B), and is represented by the following formula (V):
  • Figure US20160090554A1-20160331-C00007
  • wherein R1, R2, Z, n, and R0 are all the same as defined hereinabove in formula (II).
  • The polyoxyalkylene monomer (B) of the present invention as described hereinabove may be produced by any suitable method. Preferably, it is produced by method (1) in which an alkylene oxide is added to an alcohol having a carbon-carbon double bond, such as allyl alcohol, methallyl alcohol, or isoprenol; alternatively, it is produced by method (2) in which a polyalkylene glycol is added to a halide having a carbon-carbon double bond, such as allyl chloride, methallyl chloride, isoprenyl chloride, or vinyl chloride.
  • In the above-described method (1), an alkylene oxide is added to an alcohol having a carbon-carbon double bond by, for example, a) anionic polymerization in which a hydroxide of an alkali metal, a strong alkali such as an alkoxide, or alkylamine is used as a base catalyst, b) cationic polymerization in which a halide of a metal or metalloid, mineral acid, or acetic acid is used as a catalyst, or c) coordination polymerization in which a combination of an alkoxide of a metal such as aluminum, iron, or zinc, an alkaline-earth compound, and/or Lewis acid is used. Thus, the alkylene oxide is added to the hydroxy group of the alcohol, and the length of the polyoxyalkylene chain so formed is determined by the charge ratio of the alkylene oxide and the alcohol added during the polymerization.
  • The polyoxyalkylene monomer (B) of the present invention as described hereinabove has good stability during polymerization. Accordingly, the anti-redeposition properties of the resulting copolymer are improved. Further, the polyoxyalkylene monomer (B) of the present invention as described hereinabove provides a copolymer with favorable temporal stability. Further, when processed into various products (compositions) for various applications, the copolymer of the present invention, i.e., containing the structural unit (b) derived from the polyoxyalkylene monomer (B) as described hereinabove, shows excellent stability, and whereby the resulting products preferably exhibit stable performance.
  • Carboxyl Group-Containing Monomer (C)
  • The carboxyl group-containing monomer (C) of the present invention, which is also referred to as a carboxyl group-containing unsaturated monomer, is a monomer having a carboxyl group and a carbon-carbon double bond. The carboxyl group is intended to include carboxylic acids and their salts. Examples of the salts of the carboxylic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of carboxylic acids. Preferred examples of metal ions in the metal salts include alkali metal ions such as sodium and potassium ions; alkaline earth metal ions such as magnesium, calcium, strontium, and barium ions; aluminum ions; and ferric or ferrous ions. Further, preferred examples of organic amine groups of the organic amine salts include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine; alkylamines such as monoethylamine, diethylamine, and triethylamine; polyamines such as ethylenediamine and triethylenediamine. Examples of the salts of the carboxylic acids include lithium salts, potassium salts, sodium salts, ammonium salts, and quaternary amine salts.
  • Examples of the carboxyl group-containing monomer (C) include (meth)acrylic acid, maleic acid and anhydride thereof, fumaric acid, itaconic acid, crotonic acid, 2-methylene glutaric acid, and salts thereof. Particularly preferred carboxyl group-containing monomer (C) is (meth)acrylic acid, maleic acid or anhydride thereof, or a salt thereof, due to their high polymerizability and their ability to form a copolymer with high anti-redeposition properties. Still more preferred carboxyl group-containing monomer (C) is acrylic acid, maleic acid or anhydride thereof, or a salt thereof. Most preferred carboxyl group-containing monomer (C) is acrylic acid or its salt. In the event where the carboxyl group-containing monomer (C) is a compound that can form an acid anhydride, such as maleic acid, the monomer then may be in the acid anhydride form, such as maleic anhydride. The carboxyl group-containing monomers described hereinabove may be used either alone or in combinations of two, three, four or more.
  • The sulfonate group-containing copolymer of the present invention contains from about 20% to about 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer. The amount of the structural unit (c) is preferably from about 25% to about 85% by mass, more preferably from about 25% to about 80% by mass, still more preferably from about 25% to about 75% by mass, still more preferably from about 35% to about 73% by mass or from about 35% to about 70%, yet more preferably from about 35% to about 55%, and most preferably from about 40% to about 55% by mass. The sulfonate group-containing polymer of the present invention having a proportion of the structural unit (c) of from about 20% to about 90% by mass has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. In order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the proportion of the structural unit (c) is most preferably from about 40% to about 55% by mass. In light of the structure, the proportion of the mass of the carboxyl group-containing monomer that corresponds to a salt of an acid is calculated as the mass of the acid. In cases where the carboxyl group-containing monomer is an acid anhydride, the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
  • The sulfonate group-containing copolymer of the present invention contains preferably from about 1% to about 100% by mass, more preferably from about 20% to about 100% by mass, still more preferably from about 50% to about 100% by mass, particularly preferably from about 80% to about 100% by mass, and most preferably 100% by mass, in acid form equivalent of a structural unit derived from a monocarboxylic acid such as (meth)acrylic acid in 100% by mass of the total of the structural unit (c) derived from the carboxyl group-containing monomer (C).
  • The copolymer of the present invention contains the structural unit (c) derived from the carboxyl group-containing monomer (C). The structural unit (c) is a copolymerized structural unit formed by radical polymerization of the carboxyl group-containing monomer (C). For example, in cases where the carboxyl group-containing monomer (C) is acrylic acid or a sodium salt thereof, the corresponding structural unit (c) is represented by —CH2—CH(COOH)— or —CH2—CH(COONa)—.
  • Other Monomers
  • The sulfonate group-containing copolymer of the present invention may contain an additional structural unit (e) derived from a monomer (E) other than the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), and the carboxyl group-containing monomer (C).
  • The monomer (E) is not particularly limited, provided that it is copolymerizable with the monomers (A), (B), and (C). Examples of suitable monomers (E) include, but are not limited to: hydroxy group-containing alkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and α-(hydroxymethyl)ethyl (meth)acrylate; alkyl (meth)acrylates prepared by esterification of (meth)acrylic acid with a C1-C18 alcohol, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate; amino group-containing acrylates such as dimethylaminoethyl (meth)acrylate and quaternized dimethylaminoethyl (meth)acrylate; amide group-containing monomers such as (meth)acrylamide, dimethyl acrylamide, and isopropyl acrylamide; vinyl esters such as vinyl acetate; alkenes such as ethylene and propylene; aromatic vinyl monomers such as styrene; maleimide derivatives such as maleimide, phenyl maleimide, and cyclohexyl maleimide; nitrile group-containing vinyl monomers such as (meth)acrylonitrile; phosphonic acid (salt) group-containing monomers such as vinylphosphonic acid, (meth)allylphosphonic acid, and their salts; aldehyde group-containing vinyl monomers such as (meth)acrolein; alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; other functional group-containing monomers such as vinyl chloride, vinylidene chloride, allyl alcohol, and vinyl pyrrolidone. These other monomers may be used either alone or in combinations of two, three, four or more.
  • The structural unit (e) derived from the monomer (E) herein is a copolymerized structural unit formed by radical polymerization of the monomer (E). For example, in cases where the monomer (E) is methyl acrylate, the structural unit (e) is a structural unit represented by —CH2—CH(COOCH3)—.
  • The sulfonate group-containing copolymer may contain only one structure unit (e) or two or more structure units (e) as described hereinabove.
  • Preferably, the copolymer of the present invention contains from 0% to about 30% by mass, more preferably from 0% to about 20% by mass, still more preferably from 0% to about 10% by mass, and most preferably 0% by mass of the structural unit (e) derived from the monomer (E) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
  • Preferably, two or more of the structural units (a), (b), (c), and optionally (e) satisfy the above-described proportions (by mass) in the copolymer of the present invention. That is, the copolymer of the present invention containing a combination of the structural units (a), (b), (c) and optionally (e) with the above-described preferred proportions (by mass) is also a preferred embodiment of the copolymer of the present invention. The total of the proportions of the combination is 100% by mass.
  • The sulfonate group-containing copolymer as described hereinabove preferably contains from about 1% to about 38%, more preferably from about 4% to about 20% and most preferably from about 5% to about 16%, by mass in an acid form equivalent of the structural unit (a) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer. It may also contain from about 9% to about 76%, preferably from about 20% to about 49% and more preferably from about 30% to about 45%, by mass of the structural unit (b) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer. The number “n” in formula (II), which represents the average number of repeating oxyalkylene unit Z, is preferably from about 5 to about 100, more preferably form about 10 to about 80, still more preferably from about 25 to 70, and most preferably from about 40 to about 60. The sulfonate group-containing copolymer may also contain from about 20% to about 90%, preferably from about 25% to about 75% and more preferably from about 35% to about 55%, by mass in acid form equivalent of the structural unit (c) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer.
  • In a particularly preferred embodiment of the present invention, the sulfonate group-containing copolymer contains:
      • (i) from about 5% to about 16% by mass of the structure unit (a) in acid form equivalent in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer, wherein the sulfonate group-containing monomer (A) is 3-allyloxy-2-hydroxypropanesulfonate;
      • (ii) from about 30% to about 45% by mass of the structure unit (b) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer, wherein the polyoxyalkylene monomer (B) comprises an ethylene oxide-derived group having from about 40 to about 60 repeating oxyethylene units; and
      • (iii) from about 35% to about 55% by mass of the structure unit (c) in acid form equivalent in 100% by mass of all monomer structural units constituting the sulfonate group-containng copolymer, wherein the carboxyl group-containing monomer (C) is acrylic acid or a salt thereof,
  • Further, it is preferred that the sulfonate group-containing copolymer is characterized by a parameter of P×MWS×n that ranges from about 950,000 to about 800,000,000, in which:
      • P is defined as the ratio by mass of the structural unit (b) to the structural unit (a) in the sulfonate group-containing copolymer is P;
      • MWS is the weight average molecular weight of the sulfonate group-containing copolymer; and
      • n is defines as the same hereinabove in formula (II).
  • The product of P×Mw×n is preferably not less than about 1,000,000, more preferably not less than about 1,500,000, and most preferably not less than about 2,000,000. The product of P×Mw×n is preferably not more than about 500,000,000, more preferably not more than about 100,000,000. For example, it may preferably range from 1,000,000 to 50,000,000.
  • Without being bound by any theory, it is believe that sulfonate group-containing copolymers characterized by such a parameter have improved adsorption for hydrophilic soil, which in turn leads to further improved anti-soil redeposition efficacy, especially against hydrophilic soil under wash conditions marked by higher water hardness (i.e., higher water hardness tolerance). Cleaning compositions formulated with such sulfonate group-containing copolymers produce a low amount of salt precipitates and have a high washing effect even when used in an area where there is hard water with high concentrations of calcium ions and magnesium ions (for example, not less than 100 mg/L). The effect is particularly remarkable when the cleaning compositions contain an anionic surfactant such as LAS. Further, such cleaning compositions exhibit improved fabric whiteness maintenance benefit and/or satisfactory phase stability when in a liquid form.
  • Preferably, but not necessarily, the weight average molecular weight (MWS) of the sulfonate group-containing copolymer is from about 20,000 to about 200,000, more preferably from about 22,000 to about 150,000, yet more preferably from about 25,000 to about 100,000, still more preferably from about 30,000 to about 80,000, and most preferably from about 30,000 to about 75,000. Without being bound by any theory, it is believed that the sulfonate group-containing polymer of the present invention with the specified weight average molecular weight MWS, i.e., from about 20,000 to about 200,000 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high water hardness conditions. On one hand, if the weight average molecular weight MWS of the copolymer is larger than about 200,000, the copolymer may become highly viscous and difficult to handle. On the other hand, if MWS is smaller than about 20,000, the anti-redeposition properties of the copolymer significantly deteriorate, resulting in poorer performance as a detergent builder. The weight average molecular weight MWS of the sulfonate group-containing copolymer of the present invention is determined by the specific method used in the examples as described hereinafter.
  • The ratio by mass (P) of the structural unit (b) to the structural unit (a) in the sulfonate group-containing copolymer is preferably from about 1.2 to about 20, more preferably from about 1.3 to about 20, yet more preferably from about 1.5 to about 15, still more preferably from about 2 to about 10, and most preferably from about 2.5 to about 5. When the ratio by mass (P) is calculated, the masses of the structural unit (a) and the structural unit (b) are calculated as the masses of the acid form equivalents of them, i.e., P is determined as a mass ratio of the acid form equivalent of the structural unit (b) to the acid form equivalent of the structural unit (a). The ratio by mass of the structural unit (a) to the structural unit (b) to the structural unit (c) can also be expressed in the form of the proporationso of the structural units (a), (b), and (c), for example, preferably (1 to 38)/(9 to 76)/(20 to 90), more preferably (2 to 30)/(10 to 70)/(25 to 85), still more preferably (3 to 25)/(12 to 65)/(30 to 80), further more preferably (4 to 20)/(15 to 60)/(35 to 75), particularly preferably (5 to 18)/(18 to 50)/(40 to 73), still more preferably (5 to 16)/(20 to 49)/(43 to 70), and most preferably (5 to 16)/(30-45)/(40-55). The total of the proportions of the structural units (a), (b), and (c) is 100% by mass.
  • Without being bound by any theory, it is believed that the specific ratio by mass P of the structural unit (b) to the structural unit (a), i.e., from about 1.2 to about 20, contributes to the improved anti-soil redeposition properties of the copolymer of the present invention, particularly its improved anti-redeposition properties against hydrophilic soil under high water hardness conditions. Further, when the ratio by mass P is from about 3 to about 10, it is believed to improve the compatibility of the copolymer with liquid detergents as well as its anti-redeposition properties.
  • More preferably, the sulfonate group-containing copolymer according to the present invention is characterized by a specific ratio by mass P of the structural unit (b) to the structural unit (a) that ranges from about 1.2 to about 20 and a specific weight average molecular weight MWS of the copolymer that ranges from about 20,000 to about 200,000, while the product of P×MWS is from about 25,000 to about 2,000,000. An improved effect is observed between the ratio by mass P of the structural unit (b) to the structural unit (a) and the weight average molecular weight MWS of the copolymer, when the product of the ratio by mass P multiplied by the weight average molecular weight MWS is in a specific range of from about 25,000 to about 2,000,000. The resulting sulfonate group-containing copolymer exhibits significantly improved anti-soil redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high water hardness conditions. Further, such product of the ratio by mass P multiplied by the weight average molecular weight MWS may lead to unexpected improvement in the copolymer's compatibility with liquid detergents as well as the anti-redeposition properties. Preferably, the product of the ratio by mass P multiplied by the weight average molecular weight MWS ranges from about 50,000 to about 1,500,000, more preferably from about 70,000 to about 1,200,000, still more preferably from about 100,000 to about 1,000,000, yet still more preferably from about 120,000 to about 1,000,000, and most preferably from about 130,000 to about 1,200,000.
  • Further, the number n of alkylene oxide-derived structural repeating units in the formula (II) of the structural unit (b) in the sulfonate group-containing copolymer also contributes to improvement of the anti-redeposition properties and liquid detergent compatibility of the copolymer, especially when it is provided within a specific range of from about 5 to about 100, preferably from about 10 to about 80, and more preferably from about 40 to about 60.
  • The sulfonate group-containing copolymers of the present invention as described hereinabove have improved anti-soil redeposition ability. Given their enhanced anti-soil redeposition properties, the sulfonate group-containing copolymers of the present invention are particularly useful for formulating laundry detergent compositions with improved whiteness maintenance performance and cleaning performance. Further, the sulfonate group-containing copolymers of the present invention exhibit satisfactory liquid detergent compatibility, which renders them useful for formulating liquid laundry detergent products with improved phase stability.
  • The cleaning composition of the present invention may contain one or more of the above-described sulfonate group-containing copolymers. The sulfonate group-containing copolymer(s) may be present in such cleaning composition in an amount ranging from about 0.01% to about 20%, preferably from about 0.05% to about 15%, more preferably from about 0.1% to about 10%, and most preferably from about 0.5% to about 5%, by total weight of such cleaning composition.
  • Method of Producing Sulfonate Group-Containing Copolymer
  • The method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, and any known polymerization method or a modified method based thereon can be readily used.
  • The production method preferably involves copolymerizing monomer components including a sulfonate group-containing monomer (A), a polyoxyalkylene monomer (B), a carboxyl group-containing monomer (C), and optionally a monomer (E), which are the same as those described hereinabove.
  • In order to sufficiently exert the effects of the present invention, the proportion of the sulfonate group-containing monomer (A) is, but not particularly limited to, preferably from about 1% to about 38% by mass, more preferably from about 2% to about 30% by mass, still more preferably from about 3% to about 25% by mass, further more preferably from about 4% to about 20% by mass, particularly preferably from about 5% to about 18% by mass, and most preferably from about 5% to about 16% by mass in acid form equivalent in 100% by mass of all the monomers.
  • In order to sufficiently exert the effects of the present invention, the proportion of the polyoxyalkylene monomer (B) is, but not particularly limited to, preferably from about 9% to about 76% by mass, more preferably about 10% to about 70% by mass, still more preferably from about 12% to about 65% by mass, further preferably from about 15% to about 60% by mass, particularly preferably from about 18% to about 50% by mass, yet more preferably from about 20% to about 49%, and most preferably from about 30% to about 45% by mass in acid form equivalent in 100% by mass of all the monomers.
  • In order to sufficiently exert the effects of the present invention, the proportion of the carboxyl group-containing monomer (C) is preferably from about 20% to about 90% by mass, more preferably from about 25% to about 85% by mass, still more preferably from about 25% to about 80% by mass, further more preferably from about 25% to about 75% by mass, particularly preferably from 35% to 73% by mass, yet more preferably from about 35% to about 70%, still more preferably from about 35% to about 55%, and most preferably from about 40% to about 55% by mass in acid form equivalent in 100% by mass of all the monomers.
  • The proportion of the monomer (E) is preferably from 0% to about 30% by mass, more preferably from 0% to about 20% by mass, still more preferably from 0% to about 10% by mass, and most preferably 0% by mass in 100% by mass of all the monomers.
  • The monomer components preferably contain two or more of the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), the carboxyl group-containing monomer (C), and optionally the monomer (E) in the above preferred proportions. That is, combination of the sulfonate group-containing monomer (A), the polyoxyalkylene monomer (B), the carboxyl group-containing monomer (C), and optionally the monomer (E) in the above preferred proportions in all the monomers is also a preferred embodiment of the method of producing the sulfonate group-containing copolymer of the present invention.
  • During copolymerization of the monomer components, the monomer components are preferably copolymerized using a polymerization initiator. The amount of the polymerization initiator to be used in the polymerization reaction may be appropriately controlled depending on the amount of the monomer components to be used, and is not particularly limited. Further, a chain transfer agent, a reaction accelerator (for reducing the amount of the initiator, which can be, e.g., heavy metal ions), a catalyst (for decomposing a polymerization initiator), a reducing compound (e.g., organic compounds such as ferrocene or metal naphtenates, or inorganic reducing compounds), the like can be preferably used in addition to the polymerization initiator.
  • The combination of polymerization initiator, chain-transfer agent, and reaction accelerator is not particularly limited, and these may be selected from any of those described hereinabove. A most preferred combination of the initiator and the chain transfer agent is the combination of one or more of persulfates and one or more of sulfites.
  • The copolymerization may be carried out by any method, such as the commonly used methods of solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization. Solution polymerization is particularly preferred. The copolymerization may be carried out either continuously or in batches. Known solvents may be used in such copolymerization.
  • After completion of the polymerization reaction, a suitable alkali component (e.g., alkali metal hydroxides, alkaline earth metal hydroxides, and organic amines) may be appropriately added for post treatment, if needed, and the degree of neutralization (final degree of neutralization) of the resulting sulfonate group-containing copolymer may be set within a predetermined range. The final degree of neutralization is not particularly limited. This is because the final degree of neutralization of the copolymer varies depending on intended use. Accordingly, the final degree of neutralization may be set to an extremely wide range of from about 1 to about 100 mol %.
  • A copolymer composition formed by the copolymerization process described hereinabove essentially contains the sulfonate group-containing copolymer of the present invention. In addition, the copolymer composition may contain unreacted monomers, unreacted or decomposed polymerization initiator, homopolymers formed by one out of three of the monomers described hereinabove, binary copolymers formed by two out of three of the monomers described hereinabove, a hydrogen sulfite adduct (which is an impurity derived from the carboxyl group-containing monomer which remains unpolymerized although the above hydrogen sulfite and/or the compound capable of producing a hydrogen sulfite as a chain transfer agent is added thereto), and the like. It is preferred that the copolymer composition so formed contains little or no unreacted monomers or homopolymers.
  • Cleaning Compositions
  • The present invention provides a cleaning composition, preferably a laundry detergent composition and more preferably a liquid laundry detergent composition, that contains the alkoxylated polyalkyleneimine(s) and the sulfonate group-containing copolymer as described hereinabove and optionally other adjunct ingredients.
  • The cleaning composition of the present invention can be in any solid or liquid product form, and it can be a laundry detergent composition, a hard surface cleaning composition, a hand dishwashing composition, and an automatic dishwashing composition. The cleaning composition is preferably a liquid, and even more preferably it is in a single phase or multiphase unit dose form, i.e., the liquid cleaning composition is contained in a single compartment or multi-compartment water-soluble pouch. In a specific embodiment, the cleaning composition is in a single phase or multiphase unit dose form containing either a liquid automatic dishwashing composition or a liquid laundry detergent composition encapsulated in a single compartment or multi-compartment water-soluble pouch, which is formed, for example, by a water-soluble polymer such as polyvinvyl alcohol (PVA) and/or polyvinylpyrrolidone (PVP).
  • When the cleaning composition is in the form of a liquid laundry detergent composition, it may further comprise one or more organic solvents, which can be present in an amount ranging from about 1 wt % to about 80 wt %, preferably from about 10 wt % to about 60 wt %, more preferably from about 15 wt % to about 50 wt %, and most preferably from about 20 wt % to about 45 wt %, by total weight of the composition.
  • Because phase separation is a constant challenge for liquid laundry detergent compositions, especially when the salt content in such compositions is high, the solvent system of the present invention is particularly designed to stabilize the alkoxylated polyalkyleneimine(s) and the sulfonate group-containing copolymer of the present invention and minimize the risk of phase separation. Specifically, the solvent system of the present invention is composed mostly of diols, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, pentanediols, and combinations thereof. The diols are present in the liquid laundry detergent composition of the present invention in a total amount ranging from about 2 wt % to about 50 wt %. Preferably, the composition contains ethylene, diethylene glycol, and/or propylene glycol in a total amount ranging from about 5 wt % to about 40 wt %. More preferably, the composition contains propylene glycol in the amount ranging from about 15 wt % to about 35 wt %. Other organic solvents may also be present, which include, but are not limited to: methanol, ethanol, glycerin, sodium cumene sulfonate, potassium cumene sulfonate, ammonium cumene sulfonate, sodium toluene sulfonate, potassium toluene sulfonate, sodium xylene sulfonate, potassium xylene sulfonate, ammonium xylene sulfonate, or mixtures thereof. Other lower alcohols, such C1-C4 alkanolamines, e.g., monoethanolamine and/or triethanolamine, may also be used. In a particularly preferred embodiment of the present invention, the liquid laundry detergent compositions of the present invention also contain from about 5 wt % to about 20 wt %, preferably from 6 wt % to 18 wt %, more preferably from 8 wt % to 16 wt % of glycerin in addition to the diol(s).
  • The liquid laundry detergent composition of the present invention preferably contains water in combination with the above-mentioned organic solvent(s) as carrier(s). In some embodiments, water is present in the liquid laundry detergent compositions of the present invention in the amount ranging from about 20 wt % to about 70 wt %, preferably from about 25 wt % to 60 wt %, and more preferably from about 30 wt % to about 50 wt %. In other embodiments, water is absent and the composition is anhydrous. Highly preferred compositions afforded by the present invention are clear, isotropic liquids.
  • The cleaning composition of the present invention contains one or more surfactants, which may be present in amounts ranging from about 1% to about 80%, more preferably from about 1% to about 50%, and more preferably from about 5% to about 30% by total weight of the compositions. The specific forms of the surfactants and the adjunct cleaning additives are not particularly limited, and are appropriately selected based on common knowledge in the field of detergents. For example, the surfactants are selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.
  • Anionic surfactants are preferred. Useful anionic surfactants can themselves be of several different types. For example, non-soap synthetic anionic surfactants are particularly suitable for use herein, which include the water-soluble salts, preferably the alkali metal, and ammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group (included in the term “alkyl” is the alkyl portion of acyl groups) containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group. Examples of this group of synthetic anionic surfactants include, but are not limited to: a) the sodium, potassium and ammonium alkyl sulfates with either linear or branched carbon chains, especially those obtained by sulfating the higher alcohols (C10-C20 carbon atoms), such as those produced by reducing the glycerides of tallow or coconut oil; b) the sodium, potassium and ammonium alkylethoxy sulfates with either linear or branched carbon chains, particularly those in which the alkyl group contains from about 10 to about 20, preferably from about 12 to about 18 carbon atoms, and wherein the ethoxylated chain has, in average, a degree of ethoxylation ranging from about 0.1 to about 5, preferably from about 0.3 to about 4, and more preferably from about 0.5 to about 3; c) the sodium and potassium alkyl benzene sulfonates in which the alkyl group contains from about 10 to about 20 carbon atoms in either a linear or a branched carbon chain configuration, preferably a linear carbon chain configuration; d) the sodium, potassium and ammonium alkyl sulphonates in which the alkyl group contains from about 10 to about 20 carbon atoms in either a linear or a branched configuration; e) the sodium, potassium and ammonium alkyl phosphates or phosphonates in which the alkyl group contains from about 10 to about 20 carbon atoms in either a linear or a branched configuration, f) the sodium, potassium and ammonium alkyl carboxylates in which the alkyl group contains from about 10 to about 20 carbon atoms in either a linear or a branched configuration, and combinations thereof; g) the sodium, potassium and ammonium alkyl ester sulfonates, for example of formula R—CH(SO3M)-CH2COOR′, or the sodium, potassium and ammonium alkyl ester sulfates, for example of formula R—CH(OSO3M)-CH2COOR′, where R represents a C10-C20 and preferably C10-C16 linear or branched alkyl radical, R′ represents a C1-C6 and preferably C1-C3 alkyl radical, and M represents a sodium, potassium or the ammonium cation. The anionic surfactants can be provided in the cleaning compositions of the present invention at levels ranging from about 1% to about 80%, more preferably from about 1% to about 50%, more preferably from about 5% to about 30%, and most preferably from 10% to 25%, by total weight of the compositions.
  • In one particularly preferred embodiment, the cleaning composition of the present invention is a liquid laundry or dish detergent composition containing from about 1 wt % to about 50 wt % of one or more anionic surfactants selected from the group consisting of C10-C20 linear alkyl benzene sulphonates, C10-C20 linear or branched alkylethoxy sulfates having an average degree of ethoxylation ranging from 1 to 5, C10-C20 linear or branched alkyl sulfates, C10-C20 linear or branched alkyl ester sulfates, C10-C20 linear or branched alkyl sulphonates, C10-C20 linear or branched alkyl ester sulphonates, C10-C20 linear or branched alkyl phosphates, C10-C20 linear or branched alkyl phosphonates, C10-C20 linear or branched alkyl carboxylates, and combinations thereof. More preferably, said one or more anionic surfactants are selected from the group consisting of C10-C20 linear alkyl benzene sulphonates, C10-C20 linear or branched alkylethoxy sulfates having an average degree of ethoxylation ranging from about 1 to about 5, methyl ester sulfonates with a C10-C20 linear or branched alkyl group, and mixtures thereof, and are present in an amount ranging from about 5 wt % to about 30 wt % of the liquid laundry or dish detergent composition.
  • Water-soluble salts of the higher fatty acids, i.e., “soaps”, are also useful anionic surfactants in the cleaning compositions of the present invention. This includes alkali metal soaps such as the sodium, potassium, ammonium, and alkyl ammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, and preferably from about 12 to about 18 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap. However, the cleaning compositions of the present invention preferably contains soaps at a relatively low level, e.g., no more than about 3 wt %, more preferably not more than about 2 wt % or 1 wt %, and most preferably said cleaning composition is essentially free of soaps.
  • Nonionic surfactants can also be included into the surfactant systems of the present invention, which include those of the formula R1(OC2H4)nOH, wherein R1 is a C8-C18 alkyl group or alkyl phenyl group, and n is from about 1 to about 80. Particularly preferred are C8-C18 alkyl alkoxylated alcohols having an average degree of alkoxylation from about 1 to about 20. The nonionic surfactants can be provided in the cleaning compositions at levels ranging from about 0.05 wt % to about 20 wt %, preferably from about 0.1 wt % to about 10 wt %, and most preferably from about 1 wt % to about 5 wt %. However, in certain preferred embodiments of the present invention, the cleaning compositions contains nonionic surfactants at a relatively low level, e.g., no more than about 3 wt %, more preferably not more than about 2 wt % or 1 wt %, and most preferably said cleaning composition is essentially free of nonionic surfactants.
  • Other surfactants useful herein include amphoteric surfactants, zwitterionic surfactants and cationic surfactants. Such surfactants are well known for use in laundry or dish detergents and are typically present at levels from about 0.2 wt %, 0.5 wt % or 1 wt % to about 10 wt %, 20 wt % or 30 wt %.
  • In a preferred but not necessary embodiment of the present invention, the cleaning composition is a liquid dish detergent composition containing from about 0.5 wt % to about 20 wt % of one or more amphoteric and/or zwitterionic surfactants.
  • Preferred amphoteric surfactants are selected from the group consisting of amine oxide surfactants, such as, for example, alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide. Amine oxide may have a linear or mid-branched alkyl moiety. Typical linear amine oxides are characterized by a formula R1—N(R2)(R3)—O, wherein R1 is a C8-18 alkyl, and wherein R2 and R3 are independently selected from the group consisting of C1-3 alkyls and C1-3 hydroxyalkyls, such as methyl, ethyl, propyl, isopropyl, 2-hydroxethyl, 2-hydroxypropyl and 3-hydroxypropyl. As used herein “mid-branched” means that the amine oxide has one alkyl moiety having n1 carbon atoms with one alkyl branch on the alkyl moiety having n2 carbon atoms. The alkyl branch is located on the α carbon from the nitrogen on the alkyl moiety. This type of branching for the amine oxide is also known in the art as an internal amine oxide. The total sum of n1 and n2 is from about 10 to about 24 carbon atoms, preferably from about 12 to about 20, and more preferably from about 10 to about 16. The number of carbon atoms for the one alkyl moiety (n1) should be approximately the same number of carbon atoms as the one alkyl branch (n2) such that the one alkyl moiety and the one alkyl branch are symmetric. As used herein “symmetric” means that |n1−n2| is less than or equal to 5, preferably 4, most preferably from 0 to 4 carbon atoms in at least about 50 wt %, more preferably at least about 75 wt % to about 100 wt %, of the mid-branched amine oxides for use herein. Particularly preferred amphoteric surfactants are C10-C14 alkyl dimethyl amine oxides.
  • Preferred zwitterionic surfactants are betaine surfactants, such as, for example, alkyl betaines, alkylamidobetaines, amidazoliniumbetaines, sulfobetaines (also referred to as sultaines) as well as phosphobetaines. A particularly preferred betaine is cocoamidopropylbetaine.
  • The liquid detergent composition as described herein above may also contain an external structurant, which may be present in an amount ranging from about 0.001% to about 1.0%, preferably from about 0.05% to about 0.5%, more preferably from about 0.1% to about 0.3% by total weight of the composition. Suitable external structurants include those described, for example, in US2007/169741 and US2005/0203213. A particularly preferred external structurant for the practice of the present invention is hydrogenated castor oil, which is also referred to as trihydroxylstearin and is commercially available under the tradename Thixin®.
  • In yet another preferred embodiment of the present invention, the liquid detergent composition further contains from about 0.1 wt % to about 5 wt %, preferably from about 0.5 wt % to about 3 wt %, more preferably from about 1 wt % to about 1.5 wt %, of one or more fatty acids and/or alkali salts thereof. Suitable fatty acids and/or salts that can be used in the present invention include C10-C22 fatty acids or alkali salts thereof. Such alkali salts include monovalent or divalent alkali metal salts like sodium, potassium, lithium and/or magnesium salts as well as the ammonium and/or alkylammonium salts of fatty acids, preferably the sodium salt.
  • The balance of the cleaning composition of the present invention typically contains from about 5 wt % to about 70 wt %, or about 10 wt % to about 60 wt % adjunct ingredients.
  • Suitable adjunct ingredients for laundry detergent products include: builders, chelating agents, dye transfer inhibiting agents, dispersants, rheology modifiers, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, photobleaches, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, hueing agents, anti-microbial agents, free perfume oils, and/or pigments. In addition to the disclosure below, suitable examples of such other adjunct ingredients and levels of use are found in U.S. Pat. Nos. 5,576,282, 6,306,812, and 6,326,348. The precise nature of these adjunct ingredients and the levels thereof in the liquid laundry detergent composition will depend on factors like the specific type of the composition and the nature of the cleaning operation for which it is to be used.
  • Suitable adjunct ingredients for dish detergent products include: builders, chelants, conditioning polymers, cleaning polymers, surface modifying polymers, soil flocculating polymers, structurants, emmolients, humectants, skin rejuvenating actives, enzymes, carboxylic acids, scrubbing particles, bleach and bleach activators, perfumes, malodor control agents, pigments, dyes, opacifiers, beads, pearlescent particles, microcapsules, organic and inorganic cations such as alkaline earth metals such as Ca/Mg-ions and diamines, antibacterial agents, preservatives and pH adjusters and buffering means.
  • If the cleaning composition of the present invention is provided in a powder form, it may also be especially preferred for the powder to comprise low levels, or even be essentially free, of builder. The term “essentially free” means that the composition “comprises no deliberately added” amount of that ingredient. In a preferred embodiment, the cleaning composition of the present invention comprises no builder.
  • Processes of Making Cleaning Compositions
  • The cleaning compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator. Such process typically involves mixing the essential and optional ingredients in any desired order to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like, thereby providing cleaning compositions containing ingredients in the requisite concentrations.
  • In one embodiment, the cleaning composition herein is a liquid composition contained within a water-soluble film thereby forming a water-soluble pouch. The pouch may be of such a size that it conveniently contains either a unit dose amount of the composition herein, suitable for the required operation, for example one wash, or only a partial dose, to allow a user greater flexibility to vary the amount used, e.g., depending on the size or degree of soiling of the wash load.
  • The water-soluble film of the pouch preferably comprises a polymer. The film can be obtained from methods known in the art, e.g., by casting, blow molding, extrusion molding, injection molding of the polymer. Non-limiting examples of the polymer for making the water-soluble film include: polyvinyl alcohols (PVAs), polyvinyl pyrrolidone, polyalkylene oxides, (modified) cellulose, (modified) cellulose-ethers or -esters or -amides, polycarboxylic acids and salts including polyacrylates, copolymers of maleic/acrylic acids, polyaminoacids or peptides, polyamides including polyacrylamide, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum. Preferably, the water-soluble film comprises a polymer selected from the group consisting of polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, polyvinyl alcohols, hydroxypropyl methyl cellulose (HPMC), and a combination thereof. Most preferably, the water-soluble film comprises polyvinyl alcohol, e.g., M8639 available from MonoSol.
  • The pouch herein may comprise a single compartment or multiple compartments, preferably comprise multiple compartments, e.g., two compartments or three compartments. In the multi-compartment execution, one or more of the multiple compartments comprise the aforementioned anti-microbial laundry detergent composition. Preferably, the pouch comprises multiple films which form the multiple compartments, i.e., the inner volume of the multiple films is divided into the multiple compartments. The pouch of the present invention can be made by any suitable processes known in the art.
  • Methods of Using Cleaning Compositions
  • The present invention includes methods of using the cleaning compositions described hereinabove for cleaning soiled material. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are suited for use in laundry pretreatment applications, laundry cleaning applications, and home care applications.
  • Such methods include, but are not limited to, the steps of contacting the cleaning compositions in neat form or diluted in wash liquor, with at least a portion of a soiled material and then optionally rinsing the soiled material. The soiled material may be subjected to a washing step prior to the optional rinsing step.
  • For use in laundry pretreatment applications, the method may include contacting the detergent or cleaning compositions described herein with soiled fabric. Following pretreatment, the soiled fabric may be laundered in a washing machine or otherwise rinsed.
  • Machine laundry methods may comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry cleaning composition in accord with the invention. An “effective amount” of the cleaning composition means from about 20 g to about 300 g of product dissolved or dispersed in a wash solution of volume from about 5 L to about 65 L. The water temperatures may range from about 5° C. to about 100° C. The water to soiled material (e.g., fabric) ratio may be from about 1:1 to about 30:1. The compositions may be employed at concentrations of from about 500 ppm to about 15,000 ppm in solution. In the context of a fabric laundry composition, usage levels may also vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water, and the type of washing machine (e.g., top-loading, front-loading, top-loading, vertical-axis Japanese-type automatic washing machine).
  • The cleaning compositions herein may be used for laundering of fabrics at reduced wash temperatures. These methods of laundering fabric comprise the steps of delivering a laundry detergent composition to water to form a wash liquor and adding a laundering fabric to said wash liquor, wherein the wash liquor has a temperature of from about 0° C. to about 20° C., or from about 0° C. to about 15° C., or from about 0° C. to about 9° C. The fabric may be contacted to the water prior to, or after, or simultaneous with, contacting the laundry detergent composition with water.
  • Another method includes contacting a nonwoven substrate impregnated with an embodiment of the detergent or cleaning composition with soiled material. As used herein, “nonwoven substrate” can comprise any conventionally fashioned nonwoven sheet or web having suitable basis weight, caliper (thickness), absorbency, and strength characteristics. Non-limiting examples of suitable commercially available nonwoven substrates include those marketed under the tradenames SONTARA® by DuPont and POLYWEB® by James River Corp.
  • Hand washing/soak methods, and combined handwashing with semi-automatic washing machines, are also included.
  • Test Methods
  • Various techniques are known in the art to determine the properties of the cleaning compositions of the present invention comprising the alkoxylated polyalkyleneimines and the sulfonate group-containing copolymers. However, the following assays disclosed in this section are used to determine the respective values of the parameters of the present invention.
  • Test 1: Measurement of Weight Average Molecular Weight (Mw)
  • The weight average molecular weight of the sulfonate group-containing copolymers (MWS) are determined by the technique of Gel Permeation Chromatography (GPC) under the following conditions.
      • Measuring device: L-7000 series (product of Hitachi Ltd.)
      • Detector: RI (weight average molecular weight), UV (residual monomer)
      • Column: SHODEX Asahipak GF-310-HQ, GF-710-HQ, GF-1G 7B (products of Showa Denko K. K.)
      • Column temperature: 40° C.
      • Flow velocity: 0.5 mL/min
      • Calibration curve: Polyacrylic Standard (product of Sowa Kagaku Co., Ltd.)
      • Eluent: 0.1 N sodium acetate/acetonitrile=3/1 (mass ratio)
  • Test 2: Measurement of Solids Content
  • A mixture of 1.0 g of a sulfonate group-containing polymer composition of the present invention and 1.0 g of water is left in an oven heated to 130° C. in nitrogen atmosphere for one hour so as to be dried. The solids content (%) and volatile component content (%) are calculated from the weight difference before and after the drying step.
  • Test 3: Whiteness Maintenance Assay
  • This test is intended to measure the ability of the laundry detergent to prevent loss in whiteness (i.e., whiteness maintenance) of fabrics. Whiteness maintenance of fabrics is evaluated by image analysis after single or multi-cycle washes. Typically, “whiteness” can be reported by its whiteness index, which is conveniently converted from CIELAB (an internationally recognized color scale system developed by CIE (“Commission Internationale de I'Eclairage”)). CIE color scale for whiteness is the most commonly used whiteness index and refers to measurements made under D65 illumination, which is the standard representation of outdoor daylight. In technical terms, whiteness is a single number index referencing the relative degree of whiteness (of near-white materials under specific lighting conditions), and the higher the number, the whiter the material. As an example, for a perfect reflecting, non-fluorescent white material, the CIE whiteness index (L*) would be 100.
  • The steps for assaying whiteness maintenance of sample laundry detergents are as follows:
      • (1) Dissolve 2.25 g of raw materials of a base laundry detergent in 300 g of triple-filtered (0.1 micron Millipore membrane filter is used with a vacuum Buchner filtering apparatus) deionized water according to the concentrations as provided in Table 1 herein to form a 1.5× concentrated base wash solution.
  • TABLE 1
    FORMULATION OF CONCENTRATED
    BASE WASH SOLUTION (1.5X)
    Raw Materials Amount (wt %)
    Water 76.21%
    NaOH (for adjusting pH to 7.5%) 3.23%
    Propylene glycol 2.50%
    Citric Acid 1.70%
    Alkylethoxy sulfates with a weight average degree 9.84%
    of ethoxylation of about 3 (AE3S)
    Linear alkyl benzene sulphonic acid (HLAS) 6.52%
    Total 100.00%
      • (2) Transfer 10 ml of the prepared 1.5× concentrated base wash solution into a 40 ml glass vial.
      • (3) The 10 ml wash solution is then mixed with 900 ul of a polymer solution that contains 1% of the polymer blend according to the present invention (i.e., containing an alkoxylated polyalkyleneimine and a sulfonate group-containing copolymer at 1:1 ratio), or 1% of a comparative polymer alone (i.e., either the alkoxylated polyalkyleneimine alone or the sulfonate group-containing copolymer alone).
      • (4) Add Teflon-coated magnets into the 40 ml glass vial to provide additional agitation.
      • (5) Add 2.1 ml of deionized (DI) water into the 40 ml glass vial.
      • (6) Add 1 ml of a 225 gpg stock hard water solution to the 40 ml glass vial. The 225 gpg stock hard water solution is prepared by the following steps: (i) into a 1000 ml beaker, 4.24 g of CaCl2.2H2O and 1.96 g of MgCl2.6H2O are added; (ii) add 993.8 ml of de-ionized water; (iii) use a stirring bar and stirring plate to stir the mixture until it is fully dissolved and the solution turns clear; (iv) pour the solution into a 1 L volumetric flask and fill it to the 1 L line; (v) add a stirring bar into the volumetric flask and stir again for about 5 minutes; (vi) remove the stirring bar and refill the volumetric flask with de-ionized water up to the 1 L line; (vii) the resulting 225 gpg stock hard water solution is stored in a plastic bottle for future use.
      • (7) Add 1 ml of a 75% Arizona Dust clay solution into the solution in the 40 mL glass vial to form a test solution having a total volume of about 15 ml. Accordingly, the clay concentration in the test solution is about 5 wt %. The Arizona Dust clay solution is made by the following steps: (i) add 7.5 g of Arizona Dust clay into a 100 ml beaker and then add 92.5 g of de-ionized water thereinto; (ii) use a stirring bar and a stirring plate to stir the mixture for at least 30 mins until the clay is dissolved.
      • (8) Fabrics used for conducting this test are selected from 1.5 cm-diameter polyester fabrics (PW19) and 1.5 cm-diameter cotton fabrics (CW98) purchased from Empirical Manufacturing Company (Blue Ash, Cincinnati). Eight (8) of the polyester fabrics or the cotton fabrics are added into the test solution in the 40 mL glass vial to perform the whiteness test via a fast wash cycle.
      • (9) The 40 ml glass vial containing the test solution and the test fabrics (either the PW19 polyester fabrics or the CW98 cotton fabrics) are secured tightly to one shaking arm of a Wrist Action Shaker Model 75 (Burrell Scientific, Pittsburgh, Pa.) and shaken for about 20 minutes to mimic a wash cycle.
      • (10) At the end of the wash, the liquid contents of the 40 ml glass vial are emptied through a Buchner funnel.
      • (11) The test fabrics remaining inside the 40 ml glass vial are then transferred to another 40 ml glass vial, into which 15 mL of a rinse solution is added. The rinse solution is prepared by adding 1 ml of the 225 gpg stock hard water solution as described hereinabove in Step (6) into 14.00 ml of de-ionized filtered water.
      • (12) The 40 ml glass vial containing the rinse solution and the test fabrics are secured tightly to one shaking arm of the Wrist Action Shaker and shaken for about 3 minutes to mimic a rinse cycle.
      • (13) At the end of the rinse, the 40 ml glass vial is removed from the Wrist Action Shaker, and the test fabrics are taken out of the glass vial and placed on a black plastic board template to air dry over night.
      • (14) Two whiteness measurements are carried out for each test fabric using the CIELab color parameters with a Datacolor spectrometer, which include a first whiteness measurement before the wash and rinse cycle (i.e., initial) and a second whiteness measurement after the wash and rinse cycle (i.e., treated).
      • (15) The difference between the average whiteness measurement of the initial fabrics and that of the treated fabrics is reported as delta W (i.e., ΔW), which is calculated for each test solution as follows:

  • ΔW=Average Whiteness of Treated Fabrics−Average Whiteness of Initial Fabrics,
      •  Typically, ΔW is a negative value, which is reflective of whiteness loss suffered by fabrics after washing.
      • (16) A Whiteness Index (ΔWI) is calculated for each polymer or polymer blend tested as followes:

  • ΔWI=ΔW PT −ΔW PR
        • wherein:
          • ΔWPT=ΔW of the test solution containing the test polymer or polymer blend;
          • ΔWPR=ΔW of the base wash solution nil polymer (i.e., reference);
      •  ΔWPT and ΔWPR are typically measured in the same test setting. Specifically, the test solution containing the test polymer or polymer blend and the reference solution (i.e., the base wash solution nil polymer) are added into different glass vials, which are then placed on different but adjacent shaking arms on the Wrist Action Shaker and shaken simultaneously to mimic the wash and rinse cycles.
      • (17) The Whiteness Index (ΔWI) of a test polymer or polymer blend represents the polymer or polymer blend's relative effectiveness in preventing whiteness loss of a fabric caused by washing, in comparison with that of the reference solution (i.e., the base wash solution nil polymer). A positive ΔWI value indicates that the test polymer or polymer blend is more effective in reducing or preventing fabric whiteness loss than the reference solution. A negative ΔWI value indicates that the test polymer or polymer blend is less effective than the reference solution. The higher the ΔWI value, the more effective is the test polymer or polymer blend.
    EXAMPLES
  • Hereinafter, the present invention is described in more detail based on examples. All percentages are by weight unless otherwise specified.
  • A. Exemplary Alkoxylated Polyalkyleneimines
  • Following is a list of exemplary alkoxylated polyalkyleneimines that can be used for practicing the present invention:
  • TABLE 2
    MWPEI EO # PO #
    Formula (Daltons) (b) (c)
    PEI Polymer 1 (PEI)5000(EO)7 5000 7 0
    PEI Polymer 2 (PEI)5000(EO)9.9 (PO)3.5 5000 9.9 3.5
    PEI Polymer 3 (PEI)5000(EO)9.9 (PO)15.5 5000 9.9 15.5
    PEI Polymer 4 (PEI)600(EO)10 (PO)7 600 10 7
    PEI Polymer 5 (PEI)5000(EO)10 (PO)7 5000 10 7
    PEI Polymer 6 (PEI)600(EO)20 600 20 0
    PEI Polymer 7 (PEI)1600(EO)20 1600 20 0
    PEI Polymer 8 (PEI)600(EO)24 (PO)16 600 24 16
    PEI Polymer 9 (PEI)600(EO)24 (PO)24 600 24 24
    PEI Polymer 10 (PEI)600(EO)30(PO)5 600 30 5
  • B. Exemplary Sulfonate Group-Containing Copolymers
  • Following is a list of exemplary sulfonate group-containing copolymers (“S Copolymers”) that can be used for practicing the present invention:
  • TABLE 3
    Proportion of Structural IPN/
    Units (% by mass) HAPS MWs
    HAPS1 IPN2 AA3 (P) (Dalton) P × MWs P × MWs × n
    S Copolymer 1 10 40 (n = 10) 50 4.0 27,000 108,000 1,080,000
    S Copolymer 2 12 34 (n = 25) 54 2.8 32,000 90,667 2,266,000
    S Copolymer 3 11 40 (n = 50) 49 3.6 42,000 153,000 7,640,000
    S Copolymer 4 9 40 (n = 50) 51 4.4 72,000 320,000 16,000,000
    S Copolymer 5 13 64 (n = 50) 23 4.9 44,000 217,000 10,800,000
    S Copolymer 6 5 49 (n = 50) 46 9.8 68,000 666,000 33,300,000
    S Copolymer 7 27 35 (n = 50) 38 1.3 15,000 19,400 972,000
    S Copolymer 8 16 34 (n = 50) 50 2.1 12,000 25,500 1,280,000
    S Copolymer 9 12 40 (n = 50) 48 3.3 25,000 83,333 4,166,000
    S Copolymer 10 11 34 (n = 50) 55 3.1 57,000 176,182 8,809,000
    S Copolymer 11 15 42 (n = 50) 44 2.8 70,000 196,000 9,800,000
    1HAPS stands for sodium 3-allyloxy-2-hydroxypropanesulfonate.
    2IPN stands for an isoprenol-ethylene oxide adduct, wherein the number “n” defines the avearge number of repeating EO units in such adduct.
    3AA stands for acrylic acid.
  • C. Improved Whiteness Maintenance Performance Achieved by Inventive Polymer Blend
  • Whiteness maintenance performance of an inventive polymer blend containing a PEI polymer and a sulfonate group-containing polymer according to the present invention is compared with that of a PEI polymer alone and with that of a sulfonate group-containing polymer alone. Specifically, the Whiteness Index (ΔWI) of the inventive polymer blend, the PEI polymer alone, and the sulfonate group-containing polymer alone, and are measured by using the Whiteness Maintenance Assay as described hereinabove in Test 3, and the corresponding results are tabulated hereinafter in Table 4.
  • TABLE 4
    ΔWI (PW19) ΔWI (CW98)
    S Copolymer 4 alone 18.21 22.77
    PEI Polymer 6 alone 18.08 21.49
    S Copolymer 4 + PEI Polymer 6 20.45 28.32
    (1:1 Ratio)
    S Copolymer 4 alone 18.21 22.77
    PEI Polymer 8 alone 23.18 26.71
    S Copolymer 4 + PEI Polymer 8 25.14 30.81
    (1:1 Ratio)
  • The whiteness maintenance assay test results hereinabove clearly demonstrate that an inventive polymer blend according to the present invention exhibits superior whiteness maintenance performance over that of either a PEI polymer or a sulfonate group-containing copolymer alone, when all are used at the same total polymer concentration, which is both surprising and unexpected.
  • D. Exemplary Cleaning Compositions
  • (1). Exemplary Liquid Laundry Detergent Compositions
  • The following liquid laundry detergent compositions are prepared by traditional means known to those of ordinary skill in the art by mixing the following ingredients.
  • TABLE 5
    Ingredients (wt %) 1A 1B 1C
    AES1 17    2 11
    LAS2 2.8  15 10
    AE3 2.3  2.37 3.44
    Citric Acid 5   1.98
    Boric Acid 1 3
    Amine Oxide 1.2  0.5
    Trimethyl Lauryl Ammonium 1.5
    Chloride
    PEI Polymer 1-10 of Example A 0.1~3.5 1 2
    S Copolymer 1-11 of Example B 0.1~3.5 1 2
    Fatty Acids 1.2  1.2 1.2
    Protease (54.5 mg/g)4 7.62 7.98 2.08
    Amylase (29.26 mg/g)5 2.54 2.67 0.69
    Xyloglucanase6 0.15
    Borax 4.72 4.94
    Calcium Formate 0.15 0.16 0.16
    Amphiphilic polymer 7 1.5 4.36
    Hexamethylene diamine, 1.68
    ethoxylated, quaternized, sulfated8
    DTPA 9 (50% active) 0.28 0.3 0.64
    Tiron ® 0.84 0.89
    Optical Brightener10 0.34 0.37 0.36
    Ethanol 0.97 4.1 2.99
    Propylene Glycol 4.9  5.16 8.49
    Diethylene Glycol 4.11
    Monoethanolamine (MEA) 1.12 1.17 0.23
    Caustic Soda (NaOH) 3.5  3.74 2.1
    Na Formate 0.61 0.64 0.23
    Na Cumene Sulfonate 1
    Suds Suppressor 0.18
    Dye 0.01 0.02
    Perfume 0.85 1
    Preservative11 0.05 0.5
    Hydrogenated castor oil 0.27
    Water Q.S. Q.S. Q.S.
    1AES can be AE1.5S, AE2S, and/or AE3S, in the amount ranging from 0-20%.
    2LAS can be provided in the amount ranging from 0-20%.
    3AE is a C12-14 alcohol ethoxylate, with an average degree of ethoxylation of 7-9, supplied by Huntsman, Salt Lake City, Utah, USA. It can be provided in the amount ranging from 0-10%.
    4Proteases may be supplied by Genencor International, Palo Alto, California, USA (e.g., Purafect Prime ®, Excellase ®) or by Novozymes, Bagsvaerd, Denmark (e.g. Liquanase ®, Coronase ®).
    5Available from Novozymes, Bagsvaerd, Denmark (e.g., Natalase ®, Mannaway ®).
    6Available from Novozymes (e.g., Whitezyme ®).
    7 Random graft copolymer is a polyvinyl acetate grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains. The molecular weight of the polyethylene oxide backbone is about 6000 and the weight ratio of the polyethylene oxide to polyvinyl acetate is about 40 to 60 and no more than 1 grafting point per 50 ethylene oxide units, available from BASF as Sokalan PG101  ®.
    8A compound having the following general structure: bis((C2H5O)(C2H4O)n)(CH3)—N+—CxH2x—N+— (CH3)-bis((C2H5O)(C2H4O)n), wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof, available from BASF as Lutenzit Z 96 ®
    9DTPA is diethylenetriaminepentaacetic acid supplied by Dow Chemical, Midland, Michigan, USA.
    10Suitable Fluorescent Whitening Agents are for example, Tinopal ® AMS, Tinopal ® CBS-X, Sulphonated zinc phthalocyanine Ciba Specialty Chemicals, Basel, Switzerland. It can be provided in the amount ranging from 0-5%.
    11Suitable preservatives include methylisothiazolinone (MIT) or benzisothiazolinone (BIT), which can be provided in the amount ranging from 0-1%.
  • (2). Exemplary Liquid Detergent Compositions for Use in Unit Dose (UD) Products
  • The following liquid detergent compositions are prepared and encapsulated in a multi-compartment pouch formed by a polyvinyl alcohol-film.
  • TABLE 6
    A B
    Usage (g) 25.36 24.34
    Usage (ml) 23.7 22.43
    Wash Volume (L) 64 64
    Anionic/Nonionic ratio 1.73 9.9
    Ingredients (wt %)
    Linear C9-C15 Alkylbenzene sulfonic acid 18.25 22.46
    HC24/25 AE2/3S 90/10 blend 8.73 15.29
    C12-14 alkyl 9-ethoxylate 15.56 3.82
    Citric Acid 0.65 1.55
    Fatty acid 6.03 6.27
    Chelants 1.16 0.62
    PEI Polymers 1-10 of Example A 1~6 3
    S Copolymers 1-11 of Example B 1~6 3
    Enzymes 0.11 0.12
    Brightener 49 0.18 0.19
    Structurant 0.1 0.1
    Solvent system* 20.31 17.96
    Water 10.31 11.66
    Perfume 1.63 1.7
    Aesthetics 1.48 1.13
    Mono-ethanolamine or NaOH (or mixture 6.69 9.75
    thereof)
    Other laundry adjuncts/minors Q.S. Q.S.
    *May include, but not limited to propanediol, glycerol, ethanol, dipropyleneglycol, polyetheyleneglycol, polypropyleneglycol.
  • All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated. It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
  • Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
  • While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (16)

What is claimed is:
1. A cleaning composition comprising:
(1) from 0.01% to 20% by weight of at least one alkoxylated polyalkyleneimine that comprises:
a polyalkyleneimine core having an average number-average molecular weight (MWPEI) ranging from 100 to 100,000 Daltons; and
at least one side chain bonded to a nitrogen atom in the polyalkyleneimine core, wherein said at least one side chain has an empirical formula (I) of:

-(EO)b(PO)c—R  (I)
 wherein: EO is ethylene oxide; b has a weight average value ranging from 3 to 60; PO is propylene oxide; c has a weight average value ranging from 0 to 60; R is selected from the group consisting of hydrogen, C1-C4 alkyls, and combinations thereof;
(2) from 0.01% to 20% by weight of a sulfonate group-containing copolymer that comprises:
a structural unit (a) derived from a sulfonate group-containing monomer (A); and
a structural unit (b) derived from a polyoxyalkylene monomer (B) represented by formula (II):
Figure US20160090554A1-20160331-C00008
 wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; Z may be the same or different and each Z represents a structural unit derived from a C2-C20 alkylene oxide; n is from 1 to 200; and R0 represents hydrogen atom or a C1-C30 organic group; and
a structural unit (c) derived from a carboxyl group-containing monomer (C).
2. The cleaning composition of claim 1, wherein MWPEI of the polyalkyleneimine core of said at least one alkoxylated polyalkyleneimine ranges from 100 to 5000 Daltons, and preferably from 200 to 1000 Daltons; and wherein b ranges from 5 to 40, preferably from 10 to 30, more preferably from 15 to 25; and wherein c is 0.
3. The cleaning composition of claim 1, wherein MWPEI of the polyalkyleneimine core of said at least one alkoxylated polyalkyleneimine ranges from 100 to 5000 Daltons, and preferably from 200 to 1000 Daltons; and wherein b ranges from 10 to 50, preferably from 15 to 40, more preferably from 20 to 30; and wherein c ranges from 1 to 50, preferably from 5 to 40, and more preferably from 10 to 30.
4. The cleaning composition of claim 1, wherein said at least one alkoxylated polyalkyleneimine comprises: (1) a first alkoxylated polyalkyleneimine having a polyalkyleneimine core with MWPEI ranging from 100 to 5000 Daltons, and preferably from 200 to 1000 Daltons, with b ranging from 5 to 40, preferably from 10 to 30, more preferably from 15 to 25, and with c being 0; and (2) a second alkoxylated polyalkyleneimine having a polyalkyleneimine core with MWPEI ranging from 100 to 5000 Daltons, and preferably from 200 to 1000 Daltons, with b ranging from 10 to 50, preferably from 15 to 40, more preferably from 20 to 30, and with c ranging from 1 to 50, preferably from 5 to 40, and more preferably from 10 to 30.
5. The cleaning composition of claim 4, wherein the weight ratio between said first and second alkoxylated polyalkyleneimines ranges from 1:10 to 10:1, preferably from 1:5 to 5:1, and more preferably from 1:2 to 2:1.
6. The cleaning composition according to claim 1, wherein said at least one alkoxylated polyalkyleneimine is present in an amount ranging from 0.05% to 15%, preferably from 0.1% to 10%, and more preferably from 0.5% to 5%, by total weight of the cleaning composition.
7. The cleaning composition according to claim 1, wherein the sulfonate group-containing copolymer comprises: (1) from 1% to 38%, preferably from 4% to 20% and more preferably from 5% to 16%, by mass in an acid form equivalent of the structural unit (a) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer; and (2) from 9% to 76%, preferably from 20% to 49% and more preferably from 30% to 45%, by mass of the structural unit (b) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer; and (3) from 20% to 90%, preferably from 25% to 75% and more preferably from 35% to 55%, by mass in acid form equivalent of the structural unit (c) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer.
8. The cleaning composition of claim 7, wherein said sulfonate group-containing copolymer is characterized by a parameter of P×MWS×n that ranges from 950,000 to 8,000,000, and preferably from 1,000,000 to 50,000,000, wherein:
P is defined as the ratio by mass of the structural unit (b) to the structural unit (a) in the sulfonate group-containing copolymer; and
MWS is the weight average molecular weight of the sulfonate group-containing copolymer; and
n is as defined in formula (II).
9. The cleaning composition according to claim 8, wherein MWS ranges from 20,000 to 200,000, preferably from 25,000 to 100,000, and more preferably from 30,000 to 75,000; and wherein P ranges from 1.2 to 20, preferably from 1.5 to 15, more preferably from 2 to 10, and most preferably from 2.5 to 5; and wherein n ranges from 5 to 100, preferably form 10 to 80, and more preferably from 40 to 60.
10. The cleaning composition according to claim 1, wherein the sulfonate group-containing monomer (A) is a compound represented by the following formula (III):
Figure US20160090554A1-20160331-C00009
wherein R3 represents a hydrogen atom or a methyl group; R4 represents a direct bond, CH2, or CH2CH2; X and Y each represent a hydroxy group or SO3M where M represents a hydrogen atom, Li, Na, or K, and at least one of X and Y is SO3M.
11. The cleaning composition according to claim 1, wherein the sulfonate group-containing copolymer comprises:
from 5% to 16% by mass of the structure unit (a) in acid form equivalent in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer, wherein the sulfonate group-containing monomer (A) is 3-allyloxy-2-hydroxypropanesulfonate; and
from 30% to 45% by mass of the structure unit (b) in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer, wherein the polyoxyalkylene monomer (B) comprises an ethylene oxide-derived group having from 40 to 60 repeating oxyethylene units; and
from 35% to 55% by mass of the structure unit (c) in acid form equivalent in 100% by mass of all monomer structural units constituting the sulfonate group-containing copolymer, wherein the carboxyl group-containing monomer (C) is acrylic acid or a salt thereof.
12. The cleaning composition according to claim 1, wherein said sulfonate group-containing copolymer is present in an amount ranging from 0.05% to 15%, preferably from 0.1% to 10%, and more preferably from 0.5% to 5%, by total weight of the cleaning composition.
13. The cleaning composition according to claim 1, which is selected from the group consisting of a laundry detergent composition, a hard surface cleaning composition, a hand dishwashing composition, and an automatic dishwashing composition; and wherein the cleaning composition further comprises a surfactant selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof, and wherein said surfactant is preferably an anionic surfactant selected from the group consisting of alkyl benzene sulfonate, alkoxylated alkyl sulfates, alkyl sulfates, and mixtures thereof.
14. The cleaning composition according to claim 1, wherein the cleaning composition is a liquid composition, and preferably in a single phase or multiphase unit dose form as encapsulated by a single compartment or multi-compartment water-soluble pouch.
15. Use of the cleaning composition according to claim 1 for treating fabrics to achieve improved whiteness maintenance benefit.
16. A method of treating a soiled material, comprising the steps of:
a) providing a cleaning composition according to claim 1;
b) contacting the cleaning composition with at least a portion of the soiled material; and
c) optionally, rinsing the soiled material.
US14/862,182 2014-09-25 2015-09-23 Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers Abandoned US20160090554A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOCN2014/087376 2014-09-25
PCT/CN2014/087376 WO2016045026A1 (en) 2014-09-25 2014-09-25 Laundry detergents and cleaning compositions comprising sulfonate group-containing polymers
WOCN2015/089571 2015-09-15
PCT/CN2015/089571 WO2016045518A1 (en) 2014-09-25 2015-09-15 Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers

Publications (1)

Publication Number Publication Date
US20160090554A1 true US20160090554A1 (en) 2016-03-31

Family

ID=55583768

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/862,182 Abandoned US20160090554A1 (en) 2014-09-25 2015-09-23 Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers

Country Status (1)

Country Link
US (1) US20160090554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291133A (en) * 2017-02-13 2019-09-27 巴斯夫欧洲公司 The method for manufacturing alkoxylate polyalkylene imine
WO2022083949A1 (en) * 2020-10-20 2022-04-28 Basf Se Compositions and their use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798320A2 (en) * 1996-03-26 1997-10-01 Nof Corporation Ternary copolymer
US20110245132A1 (en) * 2008-09-01 2011-10-06 Jeffrey Scott Dupont Sulfonate group-containing copolymers and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798320A2 (en) * 1996-03-26 1997-10-01 Nof Corporation Ternary copolymer
US20110245132A1 (en) * 2008-09-01 2011-10-06 Jeffrey Scott Dupont Sulfonate group-containing copolymers and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291133A (en) * 2017-02-13 2019-09-27 巴斯夫欧洲公司 The method for manufacturing alkoxylate polyalkylene imine
US11390713B2 (en) * 2017-02-13 2022-07-19 Basf Se Process for making an alkoxylated polyalkylenimine
WO2022083949A1 (en) * 2020-10-20 2022-04-28 Basf Se Compositions and their use

Similar Documents

Publication Publication Date Title
CA2959190C (en) Cleaning compositions comprising amphiphilic graft copolymers and sulfonate group-containing copolymers
US8247368B2 (en) Cleaning compositions comprising a multi-polymer system comprising at least one alkoxylated grease cleaning polymer
JP5503545B2 (en) Cleaning composition comprising a monocarboxylic acid monomer, a dicarboxylic acid monomer, and a sulfonic acid group-containing monomer
EP0523950B1 (en) Use of acrylic acid/ethyl acrylate copolymers for enhanced clay soil removal in liquid laundry detergents
US9862912B2 (en) Cleaning compositions containing cationic polymers, and methods of making and using same
US20150275135A1 (en) Cleaning composition containing cationic polymers and methods of making and using same
US20120227195A1 (en) Cleaning Compositions With Polyoxyalkylene-Oxide Capped Polyalkylene-Oxide-Polycarboxylate Comb Polymers
CN112567011B (en) Detergent composition
WO2015143644A1 (en) Cleaning compositions containing cationic polymers, and methods of making and using same
US20160237381A1 (en) Cleaning compositions containing alkyl sulfate surfactants and cationic polymer for holistic improvement of sudsing profile
US9845445B2 (en) Cleaning compositions comprising alkoxylated polyalkyleneimine, organomodified silicone and silixane-based diluent
WO2013171210A1 (en) Laundry detergent compositions comprising polyalkoxylated polyethyleneimine
JP4727281B2 (en) Liquid detergent composition for clothing
US20160090554A1 (en) Cleaning compositions comprising alkoxylated polyalkyleneimines and sulfonate group-containing copolymers
US20170081613A1 (en) Cleaning compositions comprising amphiphilic graft copolymers and sulfonate group-containing copolymers
JP2022536178A (en) Liquid laundry detergent formulation
AU2015357388B2 (en) Detergents and cleaning products containing a polymer active ingredient
AU2018368558B2 (en) Soil release polymers and laundry detergent compositions containing them
WO2020160996A1 (en) Improvements relating to fabric cleaning
US20240018304A1 (en) Biodegradable polymers
WO2014056743A1 (en) Liquid detergent compositions with soap, sulfo-estolide surfactant and cellulase

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PROCTER & GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, XIAOLI;ZHAI, XIANLING;QIN, PENG;AND OTHERS;SIGNING DATES FROM 20150925 TO 20151109;REEL/FRAME:037164/0518

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION