US20150342632A1 - Endoscopic hook blade and use thereof - Google Patents

Endoscopic hook blade and use thereof Download PDF

Info

Publication number
US20150342632A1
US20150342632A1 US14/820,881 US201514820881A US2015342632A1 US 20150342632 A1 US20150342632 A1 US 20150342632A1 US 201514820881 A US201514820881 A US 201514820881A US 2015342632 A1 US2015342632 A1 US 2015342632A1
Authority
US
United States
Prior art keywords
blade
hook
cannula
hook blade
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/820,881
Inventor
Ather Mirza
Romi Mirza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A M Surgical Inc
Original Assignee
A M Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A M Surgical Inc filed Critical A M Surgical Inc
Priority to US14/820,881 priority Critical patent/US20150342632A1/en
Assigned to A.M. SURGICAL, INC. reassignment A.M. SURGICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIRZA, ATHER, MIRZA, ROMI
Publication of US20150342632A1 publication Critical patent/US20150342632A1/en
Priority to US15/585,031 priority patent/US11224455B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/317Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for bones or joints, e.g. osteoscopes, arthroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/320036Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes adapted for use within the carpal tunnel
    • A61B19/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for

Definitions

  • the present application relates to medical devices and, in particular, to a surgical blade for endoscopic operations.
  • Endoscopic surgery is a minimally invasive surgical procedure that is performed through small incisions or natural body openings.
  • An endoscopic procedure typically involves use of specialized devices and remote-control manipulation of instruments with indirect observation of the surgical field through an endoscope or similar device. Comparing to open surgery, endoscopic surgery may result in shorter hospital stays, or allow outpatient treatment.
  • endoscopic surgery employing the use of endoscopic devices has found widespread application.
  • endoscopic procedures have been used in effectuating carpal tunnel release with endoscopic instruments.
  • endoscopic procedures have been used in effectuating carpal tunnel release with endoscopic instruments.
  • the hook blade comprises an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
  • the endoscopic knife assembly comprises a knife tube having a distal end and a proximate end, a hook blade attached to the distal end, and an alignment ring attached near the proximate end.
  • the instrument kit comprises a slotted cannula for endoscopic surgical procedures and an endoscopic knife assembly comprising a hook blade, a knife tube and an alignment ring.
  • the endoscopic knife assembly is insertable into the slotted cannula.
  • Still another aspect of the present application relates to a method for a performing an operative procedure on a target tissue in a subject, comprising: making an incision to establish an entry portal, inserting a cannula having open proximal and distal ends, inserting an endoscope into the cannula, said endoscope comprising an endoscopic knife assembly having a hook blade, advancing said endoscope so that the hook blade moves distal to and is in contact with the target tissue, operatively engaging the target tissue with the hook blade, and withdrawing the hook blade back towards the cannula to perform the operative procedure on the target tissue.
  • FIGS. 1A-F illustrate a hook blade component of an endoscopic knife assembly.
  • FIG. 1A is a perspective view showing the hook blade component.
  • FIG. 1B depicts a side view of the hook blade component, showing the cutting surfaces, the transition where the blade is joined to the knife tube and the taper at the end of the blade.
  • FIG. 1C is a perspective view showing a top view of the hook blade.
  • FIG. 1D depicts a side view of the hook blade component.
  • FIG. 1E is a cross section view of the hook blade at the bisecting line 3 in FIG. 1D depicting an exemplary angle of a cutting surface of the blade component.
  • FIG. 1F is a perspective view of the hook blade from the back depicting the width of the blade, the transition and the extension of the lower cutting surface below the transition.
  • FIGS. 2A-D illustrate an endoscopic knife assembly.
  • FIG. 2A is a perspective view of the endoscopic knife assembly from the side.
  • FIG. 2B is a perspective view of the endoscopic knife assembly from the top.
  • FIG. 2C is a perspective view of the endoscopic knife assembly from the bottom.
  • FIG. 2D is a perspective view of the endoscopic knife assembly from the front.
  • FIGS. 3A-E illustrate the knife tube component of the endoscopic knife assembly.
  • FIG. 3A is a magnified view from the side of the proximate end of a knife tube, showing the slots and the flared end.
  • FIG. 3B is a perspective view of the proximate end of a knife tube, showing the slots and the flared end.
  • FIG. 3C is a perspective view from the bottom of a knife tube, shown at an angle.
  • FIG. 3D is a perspective view from the side of a knife tube.
  • FIG. 3E is a perspective view from the top or bottom of a knife tube.
  • FIGS. 4A-D illustrate the alignment ring component of the endoscopic knife assembly.
  • FIG. 4A is a perspective view at an angle as seen from the bottom, showing the flattened bottom face of the alignment ring.
  • FIG. 4B is a perspective view at an angle as seen from the front or back face of the alignment ring.
  • FIG. 4C is a perspective view seen from the side of the alignment ring.
  • FIG. 4D is a perspective view seen from the top of the alignment ring.
  • the blade described herein is a low-profile blade that lacks forward facing cutting surfaces.
  • the cutting surfaces of the blade are instead located on the trailing edge of an arm that protrudes upward from the main body of the blade (upper cutting surface) and on the forward portion of the upper surface of the main body of the blade (lower cutting surface).
  • the arm of the blade is additionally angled back towards the main body of the blade, forming a hook. Additionally, that forward portion of the main body of the blade comprising the lower cutting surface is angled downward in front of the knife tube upon which it is mounted.
  • This downward angle allows the hook blade described herein to maintain a low profile such that it can be used with a slotted cannula and does not require a mechanical means for extending the blade out the side of the knife tube, as required by some other rearward-facing endoscopic cutting devices.
  • the presently described low-profile hook blade therefore provides several advantages over other devices including, but not limited to, the lack of moving parts required to raise the blade out of the side of the knife tube reducing the risk of malfunction or failure of the cutting instrument.
  • An additional advantage of the present low-profile hook blade design is that the lack of said moving parts and the obligatory linkages and apparatus required to operate the extension of the blade allows the knife tube to be hollow. This allows the practitioner to extend an endoscopic camera through the hollow knife tube to allow direct visualization of the tissue and blade before, during and after the cutting of the target tissue.
  • the design of the present low-profile hook blade is such that it is usable in endoscopic surgery in a manner that allows the practitioner to extend the blade through the cannula and past the target tissue without damage to surrounding tissue and/or organs.
  • the blade is then positioned distal to the target tissue such that the target tissue can be drawn into the hook formed by the upper and lower cutting surfaces.
  • the hook blade apparatus is then drawn back towards and into the cannula to effect a cut of the target tissue.
  • the downward angle of the lower cutting surface portion of the main body of the blade and the backward angle of the arm assist in drawing the target tissue into the hook structure of the blade.
  • a hook blade for an endoscopic knife assembly comprising: an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
  • the hook angle is between about 55 degrees and about 75 degrees. In a further embodiment, the hook angle is about 65 degrees.
  • the cutting angle is between about 40 degrees and about 60 degrees. In a further embodiment, the cutting angle is about 50 degrees.
  • the downward angle is between about 150 degrees and about 175 degrees. In a further embodiment, the downward angle is between about 165 degrees.
  • the proximate section of the main body has a tapered end.
  • the main body comprises a notch on the lower edge to engage with a knife tube.
  • the arm comprises an upper radius on the upper end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula. In a further embodiment, the arm further comprises a lower radius on the lower end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula.
  • the hook blade has a total vertical height in the range of about 4 mm to about 5 mm.
  • an endoscopic knife assembly comprising: a knife tube having a distal end and a proximate end; a hook blade attached to the distal end; and an alignment ring attached near the proximate end, wherein the hook blade comprises an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting
  • the knife tube comprises one or more slots at the proximate end for the attachment of a locking assembly to the knife tube and alignment ring.
  • the slots are located on a plane that is perpendicular to the hook blade attached to the distal end of the knife tube.
  • the knife tube is marked on the top or side surface with gradations.
  • the alignment ring comprises a flattened surface that is positioned perpendicular to the hook blade attached to the distal end of the knife tube.
  • the hook blade is welded to the knife tube.
  • an instrument kit for implementing an endoscopic surgical procedure comprising: an endoscopic knife assembly comprising a hook blade, a knife tube and an alignment ring, wherein the blade comprises an upper cutting surface located on a trailing edge of an arm and a lower cutting surface located on an upper edge of a main body of the blade, the cutting surfaces meeting at an angle at a crotch; and a slotted cannula for endoscopic surgical procedures, wherein the endoscopic knife assembly is insertable into the slotted cannula.
  • the main body of the blade comprises a notch on a lower edge of the main body to engage with the knife tube.
  • Another aspect of the present application relates to a method for a performing an operative procedure on a target tissue in a subject, comprising: making an incision to establish an entry portal, inserting a cannula having open proximal and distal ends, inserting an endoscope into the cannula, said endoscope comprising an endoscopic knife assembly having a hook blade, advancing said endoscope so that the hook blade moves distal to and is in contact with the target tissue, operatively engaging the target tissue with the hook blade, and withdrawing the hook blade back towards the cannula to perform the operative procedure on the target tissue.
  • the operative procedure is an endoscopic surgical procedure selected from the group consisting of carpal tunnel release, cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of the extensor tendons, release of the posterior and other compartments of the leg, and forearm fascial release.
  • the cannula is a clear cannula.
  • the cannula comprises an open slot extending along the length of the cannula.
  • the inserting of said endoscope comprising an endoscopic knife assembly having a hook blade is preceded by the insertion of another endoscope comprising a means for visualization of the target tissue.
  • the cannula is a clear cannula.
  • the method further comprises visualization of anatomic structures surrounding the cannula.
  • the establishing an entry portal comprises making an incision.
  • the knife assembly comprises a hook blade, a knife tube and an alignment ring.
  • the assembly is assembled by affixing the alignment ring and the blade onto the knife tube.
  • the hook blade is made from materials commonly used for surgical blades or scalpels, such materials include, but are not limited to, hardened and tempered steel, stainless steel, high carbon steel, titanium, alloys and ceramic.
  • the blade is made from SAE 440A stainless steel.
  • the blade is made from Hitachi GIN-5 SST-MODIFIED 440-A stainless steel.
  • the blade is optionally flash electropolished. The cutting edges are machine finished and must be sharp.
  • the steel of the blade is heat-treated to Rockwell C hardness of about 50-72. In a more particular embodiment, the steel of the blade is heat-treated to Rockwell C hardness of 58-64.
  • the hook blade 100 comprises an arm 50 having a forward edge 52 and a trailing edge 54 , and a main body 60 having an upper edge 62 and a lower edge 64 .
  • the upper cutting surface 1 and the lower cutting surface 2 are formed on the trailing edge 54 of the arm 50 and the upper edge 62 of the main body.
  • the arm 50 is oriented in a hook configuration trailing an arm 50 of the blade 100 .
  • the upper cutting surface 1 and the lower cutting surface 2 meet at a central crotch 5 and form a cutting angle 4 between the two surfaces.
  • the cutting surfaces 1 and 2 are sharp cutting surfaces, while no other surfaces of the hook blade 100 are intended to be cutting surfaces.
  • the cutting angle 4 is between about 40 and about 60 degrees. In another embodiment, the cutting angle 4 is between about 45 and about 55 degrees. In another embodiment, the cutting angle 4 is about 50 degrees.
  • the distal section 80 of the main body 60 extends downward and forms a downward angle 8 with the proximal section 70 of the main body 60 .
  • the downward angle 8 is between about 150 and about 175 degrees. In other embodiments, the downward angle 8 is between about 160 and about 170 degrees. In yet another embodiment, the downward angle 8 is about 165 degrees.
  • the arm 50 protrudes upward from the distal section 80 and angles back towards the main body in a hook-like manner, forming a hook angle 56 with the proximate section 70 of the main body 60 .
  • the hook angle 56 is between about 55 and about 75 degrees.
  • the hook angle 56 is between about 60 and about 70 degrees.
  • the hook angle 56 is about 65 degrees.
  • the width 6 of the arm 50 is between about 1.5 and about 2.0 mm. In another embodiment, the width 6 is between about 1.65 and 1.85 mm. In another embodiment, the width 6 is about 1.778 mm.
  • the upper end of the forward edge 52 of the arm 50 has an upper radius 10 in order to prevent it from damaging tissue as the hook blade 100 is advanced from a cannula.
  • the upper radius 10 has a radius measurement of between about 1.0 mm and 2.5 mm. In another embodiment, the upper radius 10 has a radius measurement of about 2.032 mm.
  • the lower end of the forward edge 52 of the arm 50 has a lower radius 11 in order to prevent it from damaging tissue as the hook blade apparatus is advanced from the cannula.
  • the lower radius 11 has a radius measurement between about 4 mm and 10 mm. In another embodiment, the lower radius 11 has a radius measurement of about 0.635 mm.
  • the distance 12 between the upper radius 10 and the lower radius 11 on the forward edge 52 of the arm 50 is between about 2.5 mm and 2.8 mm. In one embodiment, the distance 12 is about 2.62 mm.
  • the arm 50 is angled back such that the horizontal distance 13 in a plane with the main body 60 of the blade 100 from the most forward point on the lower radius 11 to the top and farthest back point on cutting surface 1 is between about 3.4 and 3.8 mm. In one embodiment, the horizontal distance 13 is between about 3.5 and 3.7 mm. In another embodiment, the horizontal distance 13 is about 3.63 mm.
  • the height 15 of the proximate section 70 of the main body 60 is between about 1 mm and about 1.8 mm. In one embodiment, the height 15 is between about 1.2 mm and about 1.6 mm. In another embodiment, the height 15 is between about 1.3 mm and about 1.4 mm. In another embodiment, the height 15 is about 1.42 mm.
  • the vertical distance 16 between the top and farthest back point on cutting surface 1 and the bottom edge 64 of the proximate section 70 is between about 2.4 mm and about 3.0 mm. In one embodiment, the vertical distance 16 is between about 2.6 mm and about 2.8 mm. In another embodiment, the vertical distance 16 is about 2.69 mm.
  • the lower edge 64 of the main body 60 comprises a notch 66 . During assembly of the endoscopic knife assembly, the notch 66 is butted against the front of the knife tube. Following the positioning of the blade on the knife tube, the blade 100 is laser welded all around to the knife tube.
  • the strength of the weld is tested by applying torque to the unit, for example about 10 in-lbs of torque.
  • the depth 21 of the notch 66 is between about 0.025 mm and about 0.18 mm. In one embodiment, the depth 21 of the notch 66 is between about 0.051 mm and about 0.1524 mm. In another embodiment, the depth 21 of the notch 66 is about 0.102 mm.
  • the horizontal distance 22 between the notch 66 and the focus of angle 8 is between about 1.6 mm and about 2.1 mm, preferably about 1.85 mm.
  • the horizontal distance 23 between the notch 66 and the top and farthest back point on cutting surface 1 is between about 3.0 mm and about 7.0 mm, preferably between about 4.0 mm and about 5.5 mm, and more preferably about 4.78 mm or 4.826 mm.
  • the horizontal distance 24 between the notch 66 and the top and farthest back point on cutting surface 2 is between about 2.8 mm and about 3.3 mm, preferably about 3.05 mm.
  • the blade 100 has a tapered trailing edge 27 .
  • the horizontal length of the tapered trailing edge 27 is between about 2.5 mm to about 10 mm, more particularly about 3.0 mm to about 5.0 mm. In another embodiment, the horizontal length of the tapered trailing edge 27 is about 3.81 mm. In some embodiments, the tapered trailing edge 27 has a blunt end, with a depth 28 of between about 0.1 mm to about 0.4 mm, more particularly about 0.254 mm.
  • the total length 14 of the blade 100 from the leading point of the lower radius 11 to the trailing end of the proximate section 70 is between about 15 mm and about 40 mm. In one embodiment, the total length 14 of the blade 100 is between about 20 mm and about 330 mm. In another embodiment, the total length 14 of the blade 100 is about 26.4 mm.
  • the vertical distance 19 between the center of the lower radius 11 and the bottom edge 64 of the main body 60 (where it is affixed to the knife tube) is between about 0.9 mm and about 1.2 mm. In one embodiment, the vertical distance 19 is between about 1.0 mm and about 1.1 mm. In another embodiment, the vertical distance 19 is about 1.04 mm.
  • the upper cutting surface 1 and lower cutting surface 2 form a sharp angle at the crotch 5 .
  • the upper cutting surface 1 and lower cutting surface 2 meet at the crotch 5 with a ground curved corner.
  • the grinding of the upper cutting surface 1 and lower cutting surface 2 cutting surfaces where they meet at the crotch 5 has a maximum radius of about 0.65 mm.
  • the grinding at the crotch 5 has a maximum radius of about 0.5 mm.
  • the grinding at the crotch 5 has a maximum radius of 0.381 mm.
  • the horizontal distance 25 between the notch 66 and the focus of radius 11 is between about 7.5 mm and about 8.0 mm, preferably about 7.77 mm.
  • the horizontal distance 26 between the notch 66 and the crotch 5 is preferably 5.41 mm.
  • a horizontal distance 26 can be chosen for a particular model or lot of the hook blade 100 within a range of about 2.5 mm to about 10 mm.
  • the vertical distance 20 between the crotch 5 and the bottom edge 64 of the main body 60 is between about 0.6 mm and about 0.9 mm. In another embodiment, the vertical distance 20 is between about 0.7 mm and about 0.8 mm. In a more particular embodiment, the vertical distance 20 is about 0.762 mm.
  • FIG. 1E shows a cross-sectional view of the distal section 80 of the main body 60 from line 3 - 3 in FIG. 1D .
  • the cross-sectional depth 82 of the distal section 80 is between about 1.5 mm and 2.0 mm.
  • the cross-sectional depth 82 of the distal section 80 is between about 1.6 mm and 1.9 mm.
  • the cross-sectional depth 82 of the distal section 80 is about 1.778 mm.
  • the cross-sectional depth of the arm 50 (i.e., the cross-section from line 3 ′- 3 ′ in FIG. 1D ) is between about 1.5 mm and 2.0 mm. In another embodiment, the cross-sectional depth 82 of the arm 50 is between about 1.6 mm and 1.9 mm. In another embodiment, the cross-sectional depth 82 of the arm 50 is about 1.778 mm.
  • the cutting surfaces 1 and 2 each contains a subsurface a and a subsurface b that forms a surface angle 29 with the subsurface a.
  • the cutting angle 29 of the cutting surfaces 1 , 2 is between about 35 degrees and about 45 degrees, more particularly about 40 degrees.
  • the subsurfaces a and b each have a width 30 that is between about 0.8 mm and about 1.0 mm, more particularly about 0.91 mm.
  • the total vertical height 17 of the hook blade 100 from the bottom of radius 11 to the top and farthest back point on cutting edge 1 is between about 4.0 mm and about 5.0 mm. In one embodiment, the total vertical height 17 is between about 4.35 mm and about 4.65 mm. In another embodiment, the total vertical height 17 is about 4.445 mm.
  • the thickness 18 of the hook blade 100 is between about 0.50 mm and about 0.75 mm. In one embodiment, the thickness 18 of the hook blade 100 is between about 0.60 mm and about 0.67 mm. In another embodiment, the thickness 18 of the hook blade is about 0.635+/ ⁇ 0.013 mm.
  • the distal section 80 of the main body 60 extends below the bottom edge 64 of the main body 60 (where it affixes to the knife tube) a distance 9 of between about 1.5 and 1.9 mm. In another embodiment, the distance 9 is between about 1.6 and about 1.8 mm. In another embodiment, the distance 9 is about 1.68 mm.
  • FIGS. 2A-2D show a hook-blade assembly 300 with a hook blade 100 mounted on a knife tube 200 .
  • the hook blade 100 is attached to the knife tube 200 , such that the notch 66 of the blade 100 is butted up against the distal end 202 of the knife tube 200 .
  • the hook blade 100 is welded to the knife tube 200 .
  • the top and farthest back point of upper cutting surface 1 extends a distance 31 of about 3.0 mm to about 7.0 mm, more particularly about 4.0 mm to about 5.5 mm forward of the knife tube. In a most particular embodiment, the distance 31 is about 4.826 mm or 4.78 mm.
  • the length 32 of the knife tube 200 is from about 100 mm to about 140 mm, preferably from about 114.3 mm to about 119.4 mm. In a more preferred embodiment, the length 32 of the knife tube 200 is about 116.84 mm.
  • the knife tube 200 can optionally be marked on the top or side surface with gradations as exemplified in FIG. 2B to show the distance to the crotch 5 of the cutting surfaces.
  • major gradations 34 can be made to show each centimeter in distance from the crotch 5 , with minor gradations 36 between them to show each 1, 2, 2.5 or 5 millimeters.
  • the gradations can be applied to the knife tube by any means known in the art, it is preferable to lasermark the gradations on the knife tube 200 for accuracy and permanence.
  • the knife tube 200 can also be marked in a similar manner with additional information, for example on the bottom or a side surface of the knife tube 200 . Exemplary markings may include, but are not limited to, a maker's mark, part number, lot number and an indication that the endoscopic knife assembly is intended for only a single use (see, e.g., FIG. 2C ).
  • an alignment ring 250 is affixed near the proximate end of the knife tube 200 .
  • the alignment ring 250 is affixed in position on the knife tube 200 using USP Class VI gamma irradiation and steam resistant epoxy adhesive during assembly.
  • a two part epoxy such as MASTERBOND EP42 HTTM or ARMSTRONG C-7TM, or a suitable equivalent thereof is used.
  • the distance 33 between the alignment ring 250 and the proximate end of the knife tube 200 is between about 15 mm and about 25 mm. In another embodiment, the distance 33 is between about 18.67 mm and about 19.43 mm. In another embodiment, the distance 33 is about 19.05+/ ⁇ 0.38 mm.
  • the knife tube further comprises slots 37 in the proximate end that are positioned on the sides of the knife tube 200 , perpendicular to the blade mounted on the top of the knife tube.
  • the slots 37 preferably extend forward to where the alignment ring 250 is affixed to the knife tube 100 .
  • the slots and alignment ring provide an attachment point for a locking device, in order to mount an endoscope to the scope-mounting blade or endoscopic knife assembly.
  • FIGS. 3A-E show perspective views of a knife tube 200 without an affixed blade or alignment ring and without gradations.
  • the outer diameter 38 of the knife tube 200 is between about 2.8 mm and about 3.6 mm, preferably between about 3.073 mm and about 3.175 mm. In a more preferred embodiment, the outer diameter 38 is about 3.124 mm.
  • the knife tube 200 has a flared proximate end 40 .
  • about 0.2 to about 0.5 most proximate millimeters of the knife tube 200 are flared.
  • about the 0.381 most proximate millimeters of the knife tube 200 are flared.
  • the flared proximate end 40 has a flare angle 41 of about 20 to 40 degrees, more preferably about 30 degrees.
  • the outer diameter 42 of the flared proximate end 40 of the knife tube is about 0.25 mm to about 0.45 mm, more particularly about 0.356 mm.
  • the inner diameter 39 of the knife tube 200 is such that an endoscope camera can be inserted into the knife tube in order to show the blade and the target tissue during a procedure.
  • the inner diameter 39 is between about 2 mm and about 3.5 mm.
  • the inner diameter 39 is between about 2.769 mm and about 2.87 mm.
  • the inner diameter 39 is about 2.819 mm.
  • the slots 37 have a width 43 of between about 0.4 mm and about 1.1 mm wide, more particularly between about 0.533 mm and about 0.914 mm wide. Even more particularly, the width 43 of the slots is about 0.6604 mm.
  • FIGS. 4A-D show an embodiment of the alignment ring 250 of the endoscopic knife assembly of the application.
  • the alignment ring 250 has a flattened surface 252 that, when the alignment ring 250 is affixed to the knife tube 200 , is oriented on the bottom of the knife tube 200 ,
  • the flattened surface 252 of the alignment ring forms a right angle with the vertical orientation of the affixed blade 100 , as depicted in FIG. 4B .
  • the inner diameter 44 of the alignment ring which must fit on the outside of the knife tube 200 , is between about 2.8 mm and about 3.7 mm, particularly between about 3.15 mm and about 3.175 mm. In a more particular embodiment, the inner diameter 44 is about 3.15 mm.
  • the outer diameter 45 of the alignment ring is between about 6 mm and about 10 mm, preferably between about 7.569 mm and about 7.671 mm. In a more preferred embodiment, the outer diameter 45 is about 7.62 mm.
  • the distance 46 between the inner opening of the alignment ring and the flattened surface 252 , on a line perpendicular to the flattened surface 252 is between about 0.25 mm and about 0.5 mm, preferably between about 0.330 mm and about 0.432 mm. In more preferred embodiment, the distance 46 is about 0.381 mm.
  • the alignment ring 250 has a thickness 47 of between about 1.0 mm and about 4.0 mm. In a particular embodiment, the thickness 47 is between about 2.0 mm and about 3.0 mm. In a more particular embodiment, the thickness 47 is about 2.54 mm.
  • the hook blade 100 and the endoscopic knife assembly 300 described above may be readily applied to surgical procedures such as, but not limited to, carpal tunnel release; cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of radial tunnel, release of pronatar teres, release of trigger finger, release of lacertous fibrosis, release of the extensor tendons for lateral epicondylitis (tennis elbow), release of medial epicondylitis (golfer's elbow), and release of fascial compartments in the upper and lower extremity.
  • surgical procedures such as, but not limited to, carpal tunnel release; cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of radial tunnel, release of pronatar teres, release of trigger finger, release of lacertous fibrosis, release of the extensor tendons for lateral epicondylitis (tennis elbow), release of medial epicondylitis (golfer's elbow
  • the instrument kit contains an endoscopic knife assembly having a hook blade and a cannula guide member including a longitudinal bore having open proximal and distal ends and an open slot extending along the length thereof communicating with the open ends, and an elongate insertion member that is slidably receivable within the cannula guide member and is configured so that at least portions thereof conform with the open distal end and the open slot of the guide member to form a smooth exterior surface in combination therewith.
  • the instrument kit further includes an endoscope sized for insertion into the cannula guide member for direct visualization of an operative site.
  • the endoscope is capable to carry a cutting instrument at a leading end.
  • the instrument kit further includes a second cutting instrument mountable to the leading end of the endoscope.
  • the instrument kit further includes a second endoscope with a second cutting instrument mounted at a leading end of the second endoscope.
  • the second endoscope is insertable into the cannula guide member such that the cutting instrument protrudes through the open slot in the cannula guide member.
  • the second cutting instrument may be an endoscopic knife assembly having a hook blade or an endoscopic knife assembly having another type of blade including, but not limited to, a blade comprising an upper and a lower cutting surface on the forward edge of the blade, said cutting surfaces meeting at an angle at a crotch.
  • the instrument kit further includes a depth gauge mountable to a leading end of the endoscope.
  • the instrument kit further includes a rasp member sized for insertion into the cannula guide member.
  • the instrument kit further includes a locking device capable of locking the endoscope and the cannula guide member into mutually fixed positions.
  • the instrument kit further includes a stop device mountable on the cannula guide member to prevent excessive penetration at a surgical site by the cutting instrument.
  • the instrument kit further includes a curved dissector.
  • the method includes the steps of making an incision on a patient in need of such endoscopic surgical procedure at a location proximate an operation site to establish an entry portal, inserting an elongate insertion member into a longitudinal bore of an elongate transparent cannula having open proximal and distal ends and an open slot extending along the length of the cannula, the elongate insertion member being configured to form a smooth exterior surface at the open distal end of the cannula when fully inserted into the cannula; introducing the distal end of the cannula/insertion member combination into the entry portal and advancing the combination a predetermined distance relative to the operation site; withdrawing the insertion member while permitting the cannula to remain in place at the operation site; inserting a first endoscope into the cannula for direct visualization of anatomic structures
  • first endoscope and the second endoscope are the same endoscope. In another embodiment, the first endoscope and the second endoscope are different endoscopes.
  • the cannula can be inserted into the tissue through a small opening and advanced to a surgical site, thus forming a passageway towards the surgical site.
  • the passageway allows the insertion of the endoscope and endoscopic knife assembly having a hook blade to the surgical site without further damages to the surrounding tissues.
  • the endoscopic knife assembly having a hook blade and a slotted cannula can be used in endoscopic surgical procedures such as carpal tunnel release, cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of the extensor tendons for lateral epicondylitis (tennis elbow), release of the posterior and other compartments of the leg, and the forearm fascial release for fascial compartment syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

An endoscopic surgical blade is disclosed. The blade is of a hook design, having an upper cutting surface located on the trailing edge of an arm and a lower cutting surface on the upper edge of the main body of the blade. The blade is part of an endoscopic knife assembly which also contains a knife tube and alignment ring. The endoscopic knife assembly is for use in endoscopic surgery by insertion of the assembly through a slotted cannula. The knife tube is hollow and allows the insertion of an endoscope for viewing of the surgical procedure. A method for a performing an operative procedure on a target tissue in a subject using an endoscopic knife assembly having a hook blade is also described.

Description

  • This application is a divisional application of U.S. patent application Ser. No. 14/059,170, filed Oct. 21, 2013, which is a continuation of U.S. patent application Ser. No. 13/230,506, filed Sep. 12, 2011, the entirety of which is incorporated herein by reference.
  • FIELD
  • The present application relates to medical devices and, in particular, to a surgical blade for endoscopic operations.
  • BACKGROUND
  • Endoscopic surgery is a minimally invasive surgical procedure that is performed through small incisions or natural body openings. An endoscopic procedure typically involves use of specialized devices and remote-control manipulation of instruments with indirect observation of the surgical field through an endoscope or similar device. Comparing to open surgery, endoscopic surgery may result in shorter hospital stays, or allow outpatient treatment.
  • Among more recent developments and advances in endoscopic surgical procedures, arthroscopic surgery employing the use of endoscopic devices has found widespread application. For example, endoscopic procedures have been used in effectuating carpal tunnel release with endoscopic instruments. However, there always exists a need to further improve the utility of the instrument, reduce the cost and improve the performance of endoscopic surgical procedures.
  • SUMMARY
  • One aspect of the present application relates to a hook blade for an endoscopic knife assembly. The hook blade comprises an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
  • Another aspect of the present application relates to an endoscopic knife assembly. The endoscopic knife assembly comprises a knife tube having a distal end and a proximate end, a hook blade attached to the distal end, and an alignment ring attached near the proximate end.
  • Yet another aspect of the present application relates to an instrument kit for implementing an endoscopic surgical procedure. The instrument kit comprises a slotted cannula for endoscopic surgical procedures and an endoscopic knife assembly comprising a hook blade, a knife tube and an alignment ring. The endoscopic knife assembly is insertable into the slotted cannula.
  • Still another aspect of the present application relates to a method for a performing an operative procedure on a target tissue in a subject, comprising: making an incision to establish an entry portal, inserting a cannula having open proximal and distal ends, inserting an endoscope into the cannula, said endoscope comprising an endoscopic knife assembly having a hook blade, advancing said endoscope so that the hook blade moves distal to and is in contact with the target tissue, operatively engaging the target tissue with the hook blade, and withdrawing the hook blade back towards the cannula to perform the operative procedure on the target tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present application can be better understood by reference to the following drawings. The drawings are merely exemplary to illustrate certain features that may be used singularly or in combination with other features and the present application should not be limited to the embodiments shown.
  • FIGS. 1A-F illustrate a hook blade component of an endoscopic knife assembly. FIG. 1A is a perspective view showing the hook blade component. FIG. 1B depicts a side view of the hook blade component, showing the cutting surfaces, the transition where the blade is joined to the knife tube and the taper at the end of the blade. FIG. 1C is a perspective view showing a top view of the hook blade. FIG. 1D depicts a side view of the hook blade component. FIG. 1E is a cross section view of the hook blade at the bisecting line 3 in FIG. 1D depicting an exemplary angle of a cutting surface of the blade component. FIG. 1F is a perspective view of the hook blade from the back depicting the width of the blade, the transition and the extension of the lower cutting surface below the transition.
  • FIGS. 2A-D illustrate an endoscopic knife assembly. FIG. 2A is a perspective view of the endoscopic knife assembly from the side. FIG. 2B is a perspective view of the endoscopic knife assembly from the top. FIG. 2C is a perspective view of the endoscopic knife assembly from the bottom. FIG. 2D is a perspective view of the endoscopic knife assembly from the front.
  • FIGS. 3A-E illustrate the knife tube component of the endoscopic knife assembly. FIG. 3A is a magnified view from the side of the proximate end of a knife tube, showing the slots and the flared end. FIG. 3B is a perspective view of the proximate end of a knife tube, showing the slots and the flared end. FIG. 3C is a perspective view from the bottom of a knife tube, shown at an angle. FIG. 3D is a perspective view from the side of a knife tube. FIG. 3E is a perspective view from the top or bottom of a knife tube.
  • FIGS. 4A-D illustrate the alignment ring component of the endoscopic knife assembly. FIG. 4A is a perspective view at an angle as seen from the bottom, showing the flattened bottom face of the alignment ring. FIG. 4B is a perspective view at an angle as seen from the front or back face of the alignment ring. FIG. 4C is a perspective view seen from the side of the alignment ring. FIG. 4D is a perspective view seen from the top of the alignment ring.
  • DETAILED DESCRIPTION
  • This description is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description of this application. The drawing figures are not necessarily to scale and certain features of the application may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “front,” “back,” “up,” “down,” “top,” “bottom,” “upper,” “lower,” “distal,” and “proximate” as well as derivatives thereof, should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms concerning attachments, coupling and the like, such as “connected,” “mounted,” and “attached,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
  • In endoscopic surgery, it is sometimes undesirable or impractical to perform a cut of a tissue using a blade that is pushed forward outward from the end of a cannula to make the cut in a forward direction. This may be due to a variety of factors including, but not limited to, the proximity of the tissue to be cut (target tissue) to another tissue or an organ distal to the target tissue from that cannula, a lack of tension in the target tissue that would allow the blade to push the target tissue away from the cannula or the flexibility of the target tissue, for example.
  • Accordingly, the present application fills a need in the art by providing a “hook blade.” The blade described herein is a low-profile blade that lacks forward facing cutting surfaces. The cutting surfaces of the blade are instead located on the trailing edge of an arm that protrudes upward from the main body of the blade (upper cutting surface) and on the forward portion of the upper surface of the main body of the blade (lower cutting surface). The arm of the blade is additionally angled back towards the main body of the blade, forming a hook. Additionally, that forward portion of the main body of the blade comprising the lower cutting surface is angled downward in front of the knife tube upon which it is mounted.
  • This downward angle allows the hook blade described herein to maintain a low profile such that it can be used with a slotted cannula and does not require a mechanical means for extending the blade out the side of the knife tube, as required by some other rearward-facing endoscopic cutting devices. The presently described low-profile hook blade therefore provides several advantages over other devices including, but not limited to, the lack of moving parts required to raise the blade out of the side of the knife tube reducing the risk of malfunction or failure of the cutting instrument. An additional advantage of the present low-profile hook blade design is that the lack of said moving parts and the obligatory linkages and apparatus required to operate the extension of the blade allows the knife tube to be hollow. This allows the practitioner to extend an endoscopic camera through the hollow knife tube to allow direct visualization of the tissue and blade before, during and after the cutting of the target tissue.
  • The design of the present low-profile hook blade is such that it is usable in endoscopic surgery in a manner that allows the practitioner to extend the blade through the cannula and past the target tissue without damage to surrounding tissue and/or organs. The blade is then positioned distal to the target tissue such that the target tissue can be drawn into the hook formed by the upper and lower cutting surfaces. The hook blade apparatus is then drawn back towards and into the cannula to effect a cut of the target tissue. The downward angle of the lower cutting surface portion of the main body of the blade and the backward angle of the arm assist in drawing the target tissue into the hook structure of the blade.
  • One aspect of the present application relates to a hook blade for an endoscopic knife assembly, comprising: an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
  • In one particular embodiment, the hook angle is between about 55 degrees and about 75 degrees. In a further embodiment, the hook angle is about 65 degrees.
  • In another particular embodiment, the cutting angle is between about 40 degrees and about 60 degrees. In a further embodiment, the cutting angle is about 50 degrees.
  • In another particular embodiment, the downward angle is between about 150 degrees and about 175 degrees. In a further embodiment, the downward angle is between about 165 degrees.
  • In one particular embodiment, the proximate section of the main body has a tapered end.
  • In another particular embodiment, the main body comprises a notch on the lower edge to engage with a knife tube.
  • In another particular embodiment, the arm comprises an upper radius on the upper end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula. In a further embodiment, the arm further comprises a lower radius on the lower end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula.
  • In another particular embodiment, the hook blade has a total vertical height in the range of about 4 mm to about 5 mm.
  • Another aspect of the present application relates to an endoscopic knife assembly, comprising: a knife tube having a distal end and a proximate end; a hook blade attached to the distal end; and an alignment ring attached near the proximate end, wherein the hook blade comprises an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge; a main body having an upper edge, a lower edge, a distal section, a proximate section, and a lower cutting surface located on the upper edge of the distal section; wherein the distal section of the main body angles downward from the proximate section of the main body, forming a downward angle with the proximate section of the main body, wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximate section of the main body, and wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
  • In another particular embodiment, the knife tube comprises one or more slots at the proximate end for the attachment of a locking assembly to the knife tube and alignment ring.
  • In another particular embodiment, the slots are located on a plane that is perpendicular to the hook blade attached to the distal end of the knife tube.
  • In another particular embodiment, the knife tube is marked on the top or side surface with gradations.
  • In another particular embodiment, the alignment ring comprises a flattened surface that is positioned perpendicular to the hook blade attached to the distal end of the knife tube.
  • In another particular embodiment, the hook blade is welded to the knife tube.
  • Another aspect of the present application relates to an instrument kit for implementing an endoscopic surgical procedure comprising: an endoscopic knife assembly comprising a hook blade, a knife tube and an alignment ring, wherein the blade comprises an upper cutting surface located on a trailing edge of an arm and a lower cutting surface located on an upper edge of a main body of the blade, the cutting surfaces meeting at an angle at a crotch; and a slotted cannula for endoscopic surgical procedures, wherein the endoscopic knife assembly is insertable into the slotted cannula.
  • In one particular embodiment, the main body of the blade comprises a notch on a lower edge of the main body to engage with the knife tube.
  • Another aspect of the present application relates to a method for a performing an operative procedure on a target tissue in a subject, comprising: making an incision to establish an entry portal, inserting a cannula having open proximal and distal ends, inserting an endoscope into the cannula, said endoscope comprising an endoscopic knife assembly having a hook blade, advancing said endoscope so that the hook blade moves distal to and is in contact with the target tissue, operatively engaging the target tissue with the hook blade, and withdrawing the hook blade back towards the cannula to perform the operative procedure on the target tissue.
  • In one particular embodiment, the operative procedure is an endoscopic surgical procedure selected from the group consisting of carpal tunnel release, cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of the extensor tendons, release of the posterior and other compartments of the leg, and forearm fascial release.
  • In another particular embodiment, the cannula is a clear cannula.
  • In another particular embodiment, the cannula comprises an open slot extending along the length of the cannula.
  • In another particular embodiment, the inserting of said endoscope comprising an endoscopic knife assembly having a hook blade is preceded by the insertion of another endoscope comprising a means for visualization of the target tissue. In a further embodiment, the cannula is a clear cannula. In a further embodiment, the method further comprises visualization of anatomic structures surrounding the cannula.
  • In another particular embodiment, the establishing an entry portal comprises making an incision.
  • One aspect of the present application is a scope-mounting blade or endoscopic knife assembly for endoscopic surgery. The knife assembly comprises a hook blade, a knife tube and an alignment ring. The assembly is assembled by affixing the alignment ring and the blade onto the knife tube.
  • The hook blade is made from materials commonly used for surgical blades or scalpels, such materials include, but are not limited to, hardened and tempered steel, stainless steel, high carbon steel, titanium, alloys and ceramic. In one embodiment, the blade is made from SAE 440A stainless steel. In a preferred embodiment, the blade is made from Hitachi GIN-5 SST-MODIFIED 440-A stainless steel. The blade is optionally flash electropolished. The cutting edges are machine finished and must be sharp. In a particular embodiment, the steel of the blade is heat-treated to Rockwell C hardness of about 50-72. In a more particular embodiment, the steel of the blade is heat-treated to Rockwell C hardness of 58-64.
  • An embodiment of the hook blade is shown in FIGS. 1A-1F. As shown in FIG. 1A, the hook blade 100 comprises an arm 50 having a forward edge 52 and a trailing edge 54, and a main body 60 having an upper edge 62 and a lower edge 64. The upper cutting surface 1 and the lower cutting surface 2 are formed on the trailing edge 54 of the arm 50 and the upper edge 62 of the main body. The arm 50 is oriented in a hook configuration trailing an arm 50 of the blade 100. The upper cutting surface 1 and the lower cutting surface 2 meet at a central crotch 5 and form a cutting angle 4 between the two surfaces. The cutting surfaces 1 and 2 are sharp cutting surfaces, while no other surfaces of the hook blade 100 are intended to be cutting surfaces.
  • In one embodiment, the cutting angle 4 is between about 40 and about 60 degrees. In another embodiment, the cutting angle 4 is between about 45 and about 55 degrees. In another embodiment, the cutting angle 4 is about 50 degrees.
  • Referring now to FIG. 1B, the distal section 80 of the main body 60 extends downward and forms a downward angle 8 with the proximal section 70 of the main body 60. In certain embodiments, the downward angle 8 is between about 150 and about 175 degrees. In other embodiments, the downward angle 8 is between about 160 and about 170 degrees. In yet another embodiment, the downward angle 8 is about 165 degrees.
  • The arm 50 protrudes upward from the distal section 80 and angles back towards the main body in a hook-like manner, forming a hook angle 56 with the proximate section 70 of the main body 60. In one embodiment, the hook angle 56 is between about 55 and about 75 degrees. In another embodiment, the hook angle 56 is between about 60 and about 70 degrees. In another embodiment, the hook angle 56 is about 65 degrees.
  • In one embodiment, the width 6 of the arm 50 is between about 1.5 and about 2.0 mm. In another embodiment, the width 6 is between about 1.65 and 1.85 mm. In another embodiment, the width 6 is about 1.778 mm.
  • Referring again to FIG. 1B, in certain embodiments, the upper end of the forward edge 52 of the arm 50 has an upper radius 10 in order to prevent it from damaging tissue as the hook blade 100 is advanced from a cannula. In one embodiment, the upper radius 10 has a radius measurement of between about 1.0 mm and 2.5 mm. In another embodiment, the upper radius 10 has a radius measurement of about 2.032 mm.
  • In other embodiments, the lower end of the forward edge 52 of the arm 50 has a lower radius 11 in order to prevent it from damaging tissue as the hook blade apparatus is advanced from the cannula. In one embodiment, the lower radius 11 has a radius measurement between about 4 mm and 10 mm. In another embodiment, the lower radius 11 has a radius measurement of about 0.635 mm.
  • In certain embodiments, the distance 12 between the upper radius 10 and the lower radius 11 on the forward edge 52 of the arm 50 is between about 2.5 mm and 2.8 mm. In one embodiment, the distance 12 is about 2.62 mm.
  • Referring again to FIG. 1B, in certain embodiments, the arm 50 is angled back such that the horizontal distance 13 in a plane with the main body 60 of the blade 100 from the most forward point on the lower radius 11 to the top and farthest back point on cutting surface 1 is between about 3.4 and 3.8 mm. In one embodiment, the horizontal distance 13 is between about 3.5 and 3.7 mm. In another embodiment, the horizontal distance 13 is about 3.63 mm.
  • In certain embodiments, the height 15 of the proximate section 70 of the main body 60 is between about 1 mm and about 1.8 mm. In one embodiment, the height 15 is between about 1.2 mm and about 1.6 mm. In another embodiment, the height 15 is between about 1.3 mm and about 1.4 mm. In another embodiment, the height 15 is about 1.42 mm.
  • In certain embodiments, the vertical distance 16 between the top and farthest back point on cutting surface 1 and the bottom edge 64 of the proximate section 70 is between about 2.4 mm and about 3.0 mm. In one embodiment, the vertical distance 16 is between about 2.6 mm and about 2.8 mm. In another embodiment, the vertical distance 16 is about 2.69 mm. In order to insure that, during manufacture, the hook blade 100 is consistently joined to the knife tube 200 in the same location, the lower edge 64 of the main body 60 comprises a notch 66. During assembly of the endoscopic knife assembly, the notch 66 is butted against the front of the knife tube. Following the positioning of the blade on the knife tube, the blade 100 is laser welded all around to the knife tube. In one embodiment, the strength of the weld is tested by applying torque to the unit, for example about 10 in-lbs of torque. In certain embodiments, the depth 21 of the notch 66 is between about 0.025 mm and about 0.18 mm. In one embodiment, the depth 21 of the notch 66 is between about 0.051 mm and about 0.1524 mm. In another embodiment, the depth 21 of the notch 66 is about 0.102 mm.
  • Additionally, in certain embodiments, the horizontal distance 22 between the notch 66 and the focus of angle 8 is between about 1.6 mm and about 2.1 mm, preferably about 1.85 mm. In another embodiment, the horizontal distance 23 between the notch 66 and the top and farthest back point on cutting surface 1 is between about 3.0 mm and about 7.0 mm, preferably between about 4.0 mm and about 5.5 mm, and more preferably about 4.78 mm or 4.826 mm. In yet another embodiment, the horizontal distance 24 between the notch 66 and the top and farthest back point on cutting surface 2 is between about 2.8 mm and about 3.3 mm, preferably about 3.05 mm.
  • In order to prevent the hook blade from catching on the interior surface of the cannula when the blade 100 is drawn backwards through the cannula tube, the blade 100 has a tapered trailing edge 27. In one embodiment, the horizontal length of the tapered trailing edge 27 is between about 2.5 mm to about 10 mm, more particularly about 3.0 mm to about 5.0 mm. In another embodiment, the horizontal length of the tapered trailing edge 27 is about 3.81 mm. In some embodiments, the tapered trailing edge 27 has a blunt end, with a depth 28 of between about 0.1 mm to about 0.4 mm, more particularly about 0.254 mm.
  • Referring now to FIG. 1C, in certain embodiments, the total length 14 of the blade 100 from the leading point of the lower radius 11 to the trailing end of the proximate section 70 is between about 15 mm and about 40 mm. In one embodiment, the total length 14 of the blade 100 is between about 20 mm and about 330 mm. In another embodiment, the total length 14 of the blade 100 is about 26.4 mm.
  • Referring now to FIG. 1D, in certain embodiments, the vertical distance 19 between the center of the lower radius 11 and the bottom edge 64 of the main body 60 (where it is affixed to the knife tube) is between about 0.9 mm and about 1.2 mm. In one embodiment, the vertical distance 19 is between about 1.0 mm and about 1.1 mm. In another embodiment, the vertical distance 19 is about 1.04 mm.
  • In some embodiments, the upper cutting surface 1 and lower cutting surface 2 form a sharp angle at the crotch 5. In other embodiments, the upper cutting surface 1 and lower cutting surface 2 meet at the crotch 5 with a ground curved corner. In one embodiment, the grinding of the upper cutting surface 1 and lower cutting surface 2 cutting surfaces where they meet at the crotch 5 has a maximum radius of about 0.65 mm. In a particular embodiment, the grinding at the crotch 5 has a maximum radius of about 0.5 mm. In a more particular embodiment, the grinding at the crotch 5 has a maximum radius of 0.381 mm.
  • Referring again to FIG. 1D, in one embodiment, the horizontal distance 25 between the notch 66 and the focus of radius 11 is between about 7.5 mm and about 8.0 mm, preferably about 7.77 mm.
  • In order to maintain uniform measurement of the gradations on the knife tube 200 and the cutting surfaces of the hook blade 100, the horizontal distance 26 between the notch 66 and the crotch 5 is preferably 5.41 mm. Alternatively, a horizontal distance 26 can be chosen for a particular model or lot of the hook blade 100 within a range of about 2.5 mm to about 10 mm.
  • Referring again to FIG. 1D, in a particular embodiment, the vertical distance 20 between the crotch 5 and the bottom edge 64 of the main body 60 (where it is affixed to the knife tube) is between about 0.6 mm and about 0.9 mm. In another embodiment, the vertical distance 20 is between about 0.7 mm and about 0.8 mm. In a more particular embodiment, the vertical distance 20 is about 0.762 mm.
  • FIG. 1E shows a cross-sectional view of the distal section 80 of the main body 60 from line 3-3 in FIG. 1D. In one embodiment, the cross-sectional depth 82 of the distal section 80 is between about 1.5 mm and 2.0 mm. In another embodiment, the cross-sectional depth 82 of the distal section 80 is between about 1.6 mm and 1.9 mm. In another embodiment, the cross-sectional depth 82 of the distal section 80 is about 1.778 mm.
  • Similarly, in one embodiment, the cross-sectional depth of the arm 50 (i.e., the cross-section from line 3′-3′ in FIG. 1D) is between about 1.5 mm and 2.0 mm. In another embodiment, the cross-sectional depth 82 of the arm 50 is between about 1.6 mm and 1.9 mm. In another embodiment, the cross-sectional depth 82 of the arm 50 is about 1.778 mm.
  • Referring again to FIG. 1E, in certain embodiments, the cutting surfaces 1 and 2 each contains a subsurface a and a subsurface b that forms a surface angle 29 with the subsurface a. In certain embodiments, the cutting angle 29 of the cutting surfaces 1,2 is between about 35 degrees and about 45 degrees, more particularly about 40 degrees. In certain embodiments, the subsurfaces a and b each have a width 30 that is between about 0.8 mm and about 1.0 mm, more particularly about 0.91 mm.
  • Referring now to FIG. 1F, in certain embodiments, the total vertical height 17 of the hook blade 100 from the bottom of radius 11 to the top and farthest back point on cutting edge 1 is between about 4.0 mm and about 5.0 mm. In one embodiment, the total vertical height 17 is between about 4.35 mm and about 4.65 mm. In another embodiment, the total vertical height 17 is about 4.445 mm.
  • In certain embodiments, the thickness 18 of the hook blade 100 is between about 0.50 mm and about 0.75 mm. In one embodiment, the thickness 18 of the hook blade 100 is between about 0.60 mm and about 0.67 mm. In another embodiment, the thickness 18 of the hook blade is about 0.635+/−0.013 mm.
  • Referring again to FIG. 1F, in certain embodiments, the distal section 80 of the main body 60 extends below the bottom edge 64 of the main body 60 (where it affixes to the knife tube) a distance 9 of between about 1.5 and 1.9 mm. In another embodiment, the distance 9 is between about 1.6 and about 1.8 mm. In another embodiment, the distance 9 is about 1.68 mm.
  • FIGS. 2A-2D show a hook-blade assembly 300 with a hook blade 100 mounted on a knife tube 200. As shown in FIG. 2A, the hook blade 100 is attached to the knife tube 200, such that the notch 66 of the blade 100 is butted up against the distal end 202 of the knife tube 200. In one embodiment, the hook blade 100 is welded to the knife tube 200.
  • In one embodiment, the top and farthest back point of upper cutting surface 1 extends a distance 31 of about 3.0 mm to about 7.0 mm, more particularly about 4.0 mm to about 5.5 mm forward of the knife tube. In a most particular embodiment, the distance 31 is about 4.826 mm or 4.78 mm.
  • In a particular embodiment, the length 32 of the knife tube 200 is from about 100 mm to about 140 mm, preferably from about 114.3 mm to about 119.4 mm. In a more preferred embodiment, the length 32 of the knife tube 200 is about 116.84 mm.
  • The knife tube 200 can optionally be marked on the top or side surface with gradations as exemplified in FIG. 2B to show the distance to the crotch 5 of the cutting surfaces. For example, major gradations 34 can be made to show each centimeter in distance from the crotch 5, with minor gradations 36 between them to show each 1, 2, 2.5 or 5 millimeters. While the gradations can be applied to the knife tube by any means known in the art, it is preferable to lasermark the gradations on the knife tube 200 for accuracy and permanence. Additionally, the knife tube 200 can also be marked in a similar manner with additional information, for example on the bottom or a side surface of the knife tube 200. Exemplary markings may include, but are not limited to, a maker's mark, part number, lot number and an indication that the endoscopic knife assembly is intended for only a single use (see, e.g., FIG. 2C).
  • Referring again to FIG. 2A, an alignment ring 250 is affixed near the proximate end of the knife tube 200. In one embodiment, the alignment ring 250 is affixed in position on the knife tube 200 using USP Class VI gamma irradiation and steam resistant epoxy adhesive during assembly. Preferably, a two part epoxy such as MASTERBOND EP42 HT™ or ARMSTRONG C-7™, or a suitable equivalent thereof is used. In one embodiment, the distance 33 between the alignment ring 250 and the proximate end of the knife tube 200 is between about 15 mm and about 25 mm. In another embodiment, the distance 33 is between about 18.67 mm and about 19.43 mm. In another embodiment, the distance 33 is about 19.05+/−0.38 mm.
  • The knife tube further comprises slots 37 in the proximate end that are positioned on the sides of the knife tube 200, perpendicular to the blade mounted on the top of the knife tube. The slots 37 preferably extend forward to where the alignment ring 250 is affixed to the knife tube 100.
  • The slots and alignment ring provide an attachment point for a locking device, in order to mount an endoscope to the scope-mounting blade or endoscopic knife assembly.
  • FIGS. 3A-E show perspective views of a knife tube 200 without an affixed blade or alignment ring and without gradations. Referring now to FIG. 3A, in one embodiment, the outer diameter 38 of the knife tube 200 is between about 2.8 mm and about 3.6 mm, preferably between about 3.073 mm and about 3.175 mm. In a more preferred embodiment, the outer diameter 38 is about 3.124 mm.
  • Referring again to FIG. 3A, in another embodiment, the knife tube 200 has a flared proximate end 40. In one embodiment, about 0.2 to about 0.5 most proximate millimeters of the knife tube 200 are flared. In another embodiment, about the 0.381 most proximate millimeters of the knife tube 200 are flared. In another embodiment, the flared proximate end 40 has a flare angle 41 of about 20 to 40 degrees, more preferably about 30 degrees. In still another embodiment, the outer diameter 42 of the flared proximate end 40 of the knife tube is about 0.25 mm to about 0.45 mm, more particularly about 0.356 mm.
  • Referring now to FIG. 3B, the inner diameter 39 of the knife tube 200 is such that an endoscope camera can be inserted into the knife tube in order to show the blade and the target tissue during a procedure. In one embodiment, the inner diameter 39 is between about 2 mm and about 3.5 mm. In a particular embodiment, the inner diameter 39 is between about 2.769 mm and about 2.87 mm. In a more particular embodiment, the inner diameter 39 is about 2.819 mm.
  • In one embodiment, the slots 37 have a width 43 of between about 0.4 mm and about 1.1 mm wide, more particularly between about 0.533 mm and about 0.914 mm wide. Even more particularly, the width 43 of the slots is about 0.6604 mm.
  • FIGS. 4A-D show an embodiment of the alignment ring 250 of the endoscopic knife assembly of the application. Referring now to FIG. 4A, in one embodiment, the alignment ring 250 has a flattened surface 252 that, when the alignment ring 250 is affixed to the knife tube 200, is oriented on the bottom of the knife tube 200,
  • i.e., opposite of the mounting of the blade 100. When the endoscopic knife assembly is fully assembled, the flattened surface 252 of the alignment ring forms a right angle with the vertical orientation of the affixed blade 100, as depicted in FIG. 4B.
  • In one embodiment, the inner diameter 44 of the alignment ring, which must fit on the outside of the knife tube 200, is between about 2.8 mm and about 3.7 mm, particularly between about 3.15 mm and about 3.175 mm. In a more particular embodiment, the inner diameter 44 is about 3.15 mm.
  • In a particular embodiment, the outer diameter 45 of the alignment ring is between about 6 mm and about 10 mm, preferably between about 7.569 mm and about 7.671 mm. In a more preferred embodiment, the outer diameter 45 is about 7.62 mm.
  • As shown in FIG. 4B, in one embodiment, the distance 46 between the inner opening of the alignment ring and the flattened surface 252, on a line perpendicular to the flattened surface 252, is between about 0.25 mm and about 0.5 mm, preferably between about 0.330 mm and about 0.432 mm. In more preferred embodiment, the distance 46 is about 0.381 mm.
  • Referring to FIG. 4C, showing a side view of the alignment ring, and FIG. 4D, showing a view from the top of the alignment ring, in one embodiment, the alignment ring 250 has a thickness 47 of between about 1.0 mm and about 4.0 mm. In a particular embodiment, the thickness 47 is between about 2.0 mm and about 3.0 mm. In a more particular embodiment, the thickness 47 is about 2.54 mm.
  • The hook blade 100 and the endoscopic knife assembly 300 described above may be readily applied to surgical procedures such as, but not limited to, carpal tunnel release; cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of radial tunnel, release of pronatar teres, release of trigger finger, release of lacertous fibrosis, release of the extensor tendons for lateral epicondylitis (tennis elbow), release of medial epicondylitis (golfer's elbow), and release of fascial compartments in the upper and lower extremity.
  • Another aspect of the present application relates to an instrument kit for implementing an endoscopic surgical procedure. The instrument kit contains an endoscopic knife assembly having a hook blade and a cannula guide member including a longitudinal bore having open proximal and distal ends and an open slot extending along the length thereof communicating with the open ends, and an elongate insertion member that is slidably receivable within the cannula guide member and is configured so that at least portions thereof conform with the open distal end and the open slot of the guide member to form a smooth exterior surface in combination therewith.
  • In one embodiment, the instrument kit further includes an endoscope sized for insertion into the cannula guide member for direct visualization of an operative site.
  • In another embodiment, the endoscope is capable to carry a cutting instrument at a leading end.
  • In another embodiment, the instrument kit further includes a second cutting instrument mountable to the leading end of the endoscope.
  • In another embodiment, the instrument kit further includes a second endoscope with a second cutting instrument mounted at a leading end of the second endoscope. The second endoscope is insertable into the cannula guide member such that the cutting instrument protrudes through the open slot in the cannula guide member. The second cutting instrument may be an endoscopic knife assembly having a hook blade or an endoscopic knife assembly having another type of blade including, but not limited to, a blade comprising an upper and a lower cutting surface on the forward edge of the blade, said cutting surfaces meeting at an angle at a crotch.
  • In another embodiment, the instrument kit further includes a depth gauge mountable to a leading end of the endoscope.
  • In another embodiment, the instrument kit further includes a rasp member sized for insertion into the cannula guide member.
  • In another embodiment, the instrument kit further includes a locking device capable of locking the endoscope and the cannula guide member into mutually fixed positions.
  • In another embodiment, the instrument kit further includes a stop device mountable on the cannula guide member to prevent excessive penetration at a surgical site by the cutting instrument.
  • In another embodiment, the instrument kit further includes a curved dissector.
  • Another aspect of the present application relates to a method for implementing a uniportal endoscopic surgical procedure using an endoscopic knife assembly having a hook blade of the present application. In one embodiment, the method includes the steps of making an incision on a patient in need of such endoscopic surgical procedure at a location proximate an operation site to establish an entry portal, inserting an elongate insertion member into a longitudinal bore of an elongate transparent cannula having open proximal and distal ends and an open slot extending along the length of the cannula, the elongate insertion member being configured to form a smooth exterior surface at the open distal end of the cannula when fully inserted into the cannula; introducing the distal end of the cannula/insertion member combination into the entry portal and advancing the combination a predetermined distance relative to the operation site; withdrawing the insertion member while permitting the cannula to remain in place at the operation site; inserting a first endoscope into the cannula for direct visualization of anatomic structures surrounding the cannula and positioning of the cannula at the operative site; withdrawing the first endoscope from the cannula; mounting an endoscopic knife assembly having a hook blade on a leading end of a second endoscope; inserting the endoscope with the endoscopic knife assembly having a hook blade into the cannula such that the hook blade protrudes into the open slot in the cannula, and advancing the second endoscope so that the endoscopic knife assembly having a hook blade moves distal to and is in contact with a target tissue at the operation site; operatively engaging the target tissue with the endoscopic knife assembly having a hook blade while withdrawing the latter back towards the cannula under direct visualization through the second endoscope so as to perform an operative procedure on the target tissue; withdrawing the second endoscope and the endoscopic knife assembly having a hook blade from the cannula; withdrawing the cannula through the entry portal; and suturing the incision.
  • In one embodiment, the first endoscope and the second endoscope are the same endoscope. In another embodiment, the first endoscope and the second endoscope are different endoscopes.
  • The cannula can be inserted into the tissue through a small opening and advanced to a surgical site, thus forming a passageway towards the surgical site. The passageway allows the insertion of the endoscope and endoscopic knife assembly having a hook blade to the surgical site without further damages to the surrounding tissues. The endoscopic knife assembly having a hook blade and a slotted cannula can be used in endoscopic surgical procedures such as carpal tunnel release, cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of the extensor tendons for lateral epicondylitis (tennis elbow), release of the posterior and other compartments of the leg, and the forearm fascial release for fascial compartment syndrome.
  • The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and Tables are incorporated herein by reference.
  • The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.

Claims (20)

1-20. (canceled)
21. A method for a performing a operative procedure on a target tissue in a subject, comprising:
establishing an entry portal,
inserting a cannula having open proximal and distal ends,
inserting an endoscope into the cannula, said endoscope comprising an endoscopic knife assembly having a hook blade,
advancing said endoscope so that the hook blade moves distal to and is in contact with the target tissue, and
operatively engaging the target tissue with the hook blade,
wherein the hook blade comprises:
an arm having a forward edge, a trailing edge and an upper cutting surface located on the trailing edge;
a main body having an upper edge, a lower edge, a distal section, a proximal section, and a lower cutting surface located on the upper edge of the distal section;
wherein the distal section of the main body angles downward from the proximal section of the main body, forming a downward angle with the proximate section of the main body,
wherein the arm protrudes from the distal section of the main body and extends back towards the main body in a hook-like manner, forming a hook angle with the proximal section of the main body, and
wherein the upper cutting surface and the lower cutting surface meets at a crotch forming a cutting angle between the two cutting surfaces.
22. The method of claim 21, wherein said operative procedure is an endoscopic surgical procedure selected from the group consisting of carpal tunnel release, cubital tunnel release, plantar fascia release, lateral release for patella realignment, release of the extensor tendons, release of the posterior and other compartments of the leg, and forearm fascial release.
23. The method of claim 21, wherein said method further comprises a step of withdrawing the hook blade back towards the cannula to perform the operative procedure on the target tissue.
24. The method of claim 21, wherein said cannula comprises an open slot extending along the length of the cannula.
25. The method of claim 21, wherein said inserting of said endoscope comprising an endoscopic knife assembly having a hook blade is preceded by the insertion of another endoscope comprising a means for visualization of the target tissue.
26. The method of claim 25, wherein said cannula is a clear cannula.
27. The method of claim 26, further comprising visualization of anatomic structures surrounding the cannula.
28. The method of claim 21, wherein said establishing an entry portal comprises making an incision.
29. The method of claim 21, wherein the hook angle of the hook blade is between about 55 degrees and about 75 degrees.
30. The method of claim 29, wherein the hook angle is about 65 degrees.
31. The method of claim 21, wherein the cutting angle of the hook blade is between about 40 degrees and about 60 degrees.
32. The method of claim 31, wherein the cutting angle is about 50 degrees.
33. The method of claim 21, wherein the downward angle of the hook blade is between about 150 degrees and about 175 degrees.
34. The method of claim 33, wherein the downward angle is between about 165 degrees.
35. The method of claim 21, wherein the proximal section of the main body of the hook blade has a tapered end.
36. The method of claim 21, wherein the main body of the hook blade comprises a notch on the lower edge to engage with a knife tube.
37. The method of claim 21, wherein the arm comprises an upper radius on the upper end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula.
38. The method of claim 37, wherein the arm of the hook blade further comprises a lower radius on the lower end of the forward edge to prevent the forward edge from damaging tissue as the hook blade is advanced from a cannula.
39. The method of claim 21, wherein the hook blade has a total vertical height in the range of about 4 mm to about 5 mm.
US14/820,881 2011-09-12 2015-08-07 Endoscopic hook blade and use thereof Abandoned US20150342632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/820,881 US20150342632A1 (en) 2011-09-12 2015-08-07 Endoscopic hook blade and use thereof
US15/585,031 US11224455B2 (en) 2011-09-12 2017-05-02 Endoscopic hook blade and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/230,506 US20130066149A1 (en) 2011-09-12 2011-09-12 Endoscopic hook blade and use thereof
US14/059,170 US20140081081A1 (en) 2011-09-12 2013-10-21 Endoscopic hook blade and use thereof
US14/820,881 US20150342632A1 (en) 2011-09-12 2015-08-07 Endoscopic hook blade and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/059,170 Division US20140081081A1 (en) 2011-09-12 2013-10-21 Endoscopic hook blade and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/585,031 Continuation US11224455B2 (en) 2011-09-12 2017-05-02 Endoscopic hook blade and use thereof

Publications (1)

Publication Number Publication Date
US20150342632A1 true US20150342632A1 (en) 2015-12-03

Family

ID=47830442

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/230,506 Abandoned US20130066149A1 (en) 2011-09-12 2011-09-12 Endoscopic hook blade and use thereof
US14/059,170 Abandoned US20140081081A1 (en) 2011-09-12 2013-10-21 Endoscopic hook blade and use thereof
US14/820,881 Abandoned US20150342632A1 (en) 2011-09-12 2015-08-07 Endoscopic hook blade and use thereof
US15/585,031 Active 2032-01-27 US11224455B2 (en) 2011-09-12 2017-05-02 Endoscopic hook blade and use thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/230,506 Abandoned US20130066149A1 (en) 2011-09-12 2011-09-12 Endoscopic hook blade and use thereof
US14/059,170 Abandoned US20140081081A1 (en) 2011-09-12 2013-10-21 Endoscopic hook blade and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/585,031 Active 2032-01-27 US11224455B2 (en) 2011-09-12 2017-05-02 Endoscopic hook blade and use thereof

Country Status (2)

Country Link
US (4) US20130066149A1 (en)
WO (1) WO2013039516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448965B2 (en) 2014-11-12 2019-10-22 Manuel F. DaSilva Systems, methods, and devices for endoscopic nerve release

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144433B2 (en) * 2012-07-26 2015-09-29 A.M. Surgical, Inc. Endoscopic surgical blade and method of use thereof
WO2016044072A1 (en) 2014-09-18 2016-03-24 Mayo Foundation For Medical Education And Research Soft tissue cutting device and methods of use
US10575867B2 (en) 2015-11-20 2020-03-03 A.M. Surgical, Inc. Shield for endoscopic surgical blade and method of use
WO2017087000A1 (en) * 2015-11-20 2017-05-26 A.M. Surgical, Inc. Shield for endoscopic surgical blade and method of use
US10864055B2 (en) 2017-10-13 2020-12-15 Sonex Health, Inc. Tray for a soft tissue cutting device and methods of use
CN107961043B (en) * 2017-12-20 2020-07-24 王兰华 Tumor biopsy puncture outfit
CN109674513A (en) * 2017-12-27 2019-04-26 上海博进凯利泰医疗科技有限公司 The evaluating apparatus of planing cutter head class surgical instrument cutting performance
US11937845B2 (en) 2019-01-11 2024-03-26 Mayo Foundation For Medical Education And Research Micro-invasive surgical device and methods of use
US12004767B2 (en) 2021-01-08 2024-06-11 Sonex Health, Inc. Surgical cutting device for ultrasonic guided soft tissue surgery
USD989961S1 (en) 2021-04-30 2023-06-20 Sonex Health, Inc. Soft tissue cutting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049898A (en) * 1935-04-29 1936-08-04 Frederick Bishop Surgical instrument
US3834393A (en) * 1973-07-09 1974-09-10 R Goggins Veterinary surgical tool for enlarging the pelvic girdle of a heifer during parturition
US5366465A (en) * 1992-12-07 1994-11-22 M. Ather Mirza Endoscopic surgical procedure and instrument for implementation thereof
US5649946A (en) * 1995-03-20 1997-07-22 Bramlet; Dale G. Carpal tunnel medical instrument
US5782850A (en) * 1994-10-12 1998-07-21 Ro; Man Tack Method for treating trigger finger, and medical instrument therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US392041A (en) * 1888-10-30 Philip lesson
US1398850A (en) * 1919-12-16 1921-11-29 Franco Maurice Weed-puller
US1500402A (en) * 1922-11-02 1924-07-08 Lewis Elias Knife
US2676595A (en) * 1953-01-21 1954-04-27 Dyekjaer Elith Gerhard Veterinary surgical knife
US4497320A (en) * 1983-02-14 1985-02-05 Rudolph Beaver, Inc. Surgical blade unit
JPH06505654A (en) * 1991-02-06 1994-06-30 ラパロームド コーポレイション electrosurgical device
USD332383S (en) * 1991-05-02 1993-01-12 Buck Knives, Inc. Utility knife
US5323765A (en) * 1991-12-03 1994-06-28 Brown Michael G Apparatus and method for endoscopic surgery
US5304190A (en) * 1992-05-08 1994-04-19 Ethicon, Inc. Endoscopic cutting apparatus
US5339527A (en) * 1992-10-22 1994-08-23 Clemens Jr Richard W Wrecking tool II
US5445140A (en) * 1993-06-07 1995-08-29 United States Surgical Corporation Endoscopic surgical device
US5397333A (en) * 1993-09-24 1995-03-14 Nusurg Medical, Inc. Surgical hook knife
US7041115B2 (en) * 2002-11-18 2006-05-09 A.M. Surgical, Inc. Endoscopic surgical procedure
US8398663B2 (en) * 2004-02-27 2013-03-19 Cook Medical Technologies Llc Valvulotome device and method
US8070750B2 (en) * 2004-03-05 2011-12-06 Depuy Mitek, Inc. Tunnel notcher and guidewire delivery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049898A (en) * 1935-04-29 1936-08-04 Frederick Bishop Surgical instrument
US3834393A (en) * 1973-07-09 1974-09-10 R Goggins Veterinary surgical tool for enlarging the pelvic girdle of a heifer during parturition
US5366465A (en) * 1992-12-07 1994-11-22 M. Ather Mirza Endoscopic surgical procedure and instrument for implementation thereof
US5782850A (en) * 1994-10-12 1998-07-21 Ro; Man Tack Method for treating trigger finger, and medical instrument therefor
US5649946A (en) * 1995-03-20 1997-07-22 Bramlet; Dale G. Carpal tunnel medical instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448965B2 (en) 2014-11-12 2019-10-22 Manuel F. DaSilva Systems, methods, and devices for endoscopic nerve release
US11529162B2 (en) 2014-11-12 2022-12-20 Manuel F. DaSilva Systems, methods, and devices for endoscopic nerve release

Also Published As

Publication number Publication date
US11224455B2 (en) 2022-01-18
US20130066149A1 (en) 2013-03-14
US20180014843A1 (en) 2018-01-18
WO2013039516A1 (en) 2013-03-21
US20140081081A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US11224455B2 (en) Endoscopic hook blade and use thereof
US11006970B2 (en) Endoscopic surgical blade and method of use thereof
US11376033B2 (en) Endoscopic surgical blade and method of use thereof
US10918410B2 (en) Endoscopic surgical blade and use thereof
US8852201B2 (en) Microfracture instrument
EP2311394A1 (en) Cannulated arthroscopic knife
US20210077139A1 (en) Surgical device
US11534195B2 (en) Shield for endoscopic surgical blade and method of use
EP1972288A1 (en) Shaver blade with depth markings
US20080306405A1 (en) Perforating trocar
EP2665430A1 (en) Endoscopic surgical blade and use thereof
WO2013130095A1 (en) Endoscopic surgical blade and method of use thereof
CN209450624U (en) Localised puncture external member with push rod
CN216257255U (en) Locator for repairing anterior fibular ligament under arthroscope
CN219374855U (en) Puncture needle convenient to insert
WO2014018044A1 (en) Endoscopic surgical blade and method of use thereof
JPS61265135A (en) Incision instrument for surgery

Legal Events

Date Code Title Description
AS Assignment

Owner name: A.M. SURGICAL, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRZA, ATHER;MIRZA, ROMI;REEL/FRAME:036409/0361

Effective date: 20150811

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION