US20160014589A1 - Network assisted device to device discovery - Google Patents

Network assisted device to device discovery Download PDF

Info

Publication number
US20160014589A1
US20160014589A1 US14/767,671 US201314767671A US2016014589A1 US 20160014589 A1 US20160014589 A1 US 20160014589A1 US 201314767671 A US201314767671 A US 201314767671A US 2016014589 A1 US2016014589 A1 US 2016014589A1
Authority
US
United States
Prior art keywords
discovery
temp
enb
computer circuitry
ues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/767,671
Other versions
US10045192B2 (en
Inventor
Huaning Niu
Sergey Panteleev
Alexey Khoryaev
Debdeep CHATTERJEE
Gang Xiong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corp filed Critical Intel IP Corp
Priority to US14/767,671 priority Critical patent/US10045192B2/en
Publication of US20160014589A1 publication Critical patent/US20160014589A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHATTERJEE, Debdeep, NIU, HUANING, KHORYAEV, ALEXEY, PANTELEEV, Sergey, XIONG, GANG
Application granted granted Critical
Publication of US10045192B2 publication Critical patent/US10045192B2/en
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTEL CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2514Translation of Internet protocol [IP] addresses between local and global IP addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2521Translation architectures other than single NAT servers
    • H04L61/2525Translation at a client
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2539Hiding addresses; Keeping addresses anonymous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • H04L61/2564NAT traversal for a higher-layer protocol, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • H04L61/2575NAT traversal using address mapping retrieval, e.g. simple traversal of user datagram protocol through session traversal utilities for NAT [STUN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/244Connectivity information management, e.g. connectivity discovery or connectivity update using a network of reference devices, e.g. beaconing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/677Multiple interfaces, e.g. multihomed nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/30Routing of multiclass traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • D2D communications allows mobile users to directly communicate with each other with little or no burden on a wireless network.
  • the D2D communication can occur when closely located devices are enabled to communicate with each other directly instead of using a conventional communications links such as a Wi-Fi or cellular communications system.
  • device to device (D2D) services allows for communication between devices within range of an access point such as an enhanced node B (eNB) of a network and allows meeting increased demand on telecommunications systems.
  • eNB enhanced node B
  • One of the first steps to enable D2D communication involves discovery of devices capable of D2D communication.
  • FIG. 1 depicts a UE in communication with an eNB and other UEs in a D2D network in accordance with an example
  • FIG. 2 depicts multiple UEs each in communication with an eNB and in direct communication with each other in accordance with an example
  • FIG. 3 illustrates an eNB and a UE each comprising a transceiver and a computer processor in accordance with an example
  • FIG. 4 shows a UE that is in communication with both an eNB as well as other UEs in accordance with an example
  • FIG. 5 illustrates an uplink radio frame structure in accordance with an example
  • FIG. 6 depicts a discovery zone resource allocation in accordance with an example
  • FIG. 7 depicts the functionality of the computer circuitry of a UE operable perform D2D discovery with an eNB in a D2D network in accordance with an example
  • FIG. 8 depicts the functionality of the computer circuitry of a UE operable to discover and communicate a list of temporary identifications (Temp IDs) in a D2D network in accordance with an example
  • FIG. 9 depicts the functionality of the computer circuitry of an eNB operable to communicate with a UE in a D2D network in accordance with an example
  • FIG. 10 depicts the functionality of the computer circuitry of a server operable to communicate with a UE that is operable to communicate in a D2D network in accordance with an example
  • FIG. 11 illustrates a method for allocating a D2D discovery resource by an eNB to a UE in accordance with an example
  • FIG. 12 depicts a graph illustrating a number of UEs versus a threshold used for energy detection in accordance with an example
  • FIG. 13 depicts a graph showing a number of UEs versus a distance m in accordance with an example
  • FIG. 14 depicts a graph showing an average percentage of UEs discovered at a distance less than R in accordance with an example.
  • FIG. 15 illustrates a diagram of a user equipment (UE) in accordance with an example.
  • D2D Device to Device
  • multiple mobile wireless devices such as user equipment (UE) can be configured to directly communicate with each other.
  • a wireless network such as a cellular third generation partnership project (3GPP) network that includes an eNB, can assist UEs in discovering other adjacent UEs configured for D2D communications.
  • 3GPP third generation partnership project
  • FIG. 1 depicts an eNB 110 in communication with a UE 1 ( 120 ).
  • the UE 1 ( 120 ) is in direct communication with other UE 2 -UE 5 ( 130 ) in a D2D network.
  • FIG. 2 illustrates UE 1 ( 220 ) and UE 2 ( 230 ) each in communication with the eNB 210 and UE 1 ( 220 ) and UE 2 ( 230 ) are also in direct communication with each other.
  • the UEs in the D2D communication system may share resources of a mobile communication network, where the UEs are configured to share resources with devices that are communicating with the eNB in the cellular network.
  • the one or more cellular networks may be third generation partnership project (3GPP) long term evolution (LTE) Rel.
  • 3GPP third generation partnership project
  • LTE long term evolution
  • FIG. 3 illustrates that in one embodiment of a network assisted D2D communications system, an eNB 310 comprises a transceiver 320 and a computer processor 330 .
  • FIG. 3 also illustrates that the UE 340 comprises a transceiver 350 and a computer processor 360 .
  • D2D communication systems may provide mobile device users with better quality of service (QoS), new applications, and increased mobility support.
  • QoS quality of service
  • the UEs within the D2D system can be configured to discover the D2D enabled UEs that are participating in the D2D system.
  • One method or system for discovering D2D enabled UEs within a wireless network configured for D2D communications that involves UEs that are able to broadcast a discovery beacon to the other adjacent UEs.
  • the D2D discovery procedure and D2D discovery resource allocation for a discovery beacon can begin after the initial access to the network by a UE.
  • Each UE can be assigned a temporary identification (Temp ID) for D2D discovery.
  • the network can assist in the D2D discovery procedure and D2D discovery resource allocation for a discovery beacon. Network assistance can reduce the complexity of the UEs and allow the network to work with the UEs to reduce interference between wireless network communication and D2D communication.
  • an eNB can assign a temporary identification (Temp ID) to a UE via high layer signaling.
  • the UEs within the D2D system can be discovered using a network assisted D2D discovery procedure.
  • the D2D Temp ID can be configured to be unique over several adjacent cells to avoid ambiguity of a discovered UE definition.
  • the UEs can be synchronized within the network using an uplink (UL) synchronization channel.
  • the eNB may then allocate D2D discovery resources within a physical uplink channel, such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the allocated resources can slowly change with the number of UEs within the cell.
  • a UE can select one of the D2D discovery resources and a certain discovery sequence based on its Temp ID.
  • the UE can transmit the selected discovery sequence on a resource block (RB) of a UL signal as a discovery beacon.
  • RB resource block
  • other UEs that are not transmitting a discovery beacon can listen for the D2D discovery resource and attempt to decode Temp IDs.
  • the UE can communicate with the eNB, using a physical uplink shared channel (PUSCH), a list of Temp IDs that the UE has discovered.
  • PUSCH physical uplink shared channel
  • the eNB can then identify the UEs based on the assigned Temp IDs and feedback to the UE, using a PDSCH, the identification of the discovered UEs.
  • the UE can then use the identification information to request D2D communication with the discovered UEs.
  • FIG. 4 shows a UE 1 ( 420 ) that is in communication with both an eNB 410 as well as UE 2 -UE 5 ( 430 ).
  • the eNB 410 assigns a Temp ID for D2D discovery 440 to UE 1 ( 420 ).
  • the eNB 410 also allocates a D2D discovery resource allocation 450 for UE 1 ( 420 ), providing time and frequency blocks in which the UE 1 can communicate an ID for discovery.
  • the time and frequency blocks may correspond with uplink subframes that are available for communication with the eNB.
  • the UE 1 ( 420 ) then transmits a D2D discovery beacon 460 to other UEs in the D2D network, such as UE 2 -UE 5 ( 430 ).
  • UE 1 further discovers the Temp ID of other UEs 470 , such as UE 2 -UE 5 ( 430 ), in the D2D network.
  • UE 1 ( 420 ) communicates a list of the Temp IDs 480 to the eNB 410 .
  • the eNB 410 then feeds back a list of the discovered UEs 490 to the UE 1 ( 420 ).
  • the information included in the list of the discovered UEs enables the UE to request D2D communication with the other UEs.
  • the UEs in a wireless network that are configured for D2D communication can synchronize within the wireless network using a radio frame structure, transmitted on a physical (PHY) layer in a uplink transmission between an eNB and a UE.
  • a 3GPP LTE frame structure can be used for the synchronization, as illustrated in FIG. 5 .
  • FIG. 5 illustrates an uplink radio frame structure.
  • a radio frame 500 of a signal used to transmit control information or data can be configured to have a duration, T f , of 10 milliseconds (ms).
  • Each radio frame can be segmented or divided into ten subframes 510 i that are each 1 ms long.
  • Each subframe can be further subdivided into two slots 520 a and 520 b , each with a duration, T slot , of 0.5 ms.
  • Each slot for a component carrier (CC) used by the wireless device and the node can include multiple resource blocks (RBs) 530 a , 530 b , 530 i , 530 m , and 530 n based on the CC frequency bandwidth.
  • CC component carrier
  • Each RB (physical RB or PRB) 530 i can include 12-15 kHz subcarriers 536 (on the frequency axis) and 6 or 7 SC-FDMA symbols 532 (on the time axis) per subcarrier.
  • the RB can use seven SC-FDMA symbols if a short or normal cyclic prefix is employed.
  • the RB can use six SC-FDMA symbols if an extended cyclic prefix is used.
  • the resource block can be mapped to 84 resource elements (REs) 540 i using short or normal cyclic prefixing, or the resource block can be mapped to 72 REs (not shown) using extended cyclic prefixing.
  • REs resource elements
  • the RE can be a unit of one SC-FDMA symbol 542 by one subcarrier (i.e., 15 kHz) 546 .
  • Each RE can transmit two bits 550 a and 550 b of information in the case of quadrature phase-shift keying (QPSK) modulation.
  • QPSK quadrature phase-shift keying
  • Other types of modulation may be used, such as 16 quadrature amplitude modulation (QAM) or 64 QAM to transmit a greater number of bits in each RE, or bi-phase shift keying (BPSK) modulation to transmit a lesser number of bits (a single bit) in each RE.
  • the RB can be configured for an uplink transmission from the wireless device to the node.
  • An uplink signal or channel can include data on a Physical Uplink Shared Channel (PUSCH) or control information on a Physical Uplink Control Channel (PUCCH).
  • the physical uplink control channel (PUCCH) carrying uplink control information (UCI) can include channel state information (CSI) reports, Hybrid Automatic Retransmission request (HARQ) ACKnowledgment/Negative ACKnowledgment (ACK/NACK) and uplink scheduling requests (SR).
  • CSI channel state information
  • HARQ Hybrid Automatic Retransmission request
  • ACK/NACK Hybrid Automatic Retransmission request
  • SR uplink scheduling requests
  • FIG. 6 depicts an example of discovery zone resource allocation, such as discovery zone 1 ( 610 ) and discovery zone 2 ( 620 ).
  • the D2D resources together with a D2D sequence can be used to determine a unique device Temp ID.
  • Temp ID the Temp ID and eNB's cell identification (cell ID) as input parameters
  • each UE can identify the corresponding resources in which it will transmit the D2D discovery sequence.
  • the output parameters for each UE can include: n f , n t , and n seq .
  • the value n f is the RB index per slot per cell
  • n t is the slot index in each discovery zone
  • n seq is the discovery sequence index.
  • the UE can use a mapping rule to determine the corresponding resources to transmit the discovery sequence.
  • the mapping rule can use the following criteria in determining the corresponding resource: to address a half-duplex constraint, n t can be different in the next discovery zone for two UEs with same n t in the current discovery zone; to achieve frequency diversity, n f can be different in the next discovery zone for one UE; and to reduce inter-cell interference, the discovery zone can be reuse 3 .
  • a the reuse value can increase or decrease.
  • the UEs can be configured with additional parameters such as the total number of sequences (N seq ), the total number of RBs (in the frequency dimension) per cell in a discovery slot (N f ), and/or the total number of discovery slots in a discovery zone (N i ).
  • the additional parameters can be configured using higher layer signaling, such as via semi-static RRC signaling in a cell-specific manner, depending on the population of UEs participating in proximity services, the deployment scenario, and other system parameters.
  • the UE when the UE is equipped with multiple transmit antennas, the UE might be assigned additional Temp IDs so that the n t and n f are the same or substantially similar but n seq may vary or is different for the UEs different transmit antennas.
  • the D2D discovery sequence design can be based on the network synchronization of the UE with the eNB being achieved through an UL channel, such as a control channel, a shared channel, or another desired channel.
  • the subframe and slot boundary of the uplink radio frame structure are synchronized for D2D discovery.
  • the D2D discovery sequence design is based, in part, on non-coherent energy detection.
  • the D2D discovery sequence design may be also be based on the following: a correlation property; resource availability or allocation; and/or a peak to average power ratio (PAPR).
  • PAPR peak to average power ratio
  • the cross correlation can be taken into account in order to achieve multiplexing capacity.
  • auto correlation may not be evaluated since a time synchronization is achieved for D2D discovery.
  • one RB or one RB pair may be used as the basic element for the D2D discovery sequence design.
  • the channel selectivity can be minimized over the discovery sequence.
  • the PAPR is used to select the candidate D2D discovery sequence.
  • a Hadamard matrix can be used for the D2D discovery sequence design.
  • the D2D discovery sequence design using a Hadamard matrix may be based on the correlation property, resource availability or allocation, and/or a PAPR.
  • the Hadamard matrix is based on the discovery resource size.
  • the resource size may be one RB, which size is 12 subcarrier ⁇ 7 SC-FDMA symbols, or one RB pair, which size is 12 subcarriers ⁇ 14 SC-FDMA symbols.
  • the length of the Hadamard matrix is a multiple of 4.
  • the D2D discovery sequence is mapped in frequency first order and the PAPR is calculated for each SC-FDMA symbol.
  • D2D discovery sequences with very high PAPR can be eliminated.
  • the beacon sequences can be mapped in the frequency domain directly without the use of a discrete Fourier transform (DFT) operation (similar to UL DMRS).
  • DFT discrete Fourier transform
  • a PUCCH format 1 is used for the D2D discovery sequence design.
  • the D2D discovery sequence design using a PUCCH format 1 may be based on the correlation property, resource availability or allocation, and/or a PAPR.
  • the PUCCH format 1 follows a UL PUCCH design.
  • For each SC-FDMA symbol a length-12 QPSK modulated sequence with minimum PAPR is used.
  • the length-12 QPSK modulated sequence are tabulated according to ETSI TS 136.211 V11.0.0 (2012-10) (3GPP TS 36.211, V 11.0.0, section 5.5.1).
  • the D2D discovery sequence is expanded to 7 SC-FDMA symbols using a selected or defined orthogonal cover code.
  • length 7 DFT codes are used and the length 7 DFT codes in the sequences are complex values, and may be more sensitive to timing offset.
  • one RB (12 ⁇ 7) is used as the basic D2D discovery resource element, with one RB per cell per discovery slot.
  • a discovery slot comprises of multiple RBs in the frequency dimension per cell.
  • D2D discovery sequences having a PAPR greater than 7 dB are removed.
  • a subset of the available length-12 QPSK sequences may be used with a minimum distance between any two sequences in the cyclic shift domain of greater than unity.
  • the subset of the available length-12 QPSK sequences may be used to allow for better orthogonality in scenarios with channels with higher delay spreads.
  • the number of slots in each discovery zone and the discovery zone periodicity may be configured based on a discovery delay, a resource overhead, and/or UE battery power consumption.
  • Each UE can be assigned a Temp ID from 0-6082 (78 ⁇ 78 ⁇ 1) by the eNB.
  • the UE can select a source and a sequence based on Temp ID and a certain mapping rule.
  • n t is numbered 0 to 77
  • sequence identification e.g. n seq
  • the mapping rule for resource allocation enables there to be no collisions within a cell and in adjacent cells between UEs to transmit discovery beacon, where the neighboring cells assign unique D2D Temp IDs to their UEs.
  • a half-duplex problem is prevented, at the next discovery zone, by shuffling D2D resources so that the UEs that transmitted at the same slot in the previous discovery zone can transmit at different slots in the current discovery zone.
  • the UEs that transmitted at the same slot during the first discovery zone will transmit at different discovery slots at the next zone.
  • UEs that are not transmitting discovery beacons will attempt to decode the D2D discovery sequence for each slot, in order to discovery as many UEs as possible within a proximity range.
  • FIG. 7 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of a UE operable to perform D2D discovery in a D2D network.
  • the functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium.
  • the computer circuitry can be configured to receive a Temp ID from an eNB, as in block 710 .
  • the computer circuitry can be further configured to receive a D2D discovery resource allocation within a physical uplink channel from the eNB, as in block 720 .
  • the computer circuitry can also be configured to select a UE D2D discovery resource from the D2D discovery resource allocation based on the Temp ID, as in block 730 .
  • the computer circuitry can be further configured to transmit a D2D discovery beacon from the UE D2D discovery resource to enable other UEs to detect the UE, as in block 740 .
  • the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the computer circuitry is configured to receive a list of discovered UEs from the eNB using a PDSCH.
  • computer circuitry is configured to receive a unique Temp ID from the eNB for each antenna at the UE.
  • the computer circuitry is configured to receive a D2D discovery beacon from the other UEs and determine the Temp ID of the other UEs based on the D2D discovery beacon.
  • the computer circuitry is configured to select the UE D2D discovery resource from the D2D discovery resource allocation based on a Temp ID and a cell ID of the eNB.
  • the UE identifies an RB index, a slot index, and a discovery sequence index, based on the temp ID and the cell ID.
  • FIG. 8 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of a UE operable to communicate in a D2D network.
  • the functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium.
  • the computer circuitry can be configured to receive a Temp ID from an eNB, as in block 810 .
  • the computer circuitry can be further configured to receive a D2D discovery resource allocation within a physical uplink channel from the eNB, as in block 820 .
  • the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the computer circuitry can also be configured to select a UE D2D discovery resource from the D2D discovery resource allocation based on the Temp ID, as in block 830 .
  • the computer circuitry can be further configured to transmit a D2D discovery beacon from the UE D2D discovery resource to enable other UEs to detect the UE, as in block 840 .
  • the computer circuitry can further be configured to discover a Temp ID for the other UEs in the D2D discovery allocation, as in block 850 .
  • the computer circuitry can further be configured to communicate to the eNB, using a PUSCH, as list of Temp IDs of the other UEs that are discovered, as in block 860 .
  • FIG. 9 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of an eNB operable to communicate in a D2D network.
  • the functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium.
  • the computer circuitry can be configured to communicate a D2D Temp ID to a UE, as in block 910 .
  • the computer circuitry can be further configured to allocate a D2D discovery resource within a physical uplink channel for discovery by UEs served by the eNB, as in block 920 .
  • the computer circuitry can also be configured to receive, from the UE, a list of Temp IDs of UEs discovered by the UE, as in block 930 .
  • the computer circuitry can be further configured to communicate a list of discovered UEs, based on the list of Temp IDs, to the UE, as in block 940 .
  • the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the received list of Temp IDs of UEs is received using a PUSCH.
  • a list of discovered UEs is communicated to the UE using a PDSCH.
  • the Temp ID is unique over a plurality of cells that are adjacent to the eNB.
  • the quantity of the D2D discovery resource change based on a number of UEs within a cell served by the node.
  • FIG. 10 uses a flow chart to illustrate the functionality of one embodiment of the of the computer circuitry of a server operable to communicate with a UE that is configured to communicate in a D2D network.
  • the functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium.
  • the computer circuitry can be configured to assign a Temp ID to a UE, wherein the Temp ID is configured to enable the UE to select a UE D2D discovery resource for use in D2D discovery from a D2D discovery resource allocated by an eNB, as in block 1010 .
  • the computer circuitry can be further configured to receive a list of Temp IDs discovered by the UE within the D2D discovery resource allocated by the eNB, as in block 1020 .
  • the computer circuitry can also be configured to publish, for the list of Temp IDs discovered, a list of UE identifications associated with each Temp ID for communication to the UE to enable the UE to discover other UEs and form a D2D link, as in block 1030 .
  • a number of the Temp IDs available to be assigned by the server is sufficient to allow each UE served by the eNB to have a unique D2D discovery resource.
  • the Temp ID and a mapping rule enables the UE to select a UE D2D discovery resource source location within the D2D discovery resource allocated by the eNB.
  • a mapping rule comprises the number of resource elements in a RB multiplied by a RB block index added to a sequence ID.
  • the RB index is determined at the UE based on the Temp ID.
  • the RB index is determined at the UE based on the Temp ID.
  • the sequence ID is determined at the UE based on the Temp ID.
  • a new RB index is computed by modulating the sum of the RB index and the sequence ID by 78.
  • the computer circuitry is further configured to prevent half-duplexing by assigning a new Temp ID to a UE that has transmitted a D2D discovery beacon.
  • Another example provides a method for allocating a D2D discovery resource by an eNB to a UE, as shown in the flow chart in FIG. 11 .
  • the method may be executed as instructions on a machine, computer circuitry, or a processor for the node (e.g., eNB), where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium.
  • the method includes receiving an assignment of a temporary identification (Temp ID) at the UE from the eNB, wherein the Temp ID is unique for each UE operating in a cell served by the eNB, as in block 1110 .
  • Temp ID temporary identification
  • the method includes identifying a unique transmission location in a PUCCH, based on the Temp ID, for communication of a D2D discovery beacon by the UE, as in block 1120 .
  • the method includes transmitting the D2D discovery beacon from the UE at the unique transmission location to enable other D2D devices to discover the UE, as in block 1130 .
  • the number of the Temp IDs available to be assigned by the server is sufficient to allow each UE served by the eNB to have a unique D2D discovery resource.
  • the Temp ID and a mapping rule enables the UE to select a UE D2D discovery resource source location within the D2D discovery resource allocated by the eNB.
  • the RB index is determined at the UE based on the Temp ID.
  • the sequence ID is determined at the UE based on the Temp ID.
  • a new RB index is computed by modulating the sum of the RB index and the sequence ID by 78.
  • the computer circuitry is configured to prevent half-duplexing by assigning a new Temp ID to a UE that has transmitted a D2D discovery beacon.
  • FIG. 12 uses a graph to show the number of UEs versus the threshold used for energy detection.
  • N D is the number of UE discovered (one shot discovery) and y is the threshold used for energy detection.
  • 0 dB threshold can be used which corresponding to 99% of detection probability and 0.1% false alarm probability.
  • FIG. 13 uses a graph to show the number of UEs versus a distance m.
  • y is equal to 0 dB, where a 0 dB threshold can be used which corresponding to 99% of detection probability and 0.1% false alarm probability.
  • FIG. 14 uses a graph to show the average percentage of UEs discovered at the distance less than R.
  • FIG. 15 provides an example illustration of the wireless device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a mobile communication device, a tablet, a handset, or other type of wireless device.
  • the wireless device can include one or more antennas configured to communicate with a node or transmission station, such as a base station (BS), an evolved Node B (eNB), a baseband unit (BBU), a remote radio head (RRH), a remote radio equipment (RRE), a relay station (RS), a radio equipment (RE), a remote radio unit (RRU), a central processing module (CPM), or other type of wireless wide area network (WWAN) access point.
  • BS base station
  • eNB evolved Node B
  • BBU baseband unit
  • RRH remote radio head
  • RRE remote radio equipment
  • RS relay station
  • RE radio equipment
  • RRU remote radio unit
  • CCM central processing module
  • the wireless device can be configured to communicate using at least one wireless communication standard including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and Wi-Fi.
  • the wireless device can communicate using separate antennas for each wireless communication standard or shared antennas for multiple wireless communication standards.
  • the wireless device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • WWAN wireless wide area network
  • FIG. 15 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output from the wireless device.
  • the display screen may be a liquid crystal display (LCD) screen, or other type of display screen such as an organic light emitting diode (OLED) display.
  • the display screen can be configured as a touch screen.
  • the touch screen may use capacitive, resistive, or another type of touch screen technology.
  • An application processor and a graphics processor can be coupled to internal memory to provide processing and display capabilities.
  • a non-volatile memory port can also be used to provide data input/output options to a user.
  • the non-volatile memory port may also be used to expand the memory capabilities of the wireless device.
  • a keyboard may be integrated with the wireless device or wirelessly connected to the wireless device to provide additional user input.
  • a virtual keyboard may also be provided using the touch screen.
  • Various techniques, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, non-transitory computer readable storage medium, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the various techniques.
  • the computing device may include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device.
  • the volatile and non-volatile memory and/or storage elements may be a RAM, EPROM, flash drive, optical drive, magnetic hard drive, or other medium for storing electronic data.
  • the base station and mobile station may also include a transceiver module, a counter module, a processing module, and/or a clock module or timer module.
  • One or more programs that may implement or utilize the various techniques described herein may use an application programming interface (API), reusable controls, and the like. Such programs may be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) may be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language, and combined with hardware implementations.
  • API application programming interface
  • modules may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in software for execution by various types of processors.
  • An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.
  • the modules may be passive or active, including agents operable to perform desired functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

Technology for a user equipment (UE) to communicate in a device to device (D2D) network is described. A temporary identification (Temp ID) can be received from an enhanced node B (eNB). A D2D discovery resource allocation can be received within a physical uplink channel from the eNB. A UE D2D discovery resource can be selected from the D2D discovery resource allocation based on the Temp ID. A D2D discovery beacon can be transmitted from the UE D2D discovery resource to enable other UEs to detect the UE.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of and hereby incorporates by reference U.S. Provisional Patent Application Ser. No. 61/768,330, filed Feb. 22, 2013, with an attorney docket number P54652Z.
  • BACKGROUND
  • Users of wireless and mobile networking technologies are increasingly using their mobile devices to communicate as well as send and receive data. With increased data communications on wireless networks the strain on the limited resources for telecommunications is also increasing.
  • To handle the increasing amount of wireless services to an increasing numbers of users, efficient use of the available radio network resources has become important. Device to Device (D2D) communications allows mobile users to directly communicate with each other with little or no burden on a wireless network. The D2D communication can occur when closely located devices are enabled to communicate with each other directly instead of using a conventional communications links such as a Wi-Fi or cellular communications system. Accordingly, device to device (D2D) services allows for communication between devices within range of an access point such as an enhanced node B (eNB) of a network and allows meeting increased demand on telecommunications systems. One of the first steps to enable D2D communication involves discovery of devices capable of D2D communication.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features and advantages of the disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the disclosure; and, wherein:
  • FIG. 1 depicts a UE in communication with an eNB and other UEs in a D2D network in accordance with an example;
  • FIG. 2 depicts multiple UEs each in communication with an eNB and in direct communication with each other in accordance with an example;
  • FIG. 3 illustrates an eNB and a UE each comprising a transceiver and a computer processor in accordance with an example;
  • FIG. 4 shows a UE that is in communication with both an eNB as well as other UEs in accordance with an example;
  • FIG. 5 illustrates an uplink radio frame structure in accordance with an example;
  • FIG. 6 depicts a discovery zone resource allocation in accordance with an example;
  • FIG. 7 depicts the functionality of the computer circuitry of a UE operable perform D2D discovery with an eNB in a D2D network in accordance with an example;
  • FIG. 8 depicts the functionality of the computer circuitry of a UE operable to discover and communicate a list of temporary identifications (Temp IDs) in a D2D network in accordance with an example;
  • FIG. 9 depicts the functionality of the computer circuitry of an eNB operable to communicate with a UE in a D2D network in accordance with an example;
  • FIG. 10 depicts the functionality of the computer circuitry of a server operable to communicate with a UE that is operable to communicate in a D2D network in accordance with an example;
  • FIG. 11 illustrates a method for allocating a D2D discovery resource by an eNB to a UE in accordance with an example;
  • FIG. 12 depicts a graph illustrating a number of UEs versus a threshold used for energy detection in accordance with an example;
  • FIG. 13 depicts a graph showing a number of UEs versus a distance m in accordance with an example;
  • FIG. 14 depicts a graph showing an average percentage of UEs discovered at a distance less than R in accordance with an example; and
  • FIG. 15 illustrates a diagram of a user equipment (UE) in accordance with an example.
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
  • DETAILED DESCRIPTION
  • Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular examples only and is not intended to be limiting. The same reference numerals in different drawings represent the same element. Numbers provided in flow charts and processes are provided for clarity in illustrating steps and operations and do not necessarily indicate a particular order or sequence.
  • In Device to Device (D2D) communications, multiple mobile wireless devices, such as user equipment (UE), can be configured to directly communicate with each other. In one embodiment, a wireless network, such as a cellular third generation partnership project (3GPP) network that includes an eNB, can assist UEs in discovering other adjacent UEs configured for D2D communications.
  • FIG. 1 depicts an eNB 110 in communication with a UE1 (120). The UE1 (120) is in direct communication with other UE2-UE5 (130) in a D2D network. FIG. 2 illustrates UE1 (220) and UE2 (230) each in communication with the eNB 210 and UE1 (220) and UE2 (230) are also in direct communication with each other. The UEs in the D2D communication system may share resources of a mobile communication network, where the UEs are configured to share resources with devices that are communicating with the eNB in the cellular network. In one embodiment, the one or more cellular networks may be third generation partnership project (3GPP) long term evolution (LTE) Rel. 8, 9, 10, or 11 networks and/or Institute of Electrical and Electronics Engineers (IEEE) 802.16p, 802.16n, 802.16m-2011, 802.16h-2010, 802.16j-2009, 802.16-2009. FIG. 3 illustrates that in one embodiment of a network assisted D2D communications system, an eNB 310 comprises a transceiver 320 and a computer processor 330. FIG. 3 also illustrates that the UE 340 comprises a transceiver 350 and a computer processor 360. D2D communication systems may provide mobile device users with better quality of service (QoS), new applications, and increased mobility support. To establish D2D communications, the UEs within the D2D system can be configured to discover the D2D enabled UEs that are participating in the D2D system.
  • One method or system for discovering D2D enabled UEs within a wireless network configured for D2D communications that involves UEs that are able to broadcast a discovery beacon to the other adjacent UEs. The D2D discovery procedure and D2D discovery resource allocation for a discovery beacon can begin after the initial access to the network by a UE. Each UE can be assigned a temporary identification (Temp ID) for D2D discovery. In one embodiment, the network can assist in the D2D discovery procedure and D2D discovery resource allocation for a discovery beacon. Network assistance can reduce the complexity of the UEs and allow the network to work with the UEs to reduce interference between wireless network communication and D2D communication.
  • In one embodiment, an eNB can assign a temporary identification (Temp ID) to a UE via high layer signaling. In one embodiment, the UEs within the D2D system can be discovered using a network assisted D2D discovery procedure. In one embodiment, the D2D Temp ID can be configured to be unique over several adjacent cells to avoid ambiguity of a discovered UE definition. In one embodiment, the UEs can be synchronized within the network using an uplink (UL) synchronization channel. After assigning the Temp ID to the UE, the eNB may then allocate D2D discovery resources within a physical uplink channel, such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). In one embodiment, the allocated resources can slowly change with the number of UEs within the cell. A UE can select one of the D2D discovery resources and a certain discovery sequence based on its Temp ID. The UE can transmit the selected discovery sequence on a resource block (RB) of a UL signal as a discovery beacon. In one embodiment, other UEs that are not transmitting a discovery beacon can listen for the D2D discovery resource and attempt to decode Temp IDs. In one embodiment, the UE can communicate with the eNB, using a physical uplink shared channel (PUSCH), a list of Temp IDs that the UE has discovered. The eNB can then identify the UEs based on the assigned Temp IDs and feedback to the UE, using a PDSCH, the identification of the discovered UEs. The UE can then use the identification information to request D2D communication with the discovered UEs.
  • FIG. 4 shows a UE1 (420) that is in communication with both an eNB 410 as well as UE2-UE5 (430). In FIG. 4 the eNB 410 assigns a Temp ID for D2D discovery 440 to UE1 (420). The eNB 410 also allocates a D2D discovery resource allocation 450 for UE1 (420), providing time and frequency blocks in which the UE1 can communicate an ID for discovery. In one embodiment, the time and frequency blocks may correspond with uplink subframes that are available for communication with the eNB. The UE1 (420) then transmits a D2D discovery beacon 460 to other UEs in the D2D network, such as UE2-UE5 (430). UE1 further discovers the Temp ID of other UEs 470, such as UE2-UE5 (430), in the D2D network. UE1 (420) communicates a list of the Temp IDs 480 to the eNB 410. The eNB 410 then feeds back a list of the discovered UEs 490 to the UE1 (420). The information included in the list of the discovered UEs enables the UE to request D2D communication with the other UEs.
  • In one example, the UEs in a wireless network that are configured for D2D communication can synchronize within the wireless network using a radio frame structure, transmitted on a physical (PHY) layer in a uplink transmission between an eNB and a UE. In one embodiment a 3GPP LTE frame structure can be used for the synchronization, as illustrated in FIG. 5.
  • FIG. 5 illustrates an uplink radio frame structure. In the example, a radio frame 500 of a signal used to transmit control information or data can be configured to have a duration, Tf, of 10 milliseconds (ms). Each radio frame can be segmented or divided into ten subframes 510 i that are each 1 ms long. Each subframe can be further subdivided into two slots 520 a and 520 b, each with a duration, Tslot, of 0.5 ms. Each slot for a component carrier (CC) used by the wireless device and the node can include multiple resource blocks (RBs) 530 a, 530 b, 530 i, 530 m, and 530 n based on the CC frequency bandwidth. Each RB (physical RB or PRB) 530 i can include 12-15 kHz subcarriers 536 (on the frequency axis) and 6 or 7 SC-FDMA symbols 532 (on the time axis) per subcarrier. The RB can use seven SC-FDMA symbols if a short or normal cyclic prefix is employed. The RB can use six SC-FDMA symbols if an extended cyclic prefix is used. The resource block can be mapped to 84 resource elements (REs) 540 i using short or normal cyclic prefixing, or the resource block can be mapped to 72 REs (not shown) using extended cyclic prefixing. The RE can be a unit of one SC-FDMA symbol 542 by one subcarrier (i.e., 15 kHz) 546. Each RE can transmit two bits 550 a and 550 b of information in the case of quadrature phase-shift keying (QPSK) modulation. Other types of modulation may be used, such as 16 quadrature amplitude modulation (QAM) or 64 QAM to transmit a greater number of bits in each RE, or bi-phase shift keying (BPSK) modulation to transmit a lesser number of bits (a single bit) in each RE. The RB can be configured for an uplink transmission from the wireless device to the node.
  • An uplink signal or channel can include data on a Physical Uplink Shared Channel (PUSCH) or control information on a Physical Uplink Control Channel (PUCCH). In LTE, the physical uplink control channel (PUCCH) carrying uplink control information (UCI) can include channel state information (CSI) reports, Hybrid Automatic Retransmission request (HARQ) ACKnowledgment/Negative ACKnowledgment (ACK/NACK) and uplink scheduling requests (SR).
  • FIG. 6 depicts an example of discovery zone resource allocation, such as discovery zone 1 (610) and discovery zone 2 (620). As shown in FIG. 6, the D2D resources together with a D2D sequence can be used to determine a unique device Temp ID. With the Temp ID and eNB's cell identification (cell ID) as input parameters, each UE can identify the corresponding resources in which it will transmit the D2D discovery sequence. In one embodiment, the output parameters for each UE can include: nf, nt, and nseq. The value nf is the RB index per slot per cell, nt is the slot index in each discovery zone, and nseq is the discovery sequence index. In FIG. 6, the cell ID (650) is between 0-2, nf (660) is between 0-2 for cell ID=0, nt (640) is 0 to 3 for each discovery zone, and nseq (630) comprises discovery zone 1 and discovery zone 2.
  • In one embodiment, the UE can use a mapping rule to determine the corresponding resources to transmit the discovery sequence. In one embodiment, the mapping rule can use the following criteria in determining the corresponding resource: to address a half-duplex constraint, nt can be different in the next discovery zone for two UEs with same nt in the current discovery zone; to achieve frequency diversity, nf can be different in the next discovery zone for one UE; and to reduce inter-cell interference, the discovery zone can be reuse 3. In one embodiment, based on the cell size and the target D2D discovery range, a the reuse value can increase or decrease.
  • In one embodiment, the UEs can be configured with additional parameters such as the total number of sequences (Nseq), the total number of RBs (in the frequency dimension) per cell in a discovery slot (Nf), and/or the total number of discovery slots in a discovery zone (Ni). The additional parameters can be configured using higher layer signaling, such as via semi-static RRC signaling in a cell-specific manner, depending on the population of UEs participating in proximity services, the deployment scenario, and other system parameters. In another embodiment when the UE is equipped with multiple transmit antennas, the UE might be assigned additional Temp IDs so that the nt and nf are the same or substantially similar but nseq may vary or is different for the UEs different transmit antennas.
  • In one embodiment, the D2D discovery sequence design can be based on the network synchronization of the UE with the eNB being achieved through an UL channel, such as a control channel, a shared channel, or another desired channel. The subframe and slot boundary of the uplink radio frame structure are synchronized for D2D discovery. In one embodiment, the D2D discovery sequence design is based, in part, on non-coherent energy detection. The D2D discovery sequence design may be also be based on the following: a correlation property; resource availability or allocation; and/or a peak to average power ratio (PAPR).
  • In one embodiment when the D2D discovery sequence design is based on a correlation property, the cross correlation can be taken into account in order to achieve multiplexing capacity. In another embodiment, auto correlation may not be evaluated since a time synchronization is achieved for D2D discovery.
  • In one embodiment, when the D2D discovery sequence design is based on resource availability or allocation, one RB or one RB pair may be used as the basic element for the D2D discovery sequence design. In another embodiment, the channel selectivity can be minimized over the discovery sequence.
  • In one embodiment, when the D2D discovery sequence design is based on the PAPR, the PAPR is used to select the candidate D2D discovery sequence.
  • In one embodiment, a Hadamard matrix can be used for the D2D discovery sequence design. The D2D discovery sequence design using a Hadamard matrix may be based on the correlation property, resource availability or allocation, and/or a PAPR.
  • In one embodiment of the Hadamard matrix based D2D discovery sequence design, the Hadamard matrix is based on the discovery resource size. For example, the resource size may be one RB, which size is 12 subcarrier×7 SC-FDMA symbols, or one RB pair, which size is 12 subcarriers×14 SC-FDMA symbols. In one embodiment, the length of the Hadamard matrix is a multiple of 4. When the length of the Hadamard matrix is a multiple of 4 there is at least one candidate for D2D discovery sequence design. For each candidate for D2D discovery sequence design, the D2D discovery sequence is mapped in frequency first order and the PAPR is calculated for each SC-FDMA symbol. In one embodiment, D2D discovery sequences with very high PAPR can be eliminated. The beacon sequences can be mapped in the frequency domain directly without the use of a discrete Fourier transform (DFT) operation (similar to UL DMRS). Where an element of a Hadamard matrix is −1 and 1, there is a low calculation complexity for exhaustive searches.
  • In another embodiment, a PUCCH format 1 is used for the D2D discovery sequence design. The D2D discovery sequence design using a PUCCH format 1 may be based on the correlation property, resource availability or allocation, and/or a PAPR. In one embodiment, the PUCCH format 1 follows a UL PUCCH design. For each SC-FDMA symbol, a length-12 QPSK modulated sequence with minimum PAPR is used. In one embodiment, the length-12 QPSK modulated sequence are tabulated according to ETSI TS 136.211 V11.0.0 (2012-10) (3GPP TS 36.211, V 11.0.0, section 5.5.1). In one embodiment, the D2D discovery sequence is expanded to 7 SC-FDMA symbols using a selected or defined orthogonal cover code. In one example, length 7 DFT codes are used and the length 7 DFT codes in the sequences are complex values, and may be more sensitive to timing offset.
  • In one example of a D2D discovery procedure with D2D discovery sequence design, one RB (12×7) is used as the basic D2D discovery resource element, with one RB per cell per discovery slot. In one embodiment of the D2D discovery sequence design, a discovery slot comprises of multiple RBs in the frequency dimension per cell. In this example, for a length 84 (12×7) First Paley type Hadamard matrix, D2D discovery sequences having a PAPR greater than 7 dB are removed. In one embodiment, after removing the D2D discovery sequences having a PAPR greater than 7 dB, there are 78 D2D discovery sequences per slot, i.e. Nseq=78. In another embodiment where all the D2D discovery sequences have a PAPR less than 7 dB, i.e. there are 84 D2D discovery sequences, a subset of the available length-12 QPSK sequences may be used with a minimum distance between any two sequences in the cyclic shift domain of greater than unity. The subset of the available length-12 QPSK sequences may be used to allow for better orthogonality in scenarios with channels with higher delay spreads.
  • In this example, the eNB will allocate 78 slots, i.e. Nt=78 slots, and 1 RB per slot, i.e. Nf=1 for one D2D discovery zone. The number of slots in each discovery zone and the discovery zone periodicity may be configured based on a discovery delay, a resource overhead, and/or UE battery power consumption. Each UE can be assigned a Temp ID from 0-6082 (78×78−1) by the eNB. The UE can select a source and a sequence based on Temp ID and a certain mapping rule. In one embodiment, the mapping rule is Temp ID=the number of resource elements in a resource block×RB index+sequence ID, where the RB index (e.g. nt) is numbered 0 to 77, and the sequence identification (sequence ID) (e.g. nseq) is numbered 0 to 77. The mapping rule for resource allocation enables there to be no collisions within a cell and in adjacent cells between UEs to transmit discovery beacon, where the neighboring cells assign unique D2D Temp IDs to their UEs.
  • In one embodiment, a half-duplex problem is prevented, at the next discovery zone, by shuffling D2D resources so that the UEs that transmitted at the same slot in the previous discovery zone can transmit at different slots in the current discovery zone. For example, newSequenceID=sequenceID and newRBindex=(RBindex+sequenceID) mod 78. In this example, the UEs that transmitted at the same slot during the first discovery zone will transmit at different discovery slots at the next zone. In one embodiment, UEs that are not transmitting discovery beacons will attempt to decode the D2D discovery sequence for each slot, in order to discovery as many UEs as possible within a proximity range.
  • FIG. 7 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of a UE operable to perform D2D discovery in a D2D network. The functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The computer circuitry can be configured to receive a Temp ID from an eNB, as in block 710. The computer circuitry can be further configured to receive a D2D discovery resource allocation within a physical uplink channel from the eNB, as in block 720. The computer circuitry can also be configured to select a UE D2D discovery resource from the D2D discovery resource allocation based on the Temp ID, as in block 730. The computer circuitry can be further configured to transmit a D2D discovery beacon from the UE D2D discovery resource to enable other UEs to detect the UE, as in block 740.
  • In one embodiment, the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). In one embodiment, the computer circuitry is configured to receive a list of discovered UEs from the eNB using a PDSCH. In another embodiment, computer circuitry is configured to receive a unique Temp ID from the eNB for each antenna at the UE. In one embodiment, the computer circuitry is configured to receive a D2D discovery beacon from the other UEs and determine the Temp ID of the other UEs based on the D2D discovery beacon. In one embodiment, the computer circuitry is configured to select the UE D2D discovery resource from the D2D discovery resource allocation based on a Temp ID and a cell ID of the eNB. In another embodiment, the UE identifies an RB index, a slot index, and a discovery sequence index, based on the temp ID and the cell ID.
  • FIG. 8 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of a UE operable to communicate in a D2D network. The functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The computer circuitry can be configured to receive a Temp ID from an eNB, as in block 810. The computer circuitry can be further configured to receive a D2D discovery resource allocation within a physical uplink channel from the eNB, as in block 820. In one embodiment, the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). The computer circuitry can also be configured to select a UE D2D discovery resource from the D2D discovery resource allocation based on the Temp ID, as in block 830. The computer circuitry can be further configured to transmit a D2D discovery beacon from the UE D2D discovery resource to enable other UEs to detect the UE, as in block 840. The computer circuitry can further be configured to discover a Temp ID for the other UEs in the D2D discovery allocation, as in block 850. The computer circuitry can further be configured to communicate to the eNB, using a PUSCH, as list of Temp IDs of the other UEs that are discovered, as in block 860.
  • FIG. 9 provides a flow chart to illustrate the functionality of one embodiment of the computer circuitry of an eNB operable to communicate in a D2D network. The functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The computer circuitry can be configured to communicate a D2D Temp ID to a UE, as in block 910. The computer circuitry can be further configured to allocate a D2D discovery resource within a physical uplink channel for discovery by UEs served by the eNB, as in block 920. The computer circuitry can also be configured to receive, from the UE, a list of Temp IDs of UEs discovered by the UE, as in block 930. The computer circuitry can be further configured to communicate a list of discovered UEs, based on the list of Temp IDs, to the UE, as in block 940.
  • In one embodiment, the physical uplink channel can be a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). In one embodiment, the received list of Temp IDs of UEs is received using a PUSCH. In another embodiment, a list of discovered UEs is communicated to the UE using a PDSCH. In another embodiment, the Temp ID is unique over a plurality of cells that are adjacent to the eNB. In one embodiment, the quantity of the D2D discovery resource change based on a number of UEs within a cell served by the node.
  • FIG. 10 uses a flow chart to illustrate the functionality of one embodiment of the of the computer circuitry of a server operable to communicate with a UE that is configured to communicate in a D2D network. The functionality may be implemented as a method or the functionality may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The computer circuitry can be configured to assign a Temp ID to a UE, wherein the Temp ID is configured to enable the UE to select a UE D2D discovery resource for use in D2D discovery from a D2D discovery resource allocated by an eNB, as in block 1010. The computer circuitry can be further configured to receive a list of Temp IDs discovered by the UE within the D2D discovery resource allocated by the eNB, as in block 1020. The computer circuitry can also be configured to publish, for the list of Temp IDs discovered, a list of UE identifications associated with each Temp ID for communication to the UE to enable the UE to discover other UEs and form a D2D link, as in block 1030.
  • In one embodiment, a number of the Temp IDs available to be assigned by the server is sufficient to allow each UE served by the eNB to have a unique D2D discovery resource. In another embodiment, the Temp ID and a mapping rule enables the UE to select a UE D2D discovery resource source location within the D2D discovery resource allocated by the eNB. In another embodiment, a mapping rule comprises the number of resource elements in a RB multiplied by a RB block index added to a sequence ID. In one embodiment, the RB index is determined at the UE based on the Temp ID. In another embodiment, the RB index is determined at the UE based on the Temp ID. In one embodiment, the sequence ID is determined at the UE based on the Temp ID. In another embodiment, a new RB index is computed by modulating the sum of the RB index and the sequence ID by 78. In one embodiment, the computer circuitry is further configured to prevent half-duplexing by assigning a new Temp ID to a UE that has transmitted a D2D discovery beacon.
  • Another example provides a method for allocating a D2D discovery resource by an eNB to a UE, as shown in the flow chart in FIG. 11. The method may be executed as instructions on a machine, computer circuitry, or a processor for the node (e.g., eNB), where the instructions are included on at least one computer readable medium or one non-transitory machine readable storage medium. The method includes receiving an assignment of a temporary identification (Temp ID) at the UE from the eNB, wherein the Temp ID is unique for each UE operating in a cell served by the eNB, as in block 1110. The method includes identifying a unique transmission location in a PUCCH, based on the Temp ID, for communication of a D2D discovery beacon by the UE, as in block 1120. The method includes transmitting the D2D discovery beacon from the UE at the unique transmission location to enable other D2D devices to discover the UE, as in block 1130.
  • In one embodiment, the number of the Temp IDs available to be assigned by the server is sufficient to allow each UE served by the eNB to have a unique D2D discovery resource. In another embodiment, the Temp ID and a mapping rule enables the UE to select a UE D2D discovery resource source location within the D2D discovery resource allocated by the eNB. In another embodiment, the RB index is determined at the UE based on the Temp ID. In one embodiment, the sequence ID is determined at the UE based on the Temp ID. In another embodiment, a new RB index is computed by modulating the sum of the RB index and the sequence ID by 78. In another embodiment, the computer circuitry is configured to prevent half-duplexing by assigning a new Temp ID to a UE that has transmitted a D2D discovery beacon.
  • FIG. 12 uses a graph to show the number of UEs versus the threshold used for energy detection. In FIG. 12, ND is the number of UE discovered (one shot discovery) and y is the threshold used for energy detection. In a 1 Tx transmit antenna and 2 Rx receive antenna case with energy detection, 0 dB threshold can be used which corresponding to 99% of detection probability and 0.1% false alarm probability.
  • FIG. 13 uses a graph to show the number of UEs versus a distance m. In FIG. 13, y is equal to 0 dB, where a 0 dB threshold can be used which corresponding to 99% of detection probability and 0.1% false alarm probability.
  • FIG. 14 uses a graph to show the average percentage of UEs discovered at the distance less than R.
  • FIG. 15 provides an example illustration of the wireless device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a mobile communication device, a tablet, a handset, or other type of wireless device. The wireless device can include one or more antennas configured to communicate with a node or transmission station, such as a base station (BS), an evolved Node B (eNB), a baseband unit (BBU), a remote radio head (RRH), a remote radio equipment (RRE), a relay station (RS), a radio equipment (RE), a remote radio unit (RRU), a central processing module (CPM), or other type of wireless wide area network (WWAN) access point. The wireless device can be configured to communicate using at least one wireless communication standard including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and Wi-Fi. The wireless device can communicate using separate antennas for each wireless communication standard or shared antennas for multiple wireless communication standards. The wireless device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.
  • FIG. 15 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output from the wireless device. The display screen may be a liquid crystal display (LCD) screen, or other type of display screen such as an organic light emitting diode (OLED) display. The display screen can be configured as a touch screen. The touch screen may use capacitive, resistive, or another type of touch screen technology. An application processor and a graphics processor can be coupled to internal memory to provide processing and display capabilities. A non-volatile memory port can also be used to provide data input/output options to a user. The non-volatile memory port may also be used to expand the memory capabilities of the wireless device. A keyboard may be integrated with the wireless device or wirelessly connected to the wireless device to provide additional user input. A virtual keyboard may also be provided using the touch screen.
  • Various techniques, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, non-transitory computer readable storage medium, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the various techniques. In the case of program code execution on programmable computers, the computing device may include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. The volatile and non-volatile memory and/or storage elements may be a RAM, EPROM, flash drive, optical drive, magnetic hard drive, or other medium for storing electronic data. The base station and mobile station may also include a transceiver module, a counter module, a processing module, and/or a clock module or timer module. One or more programs that may implement or utilize the various techniques described herein may use an application programming interface (API), reusable controls, and the like. Such programs may be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) may be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language, and combined with hardware implementations.
  • It should be understood that many of the functional units described in this specification have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions, which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • Indeed, a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network. The modules may be passive or active, including agents operable to perform desired functions.
  • Reference throughout this specification to “an example” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in an example” in various places throughout this specification are not necessarily all referring to the same embodiment.
  • As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. In addition, various embodiments and example of the present invention may be referred to herein along with alternatives for the various components thereof. It is understood that such embodiments, examples, and alternatives are not to be construed as defacto equivalents of one another, but are to be considered as separate and autonomous representations of the present invention.
  • Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of layouts, distances, network examples, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, layouts, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
  • While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims (30)

What is claimed is:
1. A user equipment (UE) operable to communicate in a device to device (D2D) network, having computer circuitry configured to:
receive a temporary identification (Temp ID) from an enhanced node B (eNB);
receive a D2D discovery resource allocation within a physical uplink channel from the eNB;
select a UE D2D discovery resource from the D2D discovery resource allocation based on the Temp ID; and
transmit a D2D discovery beacon from the UE D2D discovery resource to enable other UEs to detect the UE.
2. The computer circuitry of claim 1, wherein the physical uplink channel is a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
3. The computer circuitry of claim 1, further configured to:
discover a Temp ID for the other UEs in the D2D discovery resource allocation; and
communicate to the eNB, using a physical uplink shared channel (PUSCH), a list of Temp IDs of the other UEs that are discovered.
4. The computer circuitry of claim 1, further configured to receive a list of discovered UEs from the eNB using a physical uplink shared channel (PUSCH).
5. The computer circuitry of claim 1, further configured to receive a unique Temp ID from the eNB for each antenna at the UE.
6. The computer circuitry of claim 1, further configured to:
receive a D2D discovery beacon from the other UEs; and
determine the Temp ID of the other UEs based on the D2D discovery beacon.
7. The computer circuitry of claim 1, further configured to select the UE D2D discovery resource from the D2D discovery resource allocation based on:
the Temp ID; and
a cell identification (cell ID) of the eNB.
8. The computer circuitry of claim 7, wherein the UE identifies a resource block index, a slot index, and a discovery sequence index, based on the temp ID and the cell ID.
9. An enhanced node B (eNB) operable to communicate in a device to device (D2D) network, having computer circuitry configured to:
communicate a D2D temporary identification (Temp ID) to a user equipment (UE);
allocate a D2D discovery resource within a physical uplink channel for D2D discovery by UEs served by the eNB;
receive, from the UE, a list of Temp IDs of UEs discovered by the UE; and
communicate a list of discovered UEs, based on the list of Temp IDs, to the UE.
10. The computer circuitry of claim 9, wherein the physical uplink channel is a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
11. The computer circuitry of claim 9, wherein the received list of Temp IDs of UEs is received using a physical uplink shared channel (PUSCH).
12. The computer circuitry of claim 9, wherein the communicated list of discovered UEs is communicated to the UE using a physical uplink shared channel (PUSCH).
13. The computer circuitry of claim 9, wherein the communicated Temp ID is unique over a plurality of cells that are adjacent to the eNB.
14. The computer circuitry of claim 9, wherein a quantity of the D2D discovery resource changes based on a number of UEs within a cell served by the node.
15. A server operable to communicate with a user equipment (UE) that is operable to communicate in a device to device (D2D) network, the server having computer circuitry configured to:
assign a temporary ID (Temp ID) to a user equipment (UE), wherein the Temp ID is configured to enable the UE to select a UE D2D discovery resource for use in D2D discovery from a D2D discovery resource allocated by an eNB;
receive a list of Temp IDs discovered by the UE within the D2D discovery resource allocated by the eNB; and
publish, for the list of Temp IDs discovered, a list of UE identifications associated with each Temp ID for communication to the UE to enable the UE to discover other UEs and form a D2D link.
16. The computer circuitry of claim 15, wherein a number of the Temp IDs available to be assigned by the server is sufficient to allow each UE served by the eNB to have a unique D2D discovery resource.
17. The computer circuitry of claim 15, wherein the Temp ID and a mapping rule enables the UE to select a UE D2D discovery resource source location within the D2D discovery resource allocated by the eNB.
18. The computer circuitry of claim 17, wherein the mapping rule comprises the number of resource elements in a resource block multiplied by a resource block index (RB index) added to a sequence identification (sequence ID).
19. The computer circuitry of claim 18, wherein the RB index is determined at the UE based on the Temp ID.
20. The computer circuitry of claim 18, wherein the sequence ID is determined at the UE based on the Temp ID.
21. The computer circuitry of claim 19, wherein a new RB index is computed by modulating the sum of the RB index and the sequence ID by 78.
22. The computer circuitry of claim 15, further configured to prevent half-duplexing by assigning a new Temp ID to a UE that has transmitted a D2D discovery beacon.
23. A method for allocating a device to device (D2D) discovery resource by an enhanced node B (eNB) to a user equipment (UE), comprising:
receiving an assignment of a temporary identification (temp ID) at the UE from the eNB, wherein the temp ID is unique for each UE operating in a cell served by the eNB;
identifying a unique transmission location in a physical uplink control channel (PUCCH), based on the Temp ID, for communication of a D2D discovery beacon by the UE; and
transmitting the D2D discovery beacon from the UE at the unique transmission location to enable other D2D devices to discover the UE.
24. The method of claim 23, wherein identifying the unique transmission location further comprises receiving an allocation of a selected number of slots in the PUCCH for a discovery zone, wherein each slot comprises a selected number of resource blocks.
25. The method of claim 24, wherein each of the resource blocks further comprise a selected number of subcarriers and a selected number of orthogonal frequency-division multiplexing (OFDM) symbols.
26. The method of claim 25, wherein a subcarriers length for each of the resource blocks is a length-12 quadrature phase shift keying (QPSK) modulated sequence with a selected peak-to-average power ratio (PAPR).
27. The method of claim 26, wherein the OFDM symbols length for each of the resource blocks is 7 OFDM symbols using an orthogonal cover code.
28. The method of claim 23, further comprising identifying a unique transmission location using a Hadamard matrix.
29. The method of claim 23, wherein the discovery beacon is transmitted based on a D2D discovery sequence design.
30. The method of claim 23, wherein the D2D discovery sequence design is based on:
a correlation property;
a resource available; and
a peak-to-average power ratio (PAPR).
US14/767,671 2013-02-22 2013-12-20 Network assisted device to device discovery Active 2034-02-12 US10045192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/767,671 US10045192B2 (en) 2013-02-22 2013-12-20 Network assisted device to device discovery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361768330P 2013-02-22 2013-02-22
PCT/US2013/077129 WO2014130154A1 (en) 2013-02-22 2013-12-20 Network assisted device to device discovery
US14/767,671 US10045192B2 (en) 2013-02-22 2013-12-20 Network assisted device to device discovery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/077129 A-371-Of-International WO2014130154A1 (en) 2013-02-22 2013-12-20 Network assisted device to device discovery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,882 Continuation US10278057B2 (en) 2013-02-22 2017-10-02 Network assisted device to device discovery

Publications (2)

Publication Number Publication Date
US20160014589A1 true US20160014589A1 (en) 2016-01-14
US10045192B2 US10045192B2 (en) 2018-08-07

Family

ID=51391685

Family Applications (14)

Application Number Title Priority Date Filing Date
US14/128,184 Active US9967727B2 (en) 2013-02-22 2013-09-26 Systems and methods for access network selection and traffic routing
US14/126,723 Expired - Fee Related US9042279B2 (en) 2013-02-22 2013-09-27 User equipment with reduced power consumption operational modes
US14/125,600 Active US9560512B2 (en) 2013-02-22 2013-09-27 Reporting of user plane congestion (UPCON) using a UPCON container
US14/126,900 Active 2034-01-12 US9380444B2 (en) 2013-02-22 2013-09-27 Systems and methods for WLAN network selection
US14/762,762 Active US9736672B2 (en) 2013-02-22 2013-12-13 Targeted group-based discovery for wireless communication devices
US14/762,764 Active 2034-03-07 US9756497B2 (en) 2013-02-22 2013-12-13 Path switching procedure for device-to-device communication
US14/797,941 Abandoned US20160021526A1 (en) 2013-02-22 2013-12-20 Device to device communication with cluster coordinating
US14/767,671 Active 2034-02-12 US10045192B2 (en) 2013-02-22 2013-12-20 Network assisted device to device discovery
US14/763,209 Active 2034-03-24 US9973916B2 (en) 2013-02-22 2013-12-26 UE-based D2D discovery
US14/763,204 Active 2034-04-16 US9973915B2 (en) 2013-02-22 2013-12-26 Handover with ping pong avoidance in a wireless network
US15/194,288 Abandoned US20160309405A1 (en) 2013-02-22 2016-06-27 Systems and methods for wlan network selection
US15/722,882 Active US10278057B2 (en) 2013-02-22 2017-10-02 Network assisted device to device discovery
US15/941,467 Active US10582366B2 (en) 2013-02-22 2018-03-30 Systems and methods for access network selection and traffic routing
US15/947,323 Active US10542411B2 (en) 2013-02-22 2018-04-06 UE-based D2D discovery

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US14/128,184 Active US9967727B2 (en) 2013-02-22 2013-09-26 Systems and methods for access network selection and traffic routing
US14/126,723 Expired - Fee Related US9042279B2 (en) 2013-02-22 2013-09-27 User equipment with reduced power consumption operational modes
US14/125,600 Active US9560512B2 (en) 2013-02-22 2013-09-27 Reporting of user plane congestion (UPCON) using a UPCON container
US14/126,900 Active 2034-01-12 US9380444B2 (en) 2013-02-22 2013-09-27 Systems and methods for WLAN network selection
US14/762,762 Active US9736672B2 (en) 2013-02-22 2013-12-13 Targeted group-based discovery for wireless communication devices
US14/762,764 Active 2034-03-07 US9756497B2 (en) 2013-02-22 2013-12-13 Path switching procedure for device-to-device communication
US14/797,941 Abandoned US20160021526A1 (en) 2013-02-22 2013-12-20 Device to device communication with cluster coordinating

Family Applications After (6)

Application Number Title Priority Date Filing Date
US14/763,209 Active 2034-03-24 US9973916B2 (en) 2013-02-22 2013-12-26 UE-based D2D discovery
US14/763,204 Active 2034-04-16 US9973915B2 (en) 2013-02-22 2013-12-26 Handover with ping pong avoidance in a wireless network
US15/194,288 Abandoned US20160309405A1 (en) 2013-02-22 2016-06-27 Systems and methods for wlan network selection
US15/722,882 Active US10278057B2 (en) 2013-02-22 2017-10-02 Network assisted device to device discovery
US15/941,467 Active US10582366B2 (en) 2013-02-22 2018-03-30 Systems and methods for access network selection and traffic routing
US15/947,323 Active US10542411B2 (en) 2013-02-22 2018-04-06 UE-based D2D discovery

Country Status (10)

Country Link
US (14) US9967727B2 (en)
EP (12) EP2959726B1 (en)
JP (4) JP2016507203A (en)
KR (8) KR101833187B1 (en)
CN (11) CN110380980A (en)
BR (1) BR112015017404B1 (en)
ES (4) ES2676399T3 (en)
HU (4) HUE039322T2 (en)
TW (3) TWI535311B (en)
WO (10) WO2014130091A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111586A1 (en) * 2013-04-12 2015-04-23 Telefonaktiebolaget L M Ericsson (Publ) Method and wireless device for providing device-to-device communication
US20150223141A1 (en) * 2014-01-31 2015-08-06 Debdeep CHATTERJEE User equipment and method for transmit power control for d2d tranmissions
US20150249979A1 (en) * 2014-02-28 2015-09-03 Blackberry Limited Methods and devices for performing proximity discovery
US20160029359A1 (en) * 2014-07-22 2016-01-28 Samsung Electronics Co., Ltd. Method and apparatus for managing resources for d2d communication
US20160057693A1 (en) * 2013-05-02 2016-02-25 Ntt Docomo, Inc. User apparatus, base station, discovery resource selection method, and control signal transmission method
US20160073392A1 (en) * 2013-04-19 2016-03-10 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US20160113021A1 (en) * 2013-05-10 2016-04-21 Yifei Yuan Method and system for interference management for device-to-device communications
US20160150390A1 (en) * 2013-04-01 2016-05-26 Zte Corporation Methods for Receiving Device Discovery Information and Sending Device Discovery Information and User Equipment
US20160212596A1 (en) * 2013-09-06 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Cluster-based resource allocation for vehicle-to-vehicle communication
US20160294595A1 (en) * 2013-10-31 2016-10-06 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
US20160302251A1 (en) * 2013-08-08 2016-10-13 Intel IP Corporation Signaling for proximity services and d2d discovery in an lte network
US20160309377A1 (en) * 2013-10-03 2016-10-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system
US20160381666A1 (en) * 2014-03-20 2016-12-29 Seoul National University R&Db Foundation Method for transmitting and receiving signal in wireless communication system and device therefor
US20170019937A1 (en) * 2014-01-21 2017-01-19 Lg Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
WO2017146783A1 (en) * 2016-02-26 2017-08-31 Intel Corporation Discovery and paging in new radio-things sidelink
US9788186B2 (en) 2013-08-08 2017-10-10 Intel IP Corporation Signaling for proximity services and D2D discovery in an LTE network
US20180077633A1 (en) * 2015-04-08 2018-03-15 Lg Electronics Inc. Method and device for transmitting and receiving plurality of d2d signals in wireless communication system
US20180124682A1 (en) * 2015-05-08 2018-05-03 Lg Electronics Inc. Method and device for transmitting and receiving discovery signal of device-to-device communication terminal in wireless communication system
US20180132256A1 (en) * 2013-12-20 2018-05-10 Kyocera Corporation Coverage transition indicator for device-to-device communication
US20180242346A1 (en) * 2014-09-26 2018-08-23 Telefonaktiebolaget L M Ericsson (Publ) Method and Device of Resource Allocations for Scheduling Assignments in Device to Device Communications
US10104714B2 (en) 2013-08-09 2018-10-16 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for timing misalignment signalling
US20190090228A1 (en) * 2016-03-09 2019-03-21 Sony Corporation User equipment and base station in wireless communications system, and wireless communications method
US10383089B2 (en) * 2015-04-03 2019-08-13 Lg Electronics Inc. Method for transmitting device to device communication signal through unlicensed band in wireless communication system and apparatus therefor
US10425931B2 (en) * 2016-02-17 2019-09-24 Fujitsu Limited Base station, wireless communication system, and base station processing method
US10575283B2 (en) 2016-04-29 2020-02-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd Method and device for inter-device communication
US20220287113A1 (en) * 2021-03-04 2022-09-08 Qualcomm Incorporated Techniques for sidelink assisted device association
US11445497B2 (en) * 2018-04-28 2022-09-13 Huawei Technologies Co., Ltd. Transmission parameter configuration method and apparatus
US11778435B2 (en) 2021-03-04 2023-10-03 Qualcomm Incorporated Sidelink assisted cellular operation optimization
US11825440B2 (en) 2021-03-04 2023-11-21 Qualcomm Incorporated Vehicular and cellular wireless device colocation using uplink communications

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447717B2 (en) * 2010-02-18 2013-05-21 Alcatel Lucent Policy and charging rules node expired message handling
CN103843452B (en) * 2012-08-17 2017-09-29 华为技术有限公司 Carrying establishing method, base station, packet data gateway and computer system
US9544841B2 (en) 2012-12-06 2017-01-10 At&T Intellectual Property I, L.P. Hybrid network-based and device-based intelligent radio access control
US10129822B2 (en) 2012-12-06 2018-11-13 At&T Intellectual Property I, L.P. Device-based idle mode load balancing
US9998983B2 (en) 2012-12-06 2018-06-12 At&T Intellectual Property I, L.P. Network-assisted device-based intelligent radio access control
KR102066130B1 (en) * 2013-01-18 2020-02-11 삼성전자주식회사 Method and apparatus for controlling traffic in wireless communication system
US10028215B2 (en) * 2013-01-18 2018-07-17 Lg Electronics Inc. Method and terminal for selecting AP
CN110380980A (en) 2013-02-22 2019-10-25 英特尔Ip公司 System and method for accessing network selection and flow routing
US9867122B2 (en) * 2013-02-25 2018-01-09 Lg Electronics Inc. Method and terminal for determining access on basis of policy
CN104023091B (en) * 2013-02-28 2018-10-30 华为终端有限公司 A kind of multilink fusion method and equipment
KR102099650B1 (en) * 2013-03-11 2020-05-15 삼성전자 주식회사 Method and apparatus for controlling congestion status in mobile communication network
US9706481B2 (en) 2013-03-15 2017-07-11 Futurewei Technologies, Inc. System and method for time-power frequency hopping for D2D discovery
EP2979497B1 (en) * 2013-03-29 2018-09-05 Intel Corporation Techniques for wireless network discovery and selection support
CN105122674B (en) * 2013-04-02 2019-07-09 Lg电子株式会社 The method and apparatus for equipment to the discovery signal of equipment direct communication is sent in a wireless communication system
US9160515B2 (en) 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
CN105144768B (en) * 2013-04-26 2019-05-21 英特尔Ip公司 Shared frequency spectrum in frequency spectrum share situation is redistributed
US9930689B2 (en) 2013-05-08 2018-03-27 Blackberry Limited Proximity signaling and procedure for LTE
WO2014181588A1 (en) * 2013-05-10 2014-11-13 京セラ株式会社 Communication control method
KR20140136365A (en) 2013-05-20 2014-11-28 삼성전자주식회사 Method and apparatus for selecting wlan efficiently
US10368297B2 (en) * 2013-05-20 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods, systems and computer program products for network-controlled selection of radio access networks
KR101805567B1 (en) * 2013-06-28 2017-12-07 노키아 솔루션스 앤드 네트웍스 오와이 Method and apparatus for offloading traffic from cellular to wlan using assistance information
WO2014207253A1 (en) * 2013-06-28 2014-12-31 Nokia Solutions And Networks Oy Controlled load balancing between access networks with various policies from different sources
JP6515804B2 (en) * 2013-07-09 2019-05-22 日本電気株式会社 Communication terminal
JP6501776B2 (en) * 2013-08-07 2019-04-17 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting and receiving resource allocation information in a wireless communication system
CN105474689B (en) * 2013-08-08 2019-03-01 Lg电子株式会社 It is oriented to the method and apparatus of business in a wireless communication system
US10172115B2 (en) * 2013-08-09 2019-01-01 Lg Electronics Inc. Method and apparatus for conducting device-to-device communication in wireless communication system
US9641551B1 (en) * 2013-08-13 2017-05-02 vIPtela Inc. System and method for traversing a NAT device with IPSEC AH authentication
WO2015050342A1 (en) * 2013-10-04 2015-04-09 엘지전자 주식회사 Method and device for selecting access network in wireless communication system
US9226197B2 (en) 2013-10-21 2015-12-29 At&T Intellectual Property I, L.P. Network based speed dependent load balancing
JP6183148B2 (en) * 2013-10-24 2017-08-23 富士通株式会社 COMMUNICATION TERMINAL DEVICE, COMMUNICATION CONTROL SYSTEM, AND COMMUNICATION CONTROL METHOD
US9241305B2 (en) * 2013-10-28 2016-01-19 At&T Intellectual Property I, L.P. Access network discovery and selection function enhancement with cell-type management object
KR102115418B1 (en) * 2013-10-31 2020-06-05 삼성전자주식회사 Apparatus and method for processing signals for device to device communication in wireless communication system
CN104640056B (en) * 2013-11-07 2021-08-17 中兴通讯股份有限公司 Method and device for controlling node selection and resource distribution
KR102143441B1 (en) * 2013-11-15 2020-08-11 삼성전자주식회사 Electronic device and method for updating authentication information in electronic device
US10791476B2 (en) 2013-12-12 2020-09-29 Lg Electronics Inc. Method and device for performing measurement in wireless communication system
US9445326B2 (en) * 2013-12-17 2016-09-13 Mbit Wireless, Inc. Method and apparatus for improved user experience in wireless communication terminals
WO2015094061A1 (en) * 2013-12-20 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Access network related information provisioning system, control apparatus, method of controlling the same, communications terminal, method of controlling the same, program, and storage medium
US10334517B2 (en) * 2013-12-23 2019-06-25 Sony Corporation Communications system, infrastructure equipment, communication terminal and method
KR20150082781A (en) * 2014-01-08 2015-07-16 한국전자통신연구원 Method and user terminal for controlling routing dynamically
CN104780525B (en) * 2014-01-15 2020-11-03 索尼公司 Method, equipment, group head and system for adjusting terminal-to-terminal communication transmission power
US9392534B2 (en) * 2014-01-23 2016-07-12 Alcatel Lucent Prioritization of access points by an ANDSF server
US10652725B2 (en) * 2014-01-24 2020-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Obtaining and using D2D related information to perform mobility operation(s)
CN105940750B (en) * 2014-01-27 2019-12-10 瑞典爱立信有限公司 Method and apparatus for D2D based access
ES2729845T3 (en) * 2014-01-30 2019-11-06 Ericsson Telefon Ab L M Switching of autonomous connection in a wireless communications network
CN106063310B (en) * 2014-01-30 2020-10-02 诺基亚技术有限公司 Device-to-device discovery resource allocation
WO2015117271A1 (en) * 2014-02-08 2015-08-13 华为技术有限公司 Identification interaction method and device
SG11201606699XA (en) * 2014-02-13 2016-09-29 Lg Electronics Inc Method for transmitting/receiving synchronization signal for d2d communication in wireless communication system, and apparatus therefor
WO2015120902A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Pcrf assisted apn selection
US9609502B2 (en) 2014-02-24 2017-03-28 Intel IP Corporation Adaptive silencing mechanism for device-to-device (D2D) discovery
TWI571157B (en) * 2014-03-14 2017-02-11 財團法人資訊工業策進會 Device-to-device user equipment for a wireless communication system and resource scheduling method thereof
US10652936B2 (en) * 2014-03-21 2020-05-12 Nokia Technologies Oy Short identifiers for device-to-device (D2D) broadcast communications
WO2015170690A1 (en) * 2014-05-09 2015-11-12 シャープ株式会社 Communication control method, user equipment, server device, and communication system
US9485685B2 (en) * 2014-06-13 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Congestion monitoring of mobile entities
CN105207858B (en) * 2014-06-16 2017-04-12 华为技术有限公司 Access device and method for connecting user equipment to network executed by access device
US9521612B2 (en) * 2014-07-23 2016-12-13 Qualcomm Incorporated Notifying availability of internet protocol multimedia subsystem services
CN106489285B (en) * 2014-08-05 2019-11-19 华为技术有限公司 D2D terminal, system and D2D have found method
EP3187020B1 (en) * 2014-09-16 2018-11-21 Huawei Technologies Co., Ltd. User device and method thereof
WO2016048073A1 (en) 2014-09-24 2016-03-31 엘지전자 주식회사 Method for transmitting d2d signal and terminal therefor
US10306550B2 (en) 2014-09-25 2019-05-28 Intel IP Corporation Apparatus, system and method of wireless local area network (WLAN) setting of a user equipment (UE)
US10027573B2 (en) * 2014-10-10 2018-07-17 At&T Intellectual Property I, L.P. Centralized radio access network virtualization mechanism
WO2016060482A1 (en) * 2014-10-14 2016-04-21 엘지전자 주식회사 Resource pool selecting method performed by terminal in wireless communication system and terminal using the method
KR20160046244A (en) * 2014-10-20 2016-04-28 한국전자통신연구원 Method and apparatus for managing device information for device-to-device communication
US20160119739A1 (en) * 2014-10-24 2016-04-28 Qualcomm Incorporated Data delivery employing preemptive mutual exchange of the data
US20160128082A1 (en) * 2014-10-31 2016-05-05 Asustek Computer Inc. Method and apparatus for handling multiple d2d (device to device) grants in a sa (scheduling assignment) period in a wireless communication system
US10285110B2 (en) * 2014-11-04 2019-05-07 At&T Intellectual Property I, L.P. Intelligent traffic routing
EP3217700A4 (en) * 2014-11-06 2018-07-11 Ntt Docomo, Inc. User terminal, wireless base station, and wireless communication method
US9838957B2 (en) 2014-11-06 2017-12-05 Intel Corporation Apparatus, system and method of selecting a mobility mode of a user equipment (UE)
US9635686B2 (en) * 2014-11-11 2017-04-25 Cisco Technology, Inc. System and method for providing internet protocol flow mobility in a network environment
US9674764B2 (en) * 2014-11-11 2017-06-06 Cisco Technology, Inc. System and method for providing Internet protocol flow mobility in a network environment
CN107113879B (en) * 2014-11-13 2020-09-18 瑞典爱立信有限公司 System and method for discontinuous operation of wireless devices
US10447590B2 (en) * 2014-11-20 2019-10-15 Oath Inc. Systems and methods for dynamic connection paths for devices connected to computer networks
US10524163B2 (en) 2014-11-21 2019-12-31 Nec Corporation Base station, communication terminal, communication method, communication system, and storage medium
KR102251353B1 (en) 2014-11-25 2021-05-12 삼성전자주식회사 Method for organizing proximity network and an electronic device thereof
EP3228151A4 (en) * 2014-12-04 2018-07-25 Telefonaktiebolaget LM Ericsson (publ) A wireless local area network (wlan) node, a wireless device, and methods therein
US20170325159A1 (en) * 2014-12-11 2017-11-09 Nokia Technologies Oy Extension of access network discovery and selection function (andsf) to support ad-hoc network selection
WO2016095974A1 (en) * 2014-12-16 2016-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for access network selection
US9699817B2 (en) * 2014-12-16 2017-07-04 Qualcomm Incorporated Methods to preemptively search and select LTE-direct expressions for uninterrupted device-to-device communication
US9998982B2 (en) * 2014-12-22 2018-06-12 Qualcomm Incorporated Enhanced access network query protocol (ANQP) signaling for radio access network (RAN) sharing
US10264515B2 (en) 2014-12-22 2019-04-16 Qualcomm Incorporated Enhanced access network query protocol (ANQP) signaling to scale to support large numbers of service providers at an access point (AP)
US9819560B2 (en) 2014-12-24 2017-11-14 Mediatek Inc. Dynamic data distribution method in private network and associated electronic device
US9807806B2 (en) * 2014-12-24 2017-10-31 Mediatek Inc. Method for accessing a network in electronic system and associated portable device
US20180014247A1 (en) * 2015-01-20 2018-01-11 Nokia Solutions And Networks Oy Method and apparatus for implementing inter-radio-access-technologies for services
US9787726B2 (en) 2015-01-30 2017-10-10 Blackberry Limited Control of accesses for IMS services
KR102314442B1 (en) * 2015-02-06 2021-10-19 삼성전자주식회사 System and method of user equipment discovery in device-to-device networks
EP3588889B1 (en) * 2015-02-11 2021-03-10 Commscope Technologies LLC Channel identification in a mimo telecommunications system
US10136466B2 (en) * 2015-02-11 2018-11-20 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods
US10244444B2 (en) 2015-03-04 2019-03-26 Qualcomm Incorporated Dual link handover
US9661529B2 (en) * 2015-03-05 2017-05-23 Cisco Technology, Inc. Congestion mitigation for roamers
CN104768122B (en) * 2015-03-16 2018-08-24 深圳酷派技术有限公司 Data sharing method, device based on the direct-connected communication of terminal and terminal
CN106034013B (en) * 2015-03-17 2019-07-12 中兴通讯股份有限公司 A kind of method and apparatus for device-to-device communication
US10298363B2 (en) * 2015-03-31 2019-05-21 Lg Electronics Inc. Buffer management method for D2D communication, and wireless device
US10271247B2 (en) 2015-04-08 2019-04-23 Lg Electronics Inc. Discovery announcement method performed by terminal in wireless communication system, and terminal using same
WO2016163472A1 (en) * 2015-04-10 2016-10-13 京セラ株式会社 Wireless terminal and base station
CN112004261B (en) * 2015-04-11 2022-08-02 荣耀终端有限公司 Resource allocation method, equipment and system
WO2016169015A1 (en) * 2015-04-23 2016-10-27 华为技术有限公司 Method and apparatus for switching network communication and direct communication
US10708849B2 (en) * 2015-05-15 2020-07-07 Qualcomm Incorporated Public land mobile network (PLMN) list for evolved packet data gateway (ePDG) selection
JP6585188B2 (en) * 2015-05-18 2019-10-02 インテル アイピー コーポレイション Device, system and method for ePDG selection where HPLMN is preferred in roaming scenarios
US9949063B2 (en) * 2015-06-01 2018-04-17 Apple Inc. Bluetooth low energy triggering NAN for further discovery and connection
CN106304270A (en) * 2015-06-10 2017-01-04 中兴通讯股份有限公司 Network selecting method in a kind of multi-radio access technology and system
CN106332221A (en) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 Information sending method and terminal
CN106375987B (en) * 2015-07-22 2021-08-20 中兴通讯股份有限公司 Network slice selection method and system
US9930704B2 (en) * 2015-07-24 2018-03-27 Aruba Networks, Inc. Heterogeneous deployment of access point clusters
ES2926165T3 (en) * 2015-07-27 2022-10-24 Huawei Tech Co Ltd Information Transmission Methods and Devices
DE102015113885A1 (en) * 2015-08-21 2017-02-23 Kriwan Industrie-Elektronik Gmbh Plant with at least one plant component for monitoring and / or setting the plant
CN113727310B (en) * 2015-09-14 2023-10-24 Lg 电子株式会社 Method and apparatus for transceiving message from V2X terminal in wireless communication system
BE1023514B1 (en) * 2015-10-05 2017-04-12 Henri Crohas Method and device for wireless communication
US10057739B2 (en) * 2015-10-21 2018-08-21 International Business Machines Corporation Distributed and localized policy and charging control in cellular networks to enable route flexibility
US9877227B2 (en) 2015-10-21 2018-01-23 T-Mobile Usa, Inc. Coordinated RAN and transport network utilization
JP6574908B2 (en) * 2015-11-05 2019-09-11 華為技術有限公司Huawei Technologies Co.,Ltd. Group communication method, apparatus and system
US10462101B2 (en) * 2015-11-13 2019-10-29 Nanning Fugui Precision Industrial Co., Ltd. Network communication method based on software-defined networking and server using the method
US9961014B2 (en) * 2015-11-13 2018-05-01 Nanning Fugui Precision Industrial Co., Ltd. Network communication method based on software-defined networking and server using the method
JP2017111627A (en) * 2015-12-16 2017-06-22 富士通株式会社 Communication apparatus, information acquisition method, information acquisition program, and information acquisition system
US10069689B1 (en) * 2015-12-18 2018-09-04 Amazon Technologies, Inc. Cache based on dynamic device clustering
WO2017108127A1 (en) * 2015-12-23 2017-06-29 Telecom Italia S.P.A. Method and system for limiting collisions in cellular networks
JP6667662B2 (en) * 2015-12-28 2020-03-18 華為技術有限公司Huawei Technologies Co.,Ltd. Route processing method and apparatus, and terminal
KR101886487B1 (en) * 2016-01-11 2018-08-07 인하대학교 산학협력단 Method and Apparatus for Public safety users priority based time and energy efficient D2D discovery in 3GPP LTE-A system
US10700752B2 (en) 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
CN106993283A (en) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 Method for discovering equipment, device and system
US10021589B2 (en) 2016-01-26 2018-07-10 Sprint Communications Company L.P. Wireless data system that associates internet protocol ports with quality-of-service for user applications
US10404332B2 (en) * 2016-01-28 2019-09-03 Qualcomm Incorporated Downlink common burst channelization
EP3414855A1 (en) 2016-02-09 2018-12-19 Telefonaktiebolaget LM Ericsson (publ) Robustness enhancements of efficient harq feedback
US10694453B2 (en) * 2016-02-26 2020-06-23 Apple Inc. Discovery and network access procedures for 5G things communication system
JP6669041B2 (en) * 2016-05-12 2020-03-18 ソニー株式会社 Communication device, communication method, and computer program
US11197331B2 (en) * 2016-06-10 2021-12-07 Apple Inc. Zero-round-trip-time connectivity over the wider area network
US10277514B2 (en) * 2016-07-21 2019-04-30 Viasat, Inc. Methods and systems for dynamic policy based traffic steering over multiple access networks
CN109479289B (en) * 2016-07-28 2022-12-23 Lg 电子株式会社 Signal transmission/reception method associated with fleet communication in wireless communication system
US20180063784A1 (en) * 2016-08-26 2018-03-01 Qualcomm Incorporated Devices and methods for an efficient wakeup protocol
US10536195B2 (en) 2016-08-26 2020-01-14 Qualcomm Incorporated Overlapping cluster architecture for coordinated multipoint (CoMP)
CN110121898B (en) * 2016-09-13 2021-08-27 欧庞戈网络有限公司 Method and system for switching equipment terminal generating elephant flow and transmission manager
US9883373B1 (en) 2016-09-15 2018-01-30 At&T Intellectual Property I, L.P. Facilitation of mobile technology microcellular service
CN109155986B (en) * 2016-09-28 2020-07-24 华为技术有限公司 Communication method and terminal
WO2018077398A1 (en) 2016-10-26 2018-05-03 Huawei Technologies Co., Ltd. Devices and methods arranged to support user communication device grouping in a communication network
EP3343985A1 (en) * 2016-12-30 2018-07-04 Kamstrup A/S Utility network with link management
GB2561806B (en) 2017-01-05 2021-10-06 Tcl Communication Ltd Methods and devices for accessing a radio access network
DK3574598T3 (en) * 2017-01-25 2020-11-30 Ericsson Telefon Ab L M Determination of HARQ feedback mode for downlink transmission
WO2018154135A1 (en) 2017-02-27 2018-08-30 Ipcom Gmbh & Co. Kg Feedback with configurable latency
CN107105425B (en) * 2017-04-24 2020-12-22 深圳市沃特沃德股份有限公司 Network access method and network access device
CA3061464C (en) 2017-04-27 2023-08-29 Lg Electronics Inc. Method for performing amf registration-related procedure by udm in wireless communication system, and device therefor
CN110945936B (en) * 2017-05-04 2023-08-25 皇家飞利浦有限公司 UE group, UE group manager UE and UE group member UE
EP3613226B1 (en) * 2017-05-15 2022-09-28 Samsung Electronics Co., Ltd. Method and system for notifying state of members of mission critical service (mcx) groups
CN108966181B (en) * 2017-05-26 2021-07-23 株式会社Kt Method for configuring frequency resources for component carriers for new radio and apparatus therefor
CN109286507B (en) * 2017-07-21 2022-11-11 伊姆西Ip控股有限责任公司 Discovery method, computing system and computer readable medium
CN109392078B (en) * 2017-08-11 2021-11-02 中兴通讯股份有限公司 Signal detection and transmission method and device, and remote user equipment
WO2019035748A1 (en) * 2017-08-14 2019-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Wireless access network selection
WO2019054243A1 (en) * 2017-09-15 2019-03-21 株式会社ワコム Active pen and sensor controller
CN110710275B (en) * 2017-11-10 2020-12-18 Oppo广东移动通信有限公司 Terminal strategy configuration method, terminal and network equipment
CN111480369B (en) 2017-11-20 2023-11-17 联想(新加坡)私人有限公司 Mobile network policy freshness
CN109995830B (en) * 2017-12-31 2022-01-28 中国移动通信集团四川有限公司 Session management system of LTE network
WO2019149990A1 (en) * 2018-02-03 2019-08-08 Nokia Technologies Oy Application based routing of data packets in multi-access communication networks
US11627466B2 (en) * 2018-02-14 2023-04-11 T-Mobile Usa, Inc. Updating automatic access parameters for wireless local area networks
EP3766298B1 (en) * 2018-03-16 2022-08-03 Telefonaktiebolaget LM Ericsson (publ) Technique for device-to-device communication
JP7402600B2 (en) 2018-03-27 2023-12-21 大日本印刷株式会社 Decorative material
US20210266765A1 (en) * 2018-06-29 2021-08-26 Lenovo (Beijing) Limited Method and apparatus for ran event report transmission and network optimization based on analytics of ran event reports
EP3628116B1 (en) * 2018-08-03 2021-12-29 Telefonaktiebolaget LM Ericsson (publ) Methods, user equipment and base station for sidelink identification
CN108810177A (en) * 2018-08-27 2018-11-13 优视科技新加坡有限公司 Data transmission method and its device
WO2020091469A1 (en) 2018-10-31 2020-05-07 Samsung Electronics Co., Ltd. Apparatus and method for controlling measurement operations in wireless communication system
FR3089089B1 (en) * 2018-11-23 2022-03-11 Bull Sas Method for the optimization by type of message of the exchange of data between connected objects
US11160139B2 (en) * 2018-11-23 2021-10-26 Bull Sas Method for optimizing per message type data exchange between connected objects
TWI688287B (en) * 2018-12-07 2020-03-11 宏碁股份有限公司 Base station selection system and base station selection method
US10932097B2 (en) * 2018-12-21 2021-02-23 Verizon Patent And Licensing Inc. Method and system of routing selection for SMS over NAS
CN111385816B (en) * 2018-12-27 2022-07-15 展讯通信(上海)有限公司 Method and device for reporting random access statistical information
EP3902327A4 (en) * 2018-12-29 2022-05-18 Shenzhen Heytap Technology Corp., Ltd. Cell connection processing method and apparatus, and mobile terminal and storage medium
KR102658886B1 (en) * 2019-02-14 2024-04-18 삼성전자 주식회사 Method and apparatus for performing user equipment capability procedure for supporting vehicle communication in next generation mobile communication system
EP3928436B1 (en) 2019-03-12 2024-02-14 Google LLC User-equipment coordination set beam sweeping
CN111800244A (en) * 2019-04-01 2020-10-20 英特尔公司 Design of physical side loop feedback channel of NR-V2X
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
US11540171B2 (en) * 2019-07-12 2022-12-27 Qualcomm Incorporated Assisting communications of small data payloads with relay nodes
EP3791678B1 (en) 2019-07-25 2023-06-07 Google LLC User-equipment-coordination-set regrouping
US11350439B2 (en) 2019-08-13 2022-05-31 Google Llc User-equipment-coordination-set control aggregation
US11496944B2 (en) * 2019-08-16 2022-11-08 Mediatek Inc. Enhanced UE route selection policy (URSP) rules evaluation
EP4005101B1 (en) 2019-09-19 2023-12-20 Google LLC Enhanced beam searching for active coordination sets
CN118100993A (en) 2019-09-19 2024-05-28 谷歌有限责任公司 Method for selectively joining user equipment coordination set and user equipment
US11533603B2 (en) * 2019-10-14 2022-12-20 Qualcomm Incorporated Power saving for pedestrian user equipments
EP4044688A4 (en) 2019-11-15 2022-09-07 Huawei Technologies Co., Ltd. Method, system and apparatus for determining strategy
US11146415B2 (en) 2019-11-16 2021-10-12 Microsoft Technology Licensing, Llc Message-limited self-organizing network groups for computing device peer matching
US11445570B1 (en) 2019-11-25 2022-09-13 Sprint Communications Company L.P. Transmission control protocol (TCP) control over radio communications
CN112867025A (en) * 2019-11-27 2021-05-28 北京小米移动软件有限公司 Network equipment communication method, device and storage medium
CN113099451A (en) * 2020-01-07 2021-07-09 上海诺基亚贝尔股份有限公司 Method, apparatus, device and computer readable medium for connecting to a network
US11388662B2 (en) 2020-02-14 2022-07-12 Charter Communications Operating, Llc Apparatus and methods for generating and distributing policy in wireless networks
JP7397724B2 (en) 2020-03-12 2023-12-13 ケイミュー株式会社 building board
EP3890365B1 (en) 2020-03-30 2023-12-13 Nokia Technologies Oy Apparatus, method, and computer program
US20210227442A1 (en) * 2020-04-01 2021-07-22 Intel Corporation Location-based event trigger and conditional handover
WO2021223851A1 (en) * 2020-05-05 2021-11-11 Nokia Technologies Oy Variable time-to-trigger value for transmission of measurement report for wireless networks
CA3177964A1 (en) * 2020-05-11 2021-11-18 Jibing Wang Coordinating user equipment selection
US11540199B2 (en) * 2020-06-30 2022-12-27 Arris Enterprises Llc Discovery of a network topology from a client perspective
CA3187995A1 (en) * 2020-08-05 2022-02-10 Wei Lu Controlling a mode of operation of electronic device
US11758486B2 (en) * 2020-08-06 2023-09-12 Ofinno, Llc Power control procedures for radio systems
CN112153599B (en) * 2020-09-22 2023-03-24 中信科智联科技有限公司 Message transmission method and device, internet of vehicles equipment and management node
EP4233448A1 (en) 2020-10-26 2023-08-30 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and methods for scheduling resources
US11671894B2 (en) * 2021-02-12 2023-06-06 Qualcomm Incorporated Routing priority of non-cellular over cellular
CN113038579A (en) * 2021-02-26 2021-06-25 联想(北京)有限公司 Processing method and device
US11943840B2 (en) 2021-03-12 2024-03-26 Cattron North America, Inc. Associating diverse Bluetooth devices
US11765052B1 (en) 2022-03-11 2023-09-19 T-Mobile Usa, Inc. User equipment hosting for customizable 5G services
CN117545039A (en) * 2022-08-02 2024-02-09 中国电信股份有限公司 Path conversion method, device and system
US20240073782A1 (en) * 2022-08-30 2024-02-29 Texas Instruments Incorporated Ble link cluster discovery, establishing, and termination

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280203A1 (en) * 2008-11-14 2011-11-17 Seung Hee Han Method and apparatus for information transmission in wireless communication system
US20130059583A1 (en) * 2010-03-23 2013-03-07 Vinh Van Phan Resource Allocation for Direct Terminal-to-Terminal Communication in a Cellular System
US20130288668A1 (en) * 2012-04-27 2013-10-31 Interdigital Patent Holdings, Inc. Method and apparatus for supporting proximity discovery procedures
US20140003262A1 (en) * 2012-07-02 2014-01-02 Hong He Sounding reference signal (srs) mechanism for intracell device-to-device (d2d) communication
US20140127991A1 (en) * 2011-06-21 2014-05-08 Lg Electronics Inc. Method for performing communication between devices in a wireless access system, and device for same
US8743823B2 (en) * 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
US20140177540A1 (en) * 2012-12-21 2014-06-26 Research In Motion Limited Resource scheduling in direct device to device communications systems
US20140204898A1 (en) * 2013-01-24 2014-07-24 National Taiwan University Fast Device Discovery for Device to Device Communication
US20150296443A1 (en) * 2011-08-16 2015-10-15 Lg Electronics Inc. Method and apparatus for performing device-to-device communication in wireless access system
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
US9516488B2 (en) * 2012-08-31 2016-12-06 Zte Corporation Method, apparatus and system for D2D communication
US9526001B2 (en) * 2013-01-17 2016-12-20 Intel IP Corporation Device-to-device discovery with direct radio signals

Family Cites Families (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011126A (en) 1933-04-11 1935-08-13 Sprague Specialties Co Capacitor motor
RU2107992C1 (en) 1992-09-23 1998-03-27 Сименс АГ Handover method for mobile subscribers of mobile radio network
FI108098B (en) * 1994-03-03 2001-11-15 Nokia Networks Oy Method for controlling a subscriber station, radio system and subscriber station operating on a direct channel
US7948951B2 (en) * 2002-06-12 2011-05-24 Xocyst Transfer Ag L.L.C. Automatic peer discovery
US20040264368A1 (en) 2003-06-30 2004-12-30 Nokia Corporation Data transfer optimization in packet data networks
US7108132B2 (en) * 2003-11-19 2006-09-19 Leo Shih Tool holder with specification marking structure
FI20041169A0 (en) * 2004-09-08 2004-09-08 Nokia Corp Group Services Group Information
JP4456966B2 (en) * 2004-09-17 2010-04-28 富士通株式会社 Wireless terminal
US7760646B2 (en) * 2005-02-09 2010-07-20 Nokia Corporation Congestion notification in 3G radio access
US7688792B2 (en) * 2005-04-21 2010-03-30 Qualcomm Incorporated Method and apparatus for supporting wireless data services on a TE2 device using an IP-based interface
KR100785296B1 (en) * 2005-07-21 2007-12-12 삼성전자주식회사 Apparatus and Method for Managing Data Transfer in VoIP Gateway
US7620065B2 (en) * 2005-07-22 2009-11-17 Trellia Networks, Inc. Mobile connectivity solution
ES2349277T3 (en) * 2005-08-22 2010-12-29 Telefonaktiebolaget Lm Ericsson (Publ) COMMUNICATIONS SYSTEM AND METHOD FOR TRANSMITING DATA BETWEEN A TERMINAL AND NETWORK RESOURCES.
US8576846B2 (en) 2005-10-05 2013-11-05 Qualcomm Incorporated Peer-to-peer communication in ad hoc wireless network
US8077683B2 (en) 2005-11-03 2011-12-13 Interdigital Technology Corporation Method and system for performing peer-to-peer communication between stations within a basic service set
US20070183394A1 (en) * 2006-02-03 2007-08-09 Deepak Khandelwal Automatic call origination for multiple wireless networks
KR20070081237A (en) * 2006-02-10 2007-08-16 삼성전자주식회사 Apparatus and method for conversion of mac frame in broadband wireless access system
US8219080B2 (en) 2006-04-28 2012-07-10 Research In Motion Limited Methods and apparatus for producing a user-controlled PLMN list for a SIM/USIM card with use of a user agent application
US8565766B2 (en) * 2007-02-05 2013-10-22 Wefi Inc. Dynamic network connection system and method
US20070274233A1 (en) 2006-05-25 2007-11-29 Amnon Ptashek Method, apparatus and system for multi peer to peer services
CN101485177B (en) * 2006-07-06 2012-08-15 皇家飞利浦电子股份有限公司 Method of communicating between a first wireless phone and a second wireless phone
WO2008038949A1 (en) * 2006-09-28 2008-04-03 Samsung Electronics Co., Ltd. A system and method of providing user equipment initiated and assisted backward handover in heterogeneous wireless networks
US8060612B1 (en) 2006-09-29 2011-11-15 Sprint Communications Company L.P. NAI (Network Access Identifier) embedding
WO2008074117A1 (en) * 2006-12-19 2008-06-26 Bce Inc. Method, system and apparatus for causing a communication device to join a communication session
US8045505B2 (en) * 2007-01-18 2011-10-25 Science Applications International Corporation Mechanism for automatic network formation and medium access coordination
KR20080074696A (en) * 2007-02-09 2008-08-13 엘지전자 주식회사 Method for controlling power saving mode in the mobile communication system
KR20100016494A (en) * 2007-03-09 2010-02-12 인터디지탈 테크날러지 코포레이션 Method and apparatus for adjusting a reselection timer and cell ranking criteria, and reporting degraded signal measurement of a serving cell
AR067822A1 (en) * 2007-08-06 2009-10-21 Interdigital Tech Corp LTE MEASUREMENT DEFINITIONS FOR INTER-TECHNOLOGY MEASUREMENT RADIO WITH NO-3GPP RADIO ACCESS
KR101394357B1 (en) * 2007-10-09 2014-05-13 삼성전자주식회사 Wireless sensor network system and method managing cluster thereof
KR20090045039A (en) * 2007-10-30 2009-05-07 엘지전자 주식회사 Method of reselecting a cell based on priorities
US8068454B2 (en) 2007-11-07 2011-11-29 Motorola Solutions, Inc. System for enabling mobile coverage extension and peer-to-peer communications in an ad hoc network and method of operation therefor
WO2009070718A1 (en) * 2007-11-28 2009-06-04 Damaka, Inc. System and method for endpoint handoff in a hybrid peer-to-peer networking environment
US20090143093A1 (en) * 2007-11-29 2009-06-04 Interdigital Patent Holdings, Inc. Method and apparatus for adaptive handover
US9332068B2 (en) * 2007-11-29 2016-05-03 Ooma, Inc. Mechanisms for transparently converting client-server software agents to peer-to-peer software agents
CA2712713C (en) * 2008-01-28 2017-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for use in a communications network
GB2457431A (en) * 2008-01-28 2009-08-19 Fujitsu Lab Of Europ Ltd Interference mitigation method in a wireless network
EP2272280B1 (en) * 2008-04-03 2021-07-14 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for handling handover related parameters in a mobile communications network
EP2304991B1 (en) 2008-04-18 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Access network selection in a multi-access network environment
US20090265449A1 (en) * 2008-04-22 2009-10-22 Hewlett-Packard Development Company, L.P. Method of Computer Clustering
US8218484B2 (en) * 2008-06-02 2012-07-10 Media Patents, S.L. Methods and apparatus for sending data packets to and from mobile nodes in a data network
US8559298B2 (en) 2008-06-30 2013-10-15 Qualcomm Incorporated Method and apparatus for automatic handover optimization
US8245039B2 (en) 2008-07-18 2012-08-14 Bridgewater Systems Corp. Extensible authentication protocol authentication and key agreement (EAP-AKA) optimization
IT1391748B1 (en) * 2008-08-29 2012-01-27 Bames Srl CONTROL AND SIGNALING DEVICE FOR PHOTOVOLTAIC MODULES
EP2361468B1 (en) * 2008-09-26 2015-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Congestion control method and devices
US8966543B2 (en) 2008-09-29 2015-02-24 Nokia Corporation Method and system to enable adaptation between physical bearers and OMA-BCAST
US8121097B2 (en) 2008-11-04 2012-02-21 Qualcomm Incorporated Transmission with hopping for peer-peer communication
US9521565B2 (en) * 2008-11-17 2016-12-13 Qualcomm Incorporated Declaring radio link failure based on target-specific threshold
US8879516B2 (en) * 2008-12-10 2014-11-04 Marvell World Trade Ltd Efficient formats of beacon, announcement, and beamforming training frames
US8493887B2 (en) 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
US9107133B2 (en) * 2009-01-06 2015-08-11 Qualcomm Incorporated Adaptation of handover parameters
WO2010082114A1 (en) 2009-01-16 2010-07-22 Nokia Corporation Enabling device-to-device communication in cellular networks
CN102239725B (en) * 2009-02-11 2014-01-29 诺基亚西门子通信公司 Method, apparatus for priority based cell reselection in a multi-wat environment
US8964696B2 (en) * 2009-02-19 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Traffic control for roaming subscribers
WO2010099653A1 (en) 2009-03-03 2010-09-10 深圳华为通信技术有限公司 Signal encoding method and apparatus, and combination feedback signal encoding method
CN101827411B (en) * 2009-03-04 2014-02-19 华为技术有限公司 Network selection method, device and terminal
WO2010107441A1 (en) * 2009-03-20 2010-09-23 Innovative Wireless Technologies, Inc. Distributed ad hoc mesh network protocol for underground mine and hazardous area communications
ES2745451T3 (en) * 2009-04-28 2020-03-02 Samsung Electronics Co Ltd Procedure and apparatus for managing information on the history of user equipment in a wireless communication network
US8265575B2 (en) 2009-06-16 2012-09-11 Mediatek Inc. Methods for handling a transmitting process and communication apparatuses utilizing the same
US9603097B2 (en) * 2009-06-29 2017-03-21 Qualcomm Incorporated Device, method, and apparatus for offline discontinuous reception (DRX) processing with online triggers in cellular systems
US20110014892A1 (en) * 2009-07-17 2011-01-20 Peter Hedman Network-Assisted Initiation of Emergency Calls from a Multi-Mode Wireless Communication Device
US8594015B2 (en) * 2009-07-29 2013-11-26 T-Mobile Usa, Inc. System and method for providing emergency service in an IP-based wireless network
EP2288175B1 (en) * 2009-08-19 2017-11-15 Airbus Defence and Space Oy Delivery of identification information
US8280417B2 (en) 2009-12-23 2012-10-02 Intel Corporation Short user messages in system control signaling
US8135446B2 (en) 2009-08-26 2012-03-13 Samsung Electronics Co., Ltd. Apparatus and method for maximum power saving in sleep mode
US8325733B2 (en) * 2009-09-09 2012-12-04 Exafer Ltd Method and system for layer 2 manipulator and forwarder
US9084171B2 (en) * 2009-09-10 2015-07-14 At&T Mobility Ii Llc Predictive hard and soft handover
US8711751B2 (en) 2009-09-25 2014-04-29 Apple Inc. Methods and apparatus for dynamic identification (ID) assignment in wireless networks
US8270374B2 (en) * 2009-10-02 2012-09-18 Research In Motion Limited Determining link quality for networks having relays
EP2484153B1 (en) * 2009-10-02 2018-07-11 Nokia Solutions and Networks Oy Network selection mechanisms
CN101699904A (en) 2009-10-27 2010-04-28 华为技术有限公司 Method for saving energy and system thereof
CN102714818B (en) * 2009-10-30 2016-06-15 交互数字专利控股公司 Signaling for radio communication
US9900759B2 (en) * 2009-11-04 2018-02-20 Qualcomm Incorporated Method and apparatus for peer discovery in a wireless communication network
US9531514B2 (en) * 2009-12-03 2016-12-27 Qualcomm Incorporated Sounding reference signal enhancements for wireless communication
CN101711041B (en) * 2009-12-09 2012-10-17 华为技术有限公司 Congestion control method, operation-maintenance center equipment and base station
JP5232763B2 (en) * 2009-12-10 2013-07-10 三菱重工業株式会社 Micro traction drive
CN102792745B (en) * 2009-12-11 2015-05-13 诺基亚公司 Method, apparatus and computer program product for allocating resources in wireless communication network
US9306813B2 (en) * 2009-12-23 2016-04-05 Apple Inc. Efficient service advertisement and discovery in a peer-to-peer networking environment with cooperative advertisement
US8787174B2 (en) 2009-12-31 2014-07-22 Tekelec, Inc. Methods, systems, and computer readable media for condition-triggered policies
CN102687557B (en) * 2010-01-08 2015-03-04 交互数字专利控股公司 Method and apparatus for managing CSG priorities in idle and connected modes
US8693320B2 (en) * 2010-01-11 2014-04-08 Research In Motion Limited Congestion level indication with explicit congestion notification in communication systems
KR101622792B1 (en) 2010-02-04 2016-06-01 삼성전자주식회사 Method and apparatus for handover in wireless communication system
US8737998B2 (en) 2010-02-17 2014-05-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for processing of neighbor cell information
WO2011108437A1 (en) * 2010-03-01 2011-09-09 シャープ株式会社 Liquid crystal display device
US20130044674A1 (en) * 2010-03-05 2013-02-21 Oumer Teyeb Method and Apparatus for Use in a Mobile Communications System Comprising a Relay Node
EP3007500B1 (en) * 2010-03-12 2022-05-04 BlackBerry Limited Communication station and method for transmitting on a random access channel
US20110222523A1 (en) * 2010-03-12 2011-09-15 Mediatek Inc Method of multi-radio interworking in heterogeneous wireless communication networks
US8341207B2 (en) * 2010-04-07 2012-12-25 Apple Inc. Apparatus and method for matching users for online sessions
WO2011134496A1 (en) 2010-04-27 2011-11-03 Nokia Siemens Networks Oy Updating of network selection information
WO2011138849A1 (en) 2010-05-06 2011-11-10 パナソニック株式会社 Terminal apparatus and response signal mapping method
US9614641B2 (en) * 2010-05-12 2017-04-04 Qualcomm Incorporated Resource coordination for peer-to-peer groups through distributed negotiation
US9351143B2 (en) * 2010-06-01 2016-05-24 Qualcomm Incorporated Multi-homed peer-to-peer network
WO2011150986A1 (en) * 2010-06-01 2011-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Policy decisions for data communication in constrained resource networks
US10517098B2 (en) * 2010-07-30 2019-12-24 Qualcomm Incorporated Interference coordination for peer-to-peer (P2P) communication and wide area network (WAN) communication
WO2012016368A1 (en) * 2010-07-31 2012-02-09 Huawei Technologies Co., Ltd. Arrangement and method for optimising handling of handovers in telecommunication systems
EP2601803B1 (en) * 2010-08-04 2014-11-19 Nokia Corporation A resolution method and apparatus for simultaneous transmission and receiving contention in a device-to-device cellular reuse system
US8559967B2 (en) 2010-08-27 2013-10-15 Tektronix, Inc. System and method for managing subscriber bandwidth based on cell congestion analysis
CN101902798A (en) * 2010-08-31 2010-12-01 上海交通大学 Rapid networking method of wireless sensor network
EP2440002B1 (en) 2010-10-05 2016-03-23 HTC Corporation Method of handling APN based congestion control
US8417243B2 (en) 2010-10-21 2013-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced reliability of service in mobile networks
EP2445266B1 (en) 2010-10-25 2016-03-16 Alcatel Lucent Control of access network/access technology selection for the routing of IP traffic by a user equipment, and QoS support, in a multi-access communication system
US8520560B2 (en) * 2010-11-03 2013-08-27 Samsung Electronics Co., Ltd. Generation of HARQ-ACK information and power control of HARQ-ACK signals in TDD systems with downlink of carrier aggregation
US9037141B2 (en) * 2010-11-08 2015-05-19 Htc Corporation Method of handling queries-caused overload in wireless communication system
CN104205948B (en) * 2010-11-10 2018-08-21 Sk电信有限公司 Equipment is provided for changing the method and strategy connected between heterogeneous network and supports its terminal installation
US8681622B2 (en) * 2010-12-17 2014-03-25 Tekelec, Inc. Policy and charging rules function (PCRF) and performance intelligence center (PIC) based congestion control
JP5907074B2 (en) * 2010-12-28 2016-04-20 日本電気株式会社 Handover control method, control device, adjustment device, and program
WO2012092935A1 (en) * 2011-01-04 2012-07-12 Nokia Siemens Networks Oy Access network selection in communications system
CN103370898B (en) * 2011-02-07 2017-08-29 瑞典爱立信有限公司 The base station that up-link for detection reference signal SRS is transmitted(Antenna)The method and apparatus of selection
US8706120B2 (en) * 2011-03-20 2014-04-22 Samsung Electronics Co., Ltd. Mobile telecommunication system with adaptive handoff mechanism and method of operation thereof
KR101770875B1 (en) 2011-04-01 2017-08-23 샤오미 에이치.케이. 리미티드 Fast reselection between different radio access technology networks
KR101417256B1 (en) * 2011-04-05 2014-07-08 엘지전자 주식회사 Method for transmitting data and a user eqipment
US9282494B2 (en) * 2011-05-02 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Method in a radio network node for controlling handover decision of a user equipment
WO2012149954A1 (en) 2011-05-03 2012-11-08 Nokia Siemens Networks Oy Traffic offload in communication networks
GB2491114A (en) * 2011-05-19 2012-11-28 Renesas Mobile Corp Direct device-to-device communication in a mobile communication system
US8155102B1 (en) * 2011-05-24 2012-04-10 Renesas Mobile Corporation Channel access control
DE112011105271T5 (en) * 2011-05-25 2014-03-06 Renesas Mobile Corporation Resource allocation for D2D communication
US8520650B2 (en) * 2011-07-06 2013-08-27 Qualcomm Incorporated Methods and apparatus for OFDM peer discovery
US9749932B2 (en) * 2011-07-07 2017-08-29 Google Technology Holdings LLC Wireless communication device, wireless communication system, and related methods
US9078197B2 (en) * 2011-07-07 2015-07-07 Htc Corporation Method of handling access network discovery and selection function and related communication device
WO2013013237A1 (en) 2011-07-21 2013-01-24 Movik Networks Ran analytics, control and tuning via multi-protocol, multi-domain, and multi-rat analysis
US8902855B2 (en) 2011-08-01 2014-12-02 Intel Corporation Opportunistic device-to-device communication
EP2740284A4 (en) * 2011-08-05 2015-04-22 Lg Electronics Inc Inter-apn routing flow distribution
US20140199969A1 (en) * 2011-08-05 2014-07-17 Kerstin Johnsson Mobile device and method for cellular assisted device-to-device communication
US20130040692A1 (en) * 2011-08-11 2013-02-14 Mediatek, Inc. Method of Heterogeneous Network Mobility
US9887852B2 (en) 2011-08-11 2018-02-06 Intel Corporation Methods for switching between a MBMS download and an HTTP-based delivery of DASH formatted content over an IMS network
EP2742726A1 (en) * 2011-08-11 2014-06-18 Nokia Solutions and Networks Oy Optimizing a handover behavior of a mobile radio communication network based on an extended data record being associated with a user equipment
US8509780B2 (en) * 2011-08-15 2013-08-13 Alcatel Lucent Method and apparatus for determining handover parameters in wireless overlay networks
US9288829B2 (en) 2011-08-18 2016-03-15 Lg Electronics Inc. Method for performing device to device direct communication, method for supporting the same, and device therefor
RU2606061C2 (en) * 2011-08-25 2017-01-10 Телефонактиеболагет Л М Эрикссон (Пабл) Initiation threshold adaptation for cell reselection measurements
US10038993B2 (en) * 2011-08-30 2018-07-31 Lg Electronics Inc. Method for supporting device-to-device communication in a cellular network, and apparatus for same
EP2756708B1 (en) * 2011-09-14 2018-08-15 Telefonaktiebolaget LM Ericsson (publ) Triggering a handover process based on the activity of a connection
CN102333343A (en) * 2011-11-02 2012-01-25 电信科学技术研究院 Congestion information notification method and equipment
GB2496153B (en) * 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
EP2595425A1 (en) * 2011-11-18 2013-05-22 Panasonic Corporation Active bandwidth indicator for power-saving UEs
WO2013075340A1 (en) * 2011-11-25 2013-05-30 Renesas Mobile Corporation Radio resource sharing and contention scheme for device-to-device communication in white space spectrum bands
EP2605585A1 (en) * 2011-12-15 2013-06-19 ST-Ericsson SA Method of controlling handover by user equipment
GB2497741A (en) * 2011-12-19 2013-06-26 Renesas Mobile Corp A verification system for use in requesting access to a D2D communication service
US20140342747A1 (en) * 2012-01-18 2014-11-20 Lg Electronics Inc. Device-to-device communication method and a device therefor
GB2498575A (en) * 2012-01-20 2013-07-24 Renesas Mobile Corp Device-to-device discovery resource allocation for multiple cells in a device-to-device discovery area
US20130204962A1 (en) * 2012-02-02 2013-08-08 Texas Instruments Incorporated Network and peripheral interface circuits, systems and processes
CN102547871B (en) * 2012-02-07 2015-07-29 华为技术有限公司 Resource negotiation method and apparatus in a kind of D2D communication
US9544795B2 (en) * 2012-03-14 2017-01-10 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices of interference channel measurement in radio network
US8744449B2 (en) * 2012-03-16 2014-06-03 Blackberry Limited Mobility parameter adjustment and mobility state estimation in heterogeneous networks
US9420535B2 (en) * 2012-03-26 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, a network node and methods therein for adjusting the length of a discontinuous reception cycle in a user equipment in a wireless communication system
CN102647771B (en) * 2012-04-10 2016-05-25 华为技术有限公司 The discovery of WLAN and system of selection, equipment and system and terminal
US20130265985A1 (en) * 2012-04-10 2013-10-10 Motorola Mobility, Inc. Wireless communication device, communication system and method for establishing data connectivity between a wireless communicaiton device and a first access network
EP2850857B1 (en) * 2012-05-15 2019-03-06 Telefonaktiebolaget LM Ericsson (publ) Device discovery of second user equipments in a second network for d2d communication
EP2856836B1 (en) * 2012-05-31 2019-02-27 Interdigital Patent Holdings, Inc. Method and apparatus for device-to-device, d2d, mobility in wireless systems
US9641995B2 (en) * 2012-06-15 2017-05-02 Lg Electronics Inc. User equipment detection method for direct communication between user equipment and user equipment in wireless communication system, and apparatus therefor
KR102026164B1 (en) * 2012-07-13 2019-09-27 한국전자통신연구원 Method of discovery for device to device communication and apparatus thereof
US9867026B2 (en) * 2012-07-18 2018-01-09 Lg Electronics Inc. Method for discovering device in wireless access system and device therefor
US9585054B2 (en) 2012-07-19 2017-02-28 Interdigital Patent Holdings, Inc. Method and apparatus for detecting and managing user plane congestion
US10791451B2 (en) * 2012-07-27 2020-09-29 Sharp Kabushiki Kaisha Proximity service discovery using a licensed frequency spectrum
US8867512B2 (en) * 2012-07-30 2014-10-21 Qualcomm Incorporated Autonomous discovery for enhanced wifi devices
US9071631B2 (en) * 2012-08-09 2015-06-30 International Business Machines Corporation Service management roles of processor nodes in distributed node service management
CN104584670B (en) * 2012-08-23 2019-04-19 交互数字专利控股公司 The method and apparatus found for executive device to device
US9549351B2 (en) * 2012-08-30 2017-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for fast handover using pre-allocation of resources in target nodes
CN102857901A (en) * 2012-09-12 2013-01-02 中兴通讯股份有限公司 Device discovery method, device discovery processing method and device discovering processing device
WO2014042570A1 (en) * 2012-09-14 2014-03-20 Telefonaktiebolaget L M Ericsson (Publ) Qos-based cooperative scheduling for handling of data traffic
US8982895B2 (en) * 2012-09-21 2015-03-17 Blackberry Limited Inter-device communication in wireless communication systems
US10187802B2 (en) * 2012-10-09 2019-01-22 Apple Inc. Accessibility in dynamic cellular networks
US20140101337A1 (en) * 2012-10-10 2014-04-10 Honeywell Intl. Inc./Patent Services M/S Ab/2B Systems and methods for a dialog service interface switch
US11496948B2 (en) * 2012-10-19 2022-11-08 Samsung Electronics Co., Ltd. System and method for ad-hoc/network assisted device discovery protocol for device to device communications
US9271254B2 (en) * 2012-10-22 2016-02-23 Qualcomm Incorporated Network directed system selection using wireless device input
HUE037326T2 (en) * 2012-10-26 2018-08-28 Intel Corp Reporting of user plane congestion
US9072027B2 (en) * 2012-12-07 2015-06-30 Alcatel Lucent Methods and apparatuses for facilitating D2D bearer switching
US9374774B2 (en) * 2012-12-18 2016-06-21 Qualcomm Incorporated WAN-WLAN cell selection in UEs
US9844083B2 (en) * 2012-12-24 2017-12-12 Nokia Technologies Oy Method and network element for controlling UE's state transition in proximity wireless communication
US20140213255A1 (en) * 2013-01-28 2014-07-31 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for handling a handover event
CN110380980A (en) * 2013-02-22 2019-10-25 英特尔Ip公司 System and method for accessing network selection and flow routing
US9674881B2 (en) * 2013-05-08 2017-06-06 Nokia Technologies Oy Device to device beacon, user equipment discovery, and resource allocation
US9467880B2 (en) * 2013-06-28 2016-10-11 Kyocera Corporation Management of device-to-device discovery signals and small cell discovery signals
CN103428642B (en) * 2013-07-16 2016-01-13 无锡北邮感知技术产业研究院有限公司 Based on relaying bunch in D2D multicasting method
JP6501776B2 (en) * 2013-08-07 2019-04-17 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting and receiving resource allocation information in a wireless communication system
CN104349421B (en) * 2013-08-08 2020-03-17 中兴通讯股份有限公司 Device discovery method, user equipment and network side equipment
TWI531273B (en) * 2013-08-09 2016-04-21 財團法人資訊工業策進會 Wireless communication system and resource allocation method thereof
WO2015050393A1 (en) * 2013-10-03 2015-04-09 Lg Electronics Inc. Method and apparatus for using resources for device-to-device operation in wireless communication system
WO2015062671A1 (en) * 2013-11-01 2015-05-07 Nokia Solutions And Networks Oy Device-to-device discovery resource allocation in communications

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280203A1 (en) * 2008-11-14 2011-11-17 Seung Hee Han Method and apparatus for information transmission in wireless communication system
US8743823B2 (en) * 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
US20130059583A1 (en) * 2010-03-23 2013-03-07 Vinh Van Phan Resource Allocation for Direct Terminal-to-Terminal Communication in a Cellular System
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
US20140127991A1 (en) * 2011-06-21 2014-05-08 Lg Electronics Inc. Method for performing communication between devices in a wireless access system, and device for same
US20150296443A1 (en) * 2011-08-16 2015-10-15 Lg Electronics Inc. Method and apparatus for performing device-to-device communication in wireless access system
US9467930B2 (en) * 2011-08-16 2016-10-11 Lg Electronics Inc. Method and apparatus for performing device-to-device communication in wireless access system
US20130288668A1 (en) * 2012-04-27 2013-10-31 Interdigital Patent Holdings, Inc. Method and apparatus for supporting proximity discovery procedures
US20140003262A1 (en) * 2012-07-02 2014-01-02 Hong He Sounding reference signal (srs) mechanism for intracell device-to-device (d2d) communication
US9516488B2 (en) * 2012-08-31 2016-12-06 Zte Corporation Method, apparatus and system for D2D communication
US20140177540A1 (en) * 2012-12-21 2014-06-26 Research In Motion Limited Resource scheduling in direct device to device communications systems
US9526001B2 (en) * 2013-01-17 2016-12-20 Intel IP Corporation Device-to-device discovery with direct radio signals
US20140204898A1 (en) * 2013-01-24 2014-07-24 National Taiwan University Fast Device Discovery for Device to Device Communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TSG SA S1#7 S1-00 0091 Sofia Antipolis, February 09- February 11, 2000 ftp://www.3gpp.org/tsg_sa/WG1_Serv/TSGS1_07.../Docs/S1-000090.doc *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150390A1 (en) * 2013-04-01 2016-05-26 Zte Corporation Methods for Receiving Device Discovery Information and Sending Device Discovery Information and User Equipment
US10194304B2 (en) * 2013-04-01 2019-01-29 Xi'an Zhongxing New Software Co., Ltd. Methods for receiving device discovery information and sending device discovery information and user equipment
US20150111586A1 (en) * 2013-04-12 2015-04-23 Telefonaktiebolaget L M Ericsson (Publ) Method and wireless device for providing device-to-device communication
US10912062B2 (en) 2013-04-12 2021-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and wireless device for providing device-to-device communication
US9974051B2 (en) * 2013-04-12 2018-05-15 Telefonaktiebolaget L M Ericsson (Publ) Method and wireless device for providing device-to-device communication
US10136442B2 (en) * 2013-04-19 2018-11-20 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US20160073392A1 (en) * 2013-04-19 2016-03-10 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US20160057693A1 (en) * 2013-05-02 2016-02-25 Ntt Docomo, Inc. User apparatus, base station, discovery resource selection method, and control signal transmission method
US9756555B2 (en) * 2013-05-02 2017-09-05 Ntt Docomo, Inc. User apparatus, base station, discovery resource selection method, and control signal transmission method
US20160113021A1 (en) * 2013-05-10 2016-04-21 Yifei Yuan Method and system for interference management for device-to-device communications
US20160302251A1 (en) * 2013-08-08 2016-10-13 Intel IP Corporation Signaling for proximity services and d2d discovery in an lte network
US10321294B2 (en) * 2013-08-08 2019-06-11 Intel IP Corporation Signaling for proximity services and D2D discovery in an LTE network
US9860732B2 (en) 2013-08-08 2018-01-02 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9788186B2 (en) 2013-08-08 2017-10-10 Intel IP Corporation Signaling for proximity services and D2D discovery in an LTE network
US10104714B2 (en) 2013-08-09 2018-10-16 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for timing misalignment signalling
US20160212596A1 (en) * 2013-09-06 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Cluster-based resource allocation for vehicle-to-vehicle communication
US9723457B2 (en) * 2013-09-06 2017-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Cluster-based resource allocation for vehicle-to-vehicle communication
US9900810B2 (en) * 2013-10-03 2018-02-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system
US20160309377A1 (en) * 2013-10-03 2016-10-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system
US10389564B2 (en) * 2013-10-31 2019-08-20 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
US20160294595A1 (en) * 2013-10-31 2016-10-06 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
US10772108B2 (en) * 2013-12-20 2020-09-08 Kyocera Corporation Coverage transition indicator for device-to-device communication
US20180132256A1 (en) * 2013-12-20 2018-05-10 Kyocera Corporation Coverage transition indicator for device-to-device communication
US11337228B2 (en) * 2013-12-20 2022-05-17 Kyocera Corporation Coverage transition indicator for device-to-device communication
US20170019937A1 (en) * 2014-01-21 2017-01-19 Lg Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
US10348852B2 (en) * 2014-01-21 2019-07-09 Lg Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
US9560574B2 (en) * 2014-01-31 2017-01-31 Intel IP Corporation User equipment and method for transmit power control for D2D tranmissions
US20150223141A1 (en) * 2014-01-31 2015-08-06 Debdeep CHATTERJEE User equipment and method for transmit power control for d2d tranmissions
US9549394B2 (en) * 2014-02-28 2017-01-17 Blackberry Limited Methods and devices for performing proximity discovery
US20150249979A1 (en) * 2014-02-28 2015-09-03 Blackberry Limited Methods and devices for performing proximity discovery
US10645680B2 (en) 2014-02-28 2020-05-05 Blackberry Limited Methods and devices for performing proximity discovery
US10292144B2 (en) * 2014-03-20 2019-05-14 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and device therefor
US20160381666A1 (en) * 2014-03-20 2016-12-29 Seoul National University R&Db Foundation Method for transmitting and receiving signal in wireless communication system and device therefor
US10237912B2 (en) * 2014-07-22 2019-03-19 Samsung Electronics Co., Ltd. Method and apparatus for managing resources for D2D communication
US20160029359A1 (en) * 2014-07-22 2016-01-28 Samsung Electronics Co., Ltd. Method and apparatus for managing resources for d2d communication
US11039461B2 (en) * 2014-09-26 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and device of resource allocations for scheduling assignments in device to device communications
US20180242346A1 (en) * 2014-09-26 2018-08-23 Telefonaktiebolaget L M Ericsson (Publ) Method and Device of Resource Allocations for Scheduling Assignments in Device to Device Communications
US10383089B2 (en) * 2015-04-03 2019-08-13 Lg Electronics Inc. Method for transmitting device to device communication signal through unlicensed band in wireless communication system and apparatus therefor
US10531371B2 (en) * 2015-04-08 2020-01-07 Lg Electronics Inc. Method and device for transmitting and receiving plurality of D2D signals in wireless communication system
US20180077633A1 (en) * 2015-04-08 2018-03-15 Lg Electronics Inc. Method and device for transmitting and receiving plurality of d2d signals in wireless communication system
US11019562B2 (en) * 2015-04-08 2021-05-25 Lg Electronics Inc. Method and device for transmitting and receiving plurality of D2D signals in wireless communication system
US10455481B2 (en) * 2015-05-08 2019-10-22 Lg Electronics Inc. Method and device for transmitting and receiving discovery signal of device-to-device communication terminal in wireless communication system
US20180124682A1 (en) * 2015-05-08 2018-05-03 Lg Electronics Inc. Method and device for transmitting and receiving discovery signal of device-to-device communication terminal in wireless communication system
US10425931B2 (en) * 2016-02-17 2019-09-24 Fujitsu Limited Base station, wireless communication system, and base station processing method
WO2017146783A1 (en) * 2016-02-26 2017-08-31 Intel Corporation Discovery and paging in new radio-things sidelink
US10674515B2 (en) * 2016-03-09 2020-06-02 Sony Corporation User equipment and base station in wireless communications system, and wireless communications method
US20190090228A1 (en) * 2016-03-09 2019-03-21 Sony Corporation User equipment and base station in wireless communications system, and wireless communications method
US10575283B2 (en) 2016-04-29 2020-02-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd Method and device for inter-device communication
US11445497B2 (en) * 2018-04-28 2022-09-13 Huawei Technologies Co., Ltd. Transmission parameter configuration method and apparatus
US20220287113A1 (en) * 2021-03-04 2022-09-08 Qualcomm Incorporated Techniques for sidelink assisted device association
US11778435B2 (en) 2021-03-04 2023-10-03 Qualcomm Incorporated Sidelink assisted cellular operation optimization
US11800581B2 (en) * 2021-03-04 2023-10-24 Qualcomm Incorporated Techniques for sidelink assisted device association
US11825440B2 (en) 2021-03-04 2023-11-21 Qualcomm Incorporated Vehicular and cellular wireless device colocation using uplink communications

Also Published As

Publication number Publication date
JP2017163601A (en) 2017-09-14
KR101833187B1 (en) 2018-02-27
US20150036496A1 (en) 2015-02-05
EP2959721A4 (en) 2016-11-30
EP3291588A1 (en) 2018-03-07
US20150359023A1 (en) 2015-12-10
KR20170021911A (en) 2017-02-28
EP3300398A1 (en) 2018-03-28
CN104937859A (en) 2015-09-23
US9380444B2 (en) 2016-06-28
EP2959726A1 (en) 2015-12-30
EP2959735A4 (en) 2016-10-19
US20150365942A1 (en) 2015-12-17
HUE039322T2 (en) 2018-12-28
CN104938003B (en) 2020-02-11
CN105103591A (en) 2015-11-25
HUE045259T2 (en) 2019-12-30
EP2959725B1 (en) 2020-05-13
WO2014130093A1 (en) 2014-08-28
US10582366B2 (en) 2020-03-03
ES2676399T3 (en) 2018-07-19
EP3226618A1 (en) 2017-10-04
US20180227738A1 (en) 2018-08-09
EP2959734B1 (en) 2018-01-31
TW201436601A (en) 2014-09-16
EP2959735B1 (en) 2017-12-20
JP2017085666A (en) 2017-05-18
JP6100402B2 (en) 2017-03-22
EP3291588B1 (en) 2020-07-22
EP2959725A4 (en) 2017-02-15
EP2959721B1 (en) 2021-03-24
US20150373596A1 (en) 2015-12-24
US10542411B2 (en) 2020-01-21
US20160309405A1 (en) 2016-10-20
US10278057B2 (en) 2019-04-30
US20150105076A1 (en) 2015-04-16
HUE036794T2 (en) 2018-07-30
WO2014130144A3 (en) 2015-01-08
CN104937995B (en) 2019-08-06
EP3300398B1 (en) 2019-08-28
EP2959704A2 (en) 2015-12-30
KR101716845B1 (en) 2017-03-15
JP2016508689A (en) 2016-03-22
KR20150098668A (en) 2015-08-28
WO2014130094A1 (en) 2014-08-28
EP2959725A1 (en) 2015-12-30
WO2014130144A2 (en) 2014-08-28
EP2959711A1 (en) 2015-12-30
CN104937961B (en) 2019-10-08
US9736672B2 (en) 2017-08-15
EP2959711A4 (en) 2016-11-16
ES2751880T3 (en) 2020-04-02
ES2660058T3 (en) 2018-03-20
US20150359033A1 (en) 2015-12-10
CN104919876B (en) 2019-12-13
US9967727B2 (en) 2018-05-08
EP2959711B1 (en) 2020-07-01
KR101802414B1 (en) 2017-12-28
CN104938003A (en) 2015-09-23
TWI517725B (en) 2016-01-11
US9973915B2 (en) 2018-05-15
KR20150098672A (en) 2015-08-28
US20140295913A1 (en) 2014-10-02
US9560512B2 (en) 2017-01-31
KR101710817B1 (en) 2017-02-27
KR20170032479A (en) 2017-03-22
EP2959726A4 (en) 2016-11-02
WO2014130092A1 (en) 2014-08-28
EP2959735A1 (en) 2015-12-30
TW201446024A (en) 2014-12-01
US20180027401A1 (en) 2018-01-25
ES2667799T3 (en) 2018-05-14
BR112015017404A2 (en) 2020-08-18
WO2014130143A1 (en) 2014-08-28
CN111314891A (en) 2020-06-19
EP2959729A4 (en) 2016-11-09
KR20150102073A (en) 2015-09-04
EP2959734A1 (en) 2015-12-30
CN104937994B (en) 2019-06-11
CN107105387B (en) 2021-01-12
CN104937859B (en) 2018-04-24
KR20170005512A (en) 2017-01-13
CN104937994A (en) 2015-09-23
TW201503720A (en) 2015-01-16
WO2014130153A1 (en) 2014-08-28
KR101931889B1 (en) 2018-12-21
CN111314891B (en) 2023-06-02
WO2014130154A1 (en) 2014-08-28
EP2959729B1 (en) 2018-05-16
EP2959704A4 (en) 2016-10-12
CN104937961A (en) 2015-09-23
HUE036988T2 (en) 2018-08-28
EP2959646A1 (en) 2015-12-30
JP2016507203A (en) 2016-03-07
US9756497B2 (en) 2017-09-05
EP3226618B1 (en) 2020-09-02
US10045192B2 (en) 2018-08-07
US20140269459A1 (en) 2014-09-18
CN104919876A (en) 2015-09-16
CN104937995A (en) 2015-09-23
EP2959726B1 (en) 2019-07-10
CN104919766B (en) 2018-03-23
US20160021526A1 (en) 2016-01-21
WO2014130091A1 (en) 2014-08-28
WO2014130156A1 (en) 2014-08-28
US9973916B2 (en) 2018-05-15
WO2014130157A1 (en) 2014-08-28
US9042279B2 (en) 2015-05-26
BR112015017404B1 (en) 2022-08-23
EP2959729A1 (en) 2015-12-30
JP6316998B2 (en) 2018-04-25
US20180234829A1 (en) 2018-08-16
TWI517724B (en) 2016-01-11
EP2959646A4 (en) 2016-11-23
KR20170132352A (en) 2017-12-01
CN107105387A (en) 2017-08-29
CN110380980A (en) 2019-10-25
EP2959721A1 (en) 2015-12-30
TWI535311B (en) 2016-05-21
EP2959734A4 (en) 2016-12-14
CN104919766A (en) 2015-09-16
KR101695579B1 (en) 2017-01-13
KR20150102066A (en) 2015-09-04

Similar Documents

Publication Publication Date Title
US10278057B2 (en) Network assisted device to device discovery
US10880717B2 (en) Demodulation reference signal (DMRS) sequence design for device-to-device (D2D) discovery
US9154267B2 (en) Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
US10103847B2 (en) Methods apparatus of eNB and UE for MTC with narrowband deployment
US9504088B2 (en) Systems, methods, and devices for device-to-device discovery
CN105103609B (en) Network assisted device-to-device communication
US10645680B2 (en) Methods and devices for performing proximity discovery
US10582367B2 (en) Method for managing uplink transmission resource in wireless communication system, and apparatus therefor
JP2024045192A (en) Dynamic indication of multi-TRP PDSCH transmission scheme
WO2021227071A1 (en) Guard interval determination method and device, and storage medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIU, HUANING;PANTELEEV, SERGEY;KHORYAEV, ALEXEY;AND OTHERS;SIGNING DATES FROM 20151215 TO 20160115;REEL/FRAME:037754/0771

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:053066/0001

Effective date: 20191130

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4