US20150361781A1 - Fastening Technique in a Downhole Tool - Google Patents

Fastening Technique in a Downhole Tool Download PDF

Info

Publication number
US20150361781A1
US20150361781A1 US14/761,289 US201414761289A US2015361781A1 US 20150361781 A1 US20150361781 A1 US 20150361781A1 US 201414761289 A US201414761289 A US 201414761289A US 2015361781 A1 US2015361781 A1 US 2015361781A1
Authority
US
United States
Prior art keywords
pad
sliders
downhole tool
cover
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/761,289
Inventor
Sihar Marpaung
Viet Tung NGUYEN
Gautier COURT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US14/761,289 priority Critical patent/US20150361781A1/en
Publication of US20150361781A1 publication Critical patent/US20150361781A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • E21B47/011

Definitions

  • This disclosure relates generally to downhole tools and more specifically to sealing techniques for the pad of a downhole tool.
  • Resistivity tools may inject a current into the surrounding geological formation using an injection electrode.
  • the current may return to the tool from the geological formation via a return electrode.
  • the injection electrode may represent a current-measuring electrode (referred to as a measuring electrode) through which this current may be measured.
  • resistivity tools may determine the impedance, or resistivity, of the surrounding formation. For example, resistivity measurements may be used to obtain an image of the geological formation in the well.
  • Downhole tools often include electronics, sensors, or other components that may be susceptible to the high ambient temperatures of the downhole environment. Such components are designed to operate within a certain range of temperatures, and these acceptable temperatures may be lower than the temperature in the borehole. In such contexts, maintaining the temperature sensitive components within the acceptable temperature range may prevent heat-related failures.
  • Various techniques may be implemented to provide protection to such temperature sensitive components. For example, electronics, sensors, and other components may be covered, for example by a pad cover, to protect the components from the downhole environment.
  • FIG. 1 is a schematic diagram of a downhole system in accordance with an embodiment
  • FIG. 2 is a schematic diagram of a downhole tool having multiple pads, in accordance with an embodiment
  • FIG. 3 is a cross-sectional view of a pad, in accordance with an embodiment
  • FIG. 4 is a perspective view of a pad having a fastened pad cover, in accordance with an embodiment.
  • FIG. 5 is a view of a pad and cover having a fastener to allow relative movement, in accordance with an embodiment.
  • FIG. 1 shows a downhole system 10 cable head 11 connected at its lower end to a logging tool 12 .
  • An upper end of the cable head 11 is secured to a cable 14 in this embodiment.
  • the cable 14 may be, for example, a wireline cable extending to the surface 16 of a well or hole 18 and is operable to lower the cable head 11 and one or more logging tools, such as logging tool 12 , down to an area where formations and parameters are determined and recorded during logging operations.
  • a vertical well 18 is shown but it should be understood that it can be highly deviated or even horizontal in another example.
  • data may be transmitted from the logging tool 12 to the cable 14 through the cable head 11 .
  • the data may be transmitted to a data-transmission and acquisition system 20 at the surface 16 .
  • the downhole system 10 in the present application may include drilling or logging systems, such as measurement-while-drilling (MWD) systems, logging-while-drilling (LWD) systems, wireline systems, coiled tubing systems, testing systems, completions systems, productions systems, or combinations thereof.
  • the logging tool 12 discussed herein may include any tool suitable for use in the downhole system 10 .
  • the logging tool 12 may be a downhole imaging tool suitable obtaining an image of formation surrounding the well 18 .
  • a downhole imaging tool may be suitable for obtaining resistivity or micro-resistivity measurements.
  • the downhole imaging tool may measure the resistivity of the formation by injecting a current into the surrounding formation using an injection electrode.
  • the current may return to the tool from the geological formation via a return electrode.
  • the injection electrode may represent a current-measuring electrode through which this current may be measured.
  • the impedance, or resistivity, of the surrounding formation may be determined.
  • the measured resistivity and/or impedance may be used to obtain an image of the formation surrounding the well 18 .
  • the body of the downhole tool 12 may have one or more extendable arms carrying sensor pads.
  • the arm or arms may be extended until the pad is placed against the wall of the borehole, at which point measurements are made using the sensors on the pad.
  • multiple arms may extend multiple pads against a portion of the circumference of a borehole. The tool may be moved along the borehole such that the pad is disposed across the borehole wall and makes multiple measurements along the length of the borehole.
  • FIG. 2 is a schematic configuration of a downhole tool having one or more extendable arms, according to embodiments of the invention.
  • the downhole tool 12 a may have one or more sets of arms 22 a , 22 b , 22 c , 22 d (four arms in each set) located spaced apart in the axial direction on the downhole tool 12 a .
  • Each arm is provided with a connection for a measurement pad 24 .
  • a centraliser or standoff 28 may be positioned at the bottom of the downhole tool 12 a.
  • each of the pads 24 may include functional electronic components for acquiring, processing, and transmitting measurements associated with the downhole formation. Such components may be arranged on a pad base and protected by a pad cover.
  • FIG. 3 is a cross-sectional view of an example of a pad 24 a including electronic components 30 for acquiring, processing, and or transmitting formation measurements disposed on a pad base 32 .
  • the electronic components 30 may be covered with a pad cover 34 , and the pad base 32 and pad cover 34 may be substantially sealed to protect the electronic components 30 of the pad 24 a .
  • a bore sealing 36 may be used to seal the pad cover 34 to the pad base 32 .
  • sealing techniques may also be used to seal the pad cover or pad base to any of the electronic components 30 .
  • the bore sealing 38 may seal the pad cover 34 to button electrodes 40 .
  • FIG. 4 is a perspective view of a pad 24 b having a pad cover 34 sealed on the pad base 32 .
  • the pad base 32 may have raised inserts 42
  • the pad cover 34 may have depressions configured to fit the inserts 42 to seal the pad cover 34 to the pad base 32 .
  • the pad cover 34 may have raised inserts
  • the pad base 32 may have depressions configured to fit the cover inserts.
  • the inserts 42 may mechanically connect the pad base 32 and pad cover 34 in the XY plane (e.g., in the plane substantially along the plane of the pad base 32 and pad cover 34 )
  • the different electronic components 30 , pad base 32 , and pad cover 34 may include various different materials.
  • the pad base 32 may have a substantially rigid metallic body while the pad base 34 may include a suitable high-temperature polymer (e.g., PEEKTM).
  • PEEKTM high-temperature polymer
  • the various materials in the pad 24 a may react differently due to the environmental conditions, as different materials may have different properties, such as thermal expansion.
  • the pad base 32 and pad cover 34 may have move, shift, and/or expand relative to one another. Such relative movements between the pad base 32 and pad cover 34 may affect the sealing of the pad base 32 and pad cover 34 .
  • Embodiments of the present disclosure include techniques for reducing negative effects from the relative movements between a pad cover and pad base in a pad of a downhole tool.
  • sliders may be implemented between a pad base 32 and a pad cover 34 , such that relative movements in the x-axis and/or y-axis may be guided along a dimension of the slider, thereby reducing stress, shear, pressure, and/or deformation in the pad base 32 , pad cover 34 , and/or the sealing (e.g., sealing 36 and 38 ) in the pad 24 .
  • the illustration in FIG. 5 provides an example of a pad 24 c having a pad base 32 and a pad cover 34 sealing electronic components of the pad 24 c , including button electrodes 40 .
  • the pad cover 34 is faded in this illustration to depict the position of one embodiment of the sliders 44 .
  • the position of the sliders 44 may guide relative movements in the x- and y-directions (referred to as the XY plane; axis provided) of the pad base 32 and the pad cover 34 , such that stress, sheer, pressure, and/or deformation which may result from such relative movement may be reduced.
  • the pad cover 34 may move relative to the pad base 32 along the length of one or more of the sliders 44 .
  • the sliders 44 may be positioned and configured such that a length of the sliders 44 is substantially parallel to one or more edges of the pad base 32 and pad cover 34 .
  • the movement of the pad base 32 and the pad cover 34 relative to one another may be substantially parallel to the length or to another dimension of the sliders 44 .
  • the shape, dimension, and size of the sliders 44 may be suitable for guiding relative movements between the pad cover 34 and the pad base 32 .
  • the guiding of relative movements may reduce effects, such as stress, sheering, or any force which may result in deformation or damage to the pad base 32 , the pad cover 34 , and/or electronic components 30 of the pad 24 .
  • the sliders 44 may substantially surround in the XY plane one or more of the inserts 42 connecting the pad base 32 and pad cover 34 .
  • the pad base 32 may include sliders 44 while the pad cover 34 may include inserts 42 , and the inserts 42 of the pad cover 34 may substantially fit in the sliders 44 of the pad base 32 .
  • the pad base 32 may include inserts 42 while the pad cover 34 may include sliders 44 , and the inserts of the pad base 32 may substantially fit in the sliders 44 of the pad cover 34 .
  • the movement of the pad base 32 and the pad cover 34 relative to one another may therefore be controlled or limited based on the movement of the inserts 42 in each respective slider 44 .
  • the sliders 44 may be configured on the pad base 32 , on the pad cover 34 , independently from the pad base 32 and the pad cover 34 , or in combinations of these implementations.
  • the sliders may include a material suitable for high temperature and suitable for withstanding the relative movement between the pad base 32 and pad cover 34 .

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Gyroscopes (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

Systems and methods are provided for implementing sliders 44 in a downhole tool. The tool includes a pad 24 c having a pad base 32 and a pad cover 34 substantially encompassing electronic components in the pad. The pad cover 34 and pad base 32 may be sealed, and sliders 44 may be used to reduce negative effects from relative movements between the pad base 32 and the pad cover 34. In some embodiments, the sliders 44 may be shaped and positioned to guide relative movements between the pad base 32 and pad cover 34, and the sliders 44 may reduce stresses on the pad base, pad cover, and/or the electronic components.

Description

    BACKGROUND
  • This disclosure relates generally to downhole tools and more specifically to sealing techniques for the pad of a downhole tool.
  • This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions.
  • Many downhole tools have been developed to determine properties of geological formations surrounding wells. One such downhole tool is referred to as a resistivity tool. Resistivity tools may inject a current into the surrounding geological formation using an injection electrode. The current may return to the tool from the geological formation via a return electrode. In general, the injection electrode may represent a current-measuring electrode (referred to as a measuring electrode) through which this current may be measured. By measuring the current, resistivity tools may determine the impedance, or resistivity, of the surrounding formation. For example, resistivity measurements may be used to obtain an image of the geological formation in the well.
  • Downhole tools often include electronics, sensors, or other components that may be susceptible to the high ambient temperatures of the downhole environment. Such components are designed to operate within a certain range of temperatures, and these acceptable temperatures may be lower than the temperature in the borehole. In such contexts, maintaining the temperature sensitive components within the acceptable temperature range may prevent heat-related failures. Various techniques may be implemented to provide protection to such temperature sensitive components. For example, electronics, sensors, and other components may be covered, for example by a pad cover, to protect the components from the downhole environment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a downhole system in accordance with an embodiment;
  • FIG. 2 is a schematic diagram of a downhole tool having multiple pads, in accordance with an embodiment;
  • FIG. 3 is a cross-sectional view of a pad, in accordance with an embodiment;
  • FIG. 4 is a perspective view of a pad having a fastened pad cover, in accordance with an embodiment; and
  • FIG. 5 is a view of a pad and cover having a fastener to allow relative movement, in accordance with an embodiment.
  • DETAILED DESCRIPTION
  • One or more specific embodiments of the present disclosure will be described below. These described embodiments are examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, certain features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it may be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
  • When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
  • FIG. 1 shows a downhole system 10 cable head 11 connected at its lower end to a logging tool 12. An upper end of the cable head 11 is secured to a cable 14 in this embodiment. The cable 14 may be, for example, a wireline cable extending to the surface 16 of a well or hole 18 and is operable to lower the cable head 11 and one or more logging tools, such as logging tool 12, down to an area where formations and parameters are determined and recorded during logging operations. A vertical well 18 is shown but it should be understood that it can be highly deviated or even horizontal in another example. During a logging operation, data may be transmitted from the logging tool 12 to the cable 14 through the cable head 11. Within the cable 14, the data may be transmitted to a data-transmission and acquisition system 20 at the surface 16.
  • While a wireline cable is provided as an example of one implementation of the cable 14, the downhole system 10 in the present application may include drilling or logging systems, such as measurement-while-drilling (MWD) systems, logging-while-drilling (LWD) systems, wireline systems, coiled tubing systems, testing systems, completions systems, productions systems, or combinations thereof. Furthermore, the logging tool 12 discussed herein may include any tool suitable for use in the downhole system 10.
  • In some embodiments, the logging tool 12 may be a downhole imaging tool suitable obtaining an image of formation surrounding the well 18. For example, a downhole imaging tool may be suitable for obtaining resistivity or micro-resistivity measurements. The downhole imaging tool may measure the resistivity of the formation by injecting a current into the surrounding formation using an injection electrode. The current may return to the tool from the geological formation via a return electrode. In general, the injection electrode may represent a current-measuring electrode through which this current may be measured. By measuring the current, the impedance, or resistivity, of the surrounding formation may be determined. The measured resistivity and/or impedance may be used to obtain an image of the formation surrounding the well 18.
  • In one embodiment, the body of the downhole tool 12 may have one or more extendable arms carrying sensor pads. In use, the arm or arms may be extended until the pad is placed against the wall of the borehole, at which point measurements are made using the sensors on the pad. In some embodiments, multiple arms may extend multiple pads against a portion of the circumference of a borehole. The tool may be moved along the borehole such that the pad is disposed across the borehole wall and makes multiple measurements along the length of the borehole.
  • For example, FIG. 2 is a schematic configuration of a downhole tool having one or more extendable arms, according to embodiments of the invention. The downhole tool 12 a may have one or more sets of arms 22 a, 22 b, 22 c, 22 d (four arms in each set) located spaced apart in the axial direction on the downhole tool 12 a. Each arm is provided with a connection for a measurement pad 24. In one embodiment, a centraliser or standoff 28 may be positioned at the bottom of the downhole tool 12 a.
  • As the pads may operate in relatively high temperature and high pressure environments, electronic components in the pads 24 may be configured to perform reliably in such an environment. In some embodiments, each of the pads 24 may include functional electronic components for acquiring, processing, and transmitting measurements associated with the downhole formation. Such components may be arranged on a pad base and protected by a pad cover.
  • FIG. 3 is a cross-sectional view of an example of a pad 24 a including electronic components 30 for acquiring, processing, and or transmitting formation measurements disposed on a pad base 32. The electronic components 30 may be covered with a pad cover 34, and the pad base 32 and pad cover 34 may be substantially sealed to protect the electronic components 30 of the pad 24 a. For example, a bore sealing 36 may be used to seal the pad cover 34 to the pad base 32. Furthermore, sealing techniques may also be used to seal the pad cover or pad base to any of the electronic components 30. For example, the bore sealing 38 may seal the pad cover 34 to button electrodes 40.
  • FIG. 4 is a perspective view of a pad 24 b having a pad cover 34 sealed on the pad base 32. As illustrated in FIG. 4, the pad base 32 may have raised inserts 42, and the pad cover 34 may have depressions configured to fit the inserts 42 to seal the pad cover 34 to the pad base 32. In some embodiments, the pad cover 34 may have raised inserts, and the pad base 32 may have depressions configured to fit the cover inserts. In some embodiments, the inserts 42 may mechanically connect the pad base 32 and pad cover 34 in the XY plane (e.g., in the plane substantially along the plane of the pad base 32 and pad cover 34)
  • The different electronic components 30, pad base 32, and pad cover 34 may include various different materials. For example, due to the environmental conditions which the pad 24 a may be exposed to, the pad base 32 may have a substantially rigid metallic body while the pad base 34 may include a suitable high-temperature polymer (e.g., PEEK™). The various materials in the pad 24 a may react differently due to the environmental conditions, as different materials may have different properties, such as thermal expansion. Furthermore, due to operations of the pad 24 a downhole, the pad base 32 and pad cover 34 may have move, shift, and/or expand relative to one another. Such relative movements between the pad base 32 and pad cover 34 may affect the sealing of the pad base 32 and pad cover 34.
  • Embodiments of the present disclosure include techniques for reducing negative effects from the relative movements between a pad cover and pad base in a pad of a downhole tool. In one embodiment, sliders may be implemented between a pad base 32 and a pad cover 34, such that relative movements in the x-axis and/or y-axis may be guided along a dimension of the slider, thereby reducing stress, shear, pressure, and/or deformation in the pad base 32, pad cover 34, and/or the sealing (e.g., sealing 36 and 38) in the pad 24.
  • The illustration in FIG. 5 provides an example of a pad 24 c having a pad base 32 and a pad cover 34 sealing electronic components of the pad 24 c, including button electrodes 40. The pad cover 34 is faded in this illustration to depict the position of one embodiment of the sliders 44. The position of the sliders 44 may guide relative movements in the x- and y-directions (referred to as the XY plane; axis provided) of the pad base 32 and the pad cover 34, such that stress, sheer, pressure, and/or deformation which may result from such relative movement may be reduced. In some instances, the pad cover 34 may move relative to the pad base 32 along the length of one or more of the sliders 44. For example, the sliders 44 may be positioned and configured such that a length of the sliders 44 is substantially parallel to one or more edges of the pad base 32 and pad cover 34. The movement of the pad base 32 and the pad cover 34 relative to one another may be substantially parallel to the length or to another dimension of the sliders 44. The shape, dimension, and size of the sliders 44 may be suitable for guiding relative movements between the pad cover 34 and the pad base 32. The guiding of relative movements may reduce effects, such as stress, sheering, or any force which may result in deformation or damage to the pad base 32, the pad cover 34, and/or electronic components 30 of the pad 24.
  • In some embodiments, the sliders 44 may substantially surround in the XY plane one or more of the inserts 42 connecting the pad base 32 and pad cover 34. For example, in one embodiment, the pad base 32 may include sliders 44 while the pad cover 34 may include inserts 42, and the inserts 42 of the pad cover 34 may substantially fit in the sliders 44 of the pad base 32. In another embodiment, the pad base 32 may include inserts 42 while the pad cover 34 may include sliders 44, and the inserts of the pad base 32 may substantially fit in the sliders 44 of the pad cover 34. The movement of the pad base 32 and the pad cover 34 relative to one another may therefore be controlled or limited based on the movement of the inserts 42 in each respective slider 44.
  • In different embodiments, the sliders 44 may be configured on the pad base 32, on the pad cover 34, independently from the pad base 32 and the pad cover 34, or in combinations of these implementations. In one or more embodiments, the sliders may include a material suitable for high temperature and suitable for withstanding the relative movement between the pad base 32 and pad cover 34.
  • Various refinements of the features noted above may exist in relation to various aspects of this disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of this disclosure alone or in any combination. The brief summary presented above is intended to familiarize the reader with certain aspects and contexts of embodiments of this disclosure without limitation to the claimed subject matter.

Claims (14)

What is claimed is:
1. A downhole tool comprising:
one or more pads, wherein each of the one or more pads comprises:
a pad base;
electronic components disposed on the pad base;
a pad cover sealed to the pad base, substantially encompassing the electronic components; and
one or more sliders positioned between the pad base and the pad cover, wherein the one or more sliders mechanically couple the pad base and pad cover such as to guide movements of the pad cover relative to the pad base along an XY plane of each of the one or more pads.
2. The downhole tool of claim 1, wherein the one or more sliders comprise a rectangular shape having a length substantially parallel to a length of each of the one or more pads.
3. The downhole tool of claim 1, wherein the one or more sliders are configured such that the pad cover moves with respect to the pad base along a length of each of the one or more sliders.
4. The downhole tool of claim 1, comprising one or more inserts between the pad base and the pad cover, wherein each of the one or more inserts mechanically couple the pad base and pad cover by engaging with a respective one of the one or more sliders.
5. The downhole tool of claim 4, wherein the one or more sliders substantially surround one or more of the one or more inserts in the XY plane.
6. The downhole tool of claim 1, wherein the one or more sliders are disposed substantially parallel to one or more edges of the pad base and the pad cover.
7. The downhole tool of claim 1, wherein the pad cover comprises a polymer suitable for maintaining properties in high temperatures.
8. The downhole tool of claim 7, wherein the pad cover comprises PEEK™.
9. The downhole tool of claim 1, wherein the one or more sliders comprises a polymer suitable for maintaining properties in high temperatures.
10. The downhole tool of claim 9, wherein the one or more sliders comprises PEEK™.
11. The downhole tool of claim 1, wherein the one or more of the one or more sliders comprise different materials or combinations of materials from others of the one or more sliders.
12. The downhole tool of claim 1, wherein the one or more sliders are shaped to be suitable for guiding relative movements between the pad base and the pad cover.
13. The downhole tool of claim 1, wherein the one or more sliders are configured to reduce force on the pad base, the pad cover, the electronic components, or combinations thereof.
14. The downhole tool of claim 1, wherein the one or more sliders are configured to reduce effects of relative movement between the pad base and the pad cover.
US14/761,289 2013-01-15 2014-01-15 Fastening Technique in a Downhole Tool Abandoned US20150361781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/761,289 US20150361781A1 (en) 2013-01-15 2014-01-15 Fastening Technique in a Downhole Tool

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361752859P 2013-01-15 2013-01-15
EP13305036.9A EP2754853B1 (en) 2013-01-15 2013-01-15 Fastening technique in a downhole tool
EP13305036.9 2013-01-15
PCT/US2014/011565 WO2014113410A1 (en) 2013-01-15 2014-01-15 Fastening technique in a downhole tool
US14/761,289 US20150361781A1 (en) 2013-01-15 2014-01-15 Fastening Technique in a Downhole Tool

Publications (1)

Publication Number Publication Date
US20150361781A1 true US20150361781A1 (en) 2015-12-17

Family

ID=47683667

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/761,289 Abandoned US20150361781A1 (en) 2013-01-15 2014-01-15 Fastening Technique in a Downhole Tool

Country Status (3)

Country Link
US (1) US20150361781A1 (en)
EP (1) EP2754853B1 (en)
WO (1) WO2014113410A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486006A (en) * 2019-08-21 2019-11-22 中国海洋石油集团有限公司 A kind of resistivity measurement pole plate and production method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321091B (en) * 2016-08-29 2020-06-09 中国石油天然气集团公司 High-temperature ultrahigh-pressure micro-resistivity scanning imaging polar plate and preparation method thereof
WO2019125481A1 (en) 2017-12-22 2019-06-27 Halliburton Energy Services, Inc. Formation tester tool having an extendable probe and a sealing pad with a movable shield

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB728565A (en) * 1952-06-27 1955-04-20 Schlumberger Well Surv Corp Improvements in or relating to electrode carrier device for electrical well logging apparatus
US2695820A (en) * 1953-02-17 1954-11-30 Schlumberger Well Surv Corp Carrier pad for use in boreholes
US3017566A (en) * 1959-06-16 1962-01-16 Schlumberger Well Surv Corp Apparatus for investigating earth formations
US3818324A (en) * 1971-04-19 1974-06-18 Schlumberger Technology Corp Well logging pad having a flexible electrode structure
US7696756B2 (en) * 2005-11-04 2010-04-13 Halliburton Energy Services, Inc. Oil based mud imaging tool with common mode voltage compensation
US7516782B2 (en) * 2006-02-09 2009-04-14 Schlumberger Technology Corporation Self-anchoring device with force amplification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486006A (en) * 2019-08-21 2019-11-22 中国海洋石油集团有限公司 A kind of resistivity measurement pole plate and production method

Also Published As

Publication number Publication date
WO2014113410A1 (en) 2014-07-24
EP2754853B1 (en) 2016-12-28
EP2754853A1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US7545145B2 (en) Method and apparatus for tensorial micro-resistivity imaging in oil-based muds
US20150361781A1 (en) Fastening Technique in a Downhole Tool
US8943884B2 (en) Smart seals and other elastomer systems for health and pressure monitoring
CA2534600A1 (en) Method for locating casing joints using measurement while drilling tool
EP3374600B1 (en) Resistivity imaging using combination capacitive and inductive sensors
US20080303525A1 (en) Single-dipole high frequency electric imager
BR112014021195B1 (en) METHOD AND APPARATUS FOR ELECTROMAGNETIC SIGNAL DATA PROCESSING
US8354846B2 (en) Method and apparatus for reducing effect of tool eccentricity in a borehole on multi-axial induction measurements
US8237446B2 (en) High resolution resistivity earth imager
US20230332496A1 (en) Indirect detection of bending of a collar
AU2015378541B2 (en) Downhole electrode apparatus, systems, and methods
US10865632B2 (en) Downhole tension sensing apparatus
US10954779B2 (en) Borehole wall imaging tool having a grooved wall-contacting face
US10310135B2 (en) Calibration of gradiometer tools using current loop with finite dimension and ranging operation
US10246986B2 (en) Magnetometer mounting for isolation and interference reduction
US11739629B2 (en) Strain gauges for detecting deformations of a plate
US10386525B2 (en) Uniaxial anisotropy detection apparatus, systems, and methods
EP2169432A1 (en) Modular Apparatus and Method for Making Measurements in Boreholes
CN205743883U (en) A kind of high temperature resistant continuous direct-reading gyro well logging apparatus
WO2018237059A1 (en) Lateral support for downhole electronics
Bammi et al. A new slim full bore electrical micro-imaging tool conveyed through the drill string and bit for geological and reservoir characterization of unconventional reservoirs
EP2755062A1 (en) Asic concept for a downhole tool
US10502857B2 (en) Device for measuring resistivity in a wellbore
EP2755061A1 (en) Digitizing in a pad of a downhole tool exposed to hydrostatic pressure
US20150354338A1 (en) Downhole Apparatus with Extendable Digitized Sensor Device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION