US20160000981A1 - Methods and apparatus for abating noise during expression of human breast milk - Google Patents

Methods and apparatus for abating noise during expression of human breast milk Download PDF

Info

Publication number
US20160000981A1
US20160000981A1 US14/793,617 US201514793617A US2016000981A1 US 20160000981 A1 US20160000981 A1 US 20160000981A1 US 201514793617 A US201514793617 A US 201514793617A US 2016000981 A1 US2016000981 A1 US 2016000981A1
Authority
US
United States
Prior art keywords
breast milk
container
pump
milk expression
expression pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/793,617
Inventor
Jeffery B. Alvarez
Janica B. Alvarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exploramed NC7 Inc
Original Assignee
Naya Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/221,113 external-priority patent/US9616156B2/en
Priority claimed from US14/616,557 external-priority patent/US20150283311A1/en
Application filed by Naya Health Inc filed Critical Naya Health Inc
Priority to US14/793,617 priority Critical patent/US20160000981A1/en
Publication of US20160000981A1 publication Critical patent/US20160000981A1/en
Priority to US15/094,704 priority patent/US10617805B2/en
Priority to US15/094,690 priority patent/US20160296681A1/en
Priority to US15/349,917 priority patent/US10485908B2/en
Assigned to EXPLORAMED NC7, INC. reassignment EXPLORAMED NC7, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAYA HEALTH, INC.
Assigned to EXPLORAMED NC7, INC. reassignment EXPLORAMED NC7, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ON THE COVER SHEET 15/581793 SHOULD BE 15/581973 AND 4/450958 SHOULD BE 15/450958 PREVIOUSLY RECORDED ON REEL 048647 FRAME 0890. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT . Assignors: NAYA HEALTH, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/062Pump accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/062Pump accessories
    • A61M1/064Suction cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/069Means for improving milking yield
    • A61M1/0697Means for improving milking yield having means for massaging the breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/0014Special media to be introduced, removed or treated removed from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/088Supports for equipment on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1007Breast; mammary

Definitions

  • the present invention generally relates to medical devices and methods, and more particularly relates to devices and methods for expression and collection of human breast milk, and even more particularly relates to abatement of noise during expression of human breast milk.
  • the exemplary embodiments disclosed herein are preferably directed to expression of human breast milk and noise abatement during the expression, but one of skill in the art will appreciate that this is not intended to be limiting and that the devices, systems and methods disclosed herein may be used in other applications.
  • breast pumps are commonly used to collect breast milk in order to allow mothers to continue breastfeeding while apart from their children.
  • manually-actuated devices which are small, but inefficient and tiring to use
  • electrically-powered devices which are efficient, but large and bulky.
  • These can be noisy.
  • Newer pumps have been proposed that use hydraulically activated mechanisms for creating a pressure differential, or other actuation mechanisms have been proposed, and are promising but they also may create unwanted noise.
  • the noise can make breast pumping an uncomfortable experience for the user. Therefore, it would also be desirable to provide devices and methods that can be used with any milk expression device to help abate the noise. At least some of these objectives will be satisfied by the devices and methods disclosed below.
  • the present invention generally relates to medical devices, systems and methods, and more particularly relates to devices, systems and methods for expression and collection of human breast milk, and even more particularly relates to abatement of noise during expression and collection of human milk.
  • a system for abating noise during expression of breast milk comprises a noise abatement device and a breast milk expression pump.
  • the noise abatement device is configured to contain the pump, and to abate noise from the pump while the pump is operating and disposed in the noise abatement device.
  • the noise abatement device may comprise a container having an opening to receive the breast milk expression pump.
  • the container may comprise a resilient material that expands to fit the pump.
  • the container may be sized to fit the pump, wherein the container may comprise upper hinges, lower hinges, left side hinges, and right side hinges, each of the hinges configured to articulate and thereby open or close the opening of the container to accommodate the breast milk expression pump.
  • the container may comprise one or more walls configured to absorb sound generated by the breast milk expression pump disposed within the container.
  • the one or more walls may be fabricated from one or more sound-absorbing materials, and/or may comprise one or more structures inside the container that are patterned to absorb reflection of sound.
  • the one or more walls may comprise an inner layer and an outer layer.
  • the inner layer may comprise a compliant absorbing material
  • the outer layer may comprise a material that is denser than the inner layer of material, wherein the outer layer is configured to absorb sound waves that are dissipated into the inner layer.
  • the inner layer and the outer layer may be formed from sound-absorbing foam constructed with one or more sound-absorbing geometries.
  • the outer surface of the one or more walls comprises a decorative material.
  • a method for abating noise during expression of human breast milk comprises disposing a breast milk expression pump in a noise abatement device, wherein the noise abatement device is configured to abate noise from the breast milk expression pump when the breast milk expression pump is disposed within the noise abatement device.
  • the method further comprises operating the breast milk expression pump, and abating noise from the breast milk expression pump with the noise abatement device while the breast milk expression pump is operating.
  • the noise abatement device may comprise a container having an opening, and disposing a breast milk expression pump in a noise abatement device may comprise inserting the breast milk expression pump into the opening of the container.
  • the method may further comprise adjusting a configuration of the container to accommodate the breast milk expression pump. Adjusting the configuration of the container may comprise articulating one or more hinges of the container so as to adjust a size or a shape of the container to fit the breast milk expression pump.
  • the container may comprise a resilient material, and adjusting the configuration of the container may comprise expanding the container to adjust a size or a shape of the container to fit the breast milk expression pump.
  • FIG. 1 is a perspective view of an exemplary embodiment of a pumping device.
  • FIG. 2 is a perspective view of an exemplary embodiment of a pumping device.
  • FIG. 3 is a cross-section of an exemplary embodiment of a pumping device.
  • FIG. 4 illustrates an exemplary embodiment of an actuatable assembly coupled to a driving mechanism.
  • FIGS. 5A-5B illustrate an exemplary embodiment of an actuatable assembly coupled to a pendant unit.
  • FIG. 6 is a cross-sectional view of an exemplary embodiment of a breast interface.
  • FIG. 7 is a cross-sectional view of another exemplary embodiment of a breast interface.
  • FIG. 8A is a cross-sectional view of an exemplary embodiment of an integrated valve in an open position.
  • FIG. 8B is a cross-sectional view of an exemplary embodiment of an integrated valve in a closed position.
  • FIG. 9A is a cross-sectional view of an exemplary embodiment of integrated sensors within a breast interface.
  • FIG. 9B is a cross-sectional view of another exemplary embodiment of integrated sensors within a breast interface.
  • FIG. 10 illustrates an exemplary embodiment of a pendant unit and a mobile device.
  • FIG. 11 illustrates an exemplary embodiment of a pendant unit in communication with a mobile device.
  • FIG. 12 is a cross-sectional view of an exemplary embodiment of a breast interface with a mechanical deformable member.
  • FIG. 13 is a cross-sectional view of an exemplary embodiment of a mechanical driver for a mechanical deformable member.
  • FIG. 14 is a graph illustrating the pump performance of an exemplary embodiment compared to a commercial device.
  • FIG. 15 is a graph illustrating the pumping efficiency of an exemplary embodiment compared to a commercial device.
  • FIGS. 16A-16B illustrates an exemplary embodiment of a noise abatement device.
  • FIGS. 17A-17B illustrates another exemplary embodiment of a noise abatement device.
  • the present invention will be described in relation to the expression and collection of breast milk and abatement of noise during expression of breast milk.
  • the devices, systems, and methods disclosed herein may be used in any number of other applications which may or may not involve expression of breast milk.
  • the devices, systems and methods described herein may be used to create and deliver a pressure differential to a patient, such as in the treatment of sleep apnea.
  • abatement of noise during treatment of sleep apnea is also contemplated.
  • FIG. 1 illustrates an exemplary embodiment of the present invention.
  • Pumping device 100 includes breast interfaces 105 , a tube 110 , and a controller or pendant unit 115 operatively coupled to breast interfaces 105 through tube 110 .
  • Breast interfaces 105 include resilient and conformable flanges 120 , for engaging and creating a fluid seal against the breasts, and collection vessels 125 .
  • the device may optionally only have a single breast interface.
  • Pendant unit 115 houses the power source and drive mechanism for pumping device 100 , and also contains hardware for various functions, such as controlling pumping device 100 , milk production quantification, and communication with other devices.
  • Tube 110 transmits suitable energy inputs, such as mechanical energy inputs, from pendant unit 115 over a long distance to breast interfaces 105 .
  • Breast interfaces 105 convert the energy inputs into vacuum pressure against the breasts in a highly efficient manner, resulting in the expression of milk into collection vessels 125 .
  • Hydraulic or pneumatic systems can reduce pumping force requirements, and therefore also reduce the size of the pumping device, while maintaining high pumping efficiency.
  • the pumping device can utilize a hydraulic or pneumatic pumping device to generate a pressure differential against the breast for the expression and collection of milk.
  • FIG. 2 illustrates a pumping device 150 with a syringe 155 fluidly coupled to breast interface 160 by tube 165 .
  • Syringe 155 is coupled to tube 165 through a three-way valve 170 .
  • Breast interface 160 contains an exit port 175 .
  • the syringe 155 drives a fluid 180 contained within tube 165 against or away from a flexible member contained within breast interface 160 to create the pressure differential necessary for milk expression from the breast.
  • FIG. 3 illustrates another embodiment of a pumping device 200 .
  • the actuatable assembly 205 includes an assembly housing 210 , a driving element 215 , radial seals 220 , and a shaft 222 .
  • Driving element 215 is operatively coupled to a pendant unit, such as pendant unit 115 , through shaft 222 .
  • the tube 225 contains a fluid 230 and is fluidly coupled to the actuatable assembly 205 and the breast interface 235 .
  • the breast interface 235 consists of an interface housing 240 , a flexible membrane 245 , a reservoir 250 , a sealing element 255 , an expression area 260 , and a drain port 265 .
  • the sealing element 255 includes deformable portion 270 .
  • the drain port 265 is coupled to a collection vessel 275 and includes a flap valve 280 .
  • Actuatable assembly 205 displaces fluid 230 contained within tube 225 , which can be a flexible line. Fluid 230 occupies reservoir 250 within breast interface 235 and is coupled with flexible membrane 245 . Flexible membrane 245 transmits vacuum pressure from fluid 230 to the deformable portion 270 of sealing element 255 . When a breast is engaged into and fluidly sealed with breast interface 235 by sealing element 255 , displacement of the actuatable element 215 produces substantial vacuum pressure against the breast through flexible membrane 245 and deformable portion 270 , resulting in the expression of breast milk into expression area 260 . The expressed milk drains through drain port 265 into collection vessel 275 . Drain port 265 is configured with a flap valve 280 to provide passage of milk while maintaining vacuum pressure in expression area 260 .
  • the fluid for the hydraulic pumping device can be any suitable fluid, such as an incompressible fluid.
  • the incompressible fluid can be water or oil.
  • the fluid can be any suitable gas, such as air. Suitable incompressible fluids and gases for hydraulic systems are known to those of skill in the art.
  • Actuatable assembly 205 can be a piston assembly, a pump such as a diaphragm pump, or any other suitable actuation mechanism.
  • the optimal configuration for actuatable assembly 205 can depend on a number of factors, such as: vacuum requirements; size, power, and other needs of the pumping device 200 ; and the properties of the fluid 230 , such as viscosity, biocompatibility, and fluid life requirements.
  • FIG. 3 illustrates an exemplary embodiment in which actuatable assembly 205 is a piston assembly and driving element 215 is a piston.
  • Actuatable assembly 205 includes radial seals 220 , such as 0 -rings, sealing against assembly housing 210 to prevent undesired egress of fluid 230 and to enable driving of fluid 230 .
  • FIG. 4 illustrates another exemplary embodiment of an actuatable assembly 300 including a pair of pistons 305 .
  • the actuatable assembly includes a driving element powered by a suitable driving mechanism, such as a driving mechanism residing in pendant unit 115 .
  • a suitable driving mechanism such as a driving mechanism residing in pendant unit 115 .
  • the driving element such as driving element 215
  • the driving element 215 may be actuated electromechanically by a motor, or manually by a suitable user-operated interface, such as a lever.
  • Various drive modalities known to those of skill in the art can be used.
  • implementation of the exemplary hydraulic pumping devices as described herein enables the use of suitable drive modalities such as direct drive and solenoids, owing to the reduced force requirements of hydraulic systems.
  • the pistons 305 include couplings 310 to a crankshaft 315 .
  • the crankshaft 315 is operatively coupled to a motor 320 through a belt drive 325 .
  • the crankshaft 315 drives the pair of pistons 305 with the same stroke timing in order to apply vacuum pressure against both breasts simultaneously, a feature desirable for increased milk production.
  • the crankshaft 315 can drive the pair of pistons 305 with any suitable stroke timing, such as alternating or offset stroke cycles.
  • the driving mechanism can be powered by any suitable power source, such as a local battery or an AC adaptor.
  • the driving mechanism can be controlled by hardware, such as onboard electronics located within pendant unit 115 .
  • FIG. 5 illustrates an exemplary embodiment of an actuatable assembly 350 that includes releasable coupling 355 .
  • actuatable assembly 350 is releasably coupled to a pendant unit 360 and the driving mechanism housed therein.
  • the coupling can be a mechanical coupling or any suitable quick release mechanism known to those of skill in the art.
  • the releasably coupled design allows for flexibility in the configuration and use of the pumping device. For instance, user comfort can be improved through the use of differently sized breast interfaces for compatibility with various breast sizes. Additionally, this feature enables a common pumping device to be used with interchangeable breast interfaces, thus reducing the risk of spreading pathogens. Furthermore, the releasable coupling enables easy replacement of individual parts of the pumping device.
  • the flexible membrane 245 is located within breast interface 235 and disposed over at least portion thereof, forming reservoir 250 between the interface housing 240 and the flexible membrane 245 .
  • the flexible membrane 245 deforms substantially when subject to the negative pressures created when the fluid 230 is displaced from reservoir 250 by actuatable assembly 205 .
  • the amount of deformation of the flexible membrane 245 can be controlled by many factors, (e.g., wall thickness, durometer, surface area) and can be optimized based on the pumping device (e.g., pump power, vacuum requirements).
  • FIG. 6 illustrates an exemplary flexible membrane 370 with a specified thickness and durometer.
  • FIG. 7 illustrates another embodiment of flexible membrane 375 with corrugated features 380 for increased surface area.
  • the flexible membrane can be made of a material designed to expand and contract when subject to pressures from the coupling fluid such as silicone, polyether block amides such as PEBAX, and polychloroprenes such as neoprene.
  • the flexible membrane can be fabricated from a substantially rigid material, such as stainless steel, nitinol, high durometer polymer, or high durometer elastomer.
  • the rigid material would be designed with stress and/or strain distribution elements to enable the substantial deformation of the flexible membrane without surpassing the yield point of the material.
  • FIGS. 8A and 8B illustrate preferred embodiments of a breast interface 400 in which an exit valve 405 is integrated into the flexible membrane 410 to control the flow of expressed milk through exit port 415 .
  • the exit valve 405 is opened to allow fluid flow when the flexible membrane 410 is relaxed, as shown in FIG. 8A , and is closed to prevent fluid flow when the flexible membrane 410 is deformed, as shown in FIG. 8B .
  • the exit valve 405 enables substantial vacuum pressure to be present in expression area 420 during extraction, while allowing milk to drain during the rest phase of the pump stroke. While many conventional breast pump valves function on pressure differentials alone, the exit valve 405 can preferably be configured to also function on the mechanical movement of flexible membrane 410 .
  • Collection vessel 275 can be any suitable container, such as a bottle or a bag. In many embodiments, collection vessel 275 is removably coupled to flexible membrane 245 . Collection vessel 275 can be coupled directly or remotely via any suitable device such as extension tubing.
  • Exemplary embodiments of the device described herein may provide digital-based means to automatically measure and track milk production for improved convenience, efficiency, and accuracy.
  • FIGS. 9A and 9B illustrates exemplary embodiments of a breast interface 450 with one or more integrated sensors 455 .
  • Sensors 455 are preferably located in flap valve 460 , but may also be located in exit valve 465 , or any other suitable location for monitoring fluid flow.
  • at least one sensor 455 is integrated into a valve that is opened by fluid flow and detects the length of time that the valve is opened. The sensor signal can be interrogated to quantify the fluid flow. Suitable sensors are known to those of skill in the art, such as accelerometers, Hall effect sensors, and photodiode/LED sensors.
  • the breast interface can include a single sensor or multiple sensors to quantify milk production.
  • FIG. 10 illustrates an exemplary embodiment of pendant unit 500 in which milk expression data is shown on a display screen 505 .
  • the pendant unit 500 collects, processes, stores, and displays data related to milk expression.
  • the pendant unit 500 can transmit the data to a second device, such as a mobile phone 510 .
  • FIG. 11 illustrates data transmission 515 between pendant unit 500 and a mobile phone 510 .
  • Suitable methods for communication and data transmission between devices are known to those of skill in the art, such as Bluetooth or near field communication.
  • the pendant unit 500 communicates with a mobile phone 510 to transmit milk expression data, such as expression volume, duration, and date.
  • the mobile phone 510 includes a mobile application to collect and aggregate the expression data and display it in an interactive format.
  • the mobile application includes additional features that allow the user to overlay information such as lifestyle choices, diet, and strategies for increasing milk production, in order to facilitate the comparison of such information with milk production statistics.
  • the pendant unit 500 can send information about the times of pump usage to the mobile phone 510 so that the mobile application can identify when pumping has occurred and set reminders at desired pumping times. Such reminders can help avoid missed pumping sessions, and thus reduce the incidence of associated complications such as mastitis.
  • FIG. 12 illustrates an alternative embodiment of a breast interface 600 in which a mechanical deformable member 605 can be used in place of a flexible membrane.
  • the mechanical deformable member 605 can be constructed from similar techniques as those used for the flexible membrane as described herein.
  • the mechanical deformable member 605 is coupled to a tensile element 610 .
  • tensile element 610 is disposed within an axial load absorbing member 615 .
  • the axial load absorbing member 615 is disposed within tube 620 .
  • tensile element 610 is concentrically disposed within axial load absorbing member 615 and axial load absorbing member 615 is concentrically disposed within tube 620 .
  • Alternative arrangements of tensile element 610 , axial load absorbing member 615 , and tube 620 can also be used.
  • FIG. 13 illustrates the tensile element 610 coupled to driving element 625 of an actuatable assembly 630 within an assembly housing 635 .
  • Driving element 625 is operatively coupled to a driving mechanism, such as a driving mechanism housed within a pendant unit, through shaft 640 .
  • Axial load absorbing member 615 within tube 620 is fixedly coupled to the assembly housing 635 . Displacement of the driving element 625 transmits tensile force through tensile element 610 to the mechanical deforming member 605 to create vacuum pressure against the breast.
  • the tensile element 610 can be any suitable device, such as a wire, coil, or rope, and can be made from any suitable material, such as metals, polymers, or elastomers.
  • Axial load absorbing member 615 can be made from any suitable axially stiff materials, such as metals or polymers, and can be configured into any suitable axially stiff geometry, such as a tube or coil.
  • FIGS. 14 and 15 illustrate experimental pumping data obtained from a commercial breast pump device and an exemplary embodiment of the present invention.
  • the exemplary embodiment utilized an incompressible fluid for pumping and had a maximum hydraulic fluid volume of 4 cc, while the commercial device utilized air for pumping and had a maximum volume of 114 cc.
  • FIG. 14 illustrates a graph of the pump performance as quantified by vacuum pressure generated per run.
  • pressure measurements were taken for 1 cc, 2 cc, 3 cc, and 4 cc of fluid volume displaced by the pump, with the run number corresponding to the volume in cc.
  • measurements were taken with the pump set to one of seven equally incremented positions along the vacuum adjustment gauge representing 46 cc, 57 cc, 68 cc, 80 cc, 91 cc, 103 cc, and 114 cc of fluid volume displaced by the pump, respectively, with the run number corresponding to the position number.
  • Curve 700 corresponds to the exemplary embodiment and curve 705 corresponds to the commercial device.
  • the exemplary embodiment generated higher levels of vacuum pressure per displacement volume compared to the commercial device, with maximum vacuum pressures of ⁇ 240.5 mmHg and ⁇ 177.9 mmHg, respectively.
  • FIG. 15 illustrates a graph of the pump efficiency as measured by the maximum vacuum pressure per maximum volume of fluid displaced, with bar 710 corresponding to the exemplary embodiment and bar 715 corresponding to the commercial device.
  • the exemplary embodiment demonstrated a 42-fold increase in pumping efficiency compared to the commercial device, with efficiencies of ⁇ 71.1 mmHg/cc and ⁇ 1.7 mmHg/cc, respectively.
  • the pumping devices often generate noise that can be loud and uncomfortable to the user during expression of breast milk. Additionally, a quiet device allows more discrete and convenient pumping. Therefore, it can be desirable to provide additional devices and methods that facilitate abatement of noise during expression of milk.
  • the devices, systems and methods for noise abatement that are described below may be used with any of the pumps currently available or disclosed herein. Additionally, the devices, systems and methods described below may be combined with or substituted with any of the other features described herein.
  • FIGS. 16A-16B illustrate an exemplary embodiment of a noise abatement device 1600 .
  • the noise abatement device 1600 includes a container or sack 1604 with an opening 1616 through which the pump device 1602 may be inserted.
  • the container or sack 1604 may be sized to fit the pump device, or it may be fabricated from resilient material that expands to accept the pump, or it may be oversized and fit the pump with room to spare.
  • the container 1604 includes upper and lower hinges 1606 and left and right side hinges 1608 that allow the sides of the container to articulate and open or close to accommodate the pump 1602 .
  • the walls 1610 may be fabricated from any number of well-known sound absorbing materials, or they may have structures inside the container that are patterned to prevent or minimize noise by absorbing or preventing reflection of sound such as in an anechoic chamber.
  • the container 1604 includes walls 1610 that preferably have two layers of material, an inner layer of material 1614 , and an outer layer of material 1612 , or an outer liner as seen in FIG. 16B .
  • the outer layer of material 1612 is preferably a dense material and may be described as a high momentum material. This material is typically denser than the compliant absorbing material that forms the inner layer 1614 . When subjected to sound vibrations, the high momentum material absorbs the sound waves, which are dissipated through kinetic energy into the compliant inner layer of material 1614 .
  • the container may be fabricated from flexible materials and thus the hinges may not be required.
  • FIG. 17A-17B illustrate another exemplary embodiment of a sack 1702 in which a pump 1706 may be disposed in order to abate noise.
  • the pump 1706 may be any currently available pump or any of those disclosed herein.
  • the sack has a central opening 1704 sized to accept the pump 1706 .
  • the sack 1702 has an outer wall 1708 which is formed from sound absorbing foam constructed with geometries known in the art that absorb sound.
  • the outer surface of wall 1708 is preferably formed with a decorative material designed to be aesthetically pleasing, and the inner layer 1712 is preferably formed with sound absorbing foam.
  • FIG. 17B illustrates a cross-section of the sack wall 1708 .
  • noise abatement container may be independent or integrated into another container such as a bag.

Abstract

A system for abating noise during expression of human breast milk includes a noise abatement device and a breast milk expression pump. The noise abatement device may comprise a container configured to receive the breast milk expression pump, the container configured to abate noise generated by the breast milk expression pump disposed within the container. The noise abatement container may comprise one or more sound-absorbing materials or geometries. When the pump is positioned in the noise abatement container, noise from the pump is abated while the pump is operating.

Description

    CROSS-REFERENCE
  • This application claims the benefit of U.S. Provisional Application No. 62/021,604, filed Jul. 7, 2014 (Attorney Docket No. 44936-707.101), the full disclosure of which is incorporated herein by reference.
  • The present application is related to U.S. patent application Ser. No. 14/221,113, filed Mar. 20, 2014 [Attorney Docket No. 44936-703.201], U.S. patent application Ser. No. 14/616,557, filed on Feb. 6, 2015 [Attorney Docket No. 44936-704.201], U.S. Provisional Application No. 62/021,601, filed on Jul. 7, 2014 [Attorney Docket No. 44936-705.101], U.S. Provisional Application No. 62/021,597, filed on Jul. 7, 2014 [Attorney Docket No. 44936-706.101], and U.S. Provisional Application No. 62/028,219, filed on Jul. 23, 2014 [Attorney Docket No. 44936-708.101], the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to medical devices and methods, and more particularly relates to devices and methods for expression and collection of human breast milk, and even more particularly relates to abatement of noise during expression of human breast milk.
  • The exemplary embodiments disclosed herein are preferably directed to expression of human breast milk and noise abatement during the expression, but one of skill in the art will appreciate that this is not intended to be limiting and that the devices, systems and methods disclosed herein may be used in other applications.
  • Breast pumps are commonly used to collect breast milk in order to allow mothers to continue breastfeeding while apart from their children. Currently, there are two primary types of breast pumps: manually-actuated devices, which are small, but inefficient and tiring to use; and electrically-powered devices, which are efficient, but large and bulky. These can be noisy. Newer pumps have been proposed that use hydraulically activated mechanisms for creating a pressure differential, or other actuation mechanisms have been proposed, and are promising but they also may create unwanted noise. The noise can make breast pumping an uncomfortable experience for the user. Therefore, it would also be desirable to provide devices and methods that can be used with any milk expression device to help abate the noise. At least some of these objectives will be satisfied by the devices and methods disclosed below.
  • 2. Description of the Background Art
  • The following US patents are related to expression and collection of human breast milk: U.S. Pat. Nos. 6,673,036; 6,749,582; 6,840,918; 6,887,210; 7,875,000; 8,118,772; and 8,216,179.
  • SUMMARY OF THE INVENTION
  • The present invention generally relates to medical devices, systems and methods, and more particularly relates to devices, systems and methods for expression and collection of human breast milk, and even more particularly relates to abatement of noise during expression and collection of human milk.
  • In a first aspect of the present invention, a system for abating noise during expression of breast milk comprises a noise abatement device and a breast milk expression pump. The noise abatement device is configured to contain the pump, and to abate noise from the pump while the pump is operating and disposed in the noise abatement device.
  • The noise abatement device may comprise a container having an opening to receive the breast milk expression pump. The container may comprise a resilient material that expands to fit the pump. Alternatively or in combination, the container may be sized to fit the pump, wherein the container may comprise upper hinges, lower hinges, left side hinges, and right side hinges, each of the hinges configured to articulate and thereby open or close the opening of the container to accommodate the breast milk expression pump.
  • The container may comprise one or more walls configured to absorb sound generated by the breast milk expression pump disposed within the container. The one or more walls may be fabricated from one or more sound-absorbing materials, and/or may comprise one or more structures inside the container that are patterned to absorb reflection of sound. The one or more walls may comprise an inner layer and an outer layer. The inner layer may comprise a compliant absorbing material, and the outer layer may comprise a material that is denser than the inner layer of material, wherein the outer layer is configured to absorb sound waves that are dissipated into the inner layer. The inner layer and the outer layer may be formed from sound-absorbing foam constructed with one or more sound-absorbing geometries. The outer surface of the one or more walls comprises a decorative material.
  • In another aspect of the present invention, a method for abating noise during expression of human breast milk comprises disposing a breast milk expression pump in a noise abatement device, wherein the noise abatement device is configured to abate noise from the breast milk expression pump when the breast milk expression pump is disposed within the noise abatement device. The method further comprises operating the breast milk expression pump, and abating noise from the breast milk expression pump with the noise abatement device while the breast milk expression pump is operating.
  • The noise abatement device may comprise a container having an opening, and disposing a breast milk expression pump in a noise abatement device may comprise inserting the breast milk expression pump into the opening of the container. The method may further comprise adjusting a configuration of the container to accommodate the breast milk expression pump. Adjusting the configuration of the container may comprise articulating one or more hinges of the container so as to adjust a size or a shape of the container to fit the breast milk expression pump. Alternatively or in combination, the container may comprise a resilient material, and adjusting the configuration of the container may comprise expanding the container to adjust a size or a shape of the container to fit the breast milk expression pump.
  • These and other embodiments are described in further detail in the following description related to the appended drawing figures.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1 is a perspective view of an exemplary embodiment of a pumping device.
  • FIG. 2 is a perspective view of an exemplary embodiment of a pumping device.
  • FIG. 3 is a cross-section of an exemplary embodiment of a pumping device.
  • FIG. 4 illustrates an exemplary embodiment of an actuatable assembly coupled to a driving mechanism.
  • FIGS. 5A-5B illustrate an exemplary embodiment of an actuatable assembly coupled to a pendant unit.
  • FIG. 6 is a cross-sectional view of an exemplary embodiment of a breast interface.
  • FIG. 7 is a cross-sectional view of another exemplary embodiment of a breast interface.
  • FIG. 8A is a cross-sectional view of an exemplary embodiment of an integrated valve in an open position.
  • FIG. 8B is a cross-sectional view of an exemplary embodiment of an integrated valve in a closed position.
  • FIG. 9A is a cross-sectional view of an exemplary embodiment of integrated sensors within a breast interface.
  • FIG. 9B is a cross-sectional view of another exemplary embodiment of integrated sensors within a breast interface.
  • FIG. 10 illustrates an exemplary embodiment of a pendant unit and a mobile device.
  • FIG. 11 illustrates an exemplary embodiment of a pendant unit in communication with a mobile device.
  • FIG. 12 is a cross-sectional view of an exemplary embodiment of a breast interface with a mechanical deformable member.
  • FIG. 13 is a cross-sectional view of an exemplary embodiment of a mechanical driver for a mechanical deformable member.
  • FIG. 14 is a graph illustrating the pump performance of an exemplary embodiment compared to a commercial device.
  • FIG. 15 is a graph illustrating the pumping efficiency of an exemplary embodiment compared to a commercial device.
  • FIGS. 16A-16B illustrates an exemplary embodiment of a noise abatement device.
  • FIGS. 17A-17B illustrates another exemplary embodiment of a noise abatement device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Specific embodiments of the disclosed devices and methods will now be described with reference to the drawings. Nothing in this detailed description is intended to imply that any particular component, feature, or step is essential to the invention. One of skill in the art will appreciate that various features or steps may be substituted or combined with one another.
  • The present invention will be described in relation to the expression and collection of breast milk and abatement of noise during expression of breast milk. However, one of skill in the art will appreciate that this is not intended to be limiting, and the devices, systems, and methods disclosed herein may be used in any number of other applications which may or may not involve expression of breast milk. For example, the devices, systems and methods described herein may be used to create and deliver a pressure differential to a patient, such as in the treatment of sleep apnea. Thus abatement of noise during treatment of sleep apnea is also contemplated.
  • FIG. 1 illustrates an exemplary embodiment of the present invention. Pumping device 100 includes breast interfaces 105, a tube 110, and a controller or pendant unit 115 operatively coupled to breast interfaces 105 through tube 110. Breast interfaces 105 include resilient and conformable flanges 120, for engaging and creating a fluid seal against the breasts, and collection vessels 125. The device may optionally only have a single breast interface. Pendant unit 115 houses the power source and drive mechanism for pumping device 100, and also contains hardware for various functions, such as controlling pumping device 100, milk production quantification, and communication with other devices. Tube 110 transmits suitable energy inputs, such as mechanical energy inputs, from pendant unit 115 over a long distance to breast interfaces 105. Breast interfaces 105 convert the energy inputs into vacuum pressure against the breasts in a highly efficient manner, resulting in the expression of milk into collection vessels 125.
  • One of skill in the art will appreciate that components and features of this exemplary embodiment can be combined or substituted with components and features of any of the embodiments of the present invention as described below. Similarly, components and features of other embodiments disclosed herein may be substituted or combined with one another.
  • Hydraulic Pumping Device
  • Hydraulic or pneumatic systems can reduce pumping force requirements, and therefore also reduce the size of the pumping device, while maintaining high pumping efficiency. In a preferred embodiment, the pumping device can utilize a hydraulic or pneumatic pumping device to generate a pressure differential against the breast for the expression and collection of milk.
  • Exemplary hydraulic pumping devices are depicted in FIGS. 2 and 3. FIG. 2 illustrates a pumping device 150 with a syringe 155 fluidly coupled to breast interface 160 by tube 165. Syringe 155 is coupled to tube 165 through a three-way valve 170. Breast interface 160 contains an exit port 175. The syringe 155 drives a fluid 180 contained within tube 165 against or away from a flexible member contained within breast interface 160 to create the pressure differential necessary for milk expression from the breast.
  • FIG. 3 illustrates another embodiment of a pumping device 200. The actuatable assembly 205 includes an assembly housing 210, a driving element 215, radial seals 220, and a shaft 222. Driving element 215 is operatively coupled to a pendant unit, such as pendant unit 115, through shaft 222. The tube 225 contains a fluid 230 and is fluidly coupled to the actuatable assembly 205 and the breast interface 235. The breast interface 235 consists of an interface housing 240, a flexible membrane 245, a reservoir 250, a sealing element 255, an expression area 260, and a drain port 265. The sealing element 255 includes deformable portion 270. The drain port 265 is coupled to a collection vessel 275 and includes a flap valve 280.
  • Actuatable assembly 205 displaces fluid 230 contained within tube 225, which can be a flexible line. Fluid 230 occupies reservoir 250 within breast interface 235 and is coupled with flexible membrane 245. Flexible membrane 245 transmits vacuum pressure from fluid 230 to the deformable portion 270 of sealing element 255. When a breast is engaged into and fluidly sealed with breast interface 235 by sealing element 255, displacement of the actuatable element 215 produces substantial vacuum pressure against the breast through flexible membrane 245 and deformable portion 270, resulting in the expression of breast milk into expression area 260. The expressed milk drains through drain port 265 into collection vessel 275. Drain port 265 is configured with a flap valve 280 to provide passage of milk while maintaining vacuum pressure in expression area 260.
  • The fluid for the hydraulic pumping device can be any suitable fluid, such as an incompressible fluid. In many embodiments, the incompressible fluid can be water or oil. Alternatively, the fluid can be any suitable gas, such as air. Suitable incompressible fluids and gases for hydraulic systems are known to those of skill in the art.
  • One of skill in the art will appreciate that components and features of any of the exemplary embodiments of the hydraulic pumping device can be combined or substituted with components and features of any of the embodiments of the present invention as described herein.
  • Actuation Mechanism
  • Many actuation mechanisms known to those of skill in the art can be utilized for the actuatable assembly 205. Actuatable assembly 205 can be a piston assembly, a pump such as a diaphragm pump, or any other suitable actuation mechanism. The optimal configuration for actuatable assembly 205 can depend on a number of factors, such as: vacuum requirements; size, power, and other needs of the pumping device 200; and the properties of the fluid 230, such as viscosity, biocompatibility, and fluid life requirements.
  • FIG. 3 illustrates an exemplary embodiment in which actuatable assembly 205 is a piston assembly and driving element 215 is a piston. Actuatable assembly 205 includes radial seals 220, such as 0-rings, sealing against assembly housing 210 to prevent undesired egress of fluid 230 and to enable driving of fluid 230.
  • FIG. 4 illustrates another exemplary embodiment of an actuatable assembly 300 including a pair of pistons 305.
  • In preferred embodiments, the actuatable assembly includes a driving element powered by a suitable driving mechanism, such as a driving mechanism residing in pendant unit 115. Many driving mechanisms are known to those of skill in the art. For instance, the driving element, such as driving element 215, may be actuated electromechanically by a motor, or manually by a suitable user-operated interface, such as a lever. Various drive modalities known to those of skill in the art can be used. In particular, implementation of the exemplary hydraulic pumping devices as described herein enables the use of suitable drive modalities such as direct drive and solenoids, owing to the reduced force requirements of hydraulic systems.
  • Referring now to the exemplary embodiment of FIG. 4, the pistons 305 include couplings 310 to a crankshaft 315. The crankshaft 315 is operatively coupled to a motor 320 through a belt drive 325. The crankshaft 315 drives the pair of pistons 305 with the same stroke timing in order to apply vacuum pressure against both breasts simultaneously, a feature desirable for increased milk production. Alternatively, the crankshaft 315 can drive the pair of pistons 305 with any suitable stroke timing, such as alternating or offset stroke cycles.
  • The driving mechanism can be powered by any suitable power source, such as a local battery or an AC adaptor. The driving mechanism can be controlled by hardware, such as onboard electronics located within pendant unit 115.
  • FIG. 5 illustrates an exemplary embodiment of an actuatable assembly 350 that includes releasable coupling 355. Preferably, actuatable assembly 350 is releasably coupled to a pendant unit 360 and the driving mechanism housed therein. The coupling can be a mechanical coupling or any suitable quick release mechanism known to those of skill in the art. The releasably coupled design allows for flexibility in the configuration and use of the pumping device. For instance, user comfort can be improved through the use of differently sized breast interfaces for compatibility with various breast sizes. Additionally, this feature enables a common pumping device to be used with interchangeable breast interfaces, thus reducing the risk of spreading pathogens. Furthermore, the releasable coupling enables easy replacement of individual parts of the pumping device.
  • One of skill in the art will appreciate that components and features of any of the exemplary embodiments of the actuation mechanism can be combined or substituted with components and features of any of the embodiments of the present invention as described herein.
  • Flexible Membrane
  • In many embodiments such as the embodiment depicted in FIG. 3, the flexible membrane 245 is located within breast interface 235 and disposed over at least portion thereof, forming reservoir 250 between the interface housing 240 and the flexible membrane 245. Preferably, the flexible membrane 245 deforms substantially when subject to the negative pressures created when the fluid 230 is displaced from reservoir 250 by actuatable assembly 205. The amount of deformation of the flexible membrane 245 can be controlled by many factors, (e.g., wall thickness, durometer, surface area) and can be optimized based on the pumping device (e.g., pump power, vacuum requirements).
  • FIG. 6 illustrates an exemplary flexible membrane 370 with a specified thickness and durometer.
  • FIG. 7 illustrates another embodiment of flexible membrane 375 with corrugated features 380 for increased surface area.
  • Suitable materials for the flexible membrane are known to those of skill in the art. In many embodiments, the flexible membrane can be made of a material designed to expand and contract when subject to pressures from the coupling fluid such as silicone, polyether block amides such as PEBAX, and polychloroprenes such as neoprene. Alternatively, the flexible membrane can be fabricated from a substantially rigid material, such as stainless steel, nitinol, high durometer polymer, or high durometer elastomer. In these embodiments, the rigid material would be designed with stress and/or strain distribution elements to enable the substantial deformation of the flexible membrane without surpassing the yield point of the material.
  • FIGS. 8A and 8B illustrate preferred embodiments of a breast interface 400 in which an exit valve 405 is integrated into the flexible membrane 410 to control the flow of expressed milk through exit port 415. The exit valve 405 is opened to allow fluid flow when the flexible membrane 410 is relaxed, as shown in FIG. 8A, and is closed to prevent fluid flow when the flexible membrane 410 is deformed, as shown in FIG. 8B. The exit valve 405 enables substantial vacuum pressure to be present in expression area 420 during extraction, while allowing milk to drain during the rest phase of the pump stroke. While many conventional breast pump valves function on pressure differentials alone, the exit valve 405 can preferably be configured to also function on the mechanical movement of flexible membrane 410. Incorporation of an integrated exit valve 405 with mechanical functionality as described herein can improve the sealing of the breast interface 400 during vacuum creation. Furthermore, the implementation of an exit valve integrally formed within the flexible membrane 410 such as exit valve 405 reduces the number of parts to be cleaned.
  • One of skill in the art will appreciate that components and features of any of the exemplary embodiments of the flexible membrane can be combined or substituted with components and features of any of the embodiments of the present invention as described herein.
  • Milk Collection and Quantification System
  • With reference to FIG. 3, expressed milk drains through exit port 265 in flexible membrane 245 into a collection vessel 275. Collection vessel 275 can be any suitable container, such as a bottle or a bag. In many embodiments, collection vessel 275 is removably coupled to flexible membrane 245. Collection vessel 275 can be coupled directly or remotely via any suitable device such as extension tubing.
  • In many instances, it can be desirable to track various data related to milk expression and collection, such as the amount of milk production. Currently, the tracking of milk production is commonly accomplished by manual measurements and record-keeping. Exemplary embodiments of the device described herein may provide digital-based means to automatically measure and track milk production for improved convenience, efficiency, and accuracy.
  • FIGS. 9A and 9B illustrates exemplary embodiments of a breast interface 450 with one or more integrated sensors 455. Sensors 455 are preferably located in flap valve 460, but may also be located in exit valve 465, or any other suitable location for monitoring fluid flow. In a preferred embodiment, at least one sensor 455 is integrated into a valve that is opened by fluid flow and detects the length of time that the valve is opened. The sensor signal can be interrogated to quantify the fluid flow. Suitable sensors are known to those of skill in the art, such as accelerometers, Hall effect sensors, and photodiode/LED sensors. The breast interface can include a single sensor or multiple sensors to quantify milk production.
  • FIG. 10 illustrates an exemplary embodiment of pendant unit 500 in which milk expression data is shown on a display screen 505. In many embodiments, the pendant unit 500 collects, processes, stores, and displays data related to milk expression. Preferably, the pendant unit 500 can transmit the data to a second device, such as a mobile phone 510.
  • FIG. 11 illustrates data transmission 515 between pendant unit 500 and a mobile phone 510. Suitable methods for communication and data transmission between devices are known to those of skill in the art, such as Bluetooth or near field communication.
  • In exemplary embodiments, the pendant unit 500 communicates with a mobile phone 510 to transmit milk expression data, such as expression volume, duration, and date. The mobile phone 510 includes a mobile application to collect and aggregate the expression data and display it in an interactive format. Preferably, the mobile application includes additional features that allow the user to overlay information such as lifestyle choices, diet, and strategies for increasing milk production, in order to facilitate the comparison of such information with milk production statistics. Additionally, the pendant unit 500 can send information about the times of pump usage to the mobile phone 510 so that the mobile application can identify when pumping has occurred and set reminders at desired pumping times. Such reminders can help avoid missed pumping sessions, and thus reduce the incidence of associated complications such as mastitis.
  • One of skill in the art will appreciate that components and features of any of the exemplary embodiments of the milk collection and quantification system can be combined or substituted with components and features of any of the embodiments of the present invention as described herein.
  • Mechanical Pumping Device
  • FIG. 12 illustrates an alternative embodiment of a breast interface 600 in which a mechanical deformable member 605 can be used in place of a flexible membrane. The mechanical deformable member 605 can be constructed from similar techniques as those used for the flexible membrane as described herein. The mechanical deformable member 605 is coupled to a tensile element 610. In some instances, tensile element 610 is disposed within an axial load absorbing member 615. The axial load absorbing member 615 is disposed within tube 620. Preferably, tensile element 610 is concentrically disposed within axial load absorbing member 615 and axial load absorbing member 615 is concentrically disposed within tube 620. Alternative arrangements of tensile element 610, axial load absorbing member 615, and tube 620 can also be used.
  • FIG. 13 illustrates the tensile element 610 coupled to driving element 625 of an actuatable assembly 630 within an assembly housing 635. Driving element 625 is operatively coupled to a driving mechanism, such as a driving mechanism housed within a pendant unit, through shaft 640. Axial load absorbing member 615 within tube 620 is fixedly coupled to the assembly housing 635. Displacement of the driving element 625 transmits tensile force through tensile element 610 to the mechanical deforming member 605 to create vacuum pressure against the breast.
  • The tensile element 610 can be any suitable device, such as a wire, coil, or rope, and can be made from any suitable material, such as metals, polymers, or elastomers. Axial load absorbing member 615 can be made from any suitable axially stiff materials, such as metals or polymers, and can be configured into any suitable axially stiff geometry, such as a tube or coil.
  • One of skill in the art will appreciate that components and features of any of the exemplary embodiments of the mechanical pumping device can be combined or substituted with components and features of any of the embodiments of the present invention as described herein.
  • Experimental Data
  • FIGS. 14 and 15 illustrate experimental pumping data obtained from a commercial breast pump device and an exemplary embodiment of the present invention. The exemplary embodiment utilized an incompressible fluid for pumping and had a maximum hydraulic fluid volume of 4 cc, while the commercial device utilized air for pumping and had a maximum volume of 114 cc.
  • FIG. 14 illustrates a graph of the pump performance as quantified by vacuum pressure generated per run. For the exemplary embodiment, pressure measurements were taken for 1 cc, 2 cc, 3 cc, and 4 cc of fluid volume displaced by the pump, with the run number corresponding to the volume in cc. For the commercial device, measurements were taken with the pump set to one of seven equally incremented positions along the vacuum adjustment gauge representing 46 cc, 57 cc, 68 cc, 80 cc, 91 cc, 103 cc, and 114 cc of fluid volume displaced by the pump, respectively, with the run number corresponding to the position number. Curve 700 corresponds to the exemplary embodiment and curve 705 corresponds to the commercial device. The exemplary embodiment generated higher levels of vacuum pressure per displacement volume compared to the commercial device, with maximum vacuum pressures of −240.5 mmHg and −177.9 mmHg, respectively.
  • FIG. 15 illustrates a graph of the pump efficiency as measured by the maximum vacuum pressure per maximum volume of fluid displaced, with bar 710 corresponding to the exemplary embodiment and bar 715 corresponding to the commercial device. The exemplary embodiment demonstrated a 42-fold increase in pumping efficiency compared to the commercial device, with efficiencies of −71.1 mmHg/cc and −1.7 mmHg/cc, respectively.
  • Noise Abatement
  • As previously mentioned, the pumping devices often generate noise that can be loud and uncomfortable to the user during expression of breast milk. Additionally, a quiet device allows more discrete and convenient pumping. Therefore, it can be desirable to provide additional devices and methods that facilitate abatement of noise during expression of milk. The devices, systems and methods for noise abatement that are described below may be used with any of the pumps currently available or disclosed herein. Additionally, the devices, systems and methods described below may be combined with or substituted with any of the other features described herein.
  • FIGS. 16A-16B illustrate an exemplary embodiment of a noise abatement device 1600. The noise abatement device 1600 includes a container or sack 1604 with an opening 1616 through which the pump device 1602 may be inserted. The container or sack 1604 may be sized to fit the pump device, or it may be fabricated from resilient material that expands to accept the pump, or it may be oversized and fit the pump with room to spare. In this exemplary embodiment, the container 1604 includes upper and lower hinges 1606 and left and right side hinges 1608 that allow the sides of the container to articulate and open or close to accommodate the pump 1602. The walls 1610 may be fabricated from any number of well-known sound absorbing materials, or they may have structures inside the container that are patterned to prevent or minimize noise by absorbing or preventing reflection of sound such as in an anechoic chamber. The container 1604 includes walls 1610 that preferably have two layers of material, an inner layer of material 1614, and an outer layer of material 1612, or an outer liner as seen in FIG. 16B.
  • The outer layer of material 1612 is preferably a dense material and may be described as a high momentum material. This material is typically denser than the compliant absorbing material that forms the inner layer 1614. When subjected to sound vibrations, the high momentum material absorbs the sound waves, which are dissipated through kinetic energy into the compliant inner layer of material 1614. In alternative embodiments, the container may be fabricated from flexible materials and thus the hinges may not be required.
  • FIG. 17A-17B illustrate another exemplary embodiment of a sack 1702 in which a pump 1706 may be disposed in order to abate noise. The pump 1706 may be any currently available pump or any of those disclosed herein. The sack has a central opening 1704 sized to accept the pump 1706. The sack 1702 has an outer wall 1708 which is formed from sound absorbing foam constructed with geometries known in the art that absorb sound. The outer surface of wall 1708 is preferably formed with a decorative material designed to be aesthetically pleasing, and the inner layer 1712 is preferably formed with sound absorbing foam. FIG. 17B illustrates a cross-section of the sack wall 1708.
  • One of skill in the art will appreciate the noise abatement container may be independent or integrated into another container such as a bag.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (16)

What is claimed is:
1. A system for abating noise during expression of breast milk, said system comprising:
a breast milk expression pump; and
a noise abatement device configured to contain the breast milk expression pump;
wherein the noise abatement device is configured to abate noise from the breast milk expression pump while the breast milk expression pump is operating and disposed in the noise abatement device.
2. The system of claim 1, wherein the noise abatement device comprises a container having an opening to receive the breast milk expression pump.
3. The system of claim 2, wherein the container comprises a resilient material that expands to fit the breast milk expression pump.
4. The system of claim 2, wherein the container is sized to fit the breast milk expression pump.
5. The system of claim 4, wherein the container comprises upper hinges, lower hinges, left side hinges, and right side hinges, each of the hinges configured to articulate and thereby open or close the opening of the container to accommodate the breast milk expression pump.
6. The system of claim 1, wherein the container comprises one or more walls configured to absorb sound generated by the breast milk expression pump disposed within the container.
7. The system of claim 6, wherein the one or more walls are fabricated from one or more sound-absorbing materials.
8. The system of claim 6, wherein the one or more walls comprise one or more structures inside the container that are patterned to absorb reflection of sound.
9. The system of claim 6, wherein one or more walls comprise an inner layer and an outer layer.
10. The system of claim 9, wherein the inner layer comprises a compliant absorbing material and the outer layer comprises a material that is denser than the inner layer of material, and wherein the outer layer is configured to absorb sound waves that are dissipated into the inner layer.
11. The system of claim 10, wherein the inner layer and the outer layer are formed from sound-absorbing foam constructed with one or more sound-absorbing geometries.
12. The system of claim 6, wherein an outer surface of the one or more walls comprises a decorative material.
13. A method for abating noise during expression of breast milk, said method comprising:
disposing a breast milk expression pump in a noise abatement device, wherein the noise abatement device is configured to abate noise from the breast milk expression pump when the breast milk expression pump is disposed within the noise abatement device;
operating the breast milk expression pump; and
abating noise from the breast milk expression pump with the noise abatement device while the breast milk expression pump is operating
14. The method of claim 13, wherein the noise abatement device comprises a container having an opening, and disposing a breast milk expression pump in a noise abatement device comprises inserting the breast milk expression pump into the opening of the container, the method further comprising adjusting a configuration of the container to accommodate the breast milk expression pump.
15. The method of claim 14, wherein adjusting the configuration of the container comprises articulating one or more hinges of the container so as to adjust a size or a shape of the container to fit the breast milk expression pump.
16. The method of claim 14, wherein the container comprises a resilient material, and adjusting the configuration of the container comprises expanding the container to adjust a size or a shape of the container to fit the breast milk expression pump.
US14/793,617 2014-02-06 2015-07-07 Methods and apparatus for abating noise during expression of human breast milk Abandoned US20160000981A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/793,617 US20160000981A1 (en) 2014-03-20 2015-07-07 Methods and apparatus for abating noise during expression of human breast milk
US15/094,704 US10617805B2 (en) 2014-03-20 2016-04-08 Fluid measuring reservoir for breast pumps
US15/094,690 US20160296681A1 (en) 2014-03-20 2016-04-08 Fluid measurement accessory for breast pumps
US15/349,917 US10485908B2 (en) 2014-02-06 2016-11-11 Apparatus and methods to create posterior compression at the breast during expression of breast milk

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US14/221,113 US9616156B2 (en) 2013-03-24 2014-03-20 Method, apparatus, and system for expression and quantification of human breast milk
US201462021604P 2014-07-07 2014-07-07
US201462021601P 2014-07-07 2014-07-07
US201462021597P 2014-07-07 2014-07-07
US201462028219P 2014-07-23 2014-07-23
US14/616,557 US20150283311A1 (en) 2014-02-07 2015-02-06 Method, apparatus, and system for expression of human breast milk
US14/793,617 US20160000981A1 (en) 2014-03-20 2015-07-07 Methods and apparatus for abating noise during expression of human breast milk

Publications (1)

Publication Number Publication Date
US20160000981A1 true US20160000981A1 (en) 2016-01-07

Family

ID=55016265

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/793,613 Active 2037-07-01 US10639406B2 (en) 2014-02-06 2015-07-07 Methods and apparatus for transferring pressure during expression of human breast milk
US14/793,606 Abandoned US20160000980A1 (en) 2014-02-06 2015-07-07 Pump apparatus and methods for expression of human breast milk
US14/793,617 Abandoned US20160000981A1 (en) 2014-02-06 2015-07-07 Methods and apparatus for abating noise during expression of human breast milk

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/793,613 Active 2037-07-01 US10639406B2 (en) 2014-02-06 2015-07-07 Methods and apparatus for transferring pressure during expression of human breast milk
US14/793,606 Abandoned US20160000980A1 (en) 2014-02-06 2015-07-07 Pump apparatus and methods for expression of human breast milk

Country Status (1)

Country Link
US (3) US10639406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170266076A1 (en) * 2016-03-15 2017-09-21 Shenzhen Pretty Love Technology Co., Ltd. Massage Device
US10617805B2 (en) 2014-03-20 2020-04-14 Exploramed Nc7, Inc. Fluid measuring reservoir for breast pumps

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694376B (en) * 2014-01-10 2016-04-13 凯莱英医药集团(天津)股份有限公司 A kind of method preparing sulfobutyl ether-beta-cyclodextrin
US10485908B2 (en) * 2014-02-06 2019-11-26 Exploramed Nc7, Inc. Apparatus and methods to create posterior compression at the breast during expression of breast milk
WO2016014483A1 (en) * 2014-07-22 2016-01-28 Exploramed Nc7, Llc Breast pump system and methods
US11717599B2 (en) * 2015-05-07 2023-08-08 Babyation Inc. Breast shield for a breast pump system
WO2017083769A1 (en) 2015-11-13 2017-05-18 Naya Health, Inc. Apparatus and methods to create posterior compression at the breast during expression of breast milk
SG11201806734VA (en) 2016-02-10 2018-09-27 Exploramed Nc7 Inc Breast pump container assemblies and methods
US10610625B2 (en) * 2016-04-29 2020-04-07 Exploramed Nc7, Inc. Hydraulic pumping system for expression of breast milk
USD858744S1 (en) * 2016-12-14 2019-09-03 Moxxly, Inc. Breast pump
US11116880B2 (en) 2019-10-29 2021-09-14 Momi Brands, Inc. Manual breast pump
US10016548B1 (en) 2017-01-11 2018-07-10 Carr Lane Quackenbush Breast pump
US11147905B2 (en) 2017-01-11 2021-10-19 Momi Brands, Inc. Breast pump
US11413381B2 (en) 2017-01-11 2022-08-16 Momtech Inc. Breast pump
DE202018006806U1 (en) 2017-06-15 2023-01-30 Chiaro Technology Limited breast pump system
EP3427769A1 (en) * 2017-07-10 2019-01-16 Koninklijke Philips N.V. An apparatus configured to be used with a breast pump device
US11904077B2 (en) * 2017-10-24 2024-02-20 Medela Holding Ag Breastpump
GB202004395D0 (en) 2020-03-26 2020-05-13 Chiaro Technology Ltd Lima

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263912A (en) 1977-06-08 1981-04-28 Adams Frank H Milking apparatus and method
US4323067A (en) * 1977-06-20 1982-04-06 Adams Frank H Combination breast pump and gavage feeding apparatus and method
US5423781A (en) 1992-05-11 1995-06-13 The Uab Research Foundation Method and apparatus for measuring the volume of a fluid
GB9502995D0 (en) 1995-02-16 1995-04-05 Cannon Rubber Ltd Breast pump insert
WO1996034638A1 (en) 1995-05-02 1996-11-07 Medela, Inc. Foot-powered breastmilk pump with removable piston pump
WO1999044650A1 (en) * 1998-03-06 1999-09-10 Ameda Ag Medical Equipment Breast pump
US6673036B1 (en) 1999-10-13 2004-01-06 The First Years Inc. Pumping breast milk
US20080045887A1 (en) 1999-12-10 2008-02-21 Medela Holding Ag Memory function for a breastpump
DE10054487A1 (en) 2000-11-03 2002-05-23 Eppendorf Ag Method and device for tempering samples
WO2002038032A2 (en) 2000-11-13 2002-05-16 Atossa Healthcare, Inc. Methods and devices for collecting and processing mammary fluid
JP2002336347A (en) 2001-05-18 2002-11-26 Univ Nihon Breast pump
US6663587B2 (en) 2001-06-22 2003-12-16 Medela Holding Ag Breastshield with multi-pressure and expansible chamber construction, related breastpump and method
US6616037B2 (en) 2001-08-17 2003-09-09 Roger L Grimm Inventory system
US7001361B2 (en) * 2001-08-24 2006-02-21 Medical Engenuity Llc Blunting device for a hollow medical needle
US6749582B2 (en) 2002-04-30 2004-06-15 The First Years Inc. Pumping breast milk
MXPA05002976A (en) 2002-09-17 2006-02-17 Puronyx Inc Breast pump with massage features.
US20050154348A1 (en) * 2004-01-08 2005-07-14 Daniel Lantz Breast pump
WO2005118022A1 (en) 2004-06-03 2005-12-15 Medela Holding Ag Disposable breast shield set
US20060042376A1 (en) 2004-08-31 2006-03-02 Allied Precision Industries, Inc. Liquid level sensor
US8118772B2 (en) 2004-10-13 2012-02-21 Stella Dao Breast pump device with self-contained breast milk reservoir
US8813551B2 (en) 2005-04-10 2014-08-26 Future Path Medical Holding Co. Llc Device that accurately measures physiological fluid flow
US20070125162A1 (en) 2005-06-15 2007-06-07 Ghazi Babak R Wireless liquid-level measuring free pour spout
US7765040B2 (en) 2006-06-14 2010-07-27 Spx Corporation Reverse failure analysis method and apparatus for diagnostic testing
EP2040774B1 (en) 2006-07-18 2014-08-27 Medela Holding AG Breastpump set
US8164454B2 (en) 2006-10-24 2012-04-24 Beverage Metrics Holding Ltd. ID proximity monitoring of inventory objects
JP5079364B2 (en) 2007-03-27 2012-11-21 ピジョン株式会社 Milking machine
WO2009060448A2 (en) 2007-11-08 2009-05-14 Inolact Ltd. Measuring fluid excreted from an organ
US8109901B2 (en) 2008-11-07 2012-02-07 Simplisse, Inc. Breast pump
US8801658B2 (en) 2009-02-17 2014-08-12 Innovia Medical Ltd Breastfeeding milk consumption measuring device
EP2233163A1 (en) 2009-03-26 2010-09-29 Koninklijke Philips Electronics N.V. An insert for a breast pump
EP2324868A1 (en) 2009-07-28 2011-05-25 Koninklijke Philips Electronics N.V. Flexible drive for breast pump
MY167042A (en) 2009-09-22 2018-08-02 Medela Holding Ag Device and method for expressing human breast milk
US8453878B2 (en) 2010-01-05 2013-06-04 Keith Palmquist Liquid level measuring device
IL204752A (en) 2010-03-25 2015-08-31 Vasa Applied Technologies Ltd Method and apparatus for determining flow rates of excreted or secreted body fluids
EP2412391A1 (en) 2010-07-27 2012-02-01 Koninklijke Philips Electronics N.V. A breast pump
EP2412392A1 (en) 2010-07-29 2012-02-01 Koninklijke Philips Electronics N.V. Piston pump with variable buffer
EP2441481A1 (en) 2010-10-15 2012-04-18 Koninklijke Philips Electronics N.V. A breast pump
EP2606816A1 (en) 2011-12-22 2013-06-26 Koninklijke Philips Electronics N.V. A method and system for providing an indication as to the amount of milk remaining in a breast during lactation
CH706373A1 (en) 2012-04-04 2013-10-15 Medela Holding Ag Suction pump.
WO2014058430A1 (en) 2012-10-11 2014-04-17 Tomy International, Inc. Breast pump system
CH707124A1 (en) 2012-10-25 2014-04-30 Medela Holding Ag Breastshield unit with media separator.
US9205185B2 (en) * 2012-11-05 2015-12-08 Medela Holding Ag Pump unit for expressing milk
CH707363A1 (en) * 2012-12-18 2014-06-30 Medela Holding Ag Breastshield unit with media separation.
CH707364A1 (en) 2012-12-18 2014-06-30 Medela Holding Ag Breastshield unit.
JP6154536B2 (en) 2013-03-13 2017-06-28 メデラ ホールディング アクチェンゲゼルシャフト System and method for managing the supply of breast milk
US9740828B2 (en) 2013-03-13 2017-08-22 SMRxT Inc. Medicine container with an orientation sensor
EP2968713B1 (en) 2013-03-14 2019-10-02 Medela Holding AG Small-volume collection for a breastpump system
US9616156B2 (en) 2013-03-24 2017-04-11 Naya Health, Inc. Method, apparatus, and system for expression and quantification of human breast milk
US20150038945A1 (en) 2013-08-01 2015-02-05 Jill C. McCabe Modular system for collecting, measuring, storing and feeding breast expressed milk
US10329061B2 (en) 2013-11-07 2019-06-25 Thermos L.L.C. System and methods for managing a container or its contents
US20150283311A1 (en) 2014-02-07 2015-10-08 Naia Health, Inc. Method, apparatus, and system for expression of human breast milk
US9750663B2 (en) 2014-03-31 2017-09-05 Aesynt Systems, methods, apparatuses, and computer program products for providing interim volume verification of a fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10617805B2 (en) 2014-03-20 2020-04-14 Exploramed Nc7, Inc. Fluid measuring reservoir for breast pumps
US20170266076A1 (en) * 2016-03-15 2017-09-21 Shenzhen Pretty Love Technology Co., Ltd. Massage Device

Also Published As

Publication number Publication date
US10639406B2 (en) 2020-05-05
US20160000982A1 (en) 2016-01-07
US20160000980A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US20160000981A1 (en) Methods and apparatus for abating noise during expression of human breast milk
US20170173235A1 (en) Method, apparatus, and system for expression and quantification of human breast milk
US20200246517A1 (en) Methods and apparatus for transferring pressure during expression of human breast milk
US20200345907A1 (en) Breast pump assembly
JP4201705B2 (en) Fluid pressure generating means
CN103338811B (en) For removing the method and system of juice from wound location
JP5948328B2 (en) Piston pump with variable buffer volume
AU2020203701B2 (en) Pump apparatus and methods for expression of human breast milk
JP2016514516A5 (en)
CN101678155A (en) Suction system
US10485908B2 (en) Apparatus and methods to create posterior compression at the breast during expression of breast milk
US20130150982A1 (en) Prosthesis
EP3673933A1 (en) Disposable dual-action reciprocating pump assembly
US20240058512A1 (en) Apparatus and methods to create posterior compression at the breast during expression of breast milk
AU2002318990B2 (en) A fluid pressure generating means
EP3643338A2 (en) Vacuum driven suction and irrigaiton system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: EXPLORAMED NC7, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAYA HEALTH, INC.;REEL/FRAME:048647/0890

Effective date: 20190305

AS Assignment

Owner name: EXPLORAMED NC7, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ON THE COVER SHEET 15/581793 SHOULD BE 15/581973 AND 4/450958 SHOULD BE 15/450958 PREVIOUSLY RECORDED ON REEL 048647 FRAME 0890. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:NAYA HEALTH, INC.;REEL/FRAME:049556/0433

Effective date: 20190305