US20150342668A1 - Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips - Google Patents
Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips Download PDFInfo
- Publication number
- US20150342668A1 US20150342668A1 US14/824,673 US201514824673A US2015342668A1 US 20150342668 A1 US20150342668 A1 US 20150342668A1 US 201514824673 A US201514824673 A US 201514824673A US 2015342668 A1 US2015342668 A1 US 2015342668A1
- Authority
- US
- United States
- Prior art keywords
- cannula
- electrode
- hub
- assembly
- bend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002679 ablation Methods 0.000 title description 8
- 239000004020 conductor Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 239000013013 elastic material Substances 0.000 claims description 4
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 239000012781 shape memory material Substances 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 45
- 238000000034 method Methods 0.000 description 34
- 230000008569 process Effects 0.000 description 8
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 210000005036 nerve Anatomy 0.000 description 5
- 239000012777 electrically insulating material Substances 0.000 description 4
- 238000012358 sourcing Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/148—Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00434—Neural system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00821—Temperature measured by a thermocouple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/124—Generators therefor switching the output to different electrodes, e.g. sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1475—Electrodes retractable in or deployable from a housing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
Definitions
- This invention generally relates to a cannula and electrode assembly used for tissue ablation.
- the cannula and electrode assembly of this invention has plural conduct tips and be selectively operated so that at any given time a single tips or the plural tips are active.
- An electrosurgical tool system is a set of components used to flow current through a patient to accomplish a specific medical procedure. Often the procedure is to ablate at least some of the tissue through which the current is flowed to accomplish a desirable therapeutic effect. For example, an electrosurgical procedure is sometimes performed to selectively remove nerve tissue. This may be desirable if a set of the patient's nerves continually transmit signals to the brain that inaccurately indicate that a portion of the patient's body is in appreciable pain. If the receipt of these pain signals adversely affects the quality of life for the patient, an electrosurgical system is employed to ablate the nerves responsible for the transmission of these signals. As a consequence of the tissue ablation process the nerve becomes a lesion. As a result of the nerve becoming a lesion, the nerve no longer transmits pain signals to the brain.
- a cannula and electrode assembly As implied by its name this assembly includes a cannula and an electrode.
- the cannula is a needle like structure with sufficient strength to puncture the skin of the patient and be positioned adjacent the tissue through which the current is to be flowed.
- the distal end or tip of the cannula is conductive.
- the electrode is a closed end tube formed of conductive material. The tube is designed to seat in the bore, the lumen, that extends through the cannula. Owing to the relatively small diameter of the electrode, often 0.4 mm or less in diameter, this tube tends to be relatively fragile.
- a hub or terminal is connected to the proximal end of the electrode body.
- the cannula When this type of assembly is used to remove tissue, the cannula is typically initially inserted into the patient and directed to a location adjacent the target tissue, the tissue that is to be removed. During the insertion process a stylet may be seated in the cannula lumen to provide structural strength to the cannula. Once the cannula is in the generally vicinity of the target tissue, the stylet is removed.
- the electrode is inserted into the cannula lumen.
- a cable connects the electrode to a control console, also part of the electrosurgical system.
- the control console functions as the power source that applies current to the electrode.
- An electrically conductive ground pad another component of the electrosurgical system, is placed against the patient. The ground pad is also connected to the control console.
- the electrode assembly is used by sourcing a current from the control console to the electrode. Since the electrode and cannula physically abut, there is current flow to the cannula. An electrical path is established through the patient from the electrode and sleeve section of the cannula to the ground pad. This current flow is densest through the tissue immediately adjacent the distal end of electrode and the exposed distal end of the cannula. This current flow heats the tissue to a temperature that results in the ablation of the tissue.
- An alternative cannula-and-electrode assembly has been proposed that is intended to increase the volume of tissue that can be removed with a single placement of the cannula. Specifically, it has been proposed to form the cannula of this type of assembly with a side opening that is located a short distance rearward of the distal end of the cannula. The assembly is further constructed with a means to turn the electrode as it is inserted in the cannula so that the distal end tip of the electrode extends out of this side port. The assembly thus has two tips: the distal end tip of the cannula; and the distal end tip of the electrode. When current is sourced to the assembly, the current flows from these two spaced apart tips.
- the electrode assembly of this invention when current is sourced out of the electrode assembly of this invention, a relative dense electric field appears in the area around both of the tips.
- the field extend over a wider volume than the field output by an assembly with a convention electrode-in-the distal end of the cannula construction.
- the electrode assembly of this invention thus outputs a relatively dense current flow through a volume larger than is output by a conventionally constructed electrode assembly of the same size.
- This invention relates to a new and useful cannula and electrode assembly for flowing current through living tissue.
- the assembly of this invention is designed so that after being inserted into the living being through which the current is to be sourced the assembly can be configured to source current from a single tips or plural spaced apart tips. In many versions of the invention, the assembly can be set to have two active tips.
- the cannula of this assembly is formed so as to have a bend immediately proximal to the distal end of the cannula.
- the cannula has an outlet opening along the outer surface of the section of the cannula in which the bend is formed.
- the electrode includes an elastic shaped section proximal to the distal end. More specifically, the electrode is shaped so as to have a length substantially equal to the length of the lumen that extends through the cannula. The electrode is further formed to have a bend in the section formed from elastic material. The bend is formed so as to be at the same general location along the length of the electrode that the bend is formed in the cannula.
- a hub is attached to the proximal end of the electrode.
- the hub is connected to a cable through which current is sourced to the cannula.
- the hub is provided with an indicia that provides an indication of the rotational orientation of the electrode within the cannula.
- the assembly of this invention is used by first inserting the cannula in the patient.
- the cannula is positioned so the distal end tip is located adjacent the tissue through which the current is to be flowed.
- the electrode is then inserted in the cannula. If the practitioner only wants to flow current out of a single tip, the tip of the cannula, the electrode is inserted in the cannula in the rotational orientation so that the bend in the electrode is in same orientation as the bend in the cannula. Consequently, when the electrode is seated in the cannula, the tip of the electrode is seated in the distal end of the lumen of the cannula. Current is therefore sourced only from the tip of the cannula.
- the practitioner can configure the assembly of this invention so that current can be simultaneously sourced from two tips.
- the assembly is so positioned by setting the rotational orientation of the electrode so that it is out of orientation with the bend in the cannula.
- the electrode, in this orientation is inserted in the cannula, the distal end of the electrode will extend out of the side port of the cannula.
- the assembly in this configuration has two active tips; the cannula tip and the electrode tip. As a consequence of the application of current to the electrode, current is flowed from both tips through the adjacent tissue.
- FIG. 1 depicts an electrosurgical system with a cannula and electrode assembly of this invention
- FIG. 2 is a plan view of the cannula and electrode assembly of this invention
- FIG. 3 is a cross sectional view of the cannula and electrode assembly of FIG. 2 ;
- FIG. 4 is plan view of the cannula of this invention.
- FIG. 5 is plan view of the electrode of this invention.
- FIG. 6A is a diagrammatic depiction of the alignment of the cannula and electrode indicia of the assembly of this invention when the assembly is configured to source current from a single tip;
- FIG. 6B is a cross sectional view of the assembly when the assembly is configured to source current from a single tip.
- FIG. 7A is a diagrammatic depiction of the alignment of the cannula and electrode indicia of the assembly of this invention when the assembly is configured to source current from a single tip;
- FIG. 7B is a partial cross sectional view of the assembly of this invention when the assembly is configured to source current from a single tip;
- FIG. 8 is a plan view of an alternative electrode of this invention.
- FIG. 1 illustrates an electrosurgical system 30 including a cannula and electrode assembly 32 of this invention.
- System 30 also includes a ground pad 34 and a control console 36 . Both the cannula and electrode assembly 32 and ground pad 34 are connected to the control console 36 .
- the control console 36 functions a power source that sources a current for flow between the cannula and electrode assembly 32 and the ground pad 34
- the cannula and the cannula and electrode assembly 32 as seen in FIGS. 2 and 3 includes a cannula 42 and an electrode 66 . Electrode 66 is disposed in the cannula 42 .
- FIGS. 2 and 3 depict one operating configuration of assembly 32 , wherein the distal end tip of the electrode 62 is located outside of the cannula 42 .
- Cannula 42 includes a hub 44 .
- Hub 44 is formed from plastic or other electrically insulating material. (Cannula hub 44 and the above the below described electrode hub 68 of FIG. 1 are aesthetically different than the hubs depicted in the other Figures.)
- Hub 44 is formed with a longitudinally extending outer face 41 .
- Face 41 is formed with indicia 43 best seen in FIGS. 6A and 7A .
- indicia 43 is shown as two linearly aligned bars.
- the cannula hub 44 is formed to have a through bore 46 that extends axially through the hub.
- Hub bore 46 is dimensioned to receive the body 74 of the electrode 62 .
- the proximal portion of hub bore 46 is generally of constant diameter. (Here “proximal” is understood to mean towards the practitioner holding assembly 32 , away from the tissue to which the assembly 32 is applied. “Distal” is understood to mean towards the tissue to which assembly 32 is applied, away from the practitioner.)
- Hub 44 is further shaped so that, as bore 46 extends distally forward from the constant width proximal section, the diameter of the bore decreases. At the most distal end of the hub 44 , bore 46 has a diameter that allows the electrode body 44 to slide through and out of the bore.
- a cannula body 50 extends distally forward from hub 44 .
- Cannula body 50 is tube-shaped and formed from a flexible conductive material such as stainless steel.
- the cannula body 50 has opposed proximal and distal ends, the proximal end being the end disposed in hub 44 .
- cannula body 50 is of size 18 gage or smaller (1.25 mm or less in outer diameter.)
- cannula body is of size 20 gage or smaller (0.9 mm or less in outer diameter).
- Cannula body 50 has an axially extending lumen 52 .
- the proximal end of body 50 is mounted to the hub 44 so the proximal portion of lumen 52 is coaxial with hub bore 64 .
- Lumen 52 extends from the proximal to the distal end of the body 50 . Not identified is the distal end opening in the distal end of body 50 that opens into lumen 52 . In some versions of the invention the most proximal section of body 50 , including the proximal end, is heat staked or adhesively secured in cannula hub 44 .
- Side opening 58 is located on the side of the body that forms the outer surface of bend 54 .
- the cannula body 50 is formed so that the lumen 52 , in addition to extending through the proximal section of the body, also extends through bend 54 and distal section 56 . Side opening 58 thus opens into the body lumen 52 .
- Cannula body 50 is further formed so that distal end is both open and has a flared tip 60 . More particularly the tip is flared so that the most distal portion of the body is a point forward of the inner side of bend 54 .
- the cannula 42 itself is constructed so that body 50 extends forward from the hub 44 so that portion of the body forming the inner surface of bend 54 is directed towards the face 41 of the hub on which indicia 43 is located.
- a sleeve 64 formed from electrically insulating material is disposed over the outer surface of the cannula body 50 .
- the sleeve 64 extends proximally rearward from a position slightly proximal to side opening 58 .
- the sleeve 64 extends proximally so as to extend over the portion of the cannula that is disposed in hub 44 .
- the electrode 66 now described by reference to FIGS. 3 , 5 , 6 A, 6 B and 7 B, includes a hub 68 formed from plastic or other electrically insulating material. Hub 68 is formed to have two opposed faces 70 and 75 . Face 70 is formed with a first indicia 72 , shown as “
- a tube like body 74 formed of conductive material that has both flexible and elastic characteristics extends forward from hub 68 . More particularly, the material is elastic so that, when subjected to deformative strain up to 3% and in some situations up to 6% deformative strain from its initial shape, the body will not permanently deform and return to its initial shape.
- body 74 is formed from a nickel titanium alloy known as Nitinol.
- Body 74 has an overall length such that when electrode 66 is inserted in the cannula 42 so that the electrode hub 68 abuts cannula hub 44 , the distal end tip of the electrode body is extends forward of at least a portion of the face forming the flared tip 60 of the cannula body 50 .
- the distal end tip of the electrode body does not extend beyond the distalmost end of the cannula body 50 .
- the distal end top of the electrode body is located approximately 0.4 to 1.4 mm rearward of the distalmost tip of the cannula body 50 .
- the electrode body 74 has an outer diameter dimensioned so that when the electrode body 74 seats in cannula lumen 54 , there is contact between the inner surface of the cannula body 50 that defines lumen 54 and the outer surface of electrode body 74 .
- Electrode body 74 is further designed to have a bend 80 .
- Bend 80 is located in the electrode body 74 so that when the electrode 66 is seated in the cannula 42 , the electrode bend 80 seats in the section of the cannula lumen 52 defined by cannula bend 54 .
- the body 74 is placed in a rotational orientation relative to the hub 68 so that a distal section 82 of the body, the section distal to bend 64 , is directed towards hub face 70 . It should be further understood that the distal end of body distal section 82 is the distal end tip of the electrode 66 .
- thermocouple 84 represented by an oversized dot in FIGS. 6B and 7B is disposed in the electrode body 80 .
- Thermocouple 84 is disposed in the body distal section 82 .
- Insulated wires extend from the thermocouple 84 through the electrode body 75 to hub 68 .
- the structure of the thermocouple 84 and the conductors that extend to the thermocouple are not part of the present invention.
- a cable 92 ( FIG. 1 ) extends proximally from the electrode hub 68 .
- the cable 68 contains a wire that, through the hub, is connected to the electrode body 74 .
- the proximal end of the cable 92 is connected to the control console 36 .
- Control console 36 includes a power supply (not illustrated) capable of sourcing a variable current to the electrode assembly 32 .
- Ground pad 34 functions as the return conductive terminal for the power source.
- the current is AC current.
- Control console 36 is configured to allow the practitioner to adjust the frequency, current and voltage levels of the sourced current.
- the specific structure of the control console 36 is not part of the present invention.
- Features of control consoles that can be employed as control console 36 of system 30 this invention are disclosed in the incorporated by reference US Pat. Pubs. No. 2005/0267553 SYSTEM AND METHOD FOR CONTROLLING ELECTRICAL STIMULATION AND RADIOFREQUENCY OUTPUT FOR USE IN AN ELECTROSURGICAL PROCEDURE published Dec. 1, 2005 and No.
- Electrosurgical system 30 of this invention is prepared for use by adhering the ground pad 34 to the patient.
- a cable 35 connects the ground pad 34 to control console 36 .
- Cannula 42 is inserted into the patient adjacent the subcutaneous tissue that is to be subjected to the ablation process.
- the flared distal end tip 60 of the cannula is the portion of the electrode assembly 32 that punctures the skin.
- electrode 66 is not fitted to the cannula 42 .
- a flexible stylet (not illustrated) is seated in the cannula lumen 52 . The stylet inhibits the cannula body 50 from bending to the extent that such bending results in the permanent deformation of the cannula.
- the practitioner steers the cannula 42 so it is located in the vicinity of the target tissue, the tissue that is to be subject to the ablation procedure. Owing to its relatively small diameter of the cannula body 50 , the cannula is relatively flexible. This flexibility facilitates the ability of the practitioner to steer the cannula to the vicinity of the target tissue. As part of this steering process, the practitioner positions the cannula so it is in the proper orientation relative to the tissue to be ablated. Once the cannula is properly positioned, the stylet is removed.
- the practitioner then inserts the electrode 66 in the cannula 42 . If the particular procedure only requires the sourcing of current through a small volume of tissue adjacent the distal end of the assembly 32 , the electrode is seated so as to position the distal section 82 of the electrode body 74 in the cannula body distal section 56 as seen in FIG. 6B .
- the practitioner so seats the electrode by setting the rotation orientation of the electrode body 74 inside the cannula body 50 so that cannula and electrode bends 54 and 80 , respectively, extend in the same direction.
- the practitioner sets this orientation of the electrode by aligning the electrode hub 68 so that as the hub 68 is moved towards cannula hub 42 , electrode indicia 72 faces cannula indicia 43 as seen in FIG. 6A .
- the electrode bend 80 causes the electrode distal section 82 to curve into the cannula body distal section 56 .
- the distal end tip of the electrode body 74 is depicted in FIG. 6B , seated inside the distalmost portion of cannula lumen 52 .
- the practitioner may want to flow current through a relatively large volume of tissue adjacent the distal end of the assembly 32 .
- the practitioner seats the electrode 66 so the distal section 82 extends out of cannula body side opening 58 .
- Electrode 66 is so positioned by orientating the electrode body in the cannula so that along the longitudinal axis of the cannula proximal section, the electrode bend 80 has an orientation that is opposite to that of cannula bend 54 .
- Electrode 66 is so oriented by rotating the electrode so electrode indicia 76 is placed in orientation with cannula indicia 43 as seen in FIG. 7A .
- the electrode body 74 is advanced through the cannula lumen 52 . Eventually the distal end tip of the electrode body 74 reaches cannula side opening 58 . Owing the elastic characteristics of the material forming the electrode body 74 , the potential energy stored in bend 80 is released. This energy forces the body distal section 82 out of the cannula body side opening 58 . When the electrode is fully seated in the cannula, the distal section 82 of the electrode body 74 is located outside of and adjacent to the cannula distal section 56 as seen in FIGS. 2 , 3 and 7 B.
- the cannula and electrode of this assembly can thus be configured to operate in one of two modes, a mode in which the assembly sources current out of a single active tip or a mode in which the assembly sources current out of plural active tips. This allows the practitioner to, by setting the mode of operating of the assembly, set if the current is flowed through a relatively small volume or relative large volume of tissue adjacent the assembly 32 .
- thermocouple 84 is spaced essentially the same distance from tissue through which the current is flowed. The added separation of the thermocouple from the tissue when the electrode distal section 56 of cannula body 50 is minimal.
- the signal output by the thermocouple 84 representative of tissue temperature represents the actual temperature of the tissue with the same degree of accuracy. This is useful because a practitioner may want to set the control console to cause a current to be applied to the tissue that ensures that the tissue is heated to a specific temperature.
- the control console 36 employs the output signal from the thermocouple as the signal representative of tissue temperature.
- the practitioner may reset the mode of operation of the assembly 32 .
- the practitioner may start the procedure by sourcing current from just the single active tip, cannula body distal section 56 .
- the practitioner can then reset the assembly so that the current is formed from both tips. the cannula body distal section and the electrode body distal section.
- the practitioner performs this switch by first partially withdrawing the electrode body 74 from the cannula lumen 52 .
- the electrode 66 is then rotated to place electrode indicia 76 is placed in registration of cannula indicia 43 .
- the electrode body 74 is then fully reinserted in the cannula lumen 52 . This rotation and reinsertion of the electrode body 74 results in the extension of the electrode body distal section out of the cannula body side opening 58 .
- the assembly is then ready for operation in the mode in which the current is sourced from the two active tips.
- assembly 32 once fitted to the patient can be switch from the plural active tip operating mode to the single active tip operating mode.
- thermocouple be the component disposed in the electrode that provides a signal representative of temperature.
- a thermal resistor or other temperature sensitive transducer may perform this function.
- the cannula body or electrode body be components formed out of a single section of material.
- the cannula body may include a proximal section formed from a non conductive plastic.
- the bend and the distal section may be formed from metal or a other conductive material.
- the described cannula is what is referred to as a monopolar cannula.
- the cannula has a single conductive surface.
- the cannula may be a bipolar cannula. This type of cannula has two conductive surfaces that are electrically insulated from each other.
- the assembly of this version of the invention is used to perform what is known as a bipolar ablation procedure.
- the cannula second conductive surface functions as the return conductive terminal.
- the exposed distal section 82 of the electrode 66 and one of the exposed sections of the cannula form a pair of common active tips.
- the second exposed section of the cannula serves as the return conductive terminal.
- the electrode body may be formed from plural sections of different material.
- the electrode body may have a proximal section formed from an elastic plastic. This plastic portion of the electrode body may be formed with the flexible bend. Distal to bend, the electrode may have a tip formed from a relatively inflexible conductor.
- assembly 32 of this invention may be used to perform what is referred to as a parallel bipolar ablation procedure.
- two cannula and electrode assemblies are inserted in the patient. These assemblies are positioned on opposed sides of the tissue through which the current is to be flowed.
- the second cannula and electrode assembly serves as what is referred to as the return electrode.
- both cannula and electrode assemblies be of the type of this invention.
- the assembly 32 of this invention be orientated so that the electrode bend 80 is positioned so that the electrode distal section 82 be directed towards the tissue through which the current is to be filed.
- This recommendation applies when the assembly 32 is operated either the single or active tip mode or the plural active tip mode.
- This orientation of the electrode 66 is suggested to ensure that the thermocouple 84 is positioned relatively close to the tissue through which the current is to be flowed. This increases the extent to which the thermocouple outputs a signal that, as closely as possible, represents the temperature of the tissue through which the current is flowed.
- FIG. 8 illustrates an alternative electrode 102 of this invention.
- Electrode 102 includes the same features of initially described electrode 66 .
- the electrode 102 further includes a sleeve 104 formed from electrically insulating material that is disposed over the electrode body 74 .
- Sleeve 104 extends distally from hub 68 to a location forward of the bend 80 .
- the wall thickness of sleeve 104 is exaggerated for purposes of illustration.
- the electrode of FIG. 8 is used in versions of this invention wherein a separate set of conductors extends from cannula hub 44 to the control console 36 . These conductors (not illustrated) provide an electrical connection between the control console 36 and the cannula body 50 .
- the cannula-and-electrode assembly of this invention can be thus operated as either a monopolar unit or a stand alone bipolar unit.
- the assembly is operated as a monopolar unit by seating electrode 102 in cannula 44 so that the electrode body distal section 82 seats in cannula body distal section 56 .
- the assembly in this state is operating with a single active tip; the insulation free portion of the electrode distal section 82 .
- Ground pad 34 functions as the return terminal.
- the practitioner may want to operate the assembly is a stand alone bipolar unit.
- the assembly is so configured by orientating electrode 102 so that when the body is inserted in the cannula lumen 52 , the electrode body distal section protrudes out of cannula side opening 58 . It should be understood that when the electrode 102 is so positioned, the distal most portion of sleeve 104 also protrudes out of the cannula side opening 58 .
- the cannula body distal section 56 and the electrode body distal section 82 are electrically insulated from each other. To operate the assembly in this configuration, it is further necessary to connect the cable that extends from the cannula hub 44 to the control console 36 .
- the exposed cannula body distal section 56 which is one of the active tip, functions as the active tip.
- the exposed electrode body distal section 82 functions as the return terminal.
- An alternative embodiment of this version of the invention can be formed by provide the cannula with a liner that extends around the interior wall of the body that defines lumen 52 . This linear also cover the outer surface of the cannula that defines side opening 52 .
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Plasma & Fusion (AREA)
- General Health & Medical Sciences (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Surgical Instruments (AREA)
Abstract
An assembly (32) for use as part of an electrosurgical tool system (30). The assembly includes a cannula (42) and an electrode (66). The cannula is formed with a bend (54) proximal to the distal section. The electrode has a bent section (80) formed from a flexible shape memory material. The electrode can be inserted into the cannula so that a distal section of the electrode seats in the distal section of the cannula. In this configuration, the assembly has a single active tip, the distal section of the cannula. Alternatively, the electrode can be oriented so that when the electrode is inserted in the cannula the distal section of the electrode extends out of a side opening (58) of the cannula. In this configuration, the assembly has two active tips, the distal sections of both the cannula and the electrode.
Description
- This invention generally relates to a cannula and electrode assembly used for tissue ablation. The cannula and electrode assembly of this invention has plural conduct tips and be selectively operated so that at any given time a single tips or the plural tips are active.
- An electrosurgical tool system, often referred to as an electrosurgical system, is a set of components used to flow current through a patient to accomplish a specific medical procedure. Often the procedure is to ablate at least some of the tissue through which the current is flowed to accomplish a desirable therapeutic effect. For example, an electrosurgical procedure is sometimes performed to selectively remove nerve tissue. This may be desirable if a set of the patient's nerves continually transmit signals to the brain that inaccurately indicate that a portion of the patient's body is in appreciable pain. If the receipt of these pain signals adversely affects the quality of life for the patient, an electrosurgical system is employed to ablate the nerves responsible for the transmission of these signals. As a consequence of the tissue ablation process the nerve becomes a lesion. As a result of the nerve becoming a lesion, the nerve no longer transmits pain signals to the brain.
- Many electrosurgical systems include a cannula and electrode assembly. As implied by its name this assembly includes a cannula and an electrode. The cannula is a needle like structure with sufficient strength to puncture the skin of the patient and be positioned adjacent the tissue through which the current is to be flowed. The distal end or tip of the cannula is conductive. The electrode is a closed end tube formed of conductive material. The tube is designed to seat in the bore, the lumen, that extends through the cannula. Owing to the relatively small diameter of the electrode, often 0.4 mm or less in diameter, this tube tends to be relatively fragile. A hub or terminal is connected to the proximal end of the electrode body.
- When this type of assembly is used to remove tissue, the cannula is typically initially inserted into the patient and directed to a location adjacent the target tissue, the tissue that is to be removed. During the insertion process a stylet may be seated in the cannula lumen to provide structural strength to the cannula. Once the cannula is in the generally vicinity of the target tissue, the stylet is removed. The electrode is inserted into the cannula lumen. A cable connects the electrode to a control console, also part of the electrosurgical system. The control console functions as the power source that applies current to the electrode. An electrically conductive ground pad, another component of the electrosurgical system, is placed against the patient. The ground pad is also connected to the control console.
- The electrode assembly is used by sourcing a current from the control console to the electrode. Since the electrode and cannula physically abut, there is current flow to the cannula. An electrical path is established through the patient from the electrode and sleeve section of the cannula to the ground pad. This current flow is densest through the tissue immediately adjacent the distal end of electrode and the exposed distal end of the cannula. This current flow heats the tissue to a temperature that results in the ablation of the tissue.
- Available cannula and electrode assemblies have proven to be good instruments for removing selected sections of tissue. Nevertheless, a limiting characteristic with the use of some of these assemblies is that, when activated, they tend to ablate relatively small volumes of tissue, tissue having a volume of 0.8 cm3 or less. This is especially true of assemblies having cannula with outer diameters of 18 gage or more (1.25 mm or less.) There are procedures in which the practitioner wants to ablate larger sections of tissue than can be removed in a single actuation of the assemblies. Consequently, after a first section of tissue is removed, the practitioner has to reposition the electrode assembly to remove an adjacent section of tissue. This requires the practitioner to, ever so slightly, reposition the electrode array so that, in the next actuation, current is only flowed through the tissue that is to be removed and not flowed through the adjacent tissue that should not be subjected to the removal process. Having to so reposition the electrode assembly, in addition to requiring a significant amount of skill, can lengthen the overall amount of time it takes to perform the procedure.
- An alternative cannula-and-electrode assembly has been proposed that is intended to increase the volume of tissue that can be removed with a single placement of the cannula. Specifically, it has been proposed to form the cannula of this type of assembly with a side opening that is located a short distance rearward of the distal end of the cannula. The assembly is further constructed with a means to turn the electrode as it is inserted in the cannula so that the distal end tip of the electrode extends out of this side port. The assembly thus has two tips: the distal end tip of the cannula; and the distal end tip of the electrode. When current is sourced to the assembly, the current flows from these two spaced apart tips.
- Consequently, when current is sourced out of the electrode assembly of this invention, a relative dense electric field appears in the area around both of the tips. The field extend over a wider volume than the field output by an assembly with a convention electrode-in-the distal end of the cannula construction. The electrode assembly of this invention thus outputs a relatively dense current flow through a volume larger than is output by a conventionally constructed electrode assembly of the same size.
- There are procedures though in which the practitioner may not know until after the procedure is started if it is more appropriate to source current through a one tip assembly or a two tip assembly. Similarly, during the procedure, the practitioner may want to initial apply current using first the one tip (or two tip) assembly and then switch to applying current using a two tip (or one tip) assembly. In either of the above situations, the practitioner may find it necessary to interrupt the procedure in order first remove one cathode and electrode assembly and then insert a second assembly. As part of this process, the practitioner needs to take the time to ensure that the second assembly is properly positioned. Having to perform all these steps can increase the complexity of the procedure and the tip it takes to perform the procedure.
- This invention relates to a new and useful cannula and electrode assembly for flowing current through living tissue. The assembly of this invention is designed so that after being inserted into the living being through which the current is to be sourced the assembly can be configured to source current from a single tips or plural spaced apart tips. In many versions of the invention, the assembly can be set to have two active tips.
- The cannula of this assembly is formed so as to have a bend immediately proximal to the distal end of the cannula. The cannula has an outlet opening along the outer surface of the section of the cannula in which the bend is formed.
- The electrode includes an elastic shaped section proximal to the distal end. More specifically, the electrode is shaped so as to have a length substantially equal to the length of the lumen that extends through the cannula. The electrode is further formed to have a bend in the section formed from elastic material. The bend is formed so as to be at the same general location along the length of the electrode that the bend is formed in the cannula.
- A hub is attached to the proximal end of the electrode. The hub is connected to a cable through which current is sourced to the cannula. In many, but not all versions of the invention, the hub is provided with an indicia that provides an indication of the rotational orientation of the electrode within the cannula.
- The assembly of this invention is used by first inserting the cannula in the patient. The cannula is positioned so the distal end tip is located adjacent the tissue through which the current is to be flowed. The electrode is then inserted in the cannula. If the practitioner only wants to flow current out of a single tip, the tip of the cannula, the electrode is inserted in the cannula in the rotational orientation so that the bend in the electrode is in same orientation as the bend in the cannula. Consequently, when the electrode is seated in the cannula, the tip of the electrode is seated in the distal end of the lumen of the cannula. Current is therefore sourced only from the tip of the cannula.
- Alternatively, the practitioner can configure the assembly of this invention so that current can be simultaneously sourced from two tips. The assembly is so positioned by setting the rotational orientation of the electrode so that it is out of orientation with the bend in the cannula. When the electrode, in this orientation, is inserted in the cannula, the distal end of the electrode will extend out of the side port of the cannula. Thus while embedded in the patient, the assembly in this configuration has two active tips; the cannula tip and the electrode tip. As a consequence of the application of current to the electrode, current is flowed from both tips through the adjacent tissue.
- The invention is pointed out with particularity in the claims. The above and further features and advantages of this invention are understood by reference to the following Detailed Description taken in conjunction with the accompanying drawings in which
-
FIG. 1 depicts an electrosurgical system with a cannula and electrode assembly of this invention; -
FIG. 2 is a plan view of the cannula and electrode assembly of this invention; -
FIG. 3 is a cross sectional view of the cannula and electrode assembly ofFIG. 2 ; -
FIG. 4 is plan view of the cannula of this invention; -
FIG. 5 is plan view of the electrode of this invention; -
FIG. 6A is a diagrammatic depiction of the alignment of the cannula and electrode indicia of the assembly of this invention when the assembly is configured to source current from a single tip; -
FIG. 6B is a cross sectional view of the assembly when the assembly is configured to source current from a single tip; and -
FIG. 7A is a diagrammatic depiction of the alignment of the cannula and electrode indicia of the assembly of this invention when the assembly is configured to source current from a single tip; -
FIG. 7B is a partial cross sectional view of the assembly of this invention when the assembly is configured to source current from a single tip; -
FIG. 8 is a plan view of an alternative electrode of this invention. -
FIG. 1 illustrates anelectrosurgical system 30 including a cannula andelectrode assembly 32 of this invention.System 30 also includes aground pad 34 and acontrol console 36. Both the cannula andelectrode assembly 32 andground pad 34 are connected to thecontrol console 36. Thecontrol console 36 functions a power source that sources a current for flow between the cannula andelectrode assembly 32 and theground pad 34 - The cannula and the cannula and
electrode assembly 32, as seen inFIGS. 2 and 3 includes acannula 42 and anelectrode 66.Electrode 66 is disposed in thecannula 42.FIGS. 2 and 3 depict one operating configuration ofassembly 32, wherein the distal end tip of the electrode 62 is located outside of thecannula 42. -
Cannula 42, now described by reference toFIGS. 4 and 6B , includes ahub 44.Hub 44 is formed from plastic or other electrically insulating material. (Cannula hub 44 and the above the below describedelectrode hub 68 ofFIG. 1 are aesthetically different than the hubs depicted in the other Figures.)Hub 44 is formed with a longitudinally extendingouter face 41.Face 41 is formed withindicia 43 best seen inFIGS. 6A and 7A . In the depicted version of the invention, indicia 43 is shown as two linearly aligned bars. Thecannula hub 44 is formed to have a throughbore 46 that extends axially through the hub. Hub bore 46 is dimensioned to receive thebody 74 of the electrode 62. The proximal portion of hub bore 46 is generally of constant diameter. (Here “proximal” is understood to mean towards thepractitioner holding assembly 32, away from the tissue to which theassembly 32 is applied. “Distal” is understood to mean towards the tissue to whichassembly 32 is applied, away from the practitioner.)Hub 44 is further shaped so that, as bore 46 extends distally forward from the constant width proximal section, the diameter of the bore decreases. At the most distal end of thehub 44, bore 46 has a diameter that allows theelectrode body 44 to slide through and out of the bore. - A
cannula body 50 extends distally forward fromhub 44.Cannula body 50 is tube-shaped and formed from a flexible conductive material such as stainless steel. Thecannula body 50 has opposed proximal and distal ends, the proximal end being the end disposed inhub 44. In many versions of theinvention cannula body 50 is of size 18 gage or smaller (1.25 mm or less in outer diameter.) In still other versions of the invention, cannula body is of size 20 gage or smaller (0.9 mm or less in outer diameter).Cannula body 50 has an axially extendinglumen 52. The proximal end ofbody 50 is mounted to thehub 44 so the proximal portion oflumen 52 is coaxial with hub bore 64.Lumen 52 extends from the proximal to the distal end of thebody 50. Not identified is the distal end opening in the distal end ofbody 50 that opens intolumen 52. In some versions of the invention the most proximal section ofbody 50, including the proximal end, is heat staked or adhesively secured incannula hub 44. -
Cannula 42 is further constructed so thatbody 50 is not straight along the whole of the length of the body. In some versions of the invention, the body is shaped so the first 80% to 90% of the body that extends forward from hub is linear in shape. Through this portion of the body,body lumen 52 is coaxial with hub bore 46. Forward of this linear section, the cannula body is formed with abend 54.Bend 54 has a radius of curvature of 40 to 60 mm. Forward ofbend 54, cannula body has a distal section,section 56. Cannula bodydistal section 56 is generally linear in shape. The distal section has a length of approximately 5 to 10 mm. Thecannula body 50 is further formed to aside opening 58.Side opening 58 is located on the side of the body that forms the outer surface ofbend 54. Thecannula body 50 is formed so that thelumen 52, in addition to extending through the proximal section of the body, also extends throughbend 54 anddistal section 56. Side opening 58 thus opens into thebody lumen 52. -
Cannula body 50 is further formed so that distal end is both open and has a flaredtip 60. More particularly the tip is flared so that the most distal portion of the body is a point forward of the inner side ofbend 54. Thecannula 42 itself is constructed so thatbody 50 extends forward from thehub 44 so that portion of the body forming the inner surface ofbend 54 is directed towards theface 41 of the hub on whichindicia 43 is located. - A
sleeve 64, seen only inFIG. 2 , formed from electrically insulating material is disposed over the outer surface of thecannula body 50. Thesleeve 64 extends proximally rearward from a position slightly proximal toside opening 58. Thesleeve 64 extends proximally so as to extend over the portion of the cannula that is disposed inhub 44. - The
electrode 66, now described by reference toFIGS. 3 , 5, 6A, 6B and 7B, includes ahub 68 formed from plastic or other electrically insulating material.Hub 68 is formed to have two opposed faces 70 and 75.Face 70 is formed with afirst indicia 72, shown as “|”. The opposed hub face, face 75 is formed with asecond indicia 76, shown as “\/” - A tube like
body 74 formed of conductive material that has both flexible and elastic characteristics extends forward fromhub 68. More particularly, the material is elastic so that, when subjected to deformative strain up to 3% and in some situations up to 6% deformative strain from its initial shape, the body will not permanently deform and return to its initial shape. In one version of the invention,body 74 is formed from a nickel titanium alloy known as Nitinol.Body 74 has an overall length such that whenelectrode 66 is inserted in thecannula 42 so that theelectrode hub 68 abutscannula hub 44, the distal end tip of the electrode body is extends forward of at least a portion of the face forming the flaredtip 60 of thecannula body 50. The distal end tip of the electrode body does not extend beyond the distalmost end of thecannula body 50. In some versions of the invention, when theelectrode 66 is fully seated in thecannula 42, the distal end top of the electrode body is located approximately 0.4 to 1.4 mm rearward of the distalmost tip of thecannula body 50. Theelectrode body 74 has an outer diameter dimensioned so that when theelectrode body 74 seats incannula lumen 54, there is contact between the inner surface of thecannula body 50 that defineslumen 54 and the outer surface ofelectrode body 74. -
Electrode body 74 is further designed to have abend 80. InFIG. 5 , the curvature ofbend 80 is exaggerated for purposes of illustration.Bend 80 is located in theelectrode body 74 so that when theelectrode 66 is seated in thecannula 42, theelectrode bend 80 seats in the section of thecannula lumen 52 defined bycannula bend 54. When theelectrode 66 is assembled, thebody 74 is placed in a rotational orientation relative to thehub 68 so that adistal section 82 of the body, the section distal to bend 64, is directed towardshub face 70. It should be further understood that the distal end of bodydistal section 82 is the distal end tip of theelectrode 66. - A
thermocouple 84, represented by an oversized dot inFIGS. 6B and 7B is disposed in theelectrode body 80.Thermocouple 84 is disposed in the bodydistal section 82. Insulated wires (not illustrated,) extend from thethermocouple 84 through theelectrode body 75 tohub 68. The structure of thethermocouple 84 and the conductors that extend to the thermocouple are not part of the present invention. - A cable 92 (
FIG. 1 ) extends proximally from theelectrode hub 68. Thecable 68 contains a wire that, through the hub, is connected to theelectrode body 74. Also internal to thecable 92 are wires that connect to the wires internal to theelectrode body 74 that are connected to thethermocouple 84. The proximal end of thecable 92 is connected to thecontrol console 36. -
Control console 36 includes a power supply (not illustrated) capable of sourcing a variable current to theelectrode assembly 32.Ground pad 34 functions as the return conductive terminal for the power source. Typically, the current is AC current.Control console 36 is configured to allow the practitioner to adjust the frequency, current and voltage levels of the sourced current. The specific structure of thecontrol console 36 is not part of the present invention. Features of control consoles that can be employed ascontrol console 36 ofsystem 30 this invention are disclosed in the incorporated by reference US Pat. Pubs. No. 2005/0267553 SYSTEM AND METHOD FOR CONTROLLING ELECTRICAL STIMULATION AND RADIOFREQUENCY OUTPUT FOR USE IN AN ELECTROSURGICAL PROCEDURE published Dec. 1, 2005 and No. 2007/0016185, MEDICAL BIPOLAR ELECTRODE ASSEMBLY WITH A CANNULA HAVING A BIPOLAR ACTIVE TIP AND A SEPARATE SUPPLY ELECTRODE AND MEDICAL MONOPOLAR ELECTRODE ASSEMBLY WITH A CANNULA HAVING A MONOPOLAR ACTIVE TIP AND A SEPARATE TEMPERATURE-TRANSDUCER POST published Jan. 18, 2007. -
Electrosurgical system 30 of this invention is prepared for use by adhering theground pad 34 to the patient. Acable 35 connects theground pad 34 to controlconsole 36. -
Cannula 42 is inserted into the patient adjacent the subcutaneous tissue that is to be subjected to the ablation process. In the insertion process the flareddistal end tip 60 of the cannula is the portion of theelectrode assembly 32 that punctures the skin. In this step,electrode 66 is not fitted to thecannula 42. Instead, a flexible stylet (not illustrated) is seated in thecannula lumen 52. The stylet inhibits thecannula body 50 from bending to the extent that such bending results in the permanent deformation of the cannula. - The practitioner steers the
cannula 42 so it is located in the vicinity of the target tissue, the tissue that is to be subject to the ablation procedure. Owing to its relatively small diameter of thecannula body 50, the cannula is relatively flexible. This flexibility facilitates the ability of the practitioner to steer the cannula to the vicinity of the target tissue. As part of this steering process, the practitioner positions the cannula so it is in the proper orientation relative to the tissue to be ablated. Once the cannula is properly positioned, the stylet is removed. - The practitioner then inserts the
electrode 66 in thecannula 42. If the particular procedure only requires the sourcing of current through a small volume of tissue adjacent the distal end of theassembly 32, the electrode is seated so as to position thedistal section 82 of theelectrode body 74 in the cannula bodydistal section 56 as seen inFIG. 6B . The practitioner so seats the electrode by setting the rotation orientation of theelectrode body 74 inside thecannula body 50 so that cannula and electrode bends 54 and 80, respectively, extend in the same direction. The practitioner sets this orientation of the electrode by aligning theelectrode hub 68 so that as thehub 68 is moved towardscannula hub 42,electrode indicia 72 facescannula indicia 43 as seen inFIG. 6A . - As a consequence of the
electrode 66 being so oriented, when thedistal section 84 of the electrode body approaches thecannula bend 54, theelectrode bend 80 causes the electrodedistal section 82 to curve into the cannula bodydistal section 56. At the end of this insertion process, the distal end tip of theelectrode body 74 is depicted inFIG. 6B , seated inside the distalmost portion ofcannula lumen 52. When theassembly 50 is in this configuration, configuration, current is source from just one active tip, the insulation free portion of thecannula body 50;bend 54 anddistal section 56. - Alternatively, the practitioner may want to flow current through a relatively large volume of tissue adjacent the distal end of the
assembly 32. To perform this type of procedure, the practitioner seats theelectrode 66 so thedistal section 82 extends out of cannulabody side opening 58.Electrode 66 is so positioned by orientating the electrode body in the cannula so that along the longitudinal axis of the cannula proximal section, theelectrode bend 80 has an orientation that is opposite to that ofcannula bend 54.Electrode 66 is so oriented by rotating the electrode soelectrode indicia 76 is placed in orientation withcannula indicia 43 as seen inFIG. 7A . Once theelectrode 66 is so orientated, theelectrode body 74 is advanced through thecannula lumen 52. Eventually the distal end tip of theelectrode body 74 reachescannula side opening 58. Owing the elastic characteristics of the material forming theelectrode body 74, the potential energy stored inbend 80 is released. This energy forces the bodydistal section 82 out of the cannulabody side opening 58. When the electrode is fully seated in the cannula, thedistal section 82 of theelectrode body 74 is located outside of and adjacent to the cannuladistal section 56 as seen inFIGS. 2 , 3 and 7B. - When current is sourced through assembly as seen in
FIG. 7B , the current is thus sourced through two active tips; the exposed bend and distal section of the cannula body and the exposeddistal section 82 of the electrode body. The current thus flows through a larger volume of tissue immediately adjacent the cannula than when the assembly is configured to source current from a single active tip. - The cannula and electrode of this assembly can thus be configured to operate in one of two modes, a mode in which the assembly sources current out of a single active tip or a mode in which the assembly sources current out of plural active tips. This allows the practitioner to, by setting the mode of operating of the assembly, set if the current is flowed through a relatively small volume or relative large volume of tissue adjacent the
assembly 32. - Further, regardless of the mode of operation the
electrode 66 is typically fully seated in thecannula 42. Consequently, regardless of the operating mode, thethermocouple 84 is spaced essentially the same distance from tissue through which the current is flowed. The added separation of the thermocouple from the tissue when the electrodedistal section 56 ofcannula body 50 is minimal. Thus, in either mode of operation, the signal output by thethermocouple 84 representative of tissue temperature, represents the actual temperature of the tissue with the same degree of accuracy. This is useful because a practitioner may want to set the control console to cause a current to be applied to the tissue that ensures that the tissue is heated to a specific temperature. When thesystem 30 is so configured, thecontrol console 36 employs the output signal from the thermocouple as the signal representative of tissue temperature. - It is a still further feature of this invention is that, once the
cannula 42 is inserted in the patient, the practitioner may reset the mode of operation of theassembly 32. For example, the practitioner may start the procedure by sourcing current from just the single active tip, cannula bodydistal section 56. The practitioner can then reset the assembly so that the current is formed from both tips. the cannula body distal section and the electrode body distal section. The practitioner performs this switch by first partially withdrawing theelectrode body 74 from thecannula lumen 52. Theelectrode 66 is then rotated to placeelectrode indicia 76 is placed in registration ofcannula indicia 43. Theelectrode body 74 is then fully reinserted in thecannula lumen 52. This rotation and reinsertion of theelectrode body 74 results in the extension of the electrode body distal section out of the cannulabody side opening 58. The assembly is then ready for operation in the mode in which the current is sourced from the two active tips. - Using the technique opposite from which is described above,
assembly 32 once fitted to the patient can be switch from the plural active tip operating mode to the single active tip operating mode. - The above is directed to one specific version of the invention. Other versions of the invention may have features different from what has been described.
- For example, there is no requirement that in all versions of the invention a thermocouple be the component disposed in the electrode that provides a signal representative of temperature. A thermal resistor or other temperature sensitive transducer may perform this function.
- Likewise there is no requirement that in all versions of the invention either the cannula body or electrode body be components formed out of a single section of material. For example, the cannula body may include a proximal section formed from a non conductive plastic. The bend and the distal section may be formed from metal or a other conductive material.
- Further the described cannula is what is referred to as a monopolar cannula. The cannula has a single conductive surface. In an alternative version of this invention, the cannula may be a bipolar cannula. This type of cannula has two conductive surfaces that are electrically insulated from each other. The assembly of this version of the invention is used to perform what is known as a bipolar ablation procedure. The cannula second conductive surface functions as the return conductive terminal.
- In this version of the invention, when the assembly is operated in the plural active tip mode, the exposed
distal section 82 of theelectrode 66 and one of the exposed sections of the cannula form a pair of common active tips. The second exposed section of the cannula serves as the return conductive terminal. - Likewise the electrode body may be formed from plural sections of different material. For example the electrode body may have a proximal section formed from an elastic plastic. This plastic portion of the electrode body may be formed with the flexible bend. Distal to bend, the electrode may have a tip formed from a relatively inflexible conductor. An advantage of this version of the is that when the assembly is configured to operate in the plural active tip mode and the electrode is deployed out of the cannula side opening, the relatively inflexible exposed distal end may be less prone to breakage.
- Further, there is no limitation that the invention solely be used in what are referred to as a monopolar procedure, a procedure in which the ground pad functions as the return electrode.
Assembly 32 of this invention may be used to perform what is referred to as a parallel bipolar ablation procedure. In this type of procedure two cannula and electrode assemblies are inserted in the patient. These assemblies are positioned on opposed sides of the tissue through which the current is to be flowed. In this type of procedure, the second cannula and electrode assembly serves as what is referred to as the return electrode. - In these types of procedure, there is no requirement that both cannula and electrode assemblies be of the type of this invention. In this type of procedure it is recommended that the
assembly 32 of this invention be orientated so that theelectrode bend 80 is positioned so that the electrodedistal section 82 be directed towards the tissue through which the current is to be filed. This recommendation applies when theassembly 32 is operated either the single or active tip mode or the plural active tip mode. This orientation of theelectrode 66 is suggested to ensure that thethermocouple 84 is positioned relatively close to the tissue through which the current is to be flowed. This increases the extent to which the thermocouple outputs a signal that, as closely as possible, represents the temperature of the tissue through which the current is flowed. -
FIG. 8 illustrates analternative electrode 102 of this invention.Electrode 102 includes the same features of initially describedelectrode 66. Theelectrode 102 further includes asleeve 104 formed from electrically insulating material that is disposed over theelectrode body 74.Sleeve 104 extends distally fromhub 68 to a location forward of thebend 80. InFIG. 8 , the wall thickness ofsleeve 104 is exaggerated for purposes of illustration. - The electrode of
FIG. 8 is used in versions of this invention wherein a separate set of conductors extends fromcannula hub 44 to thecontrol console 36. These conductors (not illustrated) provide an electrical connection between thecontrol console 36 and thecannula body 50. - The cannula-and-electrode assembly of this invention can be thus operated as either a monopolar unit or a stand alone bipolar unit. The assembly is operated as a monopolar unit by seating
electrode 102 incannula 44 so that the electrode bodydistal section 82 seats in cannula bodydistal section 56. When the assembly is operated in this state, there is only a need to connect theelectrode 102 to thecontrol console 36. The assembly in this state is operating with a single active tip; the insulation free portion of the electrodedistal section 82.Ground pad 34 functions as the return terminal. - Alternatively, the practitioner may want to operate the assembly is a stand alone bipolar unit. The assembly is so configured by orientating
electrode 102 so that when the body is inserted in thecannula lumen 52, the electrode body distal section protrudes out ofcannula side opening 58. It should be understood that when theelectrode 102 is so positioned, the distal most portion ofsleeve 104 also protrudes out of thecannula side opening 58. Thus when the assembly is so configured, the cannula bodydistal section 56 and the electrode bodydistal section 82 are electrically insulated from each other. To operate the assembly in this configuration, it is further necessary to connect the cable that extends from thecannula hub 44 to thecontrol console 36. - To operate the assembly in this configuration, current is flowed from the console power supply through the cannula, The exposed cannula body
distal section 56, which is one of the active tip, functions as the active tip. The exposed electrode bodydistal section 82 functions as the return terminal. By so configuring the assembly of this invention, the practitioner can if desired, flow current through the small volume of tissue that surrounds the exposed tips. - An alternative embodiment of this version of the invention can be formed by provide the cannula with a liner that extends around the interior wall of the body that defines
lumen 52. This linear also cover the outer surface of the cannula that definesside opening 52. - Accordingly, it is an object of the appended claims to cover all such modifications and variations that come within the true spirit and scope of this invention.
Claims (20)
1. A cannula and electrode assembly including:
a cannula having a cannula body having: opposed proximal and distal ends; a distal section that is electrically conductive, the distal section defining the distal end of the cannula body; a bend proximal to the cannula distal section; a lumen that extends distally and longitudinally from the proximal end of the cannula body; and a side opening that extends through a portion of the cannula body that defines an outer portion of the bend, the side opening opening into the cannula body lumen; and
an electrode adapted for connection to a cable that connects the electrode to a control console, the electrode having an electrode body dimensioned to seat in the lumen of said cannula body, said electrode body having: a distal section formed from electrically conductive material that is electrically connected to a conductor internal to the cable and a section proximal to the distal section formed from elastic material, the section formed from elastic material being located so that, when the electrode body is inserted in the cannula lumen, the section is within the section of the lumen defined by the bend in said cannula body and the bend is shaped so that, depending on the rotational orientation of the electrode body relative to the cannula body, when the electrode body is inserted in the cannula body the electrode body distal section either seats in the lumen portion within the cannula body distal section or extends out of the cannula body side opening.
2. The cannula and electrode assembly of claim 1 , wherein said cannula and said electrode are formed with complementary indicia that are arranged to provide an indication of the rotational orientation of the electrode body relative to the cannula body.
3. The cannula and electrode assembly of claim 2 , wherein:
said cannula has a hub and said cannula indicia is disposed on the cannula hub; and
the proximal end of said cannula body is mounted to the hub and the cannula body extends distally from said hub.
4. The cannula and electrode assembly of claim 2 , wherein:
said electrode has a hub, said hub being the component of the electrode to which the cable is connected;
said electrode body extends from said hub; and
said electrode indicia are disposed on the electrode hub.
5. The cannula and electrode assembly of claim 1 , wherein said cannula body is formed from a single piece of material.
6. The cannula and electrode assembly of claim 1 , wherein said electrode body is formed from a single piece of material.
7. The cannula and electrode assembly of claim 1 , wherein the section of said electrode formed from elastic material is formed from a nickel titanium alloy.
8. The cannula and electrode assembly of claim 1 , wherein said electrode body is in the form of a tube having a closed distal end.
9. The cannula and electrode assembly of claim 1 , wherein an electrically insulating sleeve is disposed over the cannula body, said sleeve extending proximally from a location spaced proximally to the distal end of the cannula body.
10. The cannula and electrode assembly of claim 1 , further including a temperature sensor disposed in said electrode body.
11. The cannula and electrode assembly of claim 10 , wherein said temperature sensor is a thermocouple.
12. The cannula and electrode assembly of claim 1 , wherein said assembly is structured as a monopolar cannula and electrode assembly.
13. The cannula and electrode assembly of claim 1 , wherein:
said cannula has a hub; and
the proximal end of said cannula body is mounted to the hub and the cannula body extends distally from said hub.
14. The cannula and electrode assembly of claim 1 , wherein:
said electrode has a hub, said hub being the component of said electrode to which the cable is connected; and
said electrode body extends from said hub.
15. The cannula and electrode assembly of claim 1 , wherein said electrode further includes a sleeve formed from insulating material that extends at least partially over said electrode body
16. The cannula and electrode assembly of claim 1 , wherein the radius of curvature of the bend of said cannula is between 40 and 60 mm.
17. A cannula and electrode assembly, said assembly including:
an electrode configured for connection to a cable, said electrode including:
a hub formed electrically insulting material, said hub including opposed surfaces thereof indicia, the indicia on the opposed surfaces being different from each other; and
a body, said body having: a proximal section that extends distally forward from said electrode hub; a distal section located forward of the proximal section, the distal section being formed from electrically conductive material and electrically connected to a conductor internal to the cable, the distal section defining an end of the body; and a bend located between the proximal and distal sections, so that as a result of the presence of the bend the proximal and distal sections of said electrode body are axially angularly offset from each other; and
a cannula, said cannula including:
a hub formed from electrically insulting material and being formed with a bore for receiving said body of said electrode, said cannula having a indicia; and
a body, said body shaped to have: a proximal section that extends from said cannula hub; a distal section located forward of the proximal section, a bend that is located between the proximal and distal sections so that, as a result of the presence of said cannula body, the proximal and distal sections of the cannula body are axially angularly offset from each other, a lumen that extends through the proximal section, the bend and distal section of said cannula body, the lumen dimensioned to receive said electrode body and side opening in an outer surface of the bend, said side opening opening into the lumen that extends through the cannula body and wherein the bend and the side opening are formed in the cannula body so that: when the electrode body is inserted in first rotational orientation within the cannula body to place a first one of the indicia on said electrode hub is registration with the indicia of said cannula hub, the distal section of the electrode body seats in the portion of the cannula lumen disposed in the distal section of said cannula body; and, when the electrode body is inserted in a second rotational orientation to place a second one of the indicia of the electrode hub in registration with the indicia of the cannula hub, the bend of the electrode body causes the distal section of the electrode body to extend out through the side opening in said cannula body.
18. The cannula and electrode assembly of claim 17 , wherein said electrode body is formed from a single piece of material.
19. The cannula and electrode assembly of claim 17 , wherein said assembly is structured as a monopolar cannula and electrode assembly.
20. The cannula and electrode assembly of claim 1 , wherein the radius of curvature of the bend of said cannula is between 40 and 60 mm.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/824,673 US20150342668A1 (en) | 2013-02-21 | 2015-08-12 | Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips |
US15/898,820 US10159526B2 (en) | 2013-02-21 | 2018-02-19 | Tissue ablation cannula assembly |
US16/151,989 US11452561B2 (en) | 2013-02-21 | 2018-10-04 | Tissue ablation cannula assembly |
US17/941,601 US12133676B2 (en) | 2013-02-21 | 2022-09-09 | Tissue ablation cannula assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2013/027038 WO2014130031A1 (en) | 2013-02-21 | 2013-02-21 | Tissue ablation cannula and electrode assembly that can be selectively operated with one or more active tips |
US14/824,673 US20150342668A1 (en) | 2013-02-21 | 2015-08-12 | Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/027038 Continuation WO2014130031A1 (en) | 2013-02-21 | 2013-02-21 | Tissue ablation cannula and electrode assembly that can be selectively operated with one or more active tips |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/898,820 Continuation US10159526B2 (en) | 2013-02-21 | 2018-02-19 | Tissue ablation cannula assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150342668A1 true US20150342668A1 (en) | 2015-12-03 |
Family
ID=54700450
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/824,673 Abandoned US20150342668A1 (en) | 2013-02-21 | 2015-08-12 | Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips |
US15/898,820 Active US10159526B2 (en) | 2013-02-21 | 2018-02-19 | Tissue ablation cannula assembly |
US16/151,989 Active 2035-12-17 US11452561B2 (en) | 2013-02-21 | 2018-10-04 | Tissue ablation cannula assembly |
US17/941,601 Active US12133676B2 (en) | 2013-02-21 | 2022-09-09 | Tissue ablation cannula assembly |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/898,820 Active US10159526B2 (en) | 2013-02-21 | 2018-02-19 | Tissue ablation cannula assembly |
US16/151,989 Active 2035-12-17 US11452561B2 (en) | 2013-02-21 | 2018-10-04 | Tissue ablation cannula assembly |
US17/941,601 Active US12133676B2 (en) | 2013-02-21 | 2022-09-09 | Tissue ablation cannula assembly |
Country Status (1)
Country | Link |
---|---|
US (4) | US20150342668A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10159526B2 (en) * | 2013-02-21 | 2018-12-25 | Stryker Corporation | Tissue ablation cannula assembly |
US10631915B1 (en) * | 2014-10-21 | 2020-04-28 | Cosman Instruments, Llc | Electrosurgical system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD941750S1 (en) * | 2019-12-30 | 2022-01-25 | Stryker Corporation | Battery module |
USD1024926S1 (en) | 2021-07-13 | 2024-04-30 | Stryker Corporation | Battery module |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213578A (en) * | 1991-08-28 | 1993-05-25 | Vygon Gmbh & Co. Kg | Anesthesia set |
US7862563B1 (en) * | 2005-02-18 | 2011-01-04 | Cosman Eric R | Integral high frequency electrode |
US20110077644A1 (en) * | 2009-09-30 | 2011-03-31 | Boston Scientific Scimed, Inc. | Medical probe with translatable co-access cannula |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4699616A (en) | 1986-06-13 | 1987-10-13 | Hollister Incorporated | Catheter retention device and method |
DE3838840C2 (en) | 1988-11-17 | 1997-02-20 | Leibinger Gmbh | High frequency coagulation device for surgical purposes |
DE3922406C1 (en) | 1989-07-07 | 1990-10-11 | B. Braun Melsungen Ag, 3508 Melsungen, De | |
US5069206A (en) | 1990-06-11 | 1991-12-03 | Crosbie David B | Endotracheal tube clutch |
US5263939A (en) | 1992-10-09 | 1993-11-23 | Surgin Surgical Instrumentation, Inc. | Retainer for laparoscopic cannula |
US5433739A (en) | 1993-11-02 | 1995-07-18 | Sluijter; Menno E. | Method and apparatus for heating an intervertebral disc for relief of back pain |
US5599346A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment system |
US6569159B1 (en) | 1993-11-08 | 2003-05-27 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US6071280A (en) | 1993-11-08 | 2000-06-06 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus |
US5458597A (en) | 1993-11-08 | 1995-10-17 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US6958062B1 (en) | 1993-11-08 | 2005-10-25 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5472441A (en) | 1993-11-08 | 1995-12-05 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US6632221B1 (en) | 1993-11-08 | 2003-10-14 | Rita Medical Systems, Inc. | Method of creating a lesion in tissue with infusion |
US5728143A (en) | 1995-08-15 | 1998-03-17 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US6641580B1 (en) | 1993-11-08 | 2003-11-04 | Rita Medical Systems, Inc. | Infusion array ablation apparatus |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5928229A (en) | 1993-11-08 | 1999-07-27 | Rita Medical Systems, Inc. | Tumor ablation apparatus |
US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US6330478B1 (en) | 1995-08-15 | 2001-12-11 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US5672173A (en) | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5913855A (en) | 1995-08-15 | 1999-06-22 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5800484A (en) | 1995-08-15 | 1998-09-01 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus with expanded electrodes |
US6080150A (en) | 1995-08-15 | 2000-06-27 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US5863290A (en) | 1995-08-15 | 1999-01-26 | Rita Medical Systems | Multiple antenna ablation apparatus and method |
US6053937A (en) | 1995-08-15 | 2000-04-25 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method with cooling element |
US5951547A (en) | 1995-08-15 | 1999-09-14 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US6235023B1 (en) | 1995-08-15 | 2001-05-22 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US5735847A (en) | 1995-08-15 | 1998-04-07 | Zomed International, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US5810804A (en) | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US6059780A (en) | 1995-08-15 | 2000-05-09 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5980517A (en) | 1995-08-15 | 1999-11-09 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US6132425A (en) | 1995-08-15 | 2000-10-17 | Gough; Edward J. | Cell necrosis apparatus |
US5782827A (en) | 1995-08-15 | 1998-07-21 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method with multiple sensor feedback |
US5672174A (en) | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5925042A (en) | 1995-08-15 | 1999-07-20 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5645566A (en) | 1995-09-15 | 1997-07-08 | Sub Q Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US6302880B1 (en) | 1996-04-08 | 2001-10-16 | Cardima, Inc. | Linear ablation assembly |
AU752243B2 (en) | 1998-02-19 | 2002-09-12 | Curon Medical, Inc. | Electrosurgical sphincter treatment apparatus |
US20040176759A1 (en) * | 2003-03-07 | 2004-09-09 | Subashini Krishnamurthy | Radiopaque electrical needle |
US20050277918A1 (en) * | 2003-03-07 | 2005-12-15 | Baylis Medical Company Inc. | Electrosurgical cannula |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
WO2005107857A2 (en) | 2004-05-05 | 2005-11-17 | Stryker Instruments | System and method for controlling rf output |
US7229438B2 (en) * | 2004-10-14 | 2007-06-12 | Boston Scientific Scimed, Inc. | Ablation probe with distal inverted electrode array |
EP2179702B1 (en) | 2005-04-29 | 2015-01-21 | Stryker Corporation | Cannula for use with a matable supply electrode assembly |
US9357977B2 (en) | 2006-01-12 | 2016-06-07 | Gynesonics, Inc. | Interventional deployment and imaging system |
US7794475B2 (en) | 2006-09-29 | 2010-09-14 | Ethicon Endo-Surgery, Inc. | Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same |
US20090105775A1 (en) | 2007-10-19 | 2009-04-23 | David Mitchell | Cannula with lateral access and directional exit port |
US20100010449A1 (en) | 2008-07-09 | 2010-01-14 | Kyphon Sarl | Cannula Stabilization Device, System, And Method Of Use |
CA2778997C (en) | 2009-11-05 | 2022-03-08 | Nimbus Concepts, Llc | Methods and systems for radio frequency neurotomy |
CA2799505C (en) | 2010-05-21 | 2022-04-12 | Nimbus Concepts, Llc | Systems and methods for tissue ablation |
US20150342668A1 (en) * | 2013-02-21 | 2015-12-03 | Stryker Corporation | Tissue ablation cannula and elecgtrode assembly that can be selectively operated with one or more active tips |
-
2015
- 2015-08-12 US US14/824,673 patent/US20150342668A1/en not_active Abandoned
-
2018
- 2018-02-19 US US15/898,820 patent/US10159526B2/en active Active
- 2018-10-04 US US16/151,989 patent/US11452561B2/en active Active
-
2022
- 2022-09-09 US US17/941,601 patent/US12133676B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213578A (en) * | 1991-08-28 | 1993-05-25 | Vygon Gmbh & Co. Kg | Anesthesia set |
US7862563B1 (en) * | 2005-02-18 | 2011-01-04 | Cosman Eric R | Integral high frequency electrode |
US20110077644A1 (en) * | 2009-09-30 | 2011-03-31 | Boston Scientific Scimed, Inc. | Medical probe with translatable co-access cannula |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10159526B2 (en) * | 2013-02-21 | 2018-12-25 | Stryker Corporation | Tissue ablation cannula assembly |
US11452561B2 (en) * | 2013-02-21 | 2022-09-27 | Stryker Corporation | Tissue ablation cannula assembly |
US12133676B2 (en) | 2013-02-21 | 2024-11-05 | Stryker Corporation | Tissue ablation cannula assembly |
US10631915B1 (en) * | 2014-10-21 | 2020-04-28 | Cosman Instruments, Llc | Electrosurgical system |
Also Published As
Publication number | Publication date |
---|---|
US11452561B2 (en) | 2022-09-27 |
US10159526B2 (en) | 2018-12-25 |
US20180168719A1 (en) | 2018-06-21 |
US20190029748A1 (en) | 2019-01-31 |
US12133676B2 (en) | 2024-11-05 |
US20230000544A1 (en) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12133676B2 (en) | Tissue ablation cannula assembly | |
AU2018206803B2 (en) | Cannula for tissue ablation | |
JP5974098B2 (en) | Electrosurgical device with an offset conductive element | |
US10327839B2 (en) | Electrosurgical apparatus having a sensor | |
US9402560B2 (en) | Advanced multi-purpose catheter probes for diagnostic and therapeutic procedures | |
US8187268B2 (en) | Electrosurgical apparatus having a temperature sensor | |
US20220226039A1 (en) | Rf ablation systems and methods including a cannula with contacts or a connector | |
CN113729928B (en) | Ablation device | |
AU2011350059B2 (en) | Electrosurgical apparatus having a sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |