US20150336987A1 - Novel monophosphite ligands having a carbonate group - Google Patents

Novel monophosphite ligands having a carbonate group Download PDF

Info

Publication number
US20150336987A1
US20150336987A1 US14/716,521 US201514716521A US2015336987A1 US 20150336987 A1 US20150336987 A1 US 20150336987A1 US 201514716521 A US201514716521 A US 201514716521A US 2015336987 A1 US2015336987 A1 US 2015336987A1
Authority
US
United States
Prior art keywords
alkyl
aryl
compound according
butyl
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/716,521
Other versions
US9212195B1 (en
Inventor
Katrin Marie Dyballa
Robert Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Industries AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries AG filed Critical Evonik Industries AG
Assigned to EVONIK INDUSTRIES AG reassignment EVONIK INDUSTRIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DYBALLA, Katrin Marie, FRANKE, ROBERT
Publication of US20150336987A1 publication Critical patent/US20150336987A1/en
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK INDUSTRIES AG
Application granted granted Critical
Publication of US9212195B1 publication Critical patent/US9212195B1/en
Assigned to EVONIK OPERATIONS GMBH reassignment EVONIK OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK DEGUSSA GMBH
Assigned to EVONIK OXENO GMBH & CO. KG reassignment EVONIK OXENO GMBH & CO. KG CONFIRMATORY ASSIGNMENT Assignors: EVONIK OPERATIONS GMBH
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/145Esters of phosphorous acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65744Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/10Non-coordinating groups comprising only oxygen beside carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/10Non-coordinating groups comprising only oxygen beside carbon or hydrogen
    • B01J2540/12Carboxylic acid groups

Definitions

  • the invention relates to novel monophosphite ligands having a carbonate group, to use thereof as ligands in hydroformylation and to the hydroformylation process.
  • Every catalytically active composition has its specific benefits. According to the feedstock and target product, therefore, different catalytically active compositions are used.
  • bi- and polydentate phosphine ligands are relatively high level of complexity necessary for preparation thereof. It is therefore often unfeasible to use such systems in industrial operations.
  • An additional factor is comparatively low activity, which has to be compensated for by chemical engineering, through high residence times. This in turn leads to unwanted side reactions of the products.
  • ligands having a phosphonite structure are very complex.
  • the possibility of a favorable and simple synthesis is crucial for the use of ligands in an industrial scale process.
  • Rhodium-monophosphite complexes in catalytically active compositions are suitable for the hydroformylation of branched olefins having internal double bonds.
  • EP 0 155 508 discloses the use of bisarylene-substituted monophosphites in the rhodium-catalyzed hydroformylation of sterically hindered olefins, e.g. isobutene.
  • rhodium concentrations used here are sometimes very high (one being 250 ppm), which is unacceptable for an industrial scale process in view of the current cost of rhodium and has to be improved.
  • TDTBPP tris(2,4-di-tert-butylphenyl)phosphite
  • the technical object that formed the basis of the present invention is that of providing a novel monophosphite ligand which does not have the above-detailed disadvantages from the related art in the hydroformylation of unsaturated compounds.
  • the preparation complexity should be lower than for the above-described phosphonite ligands; secondly, a good n selectivity should be achieved in relation to the hydroformylation.
  • novel monophosphite ligands should also be suitable for hydroformylation of industrial olefin mixtures containing mainly branched olefins having internal double bonds.
  • hydroformylation at the same time, a high proportion of desired terminally hydroformylated products should be obtained.
  • the stability—specifically the service life—of the catalytically active composition composed of the metal used in each case, ligands and further components having an activating effect with respect to the monophosphite used as ligands is a constant task in research. This is especially true with regard to olefin-containing mixtures, specifically in the hydroformylation of mixtures of linear olefins.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from: —H, —(C 1 -C 12 )-alkyl, —O—(C 1 -C 12 )-alkyl, —O—(C 6 -C 20 )-aryl, —(C 6 -C 20 )-aryl, halogen, COO—(C 1 -C 12 )-alkyl, CONH—(C 1 -C 12 )-alkyl, —(C 6 -C 20 )-aryl-CON[(C 1 -C 12 )-alkyl] 2 , —CO—(C 1 -C 12 )-alkyl, —CO—(C 6 -C 20 )-aryl, —COOH, —OH, —SO 3 H, —SO 3 Na, —NO 2 , —CN, —NH 2 , —N[
  • X and Y are each independently selected from:
  • Z is selected from:
  • Q is selected from:
  • alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl groups mentioned are optionally substituted.
  • the present invention relates to a compound having one of the two general structures I and II:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from: —H, —(C 1 -C 12 )-alkyl, —O—(C 1 -C 12 )-alkyl, —O—(C 6 -C 20 )-aryl, —(C 6 -C 20 )-aryl, halogen (such as Cl, F, Br, I), COO—(C 1 -C 12 )-alkyl, CONH—(C 1 -C 12 )-alkyl, —(C 6 -C 20 )-aryl-CON[(C 1 -C 12 )-alkyl] 2 , —CO—(C 1 -C 12 )-alkyl, —CO—(C 6 -C 20 )-aryl, —COOH, —OH, —SO 3 H, —SO 3 Na, —NO 2 , —CN,
  • X and Y are each independently selected from:
  • Z is selected from:
  • Q is selected from:
  • alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl groups mentioned may be substituted.
  • (C 1 -C 12 )-Alkyl and O—(C 1 -C 12 )-alkyl may each be unsubstituted or substituted by one or more identical or different radicals selected from (C 3 -C 12 )-cycloalkyl, (C 3 -C 12 )-heterocycloalkyl, (C 6 -C 20 )-aryl, fluorine, chlorine, cyano, formyl, acyl and alkoxycarbonyl.
  • (C 3 -C 12 )-Cycloalkyl and (C 3 -C 12 )-heterocycloalkyl may each be unsubstituted or substituted by one or more identical or different radicals selected from (C 1 -C 12 )-alkyl, (C 1 -C 12 )-alkoxy, (C 3 -C 12 )-cycloalkyl, (C 3 -C 12 )-heterocycloalkyl, (C 6 -C 20 )-aryl, fluorine, chlorine, cyano, formyl, acyl and alkoxycarbonyl.
  • (C 6 -C 20 )-Aryl and —(C 6 -C 20 )-aryl-(C 6 -C 20 )-aryl- may each be unsubstituted or substituted by one or more identical or different radicals selected from:
  • —(C 1 -C 12 )-alkyl encompasses straight-chain and branched alkyl groups. Preferably, these groups are unsubstituted straight-chain or branched —(C 1 -C 8 )-alkyl groups and most preferably —(C 1 -C 6 )-alkyl groups.
  • Examples of (C 1 -C 12 )-alkyl groups are especially methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 2-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 1-ethyl-2-
  • elucidations relating to the expression —(C 1 -C 12 )-alkyl also apply to the alkyl groups in —O—(C 1 -C 12 )-alkyl, i.e. in —(C 1 -C 12 )-alkoxy.
  • these groups are unsubstituted straight-chain or branched —(C 1 -C 6 )-alkoxy groups.
  • Substituted —(C 1 -C 12 )-alkyl groups and substituted —(C 1 -C 12 )-alkoxy groups may have one or more substituents, depending on their chain length.
  • the substituents are preferably each independently selected from —(C 3 -C 12 )-cycloalkyl, —(C 3 -C 12 )-heterocycloalkyl, —(C 6 -C 20 )-aryl, fluorine, chlorine, cyano, formyl, acyl or alkoxycarbonyl.
  • —(C 3 -C 12 )-cycloalkyl in the context of the present invention, encompasses mono-, bi- or tricyclic hydrocarbyl radicals having 3 to 12, especially 5 to 12, carbon atoms. These include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, cyclopentadecyl, norbonyl and adamantyl.
  • —(C 3 -C 12 )-heterocycloalkyl groups encompasses nonaromatic saturated or partly unsaturated cycloaliphatic groups having 3 to 12, especially 5 to 12, carbon atoms.
  • the —(C 3 -C 12 )-heterocycloalkyl groups have preferably 3 to 8, more preferably 5 or 6, ring atoms.
  • 1, 2, 3 or 4 of the ring carbon atoms are replaced by heteroatoms or heteroatom-containing groups.
  • the heteroatoms or the heteroatom-containing groups are preferably selected from —O—, —S—, —N—, —N( ⁇ O)—, —C( ⁇ O)— and —S( ⁇ O)—.
  • Examples of —(C 3 -C 12 )-heterocycloalkyl groups are tetrahydrothiophenyl, tetrahydrofuryl, tetrahydropyranyl and dioxanyl.
  • Substituted —(C 3 -C 12 )-cycloalkyl groups and substituted —(C 3 -C 12 )-heterocycloalkyl groups may have one or more (e.g. 1, 2, 3, 4 or 5) further substituents, depending on their ring size.
  • substituents are preferably each independently selected from —(C 1 -C 12 )-alkyl, —(C 1 -C 12 )-alkoxy, —(C 3 -C 12 )-cycloalkyl, —(C 3 -C 12 )-heterocycloalkyl, —(C 6 -C 20 )-aryl, fluorine, chlorine, cyano, formyl, acyl or alkoxycarbonyl.
  • Substituted —(C 3 -C 12 )-cycloalkyl groups preferably bear one or more —(C 1 -C 6 )-alkyl groups.
  • Substituted —(C 3 -C 12 )-heterocycloalkyl groups preferably bear one or more —(C 1 -C 6 )-alkyl groups.
  • Aryl is preferably —(C 6 -C 10 )-aryl and —(C 6 -C 10 )-aryl-(C 6 -C 10 )-aryl.
  • Aryl is especially phenyl, naphthyl, indenyl, fluorenyl, anthracenyl, phenanthrenyl, naphthacenyl, chrysenyl, pyrenyl, coronenyl. More particularly, aryl is phenyl, naphthyl and anthracenyl.
  • Substituted —(C 6 -C 20 )-aryl groups and —(C 6 -C 20 )-aryl-(C 6 -C 20 )-aryl groups may have one or more (e.g. 1, 2, 3, 4 or 5) substituents, depending on their ring size.
  • substituents are preferably each independently selected from —H, —(C 1 -C 12 )-alkyl, —O—(C 1 -C 12 )-alkyl, —O—(C 6 -C 20 )-aryl, —(C 6 -C 20 )-aryl, -halogen (such as Cl, F, Br, I), —COO—(C 1 -C 12 )-alkyl, —CONH—(C 1 -C 12 )-alkyl, —(C 6 -C 20 )-aryl-CON[(C 1 -C 12 )-alkyl] 2 , —CO—(C 1 -C 12 )-alkyl, —CO—(C 6 -C 20 )-aryl, —COOH, —OH, —SO 3 H, —SO 3 Na, —NO 2 , —CN, —NH 2 , —N[(C 1 -C 12 )-al
  • Substituted —(C 6 -C 20 )-aryl groups and —(C 6 -C 20 )-aryl-(C 6 -C 20 )-aryl groups are preferably substituted —(C 6 -C 10 )-aryl groups and —(C 6 -C 10 )-aryl-(C 6 -C 10 )-aryl groups, especially substituted phenyl or substituted naphthyl or substituted anthracenyl.
  • Substituted-(C 6 -C 20 )-aryl groups preferably bear one or more, for example 1, 2, 3, 4 or 5, substituents selected from —(C 1 -C 12 )-alkyl groups, —(C 1 -C 12 )-alkoxy groups.
  • Q is selected from:
  • Q is selected from:
  • Q is selected from:
  • Q is not -tert-butyl.
  • X and Y are each independently selected from:
  • X and Y are each independently selected from:
  • X and Y are each independently selected from:
  • Z is selected from:
  • Z is:
  • Z is:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from:
  • X and Y are the same radicals.
  • R 3 and R 6 are each —O—(C 1 -C 12 )-alkyl.
  • R 3 and R 6 are each —OMe.
  • R 1 and R 8 are each —(C 1 -C 12 )-alkyl.
  • R 1 and R 8 are each tert-butyl.
  • R 1 , R 3 , R 6 and R 8 are each —(C 1 -C 12 )-alkyl.
  • R 1 , R 3 , R 6 and R 8 are each methyl.
  • R 1 , R 3 , R 6 and R 8 are each tert-butyl.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each —H.
  • the compound has the general structure III:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • alkyl comprises 1-12 carbon atoms, preferably 1-10 carbon atoms, for example primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl, t-amyl, isooctyl, 2-ethylhexyl, decyl, dodecyl and octadecyl groups.
  • primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl
  • R 11 and R 14 are each —O—(C 1 -C 12 )-alkyl.
  • R 11 and R 14 are each —OMe.
  • R 9 and R 16 are each —(C 1 -C 12 )-alkyl.
  • R 9 and R 16 are each tert-butyl.
  • R 9 , R 11 , R 14 and R 16 are each —(C 1 -C 12 )-alkyl.
  • R 9 , R 10 , R 14 and R 16 are each methyl.
  • R 9 , R 11 , R 14 and R 16 are each tert-butyl.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each —H.
  • the compound has the general structure IV:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are each independently selected from:
  • alkyl comprises 1-12 carbon atoms, preferably 1-10 carbon atoms, for example primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl, t-amyl, isooctyl, 2-ethylhexyl, decyl, dodecyl and octadecyl groups.
  • primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl
  • R 11 and R 14 are each —O—(C 1 -C 12 )-alkyl.
  • R 11 and R 14 are each —OMe.
  • R 9 and R 16 are each —(C 1 -C 12 )-alkyl.
  • R 9 and R 16 are each tert-butyl.
  • R 9 , R 11 , R 14 and R 16 are each —(C 1 -C 12 )-alkyl.
  • R 9 , R 11 , R 14 and R 16 are each methyl.
  • R 9 , R 11 , R 14 and R 16 are each tert-butyl.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each —H.
  • the metal is Rh.
  • ligand as ligand in a ligand-metal complex for catalysis of a hydroformylation reaction.
  • process steps a) to d) can be effected in any desired sequence.
  • the reaction is conducted under customary conditions.
  • Preference is given to a temperature of 80° C. to 160° C. and a pressure of 1 to 300 bar.
  • Particular preference is given to a temperature of 100° C. to 160° C. and a pressure of 15 to 250 bar.
  • the metal is Rh.
  • the reactants for the hydroformylation in the process of the invention are olefins or mixtures of olefins, especially monoolefins having 2 to 24, preferably 3 to 16 and more preferably 3 to 12 carbon atoms, having terminal or internal C—C double bonds, for example 1-propene, 1- or 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-, 2- or 3-hexene, the C 6 olefin mixture obtained in the dimerization of propene (dipropene), heptenes, 2- or 3-methyl-1-hexenes, octenes, 2-methylheptenes, 3-methylheptenes, 5-methyl-2-heptene, 6-methyl-2-heptene, 2-ethyl-1-hexene, the C 8 olefin mixture obtained in the dimerization of butenes (dibutene), nonenes, 2- or 3-methyloctenes
  • the process according to the invention using the compounds according to the invention can be used to hydroformylate ⁇ -olefins, terminally branched, internal and internally branched olefins. What is remarkable is the high yield of terminally hydroformylated olefin, even when only a small proportion of olefins having a terminal double bond was present in the reactant.
  • Nuclear resonance spectra were recorded using Bruker Avance 300 or Bruker Avance 400, gas chromatography analysis was effected using an Agilent GC 7890A, the elemental analysis was effected using Leco TruSpec CHNS and Varian ICP-OES 715, and the ESI-TOF mass spectroscopy using Thermo Electron Finnigan MAT 95-XP and Agilent 6890 N/5973 instruments.
  • reaction routes shown are merely illustrative and are shown in highly simplified form.
  • base can be used additionally in all the steps.
  • bases specified in the individual synthesis stages may be replaced by other commercially available bases known to those skilled in the art.
  • Lines 1 and 2 list experiments on the rhodium-catalysed hydroformylation of the cis-2-butene reactant with ligand 1.
  • a synthesis gas pressure of 20 bar in experiment 1, 58.0 mol % of pentanal is formed with a pentanal selectivity of 45.3%.
  • the proportion of hydrogenation to the alkane is low at about 1.3% to 1.5%.
  • the formation of pentanol is not observed.
  • An increase in the synthesis gas pressure leads to a rise in the pentanal yield to 95.1 mol %, but the regioselectivity falls to about 40%.
  • Lines 3 to 5 list hydroformylations of 1-butene. At 20 bar (line 3), at a ligand excess of 4:1, a yield of about 49% and a selectivity for n-pentanal of about 52% are attained. At synthesis gas pressure 50 bar, a n-pentanal selectivity of 50% is obtained with virtually full conversion (lines 4 and 5). Alkane formation is low. In the experiment in line 4, the molar excess of ligand was reduced to about 2:1. The yield rises to 97.4%; the pentanal selectivity falls slightly to 46.8%. In line 5, the Rh concentration was increased to about 100 ppm and the ligand excess was increased to 8:1 relative to rhodium. The aldehyde yield rises to 99.5%; the regioselectivity likewise rises to 50.3%.
  • the experiments were conducted both with the inventive ligand 1 and with the comparative TDTBPP ligand.
  • TDTBPP Tris(2,4-di-tert-butylphenyl)phosphite
  • Entries 1 to 14 each show results of experiments at a constant temperature in the range from 80° C. to 140° C., in each case for the inventive ligand 1 and for the comparative ligand (TDTBPP).
  • inventive ligand 1 in all cases shows a distinctly higher n selectivity for the desired product combined with very good overall yields. The formation of alkanes and alcohols is insignificant.
  • Entries 13 and 14 are compared, ligand 1 has nearly an 8% increase in selectivity compared to the commercially available comparative ligand.
  • Entries 15 to 17 show the use of ligand 1 with different molar excesses relative to rhodium. In all cases, it was possible to achieve very good n selectivities.
  • Table 10 gives the results for the hydroformylation of di-n-butene.
  • Table 10 contains experimental results for the rhodium-catalysed hydroformylation of di-n-butene with ligand 1.
  • Entries 1 to 5 were conducted at 120° C. and 50 bar, and entry 8 at 40 bar.
  • Entries 2 and 3 are a double determination with a ligand excess of 7 relative to rhodium and a rhodium concentration based on the overall reaction mixture of 80 ppm; entry 1 was performed at an excess of about 10:1 and an Rh concentration of 40 ppm.
  • Entry 4 describes a reduction in the excess to 5:1 compared to entries 2 and 3.
  • Entries 5 to 8 are experiments with a high ligand excess of about 20:1. Entries 5 to 7 were conducted at different temperatures. Entry 8 differs from entry 5 by the pressure.
  • n-octene mixture Analogously to the experiments with the n-octene mixture, high n selectivities between 28 and 36 mol % are found in all of experiments 1 to 6 and 8. At lower temperature (entry 7), the n selectivity is reduced to about 24%. n-Octenes are converted virtually quantitatively within the experimental duration of 12 hours; the conversion of the 3-methylheptenes is >96%. The 3,4-dimethylhexenes are converted to an extent of 73%-86%.
  • novel catalyst system is also suitable for hydroformylation of technical olefin mixtures containing mainly branched olefins containing internal double bonds, and a high proportion of desired terminally hydroformylated products can be obtained.
  • the above table contains a compilation of the experimental data for the hydroformylation of n-octenes with ligand 3 in the form of a temperature series from 80° C. to 120° C. at synthesis gas pressure 50 bar, an Rh concentration of about 100 ppm and a ligand excess of about 20:1.
  • the n-nonanal selectivities in this series of experiments are low at 4.9 to 11.9 mol %, but the aldehyde yields at higher temperatures are virtually quantitative and very good. Alkane formation is low at ⁇ 1%; hydrogenation to alcohols is not observed.
  • Table 12 gives the results for the hydroformylation of di-n-butene.
  • Table 12 contains experimental results for the rhodium-catalysed hydroformylation of di-n-butene with ligands 3, 4 and 5. While ligand 4 (entry 1) gives a moderate overall yield of aldehydes and alcohols, ligands 3 and 5 are notable for very good yields. Especially ligand 5 shows virtually quantitative yields at elevated temperature (140° C.) (entries 5 to 7).
  • novel catalyst system is also suitable for hydroformylation of technical olefin mixtures containing mainly branched olefins containing internal double bonds, and a high proportion of desired hydroformylated products can be obtained.
  • the inventive monophosphite ligands have a very good n selectivity in relation to the hydroformylation. Selectivity for the desired linear aldehydes is much greater here than, for example, in the case of the commercially available TDTBPP ligand. The stated objects are therefore achieved by these novel inventive ligands.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A monophosphite ligand having a carbonate group is useful for hydroformylation.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to novel monophosphite ligands having a carbonate group, to use thereof as ligands in hydroformylation and to the hydroformylation process.
  • 2. Discussion of the Background
  • The reactions between olefin compounds, carbon monoxide and hydrogen in the presence of a catalyst to give the aldehydes comprising one additional carbon atom are known as hydroformylation or oxo synthesis. The catalysts used in these reactions are frequently compounds of the transition metals of group VIII of the Periodic Table of the Elements. Known ligands are, for example, compounds from the classes of the phosphines, phosphites and phosphonites, each with trivalent phosphorus PIII. A good overview of the state of the hydroformylation of olefins can be found in B. CORNILS, W. A. HERRMANN, “Applied Homogeneous Catalysis with Organometallic Compounds”, vol. 1 & 2, VCH, Weinheim, N.Y., 1996 or R. Franke, D. Selent, A. Börner, “Applied Hydroformylation”, Chem. Rev., 2012, DOI:10.1021/cr3001803.
  • Every catalytically active composition has its specific benefits. According to the feedstock and target product, therefore, different catalytically active compositions are used.
  • The disadvantage of bi- and polydentate phosphine ligands is a relatively high level of complexity necessary for preparation thereof. It is therefore often unfeasible to use such systems in industrial operations. An additional factor is comparatively low activity, which has to be compensated for by chemical engineering, through high residence times. This in turn leads to unwanted side reactions of the products.
  • In Angew. Chem. Int. Ed. 2000, 39, No. 9, p. 1639-1641, Börner et al. describe ligands having one P—C bond and two P—O bonds; these are thus phosphonites. The phosphonites described here, when used in hydroformylation, have n/iso selectivities (n/iso=the ratio of linear aldehyde (=n) to branched (=iso) aldehyde)) of 0.61 to 1.57.
  • The phosphonite ligands described in DE 199 54 721 have a good n/iso selectivity. However, in-house studies have shown that the compound II-c (in DE 199 54 721; page 6) has a tendency to photochemically induced breakdown, and should therefore not be used on the industrial scale.
  • One disadvantage of the ligands having a phosphonite structure is that their preparation is very complex. However, the possibility of a favorable and simple synthesis is crucial for the use of ligands in an industrial scale process.
  • Ease of availability and the associated good possibility of industrial scale use is an important criterion, since the preparation complexity and the associated production costs for the ligand may only be so high that the viability of the overall process in which the ligand is to be used at a later stage is still assured.
  • Rhodium-monophosphite complexes in catalytically active compositions are suitable for the hydroformylation of branched olefins having internal double bonds.
  • Since the 1970s, there have been descriptions of the use of “bulky phosphites” in hydroformylation (see, inter alia, van Leeuwen et al., Journal of Catalysis, 2013, 298, 198-205). These feature good activity, but the n/i selectivity for terminally hydroformylated compounds is in need of improvement.
  • EP 0 155 508 discloses the use of bisarylene-substituted monophosphites in the rhodium-catalyzed hydroformylation of sterically hindered olefins, e.g. isobutene. However, rhodium concentrations used here are sometimes very high (one being 250 ppm), which is unacceptable for an industrial scale process in view of the current cost of rhodium and has to be improved.
  • For hydroformylation reactions, tris(2,4-di-tert-butylphenyl)phosphite (TDTBPP) is currently one of the best-performing monophosphite ligands commercially available, and is available under the Alkanox 240 trade name (see also R. Franke, D. Selent, A. Börner, “Applied Hydroformylation”, Chem. Rev., 2012, 112, p. 5681, chapter 3.4.2).
  • SUMMARY OF THE INVENTION
  • The technical object that formed the basis of the present invention is that of providing a novel monophosphite ligand which does not have the above-detailed disadvantages from the related art in the hydroformylation of unsaturated compounds.
  • Firstly, the preparation complexity should be lower than for the above-described phosphonite ligands; secondly, a good n selectivity should be achieved in relation to the hydroformylation.
  • More particularly, the novel monophosphite ligands should also be suitable for hydroformylation of industrial olefin mixtures containing mainly branched olefins having internal double bonds. In the hydroformylation, at the same time, a high proportion of desired terminally hydroformylated products should be obtained.
  • In addition to aiming for a high reactivity and n/i selectivity in relation to the unsaturated compounds to be carbonylated, the stability—specifically the service life—of the catalytically active composition composed of the metal used in each case, ligands and further components having an activating effect with respect to the monophosphite used as ligands is a constant task in research. This is especially true with regard to olefin-containing mixtures, specifically in the hydroformylation of mixtures of linear olefins.
  • The above and other objects have been achieved by the present invention the first embodiment of which includes a compound having one of the two structures I and II:
  • Figure US20150336987A1-20151126-C00001
  • wherein
  • R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from: —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, halogen, COO—(C1-C12)-alkyl, CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[C1-C12)-alkyl]2;
  • X and Y are each independently selected from:
  • —(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C1-C12)-alkyl-(C6-C20)-aryl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl, —(C6-C20)-aryl-CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —(C4-C20)-heteroaryl, —(C4-C20)-heteroaryl-(C1-C12)-alkyl, —(C5-C8)-cycloalkyl-(C4-C20)-aryl-CO—(C6-C20)-aryl,
  • Z is selected from:
  • —(C1-C12)-alkyl-, —(C6-C20)-aryl-, —(C6-C20)-aryl-(C1-C12)-alkyl-, —(C1-C12)-alkyl-(C6-C20)-aryl-, —(C4-C20)-heteroaryl-, —(C6-C20)-aryl-CO—(C6-C20)-aryl-, —(C6-C20)-aryl-(C6-C20)-aryl-;
  • Q is selected from:
  • —(C1-C18)-alkyl-, —(C1-C12)-alkyl-(C1-C20)-aryl-, —(C1-C18)-haloalkyl-,
  • —NH—(C1-C18)-alkyl, and
  • wherein the alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl groups mentioned are optionally substituted.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a compound having one of the two general structures I and II:
  • Figure US20150336987A1-20151126-C00002
  • wherein
  • R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from: —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, halogen (such as Cl, F, Br, I), COO—(C1-C12)-alkyl, CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2;
  • X and Y are each independently selected from:
  • —(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C1-C12)-alkyl-(C6-C20)-aryl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl, —(C6-C20)-aryl-CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —(C4-C20)-heteroaryl, —(C4-C20)-heteroaryl-(C1-C12)-alkyl, —(C5-C8)-cycloalkyl, —(C6-C20)-aryl-CO—(C6-C20)-aryl,
  • Z is selected from:
  • —(C1-C12)-alkyl-, —(C6-C20)-aryl-, —(C6-C20)-aryl-(C1-C12)-alkyl-, —(C1-C12)-alkyl-(C6-C20)-aryl-, —(C4-C20)-heteroaryl-, —(C6-C20)-aryl-CO—(C6-C20)-aryl-, —(C6-C20)-aryl-(C6-C20)-aryl-;
  • Q is selected from:
  • —(C1-C18)-alkyl-, —(C1-C12)-alkyl-(C1-C20)-aryl-, —(C1-C18)-haloalkyl-,
  • —NH—(C1-C18)-alkyl,
  • wherein the alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl groups mentioned may be substituted.
  • (C1-C12)-Alkyl and O—(C1-C12)-alkyl may each be unsubstituted or substituted by one or more identical or different radicals selected from (C3-C12)-cycloalkyl, (C3-C12)-heterocycloalkyl, (C6-C20)-aryl, fluorine, chlorine, cyano, formyl, acyl and alkoxycarbonyl.
  • (C3-C12)-Cycloalkyl and (C3-C12)-heterocycloalkyl may each be unsubstituted or substituted by one or more identical or different radicals selected from (C1-C12)-alkyl, (C1-C12)-alkoxy, (C3-C12)-cycloalkyl, (C3-C12)-heterocycloalkyl, (C6-C20)-aryl, fluorine, chlorine, cyano, formyl, acyl and alkoxycarbonyl.
  • (C6-C20)-Aryl and —(C6-C20)-aryl-(C6-C20)-aryl-may each be unsubstituted or substituted by one or more identical or different radicals selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen (such as Cl, F, Br, I), —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
  • All ranges described herein include all values and subvalues between the lower and upper limits of such range.
  • In the context of the invention, the expression —(C1-C12)-alkyl encompasses straight-chain and branched alkyl groups. Preferably, these groups are unsubstituted straight-chain or branched —(C1-C8)-alkyl groups and most preferably —(C1-C6)-alkyl groups. Examples of (C1-C12)-alkyl groups are especially methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 2-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 1-ethyl-2-methylpropyl, n-heptyl, 2-heptyl, 3-heptyl, 2-ethylpentyl, 1-propylbutyl, n-octyl, 2-ethylhexyl, 2-propylheptyl, nonyl, decyl.
  • The elucidations relating to the expression —(C1-C12)-alkyl also apply to the alkyl groups in —O—(C1-C12)-alkyl, i.e. in —(C1-C12)-alkoxy. Preferably, these groups are unsubstituted straight-chain or branched —(C1-C6)-alkoxy groups.
  • Substituted —(C1-C12)-alkyl groups and substituted —(C1-C12)-alkoxy groups may have one or more substituents, depending on their chain length. The substituents are preferably each independently selected from —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, fluorine, chlorine, cyano, formyl, acyl or alkoxycarbonyl.
  • The expression “—(C3-C12)-cycloalkyl”, in the context of the present invention, encompasses mono-, bi- or tricyclic hydrocarbyl radicals having 3 to 12, especially 5 to 12, carbon atoms. These include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, cyclopentadecyl, norbonyl and adamantyl.
  • The expression “—(C3-C12)-heterocycloalkyl groups”, in the context of the present invention, encompasses nonaromatic saturated or partly unsaturated cycloaliphatic groups having 3 to 12, especially 5 to 12, carbon atoms. The —(C3-C12)-heterocycloalkyl groups have preferably 3 to 8, more preferably 5 or 6, ring atoms. In the heterocycloalkyl groups, as opposed to the cycloalkyl groups, 1, 2, 3 or 4 of the ring carbon atoms are replaced by heteroatoms or heteroatom-containing groups. The heteroatoms or the heteroatom-containing groups are preferably selected from —O—, —S—, —N—, —N(═O)—, —C(═O)— and —S(═O)—. Examples of —(C3-C12)-heterocycloalkyl groups are tetrahydrothiophenyl, tetrahydrofuryl, tetrahydropyranyl and dioxanyl.
  • Substituted —(C3-C12)-cycloalkyl groups and substituted —(C3-C12)-heterocycloalkyl groups may have one or more (e.g. 1, 2, 3, 4 or 5) further substituents, depending on their ring size. These substituents are preferably each independently selected from —(C1-C12)-alkyl, —(C1-C12)-alkoxy, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, fluorine, chlorine, cyano, formyl, acyl or alkoxycarbonyl. Substituted —(C3-C12)-cycloalkyl groups preferably bear one or more —(C1-C6)-alkyl groups. Substituted —(C3-C12)-heterocycloalkyl groups preferably bear one or more —(C1-C6)-alkyl groups.
  • In the context of the present invention, the expression —(C6-C20)-aryl and —(C6-C20)-aryl-(C6-C20)-aryl-encompasses mono- or polycyclic aromatic hydrocarbyl radicals. These have 6 to 20 ring atoms, more preferably 6 to 14 ring atoms, especially 6 to 10 ring atoms. Aryl is preferably —(C6-C10)-aryl and —(C6-C10)-aryl-(C6-C10)-aryl. Aryl is especially phenyl, naphthyl, indenyl, fluorenyl, anthracenyl, phenanthrenyl, naphthacenyl, chrysenyl, pyrenyl, coronenyl. More particularly, aryl is phenyl, naphthyl and anthracenyl.
  • Substituted —(C6-C20)-aryl groups and —(C6-C20)-aryl-(C6-C20)-aryl groups may have one or more (e.g. 1, 2, 3, 4 or 5) substituents, depending on their ring size. These substituents are preferably each independently selected from —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen (such as Cl, F, Br, I), —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
  • Substituted —(C6-C20)-aryl groups and —(C6-C20)-aryl-(C6-C20)-aryl groups are preferably substituted —(C6-C10)-aryl groups and —(C6-C10)-aryl-(C6-C10)-aryl groups, especially substituted phenyl or substituted naphthyl or substituted anthracenyl. Substituted-(C6-C20)-aryl groups preferably bear one or more, for example 1, 2, 3, 4 or 5, substituents selected from —(C1-C12)-alkyl groups, —(C1-C12)-alkoxy groups.
  • In one embodiment, Q is selected from:
  • —(C1-C12)-alkyl-, —(C1-C3)-alkyl-(C1-C6)-aryl-, —(C1-C18)-haloalkyl-, —NH—(C1-C8)-alkyl.
  • In one embodiment, Q is selected from:
  • —(C1-C8)-alkyl-, especially -methyl, -ethyl, -butyl, -tert-butyl, -2,4-dimethylpent-3-yl and -benzyl, -2,2,3-trichloroethyl.
  • In one embodiment, Q is selected from:
  • —(C1-C8)-alkyl, wherein Q is not -tert-butyl.
  • In one embodiment, Q is not -tert-butyl.
  • In one embodiment, X and Y are each independently selected from:
  • —(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl, —(C6-C20)-aryl-CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —(C4-C20)-heteroaryl, —(C4-C20)-heteroaryl-(C1-C12)-alkyl.
  • In one embodiment, X and Y are each independently selected from:
  • —(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl.
  • In one embodiment, X and Y are each independently selected from:
  • —(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl.
  • In one embodiment, Z is selected from:
  • —(C1-C12)-alkyl-, —(C6-C20)-aryl-, —(C6-C20)-aryl-(C1-C12)-alkyl-, —(C6-C20)-aryl-CO—(C6-C20)-aryl-, —(C1-C12)-alkyl-(C6-C20)-aryl-, —(C6-C20)-aryl-(C6-C20)-aryl-.
  • In one embodiment, Z is:
  • Figure US20150336987A1-20151126-C00003
  • In one embodiment, Z is:
  • —(C6-C20)-aryl-(C6-C20)-aryl-.
  • In one embodiment, R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —NH2, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —(C6-C20)-aryl.
  • In one embodiment, X and Y are the same radicals.
  • In one embodiment, R3 and R6 are each —O—(C1-C12)-alkyl.
  • In one embodiment, R3 and R6 are each —OMe.
  • In one embodiment, R1 and R8 are each —(C1-C12)-alkyl.
  • In one embodiment, R1 and R8 are each tert-butyl.
  • In one embodiment, R1, R3, R6 and R8 are each —(C1-C12)-alkyl.
  • In one embodiment, R1, R3, R6 and R8 are each methyl.
  • In one embodiment, R1, R3, R6 and R8 are each tert-butyl.
  • In one embodiment, R1, R2, R3, R4, R5, R6, R7 and R8 are each —H.
  • In one embodiment, the compound has the general structure III:
  • Figure US20150336987A1-20151126-C00004
  • wherein R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen (such as Cl, F, Br, I), —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —NH2, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —(C6-C20)-aryl,
  • where alkyl comprises 1-12 carbon atoms, preferably 1-10 carbon atoms, for example primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl, t-amyl, isooctyl, 2-ethylhexyl, decyl, dodecyl and octadecyl groups.
  • In one embodiment, R11 and R14 are each —O—(C1-C12)-alkyl.
  • In one embodiment, R11 and R14 are each —OMe.
  • In one embodiment, R9 and R16 are each —(C1-C12)-alkyl.
  • In one embodiment, R9 and R16 are each tert-butyl.
  • In one embodiment, R9, R11, R14 and R16 are each —(C1-C12)-alkyl.
  • In one embodiment, R9, R10, R14 and R16 are each methyl.
  • In one embodiment, R9, R11, R14 and R16 are each tert-butyl.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15 and R16 are each —H.
  • In one embodiment, the compound has the general structure IV:
  • Figure US20150336987A1-20151126-C00005
  • where R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen (such as Cl, F, Br, I), —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —NH2, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —N[(C1-C12)-alkyl]2.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
  • —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —(C6-C20)-aryl,
  • where alkyl comprises 1-12 carbon atoms, preferably 1-10 carbon atoms, for example primary, secondary or tertiary alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, t-butylethyl, t-butylpropyl, n-hexyl, amyl, sec-amyl, t-amyl, isooctyl, 2-ethylhexyl, decyl, dodecyl and octadecyl groups.
  • In one embodiment, R11 and R14 are each —O—(C1-C12)-alkyl.
  • In one embodiment, R11 and R14 are each —OMe.
  • In one embodiment, R9 and R16 are each —(C1-C12)-alkyl.
  • In one embodiment, R9 and R16 are each tert-butyl.
  • In one embodiment, R9, R11, R14 and R16 are each —(C1-C12)-alkyl.
  • In one embodiment, R9, R11, R14 and R16 are each methyl.
  • In one embodiment, R9, R11, R14 and R16 are each tert-butyl.
  • In one embodiment, R9, R10, R11, R12, R13, R14, R15 and R16 are each —H.
  • As well as the compounds, also claimed is a complex comprising these compounds.
  • Complex comprising:
      • an above-described compound,
      • a metal atom selected from: Rh, Ru, Co, Ir.
  • In a preferred embodiment, the metal is Rh.
  • In this regard, see R. Franke, D. Selent, A. Börner, “Applied Hydroformylation”, Chem. Rev., 2012, DOI:10.1021/cr3001803; p. 5688, Scheme 12 “General Method for the Preparation of a P-Modified Rh precatalyst” and references cited therein, and also P. W. N. M. van Leeuwen, in Rhodium Catalyzed Hydroformylation, P. W. N. M. van Leeuwen, C. Claver (eds.), Kluwer, Dordrecht, 2000, inter alia p. 48 ff, p. 233 ff. and references cited therein, and also K. D. Wiese and D. Obst in Top. Organomet. Chem. 2006, 18, 1-13; Springer Verlag Berlin Heidelberg 2006 p. 6 ff and references cited therein.
  • Additionally claimed is the use of the ligand as ligand in a ligand-metal complex for catalysis of a hydroformylation reaction.
  • Use of an Above-Described Ligand in a Ligand-Metal Complex for Catalysis of a Hydroformylation Reaction.
  • The process in which the ligand is used as ligand in a ligand-metal complex for conversion of an olefin to an aldehyde is likewise claimed.
  • Process comprising the process steps of:
  • a) initially charging an olefin,
  • b) adding an above-described complex,
  • or an above-described compound and a substance including a metal atom selected from: Rh, Ru, Co, Ir,
  • c) feeding in H2 and CO,
  • d) heating the reaction mixture, with conversion of the olefin to an aldehyde.
  • In this process, process steps a) to d) can be effected in any desired sequence.
  • The reaction is conducted under customary conditions.
  • Preference is given to a temperature of 80° C. to 160° C. and a pressure of 1 to 300 bar.
  • Particular preference is given to a temperature of 100° C. to 160° C. and a pressure of 15 to 250 bar.
  • In a preferred embodiment, the metal is Rh.
  • The reactants for the hydroformylation in the process of the invention are olefins or mixtures of olefins, especially monoolefins having 2 to 24, preferably 3 to 16 and more preferably 3 to 12 carbon atoms, having terminal or internal C—C double bonds, for example 1-propene, 1- or 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-, 2- or 3-hexene, the C6 olefin mixture obtained in the dimerization of propene (dipropene), heptenes, 2- or 3-methyl-1-hexenes, octenes, 2-methylheptenes, 3-methylheptenes, 5-methyl-2-heptene, 6-methyl-2-heptene, 2-ethyl-1-hexene, the C8 olefin mixture obtained in the dimerization of butenes (dibutene), nonenes, 2- or 3-methyloctenes, the C9 olefin mixture obtained in the trimerization (tripropene), decenes, 2-ethyl-1-octene, dodecenes, the C12 olefin mixture obtained in the tetramerization or the trimerization of butenes (tetrapropene or tributene), tetradecenes, hexadecenes, the C16 olefin mixture obtained in the tetramerization of butenes (tetrabutene), and olefin mixtures prepared by cooligomerization of olefins having different numbers of carbon atoms (preferably 2 to 4).
  • The process according to the invention using the compounds according to the invention can be used to hydroformylate α-olefins, terminally branched, internal and internally branched olefins. What is remarkable is the high yield of terminally hydroformylated olefin, even when only a small proportion of olefins having a terminal double bond was present in the reactant.
  • The following structures show possible working examples of the ligand:
  • Figure US20150336987A1-20151126-C00006
    Figure US20150336987A1-20151126-C00007
  • The invention is to be illustrated in detail hereinafter by working examples.
  • General Operating Procedures
  • ABBREVIATIONS
      • ACN=acetonitrile
      • EtOAc=ethyl acetate
      • acac=acetylacetonate
      • NEt3=triethylamine
      • DMAP=dimethylaminopyridine
      • CH2Cl2=dichloromethane
      • TIPB=1,2,4,5-tetraisopropylbenzene
  • All the preparations which follow were carried out under protective gas using standard Schlenk techniques. The solvents were dried over suitable desiccants before use (Purification of Laboratory Chemicals, W. L. F. Armarego (author), Christina Chai (author), Butterworth Heinemann (Elsevier), 6th edition, Oxford 2009).
  • All preparative operations were effected in baked-out vessels. The products were characterized by means of NMR spectroscopy. Chemical shifts (δ) are reported in ppm. The 31P NMR signals were referenced according to: SR31P=SR1H*(BF31P/BF1H)=SR1H*0.4048. (Robin K. Harris, Edwin D. Becker, Sonia M. Cabral de Menezes, Robin Goodfellow, and Pierre Granger, Pure Appl. Chem., 2001, 73, 1795-1818; Robin K. Harris, Edwin D. Becker, Sonia M. Cabral de Menezes, Pierre Granger, Roy E. Hoffman and Kurt W. Zilm, Pure Appl. Chem., 2008, 80, 59-84).
  • Nuclear resonance spectra were recorded using Bruker Avance 300 or Bruker Avance 400, gas chromatography analysis was effected using an Agilent GC 7890A, the elemental analysis was effected using Leco TruSpec CHNS and Varian ICP-OES 715, and the ESI-TOF mass spectroscopy using Thermo Electron Finnigan MAT 95-XP and Agilent 6890 N/5973 instruments.
  • A general synthesis route is shown in the following reaction scheme:
  • Figure US20150336987A1-20151126-C00008
  • The reaction routes shown are merely illustrative and are shown in highly simplified form. Thus, if required, base can be used additionally in all the steps. In addition, the bases specified in the individual synthesis stages may be replaced by other commercially available bases known to those skilled in the art.
  • Relevant carbonate groups and the preparation thereof (see also: P. G. M. Wuts, T. W. Greene “Greene's Protective Groups in Organic Synthesis”, fourth edition, 2007, John Wiley and Sons; Hoboken, N.J.):
      • methyl (E. Fischer, H. O. L. Fischer, Ber. 46, 1138, (1913))
      • ethyl (analogously to E. Fischer, H. O. L. Fischer, Ber. 46, 1138, (1913))
      • tert-butyl (BOC) (see below; M. M. Hansen, J. R. Riggs; Tetrahedron Lett., 39, 2705 (1998))
      • 1-adamantyl (Adoc) (B. Nyasse, U. Ragnarsson, Acta Chem. Scand., 47, 374 (1993))
      • 2,4-dimethylpent-3-yl (DOC) (K. Rosenthal, A. Karlström, A. Unden, Tetrahedron Lett., 38, 1075, (1997))
      • 2,2,3-trichloroethyl (T. B. Windholz, D. B. R. Johnston, Tetrahedron Lett., 8, 2555, (1967))
      • benzyl (M. Kuhn, A. von Wartburg, Helv. Chim. Acta, 52, 948, (1969))
      • likewise carbamates (ArOCONHR) (G. Jäger, R. Geiger, W. Siedel, Chem. Ber. 101, 2762 (1968))
  • Examples of Compounds Having a Carbonate Group:
  • Figure US20150336987A1-20151126-C00009
    Figure US20150336987A1-20151126-C00010
    Figure US20150336987A1-20151126-C00011
  • Synthesis of Ligand 1 Reaction
  • scheme:
  • Figure US20150336987A1-20151126-C00012
  • Introduction of the BOC Group:
  • Figure US20150336987A1-20151126-C00013
  • In a 21 Schlenk flask, 400 mmol (143.8 g) of 3,3′-di-tert-butyl-5,5′-dimethoxy-[1,1′-biphenyl]-2,2′-diol and 40 mmol (4.8 g) of N,N-dimethylaminopyridine (DMAP) were dissolved in 900 ml of CH2Cl2. Subsequently, at room temperature, 400 mmol (88 g) of di-tert-butyl dicarbonate were dissolved in 280 ml of CH2Cl2, transferred to a 500 ml dropping funnel and added dropwise to the biphenol/DMAP solution at 32° C. within one hour. The solution was stirred at room temperature overnight. The next morning, the solvent was removed under reduced pressure. The slightly waxy, reddish solid was admixed with 800 ml of n-heptane and stirred overnight. This gave a white residue which was filtered off, washed twice with 50 ml of n-heptane and then dried. The target product was obtained as a white solid (161.6 g, 84%). 1H NMR (toluene-d8): 95% and further impurities.
  • Reaction of tert-butyl (3,3′-di-tert-butyl-2′-hydroxy-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with phosphorus trichloride
  • Figure US20150336987A1-20151126-C00014
  • In a 250 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 12 g (0.026 mol) of tert-butyl (3,3′-di-tert-butyl-2′-hydroxy-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved by stirring in 120 ml of dried toluene and 12.8 ml (0.091 mol) of triethylamine.
  • In a second 500 ml Schlenk flask, 100 ml of dried toluene were first stirred together with 8.1 ml (0.091 mol) of phosphorus trichloride. Subsequently, the phosphorus trichloride-toluene solution was added dropwise to the previously prepared carbonate-amine-toluene solution at room temperature within 30 minutes. On completion of addition, the mixture was heated to 80° C. for 30 minutes and cooled to room temperature overnight.
  • The next morning, the mixture was filtered, the solids were washed with 50 ml of dried toluene, and the filtrate was concentrated to dryness. The target product was obtained as a solid (13.1 g, 89%). 31P NMR (202.4 MHz, toluene-d8): 203.2 and 203.3 ppm (100%).
  • Reaction of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with 3,3′,5,5′-tetramethyl-(1,1′-biphenyl)-2,2′-diol
  • Figure US20150336987A1-20151126-C00015
  • In a 1 l Schlenk flask which had been repeatedly evacuated and filled with inert gas, 24.7 g (0.044 mol) of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved in 400 ml of acetonitrile.
  • In a second Schlenk flask (1 l) which had been repeatedly evacuated and filled with inert gas, 10.8 g (0.044 mol) of 3,3′,5,5′-tetramethyl-(1,1′-biphenyl)-2,2′-diol were dissolved by stirring in 200 ml of acetonitrile and 13.1 ml (0.011 mol) of dried triethylamine. Subsequently, the chlorophosphite solution was slowly added dropwise to the biphenol-triethylamine solution and the mixture was stirred overnight.
  • The mixture was then filtered and the residue was washed twice with 15 ml of acetonitrile.
  • The filtrate was concentrated under reduced pressure until a solid precipitated out. The latter was filtered and dried. The target product was obtained as a white solid (28.5 g, 87%). 31P NMR (202.4 MHz, toluene-d8): 139.4 ppm (98.5%).
  • Figure US20150336987A1-20151126-C00016
  • Spectrometer: Bruker Avance 500 MHz FT spectrometer
  • Solvent: 1,1,2,2-tetrachloroethane (TCE)
  • Temperature: 353 K (80° C.)
  • Referencing: 1H NMR, 13C NMR: TMS=0
      • 31P NMR: SR31P=SR1H*(BF31P/BF1H)=SR1H*0.404807
  • TABLE 1
    Assignment of 1H chemical shifts of 1
    δ/ppm Intensity Multiplicity Assignment
    1.13 9H s 17d (tert-butyl)
    1.20 9H s 20d (O-tert-butyl)
    1.35 9H s 17c (tert-butyl)
    2.02 3H broad s 7b (methyl)
    2.28 3H s 8b (methyl)
    2.31/2.32 6H broad s 7a (methyl)/8a (methyl)
    3.75 3H s 15c (O-methyl)
    3.78 3H s 15d (O-methyl)
    6.68 1H d 11d
    6.83 1H d 11c
    6.88 2H (1 + 1) m 5b, 13d
    6.94 1H d 13c
    6.96 1H s 5a
    6.99 2H (1 + 1) s 3a + 3b
    s: singlet
    d: doublet
    t: triplet
    q: quartet
    m: multiplet
  • TABLE 2
    Assignment of 13C chemical shifts of 1
    δ/ppm Intensity Group Assignment
    16.35 1 CH3 7b
    16.61 1 CH3 7a
    20.66 1 CH3 8b
    20.71 1 CH3 8a
    27.38 3 CH3 20d
    30.27 3 CH3 17d
    30.41 3 CH3 17c
    34.85 1 Cq 16c
    35.02 1 Cq 16d
    55.67 1 CH3 15d
    55.79 1 CH3 15c
    81.67 1 Cq 19d
    113.86 1 CH 11c
    114.01 1 CH 11d
    114.14 1 CH 13c
    114.60 1 CH 13d
    127.65 1 CH 3b
    127.88 1 CH 3a
    128.72 1 Cq 10d
    130.01 1 Cq 6b
    130.77 1 Cq 6a
    130.86 1 CH 5b
    130.92 1 CH 5a
    131.37 1 Cq 2b
    131.50 1 Cq 2a
    133.49 1 Cq 4b
    133.65 1 Cq 4a
    135.68 1 Cq 10c
    142.09 1 Cq 9d
    142.37 1 Cq 14d
    143.60 1 Cq 9c
    144.05 1 Cq 14c
    145.88 1 Cq 1b
    146.00 1 Cq 1a
    151.27 1 Cq 18d
    154.18 1 Cq 12d
    157.19 1 Cq 12c
  • Synthesis of Ligand 2 Reaction of tert-butyl (3,3′-di-tert-butyl-2′-hydroxy-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with 2-chloro-4,4,5,5-tetraphenyl-1,3,2-dioxaphospholane
  • Figure US20150336987A1-20151126-C00017
  • In a 250 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 9.1 g (0.021 mol) of 2-chloro-4,4,5,5-tetraphenyl-1,3,2-dioxaphospholane were dissolved in 75 ml of dried toluene.
  • In a second Schlenk flask (250 ml), 9.2 g (0.02 mol) of tert-butyl (3,3′-di-tert-butyl-2′-hydroxy-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate and 2.3 g (0.02 mol) of potassium tert-butoxide were dissolved in 75 ml of dried toluene while stirring.
  • Subsequently, the carbonate/potassium tert-butoxide/toluene mixture was slowly added dropwise at room temperature to the chlorophosphite solution, and the mixture was stirred at room temperature overnight.
  • Thereafter, the solvent was removed under reduced pressure. The resultant residue was stirred in 75 ml of dried acetonitrile for 5 hours. The solids were filtered, washed with dried acetonitrile and dried. The target product was obtained as a white solid (15.3 g, 90%). 31P NMR (202.4 MHz, toluene-d8): 147.0 ppm (99%).
  • Figure US20150336987A1-20151126-C00018
  • Referencing:
  • 1H NMR: TMS=0 ppm, 31P NMR: SR31P=SR1H*(BF31P/BF1H)=SR1H*0.404807
  • TABLE 3
    Assignment of the 13C chemical shifts of 2
    δ [ppm] Intensity Group Assignment
    157.31 1 × C Cq C9
    155.29 1 × C Cq C16
    152.22 1 × C Cq C24
    143.68 1 × C Cq C13
    143.66/143.54 2 × C Cq C7, C14
    143.35 1 × C Cq C6
    142.99/142.80 4 × C Cq C2
    142.72/142.49
    135.65 1 × C Cq C11
    132.78 1 × C Cq C12
    131.30/130.45 8 × C CH C4
    129.66/129.04
    127.40-126.90 12 × C  CH C3, C5
    115.17 1 × C CH C10
    114.89 1 × C CH C8
    114.83 1 × C CH C15
    114.10 1 × C CH C17
    95.64/94.85 2 × C Cq C1, C1′
    81.32 1 × C Cq C25
    55.08 1 × C CH3 C21
    55.04 1 × C CH3 C18
    35.25 1 × C Cq C19
    35.09 1 × C Cq C22
    30.77 3 × C CH3 C20
    30.64 3 × C CH3 C23
    27.56 3 × C CH3 C26
  • TABLE 4
    Assignment of the 1H chemical shifts of 2
    δ [ppm] Intensity Multiplicity Assignment
    7.54 4H m H3, H4, H5
    7.21 3H m H8, H10
    7.09 5H m H15, H17
    6.99-6.89 6H m
    6.83 6H m
    3.50 3H s H19
    3.41 3H s H22
    1.39 9H s H20
    1.31 9H s H23
    1.21 9H s H26
  • Synthesis of Ligand 3 Reaction of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with 2,2′-biphenol
  • Figure US20150336987A1-20151126-C00019
  • In a 250 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 10.5 g (0.019 mol) of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved in 50 ml of degassed acetonitrile while stirring.
  • In a second Schlenk flask (250 ml) which had been repeatedly evacuated and filled with inert gas, 3.6 g (0.019 mol) of 2,2′-biphenol were dissolved in 40 ml of degassed acetonitrile and 6.3 ml (0.045 mol) of dried triethylamine while stirring. Subsequently, the chlorophosphite mixture was slowly added dropwise at room temperature to the biphenol/triethylamine solution, and the mixture was stirred at room temperature overnight. The resultant solids were filtered and dried. The target product was obtained as a white solid (11.5 g, 90%). 31P NMR (202.4 MHz, toluene-d8): 146.2 ppm (100%).
  • Figure US20150336987A1-20151126-C00020
  • TABLE 5
    Assignment of the 13C chemical shifts of 3
    δ [ppm] Intensity Group Assignment
    157.46 1 × C Cq C16
    155.51 1 × C Cq C26
    151.76 1 × C Cq C31
    150.51/149.92 each 1 × C Cq C1 + C8
    144.07 1 × C Cq C24
    143.62 1 × C Cq C13
    142.70 1 × C Cq C23
    142.67 1 × C Cq C14
    135.75 1 × C Cq C18
    132.13/131.73 1 × C Cq C6 + C7
    131.30 1 × C Cq C22
    129.87/128.94 each 1 × C CH C5 + C12
    128.98/128.91 each 1 × C CH C3 + C10
    125.16/124.98 each 1 × C CH C4 + C11
    123.54/122.40 each 1 × C CH C2 + C9
    115.14 1 × C CH C25
    114.93 1 × C CH C15
    114.85 1 × C CH C27
    114.72 1 × C CH C17
    81.36 1 × C Cq C32
    55.14 1 × C CH3 C28
    55.10 1 × C CH3 C19
    35.57 1 × C Cq C29
    35.22 1 × C Cq C20
    30.78 3 × C CH3 C30
    30.62 3 × C CH3 C21
    27.45 3 × C CH3 C33
  • TABLE 6
    Assignment of the 1H chemical shifts of 3
    δ [ppm] Intensity Multiplicity Assignment
    7.26 1H d (J = 7.7 Hz) H2, H9, H3, H10
    7.15-7.09 6H m H5, H12, H15, H25
    7.02 1H t (J = 7.7 Hz)
    6.95/6.91 2 × 1H 2 × t (J ~7.5 Hz) H4/H11
    6.93 1H d (J = 3 Hz) H17
    6.87 1H d (J = 3 Hz) H27
    3.48 3H s H19
    3.42 3H s H29
    1.50 9H s H20
    1.35 9H s H21
    1.16 9H s H33
  • Synthesis of Ligand 4 Reaction of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with 3,3,5,5-tetra-tert-butylbiphenol
  • Figure US20150336987A1-20151126-C00021
  • In a 250 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 7.0 g (0.0125 mol) of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved in 100 ml of dried acetonitrile.
  • In a second Schlenk flask (100 ml) which had been repeatedly evacuated and filled with inert gas, 5.1 g (0.0125 mol) of 3,3′,5,5′-tetra-tert-butylbiphenol were dissolved in 60 ml of dried acetonitrile and 4.2 ml (0.03 mol) of dried triethylamine while stirring. Subsequently, the biphenol-triethylamine solution was slowly added dropwise at room temperature to the chlorophosphite solution and the mixture was stirred overnight. A portion of the solvent was removed under reduced pressure. The precipitated solids were filtered off and dried. The target product was obtained as a white solid (10.2 g, 91%). 31P NMR (202.4 MHz, toluene-d8): 142.7 ppm (100%).
  • Figure US20150336987A1-20151126-C00022
  • TABLE 7
    Assignment of the chemical shifts of 4
    Number δ-1H/ppm δ-13C/ppm
     1 151.6
     2 81.5
     3 1.18 27.3
     4 142.3
     5 129.9
     6 | 18 6.76 114.7
    6.67 114.1
     7 | 17 154.4
    156.8
     8 | 16 6.93 113.5
    6.88 115.4
     9 143.6
    10 | 19 3.78 55.4
    3.74 55.7
    11 35.0
    12 1.39 30.6
    21 | 29 | 31 | 39 | 41 1.03 31.2
    1.24 31.0
    1.29 31.4
    1.34 31.5
    1.39 30.7
    1.48 31.3
    13 136.4
    14 142.1
    15 140.1
    20 34.6
    22 | 32 146.0
    146.9
    24 | 34 7.06 126.6
    7.30 123.8
    25 | 35 145.1
    146.3
    26 | 36 7.08 126.3
    7.42 124.1
    28 | 38 35.1
    35.2
    30 | 40 34.6
    35.4
    23 | 33 135.5
    132.6
    27 | 37 140.0
    141.9
  • Synthesis of Ligand 5 Reaction of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate with 3,3-di-tert-butyl-5,5-dimethoxybiphenol
  • Figure US20150336987A1-20151126-C00023
  • In a 250 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 7 g (0.0125 mol) of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved in 100 ml of dried acetonitrile.
  • In a second Schlenk flask (100 ml) which had been repeatedly evacuated and filled with inert gas, 4.5 g (0.0125 mol) of 3,3-di-tert-butyl-5,5-dimethoxybiphenol were dissolved in 60 ml of dried acetonitrile and 4.2 ml (0.03 mol) of degassed triethylamine. Subsequently, the biphenol-triethylamine solution was slowly added dropwise at room temperature to the chlorophosphite solution and the mixture was stirred at room temperature overnight.
  • A portion of the solvent was removed under reduced pressure. The precipitated solids were filtered off and dried. The target product was obtained as a white solid (10.5 g, 96%). 31P NMR (202.4 MHz, toluene-d8): 140.9 (95.2%) and further impurities (further impurities=P—H compounds, oxide compounds, as yet incompletely converted chlorophosphite).
  • Synthesis of Ligand 11 Reaction of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy[1,1′-biphenyl]-2-yl)carbonate with 2,4-dimethylphenol
  • Figure US20150336987A1-20151126-C00024
  • In a 500 ml Schlenk flask which had been repeatedly evacuated and filled with inert gas, 6.8 g (0.012 mol) of tert-butyl (3,3′-di-tert-butyl-2′-((dichlorophosphino)oxy)-5,5′-dimethoxy-[1,1′-biphenyl]-2-yl)carbonate were dissolved in 100 ml of dried acetonitrile.
  • In a second Schlenk flask (250 ml) which had been repeatedly evacuated and filled with inert gas, 6 g (6 ml; 0.048 mol) of 2,4-dimethylphenol were dissolved in 100 ml of dried acetonitrile and 5 g (7 ml; 0.059 mol) of degassed triethylamine. Subsequently, the biphenol-triethylamine solution was slowly added dropwise at room temperature to the chlorophosphite solution and the mixture was stirred at room temperature overnight and cooled in an ice bath the next morning.
  • A portion of the solvent was removed under reduced pressure. This formed a slime-like solution which solidified after prolonged drying. The target product was obtained as a white solid (11.8 g, 62%). 31P NMR (202.4 MHz, toluene-d8): 139.1 (92.8%) and further impurities (further impurities=P—H compounds, oxide compounds, as yet incompletely converted chlorophosphite).
  • Procedure for the Catalysis Experiments Experiment Description General
  • In a 100 ml autoclave from Parr Instruments, various olefins were hydroformylated at various temperatures and synthesis gas pressure 20 or 50 bar (CO/H2=1:1 (% by vol.)). As precursor, 0.005 g of Rh(acac)(CO)2 was initially charged for a catalyst concentration of 40 ppm of Rh based on the overall reaction mixture, and correspondingly 0.0123 g of Rh(acac)(CO)2 for a concentration of 100 ppm of Rh. The solvent used was 40 to 46 g of toluene in each case. Ligand 1 was used in different molar excesses relative to rhodium. In addition, as GC standard, about 0.5 g of tetraisopropylbenzene (TIPB) was added. About 6 g of reactant were metered in after the reaction temperature envisaged had been attained.
  • During the reaction, the pressure was kept constant via metered addition of synthesis gas with a mass flow meter and pressure regulator. The stirrer speed was 1200 min−1. Samples were taken from the reaction mixture after 12 hours. The results of the experiments are summarized in Table 8 (yield=total yield of aldehyde and alcohol; S=selectivity for the linear product).
  • (acac=acetylacetonate)
  • TABLE 8
    S
    Starting p cRh Yield (n-aldehyde)
    Entry material in [bar] in ppm P:Rh in % in %
    1 cis-2-butene 20 40 4 58.0 45.3
    2 cis-2-butene 50 40 4 96.5 40.7
    3 1-butene 20 40 4 49.2 51.9
    4 1-butene 50 40 2 97.4 46.8
    5 1-butene 50 92 8 99.5 50.3
    6 1-octene 50 40 9 97.1 43.2
    Reaction conditions: ligand 1, reaction temperature: 120° C.
  • Lines 1 and 2 list experiments on the rhodium-catalysed hydroformylation of the cis-2-butene reactant with ligand 1. At a synthesis gas pressure of 20 bar, in experiment 1, 58.0 mol % of pentanal is formed with a pentanal selectivity of 45.3%. The proportion of hydrogenation to the alkane is low at about 1.3% to 1.5%. The formation of pentanol is not observed. An increase in the synthesis gas pressure leads to a rise in the pentanal yield to 95.1 mol %, but the regioselectivity falls to about 40%.
  • Lines 3 to 5 list hydroformylations of 1-butene. At 20 bar (line 3), at a ligand excess of 4:1, a yield of about 49% and a selectivity for n-pentanal of about 52% are attained. At synthesis gas pressure 50 bar, a n-pentanal selectivity of 50% is obtained with virtually full conversion (lines 4 and 5). Alkane formation is low. In the experiment in line 4, the molar excess of ligand was reduced to about 2:1. The yield rises to 97.4%; the pentanal selectivity falls slightly to 46.8%. In line 5, the Rh concentration was increased to about 100 ppm and the ligand excess was increased to 8:1 relative to rhodium. The aldehyde yield rises to 99.5%; the regioselectivity likewise rises to 50.3%.
  • It is also possible to hydroformylate longer-chain olefins such as 1-octene with good n selectivity for the product (line 6).
  • Table 9 contains experiments on the hydroformylation of an n-octene mixture having about 2% 1-octene, 40% 2-octenes, 36% 3-octenes and 23% 4-octenes (yield=total yield of aldehyde and alcohol; S=selectivity for the linear n-pentanal product). In this case, the experiments were conducted both with the inventive ligand 1 and with the comparative TDTBPP ligand.
  • Figure US20150336987A1-20151126-C00025
  • Tris(2,4-di-tert-butylphenyl)phosphite (TDTBPP)
  • TABLE 9
    S (linear
    T cRh Yield product)
    Entry in [° C.] in ppm P:Rh in % in %
    1a 80 90 20 99.0 7.2
    2a 80 90 5 99.0 11.1
    3a 90 90 20 99.2 10.6
    4b 90 280 20 97.9 4.7
    5a 100 50 20 99.0 15.4
    6b 100 90 20 96.4 6.9
    7a 110 90 20 99.2 16.5
    8b 110 90 20 99.0 9.7
    9a 120 90 20 95.2 22.9
    10b 120 90 20 99.0 14.4
    11a 130 90 20 98.0 30.5
    12b 130 76 20 98.8 23.9
    13a 140 90 20 97.4 31.6
    14b 140 56 20 98.0 23.9
    15a 120 90 4 98.9 28.8
    16a 120 40 9.5 98.6 29.1
    17a 120 40 20 99.1 28.2
    Reaction conditions: 50 bar of synthesis gas (CO/H2); substrate: n-octenes;
    aligand 1;
    bligand TDTBPP.
  • Entries 1 to 14 each show results of experiments at a constant temperature in the range from 80° C. to 140° C., in each case for the inventive ligand 1 and for the comparative ligand (TDTBPP). As is clearly apparent, the inventive ligand 1 in all cases shows a distinctly higher n selectivity for the desired product combined with very good overall yields. The formation of alkanes and alcohols is insignificant. If entries 13 and 14 are compared, ligand 1 has nearly an 8% increase in selectivity compared to the commercially available comparative ligand. Entries 15 to 17 show the use of ligand 1 with different molar excesses relative to rhodium. In all cases, it was possible to achieve very good n selectivities.
  • Table 10 gives the results for the hydroformylation of di-n-butene. Di-n-butene is a mixture of isomers of n-octenes (about 16%), 3-methylheptenes (about 65%) and 3,4-dimethylhexenes (about 19%) (yield=total yield of aldehyde and alcohol; S=selectivity for the linear product).
  • TABLE 10
    T p cRh Yield S (nl)*
    Entry in [° C.] in [bar] in ppm P:Rh in % in %
    1 120 50 40 10 85.1 30.8
    2 120 50 90 7 89.8 28.3
    3 120 50 90 7 91.5 30.9
    4 120 50 100 5 93.0 36.5
    5 120 50 75 20 94.6 29.8
    6 130 50 75 20 95.3 32.7
    7 110 50 75 20 91.9 24.0
    8 120 40 75 20 94.8 29.0
    Reaction conditions: ligand 1; substrate: di-n-butene
    *Proportion of the aldehydes formed through terminal hydroformylation (essentially nonanal, 4-methyloctanal, 3-ethylheptanal, 6-methyloctanal, 4,5-dimethylheptanal and 3-ethyl-4-methylhexanal)
  • The above Table 10 contains experimental results for the rhodium-catalysed hydroformylation of di-n-butene with ligand 1. Entries 1 to 5 were conducted at 120° C. and 50 bar, and entry 8 at 40 bar. Entries 2 and 3 are a double determination with a ligand excess of 7 relative to rhodium and a rhodium concentration based on the overall reaction mixture of 80 ppm; entry 1 was performed at an excess of about 10:1 and an Rh concentration of 40 ppm. Entry 4 describes a reduction in the excess to 5:1 compared to entries 2 and 3. Entries 5 to 8 are experiments with a high ligand excess of about 20:1. Entries 5 to 7 were conducted at different temperatures. Entry 8 differs from entry 5 by the pressure. Analogously to the experiments with the n-octene mixture, high n selectivities between 28 and 36 mol % are found in all of experiments 1 to 6 and 8. At lower temperature (entry 7), the n selectivity is reduced to about 24%. n-Octenes are converted virtually quantitatively within the experimental duration of 12 hours; the conversion of the 3-methylheptenes is >96%. The 3,4-dimethylhexenes are converted to an extent of 73%-86%. It was thus possible to show with the aid of the above examples that the novel catalyst system is also suitable for hydroformylation of technical olefin mixtures containing mainly branched olefins containing internal double bonds, and a high proportion of desired terminally hydroformylated products can be obtained.
  • Table 11 gives the results for the hydroformylation of n-octenes with ligand 3 (yield=total yield of aldehyde and alcohol; S=selectivity for the linear product).
  • TABLE 11
    T Yield S (linear product)
    Entry in [° C.] in % in %
    1 80 30.0 8.6
    2 90 85.9 4.9
    3 100 91.3 5.9
    4 110 98.5 8.3
    5 120 99.0 11.9
    Reaction conditions: ligand 3; 50 bar of synthesis gas; substrate: n-octenes; cRh = 90 ppm; L/Rh = 20.
  • The above table contains a compilation of the experimental data for the hydroformylation of n-octenes with ligand 3 in the form of a temperature series from 80° C. to 120° C. at synthesis gas pressure 50 bar, an Rh concentration of about 100 ppm and a ligand excess of about 20:1. The n-nonanal selectivities in this series of experiments are low at 4.9 to 11.9 mol %, but the aldehyde yields at higher temperatures are virtually quantitative and very good. Alkane formation is low at <1%; hydrogenation to alcohols is not observed.
  • Table 12 gives the results for the hydroformylation of di-n-butene. Di-n-butene is a mixture of isomers of n-octenes (about 16%), 3-methylheptenes (about 65%) and 3,4-dimethylhexenes (about 19%) (yield=total yield of aldehyde and alcohol; S=selectivity for the linear product).
  • TABLE 12
    T p cRh Yield
    Entry Ligand in [° C.] in [bar] in ppm P:Rh in %
    1 4 140 50 100 20:1 38
    2 3 140 50 100 10:1 74
    3 5 120 50 100 20:1 85
    4 5 130 50 100 20:1 86
    5 5 140 50 100 20:1 96
    6 5 140 50 100 15:1 97
    7 5 140 50 100  5:1 97
    Reaction conditions: ligand 1; substrate: di-n-butene
    * Proportion of the aldehydes formed through terminal hydroformylation (essentially nonanal, 4-methyloctanal, 3-ethylheptanal, 6-methyloctanal, 4,5-dimethylheptanal and 3-ethyl-4-methylhexanal)
  • The above Table 12 contains experimental results for the rhodium-catalysed hydroformylation of di-n-butene with ligands 3, 4 and 5. While ligand 4 (entry 1) gives a moderate overall yield of aldehydes and alcohols, ligands 3 and 5 are notable for very good yields. Especially ligand 5 shows virtually quantitative yields at elevated temperature (140° C.) (entries 5 to 7).
  • It was thus possible to show with the aid of the above examples that the novel catalyst system is also suitable for hydroformylation of technical olefin mixtures containing mainly branched olefins containing internal double bonds, and a high proportion of desired hydroformylated products can be obtained.
  • The inventive monophosphite ligands have a very good n selectivity in relation to the hydroformylation. Selectivity for the desired linear aldehydes is much greater here than, for example, in the case of the commercially available TDTBPP ligand. The stated objects are therefore achieved by these novel inventive ligands.
  • German patent application 102014209534.4 filed May 20, 2014, is incorporated herein by reference.
  • Numerous modifications and variations on the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Claims (17)

1. A compound having one of the two structures I and II:
Figure US20150336987A1-20151126-C00026
wherein
R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from: —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, halogen, COO—(C1-C12)-alkyl, CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2;
X and Y are each independently selected from:
—(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C1-C12)-alkyl-(C6-C20)-aryl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl, —(C6-C20)-aryl-CONH—(C1-C12)-alkyl, —(C6-C20-aryl-CON[(C1-C12)-alkyl]2, —(C4-C20)-heteroaryl, —(C4-C20-heteroaryl-(C1-C12)-alkyl, —(C5-C8)-cycloalkyl-(C4-C20)-aryl-CO—(C6-C20)-aryl,
Z is selected from:
—(C1-C12)-alkyl-, —(C6-C20)-aryl-, —(C6-C20)-aryl-(C1-C12)-alkyl-, —(C1-C12)-alkyl-(C6-C20)-aryl-, —(C4-C20)-heteroaryl-, —(C6-C20)-aryl-CO—(C6-C20)-aryl-, —(C6-C20)-aryl-(C6-C20)-aryl-;
Q is selected from:
—(C1-C18)-alkyl, —(C1-C12)-alkyl-(C1-C20)-aryl-, —(C1-C18)-haloalkyl-,
—NH—(C1-C18)-alkyl, and
wherein the alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl groups mentioned are optionally substituted.
2. The compound according to claim 1,
wherein X and Y are each independently selected from:
—(C1-C12)-alkyl, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C6-C20)-aryl-COO—(C1-C12)-alkyl, —(C6-C20)-aryl-CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —(C4-C20)-heteroaryl, —(C4-C20)-heteroaryl-(C1-C12)-alkyl.
3. The compound according to claim 1,
wherein Z is selected from:
—(C1-C12)-alkyl-, —(C6-C20)-aryl-, —(C6-C20)-aryl-(C1-C12)-alkyl-, —(C6-C20)-aryl-CO—(C6-C20)-aryl-, —(C1-C12)-alkyl-(C6-C20)-aryl-, —(C6-C20)-aryl-(C6-C20)-aryl-.
4. The compound according to claim 1,
wherein Q is selected from:
—(C1-C12)-alkyl-, —(C1-C3)-alkyl-(C1-C6)-aryl-, —(C1-C18)-haloalkyl-,
—NH—(C1-C8)-alkyl.
5. The compound according to claim 1,
wherein R1, R2, R3, R4, R5, R6, R7, R8 are each independently selected from: —H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —NH2, —N[(C1-C12)-alkyl]2.
6. The compound according to claim 1,
wherein X and Y are the same radicals.
7. The compound according to claim 1,
wherein R3 and R6 are each —O—(C1-C12)-alkyl.
8. The compound according to claim 1,
wherein R3 and R6 are each —OMe.
9. The compound according to claim 1,
wherein R1 and R8 are each —(C1-C12)-alkyl.
10. The compound according to claim 1,
wherein R1 and R8 are each tert-butyl.
11. The compound according to claim 1,
having the general structure III:
Figure US20150336987A1-20151126-C00027
wherein R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
—H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
12. The compound according to claim 1,
having the structure IV:
Figure US20150336987A1-20151126-C00028
wherein R9, R10, R11, R12, R13, R14, R15, R16 are each independently selected from:
—H, —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, -halogen, —COO—(C1-C12)-alkyl, —CONH—(C1-C12)-alkyl, —(C6-C20)-aryl-CON[(C1-C12)-alkyl]2, —CO—(C1-C12)-alkyl, —CO—(C6-C20)-aryl, —COOH, —OH, —SO3H, —SO3Na, —NO2, —CN, —NH2, —N[(C1-C12)-alkyl]2.
13. The compound according to claim 1, which is selected from the group consisting of compounds 1-6:
Figure US20150336987A1-20151126-C00029
Figure US20150336987A1-20151126-C00030
14. The compound according to claim 1, which is one of the following compounds:
Figure US20150336987A1-20151126-C00031
Figure US20150336987A1-20151126-C00032
Figure US20150336987A1-20151126-C00033
15. A complex, comprising:
a compound according to claim 1, and
a metal atom selected from the group consisting of Rh, Ru, Co, Ir and mixtures thereof.
16. A hydroformylation reaction, comprising:
hydroformylating a compound in the presence of a compound according to claim 1 as a catalyst.
17. A process, comprising:
a) initially charging an olefin;
b) adding
i) a complex according to claim 15, or
ii) a compound according to claim 1 and a compound comprising a metal atom selected from the group consisting of Rh, Ru, Co and Ir, to obtain a reaction mixture;
c) feeding into the reaction mixture H2 and CO,
d) heating the reaction mixture, to obtain conversion of the olefin to an aldehyde.
US14/716,521 2014-05-20 2015-05-19 Monophosphite ligands having a carbonate group Expired - Fee Related US9212195B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014209534.4A DE102014209534A1 (en) 2014-05-20 2014-05-20 New monophosphite ligands with a carbonate group
DE102014209534.4 2014-05-20
DE102014209534 2014-05-20

Publications (2)

Publication Number Publication Date
US20150336987A1 true US20150336987A1 (en) 2015-11-26
US9212195B1 US9212195B1 (en) 2015-12-15

Family

ID=53188858

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/716,521 Expired - Fee Related US9212195B1 (en) 2014-05-20 2015-05-19 Monophosphite ligands having a carbonate group

Country Status (8)

Country Link
US (1) US9212195B1 (en)
EP (1) EP2947089B1 (en)
JP (1) JP6584135B2 (en)
CN (1) CN105085572B (en)
DE (1) DE102014209534A1 (en)
ES (1) ES2604190T3 (en)
SG (1) SG10201503950QA (en)
TW (1) TWI577692B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201756A1 (en) 2014-01-31 2015-08-06 Evonik Degussa Gmbh Purification of chlorine-contaminated organophosphorus compounds
DE102015207860A1 (en) 2015-04-29 2016-11-03 Evonik Degussa Gmbh New monophosphite compounds with a methyl group
DE102015207864A1 (en) 2015-04-29 2016-11-03 Evonik Degussa Gmbh New monophosphite compounds with an ether group

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599206A (en) 1984-02-17 1986-07-08 Union Carbide Corporation Transition metal complex catalyzed reactions
US4668651A (en) * 1985-09-05 1987-05-26 Union Carbide Corporation Transition metal complex catalyzed processes
JPH06263681A (en) * 1993-03-12 1994-09-20 Mitsubishi Gas Chem Co Inc Production of optically active aldehyde
US5817883A (en) * 1996-04-24 1998-10-06 Union Carbide Chemicals & Plastics Technology Corporation Processes for producing hydroxyaldehydes
DE19853748A1 (en) * 1998-11-21 2000-05-25 Studiengesellschaft Kohle Mbh Production of chiral aldehyde by enantioselective hydroformylation, useful e.g. as intermediate for pharmaceuticals, uses transition metal catalyst complex containing phosphine-phosphite ligand
DE19954721A1 (en) 1999-11-12 2001-05-17 Oxeno Olefinchemie Gmbh Process for the preparation of aldehydes from olefins by hydroformylation
AU2003250219A1 (en) * 2002-08-31 2004-04-30 Oxeno Olefinchemie Gmbh Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters
MXPA05002283A (en) * 2002-08-31 2005-06-08 Oxeno Olefinchemie Gmbh Method for the hydroformylation of olefinically unsaturated compounds, especially olefins, in the presence of cyclic carbonic acid esters.
DE102006034442A1 (en) * 2006-07-26 2008-01-31 Oxeno Olefinchemie Gmbh Catalyst precursor for a Rh complex catalyst
CN101288852B (en) * 2008-04-29 2011-05-11 上海焦化有限公司 Catalyst composition for reaction of hydroformylation of propene,
AU2009313838B2 (en) * 2008-11-14 2015-02-05 University Of Kansas Polymer-supported transition metal catalyst complexes and methods of use
DE102011085883A1 (en) 2011-11-08 2013-05-08 Evonik Oxeno Gmbh New organophosphorus compounds based on anthracentriol
CA2887580A1 (en) * 2012-10-12 2014-04-17 Evonik Degussa Gmbh Mixture of constitutional isomer bisphosphites
DE102014209532A1 (en) * 2014-05-20 2015-11-26 Evonik Degussa Gmbh New monophosphite ligands with a tert-butyloxycarbonyl group

Also Published As

Publication number Publication date
DE102014209534A1 (en) 2015-11-26
TW201605880A (en) 2016-02-16
SG10201503950QA (en) 2015-12-30
CN105085572B (en) 2017-12-15
ES2604190T3 (en) 2017-03-03
TWI577692B (en) 2017-04-11
EP2947089B1 (en) 2016-08-24
JP6584135B2 (en) 2019-10-02
CN105085572A (en) 2015-11-25
EP2947089A1 (en) 2015-11-25
JP2015218172A (en) 2015-12-07
US9212195B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
US9221850B2 (en) Monophosphite ligands having a tert-butyloxycarbonyl group
US9409844B2 (en) Mixture of different asymmetrical bisophosphites and use thereof as a catalyst mixture in hydroformylation
US9737884B2 (en) Process for catalytic preparation of aldehydes from olefins using monophosphite mixtures
US20170129838A1 (en) Bisphosphites having 2,4-dimethylphenyl units and use thereof as ligands in hydroformylation
US9221851B2 (en) Mixture containing a monophosphite ligand and the use thereof for catalysis of a hydroformylation reaction
US20160159837A1 (en) Monophosphites comprising a benzopinacol
US9212195B1 (en) Monophosphite ligands having a carbonate group
US10526356B2 (en) Bisphosphites having 2,4-tert-butylphenyl units and use thereof as ligands in hydroformylation
KR20160067770A (en) Monophosphites comprising an anthrol
US9643987B2 (en) Monophosphites having an unsymmetric biaryl unit
US9605010B2 (en) Monophosphite compounds having a methyl group
US9605011B2 (en) Monophosphite compounds having an ether group

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVONIK INDUSTRIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DYBALLA, KATRIN MARIE;FRANKE, ROBERT;REEL/FRAME:036195/0756

Effective date: 20150720

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EVONIK INDUSTRIES AG;REEL/FRAME:037174/0982

Effective date: 20151119

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: EVONIK OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:051765/0166

Effective date: 20191002

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: EVONIK OXENO GMBH & CO. KG, GERMANY

Free format text: CONFIRMATORY ASSIGNMENT;ASSIGNOR:EVONIK OPERATIONS GMBH;REEL/FRAME:065463/0144

Effective date: 20231012

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20231215