US20160089579A1 - Multi-layer golf ball - Google Patents

Multi-layer golf ball Download PDF

Info

Publication number
US20160089579A1
US20160089579A1 US14/892,993 US201414892993A US2016089579A1 US 20160089579 A1 US20160089579 A1 US 20160089579A1 US 201414892993 A US201414892993 A US 201414892993A US 2016089579 A1 US2016089579 A1 US 2016089579A1
Authority
US
United States
Prior art keywords
golf ball
ball according
cover
core
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/892,993
Inventor
Chien-Hsin Chou
Chen-Tai Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike Inc
Original Assignee
Nike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike Inc filed Critical Nike Inc
Priority to US14/892,993 priority Critical patent/US20160089579A1/en
Publication of US20160089579A1 publication Critical patent/US20160089579A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0077Physical properties
    • A63B37/0091Density distribution amongst the different ball layers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0031Hardness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0034Deflection or compression
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0037Flexural modulus; Bending stiffness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0045Thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0046Deflection or compression
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0047Density; Specific gravity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0049Flexural modulus; Bending stiffness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/0051Materials other than polybutadienes; Constructional details
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/0051Materials other than polybutadienes; Constructional details
    • A63B37/0059Ionomer
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/006Physical properties
    • A63B37/0064Diameter
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/006Physical properties
    • A63B37/0065Deflection or compression
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/006Physical properties
    • A63B37/0069Flexural modulus; Bending stiffness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0072Characteristics of the ball as a whole with a specified number of layers
    • A63B37/0075Three piece balls, i.e. cover, intermediate layer and core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A golf ball has an ionomer resin core center, a cured rubber layer made from (a) an at least 70% cis-1,4 polybutadiene with Mooney viscosity (ML1+4(100° C.)) 40, (b) an unsaturated carboxylic acid or metal salt, and (c) a free radical initiator; and a cover including a thermoplastic material. The core center has a diameter of 21-29 mm and a 10-130 kg compression deformation (C) 4 mm. The core layer is 5 mm thick with a specific gravity 0.1 g/cm3 greater than that of the core center. The cover may have a flexural modulus 15,000 psi or ≦35,000 psi. Also disclosed is a golf ball with an ionomer core center having C1 3.5 mm, a cured rubber core layer 5 mm thick with C2 3 mm, and a cover with C3 2.8 mm, with C2/C1 and C3/C2 about 0.8-1.

Description

  • This application claims the benefit of U.S. Provisional Application Ser. No. 61/829,446, filed May 31, 2013, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The invention concerns multi-layer golf balls with thermoplastic core materials.
  • BACKGROUND
  • This section provides information helpful in understanding the invention but that is not necessarily prior art.
  • Golf ball core and cover layers are typically constructed with polymer compositions including, for example, polybutadiene rubber, polyurethanes, polyamides, ionomers, and blends of such polymers. Ionomers, particularly ethylene-based ionomers, are a preferred group of polymers for golf ball layers because of their toughness, durability, and wide range of hardness values.
  • Golf ball compositions comprising highly neutralized acid polymers are known. For example, U.S. Pat. No. 7,375,151, the entire disclosure of which is incorporated herein by reference, discloses a highly-resilient thermoplastic ionomer resin composition comprising (a) melt-processable, ethylene acid copolymer; (b) aliphatic, mono-functional organic acid or its salt; (c) a thermoplastic resin; (d) a cation source; and (e) optionally, a filler. The ionomer resin may be neutralized to greater than 90% of all the acid groups present and remain melt-processable. The patent discloses using the highly-resilient thermoplastic composition in one-piece, two-piece, three-piece, and multi-layered golf balls.
  • While various uses for highly neutralized acid polymers in golf balls have been discovered, there is a need to improve golf ball materials using highly neutralized acid polymers or other thermoplastic polymers to particular golf ball constructions having desirable properties.
  • SUMMARY OF THE DISCLOSURE
  • This section provides a general summary of the disclosure and is not comprehensive of its full scope or all of the disclosed features.
  • A multi-layer golf ball has a core center including an ionomer resin and, optionally, further including a polyolefin elastomer; a core layer including a cured product of a rubber composition including (a) a polybutadiene with at least 70% cis-1,4 bonds and with a Mooney viscosity (ML1+4(100° C.)) of at least about 40, (b) an unsaturated carboxylic acid or its metal salt, and (c) a free radical initiator, e.g., an organic peroxide; and a cover including a thermoplastic material. The core center has a diameter of from about 21 mm to about 29 mm and a 10-130 kg compression deformation of at least about 4 mm. The core layer is at least about 5 mm thick. The specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
  • In a first embodiment, the cover has a flexural modulus of at least about 15,000 psi. In a second embodiment, the cover has a flexural modulus of up to about 35,000 psi.
  • Also disclosed is a golf ball with a core center including an ionomer resin and having a 10-130 kg compression deformation of at least about 3.5 mm, a core layer including the cured product of the disclosed rubber composition having a thickness of at least about 5 mm and a second 10-130 kg compression deformation C2 of at least about 3 mm, and a cover having a third 10-130 kg compression deformation C3 of at least about 2.8 mm, with ratios of C2/C1 and C3/C2 each independently being from about 0.8 to about 1.
  • In a first embodiment, the cover has a surface Shore D hardness of at least 60. In a second embodiment, the cover has a surface Shore D hardness of less than 60.
  • The golf ball has a multi-layer core including a core center as an innermost core part and one or more “core layers” outward from and enclosing the center. A “core layer” for this invention is a golf ball layer lying between the center and the cover of the golf ball. In describing this invention, a “cover” is the outermost structural golf ball layer or, for two cover layers, each “cover layer” is one of the two outermost structural golf ball layers. Coating layers (whether paint layers or clear coating layers) are not considered to be structural layers.
  • Hardness is measured according to ASTM D2240, but measured on a curved surface of the core center and core layer or on a land area of a curved surface of the cover. It is understood in this technical field of art that the hardness measured in this way often varies from the hardness of a flat slab or button of material in a non-linear way that cannot be correlated, for example because of effects of underlying layers. Because of the curved surface, care must be taken to center the golf ball or golf ball subassembly under the durometer indentor before a surface hardness reading is obtained and to measure an even area, e.g. on the dimpled surface cover measurements are taken on a land (fret) area between dimples. Specific gravity is measured according to ASTM D792. Flexural modulus is measured according to ASTM D790. Specific gravity is measured according to ASTM D792. “Compression deformation” is the deformation amount under a compressive load of 130 kg minus the deformation amount under a compressive load of 10 kg. The amount of deformation of the ball under a force of 10 kg is measured, then the force is increased to 130 kg and the amount of deformation under the new force of 130 kg is measured. The deformation amount at 10 kg is subtracted from the deformation amount at 130 kg to give the 10-130 kg compression deformation. “Mooney viscosity (ML1+4(100° C.))” is measured according to JIS K6300 using a Mooney viscometer, which is a type of rotary plastomer. In the term ML1+4(100° C.), “M” indicates Mooney viscosity, “L” stands for large rotor (L-type), and “1+4” indicates a pre-heating time of 1 minute and a rotor rotation time of 4 minutes. The “(100° C.)” indicates that the measurement is carried out at a temperature of 100° C. “Coefficient of restitution” or COR in the present invention is measured generally according to the following procedure: a golf ball is fired by an air cannon at an initial velocity of 40 m/sec, and a speed monitoring device is located over a distance of 0.6 to 0.9 meters from the cannon. After striking a steel plate positioned about 1.2 meters away from the air cannon, the test object rebounds through the speed-monitoring device. The return velocity divided by the initial velocity is the COR.
  • “A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the item is present; the indefinite articles indicate a plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range. Each value within a range and the endpoints of a range are hereby all disclosed as separate embodiments. In this description of the invention, for convenience, “polymer” and “resin” are used interchangeably to encompass resins, oligomers, and polymers. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated items, but do not preclude the presence of other items. As used in this specification, the term “or” includes any and all combinations of one or more of the listed items. When the terms first, second, third, etc. are used to differentiate various items from each other, these designations are merely for convenience and do not limit the items.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The FIGURE is a partial cross-sectional view of an embodiment of a multi-layer golf ball that illustrates some aspects of the disclosed technology. The parts of the FIGURE are not necessarily to scale.
  • DETAILED DESCRIPTION
  • A detailed description of exemplary, nonlimiting embodiments follows.
  • As shown in the FIGURE, a multi-layer golf ball 100 has a core center 110 with a surface 115, a core layer 120 that is radially outward from the core center 110 and has a surface 125, and a cover 130 that has a surface 135 and forms the outermost layer of the golf ball 100.
  • The core center includes an ionomer resin. Ionomer resins, which are metal cation ionomers of addition copolymers of ethylenically unsaturated acids, are preferably alpha-olefin, particularly ethylene, copolymers with C3 to C8 α,β-ethylenically unsaturated carboxylic acids, particularly acrylic or methacrylic acid. The copolymers may also contain a softening monomer such as an alkyl acrylate or methacrylate, for example a C1 to C8 alkyl acrylate or methacrylate ester. The α,β-ethylenically unsaturated carboxylic acid monomer may be from about 4 weight percent or about 6 weight percent or about 8 weight percent up to about 20 weight percent or up to about 35 weight percent of the copolymer, and the softening monomer, when present, is preferably present in a finite amount, preferably at least about 5 weight percent or at least about 11 weight percent, up to about 23 weight percent or up to about 25 weight percent or up to about 50 weight percent of the copolymer.
  • Nonlimiting specific examples of acid-containing ethylene copolymers include copolymers of ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/isobutyl acrylate, ethylene/acrylic acid/isobutyl acrylate, ethylene/methacrylic acid/n-butyl methacrylate, ethylene/acrylic acid/methyl methacrylate, ethylene/acrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl methacrylate, and ethylene/acrylic acid/n-butyl methacrylate. Preferred acid-containing ethylene copolymers include copolymers of ethylene/methacrylic acid/n-butyl acrylate, ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/acrylic acid/ethyl acrylate, ethylene/methacrylic acid/ethyl acrylate, and ethylene/acrylic acid/methyl acrylate. In various embodiments the most preferred acid-containing ethylene copolymers include ethylene/(meth)acrylic acid/n-butyl acrylate, ethylene/(meth)acrylic acid/ethyl acrylate, and ethylene/(meth)acrylic acid/methyl acrylate copolymers.
  • The ionomer resin may be a high acid ionomer resin. In general, ionomers prepared by neutralizing acid copolymers including at least about 16 weight % of copolymerized acid residues based on the total weight of the unneutralized ethylene acid copolymer are considered “high acid” ionomers. In these high modulus ionomers, the acid monomer, particularly acrylic or methacrylic acid, is present in about 16 to about 35 weight %. In various embodiments, the copolymerized carboxylic acid may be from about 16 weight %, or about 17 weight % or about 18.5 weight % or about 20 weight % up to about 21.5 weight % or up to about 25 weight % or up to about 30 weight % or up to about 35 weight % of the unneutralized copolymer. A high acid ionomer may be combined with a “low acid” ionomer in which the copolymerized carboxylic acid is less than 16 weight % of the unneutralized copolymer. Such a mixture of a high acid ionomer and a low acid ionomer is particularly suitable for the third thermoplastic material of the inner cover layer or the fourth thermoplastic material or the outer cover layer, and especially for the third thermoplastic material of the inner cover layer.
  • The acid moiety in the ethylene-acid copolymer is neutralized by any metal cation. Suitable preferred cations include lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, or a combination of these cations; in various embodiments alkali metal, alkaline earth metal, or zinc cations are particularly preferred. In various embodiments, the acid groups of the ionomer may be neutralized from about 10% or from about 20% or from about 30% or from about 40% to about 60% or to about 70% or to about 75% or to about 80% or to about 90%.
  • A sufficiently high molecular weight, monomeric organic acid or salt of such an organic acid may be added to the acid copolymer or ionomer so that the acid copolymer or ionomer can be neutralized, without losing processability, to a level above the level that would cause the ionomer alone to become non-melt-processable. The high-molecular weight, monomeric organic acid its salt may be added to the ethylene-unsaturated acid copolymers before they are neutralized or after they are optionally partially neutralized to a level between about 1 and about 100%, provided that the level of neutralization is such that the resulting ionomer remains melt-processable. In generally, when the high-molecular weight, monomeric organic acid is included the acid groups of the copolymer may be neutralized from at least about 40 to about 100%, preferably from at least about 90% to about 100%, and most preferably 100% without losing processability. Such high neutralization, particularly to levels greater than 80%, greater than 90% or greater than 95% or most preferably 100%, without loss of processability can be done by (a) melt-blending the ethylene α,β-ethylenically unsaturated carboxylic acid copolymer or a melt-processable salt of the copolymer with an organic acid or a salt of organic acid, and (b) adding a sufficient amount of a cation source up to 110% of the amount needed to neutralize the total acid in the copolymer or ionomer and organic acid or salt to the desired level to increase the level of neutralization of all the acid moieties in the mixture preferably to greater than 90%, preferably greater than 95%, or preferably to 100%. To obtain 100% neutralization, it is preferred to add a slight excess of up to 110% of cation source over the amount stoichiometrically required to obtain the 100% neutralization.
  • The high molecular weight, monomeric saturated or unsaturated acid may have from 8 or 12 or 18 carbon atoms to 36 carbon atoms or to less than 36 carbon atoms. Nonlimiting suitable examples of the high-molecular weight, monomeric saturated or unsaturated organic acids include stearic, behenic, erucic, oleic, and linoleic acids and their salts, particularly the barium, lithium, sodium, zinc, bismuth, chromium, cobalt, copper, potassium, strontium, titanium, tungsten, magnesium, or calcium salts of these fatty acids. These may be used in combinations.
  • The thermoplastic material of the cover may also include an ionomer resin. The ionomer resin used in the thermoplastic material of the cover may be the same or different from the ionomer resin or resins in the core center. A “high acid” ionomer resin may be used in the thermoplastic material of the cover.
  • The polymeric portions of the core center and cover thermoplastic material may independent of one another be only, or essentially, one or more ionomer resins. In such cases, the ionomer resin or resins may be at least about 90 weight percent, or at least about 95 weight percent, or preferably at least about 97 weight percent or at least about 98 weight percent or at least about 99 weight percent, or more preferably about 100 weight percent of the polymeric portion of the thermoplastic material.
  • In various embodiments, the core center and the cover thermoplastic material may include one or more other thermoplastic polymers, particularly thermoplastic elastomers, in addition to an ionomer resin, or, in the case of the cover thermoplastic material, instead of the ionomer resin. Nonlimiting examples of other suitable thermoplastic elastomers that can be used include thermoplastic polyolefin elastomers such as metallocene-catalyzed block copolymers of ethylene and α-olefins having 4 to about 8 carbon atoms, thermoplastic polyamide elastomers (e.g., polyether block polyamides), thermoplastic polyester elastomers, thermoplastic styrene block copolymer elastomers such as polystyrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), and polystyrene-isoprene-styrene), thermoplastic polyurethane elastomers, thermoplastic polyurea elastomers, and dynamic vulcanizates of rubbers in these thermoplastic elastomers and in other thermoplastic matrix polymers.
  • Thermoplastic polyolefin elastomers may also be used in the thermoplastic materials of the golf ball. These are metallocene-catalyzed block copolymers of ethylene and α-olefins having 4 to about 8 carbon atoms that are prepared by single-site metallocene catalysis, for example in a high pressure process in the presence of a catalyst system comprising a cyclopentadienyl-transition metal compound and an alumoxane. Nonlimiting examples of the α-olefin softening comonomers include hexane-1 or octene-1; octene-1 is a preferred comonomer to use. These materials are commercially available, for example, from ExxonMobil under the tradename Exact™ and from the Dow Chemical Company under the tradename Engage™.
  • In various preferred embodiments, the core center includes a polyolefin elastomer, especially one of the thermoplastic polyolefin elastomers just described. The core center may include from about 5 percent by weight to about 50 percent by weight, preferably from about 10 percent by weight to about 30 percent by weight polyolefin elastomer based on the combined weights of polyolefin elastomer and ionomer resin.
  • In one embodiment, one or both of the core center and cover includes or include a combination of a metal ionomer of a copolymer of ethylene and at least one of acrylic acid and methacrylic acid, a metallocene-catalyzed copolymer of ethylene and an α-olefin having 4 to about 8 carbon atoms, and a metal salt of an unsaturated fatty acid that may be prepared as described in Statz et al., U.S. Pat. No. 7,375,151 or as described in Kennedy, “Process for Making Thermoplastic Golf Ball Material and Golf Ball with Thermoplastic Material, U.S. patent application Ser. No. 13/825112, filed 15 Mar. 2013, the entire contents of both being incorporated herein by reference.
  • Suitable thermoplastic styrene block copolymer elastomers that may be used in the core center and cover thermoplastic material of the golf ball include poly(styrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), poly(styrene-isoprene-styrene), and poly(styrene-ethylene-co-propylene) copolymers. These styrenic block copolymers may be prepared by living anionic polymerization with sequential addition of styrene and the diene forming the soft block, for example using butyl lithium as initiator. Thermoplastic styrene block copolymer elastomers are commercially available, for example, under the trademark Kraton™ sold by Kraton Polymers U.S. LLC, Houston, Tex. Other such elastomers may be made as block copolymers by using other polymerizable, hard, non-rubber monomers in place of the styrene, including meth(acrylate) esters such as methyl methacrylate and cyclohexyl methacrylate, and other vinyl arylenes, such as alkyl styrenes.
  • Thermoplastic polyurethane elastomers such as thermoplastic polyester-polyurethanes, polyether-polyurethanes, and polycarbonate-polyurethanes may be used in the core center and cover thermoplastic material, particularly in the cover thermoplastic material. The thermoplastic polyurethane elastomers include polyurethanes polymerized using as polymeric diol reactants polyethers and polyesters including polycaprolactone polyesters. These polymeric diol-based polyurethanes are prepared by reaction of the polymeric diol (polyester diol, polyether diol, polycaprolactone diol, polytetrahydrofuran diol, or polycarbonate diol), one or more polyisocyanates, and, optionally, one or more chain extension compounds. Chain extension compounds, as the term is being used, are compounds having two or more functional groups reactive with isocyanate groups, such as the diols, amino alcohols, and diamines. Preferably the polymeric diol-based polyurethane is substantially linear (i.e., substantially all of the reactants are difunctional).
  • Diisocyanates used in making the polyurethane elastomers may be aromatic or aliphatic. Useful diisocyanate compounds used to prepare thermoplastic polyurethanes include, without limitation, isophorone diisocyanate (IPDI), methylene bis-4-cyclohexyl isocyanate (H12MDI), cyclohexyl diisocyanate (CHDI), m-tetramethyl xylene diisocyanate (m-TMXDI), p-tetramethyl xylene diisocyanate (p-TMXDI), 4,4′-methylene diphenyl diisocyanate (MDI, also known as 4,4′-diphenylmethanediisocyanate), 2,4- or 2,6-toluene diisocyanate (TDI), ethylene diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diisocyanatohexane (hexamethylene diisocyanate or HDI), 1,4-butylene diisocyanate, lysine diisocyanate, meta-xylylenediioscyanate and para-xylylenediisocyanate (XDI), 4-chloro-1,3-phenylene diisocyanate, 1,5-tetrahydro-naphthalene diisocyanate, 4,4′-dibenzyl diisocyanate, and combinations of these. Nonlimiting examples of higher-functionality polyisocyanates that may be used in limited amounts to produce branched thermoplastic polyurethanes (optionally along with monofunctional alcohols or monofunctional isocyanates) include 1,2,4-benzene triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate, bicycloheptane triisocyanate, triphenylmethane-4,4′,4″-triisocyanate, isocyanurates of diisocyanates, biurets of diisocyanates, allophanates of diisocyanates, and the like.
  • Nonlimiting examples of suitable diols that may be used as extenders include ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol, and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol, and tetrapropylene glycol; cyclohexanedimethanol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,3-propanediol, butylene glycol, neopentyl glycol, dihydroxyalkylated aromatic compounds such as the bis(2-hydroxyethyl)ethers of hydroquinone and resorcinol; p-xylene-α,α′-diol; the bis(2-hydroxyethyl)ether of p-xylene-α,α′-diol; m-xylene-α,α′-diol, and combinations of these. Other active hydrogen-containing chain extenders that contain at least two active hydrogen groups may be used, for example, dithiols, diamines, or compounds having a mixture of hydroxyl, thiol, and amine groups, such as alkanolamines, aminoalkyl mercaptans, and hydroxyalkyl mercaptans, among others. Suitable diamine extenders include, without limitation, ethylene diamine, diethylene triamine, triethylene tetraamine, and combinations of these. Other typical chain extenders are amino alcohols such as ethanolamine, propanolamine, butanolamine, and combinations of these. The molecular weights of the chain extenders preferably range from about 60 to about 400. Alcohols and amines are preferred.
  • In addition to difunctional extenders, a small amount of a trifunctional extender such as trimethylolpropane, 1,2,6-hexanetriol and glycerol, or monofunctional active hydrogen compounds such as butanol or dimethylamine, may also be included. The amount of trifunctional extender or monofunctional compound employed may be, for example, 5.0 equivalent percent or less based on the total weight of the reaction product and active hydrogen containing groups used.
  • The polyester diols used in forming a thermoplastic polyurethane elastomer are in general prepared by the condensation polymerization of one or more polyacid compounds and one or more polyol compounds. Preferably, the polyacid compounds and polyol compounds are di-functional, i.e., diacid compounds and diols are used to prepare substantially linear polyester diols, although minor amounts of mono-functional, tri-functional, and higher functionality materials can be included to provide a slightly branched, but uncrosslinked polyester polyol component. Suitable dicarboxylic acids include, without limitation, glutaric acid, succinic acid, malonic acid, oxalic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, adipic acid, maleic acid, suberic acid, azelaic acid, dodecanedioic acid, their anhydrides and polymerizable esters (e.g., methyl esters) and acid halides (e.g., acid chlorides), and mixtures of these. Suitable polyols include those already mentioned, especially the diols. Typical catalysts for the esterification polymerization are protonic acids, Lewis acids, titanium alkoxides, and dialkyltin oxides.
  • A polymeric polyether or polycaprolactone diol reactant for preparing thermoplastic polyurethane elastomers may be obtained by reacting a diol initiator, e.g., 1,3-propanediol or ethylene or propylene glycol, with a lactone or alkylene oxide chain-extension reagent. Lactones that can be ring opened by an active hydrogen are well-known in the art. Examples of suitable lactones include, without limitation, ε-caprolactone, γ-caprolactone, β-butyrolactone, β-propriolactone, γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-decanolactone, δ-decanolactone, γ-nonanoic lactone, γ-octanoic lactone, and combinations of these. In one preferred embodiment, the lactone is ε-caprolactone. Useful catalysts include those mentioned above for polyester synthesis. Alternatively, the reaction can be initiated by forming a sodium salt of the hydroxyl group on the molecules that will react with the lactone ring. In other embodiments, a diol initiator may be reacted with an oxirane-containing compound or cyclic ether to produce a polyether diol to be used in the polyurethane elastomer polymerization. Alkylene oxide polymer segments include, without limitation, the polymerization products of ethylene oxide, propylene oxide, 1,2-cyclohexene oxide, 1-butene oxide, 2-butene oxide, 1-hexene oxide, tert-butylethylene oxide, phenyl glycidyl ether, 1-decene oxide, isobutylene oxide, cyclopentene oxide, 1-pentene oxide, and combinations of these. The oxirane- or cyclic ether-containing compound is preferably selected from ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, and combinations of these. The alkylene oxide polymerization is typically base-catalyzed. The polymerization may be carried out, for example, by charging the hydroxyl-functional initiator compound and a catalytic amount of caustic, such as potassium hydroxide, sodium methoxide, or potassium tert-butoxide, and adding the alkylene oxide at a sufficient rate to keep the monomer available for reaction. Two or more different alkylene oxide monomers may be randomly copolymerized by coincidental addition or polymerized in blocks by sequential addition. Homopolymers or copolymers of ethylene oxide or propylene oxide are preferred. Tetrahydrofuran may be polymerized by a cationic ring-opening reaction using such counterions as SbF6 , AsF6 , PF6 , SbCl6 , BF4 , CF3SO3 , FSO3 , and ClO4 . Initiation is by formation of a tertiary oxonium ion. The polytetrahydrofuran segment can be prepared as a “living polymer” and terminated by reaction with the hydroxyl group of a diol such as any of those mentioned above. Polytetrahydrofuran is also known as polytetramethylene ether glycol (PTMEG).
  • Aliphatic polycarbonate diols that may be used in making a thermoplastic polyurethane elastomer may be prepared by the reaction of diols with dialkyl carbonates (such as diethyl carbonate), diphenyl carbonate, or dioxolanones (such as cyclic carbonates having five- and six-member rings) in the presence of catalysts like alkali metal, tin catalysts, or titanium compounds. Useful diols include, without limitation, any of those already mentioned. Aromatic polycarbonates are usually prepared from reaction of bisphenols, e.g., bisphenol A, with phosgene or diphenyl carbonate.
  • In various embodiments, the polymeric diol preferably has a weight average molecular weight of at least about 500, more preferably at least about 1000, and even more preferably at least about 1800 and a weight average molecular weight of up to about 10,000, but polymeric diols having weight average molecular weights of up to about 5000, especially up to about 4000, may also be preferred. The polymeric diol advantageously has a weight average molecular weight in the range from about 500 to about 10,000, preferably from about 1000 to about 5000, and more preferably from about 1500 to about 4000. The weight average molecular weights may be determined by ASTM D4274.
  • The reaction of the polyisocyanate, polymeric diol, and diol or other chain extension agent is typically carried out at an elevated temperature in the presence of a catalyst. Typical catalysts for this reaction include organotin catalysts such as stannous octoate, dibutyl tin dilaurate, dibutyl tin diacetate, dibutyl tin oxide, tertiary amines, zinc salts, and manganese salts. Generally, for elastomeric polyurethanes, the ratio of polymeric diol, such as polyester diol, to extender can be varied within a relatively wide range depending largely on the desired flexural modulus of the final polyurethane elastomer. For example, the equivalent proportion of polyester diol to extender may be within the range of 1:0 to 1:12 and, more preferably, from 1:1 to 1:8. Preferably, the diisocyanate(s) employed are proportioned such that the overall ratio of equivalents of isocyanate to equivalents of active hydrogen containing materials is within the range of 1:1 to 1:1.05, and more preferably, 1:1 to 1:1.02. The polymeric diol segments typically are from about 35% to about 65% by weight of the polyurethane polymer, and preferably from about 35% to about 50% by weight of the polyurethane polymer.
  • Suitable thermoplastic polyurea elastomers may be prepared by reaction of one or more polymeric diamines or polyols with one or more of the polyisocyanates already mentioned and one or more diamine extenders. Nonlimiting examples of suitable diamine extenders include ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxy)butane, diethyleneglycol-di(aminopropyl)ether), 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, 1,3- or 1,4-bis(methylamino)-cyclohexane, isophorone diamine, 1,2- or 1,4-bis(sec-butylamino)-cyclohexane, N,N′-diisopropyl-isophorone diamine, 4,4′-diamino-dicyclohexylmethane, 3,3′-dimethyl-4,4′-diamino-dicyclohexylmethane, N,N′-dialkylamino-dicyclohexylmethane, and 3,3′-diethyl-5,5′-dimethyl-4,4′-diamino-dicyclohexylmethane. Polymeric diamines include polyoxyethylene diamines, polyoxypropylene diamines, poly(oxyethylene-oxypropylene)diamines, and poly(tetramethylene ether)diamines. The amine- and hydroxyl-functional extenders already mentioned may be used as well. Generally, as before, trifunctional reactants are limited and may be used in conjunction with monofunctional reactants to prevent crosslinking.
  • Suitable thermoplastic polyamide elastomers may be obtained by: (1) polycondensation of (a) a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, or any of the other dicarboxylic acids already mentioned with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, or decamethylenediamine, 1,4-cyclohexanediamine, m-xylylenediamine, or any of the other diamines already mentioned; (2) a ring-opening polymerization of a cyclic lactam, such as ε-caprolactam or ω-laurolactam; (3) polycondensation of an aminocarboxylic acid, such as 6-aminocaproic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, or 12-aminododecanoic acid; or (4) copolymerization of a cyclic lactam with a dicarboxylic acid and a diamine to prepare a carboxylic acid-functional polyamide block, followed by reaction with a polymeric ether diol (polyoxyalkylene glycol) such as any of those already mentioned. Polymerization may be carried out, for example, at temperatures of from about 180° C. to about 300° C. Specific examples of suitable polyamide block copolymers include NYLON 6, NYLON 66, NYLON 610, NYLON 11, NYLON 12, copolymerized NYLON MXD6, and NYLON 46 block copolymer elastomers. Thermoplastic poly(ether amide) block copolymer elastomers (PEBA) are commercially available under the trademark Pebax® from Arkema.
  • Thermoplastic polyester elastomers have blocks of monomer units with low chain length that form the crystalline regions and blocks of softening segments with monomer units having relatively higher chain lengths. Thermoplastic polyester elastomers are commercially available under the trademark Hytrel® from DuPont. The core center and cover thermoplastic material may each independently include other polymers. In one example, the core center may include dispersed domains of cured rubbers, which may be incorporated in a thermoplastic elastomer matrix via dynamic vulcanization of rubbers in any of these thermoplastic elastomers or in other thermoplastic polymers. One such composition is described in Voorheis et al, U.S. Pat. No. 7,148,279, which is incorporated herein by reference. In various embodiments, the core center may include a thermoplastic dynamic vulcanizate of a rubber in a non-elastomeric matrix resin such as polypropylene. Thermoplastic vulcanizates commercially available from ExxonMobil under the tradename Santoprene™ are believed to be vulcanized domains of EPDM in polypropylene.
  • Plasticizers or softening polymers may be incorporated. One example of such a plasticizer is the high molecular weight, monomeric organic acid or its salt that may be incorporated, for example, with an ionomer polymer as already described, including metal stearates such as zinc stearate, calcium stearate, barium stearate, lithium stearate and magnesium stearate. For most thermoplastic elastomers, the percentage of hard-to-soft segments is adjusted if lower hardness is desired rather than by adding a plasticizer.
  • The cover thermoplastic material has a flexural modulus of at least about 15,000 psi. Like compression deformation, flexural modulus depends on the nature of the polymers used and their relative proportions and whether plasticizers or fillers are used and in what amount. In various preferred embodiments, the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi, or preferably from about 20,000 psi to about 45,000 psi, or more preferably from about 25,000 psi to about 40,000 psi.
  • Nonlimiting examples of commercial polymers that may be used that have a flexural modulus of at least about 15,000 psi are the grades of ionomer resins sold by DuPont Company, Wilmington Del. under the name Surlyn® 7930, 7940, 8140, 8150, 8920, 8940, 8945, 9120, 9150, 9910, and 9945. The thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
  • The cover thermoplastic material may instead, or in addition, have a flexural modulus of up to about 35,000 psi. In various preferred embodiments, the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi
  • The thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
  • The golf ball has a core layer between the core center and the cover. The core layer includes a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and an organic peroxide, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of at least about 40, preferably from about 40 to about 85, and more preferably from about 50 to about 85 and has at least about 70%, preferably at least about 80%, more preferably at least about 90%, and still more preferably at least about 95%, and most preferably at least about 98% of the monomer units joined via cis-1,4 bonds based on the total number of butadiene monomer units. Higher cis-1,4-bond content in the polybutadiene increases resilience. Moreover, it is preferred that the polybutadiene have a 1,2-vinyl bond content of preferably not more than 2%, more preferably not more than 1.7%, and even more preferably not more than 1.5%.
  • Such high cis-1,4 polybutadienes are commercially available or can be polymerized using a rare-earth catalyst or a Group VIII metal compound catalyst, preferably a rare-earth catalyst. Nonlimiting examples of rare-earth catalysts that may be used include those made by a combination of a lanthanide series rare-earth compound with an organoaluminum compound, an alumoxane, a halogen-bearing compound, and an optional Lewis base. Examples of suitable lanthanide series rare-earth compounds include halides, carboxylates, alcoholates, thioalcoholates and amides of atomic number 57 to 71 metals. A neodymium catalyst is particularly advantageous because it results in a polybutadiene rubber having a high cis-1,4 bond content and a low 1,2-vinyl bond content.
  • The base rubber may include other rubbers in addition to the high cis-1,4 polybutadiene, for example natural rubber, polyisoprene rubber, styrene polybutadiene rubber, ethylene-propylene-diene rubber (EPDM). When other rubbers are included, the high cis-1,4 polybutadiene should be at least about 50% by weight, preferably at least about 80% by weight based on the total weight of base rubber.
  • The rubber composition includes an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid which acts as a crosslinker or co-crosslinking agent. Such unsaturated carboxylic acids or salts may, in general, be α,β-ethylenically unsaturated acids having 3 to 8 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumaric acid that may be used as their magnesium and zinc salts. Specific examples of preferable co-crosslinking agents include zinc diacrylate, magnesium diacrylate, zinc dimethacrylate and magnesium dimethacrylate. The amount of the unsaturated carboxylic acid or its salt is typically at least about 10 parts by weight, preferably at least about 15 parts by weight and up to about 50 parts by weight, preferably up to about 45 parts by weight per 100 parts by weight of the base rubber.
  • The rubber composition includes a free radical initiator. Suitable initiators include organic peroxide compounds such as dicumyl peroxide, 1,1-di(t-butylperoxy)3,3,5-trimethyl cyclohexane,α,α-bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane, di-t-butyl peroxide. The amount of the organic peroxide is typically at least about 0.1 part by weight, preferably at least about 0.3 part by weight, more preferably equal at least about 0.5 part by weight up to about 3.0 parts by weight, preferably up to about 2.5 parts by weight, based on 100 parts by weight of the base rubber.
  • The physical properties of the golf ball components can be modified by including a filler. Nonlimiting examples of suitable fillers include clay, talc, asbestos, graphite, glass, mica, calcium metasilicate, barium sulfate, zinc sulfide, aluminum hydroxide, silicates, diatomaceous earth, carbonates (such as calcium carbonate, magnesium carbonate and the like), metals (such as titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, copper, brass, boron, bronze, cobalt, beryllium and alloys of these), metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide and the like), particulate synthetic plastics (such as high molecular weight polyethylene, polystyrene, polyethylene ionomeric resins and the like), particulate carbonaceous materials (such as carbon black, natural bitumen and the like), as well as cotton flock, cellulose flock and/or leather fiber. Nonlimiting examples of heavy-weight fillers that may be used to increase specific gravity include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, steel, lead, copper, brass, boron, boron carbide whiskers, bronze, cobalt, beryllium, zinc, tin, and metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide). Nonlimiting examples of light-weight fillers that may be used to decrease specific gravity include particulate plastics, glass, ceramics, and hollow spheres, regrinds, or foams of these. Fillers that may be used in the core center and core layers of a golf ball are typically in a finely divided form.
  • Including various heavy-weight or light-weight fillers in the different thermoplastic materials of the golf ball results in desirable relationships between the specific gravities of the different layers. The specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center. In preferred embodiments, specific gravity of the core layer is at least about 0.3 g/cm3 greater than the specific gravity of the core center. A heavy-weight filler, or more of a heavy-weight filler, may be included to attain a higher specific gravity. A light-weight filler or no filler may be included to attain a lower specific gravity.
  • The cover may be formulated with a pigment, such as a yellow or white pigment, and in particular a white pigment such as titanium dioxide or zinc oxide. Generally titanium dioxide is used as a white pigment, for example in amounts of from about 0.5 parts by weight or 1 part by weight to about 8 parts by weight or 10 parts by weight based on 100 parts by weight of polymer. In various embodiments, a white-colored cover may be tinted with a small amount of blue pigment or brightener.
  • In a first embodiment, the cover has a surface Shore D hardness of at least 60, preferably at least about 65. In a second embodiment, the cover has a surface Shore D hardness of less than 60, preferably up to about 55, or up to about 50, or up to about 45, or up to about 40, or up to about 35. The surface hardness of the cover can be affected by the polymer or polymers and the filler or fillers used in making it.
  • Customary additives can also be included in the thermoplastic materials, for example dispersants, antioxidants such as phenols, phosphites, and hydrazides, processing aids, surfactants, stabilizers, and so on. The cover may also contain additives such as hindered amine light stabilizers such as piperidines and oxanalides, ultraviolet light absorbers such as benzotriazoles, triazines, and hindered phenols, fluorescent materials and fluorescent brighteners, dyes such as blue dye, and antistatic agents.
  • In a first embodiment, the 10-130 kg compression deformation of the core center is at least about 3.5 mm. In a second embodiment, the 10-130 kg compression deformation of the core center is at least about 4.0 mm. The 10-130 kg compression deformation is determined by a combination of factors, including the nature and amount of ionomer resins, the presence, nature, and amount of other polymeric materials or plasticizers, and the presence, nature, and amount of fillers.
  • The core layer including the cured product of the rubber composition may have a 10-130 kg compression deformation of at least about 3 mm.
  • The cover (i.e., the golf ball) may have a 10-130 kg compression deformation of at least about 2.8 mm.
  • In certain preferred golf balls the ratio of the 10-130 kg compression deformation of the core layer to the 10-130 kg compression deformation of the core center is from about 0.8 to about 1. In various preferred golf balls the ratio of the 10-130 kg compression deformation of the cover to the 10-130 kg compression deformation of the core layer is from about 0.8 to about 1.
  • The thermoplastic materials may be made by conventional methods, such as melt mixing in a single- or twin-screw extruder, a Banbury mixer, an internal mixer, a two-roll mill, or a ribbon mixer. The first thermoplastic material is formed into a core center and the second thermoplastic material is formed into a core layer around the core center by usual methods, for example by injection molding with a mold temperature in the range of 150° C. to 230° C. If there is a second core layer, the fourth thermoplastic material may be formed in a layer over the core layer by the same methods. The molded core including core center, core layer, and optionally second core layer or further core layers, may be ground to a desired diameter after cooling. Grinding can also be used to remove flash, pin marks, and gate marks due to the molding process.
  • A cover layer is molded over the core. In various embodiments, the third thermoplastic material used to make the cover may preferably include one or more of thermoplastic polyurethane elastomers, thermoplastic polyurea elastomers, and the metal cation salts of copolymers of ethylene with ethylenically unsaturated carboxylic acids.
  • The cover may be formed on the multi-layer core by injection molding, compression molding, casting, and so on. For example, when the cover is formed by injection molding, a core fabricated beforehand may be set inside a mold, and the cover material may be injected into the mold. The cover is typically molded on the core by injection molding or compression molding. Alternatively, another method that may be used involves pre-molding a pair of half-covers from the cover material by die casting or another molding method, enclosing the core in the half-covers, and compression molding at, for example, between 120° C. and 170° C. for a period of 1 to 5 minutes to attach the cover halves around the core. The core may be surface-treated before the cover is formed over it to increase the adhesion between the core and the cover. Nonlimiting examples of suitable surface preparations include mechanical or chemical abrasion, corona discharge, plasma treatment, or application of an adhesion promoter such as a silane or of an adhesive. The cover typically has a dimple pattern and profile to provide desirable aerodynamic characteristics to the golf ball.
  • In various embodiments, the thermoplastic material used to make the cover may preferably include thermoplastic polyurethane elastomer, thermoplastic polyurea elastomer, ionomer resin, or combinations of these.
  • Typically, the cover may have a thickness of from about 0.5 mm to about 4 mm. If there are two cover layers, typically, the cover layers may each independently have a thickness of from about 0.3 mm to about 2.0 mm, preferably from about 0.8 mm to about 1.6 mm.
  • The core center has a diameter of 21 mm to 29 mm. In various embodiments, the core center has a diameter of from about 23 mm to about 27 mm.
  • The core layer may have a thickness of at least about 5 mm. In various embodiments, the core layer may have a thickness of from about 5 mm to about 10 mm.
  • In certain embodiments, the golf ball may have a second core layer between the core center and the core layer or between the core layer and the cover.
  • The golf balls can be of any size, although the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches (42.672 mm) and a weight of no greater than 1.62 ounces (45.926 g). For play outside of USGA competition, the golf balls can have smaller diameters and be heavier.
  • After a golf ball has been molded, it may undergo various further processing steps such as buffing, painting and marking. In a particularly preferred embodiment of the invention, the golf ball has a dimple pattern that coverage of 65% or more of the surface. The golf ball typically is coated with a durable, abrasion-resistant and relatively non-yellowing finish coat.
  • The description is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are a part of the invention. Variations are not to be regarded as a departure from the spirit and scope of the disclosure

Claims (30)

What is claimed is:
1. A golf ball, comprising:
a core center with a diameter of from about 21 mm to about 29 mm, a 10-130 kg compression deformation of at least about 4 mm, and comprising an ionomer resin and a polyolefin elastomer;
a core layer disposed radially outward from the core center, wherein the core layer has a thickness of at least about 5 mm and comprises a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and a free radical initiator, wherein the polybutadiene has a Mooney viscosity (ML1+4(100° C.)) of at least about 40 and has at least about 70% cis-1,4 bonds;
a cover comprising a thermoplastic material having a flexural modulus of at least about 15,000 psi;
wherein the specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
2. A golf ball according to claim 1, wherein the ionomer resin comprises a monomeric organic acid or salt thereof and wherein the ionomer resin is neutralized from at least about 40% to about 100%.
3. A golf ball according to claim 1 or claim 2, wherein the core center has a diameter of from about 23 mm to about 27 mm.
4. A golf ball according to any one of claims 1-3, wherein the 10-130 kg compression deformation of the core center is from about 4 mm to about 8 mm.
5. A golf ball according to any one of claims 1-4, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of from about 50 to about 85.
6. A golf ball according to any one of claims 1-5, wherein the polybutadiene has at least about 80% of cis-1,4 bonds.
7. A golf ball according to any one of claims 1-6, wherein the core layer has a thickness of from about 5 mm to about 10 mm.
8. A golf ball according to any one of claims 1-7, wherein the cover has a flexural modulus of from about 20,000 psi to about 50,000 psi.
9. A golf ball, comprising:
a core center with a diameter of from about 21 mm to about 29 mm, a 10-130 kg compression deformation of at least about 4 mm, and comprising an ionomer resin and a polyolefin elastomer;
a core layer disposed radially outward from the core center, wherein the core layer has a thickness of at least about 5 mm, a 10-130 kg compression deformation of at least about 3 mm, and comprises a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and a free radical initiator, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of at least about 40 and at least about 70% cis-1,4 bonds;
a cover comprising a thermoplastic material and having a flexural modulus of up to about 35,000 psi;
wherein the specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
10. A golf ball according to claim 9, wherein the ionomer resin comprises a monomeric organic acid or salt thereof and wherein the ionomer resin is neutralized from at least about 40% to about 100%.
11. A golf ball according to claim 9 or claim 10, wherein the core center has a diameter of from about 23 mm to about 27 mm.
12. A golf ball according to any one of claims 9-11 wherein the 10-130 kg compression deformation of the core center is from about 4 mm to about 8 mm.
13. A golf ball according to any one of claims 9-12, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of from about 50 to about 85.
14. A golf ball according to any one of claims 9-13, wherein the polybutadiene has at least about 80% of cis-1,4 bonds.
15. A golf ball according to any one of claims 9-14, wherein the core layer has a thickness of from about 5 mm to about 10 mm.
16. A golf ball according to any one of claims 9-15, wherein the cover has a flexural modulus of from about 10,000 psi to about 30,000 psi.
17. A golf ball according to any one of claims 9-16 wherein the 10-130 kg compression deformation of the core layer is from about 3 mm to about 8 mm.
18. A golf ball, comprising:
a core center with a diameter of from about 21 mm to about 29 mm, a first 10-130 kg compression deformation C1 of at least about 3.5 mm, and comprising an ionomer resin;
a core layer disposed radially outward from the core center, wherein the core layer has a thickness of at least about 5 mm, a second 10-130 kg compression deformation C2 of at least about 3 mm, and comprises a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and a free radical initiator, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of at least about 40 and at least about 70% cis-1,4 bonds;
a cover comprising a thermoplastic material, wherein the cover has a third 10-130 kg compression deformation C3 of at least about 2.8 mm and a surface Shore D hardness of at least 60;
wherein a ratio of C2/C1 is from about 0.8 to about 1, a ratio of C3/C2 is from about 0.8 to about 1, and the specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
19. A golf ball according to claim 18, wherein the ratio of C2/C1 is from about 0.9 to about 1.
20. A golf ball according to claim 18 or claim 19, wherein the ratio of C3/C2 is from about 0.9 to about 1.
21. A golf ball according to any one of claims 18-20, wherein the thermoplastic material comprises at least two ionomer resins that are different from one another.
22. A golf ball according to any one of claims 18-21, wherein the cover has a surface Shore D hardness of at least about 65.
23. A golf ball according to any one of claims 18-20, wherein the thermoplastic material comprises a thermoplastic polyurethane.
24. A golf ball, comprising:
a core center with a diameter of from about 21 mm to about 29 mm, a first 10-130 kg compression deformation C1 of at least about 3.5 mm, and comprising an ionomer resin;
a core layer disposed radially outward from the core center, wherein the core layer has a thickness of at least about 5 mm, a second 10-130 kg compression deformation C2 of at least about 3 mm, and comprises a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and a free radical initiator, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of at least about 40 and at least about 70% cis-1,4 bonds;
a cover on the surface of the golf ball comprising a thermoplastic material, wherein the cover has a third 10-130 kg compression deformation C3 of at least about 2.8 mm and a surface Shore D hardness of less than 60;
wherein a ratio of C2/C1 is from about 0.8 to about 1, a ratio of C3/C2 is from about 0.8 to about 1, and the specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
25. A golf ball according to claim 24, wherein the ratio of C2/C1 is from about 0.9 to about 1.
26. A golf ball according to claim 24 or claim 25, wherein the ratio of C3/C2 is from about 0.9 to about 1.
27. A golf ball according to any one of claims 24-26, wherein the thermoplastic material comprises at least two ionomer resins that are different from one another.
28. A golf ball according to any one of claims 24-26, wherein the thermoplastic material comprises a thermoplastic polyurethane.
29. A golf ball according to any one of claims 24-28, wherein the cover has a surface Shore D hardness up to about 55.
30. A golf ball according to claim 29, wherein the cover has a surface Shore D hardness up to about 35.
US14/892,993 2013-05-31 2014-05-19 Multi-layer golf ball Abandoned US20160089579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/892,993 US20160089579A1 (en) 2013-05-31 2014-05-19 Multi-layer golf ball

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361829446P 2013-05-31 2013-05-31
US14/076,864 US20140357415A1 (en) 2013-05-31 2013-11-11 Multi-layer golf ball
US14/892,993 US20160089579A1 (en) 2013-05-31 2014-05-19 Multi-layer golf ball
PCT/US2014/038577 WO2014193678A1 (en) 2013-05-31 2014-05-19 Multi-layer golf ball

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/076,864 Continuation US20140357415A1 (en) 2013-05-31 2013-11-11 Multi-layer golf ball

Publications (1)

Publication Number Publication Date
US20160089579A1 true US20160089579A1 (en) 2016-03-31

Family

ID=51985756

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/076,864 Abandoned US20140357415A1 (en) 2013-05-31 2013-11-11 Multi-layer golf ball
US14/892,993 Abandoned US20160089579A1 (en) 2013-05-31 2014-05-19 Multi-layer golf ball

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/076,864 Abandoned US20140357415A1 (en) 2013-05-31 2013-11-11 Multi-layer golf ball

Country Status (5)

Country Link
US (2) US20140357415A1 (en)
JP (1) JP2016526933A (en)
KR (1) KR20160003892A (en)
CN (1) CN105246558A (en)
WO (1) WO2014193678A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105457243A (en) * 2016-02-02 2016-04-06 傅军平 Soft medicine ball
GB2619329A (en) * 2022-06-01 2023-12-06 Sekura Global Ip Llp Retail security assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824746A (en) * 1995-01-24 1998-10-20 Acushnet Company Golf balls incorporating foamed metallocene catalyzed polymer
US6057403A (en) * 1993-06-01 2000-05-02 Spalding Sports Worldwide, Inc Dual cores for golf balls
US6414082B1 (en) * 1995-01-24 2002-07-02 Acushnet Company Golf ball compositions formed of grafted metallocene-catalyzed polymer blends
US20030013549A1 (en) * 2001-06-26 2003-01-16 Murali Rajagopalan Golf balls comprising highly-neutralized acid polymers
US6916254B2 (en) * 2003-01-02 2005-07-12 Acushnet Company Golf ball with small inner core
US20060189733A1 (en) * 2005-02-23 2006-08-24 Kennedy Thomas J Iii Golf ball and thermoplastic material
US20120115637A1 (en) * 2010-06-30 2012-05-10 Nike, Inc. Golf Balls Including A Crosslinked Thermoplastic Polyurethane Cover Layer Having Improved Scuff Resistance
US20120214615A1 (en) * 2008-08-27 2012-08-23 Nike, Inc. Multilayer solid golf ball
US20130190106A1 (en) * 2010-08-20 2013-07-25 Nike, Inc. Golf ball having layers with specified moduli
US20130260915A1 (en) * 2012-03-28 2013-10-03 Nike, Inc. Golf Balls Including Dense High Acid Ionomers

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120791A (en) * 1990-07-27 1992-06-09 Lisco, Inc. Golf ball cover compositions
US5779562A (en) * 1993-06-01 1998-07-14 Melvin; Terrence Multi-core, multi-cover golf ball
US6431999B1 (en) * 1993-06-01 2002-08-13 Spalding Sports Worldwide Inc. Golf ball
US6653403B2 (en) * 1995-01-24 2003-11-25 Acushnet Company Golf balls having a cover layer formed from an ionomer and metallocene-catalyzed polyolefin blend and methods of making same
US6150462A (en) * 1995-01-24 2000-11-21 Acushnet Company Golf ball compositions formed from single site catalyzed polymers
US5813923A (en) * 1995-06-07 1998-09-29 Acushnet Company Golf ball
US7041721B2 (en) * 1995-06-07 2006-05-09 Acushnet Company Highly neutralized polymer golf ball compositions including oxa acids and methods of making same
US6409614B1 (en) * 1995-06-15 2002-06-25 Spalding Sports Worldwide, Inc. Multi-layer golf ball and method of making same
US6653382B1 (en) * 1999-10-21 2003-11-25 E. I. Du Pont De Nemours And Company Highly-neutralized ethylene copolymers and their use in golf balls
US6306049B1 (en) * 1999-03-01 2001-10-23 Acushnet Company Method of improving impact resistance in golf ball core formulations
US7357735B2 (en) * 2001-03-23 2008-04-15 Acushnet Company Fully-neutralized ionomers for use in golf ball having a large core and a thin, dense layer
US7331878B2 (en) * 2004-02-06 2008-02-19 Acushnet Company Multi-layer golf ball having velocity gradient from slower center to faster cover
US7131915B2 (en) * 2001-04-10 2006-11-07 Acushnet Company Three-layer-cover golf ball
US7148279B2 (en) * 2001-04-13 2006-12-12 Acushnet Company Golf ball compositions comprising dynamically vulcanized blends of highly neutralized polymers and diene rubber
US7230045B2 (en) * 2001-06-26 2007-06-12 Acushnet Company Golf balls comprising highly-neutralized acid polymers
US7652086B2 (en) * 2001-06-26 2010-01-26 Acushnet Company Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball
US20090325731A1 (en) * 2001-06-26 2009-12-31 Sullivan Michael J Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball
JP4020634B2 (en) * 2001-12-14 2007-12-12 Sriスポーツ株式会社 Golf ball
JP2004000507A (en) * 2002-03-13 2004-01-08 Acushnet Co Multilayer golf ball
US7300364B2 (en) * 2004-02-06 2007-11-27 Acushnet Company Multi-layer golf ball having velocity gradient from faster center to slower cover
US6780126B2 (en) * 2003-01-02 2004-08-24 Acushnet Company Golf ball with large inner core
US6852784B2 (en) * 2003-03-21 2005-02-08 Acushnet Company Non-conforming golf balls comprising highly-neutralized acid polymers
US7144958B2 (en) * 2003-05-21 2006-12-05 E. I. Du Pont De Nemours And Company Articles prepared from compositions modified with organic fiber micropulp
JP4431371B2 (en) * 2003-11-27 2010-03-10 キャスコ株式会社 Multi-piece solid golf ball
US7354357B2 (en) * 2004-02-06 2008-04-08 Acushnet Company Multi-layer core golf ball
US7442736B2 (en) * 2005-06-09 2008-10-28 Acushnet Company Use of nucleating agents to increase the flexural modulus of ionomers
US7753810B2 (en) * 2008-01-10 2010-07-13 Acushnet Company Multi-layer core golf ball
US7530907B2 (en) * 2006-02-14 2009-05-12 Acushnet Company Golf balls having a low modulus HNP layer and a high modulus HNP layer
US7452289B2 (en) * 2006-08-31 2008-11-18 Acushnet Company Highly neutralized acid polymer compositions having a low moisture vapor transmission rate and their use in golf balls
US20090181801A1 (en) * 2008-01-10 2009-07-16 Sullivan Michael J Two-Layer Core Golf Ball
US8025594B2 (en) * 2009-06-26 2011-09-27 Acushnet Company Golf ball with single layer core having specific regions of varying hardness
US7429221B1 (en) * 2007-07-03 2008-09-30 Acushnet Company Negative hardness gradient outer core layer for dual core golf ball
US8870684B2 (en) * 2008-01-10 2014-10-28 Acushnet Company Multi-layer core golf ball
US7897671B2 (en) * 2008-04-14 2011-03-01 Acushnet Company Method for forming a golf ball from a poly(dimethyl siloxane) ionomer
JP5135048B2 (en) * 2008-04-28 2013-01-30 ダンロップスポーツ株式会社 Golf ball
US7935759B2 (en) * 2008-05-12 2011-05-03 Acushnet Company Golf ball with heat resistant shield layer
US8026304B2 (en) * 2008-07-14 2011-09-27 Acushnet Company Partially or fully neutralized butyl ionomers in golf ball layers
US8672775B2 (en) * 2009-03-12 2014-03-18 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US9132319B2 (en) * 2011-06-03 2015-09-15 Acushnet Company Multi-layered cores for golf balls based on ionomers
US9095748B2 (en) * 2011-06-03 2015-08-04 Acushnet Company Multi-layered cores for golf balls containing polyamide and ionomer layers
US9108083B2 (en) * 2011-07-29 2015-08-18 Nike, Inc. Golf ball including a blend of highly neutralized acid polymers and method of manufacture
US8979676B2 (en) * 2011-08-23 2015-03-17 Nike, Inc. Multi-core golf ball having increased initial velocity at high swing speeds relative to low swing speeds
US9089739B2 (en) * 2011-08-23 2015-07-28 Nike, Inc. Multi-core golf ball having increased initial velocity
US8992340B2 (en) * 2012-01-03 2015-03-31 Nike, Inc. Golf ball with an outer core having a high coefficient of restitution
US9033823B2 (en) * 2012-01-03 2015-05-19 Nike, Inc. Golf ball with specified density inner cover layer
US9101798B2 (en) * 2012-01-03 2015-08-11 Nike, Inc. Golf ball with high density and high hardness mantle
US9061184B2 (en) * 2012-01-03 2015-06-23 Nike, Inc. Golf ball with specified inner core and outer core compression
US9005051B2 (en) * 2012-03-05 2015-04-14 Nike, Inc. Golf ball with a large and soft polymer core
US9168424B2 (en) * 2012-07-13 2015-10-27 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US8911307B2 (en) * 2012-08-13 2014-12-16 Nike, Inc. Golf ball with resin inner core and specified inner core and cover layer hardness
US8920263B2 (en) * 2012-08-13 2014-12-30 Nike, Inc. Golf ball with resin inner core and specified inner core and ball compression
US8911306B2 (en) * 2012-08-13 2014-12-16 Nike, Inc. Golf ball with resin inner core having specified coefficient of restitution of the inner core at various speeds
US8944935B2 (en) * 2012-08-13 2015-02-03 Nike, Inc. Multilayer golf ball with resin inner core and specific coefficient of restitution relationships between the layers
US8905864B2 (en) * 2012-08-13 2014-12-09 Nike, Inc. Golf ball with resin inner core with a designated specific gravity

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057403A (en) * 1993-06-01 2000-05-02 Spalding Sports Worldwide, Inc Dual cores for golf balls
US5824746A (en) * 1995-01-24 1998-10-20 Acushnet Company Golf balls incorporating foamed metallocene catalyzed polymer
US6414082B1 (en) * 1995-01-24 2002-07-02 Acushnet Company Golf ball compositions formed of grafted metallocene-catalyzed polymer blends
US20030013549A1 (en) * 2001-06-26 2003-01-16 Murali Rajagopalan Golf balls comprising highly-neutralized acid polymers
US6916254B2 (en) * 2003-01-02 2005-07-12 Acushnet Company Golf ball with small inner core
US20060189733A1 (en) * 2005-02-23 2006-08-24 Kennedy Thomas J Iii Golf ball and thermoplastic material
US20120214615A1 (en) * 2008-08-27 2012-08-23 Nike, Inc. Multilayer solid golf ball
US20120115637A1 (en) * 2010-06-30 2012-05-10 Nike, Inc. Golf Balls Including A Crosslinked Thermoplastic Polyurethane Cover Layer Having Improved Scuff Resistance
US20130190106A1 (en) * 2010-08-20 2013-07-25 Nike, Inc. Golf ball having layers with specified moduli
US20130260915A1 (en) * 2012-03-28 2013-10-03 Nike, Inc. Golf Balls Including Dense High Acid Ionomers

Also Published As

Publication number Publication date
US20140357415A1 (en) 2014-12-04
JP2016526933A (en) 2016-09-08
KR20160003892A (en) 2016-01-11
CN105246558A (en) 2016-01-13
WO2014193678A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US9446289B2 (en) Thermoplastic multi-layer golf ball
US9573023B2 (en) Multi-layer golf ball
US20160089579A1 (en) Multi-layer golf ball
US20150011334A1 (en) Multi-layer golf ball
US20150007931A1 (en) Method of manufacturing a multi-layer golf ball
US9409061B2 (en) Thermoplastic multi-layer golf ball
US9468814B2 (en) Multi-layer golf ball
US9242148B2 (en) Thermoplastic multi-layer golf ball
US9272189B2 (en) Thermoplastic multi-layer golf ball
US20140357418A1 (en) Thermoplastic multi-layer golf ball
US20140357410A1 (en) Thermoplastic multi-layer golf ball
US20140357422A1 (en) Thermoplastic multi-layer golf ball
US9757623B2 (en) Thermoplastic multi-layer golf ball
US20150011332A1 (en) Multi-layer golf ball
US20140357414A1 (en) Thermoplastic multi-layer golf ball
US20140357416A1 (en) Thermoplastic multi-layer golf ball
US20140357417A1 (en) Thermoplastic multi-layer golf ball
US20140357420A1 (en) Thermoplastic multi-layer golf ball
US20160107040A1 (en) Thermoplastic Multi-Layer Golf Ball
US20140357423A1 (en) Thermoplastic multi-layer golf ball
US20150008614A1 (en) Method of manufacturing a multi-layer golf ball

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION