US20160053493A1 - Hip and ridge vent - Google Patents

Hip and ridge vent Download PDF

Info

Publication number
US20160053493A1
US20160053493A1 US14/831,089 US201514831089A US2016053493A1 US 20160053493 A1 US20160053493 A1 US 20160053493A1 US 201514831089 A US201514831089 A US 201514831089A US 2016053493 A1 US2016053493 A1 US 2016053493A1
Authority
US
United States
Prior art keywords
vent
ridge
roof
strip
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/831,089
Inventor
Martin J. Rotter
Randy Smith
James Smith
Wadous Cunningham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/831,089 priority Critical patent/US20160053493A1/en
Assigned to ROTTER, MARTIN J reassignment ROTTER, MARTIN J ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROTTER, MARTIN J., CUNNINGHAM, WADOUS, SMITH, JAMES, SMITH, RANDY
Publication of US20160053493A1 publication Critical patent/US20160053493A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/17Ventilation of roof coverings not otherwise provided for
    • E04D13/174Ventilation of roof coverings not otherwise provided for on the ridge of the roof
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/30Special roof-covering elements, e.g. ridge tiles, gutter tiles, gable tiles, ventilation tiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/30Special roof-covering elements, e.g. ridge tiles, gutter tiles, gable tiles, ventilation tiles
    • E04D2001/309Ventilation tiles

Definitions

  • the present invention relates to a roof ridge and hip ridge vent for use on contoured metal roof panels.
  • roof ridge vents work in conjunction with soffit vents in order to allow air to flow beneath the roof to provide passive ventilation.
  • hot stale air is withdrawn from the ridge slot vent by convection and/or wind suction, it is replaced by fresh ambient air through the soffit vents.
  • This equalization inhibits moisture from condensing on insulation and wood roofing materials which causes mildew and rot, prevents build-up of ice dams which could buckle shingles and gutters, and reduces air-conditioning costs when hot attic air is replaced by cooler ambient air.
  • the material is fire retardant, and the configuration is such that it prevents the ingress of wind driven-rain within the limits of the applicable building standards, and also prevents the ingress of debris and insects.
  • moisture penetrates into the non-woven material, it is freely draining so that it does not trap moisture against the metal roof panels which can occur with some of the known open cell foam vent products, which causes corrosion of the roof panels themselves, requiring costly repair or replacement.
  • this known product is UV stable and does not break down due to sunlight or environmental factors, such as hot and cold temperature exposure, which is an issue with some other ridge vent products made of open cell foam.
  • a drawback of the known “PROFILEVENT material is that the profile is matched to the contoured roof panel in a direction parallel to the ridge, i.e., generally perpendicular to a direction that the contours or ribs of the roof panels extend. This does not allow the product to be used with a hip ridge vent, due to the angle it makes relative to the contoured roof panels, which can vary depending on the roof pitch, direction of the hip ridge, etc. This can result in insufficient ridge length being available for venting. Additionally, even with gable ridge vents, there is a higher cost involved with having to create vent material with the correct profile to match the known panel contours, as well as having to carry an inventory of vent material specific for each of such panel types.
  • the present invention provides a roof ridge and hip ridge vent system for contoured roofs which include a vent slot located through the roof structure along at least one of a roof ridge or hip ridge.
  • a contoured roofing material having upwardly directed projections and valleys between the projections forms the roof surface.
  • the projections preferably have a height of about 0.8 inches or less.
  • a vent strip is provided on the roof surface and extends on each side of the vent slot.
  • the vent strip is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness, preferably in the range of 0.9 to 1.2 inches for a roofing sheet with 0.75 inch high ribs or projections, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%.
  • the vent strip is resiliently compressible such that a space between the projections in the contoured roofing material is filled with the vent strip, and a portion of the strip is compressed into contact with and extends over the projections.
  • a cap overlies the slot and the vent strip.
  • the vent strip comprises two separate strips, with one being located on each side of the vent slot.
  • the roof and hip ridge vent system provides at least 28 square inches of net free area per lineal foot of ridge.
  • the vent strip can be provided in stick or roll form.
  • FIG. 1 is a perspective view of a portion of a roof ridge showing the installation of an embodiment of the roof ridge vent with an air-permeable resilient strip mounted on a metal roof.
  • FIG. 2 is a cross-sectional view of the roof ridge vent illustrated in FIG. 1 and taken along line 2 - 2 .
  • FIG. 3 is a cross-sectional view of a portion of the roof ridge of FIG. 1 , showing an embodiment of the roof ridge vent installed thereon.
  • the left-hand side of the figure shows an alternative positioning of the vent strip relative to the edge of the metal roof.
  • FIG. 4 is an enlarged perspective view of the air permeable and resilient strip on the metal roof showing the compression of the material at the rib or projection locations of the roof panel.
  • FIG. 5 is an enlarged perspective view of the air permeable and resilient strip positioned as a hip ridge vent on a corrugated metal roof shown with the same projections or ribs as in the ridge vent installation in FIGS. 1-4 with the vent strip being arranged at an angle relative to the ribs.
  • FIG. 6 is a perspective view of an embodiment of the vent strip.
  • FIGS. 1-4 illustrates an embodiment of a roof venting system designated generally as 10 .
  • the roof venting system 10 is described in relation to a sloped roof 12 which may include rafters 15 that support decking 14 or purlins (not shown) that support a roofing material, such as a corrugated roofing sheet 16 formed by a plurality of metal or composite roofing panels 18 .
  • the roof 12 comes to a ridge 22 at a slope defined by its rafters 24 .
  • the roofing panels 18 extend up to a vent slot 20 located at the ridge 22 .
  • a strip of venting material is installed either in one piece over the slot 20 such that it extends over the upper ends of the roofing panels 18 adjacent to the slot 20 , or two separate strips 40 are installed, with one strip 40 being located over the upper ends of the roofing panels on each side of the slot 20 .
  • the roofing panels 18 , the venting material strip(s) 40 and the vent slot 20 are covered with a ridge cap 26 , usually made of similar material as the panels 18 and installed in sections running along the ridge 22 .
  • the roofing panels 18 each have a plurality of projections 28 that project upwardly. As known to those in the art and shown in FIGS. 2 and 4 , adjacent roofing panels 18 are joined together to form the sheet 16 by overlying a pair of lateral ends 38 from adjacent panels 18 .
  • the projections 28 of the roofing panels 18 are both a larger stiffening rib 48 and a smaller squared stiffening rib 46 .
  • the larger stiffening ribs 48 in proximity to the lateral edges 38 are used to overlap the adjacent panel.
  • other panel configurations can be used in conjunction with the vent strips 40 .
  • the vent strip 40 is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness t, preferably in the range of 0.9 to 1.2 inches for a roofing sheet with 0.75 inch ribs, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%.
  • Preferred fibers include 180 denier polyester, although other materials and deniers could be used.
  • the fibers are preferably chopped to a length between 1 and 5 inches, and more preferably 1.5-2 inches.
  • a preferred binder is a latex binder, such as those available from DOW Chemical, Rohm and Haas, and others.
  • the depth d is preferably about 3 inches, although other depths could be used.
  • the vent strip 40 is resiliently compressible such that a space between the projections in the contoured roofing material is filled with the vent strip 40 , and a portion of the strip 40 is compressed into contact with and extends over the projections 28 upon installation of the ridge cap 26 .
  • the vent material may be heat treated so that it “lofts” or expands, and then calendared down to a specific thickness to allow the completed vent strips to expand and conform to uneven surfaces when solar energy raises the roof temperature.
  • the system 10 provides at least 28 square inches of net free area per lineal foot of ridge.
  • the vent strip 40 has at least a portion that is air permeable to allow the passage of air to ventilate the roof.
  • the strip 40 completely fills the space between the panels 18 and the ridge cap 26 to prevent water, such as wind driven rain, from entering in accordance with building standards, but allows the passage of air.
  • the entire strip 40 is made from the air permeable and resilient material. As shown in FIGS. 1 , 2 , and 4 , due to the compression of the air permeable mesh material over the larger stiffening ribs 48 , the net free area is reduced as the fibers are pressed closer together. However, these areas are localized and only slightly reduce the overall net free area provided for venting.
  • FIGS. 3 and 4 the relative position of the strip 40 to the upper edge 34 of the roofing panels 18 can vary and still meet the objective of this invention.
  • the right-hand side of FIGS. 3 and 4 show the strip 40 extending beyond the upper edge 34 of the metal panels 18 .
  • the strip 40 overlaps slightly the vent slot 20 in the ridge 22 .
  • the left-hand side of FIGS. 3 and 4 show the strip 40 located slightly below or downward from the upper edge 34 ′ of the metal panels 18 .
  • the vent strip 40 is not profiled or cut, and rather is formed with a higher resiliency and a greater net free area than the prior known non-woven mesh vent strips so that it can be compressed in the area of the projections 28 and is able to conform to the roof panels 18 and fill the spaces between the projections 28 .
  • the vent strip 40 meets all present building requirements for preventing wind driven rain entry through the ridge vent system 10 , and also generally prevents the entry of debris and insects.
  • the vent strip 40 is secured in proximity to an upper edge of the roofing panels 18 and overlies the projections 28 , and is secured to the roofing panels 18 by an adhesive.
  • the ridge cap 26 is secured to the roofing panels 18 by a series of fasteners 36 , such as screws, preferably into one of the larger stiffening ribs 48 as seen in FIG. 3 .
  • a further benefit of the present vent strip 40 is that it can be used in connection with a hip ridge vent system 10 ′ since it can conform to the angle of the projections in the roofing panel 18 at the roof hip, which by definition would not be at 90° .
  • the path of the projections through the vent strip 40 is at an angle, meaning that it would not be economically feasible to attempt to form the vent strips with complementary recesses in accordance with U.S. Pat. No. 5,561,953 for all of the various hip ridge configurations that are possible.
  • the vent strip 40 can conform to the projections 28 of the roofing panel 18 along the path of the hip ridge 44 since it is resiliently compressible, and accordingly allows improved venting for a building structure with a hip roof.
  • vent strip 40 Prior to installation is shown in FIG. 6 .
  • the material is generally uniform, in comparison to the compression of the air permeable mesh material over the larger stiffening ribs 48 , as shown in FIG. 5 .
  • vent strip 40 can be used to vent a roof ridge and a hip ridge, and further can be used as a universal vent strip for corrugated roofing panels or roofing panels with projections falling within a certain size range—for example, the preferred embodiment described above can be used in connection with roofing panels having projections of 1 inch or less.
  • the thickness of the vent strip 40 could be modified to accommodate other size ranges of roofing panel ribs or projections, for example, the thickness could be increased to 2.2 to 2.5 inches for roofing panels with projections having a depth of 2 inches. Similar adjustments can be made for other height ribs or projections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

A roof ridge and hip ridge vent system for contoured roofs which include a vent slot located through the roof structure along at least one of a roof ridge or hip ridge. A contoured roofing material having upwardly directed projections and valleys between the projections forms the roof surface. A vent strip is provided on the roof surface and extends on each side of the vent slot. The vent strip is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%.

Description

    INCORPORATION BY REFERENCE
  • The following documents are incorporated herein by reference as if fully set forth: U.S. Provisional Application No. 62/039,468, filed Aug. 20, 2014.
  • FIELD OF THE INVENTION
  • The present invention relates to a roof ridge and hip ridge vent for use on contoured metal roof panels.
  • BACKGROUND
  • In general, roof ridge vents work in conjunction with soffit vents in order to allow air to flow beneath the roof to provide passive ventilation. As hot stale air is withdrawn from the ridge slot vent by convection and/or wind suction, it is replaced by fresh ambient air through the soffit vents. This equalization inhibits moisture from condensing on insulation and wood roofing materials which causes mildew and rot, prevents build-up of ice dams which could buckle shingles and gutters, and reduces air-conditioning costs when hot attic air is replaced by cooler ambient air.
  • It has been known to ventilate attics under gable roofs made of contoured metal panels by running a vent along the roof ridge that is in communication with a slot or ridge opening that connects to the attic or under-roof space. A highly successful one of such vents which is manufactured and sold under the name “PROFILEVENT” is described in U.S. Pat. No. 5,561,953, which is incorporated by reference herein as if fully set forth, in which the contour of the metal roofing panel is cut into a non-woven strip of vent material. The vent material in this product is required to be stiff enough to hold its shape and resist crushing when the ridge cap is installed by nailing through the ridge cap and the vent material so that the net free area of the vent material is not diminished. The material is fire retardant, and the configuration is such that it prevents the ingress of wind driven-rain within the limits of the applicable building standards, and also prevents the ingress of debris and insects. To the extent that moisture penetrates into the non-woven material, it is freely draining so that it does not trap moisture against the metal roof panels which can occur with some of the known open cell foam vent products, which causes corrosion of the roof panels themselves, requiring costly repair or replacement. Further, this known product is UV stable and does not break down due to sunlight or environmental factors, such as hot and cold temperature exposure, which is an issue with some other ridge vent products made of open cell foam.
  • However, a drawback of the known “PROFILEVENT material is that the profile is matched to the contoured roof panel in a direction parallel to the ridge, i.e., generally perpendicular to a direction that the contours or ribs of the roof panels extend. This does not allow the product to be used with a hip ridge vent, due to the angle it makes relative to the contoured roof panels, which can vary depending on the roof pitch, direction of the hip ridge, etc. This can result in insufficient ridge length being available for venting. Additionally, even with gable ridge vents, there is a higher cost involved with having to create vent material with the correct profile to match the known panel contours, as well as having to carry an inventory of vent material specific for each of such panel types.
  • SUMMARY
  • Briefly stated, the present invention provides a roof ridge and hip ridge vent system for contoured roofs which include a vent slot located through the roof structure along at least one of a roof ridge or hip ridge. A contoured roofing material having upwardly directed projections and valleys between the projections forms the roof surface. The projections preferably have a height of about 0.8 inches or less. A vent strip is provided on the roof surface and extends on each side of the vent slot. The vent strip is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness, preferably in the range of 0.9 to 1.2 inches for a roofing sheet with 0.75 inch high ribs or projections, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%. The vent strip is resiliently compressible such that a space between the projections in the contoured roofing material is filled with the vent strip, and a portion of the strip is compressed into contact with and extends over the projections. A cap overlies the slot and the vent strip.
  • Preferably, the vent strip comprises two separate strips, with one being located on each side of the vent slot.
  • Preferably, the roof and hip ridge vent system provides at least 28 square inches of net free area per lineal foot of ridge.
  • The vent strip can be provided in stick or roll form.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be explained in more detail in connection with the drawings in which presently preferred embodiments are shown.
  • In the drawings:
  • FIG. 1 is a perspective view of a portion of a roof ridge showing the installation of an embodiment of the roof ridge vent with an air-permeable resilient strip mounted on a metal roof.
  • FIG. 2 is a cross-sectional view of the roof ridge vent illustrated in FIG. 1 and taken along line 2-2.
  • FIG. 3 is a cross-sectional view of a portion of the roof ridge of FIG. 1, showing an embodiment of the roof ridge vent installed thereon. The left-hand side of the figure shows an alternative positioning of the vent strip relative to the edge of the metal roof.
  • FIG. 4 is an enlarged perspective view of the air permeable and resilient strip on the metal roof showing the compression of the material at the rib or projection locations of the roof panel.
  • FIG. 5 is an enlarged perspective view of the air permeable and resilient strip positioned as a hip ridge vent on a corrugated metal roof shown with the same projections or ribs as in the ridge vent installation in FIGS. 1-4 with the vent strip being arranged at an angle relative to the ribs.
  • FIG. 6 is a perspective view of an embodiment of the vent strip.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Certain terminology is used in the following description for convenience only and is not considered limiting. Words such as “front”, “back”, “top” and “bottom” designate directions in the drawings to which reference is made. This terminology includes the words specifically noted above, derivatives thereof and words of similar import. Additionally, the terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted.
  • The preferred embodiments of the present invention will be described with reference to the drawing figures wherein like numerals represent like elements throughout.
  • FIGS. 1-4 illustrates an embodiment of a roof venting system designated generally as 10. The roof venting system 10 is described in relation to a sloped roof 12 which may include rafters 15 that support decking 14 or purlins (not shown) that support a roofing material, such as a corrugated roofing sheet 16 formed by a plurality of metal or composite roofing panels 18. The roof 12 comes to a ridge 22 at a slope defined by its rafters 24.
  • The roofing panels 18 extend up to a vent slot 20 located at the ridge 22. A strip of venting material is installed either in one piece over the slot 20 such that it extends over the upper ends of the roofing panels 18 adjacent to the slot 20, or two separate strips 40 are installed, with one strip 40 being located over the upper ends of the roofing panels on each side of the slot 20. The roofing panels 18, the venting material strip(s) 40 and the vent slot 20 are covered with a ridge cap 26, usually made of similar material as the panels 18 and installed in sections running along the ridge 22.
  • The roofing panels 18 each have a plurality of projections 28 that project upwardly. As known to those in the art and shown in FIGS. 2 and 4, adjacent roofing panels 18 are joined together to form the sheet 16 by overlying a pair of lateral ends 38 from adjacent panels 18. In the exemplary embodiment shown, the projections 28 of the roofing panels 18 are both a larger stiffening rib 48 and a smaller squared stiffening rib 46. The larger stiffening ribs 48 in proximity to the lateral edges 38 are used to overlap the adjacent panel. However, other panel configurations can be used in conjunction with the vent strips 40.
  • Still with reference to FIGS. 1-4, the vent strip 40 is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness t, preferably in the range of 0.9 to 1.2 inches for a roofing sheet with 0.75 inch ribs, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%. Preferred fibers include 180 denier polyester, although other materials and deniers could be used. The fibers are preferably chopped to a length between 1 and 5 inches, and more preferably 1.5-2 inches. A preferred binder is a latex binder, such as those available from DOW Chemical, Rohm and Haas, and others. The depth d is preferably about 3 inches, although other depths could be used. The vent strip 40 is resiliently compressible such that a space between the projections in the contoured roofing material is filled with the vent strip 40, and a portion of the strip 40 is compressed into contact with and extends over the projections 28 upon installation of the ridge cap 26. The vent material may be heat treated so that it “lofts” or expands, and then calendared down to a specific thickness to allow the completed vent strips to expand and conform to uneven surfaces when solar energy raises the roof temperature. Preferably the system 10 provides at least 28 square inches of net free area per lineal foot of ridge.
  • The vent strip 40 has at least a portion that is air permeable to allow the passage of air to ventilate the roof. The strip 40 completely fills the space between the panels 18 and the ridge cap 26 to prevent water, such as wind driven rain, from entering in accordance with building standards, but allows the passage of air. Preferably, the entire strip 40 is made from the air permeable and resilient material. As shown in FIGS. 1, 2, and 4, due to the compression of the air permeable mesh material over the larger stiffening ribs 48, the net free area is reduced as the fibers are pressed closer together. However, these areas are localized and only slightly reduce the overall net free area provided for venting.
  • As seen in FIGS. 3 and 4, the relative position of the strip 40 to the upper edge 34 of the roofing panels 18 can vary and still meet the objective of this invention. The right-hand side of FIGS. 3 and 4 show the strip 40 extending beyond the upper edge 34 of the metal panels 18. As seen in FIG. 3, the strip 40 overlaps slightly the vent slot 20 in the ridge 22. The left-hand side of FIGS. 3 and 4 show the strip 40 located slightly below or downward from the upper edge 34′ of the metal panels 18.
  • In contrast to U.S. Pat. No. 5,561,953 where the vent strip has a lower surface that is shaped by cutting to match the contours of the roofing panels, and specifically includes recesses that are complementary to the projections in the roofing sheet, the vent strip 40 is not profiled or cut, and rather is formed with a higher resiliency and a greater net free area than the prior known non-woven mesh vent strips so that it can be compressed in the area of the projections 28 and is able to conform to the roof panels 18 and fill the spaces between the projections 28. The vent strip 40 meets all present building requirements for preventing wind driven rain entry through the ridge vent system 10, and also generally prevents the entry of debris and insects.
  • Preferably, the vent strip 40 is secured in proximity to an upper edge of the roofing panels 18 and overlies the projections 28, and is secured to the roofing panels 18 by an adhesive. The ridge cap 26 is secured to the roofing panels 18 by a series of fasteners 36, such as screws, preferably into one of the larger stiffening ribs 48 as seen in FIG. 3.
  • This provides all of the benefits of the prior known non-woven mesh vent strip, such as preventing moisture from being captured and held against the roofing panel 18, which occurs with some open cell foam ridge vent materials, without the cost and expenses associated with having to cut or otherwise form matching contours in the vent strip 40 as was previously required.
  • Referring to FIG. 5, a further benefit of the present vent strip 40 is that it can be used in connection with a hip ridge vent system 10′ since it can conform to the angle of the projections in the roofing panel 18 at the roof hip, which by definition would not be at 90° . This addresses a need that the vent strip of U.S. Pat No. 5,561,953 could not meet in that the length of the vent strip 40 between the projections, illustrated as X′ in FIG. 5 changes depending on the angle of the roof hip from the nominal distance X at 90° . Further, the path of the projections through the vent strip 40 is at an angle, meaning that it would not be economically feasible to attempt to form the vent strips with complementary recesses in accordance with U.S. Pat. No. 5,561,953 for all of the various hip ridge configurations that are possible.
  • As shown in FIG. 5, the vent strip 40 can conform to the projections 28 of the roofing panel 18 along the path of the hip ridge 44 since it is resiliently compressible, and accordingly allows improved venting for a building structure with a hip roof.
  • One preferred version of the vent strip 40 prior to installation is shown in FIG. 6. Here, it can be seen that the material is generally uniform, in comparison to the compression of the air permeable mesh material over the larger stiffening ribs 48, as shown in FIG. 5.
  • An additional advantage is that the same vent strip 40 can be used to vent a roof ridge and a hip ridge, and further can be used as a universal vent strip for corrugated roofing panels or roofing panels with projections falling within a certain size range—for example, the preferred embodiment described above can be used in connection with roofing panels having projections of 1 inch or less. The thickness of the vent strip 40 could be modified to accommodate other size ranges of roofing panel ribs or projections, for example, the thickness could be increased to 2.2 to 2.5 inches for roofing panels with projections having a depth of 2 inches. Similar adjustments can be made for other height ribs or projections.
  • While the preferred embodiments of the invention have been described in detail, the invention is not limited to these specific embodiments described above which should be considered as merely exemplary. Further modifications and extensions of the present invention may be developed and all such modifications are deemed to be within the scope of the present invention as defined by the appended claims.

Claims (4)

What is claimed is:
1. A roof ridge and hip ridge vent system for contoured roofs, comprising:
a vent slot located through a roof structure along at least one of a roof ridge or hip ridge;
a contoured roofing material having upwardly directed projections that forms a roof surface;
at least one vent strip on the roof surface that extends on each side of the vent slot, the vent strip is comprised of synthetic fibers that are randomly aligned into an open web by an air flow and then joined by a phenolic or latex binder that is heat cured to form an air permeable mesh material having a generally uniform thickness, a density of about 0.08 to 0.1 grams per cubic centimeter (1.3 to 1.6 grams per cubic inch), and a crush recovery of at least 80%, the vent strip is resiliently compressible such that a space between the projections in the contoured roofing material is filled with the vent strip, and a portion of the strip is compressed into contact with and extends over the projections; and
a cap overlying the slot and the vent strip.
2. The roof ridge and hip ridge vent system for contoured roofs of claim 1, wherein a thickness of the at least one vent strip is in a range of 1.1 to 1.5 inches.
3. The roof ridge and hip ridge vent system for contoured roofs of claim 1, wherein the at least one vent strip comprises two separate vent strips, with one being located on each side of the vent slot.
4. The roof ridge and hip ridge vent system for contoured roofs of claim 1, wherein the roof and hip ridge vent system provides at least 28 square inches of net free area per lineal foot of ridge.
US14/831,089 2014-08-20 2015-08-20 Hip and ridge vent Abandoned US20160053493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/831,089 US20160053493A1 (en) 2014-08-20 2015-08-20 Hip and ridge vent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462039468P 2014-08-20 2014-08-20
US14/831,089 US20160053493A1 (en) 2014-08-20 2015-08-20 Hip and ridge vent

Publications (1)

Publication Number Publication Date
US20160053493A1 true US20160053493A1 (en) 2016-02-25

Family

ID=55347829

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/831,089 Abandoned US20160053493A1 (en) 2014-08-20 2015-08-20 Hip and ridge vent

Country Status (1)

Country Link
US (1) US20160053493A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170350132A1 (en) * 2016-06-01 2017-12-07 Martin J. Rotter Hip and ridge vent
USD872900S1 (en) * 2018-02-26 2020-01-14 Bal Heo Protective cap for gable end of roof ridge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170350132A1 (en) * 2016-06-01 2017-12-07 Martin J. Rotter Hip and ridge vent
US10508451B2 (en) * 2016-06-01 2019-12-17 Martin J. Rotter Hip and ridge vent
US10774538B2 (en) 2016-06-01 2020-09-15 Martin J. Rotter Hip and ridge vent
USD872900S1 (en) * 2018-02-26 2020-01-14 Bal Heo Protective cap for gable end of roof ridge

Similar Documents

Publication Publication Date Title
US5561953A (en) Contoured ventilation system for metal roofs
US10815668B2 (en) Roof ridge vent system
US20190024378A1 (en) Contoured Mesh Ridge Vents
US5167579A (en) Roof vent of synthetic fiber matting
US6015343A (en) Tile roof vent
US6418678B2 (en) Contoured roof ventilation strip and installation system
US9803367B2 (en) Ventilation system for tile roofs
US10196823B2 (en) Roof ridge vent
CA2985998C (en) Gas permeable arrester seal with integrated weep conduit for ridge vents
US8281522B1 (en) Ventilated roofing system
US10113760B2 (en) Ventilation system for contoured roofs
US20160053493A1 (en) Hip and ridge vent
US10774538B2 (en) Hip and ridge vent
EP3542104B1 (en) Ridge vent
US20220162857A1 (en) Vented insulated roof sheathing
US11970864B2 (en) Contoured mesh ridge vents
JP2022152417A (en) roof structure
US20180023302A1 (en) Fascia vent system
CA2753774C (en) Ridge vent
US20180058072A1 (en) Venturi Ridge Vent

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROTTER, MARTIN J, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROTTER, MARTIN J.;SMITH, RANDY;SMITH, JAMES;AND OTHERS;SIGNING DATES FROM 20150820 TO 20150824;REEL/FRAME:036401/0181

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION