US20160059981A1 - Container handling machine and method - Google Patents
Container handling machine and method Download PDFInfo
- Publication number
- US20160059981A1 US20160059981A1 US14/839,381 US201514839381A US2016059981A1 US 20160059981 A1 US20160059981 A1 US 20160059981A1 US 201514839381 A US201514839381 A US 201514839381A US 2016059981 A1 US2016059981 A1 US 2016059981A1
- Authority
- US
- United States
- Prior art keywords
- container
- base
- plunger
- longitudinal axis
- physical quantity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C3/00—Labelling other than flat surfaces
- B65C3/06—Affixing labels to short rigid containers
- B65C3/08—Affixing labels to short rigid containers to container bodies
- B65C3/14—Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B57/00—Automatic control, checking, warning, or safety devices
- B65B57/02—Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of binding or wrapping material, containers, or packages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/0048—Local deformation of formed objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C3/00—Labelling other than flat surfaces
- B65C3/26—Affixing labels to non-rigid containers, e.g. bottles made of polyethylene, boxes to be inflated by internal air pressure prior to labelling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C9/00—Details of labelling machines or apparatus
- B65C9/02—Devices for moving articles, e.g. containers, past labelling station
- B65C9/04—Devices for moving articles, e.g. containers, past labelling station having means for rotating the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7158—Bottles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67C—CLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
- B67C3/00—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
- B67C3/02—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
- B67C3/22—Details
- B67C2003/226—Additional process steps or apparatuses related to filling with hot liquids, e.g. after-treatment
Definitions
- the present invention relates to a machine and a method for handling containers, such as for example plastic bottles.
- the present invention relates to a machine and a method for labelling and transforming filled and closed containers.
- the containers of the above mentioned type after having been filled with hot—for example at about 85° C.—pourable products or liquids, are first subjected to a capping operation and then cooled so as to return to a room temperature.
- hot for example at about 85° C.
- pourable products or liquids are first subjected to a capping operation and then cooled so as to return to a room temperature.
- the heated air present in the top portion (“head space”) of the container expands causing a stress tending to produce a general swelling of the container at the side wall and at the base wall.
- vacuum panels In order to contain the depressive stresses generated during the cooling of the product within the containers without generating undesired deformations on the containers, they are typically provided, at the side wall, with a series of vertical panels, known as “vacuum panels”. These panels, in the presence of depressive stresses, are deformed inwardly of the container allowing it to resist to the hot fill process without generating undesired deformations in other areas of the container.
- the known containers intended to be subjected to a hot fill process can also have an optimised lower portion or base adapted to be deformed upwards under the action of the depressive stresses.
- Patent application WO2006/068511 shows a container having a deformable base, which can have two different configurations: a first unstable configuration, in which this base has a central area projecting downwards with respect to the outermost annular peripheral area immediately adjacent thereto, and a second stable configuration, in which the central area is retracted inwardly of the container, i.e. it is arranged in a higher position with respect to the adjacent peripheral area.
- the base of the container has the first unstable configuration and must be supported by a special cup element to which it is coupled. Thereby, the downward deformation of the base of the container can be maximised without compromising the stable support of the container, since such a support is provided by the cup element.
- the base can be deformed by an external action, for example a vertical thrust upwards performed by a rod or plunger, in the second stable configuration with the subsequent possibility of removing the cup element.
- the deformation of the base of the container from the first to the second configuration determines a considerable reduction of the containment volume of the container, much higher than would be obtained in the known containers simply by the deformation of the base by the effect of the sole depressive stresses; the final effect is therefore substantially the cancellation of the depressive stresses acting on the inside of the container.
- a non-correctly filled container i.e. a container overfilled or filled below the desired level
- a non-correctly filled container may react to the deforming action of the plunger in a non predictable way: for instance, an overfilled container may be deformed insufficiently at its base, with possible return of the plastic material towards the original first configuration after release of the plunger; alternatively, a non-sufficiently filled container may be broken by the action of the plunger.
- a label requires a receiving surface having a well-defined geometry as well as a sufficient rigidity. This second feature of the receiving surface is particularly important for self-stick labels or pressure-sensitive labels.
- the present invention also relates to a container handling method as claimed in claim 10 .
- FIG. 1 shows a diagrammatic plan view, with parts removed for clarity, of a container handling machine according to the present invention
- FIG. 2 shows a larger-scale, partial sectional side view of an operative unit of the machine of FIG. 1 , in a first condition
- FIG. 3 shows a larger-scale, partial sectional side view of the operative unit of FIG. 2 , in a second condition, at the end of a deformation operation on a relative container;
- FIG. 4 shows a larger-scale partial sectional side view of the operative unit of FIG. 3 acting on an overfilled container
- FIG. 5 is a graph showing the variation, in the course of time, of the deforming force applied on differently-filled containers by the operative unit of FIGS. 2 to 4 during the deformation operation.
- numeral 1 indicates as a whole a handling machine for applying labels 2 on filled and closed containers, in particular plastic bottles 3 , and for deforming said bottles 3 so as to transform them into a desired final configuration.
- Machine 1 essentially comprises a support structure 4 (only partially visible in FIG. 1 ) and a carousel 5 mounted on support structure 4 in a rotatable manner about a vertical central axis A.
- Carousel 5 receives a sequence of bottles 3 to be labelled by an inlet star wheel 6 , which cooperates with carousel 5 at a first transfer station 7 and is mounted to rotate about a longitudinal axis B parallel to axis A.
- Carousel 5 also receives a sequence of rectangular or square labels 2 from a labelling unit 8 (known per se and only diagrammatically shown), which cooperates with carousel 5 at a second transfer station 9 .
- a labelling unit 8 known per se and only diagrammatically shown
- Carousel 5 releases a sequence of labelled bottles 3 to an outlet star wheel 10 , which cooperates with carousel 5 at a third transfer station 11 and is mounted to rotate about a longitudinal axis C parallel to axes A and B.
- each bottle 3 has a longitudinal axis D, a base 12 and a removable cap 17 , which is applied on an open neck 13 of the bottle 3 and defines an end of the bottle 3 itself opposite the base 12 .
- base 12 has an annular peripheral area 15 having axis D, radially external and defining an annular resting surface of relative bottle 3 , and a recessed central area 16 , surrounded by peripheral area 15 and arranged normally higher along axis D with respect to the peripheral area 15 in a vertical position of bottle 3 , i.e. with neck 13 placed above base 12 ; in other words, central area 16 is arranged at a distance from neck 13 along axis D smaller than the distance between neck 13 and peripheral area 15 .
- Base 12 is deformable and can have two different configurations, shown in FIGS. 2 and 3 .
- central area 16 of base 12 is deformed and swollen downwards, i.e. it is arranged at a maximum distance from neck 13 along axis D so as to define a maximum internal volume of bottle 3 ;
- central area 16 is instead retracted inwardly of relative bottle 3 with respect to the first configuration, i.e. central area 16 is arranged at a smaller distance along axis D from neck 13 with respect to the first configuration.
- bottles 3 have, in the second configuration of base 12 , a containing volume smaller than that in the first configuration.
- Bottles 3 are fed to carousel 5 in a condition in which they have been filled with the pourable product, normally a liquid food product, and closed, at neck 13 , with cap 17 .
- the pourable product normally a liquid food product
- bottles 3 are fed to carousel 5 after having been hot filled and subjected to a cooling operation.
- Base 12 is therefore arranged in the first configuration, i.e. it is deformed and swollen downwards, and within bottle 3 there are depressive stresses which tend to displace base 12 towards the second configuration.
- Bottles 3 reach carousel 5 in a vertical position, i.e. with base 12 arranged on the bottom with respect to neck 13 and to cap 17 and with axis D parallel to axes A, B and C.
- Bottles 3 are released to outlet star wheel 10 with base 12 in the second configuration, which is reached when the bottles 3 are correctly deformed and corresponds to the desired final configuration of the bottles 3 themselves.
- Carousel 5 comprises a plurality of operative units 18 (only one of which shown in detail in FIGS. 2 and 3 ), which are uniformly distributed about axis A and are mounted at a peripheral portion of carousel 5 .
- Operative units 18 are displaced by carousel 5 along a circular processing path P which extends about axis A and through transfer stations 7 , 9 and 11 .
- path P FIG. 1
- transfer station 7 in which bottles 3 are fed to carousel 5
- this latter station is clearly arranged upstream of transfer station 11 , in which labelled bottles 3 are fed to outlet wheel 10 .
- operative units 18 are fixed to a horizontal rotating table 19 of carousel 5 , have respective axes E parallel to axes A, B, C and orthogonal to path P, and extend coaxially through respective through-holes 20 of rotating table 19 and on both sides thereof.
- Each operative unit 18 is adapted to receive a relative bottle 3 in a vertical position, i.e. having its axis D coaxial to relative axis E with neck 13 placed above base 12 , and to retain this bottle 3 in the above said position along path P from transfer station 7 to transfer station 11 .
- operative unit 18 comprises, above rotating table 19 , a resting element 21 adapted to define a horizontal support for base 12 of a relative bottle 3 .
- resting element 21 comprises a plate 22 extending orthogonally to axis E and having, on top, a horizontal resting surface 23 for supporting base 12 of relative bottle 3 .
- peripheral area 15 is the only part of bottle 3 contacting resting surface 23 , being central area 16 retracted along axis D with respect to peripheral area 15 in both first and second configuration of base 12 .
- Plate 22 is advantageously provided with an upper central recess 22 a for receiving base 12 of a relative bottle 3 as well as for centering such bottle 3 with respect to the relative axis E, i.e. with its axis D coaxial to the axis E.
- each bottle 3 when housed on the relative operative unit 18 , is also locked on top by a retaining unit 24 cooperating with cap 17 of the bottle 3 , i.e. with the end of the bottle 3 opposite base 12 .
- retaining unit 24 comprises a bottom head 24 a defining a receiving seat 24 b adapted to be engaged in use by cap 17 of the relative bottle 3 .
- Retaining unit 24 is advantageously moved along axis E between a retracted or rest position, in which its head 24 a is arranged at a maximum distance from resting surface 23 of resting element 21 along the axis E itself, and an advanced or operative position ( FIGS. 2 and 3 ), in which its head 24 a is closer to the resting surface 23 than in the rest position and locks the relative bottle 3 in its vertical position on resting element 21 .
- Displacements of retaining unit 24 between the rest position and the operative position are controlled by a cam 25 fixed to support structure 4 of machine 1 , extending parallel to path P and cooperating with a cam follower 26 carried by the retaining unit 24 itself.
- cam follower 26 of retaining unit 24 slides along cam 25 .
- Retaining unit 24 is set in the operative position during movement of operative unit 18 along path P from transfer station 7 to transfer station 11 and is set in the rest position from transfer station 11 to transfer station 7 . More specifically, retaining unit 24 is moved from the rest position to the operative position, after a relative bottle 3 is received on resting element 21 , and is moved from the operative position to the rest position to release the bottle 3 at transfer station 11 .
- cam 25 has, at stations 7 and 11 , respective ramp-shaped operative portions (not shown) connected to one another by respective horizontal portions (like the one shown in FIGS. 2 to 4 ).
- Retaining unit 24 is advantageously maintained in its operative position, i.e. with its head 24 a at a constant distance along axis E from resting surface 23 of resting element 21 during the deformation operation carried out on base 12 of bottle 3 from the first configuration to the second configuration.
- Resting element 21 is also fixed to a rotating member 27 of a relative electric motor 28 , so as to be rotated about axis E when relative bottle 3 receives a label 2 from labelling unit 8 .
- electric motor 28 comprises a hollow cylindrical stator 29 , protrudingly fixed to the lower side of rotating table 19 about hole 20 and coaxially thereto; more precisely, stator 29 has a top end 29 a fixed to a lower face of rotating table 19 and protrudes on the lower side of rotating table 19 .
- Rotating member 27 also cylindrical and hollow, is mounted for the most part within stator 29 and projects on top therefrom so as to engage coaxially and pass through hole 20 of rotating table 19 of carousel 5 .
- Rotating member is mounted in a rotatable manner about axis E with respect to stator 29 and to rotating table 19 ; in other words, rotating member 27 rotatingly engages hole 20 of rotating table 19 .
- Resting element 21 finally protrudes from the top of rotating member 27 .
- Plate 22 of resting element 21 has a through opening 30 coaxial to axis E, and operative unit 18 also comprises a plunger 31 , which is borne by rotating table 19 of carousel 5 , on the opposite side of resting element 21 with respect to bottle 3 , and is selectively displaceable along axis E, with respect to the resting element 21 , to act, through opening 30 , on base 12 of relative bottle 3 and deform it from the first to the second configuration.
- plunger 31 has a substantially cylindrical main portion 32 , which axially and slidingly engages a central through-hole 33 having axis E of rotating member 27 and is selectively displaceable between a first position ( FIG. 2 ), in which it is spaced from base 12 of bottle 3 borne by resting element 21 , and a second position ( FIG. 3 ), in which it engages opening 30 of resting element 21 and has completed deformation of base 12 of bottle 3 to the second configuration.
- Plunger 31 is axially coupled to a driving element 34 of an actuator assembly 35 , in particular a linear motor 36 .
- plunger may be directly defined by driving element 34 of actuator assembly 35 .
- plunger 31 may be driven by an electric motor of rotary type, coupled with a worm screw, in turn connected to the plunger 31 itself.
- Actuator assembly 35 is arranged on the opposite side of electric motor 28 with respect to resting element 21 .
- actuator assembly 35 comprises an outer casing 37 which protrudes by means of a flanged sleeve 38 from a lower end 29 b of stator 29 , opposite to end 29 a and provided with a through hole 29 c.
- Driving element 34 is partially engaged in a sliding manner along axis E in housing 37 and projects on top therefrom with an end portion coupled to plunger 31 .
- plunger 31 is axially coupled to driving element 34 so that they can move as one single piece along axis E, and is rotationally free with respect to driving element 34 so that any rotational movement impressed by rotating member 27 to plunger 31 is not transmitted to the driving element 34 itself.
- main portion 32 of plunger 31 engages hole 29 c of end 29 b of stator 29 and hole 33 of rotating member 27 in a sliding manner and ends on top with a head 40 which interacts with base 12 of the relative bottle 3 .
- head 40 is spaced from base 12 of the relative bottle 3 and is in particular located below the plane defined by resting surface 23 , so as to not hamper feed or release of each bottle 3 to/from the relative operative unit 18 .
- head 40 is coupled with central portion 16 of base 12 of the relative bottle 3 .
- stator 29 moves with rotating table 19 about axis A.
- main portion 32 of plunger 31 has a splined zone 32 a angularly coupled with rotating member 27 ; therefore, in addition to the rotational movement about axis A, rotating member 27 , resting element 21 and plunger 31 can rotate about axis E with respect to the other components of operative unit 18 .
- plunger 31 and driving element 34 can translate along axis E with respect to the other components of operative unit 18 .
- machine 1 further comprises a control unit 41 configured to selectively activate actuator assembly 35 and electric motor 28 of each operative unit 18 : in the first case, activation of one actuator assembly 35 produces displacement of the relative plunger 31 along its axis E from the first to the second position and vice versa; in the second case, activation of one electric motor 28 produces rotation of the relative plunger 31 and resting element 21 about axis E.
- Control unit 41 advantageously comprises:
- measuring means 42 for measuring a physical quantity I correlated to the maximum deforming force F exerted by each plunger 31 on base 12 of the relative bottle 3 during the deformation operation of the base 12 itself in order to determine whether the bottle 3 is correctly filled;
- comparator means 43 for comparing measured values I 0 of physical quantity I with a threshold value I V or a threshold range I R of the same physical quantity I.
- control unit 41 On the basis of the above measures and comparisons, control unit 41 generates a reject signal R for rejecting the defective bottle 3 found on a given operative unit 18 when the measured value I 0 of physical quantity I differs from the threshold range I R or differs from the threshold value I V of a given amount.
- the reject signal R is generated by control unit 41 when the measured value I 0 of physical quantity I for a given operative unit 18 exceeds threshold value I V or threshold range I R , so indicating that the relative bottle 3 is overfilled.
- the measured physical quantity I is preferably the electrical current absorbed by each linear motor 36 during the deformation operation carried out on base 12 of a relative bottle 3 .
- FIG. 4 shows an example of an overfilled bottle 3 subjected to a deformation operation on its base 12 by a relative plunger 31 .
- the graph of FIG. 5 shows the variation, in the course of time, of the deforming force F applied on bases 12 of differently-filled bottles 3 by one operative unit 18 during the deformation operation.
- the deforming force F required for a bottle 3 completely full is on average 20% higher than the one required for a correctly filled bottle 3 (dot-and-dash line).
- bottles 3 sequentially reach the different operative units 18 of machine 1 .
- a hot pourable product for example a liquid food product at about 85° C.
- central area 16 of base 12 of each bottle 3 does not project downwards beyond adjacent peripheral area 15 ; thereby, peripheral area 15 always ensures a stable support for the relative bottle 3 .
- inlet star wheel 6 feed bottles 3 to machine 1 in vertical positions, i.e. with axes D parallel to central axis A and coaxial to axes E of respective operating units 18 .
- each bottle 3 is arranged resting on plate 22 of a relative operating unit 18 , centered within recess 22 a and locked on top by head 24 a of the relative retaining unit 24 .
- control unit 41 sequentially activates respective actuator assemblies 35 so as to move respective plungers 31 from their first positions to their second positions and to cause deformation of bases 12 of bottles 3 from the first to the second configuration; in this way, depressive stresses acting within bottles 3 are cancelled.
- relative actuator assembly 35 causes the displacement along axis E of relative plunger 31 so that head 40 completely passes through opening 30 of relative resting element 21 and pushes central area 16 of base 12 of the relative bottle 3 upwards until it is taken to the second configuration.
- head 24 a of the corresponding retaining unit 24 is maintained at a constant distance along axis E from resting surface 23 of the resting element 21 .
- the maximum deforming force F exerted by plunger 31 on base 12 of the relative bottle 3 is measured by measuring means 42 of control unit 41 in order to check whether the bottle 3 itself is correctly filled.
- maximum deforming force F is measured by detecting a correlated physical quantity I, in the example shown the electric current absorbed by linear motor 36 during the deformation operation.
- the measured values I 0 of physical quantity I are compared by comparator means 43 of control unit 41 with threshold value I V or threshold range I R of physical quantity I.
- a reject signal R is generated by control unit 41 when the measured value I 0 of physical quantity I differs from threshold range I R or differs from threshold value I V of a given amount.
- reject signal R is generated by control unit 41 when the measured value I 0 of physical quantity I exceeds threshold value I V or threshold range I R , indicating that the bottle 3 involved in this measuring is overfilled (see FIG. 4 and continuous line in the graph of FIG. 5 ).
- reject signal R On the basis of reject signal R, the defective bottle 3 detected by control unit 41 is subsequently rejected, e.g. downstream of machine 1 .
- base 12 produces an increase of the internal pressure of the relative bottle 3 as well as a consequent stiffening of the outer surface of the bottle 3 itself, which enables a very precise and accurate application of a relative label 2 .
- the labelling operation is performed immediately after the operation of deformation of base 12 of bottle 3 .
- plunger 31 is maintained in its second position ( FIG. 3 ) and the bottle 3 is ready to receive the relative label 2 .
- control unit 41 activates electric motor 28 of relative operative unit 18 ; relative resting element 21 and plunger 31 are therefore rotated about axis E with a corresponding rotation of bottle 3 borne thereby; due to the particular coupling between plunger 31 and driving element 34 , this latter element does not rotate.
- plungers 31 Prior to release bottles 3 to outlet wheel 10 , plungers 31 are moved along axis E to their first positions, so as to not hamper the lateral displacement of bottles 3 towards outlet wheel 10 .
- measuring the deforming force F applied by plungers 31 on the respective bottles 3 permits to obtain, in a reliable and repeatable manner, clear and immediate indications about correctness of the filling operations previously performed on such bottles 3 as well as about the quality of the bottles 3 themselves after the deformation operations.
- machine 1 is configured to perform both the labelling operation of bottles 3 and the operation of transforming bases 12 of bottles 3 from the first to the second configuration. This is obtained without modifying the path normally performed by operative units 18 on a typical labelling machine and without any intervention on the sequence of the operations traditionally performed to apply labels 2 on bottles 3 .
- machine 1 within a normal processing plant of bottles 3 allows to obtain, the same operations being performed, a reduction both of the number of machines employed and of the number of conveyors for transferring the above said bottles 3 from a machine to another. This also translates into a significant reduction of the overall space occupied by the resulting processing plant with respect to the known plants.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Labeling Devices (AREA)
- Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
Abstract
A container handling machine having at least one operative unit is disclosed. The container handling machine includes a first support unit configured to support a base of a filled and closed container, a second support unit configured to cooperate with an end of the container opposite the base, a plunger configured to selectively move along a longitudinal axis to deform the base of the container from a first swollen configuration to a second inwardly-retracted configuration, and an actuator configured to selectively move the plunger along the longitudinal axis between a first position, in which the plunger is detached from the base of the container, and a second position, in which the plunger deforms the base to the second configuration.
Description
- The present invention relates to a machine and a method for handling containers, such as for example plastic bottles.
- More specifically, the present invention relates to a machine and a method for labelling and transforming filled and closed containers.
- The present invention is advantageously but not exclusively applicable in the sector of plastic hot fill containers, which the following description will refer to, although this is in no way intended to limit the scope of protection as defined by the accompanying claims.
- As known, the containers of the above mentioned type, after having been filled with hot—for example at about 85° C.—pourable products or liquids, are first subjected to a capping operation and then cooled so as to return to a room temperature. By effect of the capping operation, the heated air present in the top portion (“head space”) of the container expands causing a stress tending to produce a general swelling of the container at the side wall and at the base wall.
- The following cooling to which the container is subjected, causes, vice versa, a reduction of the volume of air and minimally of the liquid product contained in the container; a depression is therefore created, which tends to pull the side walls and the base wall of the container inwards. This may determine deformations in the walls of the container if these are not rigid enough to resist the action of the above disclosed stresses.
- In order to contain the depressive stresses generated during the cooling of the product within the containers without generating undesired deformations on the containers, they are typically provided, at the side wall, with a series of vertical panels, known as “vacuum panels”. These panels, in the presence of depressive stresses, are deformed inwardly of the container allowing it to resist to the hot fill process without generating undesired deformations in other areas of the container.
- Likewise, the known containers intended to be subjected to a hot fill process can also have an optimised lower portion or base adapted to be deformed upwards under the action of the depressive stresses.
- Even though the disclosed solutions allow to “relieve” the pressure stresses on specific parts of the containers, i.e. the vertical vacuum panels or the base, thus avoiding the occurrence of undesired deformations in other parts of the containers, they do not allow the cancellation of the above said stresses; in other words, the containers remain in any case subject to internal depressive stresses and must therefore be provided with a structure capable of resisting such stresses.
- Patent application WO2006/068511 shows a container having a deformable base, which can have two different configurations: a first unstable configuration, in which this base has a central area projecting downwards with respect to the outermost annular peripheral area immediately adjacent thereto, and a second stable configuration, in which the central area is retracted inwardly of the container, i.e. it is arranged in a higher position with respect to the adjacent peripheral area.
- Following the filling with the hot pourable product, the base of the container has the first unstable configuration and must be supported by a special cup element to which it is coupled. Thereby, the downward deformation of the base of the container can be maximised without compromising the stable support of the container, since such a support is provided by the cup element. Following the cooling, the base can be deformed by an external action, for example a vertical thrust upwards performed by a rod or plunger, in the second stable configuration with the subsequent possibility of removing the cup element.
- The deformation of the base of the container from the first to the second configuration determines a considerable reduction of the containment volume of the container, much higher than would be obtained in the known containers simply by the deformation of the base by the effect of the sole depressive stresses; the final effect is therefore substantially the cancellation of the depressive stresses acting on the inside of the container.
- The applicant has observed that this kind of operation is quite critical, as the final configuration of the container after the deformation depends on a plurality of factors, connected not only to the way in which such operation is performed but also to the initial condition of the container subjected to deformation.
- In particular, the applicant has observed that a non-correctly filled container, i.e. a container overfilled or filled below the desired level, may react to the deforming action of the plunger in a non predictable way: for instance, an overfilled container may be deformed insufficiently at its base, with possible return of the plastic material towards the original first configuration after release of the plunger; alternatively, a non-sufficiently filled container may be broken by the action of the plunger.
- It should be also noted that an incorrect deformation of the container may affect the subsequent application of the label. As known, a label requires a receiving surface having a well-defined geometry as well as a sufficient rigidity. This second feature of the receiving surface is particularly important for self-stick labels or pressure-sensitive labels.
- It is therefore an object of the present invention to find a simple and cost-effective way to check, in a reliable and repeatable manner, the quality of the containers subjected to the deformation operations.
- This object is achieved by a container handling machine as claimed in claim 1.
- The present invention also relates to a container handling method as claimed in
claim 10. - A preferred embodiment is hereinafter disclosed for a better understanding of the present invention, by mere way of non-limitative example and with reference to the accompanying drawings, in which:
-
FIG. 1 shows a diagrammatic plan view, with parts removed for clarity, of a container handling machine according to the present invention; -
FIG. 2 shows a larger-scale, partial sectional side view of an operative unit of the machine ofFIG. 1 , in a first condition; -
FIG. 3 shows a larger-scale, partial sectional side view of the operative unit ofFIG. 2 , in a second condition, at the end of a deformation operation on a relative container; -
FIG. 4 shows a larger-scale partial sectional side view of the operative unit ofFIG. 3 acting on an overfilled container; and -
FIG. 5 is a graph showing the variation, in the course of time, of the deforming force applied on differently-filled containers by the operative unit ofFIGS. 2 to 4 during the deformation operation. - With reference to
FIG. 1 , numeral 1 indicates as a whole a handling machine for applying labels 2 on filled and closed containers, in particularplastic bottles 3, and for deforming saidbottles 3 so as to transform them into a desired final configuration. - Machine 1 essentially comprises a support structure 4 (only partially visible in
FIG. 1 ) and acarousel 5 mounted on support structure 4 in a rotatable manner about a vertical central axis A. - Carousel 5 receives a sequence of
bottles 3 to be labelled by aninlet star wheel 6, which cooperates withcarousel 5 at a first transfer station 7 and is mounted to rotate about a longitudinal axis B parallel to axis A. - Carousel 5 also receives a sequence of rectangular or square labels 2 from a labelling unit 8 (known per se and only diagrammatically shown), which cooperates with
carousel 5 at a second transfer station 9. - Carousel 5 releases a sequence of labelled
bottles 3 to anoutlet star wheel 10, which cooperates withcarousel 5 at athird transfer station 11 and is mounted to rotate about a longitudinal axis C parallel to axes A and B. - As may be seen in detail in
FIGS. 2 and 3 , eachbottle 3 has a longitudinal axis D, abase 12 and aremovable cap 17, which is applied on anopen neck 13 of thebottle 3 and defines an end of thebottle 3 itself opposite thebase 12. - In the case shown,
base 12 has an annularperipheral area 15 having axis D, radially external and defining an annular resting surface ofrelative bottle 3, and a recessedcentral area 16, surrounded byperipheral area 15 and arranged normally higher along axis D with respect to theperipheral area 15 in a vertical position ofbottle 3, i.e. withneck 13 placed abovebase 12; in other words,central area 16 is arranged at a distance fromneck 13 along axis D smaller than the distance betweenneck 13 andperipheral area 15. -
Base 12 is deformable and can have two different configurations, shown inFIGS. 2 and 3 . In the first configuration (FIG. 2 ),central area 16 ofbase 12 is deformed and swollen downwards, i.e. it is arranged at a maximum distance fromneck 13 along axis D so as to define a maximum internal volume ofbottle 3; in the second configuration (FIG. 3 ), reached when thebottle 3 is correctly deformed,central area 16 is instead retracted inwardly ofrelative bottle 3 with respect to the first configuration, i.e.central area 16 is arranged at a smaller distance along axis D fromneck 13 with respect to the first configuration. It is apparent thatbottles 3 have, in the second configuration ofbase 12, a containing volume smaller than that in the first configuration. -
Bottles 3 are fed tocarousel 5 in a condition in which they have been filled with the pourable product, normally a liquid food product, and closed, atneck 13, withcap 17. - In the case shown,
bottles 3 are fed tocarousel 5 after having been hot filled and subjected to a cooling operation.Base 12 is therefore arranged in the first configuration, i.e. it is deformed and swollen downwards, and withinbottle 3 there are depressive stresses which tend to displacebase 12 towards the second configuration. -
Bottles 3 reachcarousel 5 in a vertical position, i.e. withbase 12 arranged on the bottom with respect toneck 13 and tocap 17 and with axis D parallel to axes A, B and C. -
Bottles 3 are released tooutlet star wheel 10 withbase 12 in the second configuration, which is reached when thebottles 3 are correctly deformed and corresponds to the desired final configuration of thebottles 3 themselves. -
Carousel 5 comprises a plurality of operative units 18 (only one of which shown in detail inFIGS. 2 and 3 ), which are uniformly distributed about axis A and are mounted at a peripheral portion ofcarousel 5. -
Operative units 18 are displaced bycarousel 5 along a circular processing path P which extends about axis A and throughtransfer stations 7, 9 and 11. In particular, by considering path P (FIG. 1 ), transfer station 7, in whichbottles 3 are fed tocarousel 5, is arranged upstream of transfer station 9 for feeding labels 2, and this latter station is clearly arranged upstream oftransfer station 11, in which labelledbottles 3 are fed tooutlet wheel 10. - As may be seen in
FIGS. 2 and 3 ,operative units 18 are fixed to a horizontal rotating table 19 ofcarousel 5, have respective axes E parallel to axes A, B, C and orthogonal to path P, and extend coaxially through respective through-holes 20 of rotating table 19 and on both sides thereof. - Each
operative unit 18 is adapted to receive arelative bottle 3 in a vertical position, i.e. having its axis D coaxial to relative axis E withneck 13 placed abovebase 12, and to retain thisbottle 3 in the above said position along path P from transfer station 7 totransfer station 11. - Since
operative units 18 are identical to one another, only one will be disclosed in detail hereinafter for clarity and simplicity; it is evident that the features that will be hereinafter disclosed are common to alloperative units 18. - In particular,
operative unit 18 comprises, above rotating table 19, aresting element 21 adapted to define a horizontal support forbase 12 of arelative bottle 3. In greater detail,resting element 21 comprises aplate 22 extending orthogonally to axis E and having, on top, ahorizontal resting surface 23 for supportingbase 12 ofrelative bottle 3. In practice,peripheral area 15 is the only part ofbottle 3 contactingresting surface 23, beingcentral area 16 retracted along axis D with respect toperipheral area 15 in both first and second configuration ofbase 12. -
Plate 22 is advantageously provided with an uppercentral recess 22 a for receivingbase 12 of arelative bottle 3 as well as for centeringsuch bottle 3 with respect to the relative axis E, i.e. with its axis D coaxial to the axis E. - As can be seen in
FIGS. 2 and 3 , eachbottle 3, when housed on the relativeoperative unit 18, is also locked on top by aretaining unit 24 cooperating withcap 17 of thebottle 3, i.e. with the end of thebottle 3opposite base 12. - In particular,
retaining unit 24 comprises abottom head 24 a defining a receivingseat 24 b adapted to be engaged in use bycap 17 of therelative bottle 3. - Retaining
unit 24 is advantageously moved along axis E between a retracted or rest position, in which itshead 24 a is arranged at a maximum distance fromresting surface 23 ofresting element 21 along the axis E itself, and an advanced or operative position (FIGS. 2 and 3 ), in which itshead 24 a is closer to theresting surface 23 than in the rest position and locks therelative bottle 3 in its vertical position onresting element 21. - Displacements of
retaining unit 24 between the rest position and the operative position are controlled by acam 25 fixed to support structure 4 of machine 1, extending parallel to path P and cooperating with acam follower 26 carried by theretaining unit 24 itself. In particular,cam follower 26 of retainingunit 24 slides alongcam 25. - Retaining
unit 24 is set in the operative position during movement ofoperative unit 18 along path P from transfer station 7 to transferstation 11 and is set in the rest position fromtransfer station 11 to transfer station 7. More specifically, retainingunit 24 is moved from the rest position to the operative position, after arelative bottle 3 is received on restingelement 21, and is moved from the operative position to the rest position to release thebottle 3 attransfer station 11. - In order to produce these movements,
cam 25 has, atstations 7 and 11, respective ramp-shaped operative portions (not shown) connected to one another by respective horizontal portions (like the one shown inFIGS. 2 to 4 ). - Retaining
unit 24 is advantageously maintained in its operative position, i.e. with itshead 24 a at a constant distance along axis E from restingsurface 23 of restingelement 21 during the deformation operation carried out onbase 12 ofbottle 3 from the first configuration to the second configuration. - Resting
element 21 is also fixed to a rotatingmember 27 of a relativeelectric motor 28, so as to be rotated about axis E whenrelative bottle 3 receives a label 2 from labelling unit 8. - In particular,
electric motor 28 comprises a hollowcylindrical stator 29, protrudingly fixed to the lower side of rotating table 19 abouthole 20 and coaxially thereto; more precisely,stator 29 has atop end 29 a fixed to a lower face of rotating table 19 and protrudes on the lower side of rotating table 19. - Rotating
member 27, also cylindrical and hollow, is mounted for the most part withinstator 29 and projects on top therefrom so as to engage coaxially and pass throughhole 20 of rotating table 19 ofcarousel 5. Rotating member is mounted in a rotatable manner about axis E with respect tostator 29 and to rotating table 19; in other words, rotatingmember 27 rotatingly engageshole 20 of rotating table 19. - Resting
element 21 finally protrudes from the top of rotatingmember 27. -
Plate 22 of restingelement 21 has a throughopening 30 coaxial to axis E, andoperative unit 18 also comprises aplunger 31, which is borne by rotating table 19 ofcarousel 5, on the opposite side of restingelement 21 with respect tobottle 3, and is selectively displaceable along axis E, with respect to the restingelement 21, to act, throughopening 30, onbase 12 ofrelative bottle 3 and deform it from the first to the second configuration. - In particular,
plunger 31 has a substantially cylindricalmain portion 32, which axially and slidingly engages a central through-hole 33 having axis E of rotatingmember 27 and is selectively displaceable between a first position (FIG. 2 ), in which it is spaced frombase 12 ofbottle 3 borne by restingelement 21, and a second position (FIG. 3 ), in which it engages opening 30 of restingelement 21 and has completed deformation ofbase 12 ofbottle 3 to the second configuration. -
Plunger 31 is axially coupled to a drivingelement 34 of anactuator assembly 35, in particular alinear motor 36. - According to a possible variant (not shown), plunger may be directly defined by driving
element 34 ofactuator assembly 35. - According to another possible variant (not shown),
plunger 31 may be driven by an electric motor of rotary type, coupled with a worm screw, in turn connected to theplunger 31 itself. -
Actuator assembly 35 is arranged on the opposite side ofelectric motor 28 with respect to restingelement 21. - In the case shown,
actuator assembly 35 comprises anouter casing 37 which protrudes by means of aflanged sleeve 38 from alower end 29 b ofstator 29, opposite to end 29 a and provided with a throughhole 29 c. - Driving
element 34 is partially engaged in a sliding manner along axis E inhousing 37 and projects on top therefrom with an end portion coupled toplunger 31. - Preferably,
plunger 31 is axially coupled to drivingelement 34 so that they can move as one single piece along axis E, and is rotationally free with respect to drivingelement 34 so that any rotational movement impressed by rotatingmember 27 toplunger 31 is not transmitted to the drivingelement 34 itself. - As may be seen in
FIGS. 2 and 3 ,main portion 32 ofplunger 31 engageshole 29 c ofend 29 b ofstator 29 andhole 33 of rotatingmember 27 in a sliding manner and ends on top with ahead 40 which interacts withbase 12 of therelative bottle 3. - It should be noted that, in the first position of plunger 31 (
FIG. 2 ),head 40 is spaced frombase 12 of therelative bottle 3 and is in particular located below the plane defined by restingsurface 23, so as to not hamper feed or release of eachbottle 3 to/from the relativeoperative unit 18. - In the second position of
plunger 31,head 40 is coupled withcentral portion 16 ofbase 12 of therelative bottle 3. - To sum up, in the disclosed configurations of
operative unit 18,stator 29, rotatingmember 27, restingelement 21,actuator assembly 35 andplunger 31 move with rotating table 19 about axis A. - As shown in
FIGS. 2 and 3 ,main portion 32 ofplunger 31 has a splinedzone 32 a angularly coupled with rotatingmember 27; therefore, in addition to the rotational movement about axis A, rotatingmember 27, restingelement 21 andplunger 31 can rotate about axis E with respect to the other components ofoperative unit 18. - Finally,
plunger 31 and drivingelement 34 can translate along axis E with respect to the other components ofoperative unit 18. - With reference to
FIGS. 2 to 4 , machine 1 further comprises acontrol unit 41 configured to selectively activateactuator assembly 35 andelectric motor 28 of each operative unit 18: in the first case, activation of oneactuator assembly 35 produces displacement of therelative plunger 31 along its axis E from the first to the second position and vice versa; in the second case, activation of oneelectric motor 28 produces rotation of therelative plunger 31 and restingelement 21 about axis E. -
Control unit 41 advantageously comprises: - measuring means 42 for measuring a physical quantity I correlated to the maximum deforming force F exerted by each
plunger 31 onbase 12 of therelative bottle 3 during the deformation operation of the base 12 itself in order to determine whether thebottle 3 is correctly filled; and - comparator means 43 for comparing measured values I0 of physical quantity I with a threshold value IV or a threshold range IR of the same physical quantity I.
- On the basis of the above measures and comparisons,
control unit 41 generates a reject signal R for rejecting thedefective bottle 3 found on a givenoperative unit 18 when the measured value I0 of physical quantity I differs from the threshold range IR or differs from the threshold value IV of a given amount. - In this way, it is possible to detect whether the
bottles 3 are correctly filled, overfilled or filled below a predetermined level. - In the example shown, the reject signal R is generated by
control unit 41 when the measured value I0 of physical quantity I for a givenoperative unit 18 exceeds threshold value IV or threshold range IR, so indicating that therelative bottle 3 is overfilled. - The measured physical quantity I is preferably the electrical current absorbed by each
linear motor 36 during the deformation operation carried out onbase 12 of arelative bottle 3. -
FIG. 4 shows an example of anoverfilled bottle 3 subjected to a deformation operation on itsbase 12 by arelative plunger 31. - The graph of
FIG. 5 shows the variation, in the course of time, of the deforming force F applied onbases 12 of differently-filledbottles 3 by oneoperative unit 18 during the deformation operation. As clearly visible in such graph, the deforming force F required for abottle 3 completely full (continuous line), like the one shown inFIG. 4 , is on average 20% higher than the one required for a correctly filled bottle 3 (dot-and-dash line). - In use, after being filled with a hot pourable product, for example a liquid food product at about 85° C., capped with
respective caps 17 and cooled in order to be taken at the desired temperature,bottles 3 sequentially reach the differentoperative units 18 of machine 1. - In particular, as known, by the effect of the capping operation, heated air present in the top portion of each
bottle 3, between the product andrelative cap 17, expands causing a stress that tends to produce a general swelling ofbottle 3. During this step, bases 12 ofbottles 3 are deformed assuming the first configuration shown inFIG. 2 . - It may be noted, also in the above said first configuration, that
central area 16 ofbase 12 of eachbottle 3 does not project downwards beyond adjacentperipheral area 15; thereby,peripheral area 15 always ensures a stable support for therelative bottle 3. - During the subsequent cooling operation, depressive stresses are generated within
bottles 3 and tend to shrink them. - At transfer station 7,
inlet star wheel 6feed bottles 3 to machine 1 in vertical positions, i.e. with axes D parallel to central axis A and coaxial to axes E ofrespective operating units 18. - In particular, each
bottle 3 is arranged resting onplate 22 of arelative operating unit 18, centered withinrecess 22 a and locked on top byhead 24 a of therelative retaining unit 24. - During the movement of
bottles 3 from transfer station 7 to transfer station 9,control unit 41 sequentially activatesrespective actuator assemblies 35 so as to moverespective plungers 31 from their first positions to their second positions and to cause deformation ofbases 12 ofbottles 3 from the first to the second configuration; in this way, depressive stresses acting withinbottles 3 are cancelled. - In practice, considering a single
operative unit 18, the activation ofrelative actuator assembly 35 causes the displacement along axis E ofrelative plunger 31 so thathead 40 completely passes through opening 30 ofrelative resting element 21 and pushescentral area 16 ofbase 12 of therelative bottle 3 upwards until it is taken to the second configuration. During this displacement ofplunger 31, and therefore during the deformation operation on thebase 12 of therelative bottle 3,head 24 a of the corresponding retainingunit 24 is maintained at a constant distance along axis E from restingsurface 23 of the restingelement 21. - The maximum deforming force F exerted by
plunger 31 onbase 12 of therelative bottle 3 is measured by measuringmeans 42 ofcontrol unit 41 in order to check whether thebottle 3 itself is correctly filled. - In particular, maximum deforming force F is measured by detecting a correlated physical quantity I, in the example shown the electric current absorbed by
linear motor 36 during the deformation operation. - More specifically, the measured values I0 of physical quantity I are compared by comparator means 43 of
control unit 41 with threshold value IV or threshold range IR of physical quantity I. - A reject signal R is generated by
control unit 41 when the measured value I0 of physical quantity I differs from threshold range IR or differs from threshold value IV of a given amount. - In the example shown, reject signal R is generated by
control unit 41 when the measured value I0 of physical quantity I exceeds threshold value IV or threshold range IR, indicating that thebottle 3 involved in this measuring is overfilled (seeFIG. 4 and continuous line in the graph ofFIG. 5 ). - On the basis of reject signal R, the
defective bottle 3 detected bycontrol unit 41 is subsequently rejected, e.g. downstream of machine 1. - The deformation of
base 12 produces an increase of the internal pressure of therelative bottle 3 as well as a consequent stiffening of the outer surface of thebottle 3 itself, which enables a very precise and accurate application of a relative label 2. - In particular, the labelling operation is performed immediately after the operation of deformation of
base 12 ofbottle 3. - More specifically, at the end of the deformation operation,
plunger 31 is maintained in its second position (FIG. 3 ) and thebottle 3 is ready to receive the relative label 2. - In order to obtain winding of the label 2 on the
relative bottle 3,control unit 41 activateselectric motor 28 of relativeoperative unit 18;relative resting element 21 andplunger 31 are therefore rotated about axis E with a corresponding rotation ofbottle 3 borne thereby; due to the particular coupling betweenplunger 31 and drivingelement 34, this latter element does not rotate. - The application of the label 2 on the
relative bottle 3 is thus completed along the remaining portion of path P, untilbottle 3 is fed tooutlet wheel 10 attransfer station 11. - Prior to release
bottles 3 tooutlet wheel 10,plungers 31 are moved along axis E to their first positions, so as to not hamper the lateral displacement ofbottles 3 towardsoutlet wheel 10. - As it appears from the above description, measuring the deforming force F applied by
plungers 31 on therespective bottles 3 permits to obtain, in a reliable and repeatable manner, clear and immediate indications about correctness of the filling operations previously performed onsuch bottles 3 as well as about the quality of thebottles 3 themselves after the deformation operations. - These indications are achieved without complicating the
operative units 18 by introducing additional sensors and connection thereof to thecontrol unit 41, but simply measuring the electric current absorbed byactuator assemblies 35 for performing the deformation operations. - It should be also noted that machine 1 is configured to perform both the labelling operation of
bottles 3 and the operation of transformingbases 12 ofbottles 3 from the first to the second configuration. This is obtained without modifying the path normally performed byoperative units 18 on a typical labelling machine and without any intervention on the sequence of the operations traditionally performed to apply labels 2 onbottles 3. - Furthermore, the adoption of machine 1 within a normal processing plant of
bottles 3 allows to obtain, the same operations being performed, a reduction both of the number of machines employed and of the number of conveyors for transferring the above saidbottles 3 from a machine to another. This also translates into a significant reduction of the overall space occupied by the resulting processing plant with respect to the known plants. - Finally, it is clear that modifications and variants to machine 1 and the method disclosed and shown herein can be made without departing from the scope of protection as defined in the accompanying claims.
Claims (16)
1. A container handling machine having at least one operative unit for handling a container having a base, the machine comprising:
a first support unit configured to support the base of the container;
a second support unit configured to cooperate with an end of the container opposite the base;
a plunger configured to selectively move along a longitudinal axis to deform the base of the container from a first configuration, in which the base is in an enlarged state and defines a first internal volume of the container, to a second configuration, in which the base is at least in part inwardly retracted with respect to the first configuration so as to define a second internal volume of the container that is smaller than in the first internal volume of the first configuration;
an actuator configured to selectively move the plunger along the longitudinal axis between a first position, in which the plunger is detached from the base of the container, and a second position, in which the plunger deforms the base to the second configuration of the base;
a control unit configured to selectively activate the actuator to move the plunger along the longitudinal axis between the first position and the second position;
wherein the second support unit is maintained at a constant distance along the longitudinal axis from the first support unit when the base is deformed; and
wherein the control unit includes a measuring unit configured to measure a physical quantity associated with a deforming force exerted by the plunger on the base of the container when the base is deformed as part of a determination of whether the container filled.
2. The machine of claim 1 , wherein the control unit includes a comparator unit configured to compare a measured value of the physical quantity with a threshold value or a threshold range of the same physical quantity.
3. The machine of claim 2 , wherein the control unit is configured to generate a reject signal for rejecting the container when the measured value of the physical quantity differs from the threshold range or differs from the threshold value.
4. The machine of claim 3 , wherein the reject signal is generated by the control unit when the measured value of the physical quantity exceeds the threshold value or the threshold range, indicating that the container is overfilled.
5. The machine of claim 1 , wherein the actuator includes an electric motor, and wherein the physical quantity is the electric current absorbed by the electric motor during when the base is deformed.
6. The machine of claim 1 , wherein the first support unit includes a resting element configured to support the base of the container and having an opening through which the plunger is moved to deform the base of the container.
7. The machine of claim 1 , further including a transportation unit configured to move the operative unit and the container along a processing path transverse to the longitudinal axis, and a labelling unit configured to apply a label onto an outer surface of the container while the operative unit and the container are being moved by the transportation unit along the processing path.
8. The machine of claim 7 , wherein the operative unit further includes a second actuator carried by the transportation unit and configured to rotate the resting element about the longitudinal axis while the label is applied onto the container.
9. The machine of claim 8 , wherein the second actuator is angularly coupled to the plunger to rotate the plunger, when in the second position, together with the resting element about the longitudinal axis.
10. A method for handling a container having a base, the method comprising:
receiving the container in an operative unit having a first support unit configured to support the base of the container, and a second support unit configured to cooperate with an end of the container opposite the base;
moving a plunger along a longitudinal axis between a first position, in which the plunger is detached from the base of the container, and a second position, in which the plunger interacts with the base;
deforming, through moving the plunger along the longitudinal axis, the base of the container from a first configuration, in which the base is in an enlarged state and defines a first internal volume of the container, to a second configuration, where the plunger is in the second position and in which the base is at least in part inwardly retracted with respect to the first configuration so as to define a second internal volume of the container that is smaller than the first internal volume of the first configuration;
maintaining the second support unit at a constant distance along the longitudinal axis from the first support unit when the base is deformed; and
measuring a physical quantity associated with a deforming force exerted by the plunger on the base of the container when the base is deformed as part of a determination of whether the container is filled.
11. The method of claim 10 , further including comparing the measured value of the physical quantity with a threshold value or a threshold range of the same physical quantity.
12. The method of claim 11 , further including generating a reject signal for rejecting the container when the measured value of the physical quantity differs from the threshold range or differs from the threshold value.
13. The method of claim 12 , wherein the reject signal is generated when the measured value of the physical quantity exceeds the threshold value or the threshold range, indicating that the container is overfilled.
14. The method of claim 10 , wherein the plunger is moved by an electric motor, and wherein the physical quantity is the electrical current absorbed by the electric motor when the base is deformed.
15. The method of claim 10 , further including:
moving the operative unit and the container along a processing path transverse to the longitudinal axis; and
applying a label onto an outer surface of the container while the operative unit and the container are being moved along the processing path.
16. The method of claim 15 , wherein receiving the container in the operative unit includes accommodating the base of the container on a resting element of the first support unit, having an opening through which the plunger is moved to deform the base, and wherein the method further includes rotating the resting element about the longitudinal axis while the label is applied onto the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/806,796 US10040590B2 (en) | 2014-08-29 | 2017-11-08 | Container handling machine and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14182771.7 | 2014-08-29 | ||
EP14182771.7A EP2990343B1 (en) | 2014-08-29 | 2014-08-29 | Container handling machine and method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/806,796 Continuation US10040590B2 (en) | 2014-08-29 | 2017-11-08 | Container handling machine and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160059981A1 true US20160059981A1 (en) | 2016-03-03 |
Family
ID=51421936
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/839,381 Abandoned US20160059981A1 (en) | 2014-08-29 | 2015-08-28 | Container handling machine and method |
US15/806,796 Active US10040590B2 (en) | 2014-08-29 | 2017-11-08 | Container handling machine and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/806,796 Active US10040590B2 (en) | 2014-08-29 | 2017-11-08 | Container handling machine and method |
Country Status (3)
Country | Link |
---|---|
US (2) | US20160059981A1 (en) |
EP (1) | EP2990343B1 (en) |
CN (1) | CN105383868B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230227269A1 (en) * | 2022-01-14 | 2023-07-20 | Sidel Participations | Container bottom inversion device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112499549B (en) * | 2020-12-28 | 2023-04-11 | 昆山欣谷微电子材料有限公司 | Industrial automatic chemical liquid packaging machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5259913A (en) * | 1992-10-23 | 1993-11-09 | Spear, Incorporated | Continuous rotary labeling apparatus and method |
US20030034111A1 (en) * | 1999-07-19 | 2003-02-20 | Krones, Inc. | Computer controlled position slaved servo labeling system |
DE102009025907A1 (en) * | 2009-06-03 | 2010-12-09 | Krones Ag | Apparatus and method for treating containers |
WO2013139874A1 (en) * | 2012-03-20 | 2013-09-26 | Sidel S.P.A. Con Socio Unico | Labelling machine |
WO2015039690A1 (en) * | 2013-09-19 | 2015-03-26 | Sidel Participations | Machine and method for processing filled containers having an invertible diaphragm |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994001269A1 (en) * | 1992-07-07 | 1994-01-20 | Continental Pet Technologies, Inc. | Method of forming container with high-crystallinity sidewall and low-clystallinity base |
US8381940B2 (en) * | 2002-09-30 | 2013-02-26 | Co2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
TWI375641B (en) | 2004-12-20 | 2012-11-01 | Co2 Pac Ltd | A method of processing a container and base cup structure for removal of vacuum pressure |
FR2887238B1 (en) * | 2005-06-21 | 2007-09-28 | Jean Tristan Outreman | PROCESS FOR HOT-FILLING A THIN-WALL CONTAINER AND FILLED CONTAINER THUS OBTAINED |
BRPI0713972A2 (en) * | 2006-07-03 | 2012-12-18 | Hokkai Can | Method and device for producing content filling bottle |
EP1975116A1 (en) * | 2007-03-31 | 2008-10-01 | Aisapack Holding SA | Method of filling a retractable package |
DE102008026244A1 (en) * | 2008-05-30 | 2009-12-03 | Krones Ag | Method for filling plastic bottle i.e. polyethylene terephthalate bottle, with hot fluid, involves deforming plastic bottles in bottle filler before or during filling, and pressing bottle bottoms outwardly by mechanical force effect |
JP5750306B2 (en) * | 2011-05-24 | 2015-07-22 | 花王株式会社 | Manufacturing method of labeled container |
-
2014
- 2014-08-29 EP EP14182771.7A patent/EP2990343B1/en active Active
-
2015
- 2015-08-28 US US14/839,381 patent/US20160059981A1/en not_active Abandoned
- 2015-08-31 CN CN201510545937.1A patent/CN105383868B/en active Active
-
2017
- 2017-11-08 US US15/806,796 patent/US10040590B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5259913A (en) * | 1992-10-23 | 1993-11-09 | Spear, Incorporated | Continuous rotary labeling apparatus and method |
US20030034111A1 (en) * | 1999-07-19 | 2003-02-20 | Krones, Inc. | Computer controlled position slaved servo labeling system |
DE102009025907A1 (en) * | 2009-06-03 | 2010-12-09 | Krones Ag | Apparatus and method for treating containers |
WO2013139874A1 (en) * | 2012-03-20 | 2013-09-26 | Sidel S.P.A. Con Socio Unico | Labelling machine |
US20150040515A1 (en) * | 2012-03-20 | 2015-02-12 | Sidel S.P.A. Con Socio Unico | Labelling machine |
WO2015039690A1 (en) * | 2013-09-19 | 2015-03-26 | Sidel Participations | Machine and method for processing filled containers having an invertible diaphragm |
US20160152457A1 (en) * | 2013-09-19 | 2016-06-02 | Sidel Participations | Machine and method for processing filled containers having an invertible diaphragm |
Non-Patent Citations (1)
Title |
---|
DE 102009025907 A1 translation, 12-2010, GERMANY, GUT THORSTEN * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230227269A1 (en) * | 2022-01-14 | 2023-07-20 | Sidel Participations | Container bottom inversion device |
Also Published As
Publication number | Publication date |
---|---|
EP2990343B1 (en) | 2017-02-01 |
US20180065769A1 (en) | 2018-03-08 |
EP2990343A1 (en) | 2016-03-02 |
CN105383868A (en) | 2016-03-09 |
US10040590B2 (en) | 2018-08-07 |
CN105383868B (en) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9828130B2 (en) | Container handling machine and method | |
EP2828170B1 (en) | Labelling machine | |
EP2594499B1 (en) | In-line bottling plant for containers with liquids and bottling process | |
US9375878B2 (en) | Method and apparatus for operating a plant for the treatment of containers with superordinated choice of parameters | |
US9873536B2 (en) | Container handling machine and method | |
US9302802B2 (en) | Method and apparatus for operating a plant for the treatment of containers with controlled parameter selection | |
TWI537183B (en) | A continuous rotary filling and packaging machine, and a method of manufacturing a hermetically sealed container | |
US10040590B2 (en) | Container handling machine and method | |
US20230356873A1 (en) | Method for the production of a series of containers comprising a step for marking containers | |
US10259696B2 (en) | Machine and method for processing filled containers having an invertible diaphragm | |
US20170096320A1 (en) | Method and apparatus for handling receptacles | |
US9926180B2 (en) | Capping machine | |
EP2923996B1 (en) | Crimping device for a machine for closing containers | |
EP3106402A1 (en) | Process and apparatus for closing and printing/labelling a container | |
EP2851334A1 (en) | Container handling apparatus and method | |
JP2018144868A (en) | Capping method and device therefor | |
EP3115307A1 (en) | Quality control system and method for a container processing machine | |
EP3450337B1 (en) | Treatment apparatus for receptacles | |
CN117416912A (en) | Method for monitoring a sealing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIDEL S.P.A. CON SOCIO UNICO, ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PACE, RAFFAELE;MOLINARI, STEFANO;VIGNALI, MATTEO;REEL/FRAME:036453/0275 Effective date: 20150728 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |