US20160066466A1 - Low profile compliant latch assembly and electronic circuit card and chassis incorporating same - Google Patents

Low profile compliant latch assembly and electronic circuit card and chassis incorporating same Download PDF

Info

Publication number
US20160066466A1
US20160066466A1 US14/469,735 US201414469735A US2016066466A1 US 20160066466 A1 US20160066466 A1 US 20160066466A1 US 201414469735 A US201414469735 A US 201414469735A US 2016066466 A1 US2016066466 A1 US 2016066466A1
Authority
US
United States
Prior art keywords
elongate
handle structure
elongate handle
hole
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/469,735
Other versions
US9295178B1 (en
Inventor
Victor ALDEA
Mitch O'LEARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciena Corp
Original Assignee
Ciena Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciena Corp filed Critical Ciena Corp
Priority to US14/469,735 priority Critical patent/US9295178B1/en
Assigned to CIENA CORPORATION reassignment CIENA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALDEA, VICTOR, O'LEARY, MITCH
Publication of US20160066466A1 publication Critical patent/US20160066466A1/en
Application granted granted Critical
Publication of US9295178B1 publication Critical patent/US9295178B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1401Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
    • H05K7/1402Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
    • H05K7/1409Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards by lever-type mechanisms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/06Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
    • F16B2/10Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using pivoting jaws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/18Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening using cams, levers, eccentrics, or toggles
    • F16B2/185Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening using cams, levers, eccentrics, or toggles using levers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1438Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Printed Circuit Boards And The Like (AREA)

Abstract

A latch assembly operable for securing an electronic circuit card in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the latch assembly including: an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion; a spring structure partially obstructing the hole defined by the proximal end of the elongate handle structure; and a rotation member disposed through the hole and configured to engage the electronic circuit card, wherein the spring structure partially obstructing the hole contacts a portion of the rotation member.

Description

    FIELD OF THE DISCLOSURE
  • The present disclosure relates generally to an electronic circuit card and chassis, such as those used in the optical networking field. More specifically, the present disclosure relates to a low profile compliant latch assembly for use with such an electronic circuit card and chassis.
  • BACKGROUND OF THE DISCLOSURE
  • In the optical networking field and others, electronic components, or electronic circuit cards, including faceplates are typically inserted into a shelf assembly, or chassis, including a backplane. Typically, these electronic circuit cards (also referred to as electronic circuit packs) are inserted into the chassis side-by-side in a vertical orientation, although other configurations are possible, such as side-by-side in a horizontal orientation, for example. When inserted, connectors on the back of each electronic circuit card engage connectors on the backplane, completing the desired connections. In 25G+ optical networking systems, for example, it is desirable that the connectors are fully engaged (i.e., “fully seated” or “bottomed out”), given a range of manufacturing and assembly tolerances associated with the various components. Thus, a variety of latch assemblies have been designed to lock the electronic circuit cards in place, most of which are non-compliant, or are compliant but bulky. In this context, compliance refers to the ability of the latch assemblies to properly position an electronic circuit card while accommodating the varying manufacturing and assembly tolerances present.
  • Thus, it is desirable that a latch assembly firmly hold the associated electronic circuit card in place, be compliant, and have a minimal footprint so that faceplate area and electronic circuit card, or port, density can be maximized. It is also desirable that the latch assembly apply the minimal force required to fully engage the connectors so that the connectors are not damaged.
  • Most conventional latch assemblies are non-compliant and their use leads to unacceptable electrical performance through the backplane and/or undesirable stressing of the associated electronic circuit card and chassis. Conventional compliant latch assemblies are typically bulky, including compression springs loaded into the associated faceplate or the like, thereby disadvantageously sacrificing port density.
  • Thus, what is still needed in the art is a latch assembly that properly positions and firmly holds the associated electronic circuit card in place, that is compliant to accommodate varying manufacturing and assembly tolerances, and that has a minimal footprint such that faceplate area and port density is maximized.
  • BRIEF SUMMARY OF THE DISCLOSURE
  • In various exemplary embodiments, the present disclosure provides a low profile compliant latch assembly that incorporates an internal leaf spring, compliant portion, and/or compliant material that allows the latch assembly to properly and adequately secure an electronic circuit card in a chassis while accommodating varying manufacturing and assembly tolerances, both while maintaining a minimal footprint.
  • In one exemplary embodiment, the present invention provides a latch assembly operable for securing an electronic circuit card in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the latch assembly including: an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion; an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure; and a rotation member disposed through the hole and configured to engage the electronic circuit card, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member. A diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole. When the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the electronic circuit card into the chassis. Optionally, the elongate handle structure includes: a first side wall disposed on a first side of the elongate spring structure; a second side wall disposed on a second side of the elongate spring structure opposite the first side of the elongate spring structure; and a spacer member disposed between the first side wall and the second side wall, wherein the spacer member is one of separate from and integrally formed with the elongate spring structure, and wherein the spacer member is operable to separate the first side wall from the second side wall by a predetermined distance such that the proximal end of the elongate spring structure can deflect freely within the elongate handle structure. Optionally, the spacer member defines a hole that is coincident with the hole defined by the proximal end of the elongate handle structure, and wherein the hole defined by the spacer member has a diameter that is greater than the hole defined by the proximal end of the elongate handle structure. Preferably, the elongate spring structure is a leaf spring. Preferably, the rotation member is a shoulder screw that rotatably couples the elongate handle structure to the electronic circuit card. The latch assembly also includes a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the electronic circuit card, thereby preventing rotation of the elongate handle structure with respect to the electronic circuit card. The trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
  • In another exemplary embodiment, the present invention provides an electronic circuit card configured to be secured in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the electronic circuit card including: a housing; one or more electronic components disposed within the housing; and a latch assembly coupled to the housing, wherein the latch assembly includes: an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion; an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure; and a rotation member disposed through the hole and configured to engage the housing, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member. A diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole. When the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the housing into the chassis. Optionally, the elongate handle structure includes: a first side wall disposed on a first side of the elongate spring structure; a second side wall disposed on a second side of the elongate spring structure opposite the first side of the elongate spring structure; and a spacer member disposed between the first side wall and the second side wall, wherein the spacer member is one of separate from and integrally formed with the elongate spring structure, and wherein the spacer member is operable to separate the first side wall from the second side wall by a predetermined distance such that the proximal end of the elongate spring structure can deflect freely within the elongate handle structure. Optionally, the spacer member defines a hole that is coincident with the hole defined by the proximal end of the elongate handle structure, and wherein the hole defined by the spacer member has a diameter that is greater than the hole defined by the proximal end of the elongate handle structure. Preferably, the elongate spring structure is a leaf spring. Preferably, the rotation member is a shoulder screw that rotatably couples the elongate handle structure to the housing. The latch assembly also includes a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the housing, thereby preventing rotation of the elongate handle structure with respect to the housing. The trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
  • In a further exemplary embodiment, the present invention provides an electronic chassis, including: a shelf structure; a backplane disposed within the shelf structure, wherein the backplane includes at least one connector; and an electronic circuit card disposed within the shelf structure, wherein the electronic circuit card includes at least one connector coupled to the at least one connector of the backplane, wherein the electronic circuit card includes: a housing; one or more electronic components disposed within the housing; and a latch assembly coupled to the housing, wherein the latch assembly includes: an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the shelf structure, and wherein a distal end of the elongate handle structure includes a handle portion; an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure; and a rotation member disposed through the hole and configured to engage the housing, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member. A diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole. When the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the shelf structure and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the housing into the shelf structure. The latch assembly also includes a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the housing, thereby preventing rotation of the elongate handle structure with respect to the housing.
  • In a still further exemplary embodiment, the present invention provides a latch assembly operable for securing an electronic circuit card in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the latch assembly including: an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion; a spring structure partially obstructing the hole defined by the proximal end of the elongate handle structure; and a rotation member disposed through the hole and configured to engage the electronic circuit card, wherein the spring structure partially obstructing the hole contacts a portion of the rotation member. Optionally, the spring structure is an elastomeric structure disposed within or adjacent to the hole. Alternatively, the spring structure is a manufactured compliant portion of the elongate handle structure. A diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole. When the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the spring structure resists linear movement of the rotation member within the hole, thereby biasing the electronic circuit card into the chassis. Preferably, the rotation member is a shoulder screw that rotatably couples the elongate handle structure to the electronic circuit card. The latch assembly also includes a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the electronic circuit card, thereby preventing rotation of the elongate handle structure with respect to the electronic circuit card. The trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure is illustrated and described herein with reference to the various drawings, in which like reference numbers are used to denote like assembly components, as appropriate, and in which:
  • FIG. 1 is a schematic view illustrating a chassis utilizing the electronic circuit cards and latch assemblies of the present disclosure, including a perspective view illustrating an exemplary electronic circuit card;
  • FIG. 2 is a planar side view illustrating one exemplary embodiment of the latch assembly of the present disclosure;
  • FIG. 3 is a perspective view illustrating one exemplary embodiment of the latch assembly of the present disclosure;
  • FIG. 4 is another perspective view illustrating one exemplary embodiment of the latch assembly of the present disclosure;
  • FIG. 5 is an internal planar side view illustrating one exemplary embodiment of the latch assembly of the present disclosure;
  • FIG. 6 is an exploded perspective view illustrating one exemplary embodiment of the latch assembly of the present disclosure; and
  • FIGS. 7 a and 7 b are schematic views illustrating the operation of the latch assemblies of the present disclosure;
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • Again, in various exemplary embodiments, the present disclosure provides a low profile compliant latch assembly that incorporates an internal leaf spring, compliant portion, and/or compliant material that allows the latch assembly to properly and adequately secure an electronic circuit card in a chassis while accommodating varying manufacturing and assembly tolerances, both while maintaining a minimal footprint.
  • Referring specifically to FIG. 1, an electronic chassis 10, such as that used in an optical networking system, is illustrated. The chassis 10 includes a shelf structure 12 that houses a plurality of electronic circuit cards 14 in a side-by-side vertical orientation, for example. Each of the electronic circuit cards 14 is held in the shelf structure 12, in part, by a pair of latch assemblies 16, one latch assembly 16 disposed at the top of the faceplate 18 of the electronic circuit card 14 and one latch assembly 16 disposed at the bottom of the faceplate 18 of the electronic circuit card. Connectors on the back of each electronic circuit card 14 engage connectors on the backplane of the chassis 10, completing the desired connections. In 25G+ optical networking systems, for example, it is desirable that the connectors are fully engaged (i.e., “fully seated” or “bottomed out”), given a range of manufacturing and assembly tolerances associated with the various components. Thus, it is desirable that the latch assemblies 16 provide some degree of spring force to bias the electronic circuit cards 14 into the shelf structure 12, while maintaining compliance and a minimal footprint.
  • Referring now specifically to FIGS. 2-6, in one exemplary embodiment, the latch assembly 16 of the present disclosure includes an elongate handle structure 20. This elongate handle structure 20 may be made of a substantially rigid metallic material (such as stainless steel or the like), a substantially rigid ceramic material, a substantially rigid plastic material, etc. Preferably, the elongate handle structure 20 has a thickness of less than about 10 mm, although any suitable dimensions may be utilized. A proximal end 22 of the elongate handle structure 20 defines a hole 24 and includes a protruding portion 26 that is configured to engage a recess or lip 28 (FIGS. 7 a and 7 b) associated with the chassis 10 (FIGS. 1, 7 a, and 7 b). A distal end 30 of the elongate handle structure 20 includes a handle portion 32 by which a user may grasp and actuate the latch assembly 16.
  • The latch assembly 16 also includes elongate spring structure 34 disposed within or adjacent to the elongate handle structure 20. This elongate spring structure 34 may be made of a substantially rigid metallic material (such as stainless steel or the like), a substantially rigid plastic material, etc. that provides some degree of deflection when a force is applied to it, due to its composition and/or length. Preferably, the elongate spring structure 34 has a thickness of less than about 5 mm, although any suitable dimensions may be utilized. For example, the thickness of the elongate spring structure 34 may vary along its length. A distal end 36 of the elongate spring structure 34 is coupled to the distal end 30 of the elongate handle structure 32 via a plurality of rivets 38 or the like. A proximal end 40 of the elongate spring structure 34 partially obstructs the hole 24 defined by the proximal end 22 of the elongate handle structure 20, for example by protruding partially into and/or across the hole 24 defined by the proximal end 22 of the elongate handle structure 20.
  • A rotation member 42 (FIGS. 7 a and 7 b), such as a shoulder screw or the like, is disposed through the hole 24 defined by the proximal end 22 of the elongate handle structure 20 and is configured to engage the electronic circuit card 14 (FIGS. 1, 7 a, and 7 b). This allows the elongate handle structure 20 to rotate about the rotation member 42 and thereby rotate with respect to the electronic circuit card 14. Preferably, the diameter of the hole 24 defined by the proximal end 22 of the elongate handle structure 20 is greater than the diameter of a portion of the rotation member 42 that is disposed within the hole 24 defined by the proximal end 22 of the elongate handle structure 20, such that there is some linear movement between the two components absent other components preventing this linear movement. It is this linear movement that allows the latch assembly 17 to accommodate varying manufacturing and assembly tolerances associated with the electronic circuit card 14 and chassis 10. To accomplish this purpose, the proximal end 40 of the elongate spring structure 34 that partially obstructs the hole 24 defined by the proximal end 22 of the elongate handle structure 20 contacts a portion of the rotation member 42, thus coupling the shoulder screw or the like to the leaf spring or the like. The proximal end 40 of the elongate spring structure 34 that partially obstructs the hole 24 defined by the proximal end 22 of the elongate handle structure 20 may include a recess or saddle structure 44 that assists in stabilizing this coupling.
  • In operation, when the elongate handle structure 20 is rotated about the rotation member 42 by user actuation of the handle portion 32 of the elongate handle structure 20, the protruding portion 26 of the elongate handle structure 20 engages the recess or lip 28 associated with the chassis 10 and the elongate spring structure 34 resists linear movement of the rotation member 42 within the hole 24 defined by the proximal end 22 of the elongate handle structure 20, thereby biasing the electronic circuit card 14 into the chassis 10.
  • In this exemplary embodiment, the elongate handle structure 20 includes a first side wall 50 disposed on a first side of the elongate spring structure 34 and a second side wall 52 disposed on a second side of the elongate spring structure 34 opposite the first side of the elongate spring structure. A spacer member 54 is disposed between the first side wall 50 and the second side wall 52 adjacent to the elongate spring structure 34, and held in place via rivets 38 or the like. The spacer member 54 may have any suitable size, shape, and dimensions. The spacer member 54 is operable for separating the first side wall 50 from the second side wall 52 by a predetermined distance such that the proximal end 40 of the elongate spring structure 34 can deflect freely within the elongate handle structure 20. Optionally, the spacer member 54 defines a hole 56 that is coincident with the hole 24 defined by the proximal end 22 of the elongate handle structure 20. Optionally, the hole 56 defined by the spacer member 54 has a diameter that is greater than the hole 24 defined by the proximal end 22 of the elongate handle structure 20.
  • The latch assembly 16 further includes a trigger mechanism 58 rotatably coupled to the elongate handle structure 20 via a dowel pin 66 or the like. The trigger mechanism 58 includes a hook portion 60 that is configured to engage a recess or lip 62 associated with the electronic circuit card 14, thereby preventing rotation of the elongate handle structure 20 with respect to the electronic circuit card 14 when the trigger mechanism 58 is actuated. Optionally, the trigger mechanism 58 is biased by a compression spring 64 that is coupled to the elongate handle structure 20.
  • In general, it is contemplated that each latch assembly 16 will be able to apply a spring force of about 50 lbs, for example.
  • Referring now specifically to FIGS. 7 a and 7 b, the operation of the latch assembly of the present disclosure is illustrated. FIG. 7 a shows an electronic circuit card 14 disposed within a chassis 10 with an essentially un-deformed leaf spring, representing a shelf depth at the highest tolerance range and the electronic circuit card 14 at the lowest tolerance range. FIG. 7 b shows an electronic circuit card 14 disposed within a chassis 10 with a deformed leaf spring, representing a shelf depth at the lowest tolerance range and the electronic circuit card 14 at the highest tolerance range.
  • In another exemplary embodiment, the latch assembly 16 includes an elongate handle structure 20, wherein a proximal end 22 of the elongate handle structure 20 defines a hole 24 and includes a protruding portion 26 that is configured to engage a recess or lip 28 associated with the chassis 10, and wherein a distal end 30 of the elongate handle structure 20 includes a handle portion 32. The latch assembly 16 also includes a spring structure partially obstructing the hole 24 defined by the proximal end 22 of the elongate handle structure 20. The latch assembly 16 further includes a rotation member 42 disposed through the hole 24 defined by the proximal end 22 of the elongate handle structure 20 and configured to engage the electronic circuit card 14, wherein the spring structure partially obstructing the hole 24 defined by the proximal end 22 of the elongate handle structure 20 contacts a portion of the rotation member 42. Optionally, the spring structure is an elastomeric structure, such as an O-ring or bushing, disposed within or adjacent to the hole 24 defined by the proximal end 22 of the elongate handle structure 20. Alternatively, the spring structure is a manufactured compliant portion of the elongate handle structure 20. Preferably, absent the spring structure, the diameter of the hole 24 defined by the proximal end 22 of the elongate handle structure 20 is greater than a diameter of a portion of the rotation member 42 that is disposed within the hole 24 defined by the proximal end 22 of the elongate handle structure 20.
  • When the elongate handle structure 20 is rotated about the rotation member 42 by actuation of the handle portion 32 of the elongate handle structure 20, the protruding portion 26 of the elongate handle structure 20 engages the recess or lip 28 associated with the chassis 10 and the spring structure resists linear movement of the rotation member 42 within the hole 24 defined by the proximal end 22 of the elongate handle structure 20, thereby biasing the electronic circuit card 14 to which the rotation member 42 is engaged into the chassis 10. Preferably, the rotation member 42 is a shoulder screw that rotatably couples the elongate handle structure 20 to the electronic circuit card 14.
  • The latch assembly 16 still further includes a trigger mechanism 58 rotatably coupled to the elongate handle structure 20, wherein the trigger mechanism 58 includes a hook portion 60 that is configured to engage a recess or lip 62 associated with the electronic circuit card 14, thereby preventing rotation of the elongate handle structure 20 with respect to the electronic circuit card 14. The trigger mechanism 58 is biased by a spring 64 that is coupled to the elongate handle structure 20.
  • Although the present disclosure is illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present disclosure, are contemplated thereby, and are intended to be covered by the following claims, without limitation.

Claims (25)

What is claimed is:
1. A latch assembly operable for securing an electronic circuit card in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the latch assembly comprising:
an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion;
an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure; and
a rotation member disposed through the hole and configured to engage the electronic circuit card, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member.
2. The latch assembly of claim 1, wherein a diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole.
3. The latch assembly of claim 2, wherein, when the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the electronic circuit card into the chassis.
4. The latch assembly of claim 1, wherein the elongate handle structure comprises,
a first side wall disposed on a first side of the elongate spring structure,
a second side wall disposed on a second side of the elongate spring structure opposite the first side of the elongate spring structure, and
a spacer member disposed between the first side wall and the second side wall, wherein the spacer member is one of separate from and integrally formed with the elongate spring structure, and wherein the spacer member is operable to separate the first side wall from the second side wall by a predetermined distance such that the proximal end of the elongate spring structure can deflect freely within the elongate handle structure.
5. The latch assembly of claim 4, wherein the spacer member defines a hole that is coincident with the hole defined by the proximal end of the elongate handle structure, and wherein the hole defined by the spacer member has a diameter that is greater than the hole defined by the proximal end of the elongate handle structure.
6. The latch assembly of claim 1, further comprising a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the electronic circuit card, thereby preventing rotation of the elongate handle structure with respect to the electronic circuit card.
7. The latch assembly of claim 6, wherein the trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
8. An electronic circuit card configured to be secured in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the electronic circuit card comprising:
a housing;
one or more electronic components disposed within the housing; and
a latch assembly coupled to the housing, wherein the latch assembly comprises,
an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion,
an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure, and
a rotation member disposed through the hole and configured to engage the housing, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member.
9. The electronic circuit card of claim 8, wherein a diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole.
10. The electronic circuit card of claim 9, wherein, when the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the housing into the chassis.
11. The electronic circuit card of claim 8, wherein the elongate handle structure comprises,
a first side wall disposed on a first side of the elongate spring structure,
a second side wall disposed on a second side of the elongate spring structure opposite the first side of the elongate spring structure, and
a spacer member disposed between the first side wall and the second side wall, wherein the spacer member is one of separate from and integrally formed with the elongate spring structure, and wherein the spacer member is operable to separate the first side wall from the second side wall by a predetermined distance such that the proximal end of the elongate spring structure can deflect freely within the elongate handle structure.
12. The electronic circuit card of claim 11, wherein the spacer member defines a hole that is coincident with the hole defined by the proximal end of the elongate handle structure, and wherein the hole defined by the spacer member has a diameter that is greater than the hole defined by the proximal end of the elongate handle structure.
13. The electronic circuit card of claim 8, further comprising a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the housing, thereby preventing rotation of the elongate handle structure with respect to the housing.
14. The electronic circuit card of claim 13, wherein the trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
15. An electronic chassis, comprising:
a shelf structure;
a backplane disposed within the shelf structure, wherein the backplane includes at least one connector; and
an electronic circuit card disposed within the shelf structure, wherein the electronic circuit card includes at least one connector coupled to the at least one connector of the backplane, wherein the electronic circuit card comprises,
a housing,
one or more electronic components disposed within the housing, and
a latch assembly coupled to the housing, wherein the latch assembly comprises,
an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the shelf structure, and wherein a distal end of the elongate handle structure includes a handle portion,
an elongate spring structure disposed within or adjacent to the elongate handle structure, wherein a distal end of the elongate spring structure is coupled to the distal end of the elongate handle structure, and wherein a proximal end of the elongate spring structure partially obstructs the hole defined by the proximal end of the elongate handle structure, and
a rotation member disposed through the hole and configured to engage the housing, wherein the proximal end of the elongate spring structure that partially obstructs the hole contacts a portion of the rotation member.
16. The electronic chassis of claim 15, wherein a diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole.
17. The electronic chassis of claim 16, wherein, when the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the shelf structure and the elongate spring structure resists linear movement of the rotation member within the hole, thereby biasing the housing into the shelf structure.
18. The electronic chassis of claim 15, further comprising a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the housing, thereby preventing rotation of the elongate handle structure with respect to the housing.
19. A latch assembly operable for securing an electronic circuit card in a chassis such that connectors associated with the electronic circuit card and a backplane of the chassis are properly coupled, the latch assembly comprising:
an elongate handle structure, wherein a proximal end of the elongate handle structure defines a hole and includes a protruding portion that is configured to engage a recess or lip associated with the chassis, and wherein a distal end of the elongate handle structure includes a handle portion;
a spring structure partially obstructing the hole defined by the proximal end of the elongate handle structure; and
a rotation member disposed through the hole and configured to engage the electronic circuit card, wherein the spring structure partially obstructing the hole contacts a portion of the rotation member.
20. The latch assembly of claim 19, wherein the spring structure comprises an elastomeric structure disposed within or adjacent to the hole.
21. The latch assembly of claim 19, wherein the spring structure comprises a manufactured compliant portion of the elongate handle structure.
22. The latch assembly of claim 19, wherein a diameter of the hole is greater than a diameter of a portion of the rotation member that is disposed within the hole.
23. The latch assembly of claim 19, wherein, when the elongate handle structure is rotated about the rotation member by actuation of the handle portion of the elongate handle structure, the protruding portion of the elongate handle structure engages the recess or lip associated with the chassis and the spring structure resists linear movement of the rotation member within the hole, thereby biasing the electronic circuit card into the chassis.
24. The latch assembly of claim 19, further comprising a trigger mechanism rotatably coupled to the elongate handle structure, wherein the trigger mechanism includes a hook portion that is configured to engage a recess or lip associated with the electronic circuit card, thereby preventing rotation of the elongate handle structure with respect to the electronic circuit card.
25. The latch assembly of claim 24, wherein the trigger mechanism is biased by a spring that is coupled to the elongate handle structure.
US14/469,735 2014-08-27 2014-08-27 Low profile compliant latch assembly and electronic circuit card and chassis incorporating same Active US9295178B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/469,735 US9295178B1 (en) 2014-08-27 2014-08-27 Low profile compliant latch assembly and electronic circuit card and chassis incorporating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/469,735 US9295178B1 (en) 2014-08-27 2014-08-27 Low profile compliant latch assembly and electronic circuit card and chassis incorporating same

Publications (2)

Publication Number Publication Date
US20160066466A1 true US20160066466A1 (en) 2016-03-03
US9295178B1 US9295178B1 (en) 2016-03-22

Family

ID=55404278

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/469,735 Active US9295178B1 (en) 2014-08-27 2014-08-27 Low profile compliant latch assembly and electronic circuit card and chassis incorporating same

Country Status (1)

Country Link
US (1) US9295178B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441329B2 (en) * 2020-06-25 2022-09-13 Hanwit Precision Industries Ltd. Handle locking structure
US11644628B1 (en) 2022-01-28 2023-05-09 Ciena Corporation Micro-optical connector holder with integrated mating system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550194B (en) * 2014-04-10 2016-09-21 Wang Ding Rui Fast split body
US10638631B2 (en) 2018-09-25 2020-04-28 Ciena Corporation Compliant micro latch for high-speed signal sub-slot pluggable modules
US10852497B2 (en) 2019-02-27 2020-12-01 Ciena Corporation Pluggable optical module thermal management and heat shield assemblies, devices, and methods
US11736195B2 (en) * 2019-04-23 2023-08-22 Ciena Corporation Universal sub slot architecture for networking modules
US11079559B2 (en) 2019-04-23 2021-08-03 Ciena Corporation Universal sub slot architecture for networking modules
US10939536B1 (en) 2019-09-16 2021-03-02 Ciena Corporation Secondary side heatsink techniques for optical and electrical modules
US11147183B2 (en) * 2020-02-10 2021-10-12 Quanta Computer Inc. Flexible lever of external module at server
US11378757B1 (en) 2020-12-17 2022-07-05 Ciena Corporation Reduced size optical connector for modules and circuit packs
US11606874B2 (en) * 2021-03-18 2023-03-14 Dell Products L.P. Tolerance absorbing lever mechanism
US11879620B2 (en) 2021-09-16 2024-01-23 Ciena Corporation Combined surface mount standoff and LED for space constrained applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982627A (en) * 1998-05-14 1999-11-09 International Business Machines Corporation Card retention latch including card guide and locking frame
WO2002099229A2 (en) * 2001-06-01 2002-12-12 Southco, Inc. Latch with bail-type mounting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441329B2 (en) * 2020-06-25 2022-09-13 Hanwit Precision Industries Ltd. Handle locking structure
US11644628B1 (en) 2022-01-28 2023-05-09 Ciena Corporation Micro-optical connector holder with integrated mating system

Also Published As

Publication number Publication date
US9295178B1 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US9295178B1 (en) Low profile compliant latch assembly and electronic circuit card and chassis incorporating same
US9072163B2 (en) Housing assembly for portable electronic device
EP2822010A1 (en) Switch structure
US11228140B2 (en) Cable connector and electronic device connection system comprising the same
US10033123B2 (en) Interface card fastening module
US8622646B2 (en) Electronic device with slot cover ejection mechanism
US8593827B1 (en) Compressible engagement assembly
US7780090B2 (en) Chip card holder
US9130309B2 (en) Electrical connector
US10116076B2 (en) CPU retainer mounted upon PCB
US9640884B2 (en) Low profile circuit connector
US8011946B2 (en) Electrical connector assembly, plug, and socket
US20070259543A1 (en) Pressure device for test socket
US9422748B2 (en) Lock and the application thereof
US8422211B2 (en) Assembling/disassembling keyboard structure for a portable device
US9692158B1 (en) Connector assembly for attaching cables to a planar electrical device
US10714862B1 (en) Electrical socket
US20130021770A1 (en) Electronic device with button
US7275950B1 (en) Electrical connector having a securing member for preventing axial sliding of a lever
US8634187B2 (en) Mounting apparatus for PCI card
US20140376999A1 (en) Expansion card mounting assembly
US9443558B1 (en) Storage device accommodating structure
US20040018768A1 (en) Socket connector with resiliently engaged actuator mechanism
US11317529B2 (en) SSD carrier bracket
TWI358859B (en) Electronic connector and plug and socket thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CIENA CORPORATION, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALDEA, VICTOR;O'LEARY, MITCH;REEL/FRAME:033617/0799

Effective date: 20140826

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8