US20150374141A1 - Open Refrigerated Display Case and a Flow Stabilizing Device - Google Patents

Open Refrigerated Display Case and a Flow Stabilizing Device Download PDF

Info

Publication number
US20150374141A1
US20150374141A1 US14/702,249 US201514702249A US2015374141A1 US 20150374141 A1 US20150374141 A1 US 20150374141A1 US 201514702249 A US201514702249 A US 201514702249A US 2015374141 A1 US2015374141 A1 US 2015374141A1
Authority
US
United States
Prior art keywords
stabilizing
flow
air
display case
refrigerated display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/702,249
Inventor
Nicholas J.P. Wirth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirth Research Ltd
Original Assignee
Wirth Research Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirth Research Ltd filed Critical Wirth Research Ltd
Assigned to WIRTH RESEARCH LIMITED reassignment WIRTH RESEARCH LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIRTH, Nicholas J.P.
Priority to US14/840,727 priority Critical patent/US9370262B2/en
Publication of US20150374141A1 publication Critical patent/US20150374141A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/023Air curtain closures
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0439Cases or cabinets of the open type
    • A47F3/0443Cases or cabinets of the open type with forced air circulation
    • A47F3/0447Cases or cabinets of the open type with forced air circulation with air curtains
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0439Cases or cabinets of the open type
    • A47F3/0469Details, e.g. night covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0439Cases or cabinets of the open type
    • A47F3/0443Cases or cabinets of the open type with forced air circulation
    • A47F2003/046Cases or cabinets of the open type with forced air circulation with shelves having air ducts

Definitions

  • the invention relates to an open refrigerated display case and a flow stabilizing device for an open refrigerated display case.
  • ORDCs Open Refrigerated Display Cases
  • ORDCs utilize an air curtain which is cooled to below ambient temperature and propelled downward, across the open front of the display case.
  • the air curtain separates the refrigerated interior of the display case from the ambient air surrounding the display case.
  • the air curtain thus keeps the cool air inside the display case from spilling out due to buoyancy effects, and also provides a barrier from other external motions of air around the display case.
  • ORDCs therefore do not need any physical barrier separating customers from the contents of the display case. Accordingly, ORDCs provide a desirable method of displaying food and other perishable goods as they allow both easy access and clear visibility of merchandise.
  • ORDCs do have significantly higher energy consumption compared to the closed-fronted alternative.
  • the main energy losses occur within the air curtain, and are caused by the entrainment of warm ambient air into the air curtain and the turbulent mixing which occurs within the air curtain itself.
  • the entrainment of warm ambient air causes an increase in temperature within the air curtain, and this warmer air must be cooled as it re-circulates through the system. It has been estimated that 70% to 80% of the cooling load of an ORDC is due to such effects.
  • the invention thus seeks to improve the efficiency of ORDCs by reducing entrainment within the air curtain.
  • an open refrigerated display case comprising: a refrigerated display area comprising one or more shelves; an air outlet and an air inlet opening into the display area and spaced from one another; a duct fluidically coupling the air inlet to the air outlet, the duct being configured to direct air flow out of the air outlet across the display area and toward the air inlet to form an air curtain across the display area; wherein each of the one or more shelves are provided with an associated flow stabilizing device disposed; wherein each flow stabilizing device comprises a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam; wherein a first slot is formed between the innermost and the outermost stabilizing beams, the first slot extending transversely across the display area perpendicular to the direction of the air flow within the air curtain, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween; wherein the innermost stabilizing beam is
  • the stabilizing inlet may be wider than the stabilizing outlet and the stabilizing throat may converge from the stabilizing inlet to the stabilizing outlet.
  • the stabilizing throat may converge at greater than 0° and less than 20°.
  • the flow stabilizing devices may be spaced from the air outlet and/or one another by a distance which corresponds to approximately 4 to 6 times a width of the air outlet.
  • the flow stabilizing devices may be spaced by a distance which corresponds to approximately 5 times a width of the air outlet.
  • Each flow stabilizing device may be connected to the one or more shelves.
  • Each flow stabilizing device may be pivotably connected to the one or more shelves.
  • Each flow stabilizing device may be configured so as to allow a distance between the shelf and the stabilizing inlet of the first slot to be varied.
  • the flow stabilizing device may further comprise a pair of arms which connect the stabilizing beams to the open refrigerated display case.
  • the stabilizing beams may be transparent.
  • the outermost stabilizing beam may be provided with a product information strip.
  • the open refrigerated display case may further comprise an injector port which is configured to introduce additional air into the air curtain.
  • the injector port may be connected to the duct.
  • a flow stabilizing device for stabilizing an air curtain of an open refrigerated display case, the flow stabilizing device comprising: a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam; wherein a first slot is formed between the innermost and the outmost stabilizing beams, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween; wherein the flow stabilizing device is configured to be positioned so that: a second slot is formed between the innermost stabilizing beam and an adjacent shelf of the open refrigerated display case; and the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.
  • the stabilizing inlet may be wider than the stabilizing outlet and the stabilizing throat may converge from the stabilizing inlet to the stabilizing outlet.
  • the stabilizing throat may converge at greater than 0° and less than 20°.
  • the flow stabilizing device may be configured to be connected to a shelf of the open refrigerated display case.
  • the flow stabilizing device may be configured to be pivotably connected to the shelf.
  • the flow stabilizing device may be configured so as to allow a distance between the shelf and the stabilizing inlet to be varied.
  • the flow stabilizing device may further comprise a pair of arms which are configured to connect the stabilizing beams to the open refrigerated display case.
  • the stabilizing beams may be transparent.
  • the outermost stabilizing beam may be provided with a product information strip.
  • the flow stabilizing device may further comprise an injector port which is configured to introduce additional air into the air curtain.
  • FIG. 1 is a side cross-sectional view of a conventional open refrigerated display case (ORDC);
  • FIG. 2 is a perspective view of a shelf having a flow stabilizing device according to an embodiment of the invention
  • FIG. 3 is a side cross-section view of an ORDC according to an embodiment of the invention having a plurality of shelves with flow stabilizing devices as shown in FIG. 2 ;
  • FIG. 4 schematically shows air flow from the conventional ORDC of FIGS. 1 ;
  • FIG. 5 schematically shows air flow from the ORDC of FIG. 3 .
  • FIG. 1 shows a conventional ORDC 2 .
  • the ORDC 2 comprises a cabinet portion formed by a lower wall 4 , a back wall 6 , an upper wall 8 , and left and right side walls (not shown).
  • a lower panel 10 , a back panel 12 and an upper panel 14 are disposed within the cabinet portion.
  • the lower, back and upper panels 10 , 12 , 14 form a display area 15 which is provided with a plurality of shelves 17 (six are shown) on which items may be displayed.
  • the shelves 17 are affixed to the back panel 12 .
  • the lower, back and upper panels 10 , 12 , 14 are spaced from the respective lower, back and upper walls 4 , 6 , 8 to form a duct 16 .
  • An intake grille 18 is provided at the lower panel 10 to form an inlet to the duct 16 .
  • a discharge grille 20 is provided at the upper panel 14 to form an outlet from the duct 16 .
  • the intake grille 18 and the discharge grille 20 are thus fluidically coupled to one another by the duct 16 .
  • the intake grille 18 and the discharge grille 20 are spaced from the back panel 12 toward the front of the cabinet portion and ahead of the shelves 17 .
  • a fan 22 and a heat exchanger 24 are located within the duct 16 adjacent to the intake grille 18 and thus are disposed between the lower wall 4 and the lower panel 10 .
  • the fan 22 draws air into the duct 16 via the intake grille 18 which then passes through the heat exchanger 24 where it is cooled to well below the ambient temperature.
  • the air After passing through the heat exchanger 24 , the air continues through the duct 16 between the back wall 6 and the back panel 12 .
  • the back panel 12 is perforated allowing air to pass from the duct 16 into the display area 15 where it cools items located on the shelves 17 and on the lower panel 10 .
  • the remaining air flows through the duct 16 to the discharge grille 20 .
  • the air is ejected from the discharge grille 20 and descends over the open front of the display area 15 to form an air curtain 26 .
  • the air curtain 26 passes from the discharge grille 20 to the intake grille 18 , where it is drawn in by the fan 22 and re-circulated through the duct 16 .
  • the air curtain 26 thus forms a non-physical barrier which separates the display area 15 from the ambient air surrounding the ORDC 2 .
  • the air curtain 26 may be angled away from vertical by around 5-10°. This may be achieved by angling the discharge grille 20 .
  • the discharge grille 20 may be provided with a honeycomb panel (not shown) which rectifies the air flow as it exits the discharge grille 20 to provide laminar flow.
  • the air curtain 26 may also deviate away from the back panel 12 as a result of the air passing through the perforations in the back panel 12 .
  • the intake grille 18 is therefore offset from the discharge grille 20 to allow for this.
  • FIG. 2 shows a flow stabilizing device 28 according to an embodiment of the invention which is fitted to one of the shelves 17 of the ORDC 2 .
  • each shelf 17 comprises a shelf portion 30 and a pair of brackets 32 which support the shelf portion 30 and are configured to be received within slots in the back panel 12 of the ORDC 2 .
  • a product information strip 34 extends across a front surface of the shelf portion 30 and has a channel for receiving tickets displaying information regarding the products on the shelf portion 30 , such as the product's price.
  • the flow stabilizing device 28 comprises a pair of arms 36 a, 36 b.
  • the arms 36 a, 36 b are affixed to either lateral side of the shelf 17 such that they are spaced from one another across the width of the shelf 17 .
  • Each of the arms 36 a, 36 b is connected at one end to the shelf 17 and extends away from the shelf 17 in a cantilevered manner to a free end.
  • the arms 36 a, 36 b thus lie in the same plane as the shelf 17 .
  • the arms 36 a, 36 b may be connected to the shelf 17 in any suitable manner, such as via attachment to the shelf portion 30 , the brackets 32 or the product information strip 34 .
  • a pair of stabilizing beams 38 a, 38 b extend between the arms 36 a, 36 b.
  • the stabilizing beams 38 a, 38 b are spaced from one another and run parallel to one another across the full width of the shelf 17 (and the display area 15 ).
  • the stabilizing beams 38 a, 38 b are arranged so that their widths extend in a vertical direction, substantially perpendicular to the shelf 17 .
  • the stabilizing beams 38 a, 38 b are, however, angled relative to one another so that the gap between the stabilizing beams 38 a, 38 b tapers toward the lower end of the stabilizing beams 38 a, 38 b.
  • the stabilizing beams 38 a, 38 b thus define a first slot 39 a having a vertical extent (length).
  • the first slot 39 a comprises an inlet at an upper end and an outlet at a lower end.
  • the inlet has a greater width than the outlet and a convergent throat is disposed between the inlet and the outlet.
  • the stabilizing beams 38 a, 38 b may taper at an angle of greater than 0° and less than 20° to the vertical. The angle may, however, differ between the two stabilizing beams 38 a, 38 b within a single flow stabilizing device 28 .
  • the outermost stabilizing beam 38 a may be arranged vertically and the innermost stabilizing beam 38 b angled relative to the outermost stabilizing beam 38 a.
  • the outermost stabilizing beam 38 a may be provided with a product information strip which can be used to display information regarding the products on the shelf portion 30 if the product information strip 34 of the shelf 17 itself is obscured by the stabilizing beams 38 a, 38 b.
  • the stabilizing beams 38 a, 38 b may be transparent to allow the product information strip 34 of the shelf 17 to be viewed. This may also prevent the stabilizing beams 38 a, 38 b from blocking light from a light source within the ORDC 2 and thus ensure proper illumination of the products within the ORDC.
  • each of the shelves 17 is provided with a flow stabilizing device 28 .
  • the stabilizing beams 38 a, 38 b of each shelf 17 are spaced from the shelf 17 so as to form a second slot 39 b between the innermost stabilizing beam 38 b and the shelf 17 .
  • the stabilizing beams 38 a, 38 b are positioned such that the majority of the air curtain 26 passes between the stabilizing beams 38 a, 38 b, through the first slot 39 a. A portion of the air curtain 26 may pass between the innermost stabilizing beam 38 b and the shelf 17 , through the second slot 39 b, or beyond the exterior surface of the outermost stabilizing beam 38 a.
  • the back panel 12 is perforated to allow air to pass from the duct 16 into the display area 15 where it cools items located on the shelves 17 and on the lower panel 10 .
  • the direction of air flow from the back panel 12 is thus predominantly perpendicular to that of the air curtain 26 .
  • the air from the back panel 12 is entrained with the portion of the air curtain 26 passing through the second slot 39 a which turns the air flow towards the direction of the air curtain 26 . This reduces the effect the air flow from the back panel 12 has on the air curtain 26 .
  • the air curtain 26 may be angled away from vertical and the stabilizing beams 38 a, 38 b may be spaced progressively further from the shelf 17 (or, where the shelves are of different lengths, from the back panel 12 ) from the uppermost shelf 17 to the lowermost shelf 17 so as to be aligned with the air curtain 26 .
  • the spacing between the stabilizing beams 38 a, 38 b may increase from the uppermost flow stabilizing device 28 to the lowermost flow stabilizing device 28 to account for the air curtain 26 becoming thicker as it passes down the front of the ORDC 2 .
  • the intake grille 18 is not directly aligned with the discharge grille 20 .
  • the stabilizing beams 38 a, 38 b of the uppermost flow stabilizing device 28 are curved so that the air curtain 26 is turned slightly as it passes through this flow stabilizing device 28 .
  • the stabilizing beams 38 a, 38 b of the uppermost flow stabilizing device 28 may also run parallel to one another such that they do not converge.
  • FIGS. 4 and 5 provide a comparison of the flow characteristics of the air curtain 26 without the flow stabilizing devices 28 of the invention ( FIG. 4 ) and with the flow stabilizing devices 28 ( FIG. 5 ).
  • the air leaves the discharge grille 20 as a coherent jet 40 .
  • the jet 40 soon becomes unstable in region 42 , and begins to separate. This causes a high level of turbulent mixing in region 44 which warms the air curtain 26 considerably, thus warming the ORDC 2 .
  • the flow stabilizing devices 28 acts to re-stabilize the flow.
  • the stabilizing beams 38 a, 38 b converge such that, as a result of the Venturi effect, the air is accelerated as it passes through the first slot 39 a of the flow stabilizing device 28 .
  • the acceleration acts to further stabilize the air curtain 26 .
  • the width of the air curtain 26 is also reduced which helps maintain a thin shear layer throughout the length of the air curtain 26 .
  • the second slot 39 b formed between the innermost stabilizing beam 38 b and the shelf 17 further promotes stabilization of the air curtain 26 by drawing air from the back panel 12 into the air curtain 26 .
  • each flow stabilizing device 28 may be pivotably connected to the shelf 17 so that the flow stabilizing device 28 remains horizontal (or at some other predetermined orientation).
  • the arms 36 a, 36 b may be pivotably connected to the shelf 17 .
  • the arms 36 a, 36 b may each comprise first and second members connected to one another at an articulated joint.
  • the arms 36 a, 36 b may also allow the distance of the stabilizing beams 38 a, 38 b from the shelf 17 to be varied.
  • the arms 36 a, 36 b may therefore allow for this to be counteracted so that the stabilizing beams 38 a, 38 b remain in the correct position for the air curtain 26 .
  • the arms 36 a, 36 b may allow the stabilizing beams 38 a, 38 b to be located in a plurality of positions (e.g. defined by discrete mounting holes or a continuous slot) or the arms 36 a, 36 b themselves may be connected to the shelf 17 in a plurality of positions.
  • the arms 38 a, 38 b may comprise a telescoping arrangement to alter their length.
  • the flow stabilizing device 28 may comprise an injector port which receives additional air.
  • the injector port may be connected to the duct 16 via a conduit or the injector port may receive air which passes through the perforated back panel 12 .
  • the injector port may be located adjacent the inlet of the flow stabilizing device 28 .
  • the Venturi effect creates an area of low pressure within the flow stabilizing device 28 as the air curtain 26 is accelerated. This acts to draw in the additional air from the injector port which further increases the velocity of the air curtain, thus helping it to remain stable and intact in extreme ambient conditions.
  • the flow stabilizing devices 28 can be connected to a standard shelf 17 and thus allow the flow stabilizing devices 28 to be retrofit to existing ORDCs.
  • the flow stabilizing devices 28 may, however, be integrally formed with the shelves 17 or the ORDC 2 .
  • each shelf 17 of the ORDC 2 has been described as having a flow stabilizing device 28 , this need not be the case and only some of the shelves 17 may be provided with flow stabilizing devices 28 . It is, however, desirable that the flow stabilizing devices 28 are provided at regular spacings of between 120 mm and 190 mm, which corresponds to approximately 4 to 6 times the width of the discharge grille 20 , and preferably at spacings of around 160 mm (5 times the width of the discharge grille 20 ).
  • the flow stabilizing devices 28 have been described as being connected directly to the shelves 17 , they may instead be connected to other parts of the ORDC 2 .
  • the arms 36 a, 36 b of the flow stabilizing devices 28 may connect to the back panel 12 such that the flow stabilizing devices 28 are positioned between adjacent shelves 17 (or between the lowermost shelf 17 and the lower panel 10 ).
  • the flow stabilizing devices 28 may be positioned just below each of the shelves 17 .
  • the flow stabilizing devices 28 may be connected to the left and right side walls of the ORDC 2 .
  • the arms 36 a, 36 b can be omitted and the stabilizing beams 38 a, 38 b connected directly to the ORDC 2 .
  • the stabilizing beams 38 a, 38 b also need not lie in the plane of the shelf 17 .
  • the stabilizing beams 38 a, 38 b may be offset from the shelf 17 such that they are not aligned with the product information strip 34 , thus allowing the product information strip 34 to be viewed. This may be achieved by using arms which are stepped or otherwise configured so that the connection to the shelf 17 and the connection to the stabilizing beams 38 a, 38 b are offset from one another.
  • the stabilizing beams 38 a, 38 b may not converge and are instead arranged parallel to one another. Such parallel stabilizing beams 38 a, 38 b may guide the air flow and prevent expansion of the air curtain, thus still re-stabilizing the flow.

Abstract

An open refrigerated display case comprising: a refrigerated display area comprising one or more shelves; an air outlet and an air inlet opening into the display area and spaced from one another; a duct fluidically coupling the air inlet to the air outlet, the duct being configured to direct air flow out of the air outlet across the display area and toward the air inlet to form an air curtain across the display area; wherein each of the one or more shelves are provided with an associated flow stabilizing device; wherein each flow stabilizing device comprises a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam; wherein a first slot is formed between the innermost and the outermost stabilizing beams, the first slot extending transversely across the display area perpendicular to the direction of the air flow within the air curtain, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween; wherein the innermost stabilizing beam is spaced from the adjacent shelf so as to form a second slot between the innermost stabilizing beam and the shelf; and wherein the one or more flow stabilizing devices are each positioned so that the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to UK Application No. 1502192.6 filed on 10 Feb. 2015 and UK Application No. 1411474.8 filed on 27 Jun. 2014, which are hereby incorporated by reference in their entirety for any and all purposes.
  • BACKGROUND
  • The invention relates to an open refrigerated display case and a flow stabilizing device for an open refrigerated display case.
  • The display of chilled or frozen items is commonplace in many retail environments, most notably in supermarkets. Conventionally, such items have been displayed in refrigerated display cases having glass doors to allow customers to browse items before opening the doors to access the items. However, the presence of such doors has been seen as problematic in that they make it difficult for several customers to access the contents of the case, as well as providing an obstruction when open, narrowing the usable aisle space.
  • It is therefore common for supermarkets to use open-fronted display cases (Open Refrigerated Display Cases; herein “ORDCs”). ORDCs utilize an air curtain which is cooled to below ambient temperature and propelled downward, across the open front of the display case. The air curtain separates the refrigerated interior of the display case from the ambient air surrounding the display case. The air curtain thus keeps the cool air inside the display case from spilling out due to buoyancy effects, and also provides a barrier from other external motions of air around the display case. ORDCs therefore do not need any physical barrier separating customers from the contents of the display case. Accordingly, ORDCs provide a desirable method of displaying food and other perishable goods as they allow both easy access and clear visibility of merchandise.
  • However, as a direct consequence of their open design, ORDCs do have significantly higher energy consumption compared to the closed-fronted alternative. The main energy losses occur within the air curtain, and are caused by the entrainment of warm ambient air into the air curtain and the turbulent mixing which occurs within the air curtain itself. The entrainment of warm ambient air causes an increase in temperature within the air curtain, and this warmer air must be cooled as it re-circulates through the system. It has been estimated that 70% to 80% of the cooling load of an ORDC is due to such effects.
  • In recent years, multi-decked designs have become commonplace to maximize the display space per unit of floor space. Consequently, the air curtains of such ORDCs must seal a larger display area. This has exacerbated entrainment issues and the resulting energy losses, as well as making the design of air curtains more challenging, particularly in respect of ensuring product integrity and temperature homogeneity while attempting to minimize their energy consumption.
  • The invention thus seeks to improve the efficiency of ORDCs by reducing entrainment within the air curtain.
  • SUMMARY
  • According to an aspect of the invention there is therefore provided an open refrigerated display case comprising: a refrigerated display area comprising one or more shelves; an air outlet and an air inlet opening into the display area and spaced from one another; a duct fluidically coupling the air inlet to the air outlet, the duct being configured to direct air flow out of the air outlet across the display area and toward the air inlet to form an air curtain across the display area; wherein each of the one or more shelves are provided with an associated flow stabilizing device disposed; wherein each flow stabilizing device comprises a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam; wherein a first slot is formed between the innermost and the outermost stabilizing beams, the first slot extending transversely across the display area perpendicular to the direction of the air flow within the air curtain, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween; wherein the innermost stabilizing beam is spaced from the adjacent shelf so as to form a second slot between the innermost stabilizing beam and the shelf; and wherein the one or more flow stabilizing devices are each positioned so that the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.
  • The stabilizing inlet may be wider than the stabilizing outlet and the stabilizing throat may converge from the stabilizing inlet to the stabilizing outlet.
  • The stabilizing throat may converge at greater than 0° and less than 20°.
  • The flow stabilizing devices may be spaced from the air outlet and/or one another by a distance which corresponds to approximately 4 to 6 times a width of the air outlet.
  • The flow stabilizing devices may be spaced by a distance which corresponds to approximately 5 times a width of the air outlet.
  • Each flow stabilizing device may be connected to the one or more shelves.
  • Each flow stabilizing device may be pivotably connected to the one or more shelves.
  • Each flow stabilizing device may be configured so as to allow a distance between the shelf and the stabilizing inlet of the first slot to be varied.
  • The flow stabilizing device may further comprise a pair of arms which connect the stabilizing beams to the open refrigerated display case.
  • The stabilizing beams may be transparent.
  • The outermost stabilizing beam may be provided with a product information strip.
  • The open refrigerated display case may further comprise an injector port which is configured to introduce additional air into the air curtain.
  • The injector port may be connected to the duct.
  • According to another aspect of the invention there is therefore provided a flow stabilizing device for stabilizing an air curtain of an open refrigerated display case, the flow stabilizing device comprising: a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam; wherein a first slot is formed between the innermost and the outmost stabilizing beams, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween; wherein the flow stabilizing device is configured to be positioned so that: a second slot is formed between the innermost stabilizing beam and an adjacent shelf of the open refrigerated display case; and the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.
  • The stabilizing inlet may be wider than the stabilizing outlet and the stabilizing throat may converge from the stabilizing inlet to the stabilizing outlet.
  • The stabilizing throat may converge at greater than 0° and less than 20°.
  • The flow stabilizing device may be configured to be connected to a shelf of the open refrigerated display case.
  • The flow stabilizing device may be configured to be pivotably connected to the shelf.
  • The flow stabilizing device may be configured so as to allow a distance between the shelf and the stabilizing inlet to be varied.
  • The flow stabilizing device may further comprise a pair of arms which are configured to connect the stabilizing beams to the open refrigerated display case.
  • The stabilizing beams may be transparent.
  • The outermost stabilizing beam may be provided with a product information strip.
  • The flow stabilizing device may further comprise an injector port which is configured to introduce additional air into the air curtain.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
  • FIG. 1 is a side cross-sectional view of a conventional open refrigerated display case (ORDC);
  • FIG. 2 is a perspective view of a shelf having a flow stabilizing device according to an embodiment of the invention;
  • FIG. 3 is a side cross-section view of an ORDC according to an embodiment of the invention having a plurality of shelves with flow stabilizing devices as shown in FIG. 2;
  • FIG. 4 schematically shows air flow from the conventional ORDC of FIGS. 1; and
  • FIG. 5 schematically shows air flow from the ORDC of FIG. 3.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a conventional ORDC 2. The ORDC 2 comprises a cabinet portion formed by a lower wall 4, a back wall 6, an upper wall 8, and left and right side walls (not shown). A lower panel 10, a back panel 12 and an upper panel 14 are disposed within the cabinet portion.
  • The lower, back and upper panels 10, 12, 14 form a display area 15 which is provided with a plurality of shelves 17 (six are shown) on which items may be displayed. The shelves 17 are affixed to the back panel 12.
  • As shown, the lower, back and upper panels 10, 12, 14 are spaced from the respective lower, back and upper walls 4, 6, 8 to form a duct 16. An intake grille 18 is provided at the lower panel 10 to form an inlet to the duct 16. Similarly, a discharge grille 20 is provided at the upper panel 14 to form an outlet from the duct 16. The intake grille 18 and the discharge grille 20 are thus fluidically coupled to one another by the duct 16. The intake grille 18 and the discharge grille 20 are spaced from the back panel 12 toward the front of the cabinet portion and ahead of the shelves 17.
  • A fan 22 and a heat exchanger 24 are located within the duct 16 adjacent to the intake grille 18 and thus are disposed between the lower wall 4 and the lower panel 10. The fan 22 draws air into the duct 16 via the intake grille 18 which then passes through the heat exchanger 24 where it is cooled to well below the ambient temperature.
  • After passing through the heat exchanger 24, the air continues through the duct 16 between the back wall 6 and the back panel 12. The back panel 12 is perforated allowing air to pass from the duct 16 into the display area 15 where it cools items located on the shelves 17 and on the lower panel 10.
  • The remaining air flows through the duct 16 to the discharge grille 20. The air is ejected from the discharge grille 20 and descends over the open front of the display area 15 to form an air curtain 26. The air curtain 26 passes from the discharge grille 20 to the intake grille 18, where it is drawn in by the fan 22 and re-circulated through the duct 16. The air curtain 26 thus forms a non-physical barrier which separates the display area 15 from the ambient air surrounding the ORDC 2.
  • As shown in FIG. 1, the air curtain 26 may be angled away from vertical by around 5-10°. This may be achieved by angling the discharge grille 20. In particular, the discharge grille 20 may be provided with a honeycomb panel (not shown) which rectifies the air flow as it exits the discharge grille 20 to provide laminar flow. The air curtain 26 may also deviate away from the back panel 12 as a result of the air passing through the perforations in the back panel 12. The intake grille 18 is therefore offset from the discharge grille 20 to allow for this.
  • FIG. 2 shows a flow stabilizing device 28 according to an embodiment of the invention which is fitted to one of the shelves 17 of the ORDC 2.
  • As shown in FIG. 2, each shelf 17 comprises a shelf portion 30 and a pair of brackets 32 which support the shelf portion 30 and are configured to be received within slots in the back panel 12 of the ORDC 2. A product information strip 34 extends across a front surface of the shelf portion 30 and has a channel for receiving tickets displaying information regarding the products on the shelf portion 30, such as the product's price.
  • The flow stabilizing device 28 comprises a pair of arms 36 a, 36 b. The arms 36 a, 36 b are affixed to either lateral side of the shelf 17 such that they are spaced from one another across the width of the shelf 17. Each of the arms 36 a, 36 b is connected at one end to the shelf 17 and extends away from the shelf 17 in a cantilevered manner to a free end. The arms 36 a, 36 b thus lie in the same plane as the shelf 17. The arms 36 a, 36 b may be connected to the shelf 17 in any suitable manner, such as via attachment to the shelf portion 30, the brackets 32 or the product information strip 34.
  • A pair of stabilizing beams 38 a, 38 b extend between the arms 36 a, 36 b. The stabilizing beams 38 a, 38 b are spaced from one another and run parallel to one another across the full width of the shelf 17 (and the display area 15). The stabilizing beams 38 a, 38 b are arranged so that their widths extend in a vertical direction, substantially perpendicular to the shelf 17. The stabilizing beams 38 a, 38 b are, however, angled relative to one another so that the gap between the stabilizing beams 38 a, 38 b tapers toward the lower end of the stabilizing beams 38 a, 38 b. The stabilizing beams 38 a, 38 b thus define a first slot 39 a having a vertical extent (length). The first slot 39 a comprises an inlet at an upper end and an outlet at a lower end. The inlet has a greater width than the outlet and a convergent throat is disposed between the inlet and the outlet. The stabilizing beams 38 a, 38 b may taper at an angle of greater than 0° and less than 20° to the vertical. The angle may, however, differ between the two stabilizing beams 38 a, 38 b within a single flow stabilizing device 28. In particular, as shown, the outermost stabilizing beam 38 a may be arranged vertically and the innermost stabilizing beam 38 b angled relative to the outermost stabilizing beam 38 a.
  • The outermost stabilizing beam 38 a may be provided with a product information strip which can be used to display information regarding the products on the shelf portion 30 if the product information strip 34 of the shelf 17 itself is obscured by the stabilizing beams 38 a, 38 b. Alternatively, the stabilizing beams 38 a, 38 b may be transparent to allow the product information strip 34 of the shelf 17 to be viewed. This may also prevent the stabilizing beams 38 a, 38 b from blocking light from a light source within the ORDC 2 and thus ensure proper illumination of the products within the ORDC.
  • As shown in FIG. 3, each of the shelves 17 is provided with a flow stabilizing device 28. The stabilizing beams 38 a, 38 b of each shelf 17 are spaced from the shelf 17 so as to form a second slot 39 b between the innermost stabilizing beam 38 b and the shelf 17. The stabilizing beams 38 a, 38 b are positioned such that the majority of the air curtain 26 passes between the stabilizing beams 38 a, 38 b, through the first slot 39 a. A portion of the air curtain 26 may pass between the innermost stabilizing beam 38 b and the shelf 17, through the second slot 39 b, or beyond the exterior surface of the outermost stabilizing beam 38 a. As described previously, the back panel 12 is perforated to allow air to pass from the duct 16 into the display area 15 where it cools items located on the shelves 17 and on the lower panel 10. The direction of air flow from the back panel 12 is thus predominantly perpendicular to that of the air curtain 26. The air from the back panel 12 is entrained with the portion of the air curtain 26 passing through the second slot 39 a which turns the air flow towards the direction of the air curtain 26. This reduces the effect the air flow from the back panel 12 has on the air curtain 26.
  • As described previously, the air curtain 26 may be angled away from vertical and the stabilizing beams 38 a, 38 b may be spaced progressively further from the shelf 17 (or, where the shelves are of different lengths, from the back panel 12) from the uppermost shelf 17 to the lowermost shelf 17 so as to be aligned with the air curtain 26. The spacing between the stabilizing beams 38 a, 38 b may increase from the uppermost flow stabilizing device 28 to the lowermost flow stabilizing device 28 to account for the air curtain 26 becoming thicker as it passes down the front of the ORDC 2.
  • As described previously, the intake grille 18 is not directly aligned with the discharge grille 20. To counteract this, the stabilizing beams 38 a, 38 b of the uppermost flow stabilizing device 28 are curved so that the air curtain 26 is turned slightly as it passes through this flow stabilizing device 28. As shown, the stabilizing beams 38 a, 38 b of the uppermost flow stabilizing device 28 may also run parallel to one another such that they do not converge.
  • FIGS. 4 and 5 provide a comparison of the flow characteristics of the air curtain 26 without the flow stabilizing devices 28 of the invention (FIG. 4) and with the flow stabilizing devices 28 (FIG. 5).
  • As shown in FIG. 4, the air leaves the discharge grille 20 as a coherent jet 40. However, without the flow stabilizing devices 28, the jet 40 soon becomes unstable in region 42, and begins to separate. This causes a high level of turbulent mixing in region 44 which warms the air curtain 26 considerably, thus warming the ORDC 2.
  • As shown in FIG. 5, with the flow stabilizing devices 28 attached to the shelves 17, the air again exits the discharge grille 20, but before the air curtain 26 can become unstable the flow stabilizing device 28 acts to re-stabilize the flow. As described previously, the stabilizing beams 38 a, 38 b converge such that, as a result of the Venturi effect, the air is accelerated as it passes through the first slot 39 a of the flow stabilizing device 28. The acceleration acts to further stabilize the air curtain 26. The width of the air curtain 26 is also reduced which helps maintain a thin shear layer throughout the length of the air curtain 26. The second slot 39 b formed between the innermost stabilizing beam 38 b and the shelf 17 further promotes stabilization of the air curtain 26 by drawing air from the back panel 12 into the air curtain 26.
  • The shelves 17 may be configured so as to allow the shelf portion 30 to be positioned at different angles. This may be beneficial for displaying different types of products. To allow for this, each flow stabilizing device 28 may be pivotably connected to the shelf 17 so that the flow stabilizing device 28 remains horizontal (or at some other predetermined orientation). For example, the arms 36 a, 36 b may be pivotably connected to the shelf 17. Alternatively, the arms 36 a, 36 b may each comprise first and second members connected to one another at an articulated joint. The arms 36 a, 36 b may also allow the distance of the stabilizing beams 38 a, 38 b from the shelf 17 to be varied. In particular, as the shelf 17 is angled away from horizontal, its horizontal extent will reduce so that the stabilizing beams 38 a, 38 b are located closer to the back panel 12. The arms 36 a, 36 b may therefore allow for this to be counteracted so that the stabilizing beams 38 a, 38 b remain in the correct position for the air curtain 26. For example, the arms 36 a, 36 b may allow the stabilizing beams 38 a, 38 b to be located in a plurality of positions (e.g. defined by discrete mounting holes or a continuous slot) or the arms 36 a, 36 b themselves may be connected to the shelf 17 in a plurality of positions. Alternatively, the arms 38 a, 38 b may comprise a telescoping arrangement to alter their length.
  • An initial study using Computational Fluid Dynamics has shown that the flow stabilizing device 28 of the invention could provide a reduction of around 40% in convective heat losses.
  • Although not shown, the flow stabilizing device 28 may comprise an injector port which receives additional air. For example, the injector port may be connected to the duct 16 via a conduit or the injector port may receive air which passes through the perforated back panel 12. The injector port may be located adjacent the inlet of the flow stabilizing device 28. The Venturi effect creates an area of low pressure within the flow stabilizing device 28 as the air curtain 26 is accelerated. This acts to draw in the additional air from the injector port which further increases the velocity of the air curtain, thus helping it to remain stable and intact in extreme ambient conditions.
  • The flow stabilizing devices 28 can be connected to a standard shelf 17 and thus allow the flow stabilizing devices 28 to be retrofit to existing ORDCs. The flow stabilizing devices 28 may, however, be integrally formed with the shelves 17 or the ORDC 2.
  • Although each shelf 17 of the ORDC 2 has been described as having a flow stabilizing device 28, this need not be the case and only some of the shelves 17 may be provided with flow stabilizing devices 28. It is, however, desirable that the flow stabilizing devices 28 are provided at regular spacings of between 120 mm and 190 mm, which corresponds to approximately 4 to 6 times the width of the discharge grille 20, and preferably at spacings of around 160 mm (5 times the width of the discharge grille 20).
  • Although the flow stabilizing devices 28 have been described as being connected directly to the shelves 17, they may instead be connected to other parts of the ORDC 2. For example, the arms 36 a, 36 b of the flow stabilizing devices 28 may connect to the back panel 12 such that the flow stabilizing devices 28 are positioned between adjacent shelves 17 (or between the lowermost shelf 17 and the lower panel 10). In particular, the flow stabilizing devices 28 may be positioned just below each of the shelves 17. Alternatively, the flow stabilizing devices 28 may be connected to the left and right side walls of the ORDC 2. In this case, the arms 36 a, 36 b can be omitted and the stabilizing beams 38 a, 38 b connected directly to the ORDC 2.
  • The stabilizing beams 38 a, 38 b also need not lie in the plane of the shelf 17. For example, the stabilizing beams 38 a, 38 b may be offset from the shelf 17 such that they are not aligned with the product information strip 34, thus allowing the product information strip 34 to be viewed. This may be achieved by using arms which are stepped or otherwise configured so that the connection to the shelf 17 and the connection to the stabilizing beams 38 a, 38 b are offset from one another.
  • In certain embodiments, the stabilizing beams 38 a, 38 b may not converge and are instead arranged parallel to one another. Such parallel stabilizing beams 38 a, 38 b may guide the air flow and prevent expansion of the air curtain, thus still re-stabilizing the flow.
  • The invention is not limited to the embodiments described herein, and may be modified or adapted without departing from the scope of the present invention.

Claims (22)

1. An open refrigerated display case comprising:
a refrigerated display area comprising one or more shelves;
an air outlet and an air inlet opening into the display area and spaced from one another;
a duct fluidically coupling the air inlet to the air outlet, the duct being configured to direct air flow out of the air outlet across the display area and toward the air inlet to form an air curtain across the display area;
wherein each of the one or more shelves are provided with an associated flow stabilizing device;
wherein each flow stabilizing device comprises a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam;
wherein a first slot is formed between the innermost and the outermost stabilizing beams, the first slot extending transversely across the display area perpendicular to the direction of the air flow within the air curtain, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween;
wherein the innermost stabilizing beam is spaced from the adjacent shelf so as to form a second slot between the innermost stabilizing beam and the shelf; and
wherein the one or more flow stabilizing devices are each positioned so that the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.
2. An open refrigerated display case as claimed in claim 1, wherein the stabilizing inlet is wider than the stabilizing outlet and the stabilizing throat converges from the stabilizing inlet to the stabilizing outlet.
3. An open refrigerated display case as claimed in claim 1, wherein the stabilizing throat converges at greater than 0° and less than 20°.
4. An open refrigerated display case as claimed in claim 1, wherein the flow stabilizing devices are spaced from the air outlet and/or one another by a distance which corresponds to approximately 4 to 6 times a width of the air outlet.
5. An open refrigerated display case as claimed in claim 4, wherein the flow stabilizing devices are spaced by a distance which corresponds to approximately 5 times a width of the air outlet.
6. An open refrigerated display case as claimed in claim 1, wherein each flow stabilizing device is connected to the one or more shelves.
7. An open refrigerated display case as claimed in claim 1, wherein each flow stabilizing device is pivotably connected to the one or more shelves.
8. An open refrigerated display case as claimed in claim 1, wherein each flow stabilizing device is configured so as to allow a distance between the shelf and the stabilizing inlet of the first slot to be varied.
9. An open refrigerated display case as claimed in claim 1, wherein the flow stabilizing device further comprises a pair of arms which connect the stabilizing beams to the open refrigerated display case.
10. An open refrigerated display case as claimed in claim 1, wherein the stabilizing beams are transparent.
11. An open refrigerated display case as claimed in claim 1, wherein the outermost stabilizing beam is provided with a product information strip.
12. An open refrigerated display case as claimed in claim 1, further comprising an injector port which is configured to introduce additional air into the air curtain.
13. An open refrigerated display case as claimed in claim 12, wherein the injector port is connected to the duct.
14. A flow stabilizing device for stabilizing an air curtain of an open refrigerated display case, the flow stabilizing device comprising:
a pair of stabilizing beams which are spaced from one another so as to define an innermost stabilizing beam and an outermost stabilizing beam;
wherein a first slot is formed between the innermost and the outmost stabilizing beams, the first slot having a stabilizing inlet, a stabilizing outlet and a stabilizing throat disposed therebetween;
wherein the flow stabilizing device is configured to be positioned so that:
a second slot is formed between the innermost stabilizing beam and an adjacent shelf of the open refrigerated display case; and
the stabilizing inlet of the first slot receives the air curtain, the stabilizing throat being configured to stabilize the air flow within the air curtain which exits the flow stabilizing device via the stabilizing outlet.
15. A flow stabilizing device as claimed in claim 14, wherein the stabilizing inlet is wider than the stabilizing outlet and the stabilizing throat converges from the stabilizing inlet to the stabilizing outlet.
16. A flow stabilizing device as claimed in claim 15, wherein the stabilizing throat converges at greater than 0° and less than 20°.
17. A flow stabilizing device as claimed in claim 14, wherein the flow stabilizing device is configured to be pivotably connected to the shelf.
18. A flow stabilizing device as claimed in claim 14, wherein the flow stabilizing device is configured so as to allow a distance between the shelf and the stabilizing inlet of the first slot to be varied.
19. A flow stabilizing device as claimed in claim 14, wherein the flow stabilizing device further comprises a pair of arms which are configured to connect the stabilizing beams to the open refrigerated display case.
20. A flow stabilizing device as claimed in claim 14, wherein the stabilizing beams are transparent.
21. A flow stabilizing device as claimed in claim 14, wherein the outermost stabilizing beam is provided with a product information strip.
22. A flow stabilizing device as claimed in claim 14, further comprising an injector port which is configured to introduce additional air into the air curtain.
US14/702,249 2014-06-27 2015-05-01 Open Refrigerated Display Case and a Flow Stabilizing Device Abandoned US20150374141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/840,727 US9370262B2 (en) 2014-06-27 2015-08-31 Open refrigerated display case and a flow stabilizing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB1411474.8A GB201411474D0 (en) 2014-06-27 2014-06-27 An open refrigerated display case and a flow stabilising device
GB1411474.8 2014-06-27
GB1502192.6 2015-02-10
GB1502192.6A GB2527628C (en) 2014-06-27 2015-02-10 An open refrigerated display case having a flow stabilising device and a flow stabilising device for an open refrigerated display case

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/840,727 Continuation US9370262B2 (en) 2014-06-27 2015-08-31 Open refrigerated display case and a flow stabilizing device

Publications (1)

Publication Number Publication Date
US20150374141A1 true US20150374141A1 (en) 2015-12-31

Family

ID=51410245

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/702,249 Abandoned US20150374141A1 (en) 2014-06-27 2015-05-01 Open Refrigerated Display Case and a Flow Stabilizing Device
US15/321,587 Abandoned US20170208967A1 (en) 2014-06-27 2015-06-29 An Open Refrigerated Display Case and a Flow Stabilizing Device
US14/840,727 Active US9370262B2 (en) 2014-06-27 2015-08-31 Open refrigerated display case and a flow stabilizing device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/321,587 Abandoned US20170208967A1 (en) 2014-06-27 2015-06-29 An Open Refrigerated Display Case and a Flow Stabilizing Device
US14/840,727 Active US9370262B2 (en) 2014-06-27 2015-08-31 Open refrigerated display case and a flow stabilizing device

Country Status (12)

Country Link
US (3) US20150374141A1 (en)
EP (2) EP2959805B8 (en)
JP (1) JP6534400B2 (en)
CN (1) CN106604664B (en)
AU (2) AU2015278917B2 (en)
ES (1) ES2612106T3 (en)
GB (3) GB201411474D0 (en)
HK (1) HK1231341A1 (en)
HU (1) HUE031300T2 (en)
PL (1) PL2959805T3 (en)
PT (1) PT2959805T (en)
WO (1) WO2015198076A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170340141A1 (en) * 2014-10-28 2017-11-30 Aht Cooling Systems Gmbh Refrigeration unit
CN108778065A (en) * 2016-05-16 2018-11-09 艾若弗尔能源有限公司 The improvement of open display refrigerator
USD852941S1 (en) * 2017-03-22 2019-07-02 Wirth Research Limited Air flow deflector
US10765231B2 (en) 2016-02-11 2020-09-08 Hill Phoenix, Inc. Discharge air straightener
US20210298492A1 (en) * 2018-08-20 2021-09-30 Wirth Research Limited A Refrigerated Display Case

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201306612D0 (en) 2013-04-11 2013-05-29 Fridgeland Uk Ltd Improvements in refrigerators
GB2544760A (en) 2015-11-25 2017-05-31 Aerofoil Energy Ltd Improvements in refrigerators
JP6696187B2 (en) * 2016-01-25 2020-05-20 富士電機株式会社 Showcase
GB2552536A (en) * 2016-07-28 2018-01-31 Aerofoil Energy Ltd Improvements to open display refrigerators
JP2018117979A (en) * 2017-01-27 2018-08-02 株式会社オカムラ Open Showcase
GB2560367B (en) 2017-03-09 2021-06-23 Aerofoil Energy Ltd Improvements to cooling units
GB2560932B (en) * 2017-03-28 2021-07-07 Aerofoil Energy Ltd Air curtain guide mounting kit
GB2561354A (en) * 2017-04-10 2018-10-17 Wirth Res Limited An open refrigerated display case and an adjustable shelf for an open refrigerated display case
GB2555227A (en) * 2017-09-26 2018-04-25 Aerofoil Energy Ltd Improvements to open display refrigerators
GB2563468B (en) * 2017-11-22 2019-06-19 Wirth Res Limited A method of configuring an open refrigerated display case
WO2019174729A1 (en) * 2018-03-14 2019-09-19 Wirth Research Limited A refrigerated display case
GB2575298A (en) * 2018-07-05 2020-01-08 Wirth Res Limited A refrigerated display case and a flow control device for a refrigerated display case
GB2576512A (en) 2018-08-20 2020-02-26 Wirth Res Limited A refrigerated display case
GB2578141B (en) * 2018-10-18 2020-10-07 Wirth Res Limited A flow stabilising device for an open refrigerated display case
KR200491606Y1 (en) * 2018-11-02 2020-05-07 아르네코리아(주) An air curtain guide device
GB2584613B (en) * 2019-05-16 2023-02-22 Aerofoil Energy Ltd Process for optimising the position of refrigerator air guides in order to achieve increased energy efficiency of the refrigerator
GB2582312B (en) * 2019-03-18 2021-06-09 Wirth Res Limited A flow control device for a refrigerated display case and a refrigerated display case
GB2583775B (en) 2019-05-10 2023-10-18 Aerofoil Energy Ltd Improvements to refrigerators
GB2588454B (en) * 2019-10-25 2022-07-20 Wirth Res Limited A flow control device for a refrigerated display case and a refrigerated display case
CN111802866A (en) * 2020-06-15 2020-10-23 珠海格力电器股份有限公司 Display cabinet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103796A (en) * 1960-07-15 1963-09-17 Hussmann Refrigerator Co Refrigeration system
FR2690825A1 (en) * 1992-05-05 1993-11-12 Mc International Cabinet for fresh produce display in self-service vending - uses shelves with internal passages to carry cold air streams and slotted front edges to form air curtain.
US20050250436A1 (en) * 2002-09-04 2005-11-10 Agne Nilsson System, device and method for ventilation
JP2011131036A (en) * 2009-02-04 2011-07-07 Fuji Electric Co Ltd Showcase
US20110281514A1 (en) * 2010-05-11 2011-11-17 Kewaunee Scientific Corporation Apparatus for directing air flow in a biological safety cabinet
US8713954B2 (en) * 2010-08-23 2014-05-06 Hill Phoenix, Inc. Air curtain system for an open-front refrigerated case with dual temperature zones
WO2014167320A1 (en) * 2013-04-11 2014-10-16 Fridgeland Uk Limited Improvements in refrigerators

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822672A (en) * 1956-03-12 1958-02-11 Hussmann Refrigerator Co Display case with adjustable refrigerated shelves
US3063253A (en) * 1960-04-11 1962-11-13 Hussmann Refrigerator Co Low temperature refrigerated case
US3063256A (en) * 1961-08-17 1962-11-13 Lamb Frank Gilbert Upright refrigerator showcase
US3233423A (en) * 1962-12-26 1966-02-08 Dual Jet Refrigeration Company Refrigerated cabinet with circulating air panels
US3229475A (en) * 1963-07-05 1966-01-18 Emhart Corp Refrigerated display case
US3768394A (en) * 1971-06-18 1973-10-30 Powlesland Eng Ltd Device for producing dynamic flow in fluids to form curtains of the fluid
JPS51150569A (en) 1975-06-20 1976-12-24 Kureha Chemical Ind Co Ltd Method of increasing density of fluorinee containgng porous resin powder
JPS55165468A (en) 1979-06-12 1980-12-23 Fuji Electric Co Ltd Chill air circulation open display case
JPS5758884U (en) * 1980-09-24 1982-04-07
JPS6013668B2 (en) 1980-09-25 1985-04-09 協和醗酵工業株式会社 Method for producing glutathione peroxidase
JPS58110977A (en) * 1981-12-25 1983-07-01 富士電機株式会社 Refrigerating open showcase
JPS59174588A (en) 1983-03-23 1984-10-03 日産化学工業株式会社 Manufacture of frost resistant alc material
JPS59174588U (en) * 1983-05-10 1984-11-21 日本建鐵株式会社 Frozen and refrigerated open case
JPH073991B2 (en) 1985-02-27 1995-01-18 株式会社日立製作所 Photo Information Manual Tandem Relay Method
JPS61196661U (en) * 1985-05-31 1986-12-08
JPS62162569A (en) 1986-01-14 1987-07-18 Inoue Mtp Co Ltd Platen sheet for non-impact printer
KR940000401B1 (en) * 1986-01-24 1994-01-20 산덴 가부시기가이샤 Showcase
JPS62162569U (en) * 1986-04-02 1987-10-15
JPH07218093A (en) * 1994-02-04 1995-08-18 Sanyo Electric Co Ltd Open display case
FI108609B (en) * 1998-04-23 2002-02-28 Halton Oy Cold counter air circulation system and method for ventilation in a room or hall with or without a refrigerator (s)
NO312006B1 (en) * 2000-06-26 2002-03-04 Svein Henrik Vormedal Cooling shelves for refrigerated products and method for controlled / controlled air circulation in the shelf
US6467294B1 (en) * 2001-05-04 2002-10-22 The Delfield Company Apparatus and method for controlling temperature for a self-service food display
US6874331B2 (en) * 2002-05-17 2005-04-05 Manitowoc Foodservice Companies, Inc. Device and method for creating a horizontal air curtain for a cooler
US20040069002A1 (en) * 2002-10-09 2004-04-15 Chuang Sue-Li Kingsley Ambient air injector for air curtain stability
DE10338672A1 (en) 2003-08-22 2005-03-24 Linde Kältetechnik GmbH & Co. KG Cooling shelf with a new cooling air curtain
CA2462992C (en) 2004-04-01 2006-03-21 Foodtrust Of Prince Edward Island Limited Refrigerated merchandiser
DE102004033071A1 (en) * 2004-07-06 2006-01-26 Linde Kältetechnik GmbH & Co. KG refrigerated
AU2005292536A1 (en) 2004-09-30 2006-04-13 Carrier Corporation Curtain air admission assembly
GB0508204D0 (en) * 2005-04-22 2005-06-01 Alan Nuttall Ltd Heated food storage and display cabinet
JP2007260223A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Open showcase
JP5446663B2 (en) * 2009-02-10 2014-03-19 三洋電機株式会社 Open showcase
JP5499543B2 (en) * 2009-07-14 2014-05-21 富士電機株式会社 Showcase
JP5531574B2 (en) 2009-11-17 2014-06-25 富士電機株式会社 Open showcase
JP5477039B2 (en) 2010-02-19 2014-04-23 富士電機株式会社 Open showcase product display shelf
JP2011188889A (en) * 2010-03-11 2011-09-29 Fuji Electric Co Ltd Showcase
US20110302945A1 (en) * 2010-06-09 2011-12-15 Hill Phoenix, Inc. Temperature controlled storage and display device
JP2012161409A (en) * 2011-02-04 2012-08-30 Mitsubishi Electric Corp Open showcase
WO2013029686A1 (en) * 2011-09-02 2013-03-07 Carrier Corporation Refrigerated sales furniture
JP6068961B2 (en) * 2012-11-30 2017-01-25 株式会社岡村製作所 Rectifier for open showcase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103796A (en) * 1960-07-15 1963-09-17 Hussmann Refrigerator Co Refrigeration system
FR2690825A1 (en) * 1992-05-05 1993-11-12 Mc International Cabinet for fresh produce display in self-service vending - uses shelves with internal passages to carry cold air streams and slotted front edges to form air curtain.
US20050250436A1 (en) * 2002-09-04 2005-11-10 Agne Nilsson System, device and method for ventilation
JP2011131036A (en) * 2009-02-04 2011-07-07 Fuji Electric Co Ltd Showcase
US20110281514A1 (en) * 2010-05-11 2011-11-17 Kewaunee Scientific Corporation Apparatus for directing air flow in a biological safety cabinet
US8713954B2 (en) * 2010-08-23 2014-05-06 Hill Phoenix, Inc. Air curtain system for an open-front refrigerated case with dual temperature zones
WO2014167320A1 (en) * 2013-04-11 2014-10-16 Fridgeland Uk Limited Improvements in refrigerators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170340141A1 (en) * 2014-10-28 2017-11-30 Aht Cooling Systems Gmbh Refrigeration unit
US10765231B2 (en) 2016-02-11 2020-09-08 Hill Phoenix, Inc. Discharge air straightener
CN108778065A (en) * 2016-05-16 2018-11-09 艾若弗尔能源有限公司 The improvement of open display refrigerator
US11737583B2 (en) 2016-05-16 2023-08-29 Aerofoil Energy Limited Air curtain blanking plate
USD852941S1 (en) * 2017-03-22 2019-07-02 Wirth Research Limited Air flow deflector
US20210298492A1 (en) * 2018-08-20 2021-09-30 Wirth Research Limited A Refrigerated Display Case

Also Published As

Publication number Publication date
GB2527636A (en) 2015-12-30
AU2018202860A1 (en) 2018-05-17
GB201411474D0 (en) 2014-08-13
GB201502192D0 (en) 2015-03-25
CN106604664B (en) 2020-07-03
US9370262B2 (en) 2016-06-21
WO2015198076A1 (en) 2015-12-30
US20150374142A1 (en) 2015-12-31
HK1231341A1 (en) 2017-12-22
AU2018202860B2 (en) 2020-04-09
AU2015278917B2 (en) 2018-05-17
PT2959805T (en) 2017-01-31
AU2015278917A1 (en) 2017-01-12
ES2612106T3 (en) 2017-05-12
EP2959805B1 (en) 2016-10-19
GB201504704D0 (en) 2015-05-06
EP2959805A1 (en) 2015-12-30
GB2527628A (en) 2015-12-30
GB2527628B (en) 2016-10-12
US20170208967A1 (en) 2017-07-27
GB2527628C (en) 2018-01-17
HUE031300T2 (en) 2017-06-28
EP3160306A1 (en) 2017-05-03
PL2959805T3 (en) 2017-06-30
CN106604664A (en) 2017-04-26
JP6534400B2 (en) 2019-06-26
JP2017521146A (en) 2017-08-03
EP2959805B8 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US9370262B2 (en) Open refrigerated display case and a flow stabilizing device
JP5446663B2 (en) Open showcase
EP1743552A1 (en) Ambient air curtain with floor air inlet
KR20070086501A (en) Multi-band air curtain separation barrier
GB2563407A (en) An ancillary device for an open refridgerated display case
US20190142186A1 (en) Ancillary Device for an Open Refrigerated Display Case
JP6077844B2 (en) Open showcase
GB2563468B (en) A method of configuring an open refrigerated display case
GB2549719A (en) An open refrigerated display case
JP5611607B2 (en) Open showcase
WO2019211620A1 (en) Improvements to open display refrigerators
GB2574897A (en) Flow blocking device for an open refridgerated display case
JP6864597B2 (en) Two-temperature showcase
WO2018189528A1 (en) An open refrigerated display case and an adjustable shelf for an open refrigerated display case
JP2023060479A (en) Open showcase including opening part at front face
GB2575298A (en) A refrigerated display case and a flow control device for a refrigerated display case
US10028594B2 (en) Merchandiser with merged air discharge
GB2572636A (en) A refrigerated display case, an air curtain discharge grille and a method of modifying a refrigerated display case
CN114980779A (en) Improvement of open type display refrigerator
JP2014150993A (en) Open showcase

Legal Events

Date Code Title Description
AS Assignment

Owner name: WIRTH RESEARCH LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIRTH, NICHOLAS J.P.;REEL/FRAME:035649/0721

Effective date: 20150507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION