US20160057636A1 - Increasing spectral efficiency in a heterogeneous network - Google Patents

Increasing spectral efficiency in a heterogeneous network Download PDF

Info

Publication number
US20160057636A1
US20160057636A1 US14/784,258 US201414784258A US2016057636A1 US 20160057636 A1 US20160057636 A1 US 20160057636A1 US 201414784258 A US201414784258 A US 201414784258A US 2016057636 A1 US2016057636 A1 US 2016057636A1
Authority
US
United States
Prior art keywords
modulation order
coding rate
modulation
mcs
mcs index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/784,258
Inventor
Ahmed S. Ibrahim
Shady O. Elbassiouny
Ahmed Ilhamy
Ahmed M. Darwish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
El-Bassiouny Shady O
El Bassiouny Shady O
Intel IP Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361821635P priority Critical
Application filed by Intel IP Corp filed Critical Intel IP Corp
Priority to PCT/US2014/031970 priority patent/WO2014182382A1/en
Priority to US14/784,258 priority patent/US20160057636A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DARWISH, Ahmed M., IBRAHIM, Ahmed S., ELBASSIOUNY, Shady O., ILHAMY, Ahmed
Publication of US20160057636A1 publication Critical patent/US20160057636A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying includes continuous phase systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/16Arrangements for monitoring or testing packet switching networks using threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity ; Protecting confidentiality; Key management; Integrity; Mobile application security; Using identity modules; Secure pairing of devices; Context aware security; Lawful interception
    • H04W12/04Key management, e.g. by generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • H04W72/0413Wireless resource allocation involving control information exchange between nodes in uplink direction of a wireless link, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0453Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a frequency, carrier or frequency band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/10Wireless resource allocation where an allocation plan is defined based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling ; Dynamically scheduled allocation on shared channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/122Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1262Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution [LTE] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1264Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution Advanced [LTE-A] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/142Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Wireless Local Area Networks [WLAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/144Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Bluetooth and Wireless Personal Area Networks [WPAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/146Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Worldwide Interoperability for Microwave Access [WiMAX] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/21Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in machine-to-machine [M2M] and device-to-device [D2D] communications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/23Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Voice over IP [VoIP] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/24Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Discontinuous Reception [DRX] networks

Abstract

A technology for a user equipment (UE) in a heterogeneous network (HetNet). A modulation order can be selected for transmission from a small cell in the HetNet. A change in a UE state of the RRC idle mode can be identified. A desired coding rate can be identified to apply to the modulation order for a selected modulation and coding scheme (MCS) index. A predetermined transport block size (TBS) can be selected. Data in the TBS can be transmitted from the small cell to a UE using the MCS.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of and hereby incorporates by reference U.S. Provisional Patent Application Ser. No. 61/821,635, filed May 9, 2013, with an attorney docket number P56618Z.
  • BACKGROUND
  • Users of wireless and mobile networking technologies are increasingly using their mobile devices to send and receive data as well as communicate. With increased data communications on wireless networks the strain on the limited bandwidth and system resources that are available for wireless telecommunications is also increasing. To handle the increasing amount of wireless services to an increasing numbers of users, an efficient use of the available radio network resources has become important.
  • In homogeneous networks, the transmission station, also referred to as a macro node, can provide basic wireless coverage to mobile devices within a defined geographic region, typically referred to as a cell. Heterogeneous networks (HetNets) were introduced to handle the increased traffic loads on the macro nodes due to increased usage and functionality of mobile devices. HetNets can include a layer of planned high power macro nodes (or macro-enhanced Node Bs) overlaid with layers of lower power nodes (micro-nodes, pico-nodes, femto-nodes, home-eNBs, relay stations, etc.) that can be deployed in a less well planned or even entirely uncoordinated manner within the coverage area of the macro nodes. The macro nodes can be used for basic coverage, and the low power nodes can be used to fill coverage holes, to improve capacity in hot-zones or at the boundaries between the macro nodes' coverage areas, and improve indoor coverage where building structures impede signal transmission.
  • Spectrum efficiency is the optimized use of spectrum or bandwidth so that the maximum amount of data can be transmitted with the fewest transmission errors. In a cellular network, spectrum efficiency measures how efficiently a limited frequency spectrum is utilized, such as the maximum number of users per cell that can be provided while maintaining an acceptable quality of service (QoS). For small nodes in a HetNet, enabling higher modulation orders in the small-node environments can enable greater spectral efficiency.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features and advantages of the disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the disclosure; and, wherein:
  • FIG. 1 depicts a multiple RAT (multi-RAT) HetNet with a macro-cell and a macro-node overlaided with layers of small nodes in accordance with an example;
  • FIG. 2 illustrates a method for transmitting data to a user equipment (UE) in a HetNet in accordance with an example;
  • FIG. 3 illustrates a method for transmitting data in a HetNet in accordance with an example;
  • FIG. 4 depicts the functionality of computer circuitry of a base station (BS) operable to communicate data in a HetNet in accordance with an example;
  • FIG. 5 depicts the functionality of computer circuitry of an enhanced node B (eNB) operable to select a modulation and coding scheme (MCS) for communication with a UE in accordance with an example;
  • FIG. 6 shows a table of various MCSs for a 256 QAM modulation order in accordance with an example;
  • FIG. 7 depicts the spectral efficiencies of a base station using the MCSs in accordance with an example;
  • FIG. 8 depicts the coding rates of a base station using different MCSs in accordance with an example;
  • FIG. 9 illustrates performance curves using a link level simulation (LLS) for a 64 quadrature amplitude modulation (QAM) and a 256 QAM with zero and non-zero values for the transmission Error Vector Magnitude (TX EVM) and reception EVM (RX EVM) in accordance with an example;
  • FIG. 10 depicts a table with the absolute values of the throughput values for a 256 QAM and its potential gains for selected EVM values compared to a 64 QAM with the same values of TX EVM and RX EVM in accordance with an example;
  • FIG. 11 illustrates system level simulation (SLS) results for a cluster of small nodes in accordance with an example;
  • FIG. 12 depicts a post-processing signal to interference plus noise ratio (SINR) distribution of small-cell UEs with different lambdas (λ) at 4% TX EVM in accordance with an example;
  • FIG. 13 illustrates average UE throughputs as a function of a full buffer traffic (FTP) model-1 arrival rate in accordance with an example;
  • FIG. 14 depicts a table with the throughput values achieved by small-cell UEs with 256 QAM modulations at different distribution points and average (AVG) in accordance with an example;
  • FIG. 15 shows a table with the average throughput values and 256 QAM gains for both macro-cell UEs and small-cell UEs in accordance with an example;
  • FIG. 16 illustrates 256 QAM throughput gains for both TX EVMs and RX EVMs in accordance with an example;
  • FIG. 17 depicts a table of the average throughput gains of small-cell UEs in accordance with an example; FIG. 18 depicts a table of the average throughput gains of UEs in accordance with an example;
  • FIG. 19 depicts SLS evaluation parameters in accordance with an example;
  • FIG. 20 illustrates the block error rate (BLER) vs. the signal to noise ratio (SNR) for different MCSs in accordance with an example;
  • FIG. 21 depicts the log likelihood ratio (LLR) distribution for different SNR values in accordance with an example;
  • FIG. 22 depicts another the LLR distribution for different SNR values in accordance with an example;
  • FIG. 23 depicts the mean mutual information per bit (MMIB) versus the SNR in accordance with an example;
  • FIG. 24 depicts the BLER vs. MMIB for different MCSs in accordance with an example;
  • FIG. 25 depicts a table with different MCSs for selected parameters in accordance with an example;
  • FIG. 26 illustrates a graph of curve fitted line of MMIB vs. SNR in accordance with an example; and
  • FIG. 27 illustrates a diagram of a UE in accordance with an example.
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
  • DETAILED DESCRIPTION
  • Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular examples only and is not intended to be limiting. The same reference numerals in different drawings represent the same element. Numbers provided in flow charts and processes are provided for clarity in illustrating steps and operations and do not necessarily indicate a particular order or sequence.
  • Mobile devices are increasingly equipped with multiple radio access technologies (RATs). The mobile devices can be configured to connect to and choose among different access networks provided by the RATs. In homogeneous networks, the base stations or macro nodes can provide basic wireless coverage to mobile devices in an area covered by the node. HetNets can include a layer of macro nodes or macro-eNBs overlaid with layers of small cells, also referred to as low power cells, low power nodes or small nodes, such as micro-nodes, pico-nodes, femto-nodes, home-eNBs, relay stations, etc. In addition, other RATs, such as Institute of Electronics and Electrical Engineers (IEEE) 802.11 configured access points (APs) can be interspersed with the low power nodes.
  • The macro nodes can be used for basic coverage and the small nodes or low power nodes can be used to fill coverage holes, to improve capacity in hot-zones or at the boundaries between the macro nodes' coverage areas, and improve indoor coverage where building structures impede signal transmission. Small nodes, such as femto nodes, can also be indoor nodes in houses, apartments, offices, or other indoor locations. In one embodiment, small nodes can support closed subscriber group (CSG) functionality. Small nodes, such as pico cells, can be used for coverage in halls and airports. Small nodes can also be used as outdoor nodes. Small nodes can also be used at lower heights compared to macro nodes. FIG. 1 depicts a multi-RAT HetNet with a macro-cell 110 and a macro-node 120 overlaided with layers of lower power or small nodes including micro-nodes 130, pico-nodes 140, femto-nodes 150, and WiFi access points (APs) 160.
  • High demand for increased throughput by UEs can be satisfied by deploying a cluster of small nodes to provide an acceptable quality of service (QoS) for the UEs. In one embodiment, dense clusterization of small nodes can be used at hotspots to provide closer serving nodes to more UEs for better network capacity. However, as the number of small nodes deployed in a given area increases, the inter-small node interference also increase. As inter-small node interference reaches a threshold limit, there is an upper bound constraint on the number of small nodes to be deployed in a hotspot area. Traditionally, the disadvantage of the high density deployment or clusterization of small nodes is the level of inter-small node interference, e.g. the level of interference that occurs between multiple small nodes in a dense area. The inter-small node interference decreases the signal to noise ratio (SNR) and/or the signal to interference plus noise ratio (SINR) between UEs and small nodes, resulting in lower or decreased UE throughput. To maintain an optimum density of small node deployments, inter-small node interference is minimized while UE throughput is maximized.
  • In one embodiment, small areas provide higher SNR which allows the use of higher modulation and coding schemes (MCS), such as 64 quadrature amplitude modulation (QAM), 128 QAM, or 256 QAM. As the distance or separation between small nodes and UEs decrease, propagation losses and interference levels decrease and better channel conditions and SNR or SINR are maintained between the UEs and the small nodes. In one embodiment, interference mitigation techniques can be used to improve or boost the SNR and/or SINR of a UE so that the UEs can use higher modulation schemes with an acceptable error rate. In one embodiment, higher performance for small nodes, such as high throughput and low interference, can be achieved by using higher order modulation schemes, such as 256 QAM. When higher order modulations are used, signal imperfections, such as signal interference, at the UE and small node are reduced because the distance between constellation points are shorter.
  • In one embodiment, the optimum number of small nodes per hotspot is determined to achieve the highest user average throughput with minimal inter-small node interference. The optimum number of small nodes can be determined by evaluating the feasibility of high modulation order schemes, such as 256 QAM. In one embodiment, the small nodes can be outdoor small nodes. In another embodiment, UEs can operate in a high SINR region to use a 256 QAM. In one embodiment, multiple UEs can be clustered in an indoor hotspot environment and are served by small nodes. In another embodiment, when a small node varies channels the macro node can be configured to vary channels as well. In one embodiment, inter-frequency variation can be used for the macro nodes and small nodes, where different frequencies are used for the macro nodes and the small nodes.
  • FIG. 2 illustrates a method 200 for transmitting data to a UE cell in a HetNet. The method can comprise the operation of selecting a modulation order for transmission from a small node in the HetNet, as in block 210. In one embodiment, selecting the modulation order further comprises selecting a modulation order of 8 for the MCS index. In one embodiment, the modulation order of 8 is selected when a UE has an effective SINR of greater than 20 decibels. In one embodiment, the method further comprises setting the effective SINR threshold within a range of 20 decibels to 26.5 decibels. In another embodiment, selecting the modulation order further comprises selecting a modulation of 256 QAM for the modulation order.
  • The method 200 can further comprise the operation of identifying a desired coding rate to apply to the modulation order for a selected MCS index, as in block 220. In one embodiment, identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate of less than or equal to 0.94. In another embodiment, identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate with a range from approximately 0.70 to 0.94. The method 200 can also comprise the operation of selecting a predetermined transport block size (TBS), as in block 230. In one embodiment, selecting the predetermined TBS further comprises selecting a TBS wherein a number of physical resource blocks (PRBs) is 5, 10, 25, 50, 100, or 110. The method may further comprise the operation of transmitting data in the TBS from the small node to a UE using the MCS, as in block 240.
  • In one embodiment, the method further comprises: assigning a MCS index of 29 for a modulation order of 8 and a coding rate of 0.7017; assigning a MCS index of 30 for a modulation order of 8 and a coding rate of 0.7283; assigning a MCS index of 31 for a modulation order of 8 and a coding rate of 0.755; assigning a MCS index of 32 for a modulation order of 8 and a coding rate of 0.7817; assigning a MCS index of 33 for a modulation order of 8 and a coding rate of 0.8083; assigning a MCS index of 34 for a modulation order of 8 and a coding rate of 0.8217; assigning a MCS index of 35 for a modulation order of 8 and a coding rate of 0.8483; assigning a MCS index of 36 for a modulation order of 8 and a coding rate of 0.875; assigning a MCS index of 37 for a modulation order of 8 and a coding rate of 0.915; and/or assigning a MCS index of 38 for a modulation order of 8 and a coding rate of 0.9417.
  • FIG. 3 illustrates a method 300 for transmitting data in a HetNet. The method can comprise the operation of selecting a modulation order of 8 (28) for an MCS index to transmit the data in the HetNet, as in block 310. In one embodiment, selecting the modulation order further comprises selecting a modulation of 256 QAM for the modulation order. The method 300 can be further comprise the operation of identifying a coding rate for the modulation order to enable the data to be received with a desired block error rate (BLER), as in block 320. In one embodiment, identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate of less than or equal to 0.94. In another embodiment, identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate with a range from approximately 0.70 to 0.94. The method 300 can also comprise the operation of identifying a selected transport block size (TBS), as in block 330. The method 300 can further comprise the operation of transmitting the data from a cell in the HetNet using the MCS, as in block 340. In one embodiment, transmitting the data further comprises transmitting the data from a small cell in the HetNet using the MCS.
  • Another example provides functionality 400 of computer circuitry of a base station operable to communicate data in a HetNet, as shown in the flow chart in FIG. 4. The functionality can be implemented as a method or the functionality can be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The computer circuitry can be configured to measure an SINR for communication with a UE in the HetNet, as in block 410. The computer circuitry can be further configured to select a modulation order of eight when the SINR is greater than a selected threshold, as in block 420. In one embodiment, the computer circuitry is further configured to set the threshold to at least 20 decibels for the SINR. In another embodiment, the computer circuitry is further configured to set the threshold within a range of 20 decibels to 26.5 decibels. For a fixed modulation order, the threshold level can change as the coding rate changes. For example if a high SINR is available for the fixed modulation order then a higher coding rate can be selected to enable a higher throughput. The computer circuitry can also be configured to determine a coding rate for the modulation order for a selected MCS index value, as in block 430. The computer circuitry can also be configured to determine a selected TBS, as in block 440. The computer circuitry can also be configured to communicate data to the UE using the MCS and the TBS, as in block 450.
  • In one embodiment, the computer circuitry is further configured to: assign a MCS index of 29 for a modulation order of 8 and a coding rate of 0.7017; assign a MCS index of 30 for a modulation order of 8 and a coding rate of 0.7283; assign a MCS index of 31 for a modulation order of 8 and a coding rate of 0.755; assign a MCS index of 32 for a modulation order of 8 and a coding rate of 0.7817; assign a MCS index of 33 for a modulation order of 8 and a coding rate of 0.8083; assign a MCS index of 34 for a modulation order of 8 and a coding rate of 0.8217; assign a MCS index of 35 for a modulation order of 8 and a coding rate of 0.8483; assign a MCS index of 36 for a modulation order of 8 and a coding rate of 0.875; assign a MCS index of 37 for a modulation order of 8 and a coding rate of 0.915; or assign a MCS index of 38 for a modulation order of 8 and a coding rate of 0.9417.
  • Another example provides functionality 500 of computer circuitry of a low power cell operable to select an MCS for communication with a UE, as shown in the flow chart in FIG. 5. The functionality can be implemented as a method or the functionality can be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. In one embodiment, the lower power cell can include micro-nodes, pico-nodes, femto-nodes, home-eNBs, relay stations, and/or WiFi access points. The computer circuitry can be configured to select a modulation order with a 256 QAM for transmission from a cell in the HetNet, as in block 510. In one embodiment, the computer circuitry is further configured to select a modulation order of 8 for the MCS index. In one embodiment, the computer circuitry is further configured to select the modulation order of 8 when a UE has an effective SINR of greater than 20 decibels. In another embodiment, the computer circuitry is further configured to select a modulation of 256 QAM for the modulation order. The computer circuitry can be further configured to identify an information rate to apply to the modulation order for a selected MCS index, as in block 520. The computer circuitry can also be configured to select a defined TBS, wherein the predetermined TBS is selected to achieve a higher throughput using the 256 QAM, as in block 530. In one embodiment, the computer circuitry is further configured to select a TBS wherein a number of physical resource blocks (PRBs) is 5, 10, 25, 50, 100, or 110. The computer circuitry can also be configured to transmit data in the TBS from the cell to a UE using the MCS, as in block 540. In one embodiment, the computer circuitry is further configured to select a channel coding to provide the coding rate of less than or equal to 0.94. In another embodiment, the computer circuitry is further configured to select a channel coding to provide the coding rate with a range from approximately 0.70 to 0.94.
  • FIG. 6 shows a table of various MCSs for a 256 QAM modulation order. The table in FIG. 6 further depicts coding rates that range between 0.7-0.95 and the corresponding TBSs. FIG. 6 also shows the TBSs for a few selected numbers of PRBs along with their coding rates and achievable spectral efficiencies. In one embodiment as shown in FIG. 6, the 256 QAM MCS indices start with index 29. In one embodiment, additional TBSs, such as 79728, 82548, 85356, 86772, 89580, 92400, 96624, 99444, are needed to achieve higher throughput using a 256 QAM modulation order. FIG. 6 is not intended to be limiting. Other coding rates and higher modulation orders may also be used.
  • FIG. 7 depicts the spectral efficiencies of a downlink of a base station for the coding rates in FIG. 6 for modulation orders of 2, 4, 6 and 8. FIG. 7 also illustrates that that 256 QAM may be considered on the transmission layer when the effective SINR is above 20 dB. FIG. 7 also illustrates that the first MCS of 256 QAM (i.e. the circle depicting the lowest coding rate for a modulation order of 8) and the last MCS of 64 QAM (i.e. the circle depicting the highest coding rate for a modulation order of 6) produce approximately the same spectral efficiency. FIG. 8 depicts the coding rates for a downlink of a base station relative to SNR for the coding rates listed in FIG. 6 for modulation orders of 2, 4, 6 and 8.
  • FIG. 9 illustrates performance curves using a link level simulation (LLS) for 64 QAM and 256 QAM with zero and non-zero values for the TX error vector magnitude (EVM) and RX EVM. FIG. 9 further illustrates that at a high SNR and zero TX EVM or RX EVM values, the 256 QAM throughput is higher than the 64 QAM throughput, with a maximum gain of 23.1 percent for an SNR of 40 dB. FIG. 9 also illustrates that for a 4 percent TX EVM, the average throughput values of the 64 QAM and the 256 QAM are lower than the zero-EVM case. FIG. 9 also illustrates the 256 QAM gain compared to the 64 QAM is reduced to 9.4% for an SNR of 40 dB. FIG. 9 also illustrates that for a TX EVM at 4 percent and a RX EVM at 4 percent, the average throughput values of the two modulation orders are degraded and are substantially the same.
  • The table in FIG. 10 shows the absolute values of the throughput values for a 256 QAM and its potential gains for selected EVM values compared to a 64 QAM with the same values of TX EVM and RX EVM. The table in FIG. 10 further illustrates that most of the original gain under ideal condition will diminish when both the TX EVM and the RX EVM are considered.
  • FIG. 11 illustrates a cluster of a plurality of small nodes for a system level simulation (SLS). In one embodiment, for different impairments the throughput gains will vary. In one example, an inter-frequency mode is used in which a small node operates at 3.5 GHz and an reference signal received quality (RSRQ) based UE association rule is used, where a full load and zero cell-range expansion (CRE) are used. Additionally in one the example, SLS evaluation parameters are used for the SLS, such as the parameters shown in FIG. 20. In one embodiment, when an RSRQ association rule is used for the network as in FIG. 11, 50.36% of the UEs are associated with the macro cell and 49.64% of the UEs are associated with the four small nodes. In one embodiment, a 256 QAM with throughput gains with TX EVM is used.
  • FIG. 12 depicts a post-processing SINR distribution of small-cell UEs with different lambdas (λ) at 4% TX EVM. In one embodiment, a 4% TX EVM is used for small nodes and an 8% TX EVM is used for macro cells. In another embodiment, a non-full buffer traffic model (FTP model-1) is used with arrival rates of λ, where the different values of λ correspond to a range of cell resource utilization (RU).
  • FIG. 12 also depicts the CDF of the average post-processing SINR of the small-cell UEs for different λ, e.g. traffic rates. FIG. 12 illustrates that as SINR charging data function (CDF) decreases λ increases because the higher loading rate the more transmission and hence more interference there is. For example, when λ is 4, 68% of the PDSCH transmission post SINR has an SINR above 20 decibels. FIG. 12 also illustrates that the post-processing SINR is upper bounded by 28 dB because of the 4% TX EVM.
  • FIG. 13 illustrates the average UE throughputs as a function of a file transfer protocol (FTP) model-1 arrival rate. FIG. 13 depicts the average UE throughput for the UEs using small nodes, the UEs using macro nodes, and all the UEs. FIG. 13 also depicts the potential 256 QAM gains, where small nodes employ both a 64 QAM and a 256 QAM. FIG. 13 also illustrates that the average UE throughput decreases with 2. In one example, the average UE throughput decrease because as λ increases the cells start to transmit more data causing more interference to the neighboring UEs, e.g. lowering the SINR per UE. In another example, the average UE throughput decreases because the cells get congested serving higher traffic as λ increases, e.g. longer periods to serve each UE. FIG. 13 depicts that for maximum modulation orders in small nodes, a 256 QAM achieves higher UE throughput for selected λ values. For example, when is 12 (e.g. the small node RU is 23.89%), the throughput of a UE using a small node increases by 10.1% due to employing 256 QAM modulation order. In another example, for all the UEs, both UEs using macro nodes and UEs using small nodes, where λ is 12, the average all UEs gain is 10.03%, and the average RU of all the cells is 37.32%.
  • The table in FIG. 14 shows the throughput values achieved by the UEs using small nodes with 256 QAM modulations at different distribution points, e.g. 5%, 50%, 95%, and average (AVG). FIG. 14 also shows the percentage gains of a 256 QAM compared to a 64 QAM. The AVG throughput gains of the small-cell UEs ranges from 10.1% to 12.85%. FIG. 14 also shows the resource utilization (RU) for each small node, respectively.
  • The table in FIG. 15 shows the average throughput values and 256 QAM gains for UEs using a macro node and for UEs using small nodes. FIG. 15 shows that the average throughput gains of all the UEs ranges from 7.91% to 10.27%. FIG. 15 also shows that the average RU percentages per macro node and for small nodes, such as in FIG. 11.
  • FIG. 16 illustrates 256 QAM throughput gains for both TX EVM and RX EVM. FIG. 16 also shows the potential gains of a 256 QAM with receiver impairments. In one embodiment, the receiver impairments can include RX local oscillator phase noise, RX dynamic range, in-phase/quadrature (I/Q) imbalance, carrier leakage, and carrier frequency offset. In FIG. 16, RX EVM is set to 4% for a starting value to show the potential gains of the 256 QAM. FIG. 16 also depicts the average UE throughputs values, similar to FIG. 13. In contrast to the average throughput values when using the TX EVM in FIG. 13, the throughput values are smaller for when using both TX EVM and RX EVM as in FIG. 16. The throughput values in FIG. 16 may be smaller because of the impact of the RX EVM.
  • The table in FIG. 17 shows the gains and RU for UEs using small nodes with TX EVM and RX EVM. The table in FIG. 18 shows the gains and RU for the UEs using small nodes and macro nodes for the TX EVM and RX EVM cases. Compared to the tables in FIGS. 14 and 15, the absolute values of the UE throughput gains are lower in the tables in FIGS. 17 and 18. In one embodiment, because of the 4% RX EVM, the UE throughput gains of the 256 QAM are lower in FIGS. 17 and 18 than in the tables in FIGS. 14 and 15. The table in FIG. 17 also shows that the average throughput gains of the UEs using the small nodes (small-cell UEs) range from 5.97% to 8.59%. The table in FIG. 18 shows that the average throughput gains of all the UEs range from 4.38% to 7.52%.
  • The table in FIG. 19 shows simulation parameters, such as those used in FIG. 11 and FIGS. 20-25.
  • FIG. 20 illustrates the BLER vs. SINR for different coding rates. In one embodiment, using the BLER vs. SNR for different MCSs shown in FIG. 21, the log likelihood ratio (LLR) per bit for all SNR values is calculated using the following equation based on the log distance between the constellation points and the received symbols:
  • LLR I ( b k ) = ln A ( s : b k = 1 ) exp ( - ( z - A ) 2 2 σ 2 ) - ln B ( s : b k = - 1 ) exp ( - ( z - B ) 2 2 σ 2 ) . ,
  • where a is distance between constellation points, s is a symbol, Bk is a value between 0 and 7 (e.g. 8 bits for a 256 QAM), z is the receive symbol after adding the noise, A is the concatenation point, z-A is the receive minus the position of the constellation points and z-A is on quadrature axis, z-B the receive minus the position of the constellation points and z-B is on an axis different than z-A, and where 6 is a noise variance at a selected SNR.
  • FIGS. 21 and 22 depict the LLR distribution of bit 1 and bit 2 for different SNR values. In one embodiment, using the LLR distribution at selected SNR values as shown in FIGS. 21 and 22, the mean mutual information in bit (MMIB) is calculated using:
  • I ( LLR d ; d ) = 1 2 - + P LLR d ( l | d = 1 ) log 2 p LLR d ( l | d = 1 ) p LLR d ( l ) l + 1 2 - + p LLR d ( l | d = 0 ) log 2 p LLR d ( l | d = 0 ) p LLR d ( l ) l , where p LLR d ( l ) = [ p LLR d ( l | d = 1 ) + p LLR d ( l | d = 0 ) ] / 2 and MMIB 256 QAM = I ( LLR d 0 ; d 0 ) 4 + I ( LLR d 1 ; d 1 ) 4 + I ( LLR d 2 ; d 2 ) 4 + I ( LLR d 3 ; d 3 ) 4 ,
  • where d is the transmitted bits, Z is equal to 1 for the first part and Z is equal to 0 for the second part, PLLR is the probability.
  • FIG. 23 depicts the MMIB versus the SNR using the equations above.
  • FIG. 24 depicts the BLER vs. MMIB for different coding rates. In one embodiment, the BLER can be approximated using:
  • CBLER i ( X ) = 1 2 [ 1 - erf ( x - b S , M 2 c S , M ) ] ,
  • where x is the MMIB and b and c are embedded in the PHY abstraction model.
  • The table in FIG. 25 illustrates different MCSs for selected b and c parameters as in the equation above. In one embodiment, for a selected SINR, the BLER and MCS are obtained by approximating the MMIB-SNR expression to obtain the graph of the MMIB in FIG. 26, approximating the BLER-MMIB Gaussian expression to get BLER using b and c from the table in FIG. 25, and selecting the highest MCS to achieve the necessary or desired BLER.
  • FIG. 26 illustrates the MMIB vs. SNR for the following curve fitting equations:
  • J ( x ) { a 1 x 3 + b 1 x 2 + c 1 x , if x 1.6363 1 - exp ( a 2 x 3 + b x x 2 + c 2 x + d 2 ) if 1.6363 x ,
  • where a1, a2, b1, b2, c1, c2, d2 are constants. The approximate formula is given by:

  • MMIB8=0.1495J(1.6662√{square root over (SNR)})+0.0435J(9.1275√{square root over (SNR)})+0.2803J(0.7018√{square root over (SNR)})+0.5257J(0.2177√{square root over (SNR)})
  • FIG. 27 provides an example illustration of the wireless device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a mobile communication device, a tablet, a handset, or other type of wireless device. The wireless device can include one or more antennas configured to communicate with a node or transmission station, such as a base station (BS), an evolved Node B (eNB), a baseband unit (BBU), a remote radio head (RRH), a remote radio equipment (RRE), a relay station (RS), a radio equipment (RE), a remote radio unit (RRU), a central processing module (CPM), or other type of wireless wide area network (WWAN) access point. The wireless device can be configured to communicate using at least one wireless communication standard including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and Wi-Fi. The wireless device can communicate using separate antennas for each wireless communication standard or shared antennas for multiple wireless communication standards. The wireless device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.
  • FIG. 27 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output from the wireless device. The display screen can be a liquid crystal display (LCD) screen, or other type of display screen such as an organic light emitting diode (OLED) display. The display screen can be configured as a touch screen. The touch screen can use capacitive, resistive, or another type of touch screen technology. An application processor and a graphics processor can be coupled to internal memory to provide processing and display capabilities. A non-volatile memory port can also be used to provide data input/output options to a user. The non-volatile memory port can also be used to expand the memory capabilities of the wireless device. A keyboard can be integrated with the wireless device or wirelessly connected to the wireless device to provide additional user input. A virtual keyboard can also be provided using the touch screen.
  • Various techniques, or certain aspects or portions thereof, can take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, non-transitory computer readable storage medium, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the various techniques. In the case of program code execution on programmable computers, the computing device can include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. The volatile and non-volatile memory and/or storage elements can be a RAM, EPROM, flash drive, optical drive, magnetic hard drive, or other medium for storing electronic data. The base station and mobile station can also include a transceiver module, a counter module, a processing module, and/or a clock module or timer module. One or more programs that can implement or utilize the various techniques described herein can use an application programming interface (API), reusable controls, and the like. Such programs can be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language can be a compiled or interpreted language, and combined with hardware implementations.
  • It should be understood that many of the functional units described in this specification have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module can be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module can also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules can also be implemented in software for execution by various types of processors. An identified module of executable code can, for instance, comprise one or more physical or logical blocks of computer instructions, which can, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but can comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • Indeed, a module of executable code can be a single instruction, or many instructions, and can even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data can be identified and illustrated herein within modules, and can be embodied in any suitable form and organized within any suitable type of data structure. The operational data can be collected as a single data set, or can be distributed over different locations including over different storage devices, and can exist, at least partially, merely as electronic signals on a system or network. The modules can be passive or active, including agents operable to perform desired functions.
  • Reference throughout this specification to “an example” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in an example” in various places throughout this specification are not necessarily all referring to the same embodiment.
  • As used herein, a plurality of items, structural elements, compositional elements, and/or materials can be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. In addition, various embodiments and example of the present invention can be referred to herein along with alternatives for the various components thereof. It is understood that such embodiments, examples, and alternatives are not to be construed as defacto equivalents of one another, but are to be considered as separate and autonomous representations of the present invention.
  • Furthermore, the described features, structures, or characteristics can be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of layouts, distances, network examples, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, layouts, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
  • While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims (20)

1. A method for transmitting data to a user equipment (UE) in a heterogeneous network (HetNet), comprising:
selecting a modulation order for transmission from a small cell in the HetNet;
identifying a desired coding rate to apply to the modulation order for a selected modulation and coding scheme (MCS) index;
selecting a predetermined transport block size (TBS); and
transmitting data in the TBS from the small cell to a UE using the MCS.
2. The method of claim 1, wherein selecting the modulation order further comprises selecting a modulation order of 8 for the MCS index.
3. The method of claim 1, wherein selecting the modulation order further comprises selecting a modulation order of 8 when an effective SINR with the UE is greater than 20 decibels.
4. The method of claim 1, wherein selecting the modulation order further comprises selecting a modulation of 256 quadrature amplitude modulation (QAM) for the modulation order.
5. The method of claim 1, wherein identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate of less than or equal to 0.94.
6. The method of claim 1, wherein selecting the predetermined TB S further comprises selecting a TBS when a number of physical resource blocks (PRBs) is 5, 10, 25, 50, 100, or 110.
7. The method of claim 1, wherein the method further comprises:
assigning an MCS index of 29 for a modulation order of 8 and a coding rate of 0.7017;
assigning an MCS index of 30 for a modulation order of 8 and a coding rate of 0.7283;
assigning an MCS index of 31 for a modulation order of 8 and a coding rate of 0.755;
assigning an MCS index of 32 for a modulation order of 8 and a coding rate of 0.7817;
assigning an MCS index of 33 for a modulation order of 8 and a coding rate of 0.8083;
assigning an MCS index of 34 for a modulation order of 8 and a coding rate of 0.8217;
assigning an MCS index of 35 for a modulation order of 8 and a coding rate of 0.8483;
assigning an MCS index of 36 for a modulation order of 8 and a coding rate of 0.875;
assigning an MCS index of 37 for a modulation order of 8 and a coding rate of 0.915;
or assigning an MCS index of 38 for a modulation order of 8 and a coding rate of 0.9417.
8. A method for transmitting data in a heterogeneous network (HetNet), comprising:
selecting a modulation order of 8 for a modulation and coding scheme (MCS) index to transmit the data in the HetNet;
identifying a coding rate for the modulation order to enable the data to be received with a desired block error rate (BLER);
identifying a selected transport block size (TBS); and
transmitting the data from a cell in the HetNet using the MCS.
9. The method of claim 8, wherein transmitting the data further comprises transmitting the data from a small cell in the HetNet using the MCS.
10. The method of claim 8, wherein selecting the modulation order further comprises selecting a modulation of 256 quadrature amplitude modulation (QAM) for the modulation order.
11. The method of claim 8, wherein identifying the desired coding rate further comprises selecting a forward error correction code to provide the coding rate of less than or equal to 0.94.
12. A base station (BS) operable to communicate data in a heterogeneous network (HetNet), the BS having computer circuitry configured to:
measure a signal to interference plus noise ratio (SINR) for communication with a user equipment (UE) in the HetNet;
select a modulation order of 8 when the SINR is greater than a selected threshold;
determine a coding rate for the modulation order for a selected modulation and coding scheme (MCS) index value;
determine a selected transport block size (TB S); and
communicate data to the UE using the MCS and the TBS.
13. The computer circuitry of claim 12, wherein the computer circuitry is further configured to set the threshold to at least 20 decibels for the SINR.
14. The computer circuitry of claim 12, wherein the computer circuitry is further configured to:
assign an MCS index of 29 for a modulation order of 8 and a coding rate of 0.7017;
assign an MCS index of 30 for a modulation order of 8 and a coding rate of 0.7283;
assign an MCS index of 31 for a modulation order of 8 and a coding rate of 0.755;
assign an MCS index of 32 for a modulation order of 8 and a coding rate of 0.7817;
assign an MCS index of 33 for a modulation order of 8 and a coding rate of 0.8083;
assign an MCS index of 34 for a modulation order of 8 and a coding rate of 0.8217;
assign an MCS index of 35 for a modulation order of 8 and a coding rate of 0.8483;
assign an MCS index of 36 for a modulation order of 8 and a coding rate of 0.875;
assign an MCS index of 37 for a modulation order of 8 and a coding rate of 0.915;
or assign an MCS index of 38 for a modulation order of 8 and a coding rate of 0.9417.
15. A low power cell operable to select a modulation and coding scheme (MCS) for communication with a user equipment (UE), the low power cell having computer circuitry configured to:
select a modulation order with a 256 quadrature amplitude modulation (QAM) for transmission from a cell in the HetNet;
identify an information rate to apply to the modulation order for a selected modulation and coding scheme (MCS) index;
select a defined transport block size (TBS), wherein the predetermined TBS is selected to achieve a higher throughput using the 256 QAM; and
transmit data in the TBS from the cell to a user equipment (UE) using the MCS.
16. The computer circuitry of claim 15, wherein the computer circuitry is further configured to select a modulation order of 8 for the MCS index.
17. The computer circuitry of claim 16, wherein the computer circuitry is further configured to select the modulation order of 8 when an effective SINR with the UE is greater than 20 decibels.
18. The computer circuitry of claim 15, wherein the computer circuitry is further configured to select a modulation of 256 quadrature amplitude modulation (QAM) for the modulation order.
19. The computer circuitry of claim 15, wherein the computer circuitry is further configured to select a channel coding to provide the coding rate of less than or equal to 0.94.
20. The computer circuitry of claim 15, wherein the computer circuitry is further configured to select a TBS when a number of physical resource blocks (PRBs) is 5, 10, 25, 50, 100, or 110.
US14/784,258 2013-05-09 2014-03-27 Increasing spectral efficiency in a heterogeneous network Abandoned US20160057636A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201361821635P true 2013-05-09 2013-05-09
PCT/US2014/031970 WO2014182382A1 (en) 2013-05-09 2014-03-27 Increasing spectral efficiency in a heterogeneous network
US14/784,258 US20160057636A1 (en) 2013-05-09 2014-03-27 Increasing spectral efficiency in a heterogeneous network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/784,258 US20160057636A1 (en) 2013-05-09 2014-03-27 Increasing spectral efficiency in a heterogeneous network

Publications (1)

Publication Number Publication Date
US20160057636A1 true US20160057636A1 (en) 2016-02-25

Family

ID=51867627

Family Applications (9)

Application Number Title Priority Date Filing Date
US14/782,784 Active 2034-02-20 US9900772B2 (en) 2013-05-09 2013-12-16 Small data communications
US14/782,783 Active US10164693B2 (en) 2013-05-09 2013-12-16 Reduction of buffer overflow
US14/782,781 Active 2033-12-26 US10153816B2 (en) 2013-05-09 2013-12-16 Small data communications
US14/784,257 Active 2034-04-01 US9954587B2 (en) 2013-05-09 2014-03-27 Multiple-input multiple-output cellular network communications
US14/784,258 Abandoned US20160057636A1 (en) 2013-05-09 2014-03-27 Increasing spectral efficiency in a heterogeneous network
US14/787,225 Abandoned US20160113050A1 (en) 2013-05-09 2014-04-01 Network assisted device to device communication
US14/782,780 Abandoned US20160044690A1 (en) 2013-05-09 2014-05-07 Data retransmissions in an anchor-booster network
US14/778,098 Abandoned US20160157095A1 (en) 2013-05-09 2014-05-08 Security key refresh for dual connectivity
US16/197,118 Pending US20190089425A1 (en) 2013-05-09 2018-11-20 Security key refresh for dual connectivity

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/782,784 Active 2034-02-20 US9900772B2 (en) 2013-05-09 2013-12-16 Small data communications
US14/782,783 Active US10164693B2 (en) 2013-05-09 2013-12-16 Reduction of buffer overflow
US14/782,781 Active 2033-12-26 US10153816B2 (en) 2013-05-09 2013-12-16 Small data communications
US14/784,257 Active 2034-04-01 US9954587B2 (en) 2013-05-09 2014-03-27 Multiple-input multiple-output cellular network communications

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/787,225 Abandoned US20160113050A1 (en) 2013-05-09 2014-04-01 Network assisted device to device communication
US14/782,780 Abandoned US20160044690A1 (en) 2013-05-09 2014-05-07 Data retransmissions in an anchor-booster network
US14/778,098 Abandoned US20160157095A1 (en) 2013-05-09 2014-05-08 Security key refresh for dual connectivity
US16/197,118 Pending US20190089425A1 (en) 2013-05-09 2018-11-20 Security key refresh for dual connectivity

Country Status (8)

Country Link
US (9) US9900772B2 (en)
EP (5) EP2995019B1 (en)
CN (6) CN105103606B (en)
ES (1) ES2721014T3 (en)
HK (6) HK1217591A1 (en)
HU (1) HUE042958T2 (en)
TW (2) TWI573487B (en)
WO (8) WO2014182340A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150341867A1 (en) * 2014-05-23 2015-11-26 Huawei Technologies Co., Ltd. Power control method and apparatus

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030263B1 (en) 1994-09-09 2004-05-19 Xerox Corporation Method for interpreting hand drawn diagrammatic user interface commands
WO2014182233A2 (en) * 2013-05-08 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Packet data transfer re-establishment
HUE042958T2 (en) 2013-05-09 2019-07-29 Intel Ip Corp Small data communications
US9967908B2 (en) * 2013-05-10 2018-05-08 Motorola Solutions, Inc. Method and device for reusing channel frequencies in direct mode
CN104349309A (en) * 2013-07-25 2015-02-11 北京三星通信技术研究有限公司 Method utilizing NN and NCC pairs to solve safety problems in mobile communication system
WO2015012900A1 (en) 2013-07-26 2015-01-29 Intel IP Corporation Signaling interference information for user equipment assistance
EP3018853A4 (en) * 2013-08-01 2016-08-03 Huawei Tech Co Ltd Method and device for configuring data transmission resource
CN104348592B (en) * 2013-08-02 2019-03-15 夏普株式会社 The method of configuration CSI process and base station and CSI feedback method and user equipment
JP6199653B2 (en) * 2013-08-06 2017-09-20 株式会社Nttドコモ Wireless communication system and antenna configuration determination method
EP3031146B1 (en) * 2013-08-08 2019-02-20 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
WO2015020484A1 (en) * 2013-08-09 2015-02-12 엘지전자(주) Method and apparatus for conducting device-to-device communication in wireless communication system
EP2836017A1 (en) * 2013-08-09 2015-02-11 Alcatel Lucent Switching a primary node
WO2015037926A1 (en) * 2013-09-11 2015-03-19 Samsung Electronics Co., Ltd. Method and system to enable secure communication for inter-enb transmission
US10039135B2 (en) * 2013-11-01 2018-07-31 Huawei Device (Dongguan) Co., Ltd. Communication access method and user equipment
CN104640056A (en) * 2013-11-07 2015-05-20 中兴通讯股份有限公司 Method and device for selection and resource distribution of control node
WO2015069057A1 (en) * 2013-11-07 2015-05-14 엘지전자 주식회사 Method for updating terminal-centered coverage
WO2015088419A1 (en) * 2013-12-13 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
CN104936174B (en) * 2014-03-21 2019-04-19 上海诺基亚贝尔股份有限公司 The method of more new key under the dual link situation based on user plane 1A framework
WO2015147614A1 (en) * 2014-03-28 2015-10-01 Lg Electronics Inc. Method and apparatus for performing call relay in wireless communication system
JP6273973B2 (en) * 2014-03-31 2018-02-07 富士通株式会社 Radio communication system, radio base station device, and radio communication system control method
EP3136799A4 (en) * 2014-04-22 2017-12-27 LG Electronics Inc. Method and apparatus for acquiring synchronization for device to device terminal in wireless communication system
US9729283B2 (en) * 2014-05-08 2017-08-08 Intel IP Corporation Systems, methods and devices for flexible retransmissions
US9749098B2 (en) * 2014-05-09 2017-08-29 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving system information in mobile communication system
US9801228B2 (en) * 2014-07-22 2017-10-24 Intel IP Corporation Systems, apparatuses, and methods for lightweight over-the-air signaling mechanisms in data communications
EP3182786B1 (en) * 2014-09-30 2019-01-09 Huawei Technologies Co. Ltd. Data transmission method and terminal
KR20160041025A (en) * 2014-10-06 2016-04-15 삼성전자주식회사 Method and apparatus for genreation and reporting of feedback information in mobile communication system
WO2016086971A1 (en) * 2014-12-02 2016-06-09 Nokia Solutions And Networks Management International Gmbh Coded allocation of channel state information reference signals
WO2016114425A1 (en) * 2015-01-14 2016-07-21 엘지전자 주식회사 Method for retransmitting data in network linking plurality of communication systems and apparatus for same
CN107211365A (en) * 2015-01-26 2017-09-26 慧与发展有限责任合伙企业 Regulating a power consumption state of a cellular radio
CN105992247A (en) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Wireless data transmitting and receiving method and apparatus
US10187130B2 (en) * 2015-02-17 2019-01-22 Futurewei Technologies, Inc. Apparatus and method to configure antenna beam width
EP3266119B1 (en) * 2015-03-06 2018-06-27 Telefonaktiebolaget LM Ericsson (publ) Beam forming using an antenna arrangement
US10264481B2 (en) 2015-03-19 2019-04-16 Qualcomm Incorporated Techniques for managing power operation modes of a user equipment (UE) communicating with a plurality of radio access technologies (RATs)
CN106162705A (en) * 2015-03-31 2016-11-23 电信科学技术研究院 Method and device for controlling user plane bearer establishment
US20180302834A1 (en) * 2015-05-29 2018-10-18 Intel IP Corporation Seamless mobility for 5g and lte systems and devices
US10321460B1 (en) * 2015-07-09 2019-06-11 Sprint Communications Company L.P. Orthogonal frequency division multiplexing (OFDM) transmit protocol selection based on a feedback loop lag condition
WO2017008268A1 (en) * 2015-07-15 2017-01-19 Nec Corporation Method and apparatus for performing beamforming
JP2017027196A (en) * 2015-07-17 2017-02-02 株式会社リコー Communication device, power control method, and power control program
US10122426B2 (en) * 2015-07-20 2018-11-06 Centre Of Excellence In Wireless Technology Method for beam steering in multiple-input multiple-output system
WO2017020302A1 (en) * 2015-08-06 2017-02-09 华为技术有限公司 Method and apparatus for establishing data radio bearer
US10045335B2 (en) * 2015-08-14 2018-08-07 Acer Incorporated Method of delivering data for use by base station and base station using the same
CN106470065A (en) * 2015-08-14 2017-03-01 财团法人工业技术研究院 Method of transmitting and receiving CSI-RS, and base stations and apparatuses using same
US9883456B2 (en) * 2015-09-16 2018-01-30 Microsoft Technology Licensing, Llc. Application specific internet access
CN105228213B (en) * 2015-09-30 2019-03-12 青岛海信移动通信技术股份有限公司 A kind of method and apparatus that mobile device is relayed
WO2017084235A1 (en) * 2015-11-16 2017-05-26 Intel IP Corporation Beamformed csi‐rs based measurement framework
WO2017113408A1 (en) * 2015-12-31 2017-07-06 华为技术有限公司 Mobility management method, user equipment, storage node, and base station
WO2017126945A1 (en) * 2016-01-22 2017-07-27 Samsung Electronics Co., Ltd. Network architecture and protocols for a unified wireless backhaul and access network
CN108886748A (en) 2016-01-27 2018-11-23 三星电子株式会社 Method and apparatus for reducing signaling overheads and reducing end cell
CN107360561A (en) * 2016-05-03 2017-11-17 株式会社Kt Method of changing connection state and apparatus therefor
EP3456102A1 (en) * 2016-05-13 2019-03-20 Sony Mobile Communications Inc. Communication device and method for transmitting data
US20190245631A1 (en) * 2016-07-07 2019-08-08 Lg Electronics Inc. Method for reducing operation for removing self-interference in fdr environment and device therefor
WO2018031603A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Light connectivity and autonomous mobility
WO2018030861A1 (en) * 2016-08-11 2018-02-15 Samsung Electronics Co., Ltd. Method for performing light connection control on user equipment and corresponding equipment
KR20180018455A (en) * 2016-08-11 2018-02-21 삼성전자주식회사 Method and apparatus of rrc connection control
US20190173547A1 (en) * 2016-08-12 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Reference signaling in with antenna arrays
EP3499939A4 (en) * 2016-08-12 2019-06-19 Nec Corporation Device, method, system, and program relating to beam and security enhancement, and recording medium
CN106797625A (en) * 2016-09-26 2017-05-31 北京小米移动软件有限公司 Data transmission synchronization method and data transmission synchronization device
KR20180035638A (en) * 2016-09-29 2018-04-06 삼성전자주식회사 Method and apparatus of data transfer mode with/without rrc connection
WO2018060543A1 (en) * 2016-09-30 2018-04-05 Nokia Technologies Oy SUPPORT FOR MOBILE ORIGINATED SHORT NOTIFICATION PROCEDURE FOR IoT DEVICES
EP3316629A1 (en) * 2016-10-31 2018-05-02 Intel IP Corporation Method for communicating, computer program, wireless communication device, wireless communications processor, transmitter, and application processor
WO2018084761A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for managing paging in a wireless communication network
CN109804592A (en) * 2016-11-14 2019-05-24 英特尔Ip公司 The configuration of provided for radio resources management measurement
CN108260105A (en) * 2016-12-29 2018-07-06 华为技术有限公司 D2D communication method and device
US10306652B2 (en) 2017-02-10 2019-05-28 Qualcomm Incorporated Feedback interference management in sidelink
CN108924882A (en) * 2017-03-24 2018-11-30 北京三星通信技术研究有限公司 Method and apparatus about data transfer state control
DE102017110348A1 (en) * 2017-05-12 2018-11-15 Intel IP Corporation Mobile data transmission device and method for selecting a light direction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123470A1 (en) * 2001-12-28 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving a high speed-shared control channel in a high speed downlink packet access communication system
US20110188561A1 (en) * 2008-10-06 2011-08-04 Ceragon Networks Ltd Snr estimation
US20150163773A1 (en) * 2012-08-24 2015-06-11 Panasonic Intellectual Property Corporation Of America Communication method, base station and user equipment
US20150200746A1 (en) * 2012-07-27 2015-07-16 China Academy Of Telecomunications Technology Method and device for transmitting mcs indication information
US20150215068A1 (en) * 2014-01-29 2015-07-30 Htc Corporation Method of Selecting Modulation and Transport Block Size Index Table
US20150215913A1 (en) * 2014-01-30 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods utilizing an efficient tbs table design for 256qam in a cellular communications network
US20150289237A1 (en) * 2012-12-18 2015-10-08 Lg Electronics Inc. Method and apparatus for receiving data
US9603162B2 (en) * 2013-03-21 2017-03-21 Huawei Device Co., Ltd. Data transmission method, base station, and user equipment using multiple transport block size tables

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487416B1 (en) 1999-07-30 2002-11-26 Qwest Communications International, Inc. Method and system for controlling antenna downtilt in a CDMA network
US6232921B1 (en) * 2000-01-11 2001-05-15 Lucent Technologies Inc. Method and system for adaptive signal processing for an antenna array
DE60312432T2 (en) * 2002-05-10 2008-01-17 Innovative Sonic Ltd. A process for the specific triggering a PDCP sequence number synchronization procedure
US7961617B2 (en) 2002-10-29 2011-06-14 Telefonaktiebolaget Lm Ericsson (Publ) System and method for wireless network congestion control
JP2005039471A (en) * 2003-07-18 2005-02-10 Toshiba Corp Mobile communication terminal and intermittent reception control method therefor
WO2006067922A1 (en) * 2004-12-21 2006-06-29 Matsushita Electric Industrial Co., Ltd. Wireless node power supply managing method
US20060258295A1 (en) 2005-05-16 2006-11-16 Texas Instruments Incorporated Automatic network performance data collection and optimization
KR100891915B1 (en) * 2005-11-09 2009-04-08 삼성전자주식회사 Apparatus and method for composing neighbor node list in a multi-hop relay broadband wireless access communication system
SG171652A1 (en) * 2006-05-05 2011-06-29 Interdigital Tech Corp Radio link failure detection procedures in long term evolution uplink and downlink and apparatus therefor
WO2007144956A1 (en) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation Mobile communication system and mobile terminal
US7760676B2 (en) * 2006-06-20 2010-07-20 Intel Corporation Adaptive DRX cycle length based on available battery power
JP4923848B2 (en) * 2006-08-21 2012-04-25 日本電気株式会社 Communication system and communication method, and mobile station and base station used for the same
US8014336B2 (en) * 2006-12-18 2011-09-06 Nokia Corporation Delay constrained use of automatic repeat request for multi-hop communication systems
CN101675692B (en) * 2007-03-01 2013-01-23 株式会社Ntt都科摩 Communication control method
US8526953B2 (en) * 2007-03-12 2013-09-03 Nokia Corporation Apparatus, method and computer program product providing auxiliary handover command
JP4927959B2 (en) * 2007-03-19 2012-05-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Use of uplink grant as trigger for first or second type CQI report
US8553594B2 (en) * 2007-03-20 2013-10-08 Motorola Mobility Llc Method and apparatus for resource allocation within a multi-carrier communication system
US8005091B2 (en) * 2007-07-10 2011-08-23 Qualcomm Incorporated Apparatus and method of generating and maintaining hybrid connection identifications (IDs) for peer-to-peer wireless networks
EP2023553B1 (en) * 2007-08-07 2016-10-05 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure in a mobile communication system
US20090047950A1 (en) * 2007-08-13 2009-02-19 Nokia Corporation Registration of wireless node
CN101373998B (en) * 2007-08-20 2012-07-25 上海贝尔阿尔卡特股份有限公司 Low information interactive multi-base station collaboration MIMO as well as scheduling method and apparatus thereof
KR101435844B1 (en) 2007-09-18 2014-08-29 엘지전자 주식회사 Method of transmitting a data block in a wireless communication system
US8054822B2 (en) * 2008-01-28 2011-11-08 Alcatel Lucent Synchronization of call traffic in the forward direction over backhaul links
US8737267B2 (en) * 2008-01-30 2014-05-27 Qualcomm Incorporated Management of wireless relay nodes using routing table
BRPI0907032A8 (en) * 2008-02-01 2015-09-22 Panasonic Corp communication terminal and base station
US8295174B2 (en) * 2008-03-28 2012-10-23 Research In Motion Limited Proactive uplink aggregate maximum bit rate enforcement
US8340605B2 (en) * 2008-08-06 2012-12-25 Qualcomm Incorporated Coordinated transmissions between cells of a base station in a wireless communications system
US8335508B2 (en) * 2008-08-07 2012-12-18 General Motors Llc System and method for monitoring and reporting telematics unit communication network system acquisition and scanning performance
US8738981B2 (en) * 2008-10-24 2014-05-27 Qualcomm Incorporated Method and apparatus for H-ARQ scheduling in a wireless communication system
EP2346272A4 (en) * 2008-10-28 2013-12-11 Fujitsu Ltd Wireless base station device using cooperative harq communication method, wireless terminal device, wireless communication system, and wireless communication method
WO2010049801A1 (en) * 2008-10-29 2010-05-06 Nokia Corporation Apparatus and method for dynamic communication resource allocation for device-to-device communications in a wireless communication system
KR101503842B1 (en) * 2008-11-03 2015-03-18 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
US8437764B2 (en) 2009-01-05 2013-05-07 Nokia Siemens Networks Oy Determining an optimized configuration of a telecommunication network
US8761099B2 (en) * 2009-01-16 2014-06-24 Nokia Corporation Apparatus and method of scheduling resources for device-to-device communications
EP2214340A1 (en) * 2009-01-30 2010-08-04 Panasonic Corporation HARQ operation for macro-diversity transmissions in the downlink
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
US8432887B1 (en) * 2009-05-08 2013-04-30 Olympus Corporation Medium access control for tree-topology networks
KR101678686B1 (en) * 2009-05-14 2016-11-24 엘지전자 주식회사 Method and apparatus of transmitting cqi in wireless communication system
US8649374B2 (en) * 2009-05-15 2014-02-11 Lg Electronics Inc. Structure of efficient signaling header in broadband wireless access system
US8559458B2 (en) * 2009-05-27 2013-10-15 Motorola Mobility Llc Method and apparatus for uplink scheduling in an orthogonal frequency division multiplexing communication system
CN101945384B (en) * 2009-07-09 2013-06-12 中兴通讯股份有限公司 Method, device and system for processing safe key in reconnection of RRC (Radio Resource Control)
US8934523B2 (en) * 2009-07-13 2015-01-13 Lg Electronics Inc. Method and apparatus for configuring a transmission mode for a backhaul link transmission
CN101998621B (en) * 2009-08-21 2013-08-28 华为技术有限公司 Buffer status report (BSR) reporting method, relay node (RN), evolved node base (eNB) and system
KR20110037430A (en) 2009-10-06 2011-04-13 주식회사 팬택 Method for transmitting signal in wireless communication system and transmitter thereof, receiver
WO2011052136A1 (en) * 2009-10-30 2011-05-05 Panasonic Corporation Communication system and apparatus for status dependent mobile services
US8891647B2 (en) * 2009-10-30 2014-11-18 Futurewei Technologies, Inc. System and method for user specific antenna down tilt in wireless cellular networks
KR101086540B1 (en) * 2009-11-03 2011-11-23 주식회사 팬택 Terminal for entering Compact Base Station, Network Apparatus and Method for operating thereof
KR20110049622A (en) * 2009-11-04 2011-05-12 삼성전자주식회사 Method and apparatus for transmission data in wireless communication network system
US8750145B2 (en) * 2009-11-23 2014-06-10 Interdigital Patent Holdings, Inc. Method and apparatus for machine-to-machine communication registration
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
WO2011107154A1 (en) 2010-03-05 2011-09-09 Nokia Siemens Networks Oy A method and apparatus for use in a mobile communications system comprising a relay node
EP2547016A4 (en) * 2010-03-10 2017-05-17 LG Electronics Inc. Method and device for signaling control information in carrier aggregation system
EP2549790B1 (en) 2010-03-17 2016-06-29 Fujitsu Limited Base station and cell coverage control method
EP2550817B1 (en) * 2010-03-23 2015-05-27 InterDigital Patent Holdings, Inc. Methods for communication for a machine type communication device and corresponding wireless transmit/receive unit
US9717074B2 (en) * 2010-04-01 2017-07-25 Hon Hai Precision Industry Co., Ltd. Relay user equipment device and status announcement method thereof
KR101457347B1 (en) * 2010-04-06 2014-11-03 알까뗄 루슨트 Method, equipment and node for determining and adjusting aim packet delays of link subsections
US20110249619A1 (en) * 2010-04-13 2011-10-13 Yi Yu Wireless communication system using multiple-serving nodes
US9351317B2 (en) * 2010-04-15 2016-05-24 Samsung Electronics Co., Ltd Method and device of managing MTC devices in an MTC network environment
CN102860075B (en) * 2010-04-23 2016-06-29 瑞典爱立信有限公司 Improved radio link failure in the handover
CN102238520B (en) 2010-04-26 2014-12-31 中兴通讯股份有限公司 Method and system for transmitting small data packets
US8995465B2 (en) * 2010-05-04 2015-03-31 Qualcomm Incorporated Reference signal patterns
JP5668754B2 (en) 2010-05-31 2015-02-12 富士通株式会社 Communication device
CN102281535A (en) * 2010-06-10 2011-12-14 华为技术有限公司 One kind of key update method and apparatus
WO2012016593A1 (en) * 2010-08-05 2012-02-09 Fujitsu Limited Wireless communication system and method for mapping of control messages on the un- interface
US8437705B2 (en) * 2010-10-11 2013-05-07 Sharp Laboratories Of America, Inc. Resource allocation and encoding for channel quality indicator (CQI) and CQI collided with uplink acknowledgment/negative acknowledgment
GB2484922B (en) * 2010-10-25 2014-10-08 Sca Ipla Holdings Inc Infrastructure equipment and method
CN103238306A (en) * 2010-12-03 2013-08-07 诺基亚公司 Device to device cluster enhancement to support data transmission from/to multiple devices
CN103262607A (en) * 2010-12-22 2013-08-21 富士通株式会社 Wireless communication method for monitoring a communication interface between access nodes
KR101811643B1 (en) * 2010-12-23 2017-12-26 한국전자통신연구원 Method of deciding Radio Link Failure in a base station
KR101776873B1 (en) * 2011-01-11 2017-09-11 삼성전자 주식회사 Method and apparatus for setting uplink transmission power in mobile communication system
KR101973465B1 (en) * 2011-03-25 2019-04-29 엘지전자 주식회사 Backhaul link subframe structure in mobile communication system and method for transmitting information thereof
US20130308545A1 (en) 2011-03-29 2013-11-21 Lg Electronics Inc. Method for user equipment transmitting/receiving data in wireless communication system and apparatus for same
SG194059A1 (en) * 2011-04-01 2013-11-29 Interdigital Patent Holdings Method and apparatus for controlling connectivity to a network
US8599711B2 (en) 2011-04-08 2013-12-03 Nokia Siemens Networks Oy Reference signal port discovery involving transmission points
CN102761910A (en) * 2011-04-28 2012-10-31 普天信息技术研究院有限公司 Service range flow control method
WO2012150815A2 (en) * 2011-05-02 2012-11-08 엘지전자 주식회사 Method for performing device-to-device communication in wireless access system and apparatus therefor
US9735844B2 (en) * 2011-05-09 2017-08-15 Texas Instruments Incorporated Channel feedback for coordinated multi-point transmissions
EP2709289A4 (en) 2011-05-13 2015-01-14 Lg Electronics Inc Csi-rs based channel estimating method in a wireless communication system and device for same
US9007972B2 (en) * 2011-07-01 2015-04-14 Intel Corporation Communication state transitioning control
WO2013006193A1 (en) * 2011-07-01 2013-01-10 Intel Corporation Layer shifting in open loop multiple-input, multiple-output communications
US20130010641A1 (en) * 2011-07-05 2013-01-10 Esmael Dinan Carrier Activation Employing RRC messages
WO2013009892A1 (en) * 2011-07-11 2013-01-17 Interdigital Patent Holdings, Inc. Systems and methods for establishing and maintaining multiple cellular connections and/or interfaces
KR101788424B1 (en) * 2011-07-12 2017-10-19 인텔 코포레이션 Resource scheduling for machine-to-machine devices
US8965415B2 (en) * 2011-07-15 2015-02-24 Qualcomm Incorporated Short packet data service
KR101902559B1 (en) * 2011-07-29 2018-10-01 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for radio resources management in multi-radio access technology wireless systems
EP2555445A1 (en) 2011-08-03 2013-02-06 Alcatel Lucent Method of operating a transmitter and transmitter
EP2721858B1 (en) * 2011-08-08 2017-10-18 BlackBerry Limited Method and system for uplink interference management in heterogeneous cellular networks
KR20130018079A (en) 2011-08-10 2013-02-20 삼성전자주식회사 Apparatus and method for beam locking in wireless communication system
WO2013025558A1 (en) 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
WO2013024852A1 (en) * 2011-08-15 2013-02-21 株式会社エヌ・ティ・ティ・ドコモ Wireless base station, user terminal, wireless communication system, and wireless communication method
US8755316B2 (en) * 2011-08-15 2014-06-17 Broadcom Corporation Coordination of DRX and eICIC
KR20140058644A (en) * 2011-08-25 2014-05-14 엘지전자 주식회사 Method of performing direct communication between terminals, method of supporting same, and apparatus for same
CN102958194B (en) * 2011-08-25 2017-11-03 中兴通讯股份有限公司 A method for maintaining a large number of connections, user equipment and system
US20130051277A1 (en) * 2011-08-30 2013-02-28 Renesas Mobile Corporation Method and apparatus for allocating resources for device-to-device discovery
CN102984746A (en) * 2011-09-05 2013-03-20 爱立信(中国)通信有限公司 Reference signal power measurement and report of improving network performance
US9973877B2 (en) * 2011-09-23 2018-05-15 Htc Corporation Method of handling small data transmission
US20130083684A1 (en) * 2011-09-30 2013-04-04 Electronics And Telecommunications Research Institute Methods of device to device communication
US9137841B2 (en) * 2011-10-03 2015-09-15 Mediatek Inc. Enhancement for scheduling request triggering based on traffic condition
CN103096395A (en) 2011-11-04 2013-05-08 上海贝尔股份有限公司 Method used for indicating user terminal to reduce interference in base station
CN103107873A (en) 2011-11-11 2013-05-15 华为技术有限公司 Measurement and feedback method of radio resource management information, base station and user equipment
EP2595425A1 (en) * 2011-11-18 2013-05-22 Panasonic Corporation Active bandwidth indicator for power-saving UEs
KR102006179B1 (en) * 2011-12-15 2019-08-02 삼성전자주식회사 Method and apparatus for assigning connection identifiers of device to device communications
WO2013112021A1 (en) * 2012-01-27 2013-08-01 삼성전자 주식회사 Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
JP5952315B2 (en) * 2012-01-30 2016-07-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Wireless communication terminal apparatus and transmission power control method
TW201336332A (en) * 2012-02-23 2013-09-01 Inst Information Industry Mobile station and power saving method thereof
EP2826169B1 (en) 2012-03-13 2016-12-28 Zte (Usa) Inc. Interference management in the heterogeneous network
US9198071B2 (en) * 2012-03-19 2015-11-24 Qualcomm Incorporated Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme
US9420614B2 (en) * 2012-03-22 2016-08-16 Lg Electronics Inc. Method and apparatus for establishing device-to-device connection in wireless communication system
CN104429152B (en) * 2012-05-03 2019-03-22 瑞典爱立信有限公司 Telecommunication system with discontinuous reception
US9537638B2 (en) 2012-05-11 2017-01-03 Qualcomm Incorporated Method and apparatus for performing coordinated multipoint feedback under multiple channel and interference assumptions
WO2013174428A1 (en) * 2012-05-23 2013-11-28 Nec Europe Ltd. Method and system for supporting the discovery of synchronized clusters of mobile stations in a wireless communication network
KR101956195B1 (en) * 2012-05-31 2019-03-08 삼성전자 주식회사 Method and apparatus to transmit/receive physical channels supporting inter-enb carrier aggregation in communication systems
WO2013181850A1 (en) * 2012-06-08 2013-12-12 Nec(China) Co., Ltd. Method and apparatus for three-dimensional beamforming
WO2014021632A1 (en) * 2012-07-31 2014-02-06 엘지전자 주식회사 Method and apparatus for transmitting and receiving data
US10104612B2 (en) * 2012-08-07 2018-10-16 Hfi Innovation Inc. UE preference indication and assistance information in mobile communication networks
EP2888906A1 (en) * 2012-08-23 2015-07-01 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
EP2904874B1 (en) * 2012-10-05 2018-12-05 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for network assisted device-to-device communication
US8693971B1 (en) * 2012-12-07 2014-04-08 Intel Mobile Communications GmbH Receiver, receiver circuits, and methods for providing an interference-reduced signal
US9179407B2 (en) * 2012-12-10 2015-11-03 Broadcom Corporation Selective notification of DRX parameter
US9503241B2 (en) * 2012-12-13 2016-11-22 Futurewei Technologies, Inc. Systems and methods for channel measurements and reporting
US9226289B2 (en) * 2012-12-18 2015-12-29 Qualcomm Incorporated Systems and methods to conserve power of machine-to-machine devices using a shared data channel
US8942302B2 (en) * 2012-12-20 2015-01-27 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9655012B2 (en) * 2012-12-21 2017-05-16 Qualcomm Incorporated Deriving a WLAN security context from a WWAN security context
KR101950776B1 (en) * 2013-01-31 2019-02-21 삼성전자주식회사 Apparatus and method for estimating link quality in wireless communication system supporting device to deivce communication
US9049588B2 (en) * 2013-02-28 2015-06-02 Blackberry Limited Communicating data in a predefined transmission mode
US9706522B2 (en) * 2013-03-01 2017-07-11 Intel IP Corporation Wireless local area network (WLAN) traffic offloading
JP2016518746A (en) * 2013-03-14 2016-06-23 ゼットティーイー ウィストロン テレコム エービー Method and apparatus for adapting the number of HARQ processes in a distributed network topology
WO2014148749A1 (en) * 2013-03-21 2014-09-25 엘지전자 주식회사 Method for switching data between plurality of communications systems and apparatus therefor
WO2014175919A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Shared spectrum reassignment in a spectrum sharing context
US9629025B2 (en) * 2013-05-03 2017-04-18 Blackberry Limited Controlling data offload in response to feedback information
US9445218B2 (en) * 2013-05-03 2016-09-13 Verizon Patent And Licensing Inc. Efficient machine to machine communications
HUE042958T2 (en) 2013-05-09 2019-07-29 Intel Ip Corp Small data communications
WO2014190472A1 (en) 2013-05-27 2014-12-04 华为技术有限公司 Method and device for submitting signal quality measurement information
US20160277075A1 (en) * 2013-11-13 2016-09-22 Nokia Technologies Oy Formation of cooperating sets in small cell deployment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123470A1 (en) * 2001-12-28 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving a high speed-shared control channel in a high speed downlink packet access communication system
US20110188561A1 (en) * 2008-10-06 2011-08-04 Ceragon Networks Ltd Snr estimation
US20150200746A1 (en) * 2012-07-27 2015-07-16 China Academy Of Telecomunications Technology Method and device for transmitting mcs indication information
US20150163773A1 (en) * 2012-08-24 2015-06-11 Panasonic Intellectual Property Corporation Of America Communication method, base station and user equipment
US20150289237A1 (en) * 2012-12-18 2015-10-08 Lg Electronics Inc. Method and apparatus for receiving data
US9603162B2 (en) * 2013-03-21 2017-03-21 Huawei Device Co., Ltd. Data transmission method, base station, and user equipment using multiple transport block size tables
US20150215068A1 (en) * 2014-01-29 2015-07-30 Htc Corporation Method of Selecting Modulation and Transport Block Size Index Table
US20150215913A1 (en) * 2014-01-30 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods utilizing an efficient tbs table design for 256qam in a cellular communications network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150341867A1 (en) * 2014-05-23 2015-11-26 Huawei Technologies Co., Ltd. Power control method and apparatus
US9723570B2 (en) * 2014-05-23 2017-08-01 Huawei Technologies Co., Ltd. Power control method and apparatus

Also Published As

Publication number Publication date
HK1218813A1 (en) 2017-03-10
CN105122672B (en) 2018-11-27
WO2014182388A1 (en) 2014-11-13
WO2014182774A1 (en) 2014-11-13
EP2995030A1 (en) 2016-03-16
WO2014182383A1 (en) 2014-11-13
WO2014182338A1 (en) 2014-11-13
CN105103606A (en) 2015-11-25
US20160057044A1 (en) 2016-02-25
EP2995057A4 (en) 2016-12-14
EP2995057A1 (en) 2016-03-16
US10164693B2 (en) 2018-12-25
CN105359477A (en) 2016-02-24
CN105122672A (en) 2015-12-02
US20160113050A1 (en) 2016-04-21
EP2995012A1 (en) 2016-03-16
US20160057797A1 (en) 2016-02-25
US9900772B2 (en) 2018-02-20
US10153816B2 (en) 2018-12-11
EP2995019B1 (en) 2019-01-30
HK1221089A1 (en) 2017-05-19
CN105340190B (en) 2018-10-23
CN105340190A (en) 2016-02-17
WO2014182382A1 (en) 2014-11-13
EP2995030A4 (en) 2016-12-28
US20160044690A1 (en) 2016-02-11
CN107079289A (en) 2017-08-18
HK1217591A1 (en) 2017-01-13
US20160065290A1 (en) 2016-03-03
EP2995105A1 (en) 2016-03-16
EP2995105A4 (en) 2016-12-21
HK1217592A1 (en) 2017-01-13
EP2995019A4 (en) 2017-01-04
US20160157095A1 (en) 2016-06-02
EP2995019A1 (en) 2016-03-16
TWI573487B (en) 2017-03-01
US20190089425A1 (en) 2019-03-21
EP2995012A4 (en) 2016-12-14
TWI572223B (en) 2017-02-21
HK1221561A1 (en) 2017-06-02
US9954587B2 (en) 2018-04-24
HUE042958T2 (en) 2019-07-29
WO2014182911A1 (en) 2014-11-13
TW201509222A (en) 2015-03-01
TW201507508A (en) 2015-02-16
HK1217581A1 (en) 2017-01-13
CN105103609A (en) 2015-11-25
CN105191200A (en) 2015-12-23
ES2721014T3 (en) 2019-07-26
WO2014182339A1 (en) 2014-11-13
WO2014182340A1 (en) 2014-11-13
US20160029417A1 (en) 2016-01-28
CN105103606B (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US8588803B2 (en) Method and apparatus for resource scheduling for network controlled D2D communications
US10397807B2 (en) Interference management and network performance optimization in small cells
Chandrasekhar et al. Femtocell networks: a survey
KR101718273B1 (en) Handover of user equipment with non-gbr bearers
Khandekar et al. LTE-advanced: Heterogeneous networks
JP5976926B2 (en) Adaptive UL-DL configuration in TDD heterogeneous networks
US9554403B2 (en) Selecting a radio node for data traffic offloading
US7653392B2 (en) Methods and systems for heterogeneous wireless network discovery and selection
US9781685B2 (en) Self-adaptive coverage of wireless networks
EP2962485B1 (en) Wireless local area network (wlan) traffic offloading
EP2684408B1 (en) Opportunistic carrier aggregation for dynamic flow switching between radio access technologies
EP2901768B1 (en) Andsf parameters for wlan network selection
US9445334B2 (en) Switching between radio access technologies at a multi-mode access point
US8169933B2 (en) Dynamic topological adaptation
Liu et al. Small-cell traffic balancing over licensed and unlicensed bands
Peng et al. Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and self-organization
US9077507B2 (en) Controlling interference in femto cell deployments
US9119120B2 (en) Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
US20130051365A1 (en) Femtocell channel assignment and power control for improved femtocell coverage and efficient cell search
US9974048B2 (en) Systems, methods, and devices for distributed scheduling for device-to-device interference mitigation
US9271249B2 (en) Association biasing for a heterogeneous network (HetNet)
US9369969B2 (en) System and method to mitigate interference of 3GPP LTE heterogeneous network according to priority of service
US8428602B2 (en) Methods for enhancing performance of open-access and closed-access femtocells
WO2014051791A1 (en) Wireless wide area network (wwan) managed device to device communication using narrowband wi-fi in a licensed band
KR101285482B1 (en) Dual base stations for wireless communication systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IBRAHIM, AHMED S.;ILHAMY, AHMED;ELBASSIOUNY, SHADY O.;AND OTHERS;SIGNING DATES FROM 20151124 TO 20160208;REEL/FRAME:037754/0303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION