US20150329880A1 - Variant cbh i polypeptides with reduced product inhibition - Google Patents

Variant cbh i polypeptides with reduced product inhibition Download PDF

Info

Publication number
US20150329880A1
US20150329880A1 US14/816,992 US201514816992A US2015329880A1 US 20150329880 A1 US20150329880 A1 US 20150329880A1 US 201514816992 A US201514816992 A US 201514816992A US 2015329880 A1 US2015329880 A1 US 2015329880A1
Authority
US
United States
Prior art keywords
seq
positions
cbh
substitution
polypeptides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/816,992
Inventor
Justin T. Stege
Alexander Varvak
John Poland
Chris S. Lyon
Shaun Healey
Peter Luginbuhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Priority to US14/816,992 priority Critical patent/US20150329880A1/en
Publication of US20150329880A1 publication Critical patent/US20150329880A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • Cellulose is an unbranched polymer of glucose linked by ⁇ (1 ⁇ 4)-glycosidic bonds. Cellulose chains can interact with each other via hydrogen bonding to form a crystalline solid of high mechanical strength and chemical stability.
  • the cellulose chains are depolymerized into glucose and short oligosaccharides before organisms, such as the fermenting microbes used in ethanol production, can use them as metabolic fuel.
  • Cellulase enzymes catalyze the hydrolysis of the cellulose (hydrolysis of ⁇ -1,4-D-glucan linkages) in the biomass into products such as glucose, cellobiose, and other cellooligosaccharides.
  • Cellulase is a generic term denoting a multienzyme mixture comprising exo-acting cellobiohydrolases (CBHs), endoglucanases (EGs) and ⁇ -glucosidases (BGs) that can be produced by a number of plants and microorganisms.
  • CBHs exo-acting cellobiohydrolases
  • EGs endoglucanases
  • BGs ⁇ -glucosidases
  • Enzymes in the cellulase of Trichoderma reesei include CBH I (more generally, Ce17A), CBH2 (Cel6A), EG1 (Cel7B), EG2 (Cel5), EG3 (Cel2), EG4 (Cel61A), EG5 (Cel45A), EG6 (Cel74A), Cip1, Cip2, ⁇ -glucosidases (including, e.g., Cel3A), acetyl xylan esterase, ⁇ -mannanase, and swollenin.
  • Cellulase enzymes work synergistically to hydrolyze cellulose to glucose.
  • CBH I and CBH II act on opposing ends of cellulose chains (Barr et al., 1996, Biochemistry 35:586-92), while the endoglucanases act at internal locations in the cellulose.
  • the primary product of these enzymes is cellobiose, which is further hydrolyzed to glucose by one or more ⁇ -glucosidases.
  • the cellobiohydrolases are subject to inhibition by their direct product, cellobiose, which results in a slowing down of saccharification reactions as product accumulates.
  • cellobiose which results in a slowing down of saccharification reactions as product accumulates.
  • cellobiohyrolases with improved productivity that maintain their reaction rates during the course of a saccharification reaction, for use in the conversion of cellulose into fermentable sugars and for related fields of cellulosic material processing such as pulp and paper, textiles and animal feeds.
  • the present disclosure relates to variant CBH I polypeptides.
  • Most naturally occurring CBH I polypeptides have arginines at positions corresponding to R268 and R411 of T. reesei CBH I (SEQ ID NO:2).
  • the variant CBH I polypeptides of the present disclosure include a substitution at either or both positions resulting in a reduction or decrease in product (e.g., cellobiose) inhibition.
  • product tolerant is sometimes referred to herein as “product tolerant.”
  • the variant CBH I polypeptides of the disclosure minimally contain at least a CBH I catalytic domain, comprising (a) a substitution at the amino acid position corresponding to R268 of T. reesei CBH I (“R268 substitution”); (b) a substitution at the amino acid position corresponding to R411 of T. reesei CBH I (“R411 substitution”); or (c) both an R268 substitution and an R411 substitution.
  • the amino acid positions of exemplary CBH I polypeptides into which R268 and/or R411 substitutions can be introduced are shown in Table 1, and the amino acid positions corresponding to R268 and/or R411 in these exemplary CBH I polypeptides are shown in Table 2.
  • R268 and/or R411 substituents can include lysines and/or alanines Accordingly, the present disclosure provides a variant CBH I polypeptide comprising a CBH I catalytic domain with one of the following amino acid substitutions or pairs of R268 and/or R411 substitutions: (a) R268K and R411K; (b) R268K and R411A; (c) R268A and R411K; (d) R268A and R411A; (e) R268A; (f) R268K; (g) R411A; and (h) R411K. In some embodiments, however, the amino acid sequence of the variant CBH I polypeptide does not comprise or consist of SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, or SEQ ID NO:302.
  • the variant CBHI polypeptides of the disclosure typically include a CD comprising an amino acid sequence having at least 50% sequence identity to a CD of a reference CBH I exemplified in Table 1.
  • the CD portions of the CBH I polypeptides exemplified in Table 1 are delineated in Table 3.
  • the variant CBH I polypeptides can have a cellulose binding domain (“CBD”) sequence in addition to the catalytic domain (“CD”) sequence.
  • CBD can be N- or C-terminal to the CD, and the CBD and CD are optionally connected via a linker sequence.
  • the variant CBH I polypeptides can be mature polypeptides or they may further comprise a signal sequence.
  • the variant CBH I polypeptides of the disclosure typically exhibit reduced product inhibition by cellobiose.
  • the IC 50 of cellobiose towards a variant CBH I polypeptide of the disclosure is at least 1.2-fold, at least 1.5-fold, or at least 2-fold the IC 50 of cellobiose towards a reference CBH I lacking the R268 substitution and/or R411 substitution present in the variant. Additional embodiments of the product inhibition characteristics of the variant CBH I polypeptides are provided in Section 0.
  • variant CBH I polypeptides of the disclosure typically retain some cellobiohydrolase activity.
  • a variant CBH I polypeptide retains at least 50% the CBH I activity of a reference CBH I lacking the R268 substitution and/or R411 substitution present in the variant. Additional embodiments of cellobiohydrolase activity of the variant CBH I polypeptides are provided in Section 0.
  • compositions comprising variant CBH I polypeptides. Additional embodiments of compositions comprising variant CBH I polypeptides are provided in Section 0.
  • the variant CBH I polypeptides and compositions comprising them can be used, inter alia, in processes for saccharifying biomass. Additional details of saccharification reactions, and additional applications of the variant CBH I polypeptides, are provided in Section 0.
  • the present disclosure further provides nucleic acids (e.g., vectors) comprising nucleotide sequences encoding variant CBH I polypeptides as described herein, and recombinant cells engineered to express the variant CBH I polypeptides.
  • the recombinant cell can be a prokaryotic (e.g., bacterial) or eukaryotic (e.g., yeast or filamentous fungal) cell. Further provided are methods of producing and optionally recovering the variant CBH I polypeptides. Additional embodiments of the recombinant expression system suitable for expression and production of the variant CBH I polypeptides are provided in Section 0.
  • FIGS. 1A-1B Cellobiose dose-response curves using a 4-MUL assay for a wild-type CBH I (BD29555; FIG. 1A ) and a R268K/R411K variant CBH I (BD29555 with the substitutions R273K/R422K; FIG. 1B ).
  • FIGS. 2A-2B The effect of cellobiose accumulation on the activity of wild-type CBH I and a R268K/R411K variant CBH I, based on percent conversion of glucan after 72 hours in the bagasse assay.
  • FIG. 3 Cellobiose dose-response curves using PASC assay for a R268K/R411K variant CBH I polypeptide as compared to two wild type CBH I polypeptides.
  • FIG. 5 Characterization of cellobiose product tolerance of variant CBH I polypeptides, based on percent conversion of glucan after 72 hours in the absence and presence of ⁇ -glucosidase (BG) in the bagasse assay; tolerance is evaluated as a function of the ratio of activity in the absence vs. presence of ⁇ -glucosidase.
  • BG ⁇ -glucosidase
  • Table 4 shows a segment within the catalytic domain of each exemplary reference CBH I polypeptide containing the active site loop (shown in bold, underlined text) and the catalytic residues (glutamates in most CBH I polypeptides) (shown in bold, double underlined text).
  • Database descriptors are as for Table 1.
  • SEQ ID NO:1-149 correspond to the exemplary reference CBH I polypeptides.
  • SEQ ID NO:299 corresponds to mature T. reesei CBH I (amino acids 26-529 of SEQ ID NO:2) with an R268A substitution.
  • SEQ ID NO:300 corresponds to mature T. reesei CBH I (amino acids 26-529 of SEQ ID NO:2) with an R411A substitution.
  • SEQ ID NO:301 corresponds to full length BD29555 with both an R268K substitution and an R411K substitution.
  • SEQ ID NO:302 corresponds to mature BD29555 with both an R268K substitution and an R411K substitution.
  • the present disclosure relates to variant CBH I polypeptides.
  • Most naturally occurring CBH I polypeptides have arginines at positions corresponding to R268 and R411 of T. reesei CBH I (SEQ ID NO:2).
  • the variant CBH I polypeptides of the present disclosure include a substitution at either or both positions resulting in a reduction of product (e.g., cellobiose) inhibition.
  • product e.g., cellobiose
  • variant CBH I polypeptides comprising at least one amino acid substitution that results in reduced product inhibition.
  • Variant means a polypeptide which is differs in sequence from a reference polypeptide by substitution of one or more amino acids at one or a number of different sites in the amino acid sequence. Exemplary reference CBH I polypeptides are shown in Table 1.
  • the variant CBH I polypeptides of the disclosure have an amino acid substitution at the amino acid position corresponding to R268 of T. reesei CBH I (SEQ ID NO:2) (an “R268 substitution”), (b) a substitution at the amino acid position corresponding to R411 of T. reesei CBH I (“R411 substitution”); or (c) both an R268 substitution and an R411 substitution, as compared to a reference CBH I polypeptide.
  • R268 and R411 numbering is made by reference to the full length T. reesei CBH I, which includes a signal sequence that is generally absent from the mature enzyme.
  • the corresponding numbering in the mature T. reesei CBH I (see, e.g., SEQ ID NO:4) is 8251 and R394, respectively.
  • the present disclosure provides variant CBH I polypeptides in which at least one of the amino acid positions corresponding to R268 and R411 of T. reesei CBH I, and optionally both the amino acid positions corresponding to R268 and R411 of T. reesei CBH I, is not an arginine.
  • amino acid positions in the reference polypeptides of Table 1 that correspond to R268 and R411 in T. reesei CBH I are shown in Table 2.
  • Amino acid positions in other CBH I polypeptides that correspond to R268 and R411 can be identified through alignment of their sequences with T. reesei CBH I using a sequence comparison algorithm. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981, Adv. Appl. Math. 2:482-89; by the homology alignment algorithm of Needleman & Wunsch, 1970, J. Mol. Biol. 48:443-53; by the search for similarity method of Pearson & Lipman, 1988, Proc.
  • R268 and/or R411 substitutions are preferably selected from (a) R268K and R411K; (b) R268K and R411A; (c) R268A and R411K; (d) R268A and R411A; (e) R268A; (f) R268K; (g) R411A; and (h) R411K.
  • CBH I polypeptides belong to the glycosyl hydrolase family 7 (“GH7”).
  • the glycosyl hydrolases of this family include endoglucanases and cellobiohydrolases (exoglucanases).
  • the cellobiohydrolases act processively from the reducing ends of cellulose chains to generate cellobiose.
  • Cellulases of bacterial and fungal origin characteristically have a small cellulose-binding domain (“CBD”) connected to either the N or the C terminus of the catalytic domain (“CD”) via a linker peptide (see Suumakki et al., 2000, Cellulose 7: 189-209).
  • the CD contains the active site whereas the CBD interacts with cellulose by binding the enzyme to it (van Tilbeurgh et al., 1986, FEBS Lett. 204(2): 223-227; Tomme et al., 1988, Eur. J. Biochem. 170:575-581).
  • the three-dimensional structure of the catalytic domain of T. reesei CBH I has been solved (Divne et al., 1994, Science 265:524-528).
  • the CD consists of two ⁇ -sheets that pack face-to-face to form a ⁇ -sandwich. Most of the remaining amino acids in the CD are loops connecting the ⁇ -sheets.
  • Some loops are elongated and bend around the active site, forming cellulose-binding tunnel of ( ⁇ 50 ⁇ ).
  • endoglucanases have an open substrate binding cleft/groove rather than a tunnel.
  • the catalytic residues are glutamic acids corresponding to E229 and E234 of T. reesei CBH I.
  • the loops characteristic of the active sites (“the active site loops”) of reference CBH I polypeptides, which are absent from GH7 family endoglucanases, as well as catalytic glutamate residues of the reference CBH I polypeptides, are shown in Table 4.
  • the variant CBH I polypeptides of the disclosure preferably retain the catalytic glutamate residues or may include a glutamine instead at the position corresponding to E234, as for SEQ ID NO:4.
  • the variant CBH I polypeptides contain no substitutions or only conservative substitutions in the active site loops relative to the reference CBH I polypeptides from which the variants are derived.
  • CBH I polypeptides do not have a CBD, and most studies concerning the activity of cellulase domains on different substrates have been carried out with only the catalytic domains of CBH I polypeptides.
  • CDs with cellobiohydrolase activity can be generated by limited proteolysis of mature CBH I by papain (see, e.g., Chen et al., 1993, Biochem. Mol. Biol. Int. 30(5):901-10), they are often referred to as “core” domains. Accordingly, a variant CBH I can include only the CD “core” of CBH I.
  • Exemplary reference CDs comprise amino acid sequences corresponding to positions 26 to 455 of SEQ ID NO:1, positions 18 to 444 of SEQ ID NO:2, positions 26 to 455 of SEQ ID NO:3, positions 1 to 427 of SEQ ID NO:4, positions 24 to 457 of SEQ ID NO:5, positions 18 to 448 of SEQ ID NO:6, positions 27 to 460 of SEQ ID NO:7, positions 27 to 460 of SEQ ID NO:8, positions 20 to 449 of SEQ ID NO:9, positions 1 to 424 of SEQ ID NO:10, positions 18 to 447 of SEQ ID NO:11, positions 18 to 434 of SEQ ID NO:12, positions 18 to 445 of SEQ ID NO:13, positions 19 to 454 of SEQ ID NO:14, positions 19 to 443 of SEQ ID NO:15, positions 2 to 426 of SEQ ID NO:16, positions 23 to 446 of SEQ ID NO:17, positions 19 to 449 of SEQ ID NO:18, positions 23 to 446 of SEQ ID NO:19, positions
  • the CBDs are particularly involved in the hydrolysis of crystalline cellulose. It has been shown that the ability of cellobiohydrolases to degrade crystalline cellulose decreases when the CBD is absent (Linder and Teeri, 1997, Journal of Biotechnol. 57:15-28).
  • the variant CBH I polypeptides of the disclosure can further include a CBD.
  • Exemplary CBDs comprise amino acid sequences corresponding to positions 494 to 529 of SEQ ID NO:1, positions 480 to 514 of SEQ ID NO:2, positions 494 to 529 of SEQ ID NO:3, positions 491 to 526 of SEQ ID NO:5, positions 477 to 512 of SEQ ID NO:6, positions 497 to 532 of SEQ ID NO:7, positions 504 to 539 of SEQ ID NO:8, positions 486 to 521 of SEQ ID NO:13, positions 556 to 596 of SEQ ID NO:15, positions 490 to 525 of SEQ ID NO:18, positions 495 to 530 of SEQ ID NO:20, positions 471 to 506 of SEQ ID NO:23, positions 481 to 516 of SEQ ID NO:27, positions 480 to 514 of SEQ ID NO:30, positions 495 to 529 of SEQ ID NO:35, positions 493 to 528 of SEQ ID NO:36, positions 477 to 512 of SEQ ID NO:38, positions 547 to 586 of SEQ ID
  • linker sequences correspond to positions 456 to 493 of SEQ ID NO:1, positions 445 to 479 of SEQ ID NO:2, positions 456 to 493 of SEQ ID NO:3, positions 458 to 490 of SEQ ID NO:5, positions 449 to 476 of SEQ ID NO:6, positions 461 to 496 of SEQ ID NO:7, positions 461 to 503 of SEQ ID NO:8, positions 446 to 485 of SEQ ID NO:13, positions 444 to 555 of SEQ ID NO:15, positions 450 to 489 of SEQ ID NO:18, positions 450 to 494 of SEQ ID NO:20, positions 448 to 470 of SEQ ID NO:23, positions 443 to 480 of SEQ ID NO:27, positions 445 to 479 of SEQ ID NO:30, positions 460 to 494 of SEQ ID NO:35, positions 451 to 492 of SEQ ID NO:36, positions 449 to 476 of SEQ ID NO:38, positions 4
  • CBH I polypeptides are modular, the CBDs, CDs and linkers of different CBH I polypeptides, such as the exemplary CBH I polypeptides of Table 1, can be used interchangeably. However, in a preferred embodiment, the CBDs, CDs and linkers of a variant CBH I of the disclosure originate from the same polypeptide.
  • the variant CBH I polypeptides of the disclosure preferably have at least a two-fold reduction of product inhibition, such that cellobiose has an IC 50 towards the variant CBH I that is at least 2-fold the IC 50 of the corresponding reference CBH I, e.g., CBH I lacking the R268 substitution and/or R411 substitution. More preferably the IC 50 of cellobiose towards the variant CBH I is at least 3-fold, at least 5-fold, at least 8-fold, at least 10-fold, at least 12-fold or at least 15-fold the IC 50 of the corresponding reference CBH I.
  • the IC 50 of cellobiose towards the variant CBH I is ranges from 2-fold to 15-fold, from 2-fold to 10-fold, from 3-fold to 10-fold, from 5-fold to 12-fold, from 4-fold to 12-fold, from 5-fold to 10-fold, from 5-fold to 12-fold, from 2-fold to 8-fold, or from 8-fold to 20-fold the IC 50 of the corresponding reference CBH I.
  • the IC 50 can be determined in a phosphoric acid swollen cellulose (“PASC”) assay (Du et al., 2010, Applied Biochemistry and Biotechnology 161:313-317) or a methylumbelliferyl lactoside (“MUL”) assay (van Tilbeurgh and Claeyssens, 1985, FEBS Letts. 187(2):283-288), as exemplified in the Examples below.
  • PASC phosphoric acid swollen cellulose
  • MUL methylumbelliferyl lactoside
  • the variant CBH I polypeptides of the disclosure preferably have a cellobiohydrolase activity that is at least 30% the cellobiohydrolase activity of the corresponding reference CBH I, e.g., CBH I lacking the R268 substitution and/or R411 substitution. More preferably, the cellobiohydrolase activity of the variant CBH I is at least 40%, at least 50%, at least 60% or at least 70% the cellobiohydrolase activity of the corresponding reference CBH I. In specific embodiments the IC 50 cellobiohydrolase activity of the variant CBH I is ranges from 30% to 80%, from 40% to 70%, 30% to 60%, from 50% to 80% or from 60% to 80% of the cellobiohydrolase activity of the corresponding reference CBH I.
  • Substrates useful for assaying cellobiohydrolase activity include crystalline cellulose, filter paper, phosphoric acid swollen cellulose, cellooligosaccharides, methylumbelliferyl lactoside, methylumbelliferyl cellobioside, orthonitrophenyl lactoside, paranitrophenyl lactoside, orthonitrophenyl cellobioside, paranitrophenyl cellobioside.
  • Cellobiohydrolase activity can be measured in an assay utilizing PASC as the substrate and a calcofluor white detection method (Du et al., 2010, Applied Biochemistry and Biotechnology 161:313-317).
  • PASC can be prepared as described by Walseth, 1952, TAPPI 35:228-235 and Wood, 1971, Biochem. J. 121:353-362.
  • variant CBH I polypeptides of the disclosure preferably:
  • HSPs high scoring sequence pairs
  • Extension of the word hits is stopped when: the cumulative alignment score falls off by the quantity X from a maximum achieved value; the cumulative score goes to zero or below; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
  • the BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff & Henikoff, 1992, Proc. Nat'l. Acad. Sci. USA 89:10915-10919) alignments (B) of 50, expectation (E) of 10, M'S, N′-4, and a comparison of both strands.
  • the variant CBH I polypeptides of the disclosure further include a signal sequence.
  • Exemplary signal sequences comprise amino acid sequences corresponding to positions 1 to 25 of SEQ ID NO:1, positions 1 to 17 of SEQ ID NO:2, positions 1 to 25 of SEQ ID NO:3, positions 1 to 23 of SEQ ID NO:5, positions 1 to 17 of SEQ ID NO:6, positions 1 to 26 of SEQ ID NO:7, positions 1 to 27 of SEQ ID NO:8, positions 1 to 19 of SEQ ID NO:9, positions 1 to 17 of SEQ ID NO:11, positions 1 to 17 of SEQ ID NO:12, positions 1 to 17 of SEQ ID NO:13, positions 1 to 18 of SEQ ID NO:14, positions 1 to 18 of SEQ ID NO:15, positions 1 to 22 of SEQ ID NO:17, positions 1 to 18 of SEQ ID NO:18, positions 1 to 22 of SEQ ID NO:19, positions 1 to 18 of SEQ ID NO:20, positions 1 to 18 of SEQ ID NO:22, positions 1 to 18 of SEQ ID NO:23, positions 1 to 18 of SEQ ID NO:24, positions 1 to 19 of SEQ
  • the disclosure also provides recombinant cells engineered to express variant CBH I polypeptides.
  • the variant CBH I polypeptide is encoded by a nucleic acid operably linked to a promoter.
  • the promoter can be a filamentous fungal promoter.
  • the nucleic acids can be, for example, under the control of heterologous promoters.
  • the variant CBH I polypeptides can also be expressed under the control of constitutive or inducible promoters.
  • promoters include, but are not limited to, a cellulase promoter, a xylanase promoter, the 1818 promoter (previously identified as a highly expressed protein by EST mapping Trichoderma ).
  • the promoter can suitably be a cellobiohydrolase, endoglucanase, or ⁇ -glucosidase promoter.
  • a particularly suitable promoter can be, for example, a T. reesei cellobiohydrolase, endoglucanase, or ⁇ -glucosidase promoter.
  • promoters include a cbh1, cbh2, egl1, eg12, eg13, eg14, eg15, pki1, gpdl, xyn1, or xyn2 promoter.
  • Suitable host cells include cells of any microorganism (e.g., cells of a bacterium, a protist, an alga, a fungus (e.g., a yeast or filamentous fungus), or other microbe), and are preferably cells of a bacterium, a yeast, or a filamentous fungus.
  • a microorganism e.g., cells of a bacterium, a protist, an alga, a fungus (e.g., a yeast or filamentous fungus), or other microbe
  • a bacterium e.g., a yeast or filamentous fungus
  • Suitable host cells of the bacterial genera include, but are not limited to, cells of Escherichia, Bacillus, Lactobacillus, Pseudomonas , and Streptomyces .
  • Suitable cells of bacterial species include, but are not limited to, cells of Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Lactobacillus brevis, Pseudomonas aeruginosa , and Streptomyces lividans.
  • Suitable host cells of the genera of yeast include, but are not limited to, cells of Saccharomyces, Schizosaccharomyces, Candida, Hansenula, Pichia, Kluyveromyces , and Phaffia .
  • Suitable cells of yeast species include, but are not limited to, cells of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Hansenula polymorphs, Pichia pastoris, P. canadensis, Kluyveromyces marxianus , and Phaffia rhodozyma.
  • Suitable host cells of filamentous fungi include all filamentous forms of the subdivision Eumycotina.
  • Suitable cells of filamentous fungal genera include, but are not limited to, cells of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysoporium, Coprinus, Coriolus, Corynascus, Chaetomium, Cryptococcus, Filobasidium, Fusarium, Gibberella, Humicola, Hypocrea, Magnaporthe, Mucor, Myceliophthora, Mucor, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus , Scytaldium, Schizophyllum, Sporotrichum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes , and Trichoderma .
  • the recombinant cell is a Trichoderma sp. (e.g., Trichoderma reesei ), Penicillium sp., Humicola sp. (e.g., Humicola insolens ); Aspergillus sp. (e.g., Aspergillus niger ), Chrysosporium sp., Fusarium sp., or Hypocrea sp.
  • Suitable cells can also include cells of various anamorph and teleomorph forms of these filamentous fungal genera.
  • Suitable cells of filamentous fungal species include, but are not limited to, cells of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fus
  • the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the nucleic acid sequence encoding the variant CBH I polypeptide.
  • Culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art.
  • many references are available for the culture and production of many cells, including cells of bacterial and fungal origin. Cell culture media in general are set forth in Atlas and Parks (eds.), 1993, The Handbook of Microbiological Media, CRC Press, Boca Raton, Fla., which is incorporated herein by reference.
  • the cells are cultured in a standard medium containing physiological salts and nutrients, such as described in Pourquie et al., 1988, Biochemistry and Genetics of Cellulose Degradation, eds. Aubert, et al., Academic Press, pp. 71-86; and Ilmen et al., 1997, Appl. Environ. Microbiol. 63:1298-1306.
  • Culture conditions are also standard, e.g., cultures are incubated at 28° C. in shaker cultures or fermenters until desired levels of variant CBH I expression are achieved.
  • Preferred culture conditions for a given filamentous fungus may be found in the scientific literature and/or from the source of the fungi such as the American Type Culture Collection (ATCC). After fungal growth has been established, the cells are exposed to conditions effective to cause or permit the expression of a variant CBH I.
  • ATCC American Type Culture Collection
  • the inducing agent e.g., a sugar, metal salt or antibiotics
  • the inducing agent is added to the medium at a concentration effective to induce variant CBH I expression.
  • the recombinant cell is an Aspergillus niger , which is a useful strain for obtaining overexpressed polypeptide.
  • Aspergillus niger which is a useful strain for obtaining overexpressed polypeptide.
  • A. niger var. awamori dgr246 is known to product elevated amounts of secreted cellulases (Goedegebuur et al., 2002, Curr. Genet. 41:89-98).
  • Other strains of Aspergillus niger var awamori such as GCDAP3, GCDAP4 and GAP3-4 are known (Ward et al., 1993, Appl. Microbiol. Biotechnol. 39:738-743).
  • the recombinant cell is a Trichoderma reesei , which is a useful strain for obtaining overexpressed polypeptide.
  • Trichoderma reesei which is a useful strain for obtaining overexpressed polypeptide.
  • RL-P37 described by Sheir-Neiss et al., 1984, Appl. Microbiol. Biotechnol. 20:46-53, is known to secrete elevated amounts of cellulase enzymes.
  • Functional equivalents of RL-P37 include Trichoderma reesei strain RUT-C30 (ATCC No. 56765) and strain QM9414 (ATCC No. 26921). It is contemplated that these strains would also be useful in overexpressing variant CBH I polypeptides.
  • Cells expressing the variant CBH I polypeptides of the disclosure can be grown under batch, fed-batch or continuous fermentations conditions.
  • Classical batch fermentation is a closed system, wherein the compositions of the medium is set at the beginning of the fermentation and is not subject to artificial alternations during the fermentation.
  • a variation of the batch system is a fed-batch fermentation in which the substrate is added in increments as the fermentation progresses.
  • Fed-batch systems are useful when catabolite repression is likely to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium.
  • Batch and fed-batch fermentations are common and well known in the art.
  • Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned medium is removed simultaneously for processing.
  • Continuous fermentation generally maintains the cultures at a constant high density where cells are primarily in log phase growth. Continuous fermentation systems strive to maintain steady state growth conditions. Methods for modulating nutrients and growth factors for continuous fermentation processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology.
  • the disclosure provides transgenic plants and seeds that recombinantly express a variant CBH I polypeptide.
  • the disclosure also provides plant products, e.g., oils, seeds, leaves, extracts and the like, comprising a variant CBH I polypeptide.
  • the transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot).
  • the disclosure also provides methods of making and using these transgenic plants and seeds.
  • the transgenic plant or plant cell expressing a variant CBH I can be constructed in accordance with any method known in the art. See, for example, U.S. Pat. No. 6,309,872. T. reesei CBH I has been successfully expressed in transgenic tobacco ( Nicotiana tabaccum ) and potato ( Solanum tuberosum ). See Hooker et al., 2000, in Glycosyl Hydrolases for Biomass Conversion, ACS Symposium Series, Vol. 769, Chapter 4, pp. 55-90.
  • the present disclosure provides for the expression of CBH I variants in transgenic plants or plant organs and methods for the production thereof.
  • DNA expression constructs are provided for the transformation of plants with a nucleic acid encoding the variant CBH I polypeptide, preferably under the control of regulatory sequences which are capable of directing expression of the variant CBH I polypeptide.
  • regulatory sequences include sequences capable of directing transcription in plants, either constitutively, or in stage and/or tissue specific manners.
  • variant CBH I polypeptides in plants can be achieved by a variety of means. Specifically, for example, technologies are available for transforming a large number of plant species, including dicotyledonous species (e.g., tobacco, potato, tomato, Petunia, Brassica ) and monocot species. Additionally, for example, strategies for the expression of foreign genes in plants are available. Additionally still, regulatory sequences from plant genes have been identified that are serviceable for the construction of chimeric genes that can be functionally expressed in plants and in plant cells (e.g., Klee, 1987, Ann. Rev. of Plant Phys. 38:467-486; Clark et al., 1990, Virology 179(2):640-7; Smith et al., 1990, Mol. Gen. Genet. 224(3):477-81.
  • nucleic acids into plants can be achieved using several technologies including transformation with Agrobacterium tumefaciens or Agrobacterium rhizogenes .
  • plant tissues that can be transformed include protoplasts, microspores or pollen, and explants such as leaves, stems, roots, hypocotyls, and cotyls.
  • DNA encoding a variant CBH I can be introduced directly into protoplasts and plant cells or tissues by microinjection, electroporation, particle bombardment, and direct DNA uptake.
  • Variant CBH I polypeptides can be produced in plants by a variety of expression systems.
  • a constitutive promoter such as the 35S promoter of Cauliflower Mosaic Virus (Guilley et al., 1982, Cell 30:763-73) is serviceable for the accumulation of the expressed protein in virtually all organs of the transgenic plant.
  • promoters that are tissue-specific and/or stage-specific can be used (Higgins, 1984, Annu Rev. Plant Physiol. 35:191-221; Shotwell and Larkins, 1989, In: The Biochemistry of Plants Vol. 15 (Academic Press, San Diego: Stumpf and Conn, eds.), p. 297), permit expression of variant CBH I polypeptides in a target tissue and/or during a desired stage of development.
  • a variant CBH I polypeptide produced in cell culture is secreted into the medium and may be purified or isolated, e.g., by removing unwanted components from the cell culture medium.
  • a variant CBH I polypeptide may be produced in a cellular form necessitating recovery from a cell lysate.
  • the variant CBH I polypeptide is purified from the cells in which it was produced using techniques routinely employed by those of skill in the art. Examples include, but are not limited to, affinity chromatography (Van Tilbeurgh et al., 1984, FEBS Lett.
  • the variant CBH I polypeptides of the disclosure are suitably used in cellulase compositions.
  • Cellulases are known in the art as enzymes that hydrolyze cellulose (beta-1,4-glucan or beta D-glucosidic linkages) resulting in the formation of glucose, cellobiose, cellooligosaccharides, and the like.
  • EG endoglucanases
  • CBH cellobiohydrolases
  • BG beta-glucosidases
  • Certain fungi produce complete cellulase systems which include exo-cellobiohydrolases or CBH-type cellulases, endoglucanases or EG-type cellulases and ⁇ -glucosidases or BG-type cellulases (Schulein, 1988, Methods in Enzymology 160(25):234-243). Such cellulase compositions are referred to herein as “whole” cellulases. However, sometimes these systems lack CBH-type cellulases and bacterial cellulases also typically include little or no CBH-type cellulases. In addition, it has been shown that the EG components and CBH components synergistically interact to more efficiently degrade cellulose. See, e.g., Wood, 1985, Biochemical Society Transactions 13(2):407-410.
  • the cellulase compositions of the disclosure typically include, in addition to a variant CBH I polypeptide, one or more cellobiohydrolases, endoglucanases and/or ⁇ -glucosidases.
  • cellulase compositions contain the microorganism culture that produced the enzyme components.
  • Cellulase compositions also refers to a crude fermentation product of the microorganisms.
  • a crude fermentation is preferably a fermentation broth that has been separated from the microorganism cells and/or cellular debris (e.g., by centrifugation and/or filtration).
  • the enzymes in the broth can be optionally diluted, concentrated, partially purified or purified and/or dried.
  • the variant CBH I polypeptide can be co-expressed with one or more of the other components of the cellulase composition or it can be expressed separately, optionally purified and combined with a composition comprising one or more of the other cellulase components.
  • the variant CBH I When employed in cellulase compositions, the variant CBH I is generally present in an amount sufficient to allow release of soluble sugars from the biomass.
  • the amount of variant CBH I enzymes added depends upon the type of biomass to be saccharified which can be readily determined by the skilled artisan.
  • the weight percent of variant CBH I polypeptide is suitably at least 1, at least 5, at least 10, or at least 20 weight percent of the total polypeptides in a cellulase composition.
  • Exemplary cellulase compositions include a variant CBH I of the disclosure in an amount ranging from about 1 to about 20 weight percent, from about 1 to about 25 weight percent, from about 5 to about 20 weight percent, from about 5 to about 25 weight percent, from about 5 to about 30 weight percent, from about 5 to about 35 weight percent, from about 5 to about 40 weight percent, from about 5 to about 45 weight percent, from about 5 to about 50 weight percent, from about 10 to about 20 weight percent, from about 10 to about 25 weight percent, from about 10 to about 30 weight percent, from about 10 to about 35 weight percent, from about 10 to about 40 weight percent, from about 10 to about 45 weight percent, from about 10 to about 50 weight percent, from about 15 to about 20 weight percent, from about 15 to about 25 weight percent, from about 15 to about 30 weight percent, from about 15 to about 35 weight percent, from about 15 to about 30 weight percent, from about 15 to about 45 weight percent, or from about 15 to about 50 weight percent of the total polypeptides in the composition.
  • variant CBH I polypeptides of the disclosure and compositions comprising the variant CBH I polypeptides find utility in a wide variety applications, for example detergent compositions that exhibit enhanced cleaning ability, function as a softening agent and/or improve the feel of cotton fabrics (e.g., “stone washing” or “biopolishing”), or in cellulase compositions for degrading wood pulp into sugars (e.g., for bio-ethanol production).
  • Other applications include the treatment of mechanical pulp (Pere et al., 1996, Tappi Pulping Conference, pp. 693-696 (Nashville, Tenn., Oct. 27-31, 1996)), for use as a feed additive (see, e.g., WO 91/04673) and in grain wet milling.
  • Ethanol can be produced via saccharification and fermentation processes from cellulosic biomass such as trees, herbaceous plants, municipal solid waste and agricultural and forestry residues.
  • cellulosic biomass such as trees, herbaceous plants, municipal solid waste and agricultural and forestry residues.
  • the ratio of individual cellulase enzymes within a naturally occurring cellulase mixture produced by a microbe may not be the most efficient for rapid conversion of cellulose in biomass to glucose.
  • endoglucanases act to produce new cellulose chain ends which themselves are substrates for the action of cellobiohydrolases and thereby improve the efficiency of hydrolysis of the entire cellulase system.
  • the use of optimized cellobiohydrolase activity may greatly enhance the production of ethanol.
  • Cellulase compositions comprising one or more of the variant CBH I polypeptides of the disclosure can be used in saccharification reaction to produce simple sugars for fermentation. Accordingly, the present disclosure provides methods for saccharification comprising contacting biomass with a cellulase composition comprising a variant CBH I polypeptide of the disclosure and, optionally, subjecting the resulting sugars to fermentation by a microorganism.
  • biomass refers to any composition comprising cellulose (optionally also hemicellulose and/or lignin).
  • biomass includes, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (including, e.g., Indian grass, such as Sorghastrum nutans ; or, switchgrass, e.g., Panicum species, such as Panicum virgatum ), wood (including, e.g., wood chips, processing waste), paper, pulp, and recycled paper (including, e.g., newspaper, printer paper, and the like).
  • Other biomass materials include, without limitation, potatoes, soybean (e.g., rapeseed), barley, rye, oats, wheat, beets, and sugar cane bagasse.
  • the saccharified biomass (e.g., lignocellulosic material processed by enzymes of the disclosure) can be made into a number of bio-based products, via processes such as, e.g., microbial fermentation and/or chemical synthesis.
  • microbial fermentation refers to a process of growing and harvesting fermenting microorganisms under suitable conditions.
  • the fermenting microorganism can be any microorganism suitable for use in a desired fermentation process for the production of bio-based products. Suitable fermenting microorganisms include, without limitation, filamentous fungi, yeast, and bacteria.
  • the saccharified biomass can, for example, be made it into a fuel (e.g., a biofuel such as a bioethanol, biobutanol, biomethanol, a biopropanol, a biodiesel, a jet fuel, or the like) via fermentation and/or chemical synthesis.
  • a fuel e.g., a biofuel such as a bioethanol, biobutanol, biomethanol, a biopropanol, a biodiesel, a jet fuel, or the like
  • the saccharified biomass can, for example, also be made into a commodity chemical (e.g., ascorbic acid, isoprene, 1,3-propanediol), lipids, amino acids, polypeptides, and enzymes, via fermentation and/or chemical synthesis.
  • a commodity chemical e.g., ascorbic acid, isoprene, 1,3-propanediol
  • lipids e.g., amino acids, polypeptid
  • the variant CBH I polypeptides of the disclosure find utility in the generation of ethanol from biomass in either separate or simultaneous saccharification and fermentation processes.
  • Separate saccharification and fermentation is a process whereby cellulose present in biomass is saccharified into simple sugars (e.g., glucose) and the simple sugars subsequently fermented by microorganisms (e.g., yeast) into ethanol.
  • Simultaneous saccharification and fermentation is a process whereby cellulose present in biomass is saccharified into simple sugars (e.g., glucose) and, at the same time and in the same reactor, microorganisms (e.g., yeast) ferment the simple sugars into ethanol.
  • biomass Prior to saccharification, biomass is preferably subject to one or more pretreatment step(s) in order to render cellulose material more accessible or susceptible to enzymes and thus more amenable to hydrolysis by the variant CBH I polypeptides of the disclosure.
  • the pretreatment entails subjecting biomass material to a catalyst comprising a dilute solution of a strong acid and a metal salt in a reactor.
  • the biomass material can, e.g., be a raw material or a dried material.
  • This pretreatment can lower the activation energy, or the temperature, of cellulose hydrolysis, ultimately allowing higher yields of fermentable sugars. See, e.g., U.S. Pat. Nos. 6,660,506; 6,423,145.
  • Another exemplary pretreatment method entails hydrolyzing biomass by subjecting the biomass material to a first hydrolysis step in an aqueous medium at a temperature and a pressure chosen to effectuate primarily depolymerization of hemicellulose without achieving significant depolymerization of cellulose into glucose.
  • This step yields a slurry in which the liquid aqueous phase contains dissolved monosaccharides resulting from depolymerization of hemicellulose, and a solid phase containing cellulose and lignin.
  • the slurry is then subject to a second hydrolysis step under conditions that allow a major portion of the cellulose to be depolymerized, yielding a liquid aqueous phase containing dissolved/soluble depolymerization products of cellulose. See, e.g., U.S. Pat. No. 5,536,325.
  • a further exemplary method involves processing a biomass material by one or more stages of dilute acid hydrolysis using about 0.4% to about 2% of a strong acid; followed by treating the unreacted solid lignocellulosic component of the acid hydrolyzed material with alkaline delignification. See, e.g., U.S. Pat. No. 6,409,841.
  • Another exemplary pretreatment method comprises prehydrolyzing biomass (e.g., lignocellulosic materials) in a prehydrolysis reactor; adding an acidic liquid to the solid lignocellulosic material to make a mixture; heating the mixture to reaction temperature; maintaining reaction temperature for a period of time sufficient to fractionate the lignocellulosic material into a solubilized portion containing at least about 20% of the lignin from the lignocellulosic material, and a solid fraction containing cellulose; separating the solubilized portion from the solid fraction, and removing the solubilized portion while at or near reaction temperature; and recovering the solubilized portion.
  • the cellulose in the solid fraction is rendered more amenable to enzymatic digestion. See, e.g., U.S. Pat. No. 5,705,369.
  • Further pretreatment methods can involve the use of hydrogen peroxide H 2 O 2 . See Gould, 1984, Biotech, and Bioengr. 26:46-
  • Pretreatment can also comprise contacting a biomass material with stoichiometric amounts of sodium hydroxide and ammonium hydroxide at a very low concentration. See Teixeira et al., 1999, Appl. Biochem. and Biotech. 77-79:19-34. Pretreatment can also comprise contacting a lignocellulose with a chemical (e.g., a base, such as sodium carbonate or potassium hydroxide) at a pH of about 9 to about 14 at moderate temperature, pressure, and pH. See PCT Publication WO2004/081185.
  • a chemical e.g., a base, such as sodium carbonate or potassium hydroxide
  • Ammonia pretreatment can also be used.
  • Such a pretreatment method comprises subjecting a biomass material to low ammonia concentration under conditions of high solids. See, e.g., U.S. Patent Publication No. 20070031918 and PCT publication WO 06/110901.
  • the present disclosure also provides detergent compositions comprising a variant CBH I polypeptide of the disclosure.
  • the detergent compositions may employ besides the variant CBH I polypeptide one or more of a surfactant, including anionic, non-ionic and ampholytic surfactants; a hydrolase; a bleaching agents; a bluing agent; a caking inhibitors; a solubilizer; and a cationic surfactant. All of these components are known in the detergent art.
  • the variant CBH I polypeptide is preferably provided as part of cellulase composition.
  • the cellulase composition can be employed from about 0.00005 weight percent to about 5 weight percent or from about 0.0002 weight percent to about 2 weight percent of the total detergent composition.
  • the cellulase composition can be in the form of a liquid diluent, granule, emulsion, gel, paste, and the like. Such forms are known to the skilled artisan. When a solid detergent composition is employed, the cellulase composition is preferably formulated as granules.
  • Protein expression was carried out in an Aspergillus niger host strain that had been transformed using PEG-mediated transformation with expression constructs for CBHI that included the hygromycin resistance gene as a selectable marker, in which the full length CBH I sequences (signal sequence, catalytic domain, linker and cellulose binding domain) were under the control of the glyceraldeyhde-3-phosphate dehydrogenase (gpd) promoter. Transformants were selected on the regeneration medium based on resistance to hygromycin.
  • the selected transformants were cultured in Aspergillus salts medium, pH 6.2 supplemented with the antibiotics penicillin, streptomycin, and hygromycin, and 80 g/L glycerol, 20 g/L soytone, 10 mM uridine, 20 g/L MES) in baffled shake flasks at 30° C., 170 rpm. After five days of incubation, the total secreted protein supernatant was recovered, and then subjected to hollow fiber filtration to concentrate and exchange the sample into acetate buffer (50 mM NaAc, pH 5). CBH I protein represented over 90% of the total protein in these samples. Protein purity was analyzed by SDS-PAGE. Protein concentration was determined by gel densitometry and/or HPLC analysis. All CBH I protein concentrations were normalized before assay and concentrated to 1-2.5 mg/ml.
  • This assay measures the activity of CBH I on the fluorogenic substrate 4-MUL (also known as MUL). Assays were run in a costar 96-well black bottom plate, where reactions were initiated by the addition of 4-MUL to enzyme in buffer (2 mM 4-MUL in 200 mM MES pH 6). Enzymatic rates were monitored by fluorescent readouts over five minutes on a SPECTRAMAXTM plate reader (ex/em 365/450 nm). Data in the linear range was used to calculate initial rates (Vo).
  • PASC Phosphoric Acid Swollen Cellulose
  • This assay measures the activity of CBH I using PASC as the substrate.
  • concentration of PASC is monitored by a fluorescent signal derived from calcofluor binding to PASC (ex/em 365/440 nm).
  • the assay is initiated by mixing enzyme (15 ⁇ l) and reaction buffer (85 ⁇ l of 0.2% PASC, 200 mM MES, pH 6), and then incubating at 35° C. while shaking at 225 RPM. After 2 hours, one reaction volume of calcofluor stop solution (100 ⁇ g/ml in 500 mM glycine pH 10) is added and fluorescence read-outs obtained (ex/em 365/440 nm).
  • This assay measures the activity of CBH I on bagasse, a lignocellulosic substrate. Reactions were run in 10 ml vials with 5% dilute acid pretreated bagasse (250 mg solids per 5 ml reaction). Each reaction contained 4 mg CBH I enzyme/g solids, 200 mM MES pH 6, kanamycin, and chloramphenicol. Reactions were incubated at 35° C. in hybridization incubators (Robbins Scientific), rotating at 20 RPM. Time points were taken by transferring a sample of homogenous slurry (150 ⁇ l) into a 96-well deep well plate and quenching the reaction with stop buffer (450 ⁇ l of 500 mM sodium carbonate, pH 10). Time point measurements were taken every 24 hours for 72 hours.
  • CBH I assays Tolerance to cellobiose (or inhibition caused by cellobiose) was tested in two ways in the CBH I assays.
  • a direct-dose tolerance method can be applied to all of the CBH I assays (i.e., 4-MUL, PASC, and/or bagasse assays), and entails the exogenous addition of a known amount of cellobiose into assay mixtures.
  • a different indirect method entails the addition of an excess amount of ⁇ -glucosidase (BG) to PASC and bagasse assays (typically, 1 mg ⁇ -glucosidase/g solids loaded).
  • BG ⁇ -glucosidase
  • BG will enzymatically hydrolyze the cellobiose generated during these assays; therefore, CBH I activity in the presence of BG can be taken as a measure of activity in the absence of cellobiose. Furthermore, when activity in the presence and absence of BG are similar, this indicates tolerance to cellobiose. Notably, in cases where BG activity is undesired, but may be present in crude CBH I enzyme preparations, the BG inhibitor gluconolactone can be added into CBH I assays to prevent cellobiose breakdown.
  • the wild type CBH I polypeptide BD29555 was mutagenized to identify variants with improved product tolerance.
  • a small (60-member) library of BD29555 variants was designed to identify variant CBH I polypeptides with reduced product inhibition.
  • This product-release-site library was designed based on residues directly interacting with the cellobiose product in an attempt to identify variants with weakened interactions with cellobiose from which the product would be released more readily than the wild type enzyme.
  • the 60-member evolution library contained wild-type residues and mutations at positions B273, W405, and R422 of BD29555 (SEQ ID NO:1), and included the following substitutions: B273 (WT), R273Q, R273K, R273A, W405 (WT), W405Q, W405H, R422 (WT), R422Q, R422K, R422L, and R422E (4 variants at position 273 ⁇ 3 variants at position 405 ⁇ 5 variants at position 422 equals 60 variants in total). All members of the library were screened using the 4-MUL assay in the presence and absence of 250 g/L cellobiose and using gluconolactone to inhibit any BG activity.
  • the R273A, R273Q, and R273K/R422K variants showed enhanced product tolerance.
  • the R273K/R422K variant showed greatest activity among the variants and cellobiose tolerance at 250 mg/L. Due to low expression, the R273K variant was not tested for product inhibition.
  • R273K/R422K substitutions were characterized in both a wild type BD29555 background and also in combination with the substitutions Y274Q, D281K, Y410H, P411G, which were identified in a screen of an expanded product release site evolution library.
  • the wild type, the R273K/R422K variant and the R273K/Y274Q/D281K/Y410H/P411G/R422K variants were tested for activity on 4-MUL in the presence and absence of 250 mg/L cellobiose, and the R273K/R422K variant was also tested in the bagasse assay in the presence and absence of BG.
  • the results are summarized in Table 5.
  • results from these activity assays were converted into the percentage of activity remaining with and without cellobiose present, where values close to 100% indicated cellobiose tolerance.
  • the percent of activity remaining in the MUL assay in the presence cellobiose versus in the absence of cellobiose shows that the R273K/R422K variant was the most tolerant, followed by the R273K/Y274Q/D281K/Y410H/P411G/R422K variant, and then wild-type, at 95%, 78%, and 25% activity, respectively.
  • FIG. 1A-1B Cellobiose dose response curves of the wild-type and R273K/R422K variant of BD29555 were obtained during the 4-MUL assay. Enzyme rates (Vo) were measured in the presence of different concentrations of cellobiose (200 mM MES pH 6, 25° C.). Rates were measured in quadruplicate. The results are shown in FIG. 1A-1B .
  • FIG. 1A shows that wild type BD2955 is inhibited by cellobiose, with a half maximal inhibitory concentration (IC 50 value) of 60 mg/L.
  • FIG. 1B shows that the R273K/R422K variant is tolerant to cellobiose up to 250 mg/L.
  • FIG. 2A-2B shows bar graph data for the bagasse assay of BD29555 vs. the R273K/R422K variant.
  • the wild type and R273K/R422K variant were also characterized in the PASC assay. Results are shown in FIG. 3 .
  • the activities of both wild type BD29555 (SEQ ID NO:1) and wild type T. reesei CBH I (SEQ ID NO:2) were inhibited by cellobiose concentrations starting around 1 g/L (with IC 50 values of 2.2 and 3 g/L, respectively), whereas the R273K/R422K variant showed little inhibition in the presence of 10 g/L cellobiose.
  • T. reesei CBH I SEQ ID NO:2
  • a panel of variants with single and double alanine and lysine substitutions at R268 and R411 were expressed and analyzed.
  • the variants were tested for activity on 4-MUL in the presence and absence of 250 mg/L cellobiose and also in the bagasse assay in the absence and prseence of BG.
  • the results from these assays were converted into the percentage activity remaining in the presence and absence of cellobiose and BG, respectively. Values are summarized in Table 6.
  • FIGS. 4 and 5 show bar graph data for the bagasse assay of wild type T. reesei CBH I vs. the variants.
  • bars represent tolerance to cellobiose, as represented by the ratio of activity in the presence of accumulating cellobiose ( ⁇ BG) to that of activity in the absence of cellobiose (+BG); ratios close to 1 indicate greater tolerance to cellobiose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present disclosure relates to variant CBH I polypeptides that have reduced product inhibition, and compositions, e.g., cellulase compositions, comprising variant CBH I polypeptides. The variant CBH I polypeptides and related compositions can be used in variety of agricultural and industrial applications. The present disclosure further relates to nucleic acids encoding variant CBH I polypeptides and host cells that recombinantly express the variant CBH I polypeptides.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. application Ser. No. 13/824,317 filed Dec. 18, 2013, now issued as U.S. Pat. No. 9,096,871; which is a 35 USC §371 National Stage application of International Application No. PCT/US2011/055181 filed Oct. 6, 2011, now expired; which claims the benefit under 35 USC §119(e) to U.S. Application Ser. No. 61/390,392 filed Oct. 6, 2010, now expired. The disclosure of each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application.
  • BACKGROUND OF THE INVENTION
  • Cellulose is an unbranched polymer of glucose linked by β(1→4)-glycosidic bonds. Cellulose chains can interact with each other via hydrogen bonding to form a crystalline solid of high mechanical strength and chemical stability. The cellulose chains are depolymerized into glucose and short oligosaccharides before organisms, such as the fermenting microbes used in ethanol production, can use them as metabolic fuel. Cellulase enzymes catalyze the hydrolysis of the cellulose (hydrolysis of β-1,4-D-glucan linkages) in the biomass into products such as glucose, cellobiose, and other cellooligosaccharides. Cellulase is a generic term denoting a multienzyme mixture comprising exo-acting cellobiohydrolases (CBHs), endoglucanases (EGs) and β-glucosidases (BGs) that can be produced by a number of plants and microorganisms. Enzymes in the cellulase of Trichoderma reesei include CBH I (more generally, Ce17A), CBH2 (Cel6A), EG1 (Cel7B), EG2 (Cel5), EG3 (Cel2), EG4 (Cel61A), EG5 (Cel45A), EG6 (Cel74A), Cip1, Cip2, β-glucosidases (including, e.g., Cel3A), acetyl xylan esterase, β-mannanase, and swollenin.
  • Cellulase enzymes work synergistically to hydrolyze cellulose to glucose. CBH I and CBH II act on opposing ends of cellulose chains (Barr et al., 1996, Biochemistry 35:586-92), while the endoglucanases act at internal locations in the cellulose. The primary product of these enzymes is cellobiose, which is further hydrolyzed to glucose by one or more β-glucosidases.
  • The cellobiohydrolases are subject to inhibition by their direct product, cellobiose, which results in a slowing down of saccharification reactions as product accumulates. There is a need for new and improved cellobiohyrolases with improved productivity that maintain their reaction rates during the course of a saccharification reaction, for use in the conversion of cellulose into fermentable sugars and for related fields of cellulosic material processing such as pulp and paper, textiles and animal feeds.
  • SUMMARY OF THE INVENTION
  • The present disclosure relates to variant CBH I polypeptides. Most naturally occurring CBH I polypeptides have arginines at positions corresponding to R268 and R411 of T. reesei CBH I (SEQ ID NO:2). The variant CBH I polypeptides of the present disclosure include a substitution at either or both positions resulting in a reduction or decrease in product (e.g., cellobiose) inhibition. Such variants are sometimes referred to herein as “product tolerant.”
  • The variant CBH I polypeptides of the disclosure minimally contain at least a CBH I catalytic domain, comprising (a) a substitution at the amino acid position corresponding to R268 of T. reesei CBH I (“R268 substitution”); (b) a substitution at the amino acid position corresponding to R411 of T. reesei CBH I (“R411 substitution”); or (c) both an R268 substitution and an R411 substitution. The amino acid positions of exemplary CBH I polypeptides into which R268 and/or R411 substitutions can be introduced are shown in Table 1, and the amino acid positions corresponding to R268 and/or R411 in these exemplary CBH I polypeptides are shown in Table 2.
  • R268 and/or R411 substituents can include lysines and/or alanines Accordingly, the present disclosure provides a variant CBH I polypeptide comprising a CBH I catalytic domain with one of the following amino acid substitutions or pairs of R268 and/or R411 substitutions: (a) R268K and R411K; (b) R268K and R411A; (c) R268A and R411K; (d) R268A and R411A; (e) R268A; (f) R268K; (g) R411A; and (h) R411K. In some embodiments, however, the amino acid sequence of the variant CBH I polypeptide does not comprise or consist of SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, or SEQ ID NO:302.
  • The variant CBHI polypeptides of the disclosure typically include a CD comprising an amino acid sequence having at least 50% sequence identity to a CD of a reference CBH I exemplified in Table 1. The CD portions of the CBH I polypeptides exemplified in Table 1 are delineated in Table 3. The variant CBH I polypeptides can have a cellulose binding domain (“CBD”) sequence in addition to the catalytic domain (“CD”) sequence. The CBD can be N- or C-terminal to the CD, and the CBD and CD are optionally connected via a linker sequence.
  • The variant CBH I polypeptides can be mature polypeptides or they may further comprise a signal sequence.
  • Additional embodiments of the variant CBH I polypeptides are provided in Section 0.
  • The variant CBH I polypeptides of the disclosure typically exhibit reduced product inhibition by cellobiose. In certain embodiments, the IC50 of cellobiose towards a variant CBH I polypeptide of the disclosure is at least 1.2-fold, at least 1.5-fold, or at least 2-fold the IC50 of cellobiose towards a reference CBH I lacking the R268 substitution and/or R411 substitution present in the variant. Additional embodiments of the product inhibition characteristics of the variant CBH I polypeptides are provided in Section 0.
  • The variant CBH I polypeptides of the disclosure typically retain some cellobiohydrolase activity. In certain embodiments, a variant CBH I polypeptide retains at least 50% the CBH I activity of a reference CBH I lacking the R268 substitution and/or R411 substitution present in the variant. Additional embodiments of cellobiohydrolase activity of the variant CBH I polypeptides are provided in Section 0.
  • The present disclosure further provides compositions (including cellulase compositions, e.g., whole cellulase compositions, and fermentation broths) comprising variant CBH I polypeptides. Additional embodiments of compositions comprising variant CBH I polypeptides are provided in Section 0. The variant CBH I polypeptides and compositions comprising them can be used, inter alia, in processes for saccharifying biomass. Additional details of saccharification reactions, and additional applications of the variant CBH I polypeptides, are provided in Section 0.
  • The present disclosure further provides nucleic acids (e.g., vectors) comprising nucleotide sequences encoding variant CBH I polypeptides as described herein, and recombinant cells engineered to express the variant CBH I polypeptides. The recombinant cell can be a prokaryotic (e.g., bacterial) or eukaryotic (e.g., yeast or filamentous fungal) cell. Further provided are methods of producing and optionally recovering the variant CBH I polypeptides. Additional embodiments of the recombinant expression system suitable for expression and production of the variant CBH I polypeptides are provided in Section 0.
  • BRIEF DESCRIPTION OF THE DRAWINGS AND TABLES
  • FIGS. 1A-1B: Cellobiose dose-response curves using a 4-MUL assay for a wild-type CBH I (BD29555; FIG. 1A) and a R268K/R411K variant CBH I (BD29555 with the substitutions R273K/R422K; FIG. 1B).
  • FIGS. 2A-2B: The effect of cellobiose accumulation on the activity of wild-type CBH I and a R268K/R411K variant CBH I, based on percent conversion of glucan after 72 hours in the bagasse assay. FIG. 2A shows relative activity in the presence (+) and absence (−) of β-glucosidase (BG), where relative activity is normalized to wild type activity with BG (WT+=1). FIG. 2B shows tolerance to cellobiose as a function of the ratio of activity in the absence vs. presence of β-glucosidase (activity ratio=Activity −BG/Activity +BG).
  • FIG. 3: Cellobiose dose-response curves using PASC assay for a R268K/R411K variant CBH I polypeptide as compared to two wild type CBH I polypeptides.
  • FIG. 4: The effect of cellobiose accumulation on the activity of a wild-type CBH I and a R268K/R411K variant CBH I based on percent conversion of glucan after 72 hours in the bagasse assay in the presence (+) and absence (−) of β-glucosidase (BG). Activity is normalized to wild type activity with BG (WT+=1).
  • FIG. 5: Characterization of cellobiose product tolerance of variant CBH I polypeptides, based on percent conversion of glucan after 72 hours in the absence and presence of β-glucosidase (BG) in the bagasse assay; tolerance is evaluated as a function of the ratio of activity in the absence vs. presence of β-glucosidase.
  • TABLE 1: Amino acid sequences of exemplary “reference” CBH I polypeptides that can be modified at positions corresponding to R268 and/or R411 in T. reesei CBH I (SEQ ID NO:2). The database accession numbers are indicated in the second column. Unless indicated otherwise, the accession numbers refer to the Genbank database. “#” indicates that the CBH I has no signal peptide; “&” indicate that the sequence is from the PDB database and represents the catalytic domain only without signal sequence; * indicates a nonpublic database. These amino acid sequences are mostly wild type, with the exception of some sequences from the PDB database which contain mutations to facilitate protein crystallization.
  • TABLE 2: Amino acid positions in the exemplary reference CBH I polypeptides that correspond to R268 and R411 in T. reesei CBH I. Database descriptors are as for Table 1.
  • TABLE 3: Approximate amino acid positions of CBH I polypeptide domains. Abbreviations used: SS is signal sequence; CD is catalytic domain; and CBD is cellulose binding domain. Database descriptors are as for Table 1.
  • TABLE 4: Table 4 shows a segment within the catalytic domain of each exemplary reference CBH I polypeptide containing the active site loop (shown in bold, underlined text) and the catalytic residues (glutamates in most CBH I polypeptides) (shown in bold, double underlined text). Database descriptors are as for Table 1.
  • TABLE 5: MUL and bagasse assay results for variants of BD29555. ND means not determined. ±% Activity (+/−cellobiose)=[(Activity with cellobiose)/(Activity without cellobiose)]*100. ¥ % Activity (−/+BG)=[(Activity without BG)/(Activity with BG)]*100]
  • TABLE 6: MUL and bagasse assay results for variants of T. reesei CBH I. ND means not determined. ±% Activity (+/−cellobiose)=[(Activity with cellobiose)/(Activity without cellobiose)]*100. ¥ % Activity (−/+BG)=[(Activity without BG)/(Activity with BG)]*100.
  • TABLE 7: Informal sequence listing. SEQ ID NO:1-149 correspond to the exemplary reference CBH I polypeptides. SEQ ID NO:299 corresponds to mature T. reesei CBH I (amino acids 26-529 of SEQ ID NO:2) with an R268A substitution. SEQ ID NO:300 corresponds to mature T. reesei CBH I (amino acids 26-529 of SEQ ID NO:2) with an R411A substitution. SEQ ID NO:301 corresponds to full length BD29555 with both an R268K substitution and an R411K substitution. SEQ ID NO:302 corresponds to mature BD29555 with both an R268K substitution and an R411K substitution.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present disclosure relates to variant CBH I polypeptides. Most naturally occurring CBH I polypeptides have arginines at positions corresponding to R268 and R411 of T. reesei CBH I (SEQ ID NO:2). The variant CBH I polypeptides of the present disclosure include a substitution at either or both positions resulting in a reduction of product (e.g., cellobiose) inhibition. The following subsections describe in greater detail the variant CBH I polypeptides and exemplary methods of their production, exemplary cellulase compositions comprising them, and some industrial applications of the polypeptides and cellulase compositions.
  • Variant CBH I Polypeptides
  • The present disclosure provides variant CBH I polypeptides comprising at least one amino acid substitution that results in reduced product inhibition. “Variant” means a polypeptide which is differs in sequence from a reference polypeptide by substitution of one or more amino acids at one or a number of different sites in the amino acid sequence. Exemplary reference CBH I polypeptides are shown in Table 1.
  • The variant CBH I polypeptides of the disclosure have an amino acid substitution at the amino acid position corresponding to R268 of T. reesei CBH I (SEQ ID NO:2) (an “R268 substitution”), (b) a substitution at the amino acid position corresponding to R411 of T. reesei CBH I (“R411 substitution”); or (c) both an R268 substitution and an R411 substitution, as compared to a reference CBH I polypeptide. It is noted that the R268 and R411 numbering is made by reference to the full length T. reesei CBH I, which includes a signal sequence that is generally absent from the mature enzyme. The corresponding numbering in the mature T. reesei CBH I (see, e.g., SEQ ID NO:4) is 8251 and R394, respectively.
  • Accordingly, the present disclosure provides variant CBH I polypeptides in which at least one of the amino acid positions corresponding to R268 and R411 of T. reesei CBH I, and optionally both the amino acid positions corresponding to R268 and R411 of T. reesei CBH I, is not an arginine.
  • The amino acid positions in the reference polypeptides of Table 1 that correspond to R268 and R411 in T. reesei CBH I are shown in Table 2. Amino acid positions in other CBH I polypeptides that correspond to R268 and R411 can be identified through alignment of their sequences with T. reesei CBH I using a sequence comparison algorithm. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981, Adv. Appl. Math. 2:482-89; by the homology alignment algorithm of Needleman & Wunsch, 1970, J. Mol. Biol. 48:443-53; by the search for similarity method of Pearson & Lipman, 1988, Proc. Nat'l Acad. Sci. USA 85:2444-48, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection.
  • The R268 and/or R411 substitutions are preferably selected from (a) R268K and R411K; (b) R268K and R411A; (c) R268A and R411K; (d) R268A and R411A; (e) R268A; (f) R268K; (g) R411A; and (h) R411K.
  • CBH I polypeptides belong to the glycosyl hydrolase family 7 (“GH7”). The glycosyl hydrolases of this family include endoglucanases and cellobiohydrolases (exoglucanases). The cellobiohydrolases act processively from the reducing ends of cellulose chains to generate cellobiose. Cellulases of bacterial and fungal origin characteristically have a small cellulose-binding domain (“CBD”) connected to either the N or the C terminus of the catalytic domain (“CD”) via a linker peptide (see Suumakki et al., 2000, Cellulose 7: 189-209). The CD contains the active site whereas the CBD interacts with cellulose by binding the enzyme to it (van Tilbeurgh et al., 1986, FEBS Lett. 204(2): 223-227; Tomme et al., 1988, Eur. J. Biochem. 170:575-581). The three-dimensional structure of the catalytic domain of T. reesei CBH I has been solved (Divne et al., 1994, Science 265:524-528). The CD consists of two β-sheets that pack face-to-face to form a β-sandwich. Most of the remaining amino acids in the CD are loops connecting the β-sheets. Some loops are elongated and bend around the active site, forming cellulose-binding tunnel of (˜50 Å). In contrast, endoglucanases have an open substrate binding cleft/groove rather than a tunnel. Typically, the catalytic residues are glutamic acids corresponding to E229 and E234 of T. reesei CBH I.
  • The loops characteristic of the active sites (“the active site loops”) of reference CBH I polypeptides, which are absent from GH7 family endoglucanases, as well as catalytic glutamate residues of the reference CBH I polypeptides, are shown in Table 4. The variant CBH I polypeptides of the disclosure preferably retain the catalytic glutamate residues or may include a glutamine instead at the position corresponding to E234, as for SEQ ID NO:4. In some embodiments, the variant CBH I polypeptides contain no substitutions or only conservative substitutions in the active site loops relative to the reference CBH I polypeptides from which the variants are derived.
  • Many CBH I polypeptides do not have a CBD, and most studies concerning the activity of cellulase domains on different substrates have been carried out with only the catalytic domains of CBH I polypeptides. Because CDs with cellobiohydrolase activity can be generated by limited proteolysis of mature CBH I by papain (see, e.g., Chen et al., 1993, Biochem. Mol. Biol. Int. 30(5):901-10), they are often referred to as “core” domains. Accordingly, a variant CBH I can include only the CD “core” of CBH I. Exemplary reference CDs comprise amino acid sequences corresponding to positions 26 to 455 of SEQ ID NO:1, positions 18 to 444 of SEQ ID NO:2, positions 26 to 455 of SEQ ID NO:3, positions 1 to 427 of SEQ ID NO:4, positions 24 to 457 of SEQ ID NO:5, positions 18 to 448 of SEQ ID NO:6, positions 27 to 460 of SEQ ID NO:7, positions 27 to 460 of SEQ ID NO:8, positions 20 to 449 of SEQ ID NO:9, positions 1 to 424 of SEQ ID NO:10, positions 18 to 447 of SEQ ID NO:11, positions 18 to 434 of SEQ ID NO:12, positions 18 to 445 of SEQ ID NO:13, positions 19 to 454 of SEQ ID NO:14, positions 19 to 443 of SEQ ID NO:15, positions 2 to 426 of SEQ ID NO:16, positions 23 to 446 of SEQ ID NO:17, positions 19 to 449 of SEQ ID NO:18, positions 23 to 446 of SEQ ID NO:19, positions 19 to 449 of SEQ ID NO:20, positions 2 to 416 of SEQ ID NO:21, positions 19 to 454 of SEQ ID NO:22, positions 19 to 447 of SEQ ID NO:23, positions 19 to 447 of SEQ ID NO:24, positions 20 to 443 of SEQ ID NO:25, positions 18 to 447 of SEQ ID NO:26, positions 19 to 442 of SEQ ID NO:27, positions 18 to 451 of SEQ ID NO:28, positions 23 to 446 of SEQ ID NO:29, positions 18 to 444 of SEQ ID NO:30, positions 18 to 451 of SEQ ID NO:31, positions 18 to 447 of SEQ ID NO:32, positions 19 to 449 of SEQ ID NO:33, positions 18 to 447 of SEQ ID NO:34, positions 26 to 459 of SEQ ID NO:35, positions 19 to 450 of SEQ ID NO:36, positions 19 to 453 of SEQ ID NO:37, positions 18 to 448 of SEQ ID NO:38, positions 19 to 443 of SEQ ID NO:39, positions 19 to 442 of SEQ ID NO:40, positions 18 to 444 of SEQ ID NO:41, positions 24 to 457 of SEQ ID NO:42, positions 18 to 449 of SEQ ID NO:43, positions 19 to 453 of SEQ ID NO:44, positions 26 to 456 of SEQ ID NO:45, positions 19 to 451 of SEQ ID NO:46, positions 18 to 443 of SEQ ID NO:47, positions 18 to 448 of SEQ ID NO:48, positions 19 to 451 of SEQ ID NO:49, positions 18 to 444 of SEQ ID NO:50, positions 2 to 419 of SEQ ID NO:51, positions 27 to 461 of SEQ ID NO:52, positions 21 to 445 of SEQ ID NO:53, positions 19 to 449 of SEQ ID NO:54, positions 19 to 448 of SEQ ID NO:55, positions 18 to 443 of SEQ ID NO:56, positions 20 to 443 of SEQ ID NO:57, positions 18 to 448 of SEQ ID NO:58, positions 18 to 447 of SEQ ID NO:59, positions 26 to 455 of SEQ ID NO:60, positions 19 to 449 of SEQ ID NO:61, positions 19 to 449 of SEQ ID NO:62, positions 26 to 460 of SEQ ID NO:63, positions 18 to 448 of SEQ ID NO:64, positions 19 to 451 of SEQ ID NO:65, positions 19 to 447 of SEQ ID NO:66, positions 1 to 424 of SEQ ID NO:67, positions 19 to 448 of SEQ ID NO:68, positions 19 to 443 of SEQ ID NO:69, positions 23 to 447 of SEQ ID NO:70, positions 17 to 448 of SEQ ID NO:71, positions 19 to 449 of SEQ ID NO:72, positions 18 to 444 of SEQ ID NO:73, positions 23 to 458 of SEQ ID NO:74, positions 20 to 452 of SEQ ID NO:75, positions 18 to 435 of SEQ ID NO:76, positions 18 to 446 of SEQ ID NO:77, positions 22 to 457 of SEQ ID NO:78, positions 18 to 448 of SEQ ID NO:79, positions 1 to 431 of SEQ ID NO:80, positions 19 to 453 of SEQ ID NO:81, positions 21 to 440 of SEQ ID NO:82, positions 19 to 442 of SEQ ID NO:83, positions 18 to 448 of SEQ ID NO:84, positions 17 to 446 of SEQ ID NO:85, positions 18 to 447 of SEQ ID NO:86, positions 18 to 443 of SEQ ID NO:87, positions 23 to 448 of SEQ ID NO:88, positions 18 to 451 of SEQ ID NO:89, positions 21 to 447 of SEQ ID NO:90, positions 18 to 444 of SEQ ID NO:91, positions 19 to 442 of SEQ ID NO:92, positions 20 to 436 of SEQ ID NO:93, positions 18 to 450 of SEQ ID NO:94, positions 22 to 453 of SEQ ID NO:95, positions 16 to 472 of SEQ ID NO:96, positions 21 to 445 of SEQ ID NO:97, positions 19 to 447 of SEQ ID NO:98, positions 19 to 450 of SEQ ID NO:99, positions 19 to 451 of SEQ ID NO:100, positions 18 to 448 of SEQ ID NO:101, positions 19 to 442 of SEQ ID NO:102, positions 20 to 457 of SEQ ID NO:103, positions 19 to 454 of SEQ ID NO:104, positions 18 to 440 of SEQ ID NO:105, positions 18 to 439 of SEQ ID NO:106, positions 27 to 460 of SEQ ID NO:107, positions 23 to 446 of SEQ ID NO:108, positions 17 to 446 of SEQ ID NO:109, positions 21 to 447 of SEQ ID NO:110, positions 19 to 447 of SEQ ID NO:111, positions 18 to 449 of SEQ ID NO:112, positions 22 to 457 of SEQ ID NO:113, positions 18 to 445 of SEQ ID NO:114, positions 18 to 448 of SEQ ID NO:115, positions 18 to 448 of SEQ ID NO:116, positions 23 to 435 of SEQ ID NO:117, positions 21 to 442 of SEQ ID NO:118, positions 23 to 435 of SEQ ID NO:119, positions 20 to 445 of SEQ ID NO:120, positions 21 to 443 of SEQ ID NO:121, positions 20 to 445 of SEQ ID NO:122, positions 23 to 443 of SEQ ID NO:123, positions 20 to 445 of SEQ ID NO:124, positions 21 to 435 of SEQ ID NO:125, positions 20 to 437 of SEQ ID NO:126, positions 21 to 442 of SEQ ID NO:127, positions 23 to 434 of SEQ ID NO:128, positions 20 to 444 of SEQ ID NO:129, positions 21 to 435 of SEQ ID NO:130, positions 20 to 445 of SEQ ID NO:131, positions 21 to 446 of SEQ ID NO:132, positions 21 to 435 of SEQ ID NO:133, positions 22 to 448 of SEQ ID NO:134, positions 23 to 433 of SEQ ID NO:135, positions 23 to 434 of SEQ ID NO:136, positions 23 to 435 of SEQ ID NO:137, positions 23 to 435 of SEQ ID NO:138, positions 20 to 445 of SEQ ID NO:139, positions 20 to 437 of SEQ ID NO:140, positions 21 to 435 of SEQ ID NO:141, positions 20 to 437 of SEQ ID NO:142, positions 21 to 435 of SEQ ID NO:143, positions 26 to 435 of SEQ ID NO:144, positions 23 to 435 of SEQ ID NO:145, positions 24 to 443 of SEQ ID NO:146, positions 20 to 445 of SEQ ID NO:147, positions 21 to 441 of SEQ ID NO:148, and positions 20 to 437 of SEQ ID NO:149.
  • The CBDs are particularly involved in the hydrolysis of crystalline cellulose. It has been shown that the ability of cellobiohydrolases to degrade crystalline cellulose decreases when the CBD is absent (Linder and Teeri, 1997, Journal of Biotechnol. 57:15-28). The variant CBH I polypeptides of the disclosure can further include a CBD. Exemplary CBDs comprise amino acid sequences corresponding to positions 494 to 529 of SEQ ID NO:1, positions 480 to 514 of SEQ ID NO:2, positions 494 to 529 of SEQ ID NO:3, positions 491 to 526 of SEQ ID NO:5, positions 477 to 512 of SEQ ID NO:6, positions 497 to 532 of SEQ ID NO:7, positions 504 to 539 of SEQ ID NO:8, positions 486 to 521 of SEQ ID NO:13, positions 556 to 596 of SEQ ID NO:15, positions 490 to 525 of SEQ ID NO:18, positions 495 to 530 of SEQ ID NO:20, positions 471 to 506 of SEQ ID NO:23, positions 481 to 516 of SEQ ID NO:27, positions 480 to 514 of SEQ ID NO:30, positions 495 to 529 of SEQ ID NO:35, positions 493 to 528 of SEQ ID NO:36, positions 477 to 512 of SEQ ID NO:38, positions 547 to 586 of SEQ ID NO:39, positions 475 to 510 of SEQ ID NO:40, positions 479 to 513 of SEQ ID NO:41, positions 506 to 541 of SEQ ID NO:42, positions 481 to 516 of SEQ ID NO:43, positions 503 to 537 of SEQ ID NO:45, positions 488 to 523 of SEQ ID NO:46, positions 476 to 511 of SEQ ID NO:48, positions 488 to 523 of SEQ ID NO:49, positions 479 to 513 of SEQ ID NO:50, positions 500 to 535 of SEQ ID NO:52, positions 493 to 528 of SEQ ID NO:55, positions 479 to 514 of SEQ ID NO:58, positions 494 to 529 of SEQ ID NO:60, positions 490 to 525 of SEQ ID NO:61, positions 497 to 532 of SEQ ID NO:62, positions 475 to 510 of SEQ ID NO:64, positions 477 to 512 of SEQ ID NO:65, positions 486 to 521 of SEQ ID NO:66, positions 470 to 505 of SEQ ID NO:67, positions 491 to 526 of SEQ ID NO:68, positions 476 to 511 of SEQ ID NO:69, positions 480 to 514 of SEQ ID NO:73, positions 506 to 540 of SEQ ID NO:74, positions 471 to 504 of SEQ ID NO:76, positions 501 to 536 of SEQ ID NO:78, positions 473 to 508 of SEQ ID NO:79, positions 481 to 516 of SEQ ID NO:83, positions 488 to 523 of SEQ ID NO:86, positions 475 to 510 of SEQ ID NO:92, positions 468 to 504 of SEQ ID NO:93, positions 501 to 536 of SEQ ID NO:96, positions 482 to 517 of SEQ ID NO:98, positions 481 to 516 of SEQ ID NO:99, positions 488 to 523 of SEQ ID NO:100, positions 472 to 507 of SEQ ID NO:101, positions 481 to 516 of SEQ ID NO:102, positions 471 to 505 of SEQ ID NO:105, positions 481 to 516 of SEQ ID NO:106, positions 495 to 530 of SEQ ID NO:107, positions 488 to 523 of SEQ ID NO:111, positions 478 to 513 of SEQ ID NO:112, positions 501 to 536 of SEQ ID NO:113, positions 491 to 526 of SEQ ID NO:115, and positions 503 to 538 of SEQ ID NO:116.
  • The CD and CBD are often connected via a linker. Exemplary linker sequences correspond to positions 456 to 493 of SEQ ID NO:1, positions 445 to 479 of SEQ ID NO:2, positions 456 to 493 of SEQ ID NO:3, positions 458 to 490 of SEQ ID NO:5, positions 449 to 476 of SEQ ID NO:6, positions 461 to 496 of SEQ ID NO:7, positions 461 to 503 of SEQ ID NO:8, positions 446 to 485 of SEQ ID NO:13, positions 444 to 555 of SEQ ID NO:15, positions 450 to 489 of SEQ ID NO:18, positions 450 to 494 of SEQ ID NO:20, positions 448 to 470 of SEQ ID NO:23, positions 443 to 480 of SEQ ID NO:27, positions 445 to 479 of SEQ ID NO:30, positions 460 to 494 of SEQ ID NO:35, positions 451 to 492 of SEQ ID NO:36, positions 449 to 476 of SEQ ID NO:38, positions 444 to 546 of SEQ ID NO:39, positions 443 to 474 of SEQ ID NO:40, positions 445 to 478 of SEQ ID NO:41, positions 458 to 505 of SEQ ID NO:42, positions 450 to 480 of SEQ ID NO:43, positions 457 to 502 of SEQ ID NO:45, positions 452 to 487 of SEQ ID NO:46, positions 449 to 475 of SEQ ID NO:48, positions 452 to 487 of SEQ ID NO:49, positions 445 to 478 of SEQ ID NO:50, positions 462 to 499 of SEQ ID NO:52, positions 449 to 492 of SEQ ID NO:55, positions 449 to 478 of SEQ ID NO:58, positions 456 to 493 of SEQ ID NO:60, positions 450 to 489 of SEQ ID NO:61, positions 450 to 496 of SEQ ID NO:62, positions 449 to 474 of SEQ ID NO:64, positions 452 to 476 of SEQ ID NO:65, positions 448 to 485 of SEQ ID NO:66, positions 425 to 469 of SEQ ID NO:67, positions 449 to 490 of SEQ ID NO:68, positions 444 to 475 of SEQ ID NO:69, positions 445 to 479 of SEQ ID NO:73, positions 459 to 505 of SEQ ID NO:74, positions 436 to 470 of SEQ ID NO:76, positions 458 to 500 of SEQ ID NO:78, positions 449 to 472 of SEQ ID NO:79, positions 443 to 480 of SEQ ID NO:83, positions 448 to 487 of SEQ ID NO:86, positions 443 to 474 of SEQ ID NO:92, positions 437 to 467 of SEQ ID NO:93, positions 473 to 500 of SEQ ID NO:96, positions 448 to 481 of SEQ ID NO:98, positions 451 to 480 of SEQ ID NO:99, positions 452 to 487 of SEQ ID NO:100, positions 449 to 471 of SEQ ID NO:101, positions 443 to 480 of SEQ ID NO:102, positions 441 to 470 of SEQ ID NO:105, positions 440 to 480 of SEQ ID NO:106, positions 461 to 494 of SEQ ID NO:107, positions 448 to 487 of SEQ ID NO:111, positions 450 to 478 of SEQ ID NO:112, positions 458 to 500 of SEQ ID NO:113, positions 449 to 490 of SEQ ID NO:115, and positions 449 to 502 of SEQ ID NO:116.
  • Because CBH I polypeptides are modular, the CBDs, CDs and linkers of different CBH I polypeptides, such as the exemplary CBH I polypeptides of Table 1, can be used interchangeably. However, in a preferred embodiment, the CBDs, CDs and linkers of a variant CBH I of the disclosure originate from the same polypeptide.
  • The variant CBH I polypeptides of the disclosure preferably have at least a two-fold reduction of product inhibition, such that cellobiose has an IC50 towards the variant CBH I that is at least 2-fold the IC50 of the corresponding reference CBH I, e.g., CBH I lacking the R268 substitution and/or R411 substitution. More preferably the IC50 of cellobiose towards the variant CBH I is at least 3-fold, at least 5-fold, at least 8-fold, at least 10-fold, at least 12-fold or at least 15-fold the IC50 of the corresponding reference CBH I. In specific embodiments the IC50 of cellobiose towards the variant CBH I is ranges from 2-fold to 15-fold, from 2-fold to 10-fold, from 3-fold to 10-fold, from 5-fold to 12-fold, from 4-fold to 12-fold, from 5-fold to 10-fold, from 5-fold to 12-fold, from 2-fold to 8-fold, or from 8-fold to 20-fold the IC50 of the corresponding reference CBH I. The IC50 can be determined in a phosphoric acid swollen cellulose (“PASC”) assay (Du et al., 2010, Applied Biochemistry and Biotechnology 161:313-317) or a methylumbelliferyl lactoside (“MUL”) assay (van Tilbeurgh and Claeyssens, 1985, FEBS Letts. 187(2):283-288), as exemplified in the Examples below.
  • The variant CBH I polypeptides of the disclosure preferably have a cellobiohydrolase activity that is at least 30% the cellobiohydrolase activity of the corresponding reference CBH I, e.g., CBH I lacking the R268 substitution and/or R411 substitution. More preferably, the cellobiohydrolase activity of the variant CBH I is at least 40%, at least 50%, at least 60% or at least 70% the cellobiohydrolase activity of the corresponding reference CBH I. In specific embodiments the IC50 cellobiohydrolase activity of the variant CBH I is ranges from 30% to 80%, from 40% to 70%, 30% to 60%, from 50% to 80% or from 60% to 80% of the cellobiohydrolase activity of the corresponding reference CBH I. Assays for cellobiohydrolase activity are described, for example, in Becker et al., 2011, Biochem J. 356:19-30 and Mitsuishi et al., 1990, FEBS Letts. 275:135-138, each of which is expressly incorporated by reference herein. The ability of CBH I to hydrolyze isolated soluble and insoluble substrates can also be measured using assays described in Srisodsuk et al., 1997, J. Biotech. 57:4957 and Nidetzky and Claeyssens, 1994, Biotech. Bioeng. 44:961-966. Substrates useful for assaying cellobiohydrolase activity include crystalline cellulose, filter paper, phosphoric acid swollen cellulose, cellooligosaccharides, methylumbelliferyl lactoside, methylumbelliferyl cellobioside, orthonitrophenyl lactoside, paranitrophenyl lactoside, orthonitrophenyl cellobioside, paranitrophenyl cellobioside. Cellobiohydrolase activity can be measured in an assay utilizing PASC as the substrate and a calcofluor white detection method (Du et al., 2010, Applied Biochemistry and Biotechnology 161:313-317). PASC can be prepared as described by Walseth, 1952, TAPPI 35:228-235 and Wood, 1971, Biochem. J. 121:353-362.
  • Other than said R268 and/or R411 substitution, the variant CBH I polypeptides of the disclosure preferably:
      • comprise an amino acid sequence having at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more, or complete (100%) sequence identity to a CD of a reference CBH I exemplified in Table 1 (i.e., a CD comprising an amino acid sequence corresponding to positions 26 to 455 of SEQ ID NO:1, positions 18 to 444 of SEQ ID NO:2, positions 26 to 455 of SEQ ID NO:3, positions 1 to 427 of SEQ ID NO:4, positions 24 to 457 of SEQ ID NO:5, positions 18 to 448 of SEQ ID NO:6, positions 27 to 460 of SEQ ID NO:7, positions 27 to 460 of SEQ ID NO:8, positions 20 to 449 of SEQ ID NO:9, positions 1 to 424 of SEQ ID NO:10, positions 18 to 447 of SEQ ID NO:11, positions 18 to 434 of SEQ ID NO:12, positions 18 to 445 of SEQ ID NO:13, positions 19 to 454 of SEQ ID NO:14, positions 19 to 443 of SEQ ID NO:15, positions 2 to 426 of SEQ ID NO:16, positions 23 to 446 of SEQ ID NO:17, positions 19 to 449 of SEQ ID NO:18, positions 23 to 446 of SEQ ID NO:19, positions 19 to 449 of SEQ ID NO:20, positions 2 to 416 of SEQ ID NO:21, positions 19 to 454 of SEQ ID NO:22, positions 19 to 447 of SEQ ID NO:23, positions 19 to 447 of SEQ ID NO:24, positions 20 to 443 of SEQ ID NO:25, positions 18 to 447 of SEQ ID NO:26, positions 19 to 442 of SEQ ID NO:27, positions 18 to 451 of SEQ ID NO:28, positions 23 to 446 of SEQ ID NO:29, positions 18 to 444 of SEQ ID NO:30, positions 18 to 451 of SEQ ID NO:31, positions 18 to 447 of SEQ ID NO:32, positions 19 to 449 of SEQ ID NO:33, positions 18 to 447 of SEQ ID NO:34, positions 26 to 459 of SEQ ID NO:35, positions 19 to 450 of SEQ ID NO:36, positions 19 to 453 of SEQ ID NO:37, positions 18 to 448 of SEQ ID NO:38, positions 19 to 443 of SEQ ID NO:39, positions 19 to 442 of SEQ ID NO:40, positions 18 to 444 of SEQ ID NO:41, positions 24 to 457 of SEQ ID NO:42, positions 18 to 449 of SEQ ID NO:43, positions 19 to 453 of SEQ ID NO:44, positions 26 to 456 of SEQ ID NO:45, positions 19 to 451 of SEQ ID NO:46, positions 18 to 443 of SEQ ID NO:47, positions 18 to 448 of SEQ ID NO:48, positions 19 to 451 of SEQ ID NO:49, positions 18 to 444 of SEQ ID NO:50, positions 2 to 419 of SEQ ID NO:51, positions 27 to 461 of SEQ ID NO:52, positions 21 to 445 of SEQ ID NO:53, positions 19 to 449 of SEQ ID NO:54, positions 19 to 448 of SEQ ID NO:55, positions 18 to 443 of SEQ ID NO:56, positions 20 to 443 of SEQ ID NO:57, positions 18 to 448 of SEQ ID NO:58, positions 18 to 447 of SEQ ID NO:59, positions 26 to 455 of SEQ ID NO:60, positions 19 to 449 of SEQ ID NO:61, positions 19 to 449 of SEQ ID NO:62, positions 26 to 460 of SEQ ID NO:63, positions 18 to 448 of SEQ ID NO:64, positions 19 to 451 of SEQ ID NO:65, positions 19 to 447 of SEQ ID NO:66, positions 1 to 424 of SEQ ID NO:67, positions 19 to 448 of SEQ ID NO:68, positions 19 to 443 of SEQ ID NO:69, positions 23 to 447 of SEQ ID NO:70, positions 17 to 448 of SEQ ID NO:71, positions 19 to 449 of SEQ ID NO:72, positions 18 to 444 of SEQ ID NO:73, positions 23 to 458 of SEQ ID NO:74, positions 20 to 452 of SEQ ID NO:75, positions 18 to 435 of SEQ ID NO:76, positions 18 to 446 of SEQ ID NO:77, positions 22 to 457 of SEQ ID NO:78, positions 18 to 448 of SEQ ID NO:79, positions 1 to 431 of SEQ ID NO:80, positions 19 to 453 of SEQ ID NO:81, positions 21 to 440 of SEQ ID NO:82, positions 19 to 442 of SEQ ID NO:83, positions 18 to 448 of SEQ ID NO:84, positions 17 to 446 of SEQ ID NO:85, positions 18 to 447 of SEQ ID NO:86, positions 18 to 443 of SEQ ID NO:87, positions 23 to 448 of SEQ ID NO:88, positions 18 to 451 of SEQ ID NO:89, positions 21 to 447 of SEQ ID NO:90, positions 18 to 444 of SEQ ID NO:91, positions 19 to 442 of SEQ ID NO:92, positions 20 to 436 of SEQ ID NO:93, positions 18 to 450 of SEQ ID NO:94, positions 22 to 453 of SEQ ID NO:95, positions 16 to 472 of SEQ ID NO:96, positions 21 to 445 of SEQ ID NO:97, positions 19 to 447 of SEQ ID NO:98, positions 19 to 450 of SEQ ID NO:99, positions 19 to 451 of SEQ ID NO:100, positions 18 to 448 of SEQ ID NO:101, positions 19 to 442 of SEQ ID NO:102, positions 20 to 457 of SEQ ID NO:103, positions 19 to 454 of SEQ ID NO:104, positions 18 to 440 of SEQ ID NO:105, positions 18 to 439 of SEQ ID NO:106, positions 27 to 460 of SEQ ID NO:107, positions 23 to 446 of SEQ ID NO:108, positions 17 to 446 of SEQ ID NO:109, positions 21 to 447 of SEQ ID NO:110, positions 19 to 447 of SEQ ID NO:111, positions 18 to 449 of SEQ ID NO:112, positions 22 to 457 of SEQ ID NO:113, positions 18 to 445 of SEQ ID NO:114, positions 18 to 448 of SEQ ID NO:115, positions 18 to 448 of SEQ ID NO:116, positions 23 to 435 of SEQ ID NO:117, positions 21 to 442 of SEQ ID NO:118, positions 23 to 435 of SEQ ID NO:119, positions 20 to 445 of SEQ ID NO:120, positions 21 to 443 of SEQ ID NO:121, positions 20 to 445 of SEQ ID NO:122, positions 23 to 443 of SEQ ID NO:123, positions 20 to 445 of SEQ ID NO:124, positions 21 to 435 of SEQ ID NO:125, positions 20 to 437 of SEQ ID NO:126, positions 21 to 442 of SEQ ID NO:127, positions 23 to 434 of SEQ ID NO:128, positions 20 to 444 of SEQ ID NO:129, positions 21 to 435 of SEQ ID NO:130, positions 20 to 445 of SEQ ID NO:131, positions 21 to 446 of SEQ ID NO:132, positions 21 to 435 of SEQ ID NO:133, positions 22 to 448 of SEQ ID NO:134, positions 23 to 433 of SEQ ID NO:135, positions 23 to 434 of SEQ ID NO:136, positions 23 to 435 of SEQ ID NO:137, positions 23 to 435 of SEQ ID NO:138, positions 20 to 445 of SEQ ID NO:139, positions 20 to 437 of SEQ ID NO:140, positions 21 to 435 of SEQ ID NO:141, positions 20 to 437 of SEQ ID NO:142, positions 21 to 435 of SEQ ID NO:143, positions 26 to 435 of SEQ ID NO:144, positions 23 to 435 of SEQ ID NO:145, positions 24 to 443 of SEQ ID NO:146, positions 20 to 445 of SEQ ID NO:147, positions 21 to 441 of SEQ ID NO:148, and positions 20 to 437 of SEQ ID NO:149 (preferably the CD corresponding to positions 26-455 of SEQ ID NO:1 or 18-444 of SEQ ID NO:2); and/or
      • comprise an amino acid sequence having at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more, or complete (100%) sequence identity to a mature polypeptide of a reference CBH I exemplified in Table 1 (i.e., a mature protein comprising an amino acid sequence corresponding to positions 26 to 529 of SEQ ID NO:1, positions 18 to 514 of SEQ ID NO:2, positions 26 to 529 of SEQ ID NO:3, positions 1 to 427 of SEQ ID NO:4, positions 24 to 526 of SEQ ID NO:5, positions 18 to 512 of SEQ ID NO:6, positions 27 to 532 of SEQ ID NO:7, positions 27 to 539 of SEQ ID NO:8, positions 20 to 449 of SEQ ID NO:9, positions 1 to 424 of SEQ ID NO:10, positions 18 to 447 of SEQ ID NO:11, positions 18 to 434 of SEQ ID NO:12, positions 18 to 521 of SEQ ID NO:13, positions 19 to 454 of SEQ ID NO:14, positions 19 to 596 of SEQ ID NO:15, positions 2 to 426 of SEQ ID NO:16, positions 23 to 446 of SEQ ID NO:17, positions 19 to 525 of SEQ ID NO:18, positions 23 to 446 of SEQ ID NO:19, positions 19 to 530 of SEQ ID NO:20, positions 2 to 416 of SEQ ID NO:21, positions 19 to 454 of SEQ ID NO:22, positions 19 to 506 of SEQ ID NO:23, positions 19 to 447 of SEQ ID NO:24, positions 20 to 443 of SEQ ID NO:25, positions 18 to 447 of SEQ ID NO:26, positions 19 to 516 of SEQ ID NO:27, positions 18 to 451 of SEQ ID NO:28, positions 23 to 446 of SEQ ID NO:29, positions 18 to 514 of SEQ ID NO:30, positions 18 to 451 of SEQ ID NO:31, positions 18 to 447 of SEQ ID NO:32, positions 19 to 449 of SEQ ID NO:33, positions 18 to 447 of SEQ ID NO:34, positions 26 to 529 of SEQ ID NO:35, positions 19 to 528 of SEQ ID NO:36, positions 19 to 453 of SEQ ID NO:37, positions 18 to 512 of SEQ ID NO:38, positions 19 to 586 of SEQ ID NO:39, positions 19 to 510 of SEQ ID NO:40, positions 18 to 513 of SEQ ID NO:41, positions 24 to 541 of SEQ ID NO:42, positions 18 to 516 of SEQ ID NO:43, positions 19 to 453 of SEQ ID NO:44, positions 26 to 537 of SEQ ID NO:45, positions 19 to 523 of SEQ ID NO:46, positions 18 to 443 of SEQ ID NO:47, positions 18 to 511 of SEQ ID NO:48, positions 19 to 523 of SEQ ID NO:49, positions 18 to 513 of SEQ ID NO:50, positions 2 to 419 of SEQ ID NO:51, positions 27 to 535 of SEQ ID NO:52, positions 21 to 445 of SEQ ID NO:53, positions 19 to 449 of SEQ ID NO:54, positions 19 to 528 of SEQ ID NO:55, positions 18 to 443 of SEQ ID NO:56, positions 20 to 443 of SEQ ID NO:57, positions 18 to 514 of SEQ ID NO:58, positions 18 to 447 of SEQ ID NO:59, positions 26 to 529 of SEQ ID NO:60, positions 19 to 525 of SEQ ID NO:61, positions 19 to 532 of SEQ ID NO:62, positions 26 to 460 of SEQ ID NO:63, positions 18 to 510 of SEQ ID NO:64, positions 19 to 512 of SEQ ID NO:65, positions 19 to 521 of SEQ ID NO:66, positions 1 to 505 of SEQ ID NO:67, positions 19 to 526 of SEQ ID NO:68, positions 19 to 511 of SEQ ID NO:69, positions 23 to 447 of SEQ ID NO:70, positions 17 to 448 of SEQ ID NO:71, positions 19 to 449 of SEQ ID NO:72, positions 18 to 514 of SEQ ID NO:73, positions 23 to 540 of SEQ ID NO:74, positions 20 to 452 of SEQ ID NO:75, positions 18 to 504 of SEQ ID NO:76, positions 18 to 446 of SEQ ID NO:77, positions 22 to 536 of SEQ ID NO:78, positions 18 to 508 of SEQ ID NO:79, positions 1 to 431 of SEQ ID NO:80, positions 19 to 453 of SEQ ID NO:81, positions 21 to 440 of SEQ ID NO:82, positions 19 to 516 of SEQ ID NO:83, positions 18 to 448 of SEQ ID NO:84, positions 17 to 446 of SEQ ID NO:85, positions 18 to 523 of SEQ ID NO:86, positions 18 to 443 of SEQ ID NO:87, positions 23 to 448 of SEQ ID NO:88, positions 18 to 451 of SEQ ID NO:89, positions 21 to 447 of SEQ ID NO:90, positions 18 to 444 of SEQ ID NO:91, positions 19 to 510 of SEQ ID NO:92, positions 20 to 504 of SEQ ID NO:93, positions 18 to 450 of SEQ ID NO:94, positions 22 to 453 of SEQ ID NO:95, positions 16 to 536 of SEQ ID NO:96, positions 21 to 445 of SEQ ID NO:97, positions 19 to 517 of SEQ ID NO:98, positions 19 to 516 of SEQ ID NO:99, positions 19 to 523 of SEQ ID NO:100, positions 18 to 507 of SEQ ID NO:101, positions 19 to 516 of SEQ ID NO:102, positions 20 to 457 of SEQ ID NO:103, positions 19 to 454 of SEQ ID NO:104, positions 18 to 505 of SEQ ID NO:105, positions 18 to 516 of SEQ ID NO:106, positions 27 to 530 of SEQ ID NO:107, positions 23 to 446 of SEQ ID NO:108, positions 17 to 446 of SEQ ID NO:109, positions 21 to 447 of SEQ ID NO:110, positions 19 to 523 of SEQ ID NO:111, positions 18 to 513 of SEQ ID NO:112, positions 22 to 536 of SEQ ID NO:113, positions 18 to 445 of SEQ ID NO:114, positions 18 to 526 of SEQ ID NO:115, positions 18 to 538 of SEQ ID NO:116, positions 23 to 435 of SEQ ID NO:117, positions 21 to 442 of SEQ ID NO:118, positions 23 to 435 of SEQ ID NO:119, positions 20 to 445 of SEQ ID NO:120, positions 21 to 443 of SEQ ID NO:121, positions 20 to 445 of SEQ ID NO:122, positions 23 to 443 of SEQ ID NO:123, positions 20 to 445 of SEQ ID NO:124, positions 21 to 435 of SEQ ID NO:125, positions 20 to 437 of SEQ ID NO:126, positions 21 to 442 of SEQ ID NO:127, positions 23 to 434 of SEQ ID NO:128, positions 20 to 444 of SEQ ID NO:129, positions 21 to 435 of SEQ ID NO:130, positions 20 to 445 of SEQ ID NO:131, positions 21 to 446 of SEQ ID NO:132, positions 21 to 435 of SEQ ID NO:133, positions 22 to 448 of SEQ ID NO:134, positions 23 to 433 of SEQ ID NO:135, positions 23 to 434 of SEQ ID NO:136, positions 23 to 435 of SEQ ID NO:137, positions 23 to 435 of SEQ ID NO:138, positions 20 to 445, of SEQ ID NO:139, positions 20 to 437 of SEQ ID NO:140, positions 21 to 435 of SEQ ID NO:141, positions 20 to 437 of SEQ ID NO:142, positions 21 to 435 of SEQ ID NO:143, positions 26 to 435 of SEQ ID NO:144, positions 23 to 435 of SEQ ID NO:145, positions 24 to 443 of SEQ ID NO:146, positions 20 to 445 of SEQ ID NO:147, positions 21 to 441 of SEQ ID NO:148, and positions 20 to 437 of SEQ ID NO:149, preferably the mature polypeptide corresponding to positions 26-529 of SEQ ID NO:1 or 18-514 of SEQ ID NO:2).
  • An example of an algorithm that is suitable for determining sequence similarity is the BLAST algorithm, which is described in Altschul et al., 1990, J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. These initial neighborhood word hits act as starting points to find longer HSPs containing them. The word hits are expanded in both directions along each of the two sequences being compared for as far as the cumulative alignment score can be increased. Extension of the word hits is stopped when: the cumulative alignment score falls off by the quantity X from a maximum achieved value; the cumulative score goes to zero or below; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff & Henikoff, 1992, Proc. Nat'l. Acad. Sci. USA 89:10915-10919) alignments (B) of 50, expectation (E) of 10, M'S, N′-4, and a comparison of both strands.
  • Most CBH I polypeptides are secreted and are therefore expressed with a signal sequence that is cleaved upon secretion of the polypeptide from the cell. Accordingly, in certain aspects, the variant CBH I polypeptides of the disclosure further include a signal sequence. Exemplary signal sequences comprise amino acid sequences corresponding to positions 1 to 25 of SEQ ID NO:1, positions 1 to 17 of SEQ ID NO:2, positions 1 to 25 of SEQ ID NO:3, positions 1 to 23 of SEQ ID NO:5, positions 1 to 17 of SEQ ID NO:6, positions 1 to 26 of SEQ ID NO:7, positions 1 to 27 of SEQ ID NO:8, positions 1 to 19 of SEQ ID NO:9, positions 1 to 17 of SEQ ID NO:11, positions 1 to 17 of SEQ ID NO:12, positions 1 to 17 of SEQ ID NO:13, positions 1 to 18 of SEQ ID NO:14, positions 1 to 18 of SEQ ID NO:15, positions 1 to 22 of SEQ ID NO:17, positions 1 to 18 of SEQ ID NO:18, positions 1 to 22 of SEQ ID NO:19, positions 1 to 18 of SEQ ID NO:20, positions 1 to 18 of SEQ ID NO:22, positions 1 to 18 of SEQ ID NO:23, positions 1 to 18 of SEQ ID NO:24, positions 1 to 19 of SEQ ID NO:25, positions 1 to 17 of SEQ ID NO:26, positions 1 to 18 of SEQ ID NO:27, positions 1 to 17 of SEQ ID NO:28, positions 1 to 22 of SEQ ID NO:29, positions 1 to 18 of SEQ ID NO:30, positions 1 to 17 of SEQ ID NO:31, positions 1 to 17 of SEQ ID NO:32, positions 1 to 18 of SEQ ID NO:33, positions 1 to 17 of SEQ ID NO:34, positions 1 to 25 of SEQ ID NO:35, positions 1 to 18 of SEQ ID NO:36, positions 1 to 18 of SEQ ID NO:37, positions 1 to 17 of SEQ ID NO:38, positions 1 to 18 of SEQ ID NO:39, positions 1 to 18 of SEQ ID NO:40, positions 1 to 17 of SEQ ID NO:41, positions 1 to 23 of SEQ ID NO:42, positions 1 to 17 of SEQ ID NO:43, positions 1 to 18 of SEQ ID NO:44, positions 1 to 25 of SEQ ID NO:45, positions 1 to 18 of SEQ ID NO:46, positions 1 to 17 of SEQ ID NO:47, positions 1 to 17 of SEQ ID NO:48, positions 1 to 18 of SEQ ID NO:49, positions 1 to 17 of SEQ ID NO:50, positions 1 to 26 of SEQ ID NO:52, positions 1 to 20 of SEQ ID NO:53, positions 1 to 18 of SEQ ID NO:54, positions 1 to 18 of SEQ ID NO:55, positions 1 to 17 of SEQ ID NO:56, positions 1 to 19 of SEQ ID NO:57, positions 1 to 17 of SEQ ID NO:58, positions 1 to 17 of SEQ ID NO:59, positions 1 to 25 of SEQ ID NO:60, positions 1 to 18 of SEQ ID NO:61, positions 1 to 18 of SEQ ID NO:62, positions 1 to 25 of SEQ ID NO:63, positions 1 to 17 of SEQ ID NO:64, positions 1 to 18 of SEQ ID NO:65, positions 1 to 18 of SEQ ID NO:66, positions 1 to 18 of SEQ ID NO:68, positions 1 to 18 of SEQ ID NO:69, positions 1 to 23 of SEQ ID NO:70, positions 1 to 17 of SEQ ID NO:71, positions 1 to 18 of SEQ ID NO:72, positions 1 to 17 of SEQ ID NO:73, positions 1 to 22 of SEQ ID NO:74, positions 1 to 19 of SEQ ID NO:75, positions 1 to 17 of SEQ ID NO:76, positions 1 to 17 of SEQ ID NO:77, positions 1 to 21 of SEQ ID NO:78, positions 1 to 18 of SEQ ID NO:79, positions 1 to 18 of SEQ ID NO:81, positions 1 to 20 of SEQ ID NO:82, positions 1 to 18 of SEQ ID NO:83, positions 1 to 17 of SEQ ID NO:84, positions 1 to 16 of SEQ ID NO:85, positions 1 to 17 of SEQ ID NO:86, positions 1 to 17 of SEQ ID NO:87, positions 1 to 22 of SEQ ID NO:88, positions 1 to 17 of SEQ ID NO:89, positions 1 to 20 of SEQ ID NO:90, positions 1 to 17 of SEQ ID NO:91, positions 1 to 18 of SEQ ID NO:92, positions 1 to 19 of SEQ ID NO:93, positions 1 to 17 of SEQ ID NO:94, positions 1 to 21 of SEQ ID NO:95, positions 1 to 15 of SEQ ID NO:96, positions 1 to 20 of SEQ ID NO:97, positions 1 to 18 of SEQ ID NO:98, positions 1 to 18 of SEQ ID NO:99, positions 1 to 18 of SEQ ID NO:100, positions 1 to 17 of SEQ ID NO:101, positions 1 to 18 of SEQ ID NO:102, positions 1 to 19 of SEQ ID NO:103, positions 1 to 18 of SEQ ID NO:104, positions 1 to 17 of SEQ ID NO:105, positions 1 to 17 of SEQ ID NO:106, positions 1 to 26 of SEQ ID NO:107, positions 1 to 22 of SEQ ID NO:108, positions 1 to 16 of SEQ ID NO:109, positions 1 to 20 of SEQ ID NO:110, positions 1 to 18 of SEQ ID NO:111, positions 1 to 17 of SEQ ID NO:112, positions 1 to 21 of SEQ ID NO:113, positions 1 to 17 of SEQ ID NO:114, positions 1 to 17 of SEQ ID NO:115, positions 1 to 18 of SEQ ID NO:116, positions 1 to 22 of SEQ ID NO:117, positions 1 to 20 of SEQ ID NO:118, positions 1 to 22 of SEQ ID NO:119, positions 1 to 19 of SEQ ID NO:120, positions 1 to 20 of SEQ ID NO:121, positions 1 to 19 of SEQ ID NO:122, positions 1 to 22 of SEQ ID NO:123, positions 1 to 19 of SEQ ID NO:124, positions 1 to 20 of SEQ ID NO:125, positions 1 to 19 of SEQ ID NO:126, positions 1 to 21 of SEQ ID NO:127, positions 1 to 22 of SEQ ID NO:128, positions 1 to 19 of SEQ ID NO:129, positions 1 to 20 of SEQ ID NO:130, positions 1 to 19 of SEQ ID NO:131, positions 1 to 20 of SEQ ID NO:132, positions 1 to 20 of SEQ ID NO:133, positions 1 to 21 of SEQ ID NO:134, positions 1 to 22 of SEQ ID NO:135, positions 1 to 22 of SEQ ID NO:136, positions 1 to 22 of SEQ ID NO:137, positions 1 to 22 of SEQ ID NO:138, positions 1 to 19 of SEQ ID NO:139, positions 1 to 19 of SEQ ID NO:140, positions 1 to 20 of SEQ ID NO:141, positions 1 to 19 of SEQ ID NO:142, positions 1 to 20 of SEQ ID NO:143, positions 1 to 25 of SEQ ID NO:144, positions 1 to 22 of SEQ ID NO:145, positions 1 to 23 of SEQ ID NO:146, positions 1 to 19 of SEQ ID NO:147, positions 1 to 20 of SEQ ID NO:148, and positions 1 to 19 of SEQ ID NO:149.
  • Recombinant Expression of Variant CBH I Polypeptides Cell Culture Systems
  • The disclosure also provides recombinant cells engineered to express variant CBH I polypeptides. Suitably, the variant CBH I polypeptide is encoded by a nucleic acid operably linked to a promoter.
  • Where recombinant expression in a filamentous fungal host is desired, the promoter can be a filamentous fungal promoter. The nucleic acids can be, for example, under the control of heterologous promoters. The variant CBH I polypeptides can also be expressed under the control of constitutive or inducible promoters. Examples of promoters that can be used include, but are not limited to, a cellulase promoter, a xylanase promoter, the 1818 promoter (previously identified as a highly expressed protein by EST mapping Trichoderma). For example, the promoter can suitably be a cellobiohydrolase, endoglucanase, or β-glucosidase promoter. A particularly suitable promoter can be, for example, a T. reesei cellobiohydrolase, endoglucanase, or β-glucosidase promoter. Non-limiting examples of promoters include a cbh1, cbh2, egl1, eg12, eg13, eg14, eg15, pki1, gpdl, xyn1, or xyn2 promoter.
  • Suitable host cells include cells of any microorganism (e.g., cells of a bacterium, a protist, an alga, a fungus (e.g., a yeast or filamentous fungus), or other microbe), and are preferably cells of a bacterium, a yeast, or a filamentous fungus.
  • Suitable host cells of the bacterial genera include, but are not limited to, cells of Escherichia, Bacillus, Lactobacillus, Pseudomonas, and Streptomyces. Suitable cells of bacterial species include, but are not limited to, cells of Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Lactobacillus brevis, Pseudomonas aeruginosa, and Streptomyces lividans.
  • Suitable host cells of the genera of yeast include, but are not limited to, cells of Saccharomyces, Schizosaccharomyces, Candida, Hansenula, Pichia, Kluyveromyces, and Phaffia. Suitable cells of yeast species include, but are not limited to, cells of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Hansenula polymorphs, Pichia pastoris, P. canadensis, Kluyveromyces marxianus, and Phaffia rhodozyma.
  • Suitable host cells of filamentous fungi include all filamentous forms of the subdivision Eumycotina. Suitable cells of filamentous fungal genera include, but are not limited to, cells of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysoporium, Coprinus, Coriolus, Corynascus, Chaetomium, Cryptococcus, Filobasidium, Fusarium, Gibberella, Humicola, Hypocrea, Magnaporthe, Mucor, Myceliophthora, Mucor, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Scytaldium, Schizophyllum, Sporotrichum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, and Trichoderma. More preferably, the recombinant cell is a Trichoderma sp. (e.g., Trichoderma reesei), Penicillium sp., Humicola sp. (e.g., Humicola insolens); Aspergillus sp. (e.g., Aspergillus niger), Chrysosporium sp., Fusarium sp., or Hypocrea sp. Suitable cells can also include cells of various anamorph and teleomorph forms of these filamentous fungal genera.
  • Suitable cells of filamentous fungal species include, but are not limited to, cells of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophile, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum, Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, and Trichoderma viride.
  • The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the nucleic acid sequence encoding the variant CBH I polypeptide. Culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art. As noted, many references are available for the culture and production of many cells, including cells of bacterial and fungal origin. Cell culture media in general are set forth in Atlas and Parks (eds.), 1993, The Handbook of Microbiological Media, CRC Press, Boca Raton, Fla., which is incorporated herein by reference. For recombinant expression in filamentous fungal cells, the cells are cultured in a standard medium containing physiological salts and nutrients, such as described in Pourquie et al., 1988, Biochemistry and Genetics of Cellulose Degradation, eds. Aubert, et al., Academic Press, pp. 71-86; and Ilmen et al., 1997, Appl. Environ. Microbiol. 63:1298-1306. Culture conditions are also standard, e.g., cultures are incubated at 28° C. in shaker cultures or fermenters until desired levels of variant CBH I expression are achieved. Preferred culture conditions for a given filamentous fungus may be found in the scientific literature and/or from the source of the fungi such as the American Type Culture Collection (ATCC). After fungal growth has been established, the cells are exposed to conditions effective to cause or permit the expression of a variant CBH I.
  • In cases where a variant CBH I coding sequence is under the control of an inducible promoter, the inducing agent, e.g., a sugar, metal salt or antibiotics, is added to the medium at a concentration effective to induce variant CBH I expression.
  • In one embodiment, the recombinant cell is an Aspergillus niger, which is a useful strain for obtaining overexpressed polypeptide. For example A. niger var. awamori dgr246 is known to product elevated amounts of secreted cellulases (Goedegebuur et al., 2002, Curr. Genet. 41:89-98). Other strains of Aspergillus niger var awamori such as GCDAP3, GCDAP4 and GAP3-4 are known (Ward et al., 1993, Appl. Microbiol. Biotechnol. 39:738-743).
  • In another embodiment, the recombinant cell is a Trichoderma reesei, which is a useful strain for obtaining overexpressed polypeptide. For example, RL-P37, described by Sheir-Neiss et al., 1984, Appl. Microbiol. Biotechnol. 20:46-53, is known to secrete elevated amounts of cellulase enzymes. Functional equivalents of RL-P37 include Trichoderma reesei strain RUT-C30 (ATCC No. 56765) and strain QM9414 (ATCC No. 26921). It is contemplated that these strains would also be useful in overexpressing variant CBH I polypeptides.
  • Cells expressing the variant CBH I polypeptides of the disclosure can be grown under batch, fed-batch or continuous fermentations conditions. Classical batch fermentation is a closed system, wherein the compositions of the medium is set at the beginning of the fermentation and is not subject to artificial alternations during the fermentation. A variation of the batch system is a fed-batch fermentation in which the substrate is added in increments as the fermentation progresses. Fed-batch systems are useful when catabolite repression is likely to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium. Batch and fed-batch fermentations are common and well known in the art. Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned medium is removed simultaneously for processing. Continuous fermentation generally maintains the cultures at a constant high density where cells are primarily in log phase growth. Continuous fermentation systems strive to maintain steady state growth conditions. Methods for modulating nutrients and growth factors for continuous fermentation processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology.
  • Recombinant Expression in Plants
  • The disclosure provides transgenic plants and seeds that recombinantly express a variant CBH I polypeptide. The disclosure also provides plant products, e.g., oils, seeds, leaves, extracts and the like, comprising a variant CBH I polypeptide.
  • The transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot). The disclosure also provides methods of making and using these transgenic plants and seeds. The transgenic plant or plant cell expressing a variant CBH I can be constructed in accordance with any method known in the art. See, for example, U.S. Pat. No. 6,309,872. T. reesei CBH I has been successfully expressed in transgenic tobacco (Nicotiana tabaccum) and potato (Solanum tuberosum). See Hooker et al., 2000, in Glycosyl Hydrolases for Biomass Conversion, ACS Symposium Series, Vol. 769, Chapter 4, pp. 55-90.
  • In a particular aspect, the present disclosure provides for the expression of CBH I variants in transgenic plants or plant organs and methods for the production thereof. DNA expression constructs are provided for the transformation of plants with a nucleic acid encoding the variant CBH I polypeptide, preferably under the control of regulatory sequences which are capable of directing expression of the variant CBH I polypeptide. These regulatory sequences include sequences capable of directing transcription in plants, either constitutively, or in stage and/or tissue specific manners.
  • The expression of variant CBH I polypeptides in plants can be achieved by a variety of means. Specifically, for example, technologies are available for transforming a large number of plant species, including dicotyledonous species (e.g., tobacco, potato, tomato, Petunia, Brassica) and monocot species. Additionally, for example, strategies for the expression of foreign genes in plants are available. Additionally still, regulatory sequences from plant genes have been identified that are serviceable for the construction of chimeric genes that can be functionally expressed in plants and in plant cells (e.g., Klee, 1987, Ann. Rev. of Plant Phys. 38:467-486; Clark et al., 1990, Virology 179(2):640-7; Smith et al., 1990, Mol. Gen. Genet. 224(3):477-81.
  • The introduction of nucleic acids into plants can be achieved using several technologies including transformation with Agrobacterium tumefaciens or Agrobacterium rhizogenes. Non-limiting examples of plant tissues that can be transformed include protoplasts, microspores or pollen, and explants such as leaves, stems, roots, hypocotyls, and cotyls. Furthermore, DNA encoding a variant CBH I can be introduced directly into protoplasts and plant cells or tissues by microinjection, electroporation, particle bombardment, and direct DNA uptake.
  • Variant CBH I polypeptides can be produced in plants by a variety of expression systems. For instance, the use of a constitutive promoter such as the 35S promoter of Cauliflower Mosaic Virus (Guilley et al., 1982, Cell 30:763-73) is serviceable for the accumulation of the expressed protein in virtually all organs of the transgenic plant. Alternatively, promoters that are tissue-specific and/or stage-specific can be used (Higgins, 1984, Annu Rev. Plant Physiol. 35:191-221; Shotwell and Larkins, 1989, In: The Biochemistry of Plants Vol. 15 (Academic Press, San Diego: Stumpf and Conn, eds.), p. 297), permit expression of variant CBH I polypeptides in a target tissue and/or during a desired stage of development.
  • Compositions of Variant CBH I Polypeptides
  • In general, a variant CBH I polypeptide produced in cell culture is secreted into the medium and may be purified or isolated, e.g., by removing unwanted components from the cell culture medium. However, in some cases, a variant CBH I polypeptide may be produced in a cellular form necessitating recovery from a cell lysate. In such cases the variant CBH I polypeptide is purified from the cells in which it was produced using techniques routinely employed by those of skill in the art. Examples include, but are not limited to, affinity chromatography (Van Tilbeurgh et al., 1984, FEBS Lett. 169(2):215-218), ion-exchange chromatographic methods (Goyal et al., 1991, Bioresource Technology, 36:37-50; Fliess et al., 1983, Eur. J. Appl. Microbiol. Biotechnol. 17:314-318; Bhikhabhai et al., 1984, J. Appl. Biochem. 6:336-345; Ellouz et al., 1987, Journal of Chromatography, 396:307-317), including ion-exchange using materials with high resolution power (Medve et al., 1998, J. Chromatography A, 808:153-165), hydrophobic interaction chromatography (Tomaz and Queiroz, 1999, J. Chromatography A, 865:123-128), and two-phase partitioning (Brumbauer et al., 1999, Bioseparation 7:287-295).
  • The variant CBH I polypeptides of the disclosure are suitably used in cellulase compositions. Cellulases are known in the art as enzymes that hydrolyze cellulose (beta-1,4-glucan or beta D-glucosidic linkages) resulting in the formation of glucose, cellobiose, cellooligosaccharides, and the like. Cellulase enzymes have been traditionally divided into three major classes: endoglucanases (“EG”), exoglucanases or cellobiohydrolases (EC 3.2.1.91) (“CBH”) and beta-glucosidases (EC 3.2.1.21) (“BG”) (Knowles et al., 1987, TIBTECH 5:255-261; Schulein, 1988, Methods in Enzymology 160(25):234-243).
  • Certain fungi produce complete cellulase systems which include exo-cellobiohydrolases or CBH-type cellulases, endoglucanases or EG-type cellulases and β-glucosidases or BG-type cellulases (Schulein, 1988, Methods in Enzymology 160(25):234-243). Such cellulase compositions are referred to herein as “whole” cellulases. However, sometimes these systems lack CBH-type cellulases and bacterial cellulases also typically include little or no CBH-type cellulases. In addition, it has been shown that the EG components and CBH components synergistically interact to more efficiently degrade cellulose. See, e.g., Wood, 1985, Biochemical Society Transactions 13(2):407-410.
  • The cellulase compositions of the disclosure typically include, in addition to a variant CBH I polypeptide, one or more cellobiohydrolases, endoglucanases and/or β-glucosidases. In their crudest form, cellulase compositions contain the microorganism culture that produced the enzyme components. “Cellulase compositions” also refers to a crude fermentation product of the microorganisms. A crude fermentation is preferably a fermentation broth that has been separated from the microorganism cells and/or cellular debris (e.g., by centrifugation and/or filtration). In some cases, the enzymes in the broth can be optionally diluted, concentrated, partially purified or purified and/or dried. The variant CBH I polypeptide can be co-expressed with one or more of the other components of the cellulase composition or it can be expressed separately, optionally purified and combined with a composition comprising one or more of the other cellulase components.
  • When employed in cellulase compositions, the variant CBH I is generally present in an amount sufficient to allow release of soluble sugars from the biomass. The amount of variant CBH I enzymes added depends upon the type of biomass to be saccharified which can be readily determined by the skilled artisan. In certain embodiments, the weight percent of variant CBH I polypeptide is suitably at least 1, at least 5, at least 10, or at least 20 weight percent of the total polypeptides in a cellulase composition. Exemplary cellulase compositions include a variant CBH I of the disclosure in an amount ranging from about 1 to about 20 weight percent, from about 1 to about 25 weight percent, from about 5 to about 20 weight percent, from about 5 to about 25 weight percent, from about 5 to about 30 weight percent, from about 5 to about 35 weight percent, from about 5 to about 40 weight percent, from about 5 to about 45 weight percent, from about 5 to about 50 weight percent, from about 10 to about 20 weight percent, from about 10 to about 25 weight percent, from about 10 to about 30 weight percent, from about 10 to about 35 weight percent, from about 10 to about 40 weight percent, from about 10 to about 45 weight percent, from about 10 to about 50 weight percent, from about 15 to about 20 weight percent, from about 15 to about 25 weight percent, from about 15 to about 30 weight percent, from about 15 to about 35 weight percent, from about 15 to about 30 weight percent, from about 15 to about 45 weight percent, or from about 15 to about 50 weight percent of the total polypeptides in the composition.
  • Utility of Variant CBH I Polypeptides
  • It can be appreciated that the variant CBH I polypeptides of the disclosure and compositions comprising the variant CBH I polypeptides find utility in a wide variety applications, for example detergent compositions that exhibit enhanced cleaning ability, function as a softening agent and/or improve the feel of cotton fabrics (e.g., “stone washing” or “biopolishing”), or in cellulase compositions for degrading wood pulp into sugars (e.g., for bio-ethanol production). Other applications include the treatment of mechanical pulp (Pere et al., 1996, Tappi Pulping Conference, pp. 693-696 (Nashville, Tenn., Oct. 27-31, 1996)), for use as a feed additive (see, e.g., WO 91/04673) and in grain wet milling.
  • Saccharification Reactions
  • Ethanol can be produced via saccharification and fermentation processes from cellulosic biomass such as trees, herbaceous plants, municipal solid waste and agricultural and forestry residues. However, the ratio of individual cellulase enzymes within a naturally occurring cellulase mixture produced by a microbe may not be the most efficient for rapid conversion of cellulose in biomass to glucose. It is known that endoglucanases act to produce new cellulose chain ends which themselves are substrates for the action of cellobiohydrolases and thereby improve the efficiency of hydrolysis of the entire cellulase system. The use of optimized cellobiohydrolase activity may greatly enhance the production of ethanol.
  • Cellulase compositions comprising one or more of the variant CBH I polypeptides of the disclosure can be used in saccharification reaction to produce simple sugars for fermentation. Accordingly, the present disclosure provides methods for saccharification comprising contacting biomass with a cellulase composition comprising a variant CBH I polypeptide of the disclosure and, optionally, subjecting the resulting sugars to fermentation by a microorganism.
  • The term “biomass,” as used herein, refers to any composition comprising cellulose (optionally also hemicellulose and/or lignin). As used herein, biomass includes, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (including, e.g., Indian grass, such as Sorghastrum nutans; or, switchgrass, e.g., Panicum species, such as Panicum virgatum), wood (including, e.g., wood chips, processing waste), paper, pulp, and recycled paper (including, e.g., newspaper, printer paper, and the like). Other biomass materials include, without limitation, potatoes, soybean (e.g., rapeseed), barley, rye, oats, wheat, beets, and sugar cane bagasse.
  • The saccharified biomass (e.g., lignocellulosic material processed by enzymes of the disclosure) can be made into a number of bio-based products, via processes such as, e.g., microbial fermentation and/or chemical synthesis. As used herein, “microbial fermentation” refers to a process of growing and harvesting fermenting microorganisms under suitable conditions. The fermenting microorganism can be any microorganism suitable for use in a desired fermentation process for the production of bio-based products. Suitable fermenting microorganisms include, without limitation, filamentous fungi, yeast, and bacteria. The saccharified biomass can, for example, be made it into a fuel (e.g., a biofuel such as a bioethanol, biobutanol, biomethanol, a biopropanol, a biodiesel, a jet fuel, or the like) via fermentation and/or chemical synthesis. The saccharified biomass can, for example, also be made into a commodity chemical (e.g., ascorbic acid, isoprene, 1,3-propanediol), lipids, amino acids, polypeptides, and enzymes, via fermentation and/or chemical synthesis.
  • Thus, in certain aspects, the variant CBH I polypeptides of the disclosure find utility in the generation of ethanol from biomass in either separate or simultaneous saccharification and fermentation processes. Separate saccharification and fermentation is a process whereby cellulose present in biomass is saccharified into simple sugars (e.g., glucose) and the simple sugars subsequently fermented by microorganisms (e.g., yeast) into ethanol. Simultaneous saccharification and fermentation is a process whereby cellulose present in biomass is saccharified into simple sugars (e.g., glucose) and, at the same time and in the same reactor, microorganisms (e.g., yeast) ferment the simple sugars into ethanol.
  • Prior to saccharification, biomass is preferably subject to one or more pretreatment step(s) in order to render cellulose material more accessible or susceptible to enzymes and thus more amenable to hydrolysis by the variant CBH I polypeptides of the disclosure.
  • In an exemplary embodiment, the pretreatment entails subjecting biomass material to a catalyst comprising a dilute solution of a strong acid and a metal salt in a reactor. The biomass material can, e.g., be a raw material or a dried material. This pretreatment can lower the activation energy, or the temperature, of cellulose hydrolysis, ultimately allowing higher yields of fermentable sugars. See, e.g., U.S. Pat. Nos. 6,660,506; 6,423,145.
  • Another exemplary pretreatment method entails hydrolyzing biomass by subjecting the biomass material to a first hydrolysis step in an aqueous medium at a temperature and a pressure chosen to effectuate primarily depolymerization of hemicellulose without achieving significant depolymerization of cellulose into glucose. This step yields a slurry in which the liquid aqueous phase contains dissolved monosaccharides resulting from depolymerization of hemicellulose, and a solid phase containing cellulose and lignin. The slurry is then subject to a second hydrolysis step under conditions that allow a major portion of the cellulose to be depolymerized, yielding a liquid aqueous phase containing dissolved/soluble depolymerization products of cellulose. See, e.g., U.S. Pat. No. 5,536,325.
  • A further exemplary method involves processing a biomass material by one or more stages of dilute acid hydrolysis using about 0.4% to about 2% of a strong acid; followed by treating the unreacted solid lignocellulosic component of the acid hydrolyzed material with alkaline delignification. See, e.g., U.S. Pat. No. 6,409,841. Another exemplary pretreatment method comprises prehydrolyzing biomass (e.g., lignocellulosic materials) in a prehydrolysis reactor; adding an acidic liquid to the solid lignocellulosic material to make a mixture; heating the mixture to reaction temperature; maintaining reaction temperature for a period of time sufficient to fractionate the lignocellulosic material into a solubilized portion containing at least about 20% of the lignin from the lignocellulosic material, and a solid fraction containing cellulose; separating the solubilized portion from the solid fraction, and removing the solubilized portion while at or near reaction temperature; and recovering the solubilized portion. The cellulose in the solid fraction is rendered more amenable to enzymatic digestion. See, e.g., U.S. Pat. No. 5,705,369. Further pretreatment methods can involve the use of hydrogen peroxide H2O2. See Gould, 1984, Biotech, and Bioengr. 26:46-52.
  • Pretreatment can also comprise contacting a biomass material with stoichiometric amounts of sodium hydroxide and ammonium hydroxide at a very low concentration. See Teixeira et al., 1999, Appl. Biochem. and Biotech. 77-79:19-34. Pretreatment can also comprise contacting a lignocellulose with a chemical (e.g., a base, such as sodium carbonate or potassium hydroxide) at a pH of about 9 to about 14 at moderate temperature, pressure, and pH. See PCT Publication WO2004/081185.
  • Ammonia pretreatment can also be used. Such a pretreatment method comprises subjecting a biomass material to low ammonia concentration under conditions of high solids. See, e.g., U.S. Patent Publication No. 20070031918 and PCT publication WO 06/110901.
  • Detergent Compositions Comprising Variant CBH I Proteins
  • The present disclosure also provides detergent compositions comprising a variant CBH I polypeptide of the disclosure. The detergent compositions may employ besides the variant CBH I polypeptide one or more of a surfactant, including anionic, non-ionic and ampholytic surfactants; a hydrolase; a bleaching agents; a bluing agent; a caking inhibitors; a solubilizer; and a cationic surfactant. All of these components are known in the detergent art.
  • The variant CBH I polypeptide is preferably provided as part of cellulase composition. The cellulase composition can be employed from about 0.00005 weight percent to about 5 weight percent or from about 0.0002 weight percent to about 2 weight percent of the total detergent composition. The cellulase composition can be in the form of a liquid diluent, granule, emulsion, gel, paste, and the like. Such forms are known to the skilled artisan. When a solid detergent composition is employed, the cellulase composition is preferably formulated as granules.
  • Examples Materials and Methods Preparation of CBH I Polypeptides for Biochemical Characterization
  • Protein expression was carried out in an Aspergillus niger host strain that had been transformed using PEG-mediated transformation with expression constructs for CBHI that included the hygromycin resistance gene as a selectable marker, in which the full length CBH I sequences (signal sequence, catalytic domain, linker and cellulose binding domain) were under the control of the glyceraldeyhde-3-phosphate dehydrogenase (gpd) promoter. Transformants were selected on the regeneration medium based on resistance to hygromycin. The selected transformants were cultured in Aspergillus salts medium, pH 6.2 supplemented with the antibiotics penicillin, streptomycin, and hygromycin, and 80 g/L glycerol, 20 g/L soytone, 10 mM uridine, 20 g/L MES) in baffled shake flasks at 30° C., 170 rpm. After five days of incubation, the total secreted protein supernatant was recovered, and then subjected to hollow fiber filtration to concentrate and exchange the sample into acetate buffer (50 mM NaAc, pH 5). CBH I protein represented over 90% of the total protein in these samples. Protein purity was analyzed by SDS-PAGE. Protein concentration was determined by gel densitometry and/or HPLC analysis. All CBH I protein concentrations were normalized before assay and concentrated to 1-2.5 mg/ml.
  • CBH I Activity Assays
  • 4-Methylumbelliferyl Lactoside (4-MUL) Assay:
  • This assay measures the activity of CBH I on the fluorogenic substrate 4-MUL (also known as MUL). Assays were run in a costar 96-well black bottom plate, where reactions were initiated by the addition of 4-MUL to enzyme in buffer (2 mM 4-MUL in 200 mM MES pH 6). Enzymatic rates were monitored by fluorescent readouts over five minutes on a SPECTRAMAX™ plate reader (ex/em 365/450 nm). Data in the linear range was used to calculate initial rates (Vo).
  • Phosphoric Acid Swollen Cellulose (PASC) Assay:
  • This assay measures the activity of CBH I using PASC as the substrate. During the assay, the concentration of PASC is monitored by a fluorescent signal derived from calcofluor binding to PASC (ex/em 365/440 nm). The assay is initiated by mixing enzyme (15 μl) and reaction buffer (85 μl of 0.2% PASC, 200 mM MES, pH 6), and then incubating at 35° C. while shaking at 225 RPM. After 2 hours, one reaction volume of calcofluor stop solution (100 μg/ml in 500 mM glycine pH 10) is added and fluorescence read-outs obtained (ex/em 365/440 nm).
  • Bagasse Assay:
  • This assay measures the activity of CBH I on bagasse, a lignocellulosic substrate. Reactions were run in 10 ml vials with 5% dilute acid pretreated bagasse (250 mg solids per 5 ml reaction). Each reaction contained 4 mg CBH I enzyme/g solids, 200 mM MES pH 6, kanamycin, and chloramphenicol. Reactions were incubated at 35° C. in hybridization incubators (Robbins Scientific), rotating at 20 RPM. Time points were taken by transferring a sample of homogenous slurry (150 μl) into a 96-well deep well plate and quenching the reaction with stop buffer (450 μl of 500 mM sodium carbonate, pH 10). Time point measurements were taken every 24 hours for 72 hours.
  • Cellobiose Tolerance Assays (or Cellobiose Inhibition Assays):
  • Tolerance to cellobiose (or inhibition caused by cellobiose) was tested in two ways in the CBH I assays. A direct-dose tolerance method can be applied to all of the CBH I assays (i.e., 4-MUL, PASC, and/or bagasse assays), and entails the exogenous addition of a known amount of cellobiose into assay mixtures. A different indirect method entails the addition of an excess amount of β-glucosidase (BG) to PASC and bagasse assays (typically, 1 mg β-glucosidase/g solids loaded). BG will enzymatically hydrolyze the cellobiose generated during these assays; therefore, CBH I activity in the presence of BG can be taken as a measure of activity in the absence of cellobiose. Furthermore, when activity in the presence and absence of BG are similar, this indicates tolerance to cellobiose. Notably, in cases where BG activity is undesired, but may be present in crude CBH I enzyme preparations, the BG inhibitor gluconolactone can be added into CBH I assays to prevent cellobiose breakdown.
  • Library Screening Assays
  • The wild type CBH I polypeptide BD29555 was mutagenized to identify variants with improved product tolerance. A small (60-member) library of BD29555 variants was designed to identify variant CBH I polypeptides with reduced product inhibition. This product-release-site library was designed based on residues directly interacting with the cellobiose product in an attempt to identify variants with weakened interactions with cellobiose from which the product would be released more readily than the wild type enzyme. The 60-member evolution library contained wild-type residues and mutations at positions B273, W405, and R422 of BD29555 (SEQ ID NO:1), and included the following substitutions: B273 (WT), R273Q, R273K, R273A, W405 (WT), W405Q, W405H, R422 (WT), R422Q, R422K, R422L, and R422E (4 variants at position 273×3 variants at position 405×5 variants at position 422 equals 60 variants in total). All members of the library were screened using the 4-MUL assay in the presence and absence of 250 g/L cellobiose and using gluconolactone to inhibit any BG activity. The R273A, R273Q, and R273K/R422K variants showed enhanced product tolerance. The R273K/R422K variant showed greatest activity among the variants and cellobiose tolerance at 250 mg/L. Due to low expression, the R273K variant was not tested for product inhibition.
  • Characterization of Product Tolerant VARIANTS of BD29555
  • The R273K/R422K substitutions were characterized in both a wild type BD29555 background and also in combination with the substitutions Y274Q, D281K, Y410H, P411G, which were identified in a screen of an expanded product release site evolution library.
  • The wild type, the R273K/R422K variant and the R273K/Y274Q/D281K/Y410H/P411G/R422K variants were tested for activity on 4-MUL in the presence and absence of 250 mg/L cellobiose, and the R273K/R422K variant was also tested in the bagasse assay in the presence and absence of BG. The results are summarized in Table 5.
  • The results from these activity assays were converted into the percentage of activity remaining with and without cellobiose present, where values close to 100% indicated cellobiose tolerance. The percent of activity remaining in the MUL assay in the presence cellobiose versus in the absence of cellobiose shows that the R273K/R422K variant was the most tolerant, followed by the R273K/Y274Q/D281K/Y410H/P411G/R422K variant, and then wild-type, at 95%, 78%, and 25% activity, respectively.
  • Cellobiose dose response curves of the wild-type and R273K/R422K variant of BD29555 were obtained during the 4-MUL assay. Enzyme rates (Vo) were measured in the presence of different concentrations of cellobiose (200 mM MES pH 6, 25° C.). Rates were measured in quadruplicate. The results are shown in FIG. 1A-1B. FIG. 1A shows that wild type BD2955 is inhibited by cellobiose, with a half maximal inhibitory concentration (IC50 value) of 60 mg/L. FIG. 1B shows that the R273K/R422K variant is tolerant to cellobiose up to 250 mg/L.
  • The bagasse assay results shown in Table 5, which lists the percentage of activity remaining in the absence vs. presence of BG, also demonstrate that the percentage activity of the wild type BD29555 is lower than the percentage activity of the R273K/R422K variant, indicating that the R273K/R422K variant is less sensitive to the presence of cellobiose than the wild type. FIG. 2A-2B shows bar graph data for the bagasse assay of BD29555 vs. the R273K/R422K variant. In FIG. 2A, bars represent relative activity, which has been normalized to wild type activity in the absence of cellobiose (WT+BG=uninhibited activity=1). In FIG. 2B, bars indicate tolerance to cellobiose, as represented by the ratio of activity in the presence of cellobiose (−BG) to that of activity in the absence of cellobiose (+BG); ratios close to 1 indicate greater tolerance to cellobiose. These data again demonstrate that the R273K/R422K variant of BD29555 is more tolerant to cellobiose than the wild tvae BD29555.
  • The wild type and R273K/R422K variant were also characterized in the PASC assay. Results are shown in FIG. 3. The activities of both wild type BD29555 (SEQ ID NO:1) and wild type T. reesei CBH I (SEQ ID NO:2) were inhibited by cellobiose concentrations starting around 1 g/L (with IC50 values of 2.2 and 3 g/L, respectively), whereas the R273K/R422K variant showed little inhibition in the presence of 10 g/L cellobiose.
  • Characterization of Product Tolerant VARIANTS of T. reesei CBH I
  • Cellobiose product tolerant substitutions were introduced into T. reesei CBH I (SEQ ID NO:2). A panel of variants with single and double alanine and lysine substitutions at R268 and R411 were expressed and analyzed. The variants were tested for activity on 4-MUL in the presence and absence of 250 mg/L cellobiose and also in the bagasse assay in the absence and prseence of BG. The results from these assays were converted into the percentage activity remaining in the presence and absence of cellobiose and BG, respectively. Values are summarized in Table 6.
  • The 4-MUL assay results shown in Table 6 demonstrate that the activity of the wild type T. reesei CBH I was reduced to 23% in the presence of cellobiose, whereas the double mutants at R268 and R411 retained more than 90% of their activity under the same conditions.
  • The bagasse assay results shown in Table 6 demonstrate that the activity of the wild type T. reesei CBH I is more significantly impacted by the presence of BG than is the activity of the single or double substitution variants, indicating that the variants are less sensitive to the accumulation of cellobiose than the wild type. FIGS. 4 and 5 show bar graph data for the bagasse assay of wild type T. reesei CBH I vs. the variants. In FIG. 4, bars represent relative activity, normalized to wild type activity in the absence of cellobiose (WT+BG=1). In FIG. 5, bars represent tolerance to cellobiose, as represented by the ratio of activity in the presence of accumulating cellobiose (−BG) to that of activity in the absence of cellobiose (+BG); ratios close to 1 indicate greater tolerance to cellobiose.
  • Specific Embodiments and Incorporation by Reference
  • All publications, patents, patent applications and other documents cited in this application are hereby incorporated by reference in their entireties for all purposes to the same extent as if each individual publication, patent, patent application or other document were individually indicated to be incorporated by reference for all purposes.
  • While various specific embodiments have been illustrated and described, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s).
  • TABLE 1
    Sequence Identifier Database
    (SEQ ID NO:) Accession Number Species of Origin Amino Acid Sequence
    BD29555* Unknown MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN
    TSTNCYTGNT WNTAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ
    IFDLLNQEFT FTVDVSHLPC GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN
    VEGWTPSSNN ANTGLGNHGA CCAELDIWEA NSISEALTPH PCDTPGLSVC TTDACGGTYS SDRYAGTCDP
    DGCDFNPYRL GVTDFYGSGK TVDTTKPITV VTQFVTDDGT STGTLSEIRR YYVQNGVVIP QPSSKISGVS
    GNVINSDFCD AEISTFGETA SFSKHGGLAK MGAGMEAGMV LVMSLWDDYS VNMLWLDSTY PTNATGTPGA
    ARGSCPTTSG DPKTVESQSG SSYVTFSDIR VGPFNSTFSG GSSTGGSSTT TASGTTTTKA SSTSTSSTST
    GTGVAAHWGQ CGGQGWTGPT TCASGTTCTV VNPYYSQCL
    340514556 Trichoderma reesei MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG
    NTWSSTLCPD NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL
    GNEFSFDVDV SQLPCGLNGA LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE
    PSSNNANTGI GGHGSCCSEM DIWEANSISE ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW
    NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY YVQNGVTFQQ PNAELGSYSG NELNDDYCTA
    EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT NETSSTPGAV RGSCSTSSGV
    PAQVESQSPN AKVTFSNIKF GPIGSTGNPS GGNPPGGNPP GTTTTRRPAT TTGSSPGPTQ SHYGQCGGIG
    YSGPTVCASG TTCQVLNPYY SQCL
    51243029 Penicillium occitanis MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN
    TSTNCYTGNT WNSAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ
    IFDLLNQEFT FTVDVSHLPC GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN
    VEGWTPSANN ANTGIGNHGA CCAELDIWEA NSISEALTPH PCDTPGLSVC TTDACGGTYS SDRYAGTCDP
    DGCDFNPYRL GVTDFYGSGK TVDTTKPFTV VTQFVTNDGT STGSLSEIRR YYVQNGVVIP QPSSKISGIS
    GNVINSDYCA AEISTFGGTA SFNKHGGLTN MAAGMEAGMV LVMSLWDDYA VNMLWLDSTY PTNATGTPGA
    ARGTCATTSG DPKTVESQSG SSYVTFSDIR VGPFNSTFSG GSSTGGSTTT TASRTTTTSA SSTSTSSTST
    GTGVAGHWGQ CGGQGWTGPT TCVSGTTCTV VNPYYSQCL
    7cel (PDB) & Trichoderma reesei ESACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN
    CCLDGAAYAS TYGVTTSGNS LSIDFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL
    NGALYFVSMD ADGGVSKYPT NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC
    SEMDIWQANS ISEALTPHPC TTVGQEICEG DGCGGTYSDN RYGGTCDPDG CDWNPYRLGN TSFYGPGSSF
    TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS YSGNELNDDY CTAEEAEFGG SSFSDKGGLT
    QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVRGSCSTS SGVPAQVESQ SPNAKVTFSN
    IKFGPIGSTG NPSG
    67516425 Aspergillus nidulans MASSFQLYKA LLFFSSLLSA VQAQKVGTQQ AEVHPGLTWQ TCTSSGSCTT VNGEVTIDAN WRWLHTVNGY
    FGSC A4 TNCYTGNEWD TSICTSNEVC AEQCAVDGAN YASTYGITTS GSSLRLNFVT QSQQKNIGSR VYLMDDEDTY
    TMFYLLNKEF TFDVDVSELP CGLNGAVYFV SMDADGGKSR YATNEAGAKY GTGYCDSQCP RDLKFINGVA
    NVEGWESSDT NPNGGVGNHG SCCAEMDIWE ANSISTAFTP HPCDTPGQTL CTGDSCGGTY SNDRYGGTCD
    PDGCDFNSYR QGNKTFYGPG LTVDTNSPVT VVTQFLTDDN TDTGTLSEIK RFYVQNGVVI PNSESTYPAN
    PGNSITTEFC ESQKELFGDV DVFSAHGGMA GMGAALEQGM VLVLSLWDDN YSNMLWLDSN YPTDADPTQP
    GIARGTCPTD SGVPSEVEAQ YPNAYVVYSN IKFGPIGSTF GNGGGSGPTT TVTTSTATST TSSATSTATG
    QAQHWEQCGG NGWTGPTVCA SPWACTVVNS WYSQCL
    46107376 Gibberella zeae PH-1 MYRAIATASA LIAAVRAQQV CSLTQESKPS LNWSKCTSSG CSNVKGSVTI DANWRWTHQV SGSTNCYTGN
    KWDTSVCTSG KVCAEKCCLD GADYASTYGI TSSGDQLSLS FVTKGPYSTN IGSRTYLMED ENTYQMFQLL
    GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ
    PSDSDVNGGI GNLGTCCPEM DIWEANSIST AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF
    NSYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGVPGNSLTA
    DFCTKQKKVF NDPDDFTKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL DSTYPTDSTK LGSQRGSCST
    SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKSDGTTPTN PTNPSEPSNT ANPNPGTVDQ WGQCGGSNYS
    GPTACKSGFT CKKINDFYSQ CQ
    70992391 Aspergillus fumigatus MLASTFSYRM YKTALILAAL LGSGQAQQVG TSQAEVHPSM TWQSCTAGGS CTTNNGKVVI DANWRWVHKV
    Af293 GDYTNCYTGN TWDTTICPDD ATCASNCALE GANYESTYGV TASGNSLRLN FVTTSQQKNI GSRLYMMKDD
    STYEMFKLLN QEFTFDVDVS NLPCGLNGAL YFVAMDADGG MSKYPTNKAG AKYGTGYCDS QCPRDLKFIN
    GQANVEGWQP SSNDANAGTG NHGSCCAEMD IWEANSISTA FTPHPCDTPG QVMCTGDACG GTYSSDRYGG
    TCDPDGCDFN SFRQGNKTFY GPGMTVDTKS KFTVVTQFIT DDGTSSGTLK EIKRFYVQNG KVIPNSESTW
    TGVSGNSITT EYCTAQKSLF QDQNVFEKHG GLEGMGAALA QGMVLVMSLW DDHSANMLWL DSNYPTTASS
    TTPGVARGTC DISSGVPADV EANHPDAYVV YSNIKVGPIG STFNSGGSNP GGGTTTTTTT QPTTTTTTAG
    NPGGTGVAQH YGQCGGIGWT GPTTCASPYT CQKLNDYYSQ CL
    121699984 Aspergillus clavatus MLPSTISYRI YKNALFFAAL FGAVQAQKVG TSKAEVHPSM AWQTCAADGT CTTKNGKVVI DANWRWVHDV
    NRRL 1 KGYTNCYTGN TWNAELCPDN ESCAENCALE GADYAATYGA TTSGNALSLK FVTQSQQKNI GSRLYMMKDD
    NTYETFKLLN QEFTFDVDVS NLPCGLNGAL YFVSMDADGG LSRYTGNEAG AKYGTGYCDS QCPRDLKFIN
    GLANVEGWTP SSSDANAGNG GHGSCCAEMD IWEANSISTA YTPHPCDTPG QAMCNGDSCG GTYSSDRYGG
    TCDPDGCDFN SYRQGNKSFY GPGMTVDTKK KMTVVTQFLT NDGTATGTLS EIKRFYVQDG KVIANSESTW
    PNLGGNSLTN DFCKAQKTVF GDMDTFSKHG GMEGMGAALA EGMVLVMSLW DDHNSNMLWL DSNSPTTGTS
    TTPGVARGSC DISSGDPKDL EANHPDASVV YSNIKVGPIG STFNSGGSNP GGSTTTTKPA TSTTTTKATT
    TATTNTTGPT GTGVAQPWAQ CGGIGYSGPT QCAAPYTCTK QNDYYSQCL
    1906845 Claviceps purpurea MHPSLQTILL SALFTTAHAQ QACSSKPETH PPLSWSRCSR SGCRSVQGAV TVDANWLWTT VDGSQNCYTG
    NRWDTSICSS EKTCSESCCI DGADYAGTYG VTTTGDALSL KFVQQGPYSK NVGSRLYLMK DESRYEMFTL
    LGNEFTFDVD VSKLGCGLNG ALYFVSMDED GGMKRFPMNK AGAKFGTGYC DSQCPRDVKF INGMANSKDW
    IPSKSDANAG IGSLGACCRE MDIWEANNIA SAFTPHPCKN SAYHSCTGDG CGGTYSKNRY SGDCDPDGCD
    FNSYRLGNTT FYGPGPKFTI DTTRKISVVT QFLKGRDGSL REIKRFYVQN GKVIPNSVSR VRGVPGNSIT
    QGFCNAQKKM FGAHESFNAK GGMKGMSAAV SKPMVLVMSL WDDHNSNMLW LDSTYPTNSR QRGSKRGSCP
    ASSGRPTDVE SSAPDSTVVF SNIKFGPIGS TFSRGK
    1gpi (PDB) & Phanerochaete ESACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN
    chrysosporium CCLDGAAYAS TYGVTTSGNS LSIDFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL
    NGALYFVSMD ADGGVSKYPT NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC
    SEMDIWQANS ISEALTPHPC TTVGQEICEG DGCGGTYSDN RYGGTCDPDG CDWNPYRLGN TSFYGPGSSF
    TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS YSGNELNDDY CTAEEAEFGG SSFSDKGGLT
    QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVRGSCSTS SGVPAQVESQ SPNAKVTFSN
    IKFGPIGSTG NPSG
    119468034 Neosartorya fischeri MHQRALLFSA LAVAANAQQV GTQKPETHPP LTWQKCTAAG SCSQQSGSVV IDANWRWLHS TKDTTNCYTG
    NRRL 181 NTWNTELCPD NESCAQNCAV DGADYAGTYG VTTSGSELKL SFVTGANVGS RLYLMQDDET YQHFNLLNNE
    FTFDVDVSNL PCGLNGALYF VAMDADGGMS KYPSNKAGAK YGTGYCDSQC PRDLKFINGM ANVEGWKPSS
    NDKNAGVGGH GSCCPEMDIW EANSISTAVT PHPCDDVSQT MCSGDACGGT YSATRYAGTC DPDGCDFNPF
    RMGNESFYGP GKIVDTKSEM TVVTQFITAD GTDTGALSEI KRLYVQNGKV IANSVSNVAD VSGNSISSDF
    CTAQKKAFGD EDIFAKHGGL SGMGKALSEM VLIMSIWDDH HSSMMWLDST YPTDADPSKP GVARGTCEHG
    AGDPEKVESQ HPDASVTFSN IKFGPIGSTY KA
    7804883 Leptosphaeria MYRSLIFATS LLSLAKGQLV GNLYCKGSCT AKNGKVVIDA NWRWLHVKGG YTNCYTGNEW NATACPDNKS
    maculans CATNCAIDGA DYRRLRHYCE RQLLGTEVHH QGLYSTNIGS RTYLMQDDST YQLFKFTGSQ EFTFDVDLSN
    LPCGLNGALY FVSMDADGGL KKYPTNKAGA KYGTGYCDAQ CPRDLKFING EGNVEGWQPS KNDQNAGVGG
    HGSCCAEMDI WEANSVSTAV TPHSCSTIEQ SRCDGDGCGG TYSADRYAGV CDPDGCDFNS YRMGVKDFYG
    KGKTVDTSKK FTVVTQFIGS GDAMEIKRFY VQNGKTIPQP DSTIPGVTGN SITTFFCDAQ KKAFGDKYTF
    KDKGGMANMP STCNGMVLVM SLWDDHYSNM LWLDSTYPTD KNPDTDAGSG RGECAITSGV PADVESQHPD
    ASVIYSNIKF GPINTTFG
    85108032 Neurospora crassa MLAKFAALAA LVASANAQAV CSLTAETHPS LNWSKCTSSG CTNVAGSITV DANWRWTHIT SGSTNCYSGN
    N150 (OR74A) EWDTSLCSTN TDCATKCCVD GAEYSSTYGI QTSGNSLSLQ FVTKGSYSTN IGSRTYLMNG ADAYQGFELL
    GNEFTFDVDV SGTGCGLNGA LYFVSMDLDG GKAKYTNNKA GAKYGTGYCD AQCPRDLKYI NGIANVEGWT
    PSTNDANAGI GDHGTCCSEM DIWEANKVST AFTPHPCTTI EQHMCEGDSC GGTYSDDRYG GTCDADGCDF
    NSYRMGNTTF YGEGKTVDTS SKFTVVTQFI KDSAGDLAEI KRFYVQNGKV IENSQSNVDG VSGNSITQSF
    CNAQKTAFGD IDDFNKKGGL KQMGKALAKP MVLVMSIWDD HAANMLWLDS TYPVEGGPGA YRGECPTTSG
    VPAEVEANAP NSKVIFSNIK FGPIGSTFSG GSSGTPPSNP SSSVKPVTST AKPSSTSTAS NPSGTGAAHW
    AQCGGIGFSG PTTCQSPYTC QKINDYYSQC V
    169859458 Coprinopsis cinerea MFKKVALTAL CFLAVAQAQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY
    okayama TGNSWNSTVC SDPTTCAQRC ALEGANYQQT YGITTNGDAL TIKFLTRSQQ TNVGARVYLM ENENRYQMFN
    LLNKEFTFDV DVSKVPCGIN GALYFIQMDA DGGMSKQPNN RAGAKYGTGY CDSQCPRDIK FIDGVANSAD
    WTPSETDPNA GRGRYGICCA EMDIWEANSI SNAYTPHPCR TQNDGGYQRC EGRDCNQPRY EGLCDPDGCD
    YNPFRMGNKD FYGPGKTVDT NRKMTVVTQF ITHDNTDTGT LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD
    SITEQFCTDQ KNLFGDYSSF ARDGGLAHMG RSLAKGHVLA LSIWNDHGAH MLWLDSNYPT DADPNKPGIA
    RGTCPTTGGT PRETEQNHPD AQVIFSNIKF GDIGSTFSGY
    154292161 Botryotinia fuckeliana MYSAAVLATF SFLLGAGAQQ VGTSTAETHP ALTVQKCAAG GTCTDESDSI VLDANWRWLH STSGSTNCYT
    B05-10 GNTWDTTLCP DAATCTTNCA LDGADYEGTY GITTSGDSLK LSFVTGSNVG SRTYLMDSET TYKEFALLGN
    EFTFTVDVSK LPCGLNGALY FVPMDADGGM SKYPTNKAGA KYGTGYCDAQ CPQDMKFVNG TANVEGWVPD
    SNSANSGTGN IGSCCSEFDV WEANSMSQAL TPHVCTVDSQ TACTGDDCAS NTGVCDGDGC DFNPYRMGNT
    TFYGSGMTID TSKPFSVVTQ FITDDGTETG TLTEIKRFYV QDDVVYEQPS SDISGVSGNS ITDDFCAAQK
    TAFGDTDYFT QNGGMAAMGK KMADGMVLVL SIWDDYNVNM LWLDSDYPTT KDASTPGVSR GSCATDSGVP
    ATVEAASGSA YVTFSSIKYG PIGSTFNAPA DSSSSVSASS SPAPIASSSS SASIAPVSSV VAAIVSSSAQ
    AISSAAPVVS SSAQAISSAA PVVSSVVSSA APVATSSTKS KCSKVSSTLK TSVAAPATSA TSAAVVATSS
    AASSTGSVPL YGNCTGGKTC SEGTCVVQND YYSQCVASS
    169615761 # Phaeosphaeria MTWQRCTGTG GSSCTNVNGE IVIDANWRWI HATGGYTNCF DGNEWNKTAC PSNAACTKNC AIEGSDYRGT
    nodorum SN15 YGITTSGNSL TLKFITKGQY STNVGSRTYL MKDTNNYEMF NLIGNEFTFD VDLSQLPCGL NGALYFVSMP
    EKGQGTPGAK YGTGKLSQCS VHISKTLTDA CARDLKFVGG EANADGWQAS TSDPNAGVGK KGACCAEMDV
    WEANSMSTAL TPHSCQPEGY AVCEESNCGG TYSLDRYAGT CDANGCDFNP YRVGNKDFYG KGKTVDTSKK
    MTVVTQFLGT GSDLTELKRF YVQDGKVISN PEPTIPGMTG NSITQKWCDT QKEVFKEEVY PFNQWGGMAS
    MGKGMAQGMV LVMSLWDDHY SNMLWLDSTY PTDRDPESPG AARGECAITS GAPAEVEANN PDASVMFSNI
    KFGPIGSTFQ QPA
    4883502 Humicola grisea MQIKSYIQYL AAALPLLSSV AAQQAGTITA ENHPRMTWKR CSGPGNCQTV QGEVVIDANW RWLHNNGQNC
    YEGNKWTSQC SSATDCAQRC ALDGANYQST YGASTSGDSL TLKFVTKHEY GTNIGSRFYL MANQNKYQMF
    TLMNNEFAFD VDLSKVECGI NSALYFVAME EDGGMASYPS NRAGAKYGTG YCDAQCARDL KFIGGKANIE
    GWRPSTNDPN AGVGPMGACC AEIDVWESNA YAYAFTPHAC GSKNRYHICE TNNCGGTYSD DRFAGYCDAN
    GCDYNPYRMG NKDFYGKGKT VDTNRKFTVV SRFERNRLSQ FFVQDGRKIE VPPPTWPGLP NSADITPELC
    DAQFRVFDDR NRFAETGGFD ALNEALTIPM VLVMSIWDDH HSNMLWLDSS YPPEKAGLPG GDRGPCPTTS
    GVPAEVEAQY PNAQVVWSNI RFGPIGSTVN V
    950686 Humicola grisea MRTAKFATLA ALVASAAAQQ ACSLTTERHP SLSWKKCTAG GQCQTVQASI TLDSNWRWTH QVSGSTNCYT
    GNKWDTSICT DAKSCAQNCC VDGADYTSTY GITTNGDSLS LKFVTKGQYS TNVGSRTYLM DGEDKYQTFE
    LLGNEFTFDV DVSNIGCGLN GALYFVSMDA DGGLSRYPGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG
    WTGSTNDPNA GAGRYGTCCS EMDIWEANNM ATAFTPHPCT IIGQSRCEGD SCGGTYSNER YAGVCDPDGC
    DFNSYRQGNK TFYGKGMTVD TTKKITVVTQ FLKDANGDLG EIKRFYVQDG KIIPNSESTI PGVEGNSITQ
    DWCDRQKVAF GDIDDFNRKG GMKQMGKALA GPMVLVMSIW DDHASNMLWL DSTFPVDAAG KPGAERGACP
    TTSGVPAEVE AEAPNSNVVF SNIRFGPIGS TVAGLPGAGN GGNNGGNPPP PTTTTSSAPA TTTTASAGPK
    AGRWQQCGGI GFTGPTQCEE PYTCTKLNDW YSQCL
    124491660 Chaetomium MQIKQYLQYL AAALPLVNMA AAQRAGTQQT ETHPRLSWKR CSSGGNCQTV NAEIVIDANW RWLHDSNYQN
    thermophilum CYDGNRWTSA CSSATDCAQK CYLEGANYGS TYGVSTSGDA LTLKFVTKHE YGTNIGSRVY LMNGSDKYQM
    FTLMNNEFAF DVDLSKVECG LNSALYFVAM EEDGGMRSYS SNKAGAKYGT GYCDAQCARD LKFVGGKANI
    EGWRPSTNDA NAGVGPYGAC CAEIDVWESN AYAFAFTPHG CLNNNYHVCE TSNCGGTYSE DRFGGLCDAN
    GCDYNPYRMG NKDFYGKGKT VDTSRKFTVV TRFEENKLTQ FFIQDGRKID IPPPTWPGLP NSSAITPELC
    TNLSKVFDDR DRYEETGGFR TINEALRIPM VLVMSIWDGH YANMLWLDSV YPPEKAGQPG AERGPCAPTS
    GVPAEVEAQF PNAQVIWSNI RFGPIGSTYQ V
    58045187 Chaetomium MMYKKFAALA ALVAGAAAQQ ACSLTTETHP RLTWKRCTSG GNCSTVNGAV TIDANWRWTH TVSGSTNCYT
    thermophilum GNEWDTSICS DGKSCAQTCC VDGADYSSTY GITTSGDSLN LKFVTKHQHG TNVGSRVYLM ENDTKYQMFE
    LLGNEFTFDV DVSNLGCGLN GALYFVSMDA DGGMSKYSGN KAGAKYGTGY CDAQCPRDLK FINGEANIEN
    WTPSTNDANA GFGRYGSCCS EMDIWDANNM ATAFTPHPCT IIGQSRCEGN SCGGTYSSER YAGVCDPDGC
    DFNAYRQGDK TFYGKGMTVD TTKKMTVVTQ FHKNSAGVLS EIKRFYVQDG KIIANAESKI PGNPGNSITQ
    EWCDAQKVAF GDIDDFNRKG GMAQMSKALE GPMVLVMSVW DDHYANMLWL DSTYPIDKAG TPGAERGACP
    TTSGVPAEIE AQVPNSNVIF SNIRFGPIGS TVPGLDGSTP SNPTATVAPP TSTTTSVRSS TTQISTPTSQ
    PGGCTTQKWG QCGGIGYTGC TNCVAGTTCT ELNPWYSQCL
    169601100 # Phaeosphaeria MYRNFLYAAS LLSVARSQLV GTQTTETHPG MTWQSCTAKG SCTTCSDNKA CASNCAVDGA DYKGTYGITA
    nodorum SN15 SGNSLQLKFI TKGSYSTNIG SRTYLMASDT AYQMFKFDGN KEFTFDVDLS GLPCGFNGAL YFVSMDEDGG
    LKKYSGNKAG AKYGTGYCDA QCPRDLKFIN GEGNVEGWKP SDNDANAGVG GHGSCCAEMD IWEANSISTA
    VTPHACSTIE QTRCDGDGCG GTYSADRYAG VCDPDGCDFN AYRMGVKNFY GKGMTVDTSK KFTVVTQFIG
    TGDAMEIKRF YVQGGKTIEQ PASTIPGVEG NSITTKFCDQ QKQVFGDRYT YKEKGGTANM AKALAQGMVL
    VMSLWDDHYS NMLWLDSTYP TDKNPDTDLG SGRGSCDVKS GAPADVESKS PDATVIYSNI KFGPLNSTY
    169870197 Coprinopsis cinerea MLGKIAIASL SFLAIAKGQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY
    okayama TGNSWNSSVC SDGTTCAQRC ALEGANYQQT YGITTSGNSL TMKFLTRSQG TNVGGRVYLM ENENRYQMFN
    LLNKEFTFDV DVSKVPCGIN GALYFIQMDA DGGMSSQPNN RAGAKYGTGY CDSQCPRDIK FIDGVANSVG
    WEPSETDSNA GRGRYGICCA EMDIWEANSI SNAYTPHPCR TQNDGGYQRC EGRDCNQPRY EGLCDPDGCD
    YNPFRMGNKD FYGPGKTIDT NRKMTVVTQF ITHDNTDTGT LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD
    SITEQFCTDQ KNLFGDYSSF ARDGGLAHMG RSLAKGHVLA LSIWNDHGAH MLWLDSNYPT DADPNKPGIA
    RGTCPTTGGT PRETEQNHPD AQVIFSNIKF GDIGSTFSGY
    3913806 Agaricus bisporus MFPRSILLAL SLTAVALGQQ VGTNMAENHP SLTWQRCTSS GCQNVNGKVT LDANWRWTHR INDFTNCYTG
    NEWDTSICPD GVTCAENCAL DGADYAGTYG VTSSGTALTL KFVTESQQKN IGSRLYLMAD DSNYEIFNLL
    NKEFTFDVDV SKLPCGLNGA LYFSEMAADG GMSSTNTAGA KYGTGYCDSQ CPRDIKFIDG EANSEGWEGS
    PNDVNAGTGN FGACCGEMDI WEANSISSAY TPHPCREPGL QRCEGNTCSV NDRYATECDP DGCDFNSFRM
    GDKSFYGPGM TVDTNQPITV VTQFITDNGS DNGNLQEIRR IYVQNGQVIQ NSNVNIPGID SGNSISAEFC
    DQAKEAFGDE RSFQDRGGLS GMGSALDRGM VLVLSIWDDH AVNMLWLDSD YPLDASPSQP GISRGTCSRD
    SGKPEDVEAN AGGVQVVYSN IKFGDINSTF NNNGGGGGNP SPTTTRPNSP AQTMWGQCGG QGWTGPTACQ
    SPSTCHVIND FYSQCF
    169611094 Phaeosphaeria MYRNLALASL SLFGAARAQQ AGTVTTETHP SLSWKTCTGT GGTSCTTKAG KITLDANWRW THVTTGYTNC
    nodorum SN15 YDGNSWNTTA CPDGATCTKN CAVDGADYSG TYGITTSSNS LSIKFVTKGS NSANIGSRTY LMESDTKYQM
    FNLIGQEFTF DVDVSKLPCG LNGALYFVEM AADGGIGKGN NKAGAKYGTG YCDSQCPHDI KFINGKANVE
    GWNPSDADPN AGSGKIGACC PEMDIWEANS ISTAYTPHPC KGTGLQECTD DVSCGDGSNR YSGLCDKDGC
    DFNSYRMGVK DFYGPGATLD TTKKMTVVTQ FLGSGSTLSE IKRFYVQNGK VFKNSDSAIE GVTGNSITES
    FCAAQKTAFG DTNSFKTLGG LNEMGASLAR GHVLVMSLWD DHAVNMLWLD STYPTNSTKL GAQRGTCAID
    SGKPEDVEKN HPDATVVFSD IKFGPIGSTF QQPS
    3131 Phanerochaete MVDIQIATFL LLGVVGVAAQ QVGTYIPENH PLLATQSCTA SGGCTTSSSK IVLDANRRWI HSTLGTTSCL
    chrysosporium TANGWDPTLC PDGITCANYC ALDGVSYSST YGITTSGSAL RLQFVTGTNI GSRVFLMADD THYRTFQLLN
    QELAFDVDVS KLPCGLNGAL YFVAMDADGG KSKYPGNRAG AKYGTGYCDS QCPRDVQFIN GQANVQGWNA
    TSATTGTGSY GSCCTELDIW EANSNAAALT PHTCTNNAQT RCSGSNCTSN TGFCDADGCD FNSFRLGNTT
    FLGAGMSVDT TKTFTVVTQF ITSDNTSTGN LTEIRRFYVQ NGNVIPNSVV NVTGIGAVNS ITDPFCSQQK
    KAFIETNYFA QHGGLAQLGQ ALRTGMVLAF SISDDPANHM LWLDSNFPPS ANPAVPGVAR GMCSITSGNP
    ADVGILNPSP YVSFLNIKFG SIGTTFRPA
    70991503 Aspergillus fumigatus MHQRALLFSA LAVAANAQQV GTQTPETHPP LTWQKCTAAG SCSQQSGSVV IDANWRWLHS TKDTTNCYTG
    Af293 NTWNTELCPD NESCAQNCAL DGADYAGTYG VTTSGSELKL SFVTGANVGS RLYLMQDDET YQHFNLLNHE
    FTFDVDVSNL PCGLNGALYF VAMDADGGMS KYPSNKAGAK YGTGYCDSQC PRDLKFINGM ANVEGWEPSS
    SDKNAGVGGH GSCCPEMDIW EANSISTAVT PHPCDDVSQT MCSGDACGGT YSESRYAGTC DPDGCDFNPF
    RMGNESFYGP GKIVDTKSKM TVVTQFITAD GTDSGALSEI KRLYVQNGKV IANSVSNVAG VSGNSITSDF
    CTAQKKAFGD EDIFAKHGGL SGMGKALSEM VLIMSIWDDH HSSMMWLDST YPTDADPSKP GVARGTCEHG
    AGDPENVESQ HPDASVTFSN IKFGPIGSTY EG
    294196 Phanerochaete MFRTATLLAF TMAAMVFGQQ VGTNTAENHR TLTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT
    chrysosporium GNQWDATLCP DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT
    SANAGTGNYG TCCTEMDIWE ANNDAAAYTP HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF
    LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN GKVIQNSSVK IPGIDPVNSI TDNFCSQQKT
    AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK DPSTPGVARG TCATTSGVPA
    QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV TVPQWGQCGG
    IGYTGSTTCA SPYTCHVLNP YYSQCY
    18997123 Thermoascus MYQRALLFSF FLAAARAHEA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG
    aurantiacus NTWDTSICPD DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL
    GQEFTFDVDV SNLPCGLNGA LYFVAMDADG NLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ
    PSANDPNAGV GNHGSSCAEM DVWEANSIST AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF
    NPYQPGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL TEIKRFYVQN GKVIPQSEST ISGVTGNSIT
    TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW LDSTYPTDAD PDTPGVARGT
    CPTTSGVPAD VESQNPNSYV IYSNIKVGPI NSTFTAN
    4204214 Humicola grisea var MQIKSYIQYL AAALPLLSSV AAQQAGTITA ENHPRMTWKR CSGPGNCQTV QGEVVIDANW RWLHNNGQNC
    thermoidea YEGNKWTSQC SSATDCAQRC ALDGANYQST YGASTSGDSL TLKFVTKHEY GTNIGSRFYL MANQNKYQMF
    TLMNNEFAFD VDLSKVECGI NSALYFVAME EDGGMASYPS NRAGAKYGTG YCDAQCARDL KFIGGKANIE
    GWRPSTNDPN AGVGPMGACC AEIDVWESNA YAYAFTPHAC GSKNRYHICE TNNCGGTYSD DRFAGYCDAN
    GCDYNPYRMG NKDFYGKGKT VDTNRKFTVV SRFERNRLSQ FFVQDGRKIE VPPPTWPGLP NSADITPELC
    DAQFRVFDDR NRFAETGGFD ALNEALTIPM VLVMSIWDDH HSNMLWLDSS YPPEKAGLPG GDRGPCPTTS
    GVPAEVEAQY PDAQVVWSNI RFGPIGSTVN V
    34582632 Trichoderma viride MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG
    (also known as NTWSSTLCPD NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL
    Hypochrea rufa) GNEFSFDVDV SQLPCGLNGA LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE
    PSSNNANTGI GGHGSCCSEM DIWEANSISE ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW
    DPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY YVQNGVTFQQ PNAELGSYSG NGLNDDYCTA
    EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT NETSSTPGAV RGSCSTSSGV
    PAQVESQSPN AKVTFSNIKF GPIGSTGDPS GGNPPGGNPP GTTTTRRPAT TTGSSPGPTQ SHYGQCGGIG
    YSGPTVCASG TTCQVLNPYY SQCL
    156712284 Thermoascus MYQRALLFSF FLAAARAQQA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG
    aurantiacus NTWDTSICPD DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL
    GQEFTFDVDV SNLPCGLNGA LYFVAMDADG GLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ
    PSANDPNAGV GNHGSCCAEM DVWEANSIST AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF
    NPYRQGNHSF YGPGQIVDTS SKFTVVTQFI TDDGTPSGTL TEIKRFYVQN GKVIPQSEST ISGVTGNSIT
    TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW LDSTYPTDAD PDTPGVARGT
    CPTTSGVPAD VESQYPNSYV IYSNIKVGPI NSTFTAN
    39977899 Magnaporthe grisea MIRKITTLAA LVGVVRGQAA CSLTAETHPS LTWQKCSSGG SCTNVAGSVT IDANWRWTHT TSGYTNCYTG
    (oryzae) 70-15 NKWDTSICST NADCASKCCV DGANYQQTYG ASTSGNALSL QYVTQSSGKN VGSRLYLLES ENKYQMFNLL
    GNEFTFDVDA SKLGCGLNGA VYFVSMDADG GQSKYSGNKA GAKYGTGYCD SQCPRDLKYI NGAANVEGWQ
    PSSGDANSGV GNMGSCCAEM DIWEANSIST AYTPHPCSNN AQHSCKGDDC GGTYSSVRYA GDCDPDGCDF
    NSYRQGNRTF YGPGSNFNVD SSKKVTVVTQ FISSGGQLTD IKRFYVQNGK VIPNSQSTIT GVTGNSVTQD
    YCDKQKTAFG DQNVFNQRGG LRQMGDALAK GMVLVMSVWD DHHSQMLWLD STYPTTSTAP GAARGSCSTS
    SGKPSDVQSQ TPGATVVYSN IKFGPIGSTF KSS
    20986705 Talaromyces emersonii MLRRALLLSS SAILAVKAQQ AGTATAENHP PLTWQECTAP GSCTTQNGAV VLDANWRWVH DVNGYTNCYT
    GNTWDPTYCP DDETCAQNCA LDGADYEGTY GVTSSGSSLK LNFVTGSNVG SRLYLLQDDS TYQIFKLLNR
    EFSFDVDVSN LPCGLNGALY FVAMDADGGV SKYPNNKAGA KYGTGYCDSQ CPRDLKFIDG EANVEGWQPS
    SNNANTGIGD HGSCCAEMDV WEANSISNAV TPHPCDTPGQ TMCSGDDCGG TYSNDRYAGT CDPDGCDFNP
    YRMGNTSFYG PGKIIDTTKP FTVVTQFLTD DGTDTGTLSE IKRFYIQNSN VIPQPNSDIS GVTGNSITTE
    FCTAQKQAFG DTDDFSQHGG LAKMGAAMQQ GMVLVMSLWD DYAAQMLWLD SDYPTDADPT TPGIARGTCP
    TDSGVPSDVE SQSPNSYVTY SNIKFGPINS TFTAS
    22138843 Aspergillus oryzae MHQRALLFSA FWTAVQAQQA GTLTAETHPS LTWQKCAAGG TCTEQKGSVV LDSNWRWLHS VDGSTNCYTG
    NTWDATLCPD NESCASNCAL DGADYEGTYG VTTSGDALTL QFVTGANIGS RLYLMADDDE SYQTFNLLNN
    EFTFDVDASK LPCGLNGAVY FVSMDADGGV AKYSTNKAGA KYGTGYCDSQ CPRDLKFING QVRKGWEPSD
    SDKNAGVGGH GSCCPQMDIW EANSISTAYT PHPCDDTAQT MCEGDTCGGT YSSERYAGTC DPDGCDFNAY
    RMGNESFYGP SKLVDSSSPV TVVTQFITAD GTDSGALSEI KRFYVQGGKV IANAASNVDG VTGNSITADF
    CTAQKKAFGD DDIFAQHGGL QGMGNALSSM VLTLSIWDDH HSSMMWLDSS YPEDADATAP GVARGTCEPH
    AGDPEKVESQ SGSATVTYSN IKYGPIGSTF DAPA
    55775695 Penicillium MASTLSFKIY KNALLLAAFL GAAQAQQVGT STAEVHPSLT WQKCTAGGSC TSQSGKVVID SNWRWVHNTG
    chrysogenum GYTNCYTGND WDRTLCPDDV TCATNCALDG ADYKGTYGVT ASGSSLRLNF VTQASQKNIG SRLYLMADDS
    KYEMFQLLNQ EFTFDVDVSN LPCGLNGALY FVAMDEDGGM ARYPTNKAGA KYGTGYCDAQ CPRDLKFING
    QANVEGWEPS SSDVNGGTGN YGSCCAEMDI WEANSISTAF TPHPCDDPAQ TRCTGDSCGG TYSSDRYGGT
    CDPDGCDFNP YRMGNQSFYG PSKIVDTESP FTVVTQFITN DGTSTGTLSE IKRFYVQNGK VIPQSVSTIS
    AVTGNSITDS FCSAQKTAFK DTDVFAKHGG MAGMGAGLAE GMVLVMSLWD DHAANMLWLD STYPTSASST
    TPGAARGSCD ISSGEPSDVE ANHSNAYVVY SNIKVGPLGS TFGSTDSGSG TTTTKVTTTT ATKTTTTTGP
    STTGAAHYAQ CGGQNWTGPT TCASPYTCQR QGDYYSQCL
    171676762 Podospora anserina MVSAKFAALA ALVASASAQQ VCSLTPESHP PLTWQRCSAG GSCTNVAGSV TLDSNWRWTH TLQGSTNCYS
    GNEWDTSICT TGTKCAQNCC VEGAEYAATY GITTSGNQLN LKFVTEGKYS TNVGSRTYLM ENATKYQGFN
    LLGNEFTFDV DVSNIGCGLN GALYFVSMDL DGGLAKYSGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG
    WNPSTNDVNA GAGRYGTCCS EMDIWEANNM ATAYTPHSCT ILDQSRCEGE SCGGTYSSDR YGGVCDPDGC
    DFNSYRMGNK EFYGKGKTVD TTKKMTVVTQ FLKNAAGELS EIKRFYVQNG VVIPNSVSSI PGVPNQNSIT
    QDWCDAQKIA FGDPDDNTAK GGLRQMGLAL DKPMVLVMSI WNDHAAHMLW LDSTYPVDAA GRPGAERGAC
    PTTSGVPSEV EAEAPNSNVA FSNIKFGPIG STFNSGSTNP NPISSSTATT PTSTRVSSTS TAAQTPTSAP
    GGTVPRWGQC GGQGYTGPTQ CVAPYTCVVS NQWYSQCL
    146350520 Pleurotus sp Florida MFPYIALVSF SFLSVVLAQQ VGTLTAETHP QLTVQQCTRG GSCTTQQRSV VLDGNWRWLH STSGSNNCYT
    GNTWDTSLCP DAATCSRNCA LDGADYSGTY GITSSGNALT LKFVTHGPYS TNIGSRVYLL ADDSHYQMFN
    LKNKEFTFDV DVSQLPCGLN GALYFSQMDA DGGTGRFPNN KAGAKYGTGY CDSQCPHDIK FINGEANVQG
    WQPSPNDSNA GKGQYGSCCA EMDIWEANSM ASAYTPHPCT VTTPTRCQGN DCGDGDNRYG GVCDKDGCDF
    NSFRMGDKNF LGPGKTVNTN SKFTVVTQFL TSDNTTSGTL SEIRRLYVQN GRVIQNSKVN IPGMASTLDS
    ITESFCSTQK TVFGDTNSFA SKGGLRAMGN AFDKGMVLVL SIWDDHEAKM LWLDSNYPLD KSASAPGVAR
    GTCATTSGEP KDVESQSPNA QVIFSNIKYG DIGSTYSN
    37732123 Gibberella zeae myraiatasa LIAAVRAQQV CSLTQESKPS LNWSKCTSSG CSNVKGSVTI DANWRWTHQV SGSTNCYTGN
    KWDTSVCTSG KVCAERCCLD GADYASTYGI TSSGDQLSLS FVTKGPYSTN IGSRTYLMED ENTYQMFQLL
    GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ
    PSDSDVNGGI GNLGTCCPEM DIWEANSIST AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF
    NSYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGVPGNSLTA
    DFCTKQKKVF NDPDDFTKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL DSTYPTDSTK LGSQRGSCST
    SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKSDGTTPTN PTNPSEPSNT ANPNPGTVDQ WGQCGGSNYS
    GPTACKSGFT CKKINDFYSQ CQ
    156055188 Sclerotinia MYSAAVLATF SFLLGAGAQQ VGTLKTESHP PLTIQKCAAG GTCTDEADSV VLDANWRWLH STSGSTNCYT
    sclerotiorum 1980 GNTWDTTLCP DAATCTANCA FDGADYEGTY GITSSGDSLK LSFVTGSNVG SRTYLMDSET TYKEFALLGN
    EFTFTVDVSK LPCGLNGALY FVPMDADGGM SKYPTNKAGA KYGTGYCDAQ CPQDMKFVSG GANNEGWVPD
    SNSANSGTGN IGSCCSEFDV WEANSMSQAL TPHTCTVDGQ TACTGDDCAG NTGVCDADGC DFNPYRMGNT
    TFYGSGKTID TTKPFSVVTQ FITDDGTETG TLTEIKRFYV QDDVVYEQPN SDISGVSGNS ITDDFCTAQK
    TAFGDTDYFS QKGGMAAMGK KMADGMVLVL SIWDDYNVNM LWLDSDYPTT KDASTPGVSR GSCATTSGVP
    ATVEAASGSA YVTFSSIKYG PIGSTFKAPA DSSSPVVASS SPAAVAAVVS TSSAQAVPSH PAVSSSQAAV
    STPEAVSSAP EVPASSSAAQ SVAPTSTKPK CSKVSQSSTL ATSVAAPATT ATSAAVAATS AASSSGSVPL
    YGNCTGGKTC SEGTCVVQNP WYSQCVASS
    453224 Phanerochaete MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT
    chrysosporium GNEWDTSLCP DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET
    GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP HPCTTTGQTR CSGDDCARNT GLCDGDGCDF NSFRMGDKTF
    LGKGMTVDTS KPFTVVTQFL TNDNTSTGTL SEIRRIYIQN GKVIQNSVAN IPGVDPVNSI TDNFCAQQKT
    AFGDTNWFAQ KGGLKQMGEA LGNGMVLALS IWDDHAANML WLDSDYPTDK DPSAPGVARG TCATTSGVPS
    DVESQVPNSQ VVFSNIKFGD IGSTFSGTSS PNPPGGSTTS SPVTTSPTPP PTGPTVPQWG QCGGIGYSGS
    TTCASPYTCH VLNPYYSQCY
    50402144 Trichoderma reesei MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG
    NTWSSTLCPD NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL
    GNEFSFDVDV SQLPCGLNGA LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE
    PSSNNANTGI GGHGSCCSEM DIWEANSISE ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW
    NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY YVQNGVTFQQ PNAELGSYSG NELNDDYCTA
    EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT NETSSTPGAV RGSCSTSSGV
    PAQVESQSPN AKVTFSNIKF GPIGSTGNPS GGNPPGGNRG TTTTRRPATT TGSSPGPTQS HYGQCGGIGY
    SGPTVCASGT TCQVLNPYYS QCL
    115397177 Aspergillus terreus MPSTYDIYKK LLLLASFLSA SQAQQVGTSK AEVHPSLTWQ TCTSGGSCTT VNGKVVVDAN WRWVHNVDGY
    NIH2624 NNCYTGNTWD TTLCPDDETC ASNCALEGAD YSGTYGVTTS GNSLRLNFVT QASQKNIGSR LYLMEDDSTY
    KMFKLLNQEF TFDVDVSNLP CGLNGAVYFV SMDADGGMAK YPANKAGAKY GTGYCDSQCP RDLKFINGMA
    NVEGWEPSAN DANAGTGNHG SCCAEMDIWE ANSISTAYTP HPCDTPGQVM CTGDSCGGTY SSDRYGGTCD
    PDGCDFNSYR QGNKTFYGPG MTVDTKSKIT VVTQFLTNDG TASGTLSEIK RFYVQNGKVI PNSESTWSGV
    SGNSITTAYC NAQKTLFGDT DVFTKHGGME GMGAALAEGM VLVLSLWDDH NSNMLWLDSN YPTDKPSTTP
    GVARGSCDIS SGDPKDVEAN DANAYVVYSN IKVGPIGSTF SGSTGGGSSS STTATSKTTT TSATKTTTTT
    TKTTTTTSAS STSTGGAQHW AQCGGIGWTG PTTCVAPYTC QKQNDYYSQC L
    154312003 Botryotinia fuckeliana MISKVLAFTS LLAAARAQQA GTLTTETHPP LSVSQCTASG CTTSAQSIVV DANWRWLHST TGSTNCYTGN
    B05-10 TWDKTLCPDG ATCAANCALD GADYSGVYGI TTSGNSIKLN FVTKGANTNV GSRTYLMAAG STTQYQMLKL
    LNQEFTFDVD VSNLPCGLNG ALYFAAMDAD GGLSRFPTNK AGAKYGTGYC DAQCPQDIKF INGVANSVGW
    TPSSNDVNAG AGQYGSCCSE MDIWEANKIS AAYTPHPCSV DTQTRCTGTD CGIGARYSSL CDADGCDFNS
    YRQGNTSFYG AGLTVNTNKV FTVVTQFITN DGTASGTLKE IRRFYVQNGV VIPNSQSTIA GVPGNSITDS
    FCAAQKTAFG DTNEFATKGG LATMSKALAK GMVLVMSIWD DHTANMLWLD APYPATKSPS APGVTRGSCS
    ATSGNPVDVE ANSPGSSVTF SNIKWGPINS TYTGSGAAPS VPGTTTVSSA PASTATSGAG GVAKYAQCGG
    SGYSGATACV SGSTCVALNP YYSQCQ
    49333365 Volvariella volvacea MFPAATLFAF SLFAAVYGQQ VGTQLAETHP RLTWQKCTRS GGCQTQSNGA IVLDANWRWV HNVGGYTNCY
    TGNTWNTSLC PDGATCAKNC ALDGANYQST YGITTSGNAL TLKFVTQSEQ KNIGSRVYLL ESDTKYQLFN
    PLNQEFTFDV DVSQLPCGLN GAVYFSAMDA DGGMSKFPNN AAGAKYGTGY CDSQCPRDIK FINGEANVQG
    WQPSPNDTNA GTGNYGACCN EMDVWEANSI STAYTPHPCT QQGLVRCSGT ACGGGSNRYG SICDPDGCDF
    NSFRMGDKSF YGPGLTVNTQ QKFTVVTQFL TNNNSSSGTL REIRRLYVQN GRVIQNSKVN IPGMPSTMDS
    VTTEFCNAQK TAFNDTFSFQ QKGGMANMSE ALRRGMVLVL SIWDDHAANM LWLDSNYPTD RPASQPGVAR
    GTCPTSSGKP SDVENSTANS QVIYSNIKFG DIGSTYSA
    729650 Penicillium MKGSISYQIY KGALLLSALL NSVSAQQVGT LTAETHPALT WSKCTAGXCS QVSGSVVIDA NWPXVHSTSG
    janthinellum STNCYTGNTW DATLCPDDVT CAANCAVDGA RRQHLRVTTS GNSLRINFVT TASQKNIGSR LYLLENDTTY
    QKFNLLNQEF TFDVDVSNLP CGLNGALYFV DMDADGGMAK YPTNKAGAKY GTGYCDSQCP RDLKFINGQA
    NVDGWTPSKN DVNSGIGNHG SCCAEMDIWE ANSISNAVTP HPCDTPSQTM CTGQRCGGTY STDRYGGTCD
    PDGCDFNPYR MGVTNFYGPG ETIDTKSPFT VVTQFLTNDG TSTGTLSEIK RFYVQGGKVI GNPQSTIVGV
    SGNSITDSWC NAQKSAFGDT NEFSKHGGMA GMGAGLADGM VLVMSLWDDH ASDMLWLDST YPTNATSTTP
    GAKRGTCDIS RRPNTVESTY PNAYVIYSNI KTGPLNSTFT GGTTSSSSTT TTTSKSTSTS SSSKTTTTVT
    TTTTSSGSSG TGARDWAQCG GNGWTGPTTC VSPYTCTKQN DWYSQCL
    146424871 Pleurotus sp Florida MFRTAALTAF TLAAVVLGQQ VGTLTAENHP ALSIQQCTAS GCTTQQKSVV LDSNWRWTHS LPVHTNCYTG
    NAWDASLCPD PTTCATNCAI DGADYSGTYG ITTSGNALTL RFVTNGPYSK NIGSRVYLLD DADHYKMFDL
    KNQEFTFDVD MSGLPCGLNG ALYFSEMPAD GGKAAHTSNK AGAKYGTGYC DAQCPHDIKW INGEANILDW
    SASATDANAG NGRYGACCAE MDIWEANSEA TAYTPHVCRD EGLYRCSGTE CGDGDNRYGG VCDKDGCDFN
    SYRMGDKNFL GRGKTIDTTK KITVVTQFIT DDNTSSGNLV EIRRVYVQDG VTYQNSFSTF PSLSQYNSIS
    DDFCVAQKTL FGDNQYYNTH GGTEKMGDAM ANGMVLIMSL WSDHAAHMLW LDSDYPLDKS PSEPGVSRGA
    CATTTGDPDD VVANHPNASV TFSNIKYGPI GSTYGGSTPP VSSGNTSAPP VTSTTSSGPT TPTGPTGTVP
    KWGQCGGNGY SGPTTCVAGS TCTYSNDWYS QCL
    67538012 Aspergillus nidulans MYQRALLFSA LLSVSRAQQA GTAQEEVHPS LTWQRCEASG SCTEVAGSVV LDSNWRWTHS VDGYTNCYTG
    FGSC A4 NEWDATLCPD NESCAQNCAV DGADYEATYG ITSNGDSLTL KFVTGSNVGS RVYLMEDDET YQMFDLLNNE
    FTFDVDVSNL PCGLNGALYF TSMDADGGLS KYEGNTAGAK YGTGYCDSQC PRDIKFINGL GNVEGWEPSD
    SDANAGVGGM GTCCPEMDIW EANSISTAYT PHPCDSVEQT MCEGDSCGGT YSDDRYGGTC DPDGCDFNSY
    RMGNTSFYGP GAIIDTSSKF TVVTQFIADG GSLSEIKRFY VQNGEVIPNS ESNISGVEGN SITSEFCTAQ
    KTAFGDEDIF AQHGGLSAMG DAASAMVLIL SIWDDHHSSM MWLDSSYPTD ADPSQPGVAR GTCEQGAGDP
    DVVESEHADA SVTFSNIKFG PIGSTF
    62006162 Fusarium poae MYRAIATASA LIAAVRAQQV CSLTTETKPA LTWSKCTSSG CSNVQGSVTI DANWRWTHQV SGSTNCHTGN
    KWDTSVCTSG KVCAEKCCVD GADYASTYGI TSSGNQLSLS FVTKGSYGTN IGSRTYLMED ENTYQMFQLL
    GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWE
    PSKSDVNGGI GNLGTCCPEM DIWEANSIST AYTPHPCTKL TQHACTGDSC GGTYSNDRYG GTCDADGCDF
    NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGNPGSSLTS
    DFCTTQKKVF GDIDDFAKKG AWNGMSDALE APMVLVMSLW HDHHSNMLWL DSTYPTDSTA LGSQRGSCST
    SSGVPADLEK NVPNSKVAFS NIKFGPIGST YNKEGTQPQP TNPTNPNPTN PTNPGTVDQW GQCGGTNYSG
    PTACKSPFTC KKINDFYSQC Q
    146424873 Pleurotus sp Florida MFRTAALTAF TLAAVVLGQQ VGTLAAENHP ALSIQQCTAS GCTTQQKSVV LDSNWRWTHS TAGATNCYTG
    NAWDSSLCPN PTTCATNCAI DGADYSGTYG ITTSGNSLTL RFVTNGQYSE NIGSRVYLLD DADHYKLFNL
    KNQEFTFDVD MSGLPCGLNG ALYFSEMAAD GGKAAHTGNN AGAKYGTGYC DAQCPHDIKW INGEANILDW
    SGSATDPNAG NGRYGACCAE MDIWEANSEA TAYTPHVCRD EGLYRCSGTE CGDGDNRYGG VCDKDGCDFN
    SYRMGDKNFL GRGKTIDTTK KITVVTQFIT DDNTPTGNLV EIRRVYVQDG VTYQNSFSTF PSLSQYNSIS
    DDFCVAQKTL FGDNQYYNTH GGTEKMGDSL ANGMVLIMSL WSDHAAHMLW LDSDYPLDKS PSEPGVSRGA
    CATTTGDPDD VVANHPNASV TFSNIKYGPI GSTYGGSTPP VSSGNTSVPP VTSTTSSGPT TPTGPTGTVP
    KWGQCGGIGY SGPTSCVAGS TCTYSNEWYS QCL
    295937 Trichoderma viride MYQKLALISA FLATARAQSA CTLQAETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG
    NTWSSTLCPD NETCAKNCCL DGAAYASTYG VTTSADSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL
    GNEFSFDVDV SQLPCGLNGA LYFVSMDADG GVTKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE
    PSSNNANTGI GGHGSCCSEM DIWEANSISE ALTPHPCTTV GQEICEGDSC GGTYSGDRYG GTCDPDGCDW
    NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY YVQNGVTFQQ PNAELGDYSG NSLDDDYCAA
    EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT DETSSTPGAV RGSSSTSSGV
    PAQLESNSPN AKVVYSNIKF GPIGSTGNPS GGNPPGGNPP GTTTPRPATS TGSSPGPTQT HYGQCGGIGY
    IGPTVCASGS TCQVLNPYYS QCL
    6179889 # Alternaria alternata MTWQSCTAKG SCTNKNGKIV IDANWRWLHK KEGYDNCYTG NEWDATACPD NKACAANCAV DGADYSGTYG
    ITAGSNSLKL KFITKGSYST NIGSRTYLMK DDTTYEMFKF TGNQEFTFDV DVSNLPCGFN GALYFVSMDA
    DGGLKKYSTN KAGAKYGTGY CDAQCPRDLK FINGEGNVEG WKPSSNDANA GVGGHGSCCA EMDIWEANSV
    STAVTPHSCS TIEQSRCDGD GCGGTYSADR YAGVCDPDGC DFNSYRMGVK DFYGKGKTVD TSKKFTVVTQ
    FIGTGDAMEI KRFYVQNGKT IAQPASAVPG VEGNSITTKF CDQQKAVFGD TYTFKDKGGM ANMAKALANG
    MVLVMSLWDD HYSNMLWLDS TYPTDKNPDT DLGTGRGECE TSSGVPADVE SQHADATVVY SNIKFGPLNS
    TFG
    119483864 Neosartorya fischeri MASAISFQVY RSALILSAFL PSITQAQQIG TYTTETHPSM TWETCTSGGS CATNQGSVVM DANWRWVHQV
    NRRL 181 GSTTNCYTGN TWDTSICDTD ETCATECAVD GADYESTYGV TTSGSQIRLN FVTQNSNGAN VGSRLYMMAD
    NTHYQMFKLL NQEFTFDVDV SNLPCGLNGA LYFVTMDEDG GVSKYPNNKA GAQYGVGYCD SQCPRDLKFI
    QGQANVEGWT PSSNNENTGL GNYGSCCAEL DIWESNSISQ ALTPHPCDTA TNTMCTGDAC GGTYSSDRYA
    GTCDPDGCDF NPYRMGNTTF YGPGKTIDTN SPFTVVTQFI TDDGTDTGTL SEIRRYYVQN GVTYAQPDSD
    ISGITGNAIN ADYCTAENTV FDGPGTFAKH GGFSAMSEAM STGMVLVMSL WDDYYADMLW LDSTYPTNAS
    SSTPGAVRGS CSTDSGVPAT IESESPDSYV TYSNIKVGPI GSTFSSGSGS GSSGSGSSGS ASTSTTSTKT
    TAATSTSTAV AQHYSQCGGQ DWTGPTTCVS PYTCQVQNAY YSQCL
    85083281 Neurospora crassa MKAYFEYLVA ALPLLGLATA QQVGKQTTET HPKLSWKKCT GKANCNTVNA EVVIDSNWRW LHDSSGKNCY
    OR74A DGNKWTSACS SATDCASKCQ LDGANYGTTY GASTSGDALT LKFVTKHEYG TNIGSRFYLM NGASKYQMFT
    LMNNEFAFDV DLSTVECGLN AALYFVAMEE DGGMASYSSN KAGAKYGTGY CDAQCARDLK FVGGKANIEG
    WTPSTNDANA GVGPYGGCCA EIDVWESNAH SFAFTPHACK TNKYHVCERD NCGGTYSEDR FAGLCDANGC
    DYNPYRMGNT DFYGKGKTVD TSKKFTVVSR FEENKLTQFF VQNGQKIEIP GPKWDGIPSD NANITPEFCS
    AQFQAFGDRD RFAEVGGFAQ LNSALRMPMV LVMSIWDDHY ANMLWLDSVY PPEKEGQPGA ARGDCPQSSG
    VPAEVESQYA NSKVVYSNIR FGPVGSTVNV
    3913803 Cryphonectria MFSKFALTGS LLAGAVNAQG VGTQQTETHP QMTWQSCTSP SSCTTNQGEV VIDSNWRWVH DKDGYVNCYT
    parasitica GNTWNTTLCP DDKTCAANCV LDGADYSSTY GITTSGNALS LQFVTQSSGK NIGSRTYLME SSTKYHLFDL
    IGNEFAFDVD LSKLPCGLNG ALYFVTMDAD GGMAKYSTNT AGAEYGTGYC DSQCPRDLKF INGQGNVEGW
    TPSTNDANAG VGGLGSCCSE MDVWEANSMD MAYTPHPCET AAQHSCNADE CGGTYSSSRY AGDCDPDGCD
    WNPFRMGNKD FYGSGDTVDT SQKFTVVTQF HGSGSSLTEI SQYYIQGGTK IQQPNSTWPT LTGYNSITDD
    FCKAQKVEFN DTDVFSEKGG LAQMGAGMAD GMVLVMSLWD DHYANMLWLD STYPVDADAS SPGKQRGTCA
    TTSGVPADVE SSDASATVIY SNIKFGPIGA TY
    60729633 Corticium rolfsii MFPAAALLSF TLLAVASAQQ IGTNTAEVHP SLTVSQCTTS GGCTSSTQSI VLDANWRWLH STSGYTNCYT
    GNQWNSDLCP DPDTCATNCA LDGASYESTY GISTDGNAVT LNFVTQGSQT NVGSRVYLLS DDTHYQTFSL
    LNKEFSFDVD ASNIGCGING AVYFVQMDAD GGLSKYSSNK AGAQYGTGYC DSQCPQDIKF INGEANLLDW
    NATSANSGTG SYGSCCPEMD IWEANKYAAA YTPHPCSVSG QTRCTGTSCG AGSERYDGYC DKDGCDFNSW
    RMGNETFLGP GMTIDTNKKF TIVTQFITDD NTANGTLSEI RRLYVQGGTV IQNSVANQPN IPKVNSITDS
    FCTAQKTEFG DQDYFGTIGG LSQMGKAMSD MVLVMSIWDD YDAEMLWLDS NYPTSGSAST PGISRGPCSA
    TSGLPATVES QQASASVTYS NIKWGDIGST YSGSGSSGSS SSSSSSAASA STSTHTSAAA TATSSAAAAT
    GSPVPAYGQC GGQSYTGSTT CASPYVCKVS NAYYSQCLPA
    39971383 Magnaporthe grisea MKRALCASLS LLAAAVAQQV GTNEPEVHPK MTWKKCSSGG SCSTVNGEVV IDGNWRWIHN IGGYENCYSG
    70-15 NKWTSVCSTN ADCATKCAME GAKYQETYGV STSGDALTLK FVQQNSSGKN VGSRMYLMNG ANKYQMFTLK
    NNEFAFDVDL SSVECGMNSA LYFVPMKEDG GMSTEPNNKA GAKYGTGYCD AQCARDLKFI GGKGNIEGWQ
    PSSTDSSAGI GAQGACCAEI DIWESNKNAF AFTPHPCENN EYHVCTEPNC GGTYADDRYG GGCDANGCDY
    NPYRMGNPDF YGPGKTIDTN RKFTVISRFE NNRNYQILMQ DGVAHRIPGP KFDGLEGETG ELNEQFCTDQ
    FTVFDERNRF NEVGGWSKLN AAYEIPMVLV MSIWSDHFAN MLWLDSTYPP EKAGQPGSAR GPCPADGGDP
    NGVVNQYPNA KVIWSNVRFG PIGSTYQVD
    39973029 Magnaporthe grisea MQLTKAGVFL GALMGGAAAQ QVGTQTAENH PKMTWKKCTG KASCTTVNGE VVIDANWRWL HDASSKNCYD
    70-15 GNRWTDSCRT ASDCAAKCSL EGADYAKTYG ASTSGDALSL KFVTRHDYGT NIGSRFYLMN GASKYQMFSL
    LGNEFAFDVD LSTIECGLNS ALYFVAMEED GGMKSYSSNK AGAKYGTGYC DAQCARDLKF VGGKANIEGW
    KPSSNDANAG VGPYGACCAE IDVWESNAHA FAFTPHPCTD NKYHVCQDSN CGGTYSDDRF AGKCDANGCD
    INPYRLGNTD FYGKGKTVDT SKKFTVVTRF ERDALTQFFV QNNKRIDMPS PALEGLPATG AITAEYCTNV
    FNVFGDRNRF DEVGGWSQLQ QALSLPMVLV MSIWDDHYSN MLWLDSVYPP DKEGSPGAAR GDCPQDSGVP
    SEVESQIPGA TVVWSNIRFG PVGSTVNV
    1170141 Fusarium oxysporum MYRIVATASA LIAAARAQQV CSLNTETKPA LTWSKCTSSG CSDVKGSVVI DANWRWTHQT SGSTNCYTGN
    KWDTSICTDG KTCAEKCCLD GADYSGTYGI TSSGNQLSLG FVTNGPYSKN IGSRTYLMEN ENTYQMFQLL
    GNEFTFDVDV SGIGCGLNGA PHFVSMDEDG GKAKYSGNKA GAKYGTGYCD AQCPRDVKFI NGVANSEGWK
    PSDSDVNAGV GNLGTCCPEM DIWEANSIST AFTPHPCTKL TQHSCTGDSC GGTYSSDRYG GTCDADGCDF
    NAYRQGNKTF YGPGSNFNID TTKKMTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGNPGSSLTS
    DFCSKQKSVF GDIDDFSKKG GWNGMSDALS APMVLVMSLW HDHHSNMLWL DSTYPTDSTK VGSQRGSCAT
    TSGKPSDLER DVPNSKVSFS NIKFGPIGST YKSDGTTPNP PASSSTTGSS TPTNPPAGSV DQWGQCGGQN
    YSGPTTCKSP FTCKKINDFY SQCQ
    121710012 Aspergillus clavatus MYQRALLFSA LATAVSAQQV GTQKAEVHPA LTWQKCTAAG SCTDQKGSVV IDANWRWLHS TEDTTNCYTG
    NRRL 1 NEWNAELCPD NEACAKNCAL DGADYSGTYG VTADGSSLKL NFVTSANVGS RLYLMEDDET YQMFNLLNNE
    FTFDVDVSNL PCGLNGALYF VSMDADGGLS KYPGNKAGAK YGTGYCDSQC PRDLKFINGE ANVEGWKPSD
    NDKNAGVGGY GSCCPEMDIW EANSISTAYT PHPCDGMEQT RCDGNDCGGT YSSTRYAGTC DPDGCDFNSF
    RMGNESFYGP GGLVDTKSPI TVVTQFVTAG GTDSGALKEI RRVYVQGGKV IGNSASNVAG VEGDSITSDF
    CTAQKKAFGD EDIFSKHGGL EGMGKALNKM ALIVSIWDDH ASSMMWLDST YPVDADASTP GVARGTCEHG
    LGDPETVESQ HPDASVTFSN IKFGPIGSTY KSV
    17902580 Penicillium MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN
    funiculosum TSTNCYTGNT WNTAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ
    IFDLLNQEFT FTVDVSNLPC GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN
    VEGWTPSTNN SNTGIGNHGS CCAELDIWEA NSISEALTPH PCDTPGLTVC TADDCGGTYS SNRYAGTCDP
    DGCDFNPYRL GVTDFYGSGK TVDTTKPFTV VTQFVTDDGT SSGSLSEIRR YYVQNGVVIP QPSSKISGIS
    GNVINSDFCA AELSAFGETA SFTNHGGLKN MGSALEAGMV LVMSLWDDYS VNMLWLDSTY PANETGTPGA
    ARGSCPTTSG NPKTVESQSG SSYVVFSDIK VGPFNSTFSG GTSTGGSTTT TASGTTSTKA STTSTSSTST
    GTGVAAHWGQ CGGQGWTGPT TCASGTTCTV VNPYYSQCL
    1346226 Humicola grisea var MRTAKFATLA ALVASAAAQQ ACSLTTERHP SLSWNKCTAG GQCQTVQASI TLDSNWRWTH QVSGSTNCYT
    thermoidea GNKWDTSICT DAKSCAQNCC VDGADYTSTY GITTNGDSLS LKFVTKGQHS TNVGSRTYLM DGEDKYQTFE
    LLGNEFTFDV DVSNIGCGLN GALYFVSMDA DGGLSRYPGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG
    WTGSTNDPNA GAGRYGTCCS EMDIWEANNM ATAFTPHPCT IIGQSRCEGD SCGGTYSNER YAGVCDPDGC
    DFNSYRQGNK TFYGKGMTVD TTKKITVVTQ FLKDANGDLG EIKRFYVQDG KIIPNSESTI PGVEGNSITQ
    DWCDRQKVAF GDIDDFNRKG GMKQMGKALA GPMVLVMSIW DDHASNMLWL DSTFPVDAAG KPGAERGACP
    TTSGVPAEVE AEAPNSNVVF SNIRFGPIGS TVAGLPGAGN GGNNGGNPPP PTTTTSSAPA TTTTASAGPK
    AGRWQQCGGI GFTGPTQCEE PYICTKLNDW YSQCL
    156712282 Chaetomium MMYKKFAALA ALVAGASAQQ ACSLTAENHP SLTWKRCTSG GSCSTVNGAV TIDANWRWTH TVSGSTNCYT
    thermophilum GNQWDTSLCT DGKSCAQTCC VDGADYSSTY GITTSGDSLN LKFVTKHQYG TNVGSRVYLM ENDTKYQMFE
    LLGNEFTFDV DVSNLGCGLN GALYFVSMDA DGGMSKYSGN KAGAKYGTGY CDAQCPRDLK FINGEANVGN
    WTPSTNDANA GFGRYGSCCS EMDVWEANNM ATAFTPHPCT TVGQSRCEAD TCGGTYSSDR YAGVCDPDGC
    DFNAYRQGDK TFYGKGMTVD TNKKMTVVTQ FHKNSAGVLS EIKRFYVQDG KIIANAESKI PGNPGNSITQ
    EYCDAQKVAF SNTDDFNRKG GMAQMSKALA GPMVLVMSVW DDHYANMLWL DSTYPIDQAG APGAERGACP
    TTSGVPAEIE AQVPNSNVIF SNIRFGPIGS TVPGLDGSNP GNPTTTVVPP ASTSTSRPTS STSSPVSTPT
    GQPGGCTTQK WGQCGGIGYT GCTNCVAGTT CTQLNPWYSQ CL
    169768818 Aspergillus oryzae MASLSLSKIC RNALILSSVL STAQGQQVGT YQTETHPSMT WQTCGNGGSC STNQGSVVLD ANWRWVHQTG
    RIB40 SSSNCYTGNK WDTSYCSTND ACAQKCALDG ADYSNTYGIT TSGSEVRLNF VTSNSNGKNV GSRVYMMADD
    THYEVYKLLN QEFTFDVDVS KLPCGLNGAL YFVVMDADGG VSKYPNNKAG AKYGTGYCDS QCPRDLKFIQ
    GQANVEGWVS STNNANTGTG NHGSCCAELD IWESNSISQA LTPHPCDTPT NTLCTGDACG GTYSSDRYSG
    TCDPDGCDFN PYRVGNTTFY GPGKTIDTNK PITVVTQFIT DDGTSSGTLS EIKRFYVQDG VTYPQPSADV
    SGLSGNTINS EYCTAENTLF EGSGSFAKHG GLAGMGEAMS TGMVLVMSLW DDYYANMLWL DSNYPTNEST
    SKPGVARGTC STSSGVPSEV EASNPSAYVA YSNIKVGPIG STFKS
    46241270 Gibberella pulicaris MYRAIATASA LIAAVRAQQV CSLTPETKPA LSWSKCTSSG CSNVQGSVTI DANWRWTHQL SGSTNCYTGN
    KWDTSICTSG KVCAEKCCID GAEYASTYGI TSSGNQLSLS FVTKGAYGTN IGSRTYLMED ENTYQMFQLL
    GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ
    PSKSDVNAGI GNMGTCCPEM DIWEANSIST AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF
    NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGVPGSSLTP
    EFCTAQKKVF GDTDDFAKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL DSTYPTDSTK LGAQRGSCST
    SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKEGVPEPTN PTNPTNPTNP TNPGTVDQWA QCGGTNYSGP
    TACKSPFTCK KINDFYSQCQ
    49333363 Volvariella volvacea MFPKSSLLVL SFLATAYAQQ VGTQTAEVHP SLNWARCTSS GCTNVAGSVT LDANWRWLHT TSGYTNCYTG
    NSWNTTLCPD GATCAQNCAL DGANYQSTCG ITTSGNALTL KFVTQGEQKN IGSRVYLMAS ESRYEMFGLL
    NKEFTFDVDV SNLPCGLNGA LYFSSMDADG GMAKNPGNKA GAKYGTGYCD SQCPRDIKFI NGEANVAGWN
    GSPNDTNAGT GNWGACCNEM DIWEANSISA AYTPHPCTVQ GLSRCSGTAC GTNDRYGTVC DPDGCDFNSY
    RMGDKTYYGP GGTGVDTRSK FTVVTQFLTN NNSSSGTLSE IRRLYVQNGR VVQNSKVNIP GMSNTLDSIT
    TGFCDSQKTA FGDTRSFQNK GGMSAMGQAL GAGMVLVLSV WDDHAANMLW LDSNYPVDAD PSKPGIARGT
    CSTTSGKPTD VEQSAANSSV TFSNIKFGDI GTTYTGGSVT TTPGNPGTTT STAPGAVQTK WGQCGGQGWT
    GPTRCESGST CTVVNQWYSQ CI
    46395332 Irpex lacteus MFRKAALLAF SFLAIAHGQQ VGTNQAENHP SLPSQHCTAS GCTTSSTSVV LDANWRWVHT TTGYTNCYTG
    QTWDASICPD GVTCAKACAL DGADYSGTYG ITTSGNALTL QFVKGTNVGS RVYLLQDASN YQLFKLINQE
    FTFDVDMSNL PCGLNGAVYL SQMDQDGGVS RFPTNTAGAK YGTGYCDSQC PRDIKFINGE ANVAGWTGSS
    SDPNSGTGNY GTCCSEMDIW EANSVAAAYT PHPCSVNQQT RCTGADCGQD ANRYKGVCDP DGCDFNSFRM
    GDQTFLGKGL TVDTSRKFTI VTQFISDDGT SSGNLAEIRR FYVQDGKVIP NSKVNIAGCD AVNSITDKFC
    TQQKTAFGDT NRFADQGGLK QMGAALKSGM VLALSLWDDH AANMLWLDSD YPTTADASKP GVARGTCPNT
    SGVPKDVESQ SGSATVTYSN IKWGDLNSTF SGTASNPTGP SSSPSGPSSS SSSTAGSQPT QPSSGSVAQW
    GQCGGIGYSG ATGCVSPYTC HVVNPYYSQC Y
    50844407 # Chaetomium TETHPRLTWK RCTSGGNCST VNGAVTIDAN WRWTHTVSGS TNCYTGNEWD TSICSDGKSC AQTCCVDGAD
    thermophilum var YSSTYGITTS GDSLNLKFVT KHQHGTNVGS RVYLMENDTK YQMFELLGNE FTFDVDVSNL GCGLNGALYF
    thermophilum VSMDADGGMS KYSGNKAGAK YGTGYCDAQC PRDLKFINGE ANIENWTPST NDANAGFGRY GSCCSEMDIW
    EANNMATAFT PHPCTIIGQS RCEGNSCGGT YSSERYAGVC DPDGCDFNAY RQGDKTFYGK GMTVDTTKKM
    TVVTQFHKNS AGVLSEIKRF YVQDGKIIAN AESKIPGNPG NSITQEWCDA QKVAFGDIDD FNRKGGMAQM
    SKALEGPMVL VMSVWDDHYA NMLWLDSTYP IDKAGTPGAE RGACPTTSGV PAEIEAQVPN SNVIFSNIRF
    GPIGSTVPGL DGSTPSNPTA TVAPPTSTTT SVRSSTTQIS TPTSQPGGCT TQKWGQCGGI GYTGCTNCVA
    GTTCTELNPW YSQCL
    4586347 Irpex lacteus MFHKAVLVAF SLVTIVHGQQ AGTQTAENHP QLSSQKCTAG GSCTSASTSV VLDSNWRWVH TTSGYTNCYT
    GNTWDASICS DPVSCAQNCA LDGADYAGTY GITTSGDALT LKFVTGSNVG SRVYLMEDET NYQMFKLMNQ
    EFTFDVDVSN LPCGLNGAVY FVQMDQDGGT SKFPNNKAGA KFGTGYCDSQ CPQDIKFING EANIVDWTAS
    AGDANSGTGS FGTCCQEMDI WEANSISAAY TPHPCTVTEQ TRCSGSDCGQ GSDRFNGICD PDGCDFNSFR
    MGNTEFYGKG LTVDTSQKFT IVTQFISDDG TADGNLAEIR RFYVQNGKVI PNSVVQITGI DPVNSITEDF
    CTQQKTVFGD TNNFAAKGGL KQMGEAVKNG MVLALSLWDD YAAQMLWLDS DYPTTADPSQ PGVARGTCPT
    TSGVPSQVEG QEGSSSVIYS NIKFGDLNST FTGTLTNPSS PAGPPVTSSP SEPSQSTQPS QPAQPTQPAG
    TAAQWAQCGG MGFTGPTVCA SPFTCHVLNP YYSQCY
    3980202 Phanerochaete MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT
    chrysosporium GNEWNTSLCP DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET
    GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP HPCTTTGQTR CSGDDCARNT GLCDHGDGCD FNSFRMGDKT
    FLGKGMTVDT SKPFTDVTQF LTNDNTSTGT LSEIRRIYIQ NGKVIQNSVA NIPGVDPVNS ITDNFCAQQK
    TAFGDTNWFA QKGGLKQMGE ALGNGMVLAL SIWDDHAANM LWLDSDYPTD KDPSAPGVAR GTCATTSGVP
    SDVESQVPNS QVVFSNIKFG DIGSTFSGTS SPNPPGGSTT SSPVTTSPTP PPTGPTVPQW GQCGGIGYSG
    STTCASPYTC HVLNPYYSQC Y
    27125837 Melanocarpus MMMKQYLQYL AAALPLVGLA AGQRAGNETP ENHPPLTWQR CTAPGNCQTV NAEVVIDANW RWLHDDNMQN
    albomyces CYDGNQWTNA CSTATDCAEK CMIEGAGDYL GTYGASTSGD ALTLKFVTKH EYGTNVGSRF YLMNGPDKYQ
    MFNLMGNELA FDVDLSTVEC GINSALYFVA MEEDGGMASY PSNQAGARYG TGYCDAQCAR DLKFVGGKAN
    IEGWKSSTSD PNAGVGPYGS CCAEIDVWES NAYAFAFTPH ACTTNEYHVC ETTNCGGTYS EDRFAGKCDA
    NGCDYNPYRM GNPDFYGKGK TLDTSRKFTV VSRFEENKLS QYFIQDGRKI EIPPPTWEGM PNSSEITPEL
    CSTMFDVFND RNRFEEVGGF EQLNNALRVP MVLVMSIWDD HYANMLWLDS IYPPEKEGQP GAARGDCPTD
    SGVPAEVEAQ FPDAQVVWSN IRFGPIGSTY DF
    171696102 Podospora anserina MYRSATFLTF ASLVLGQQVG TYTAERHPSM PIQVCTAPGQ CTRESTEVVL DANWRWTHIT NGYTNCYTGN
    EWNATACPDG ATCAKNCAVD GADYSGTYGI TTPSSGALRL QFVKKNDNGQ NVGSRVYLMA SSDKYKLFNL
    LNKEFTFDVD VSKLPCGLNG AVYFSEMLED GGLKSFSGNK AGAKYGTGYC DSQCPQDIKF INGEANVEGW
    GGADGNSGTG KYGICCAEMD IWEANSDATA YTPHVCSVNE QTRCEGVDCG AGSDRYNSIC DKDGCDFNSY
    RLGNREFYGP GKTVDTTRPF TIVTQFVTDD GTDSGNLKSI HRYYVQDGNV IPNSVTEVAG VDQTNFISEG
    FCEQQKSAFG DNNYFGQLGG MRAMGESLKK MVLVLSIWDD HAVNMNWLDS IFPNDADPEQ PGVARGRCDP
    ADGVPATIEA AHPDAYVIYS NIKFGAINST FTAN
    3913802 Cochliobolus MYRTLAFASL SLYGAARAQQ VGTSTAENHP KLTWQTCTGT GGTNCSNKSG SVVLDSNWRW AHNVGGYTNC
    carbonum YTGNSWSTQY CPDGDSCTKN CAIDGADYSG TYGITTSNNA LSLKFVTKGS FSSNIGSRTY LMETDTKYQM
    FNLINKEFTF DVDVSKLPCG LNGALYFVEM AADGGIGKGN NKAGAKYGTG YCDSQCPHDI KFINGKANVE
    GWNPSDADPN GGAGKIGACC PEMDIWEANS ISTAYTPHPC RGVGLQECSD AASCGDGSNR YDGQCDKDGC
    DFNSYRMGVK DFYGPGATLD TTKKMTVITQ FLGSGSSLSE IKRFYVQNGK VYKNSQSAVA GVTGNSITES
    FCTAQKKAFG DTSSFAALGG LNEMGASLAR GHVLIMSLWG DHAVNMLWLD STYPTDADPS KPGAARGTCP
    TTSGKPEDVE KNSPDATVVF SNIKFGPIGS TFAQPA
    50403723 Trichoderma viride MYQKLALISA FLATARAQSA CTLQAETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG
    NTWSSTLCPD NETCAKNCCL DGAAYASTYG VTTSADSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL
    GNEFSFDVDV SQLPCGLNGA LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE
    PSSNNANTGI GGHGSCCSEM DIWEANSISE ALTPHPCTTV GQEICDGDSC GGTYSGDRYG GTCDPDGCDW
    NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY YVQNGVTFQQ PNAELGDYSG NSLDDDYCAA
    EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT NETSSTPGAV RGSCSTSSGV
    PAQLESNSPN AKVVYSNIKF GPIGSTGNSS GGNPPGGNPP GTTTTRRPAT STGSSPGPTQ THYGQCGGIG
    YSGPTVCASG STCQVLNPYY SQCL
    3913798 Aspergillus aculeatus MVDSFSIYKT ALLLSMLATS NAQQVGTYTA ETHPSLTWQT CSGSGSCTTT SGSVVIDANW RWVHEVGGYT
    NCYSGNTWDS SICSTDTTCA SECALEGATY ESTYGVTTSG SSLRLNFVTT ASQKNIGSRL YLLADDSTYE
    TFKLFNREFT FDVDVSNLPC GLNGALYFVS MDADGGVSRF PTNKAGAKYG TGYCDSQCPR DLKFIDGQAN
    IEGWEPSSTD VNAGTGNHGS CCPEMDIWEA NSISSAFTAH PCDSVQQTMC TGDTCGGTYS DTTDRYSGTC
    DPDGCDFNPY RFGNTNFYGP GKTVDNSKPF TVVTQFITHD GTDTGTLTEI RRLYVQNGVV IGNGPSTYTA
    ASGNSITESF CKAEKTLFGD TNVFETHGGL SAMGDALGDG MVLVLSLWDD HAADMLWLDS DYPTTSCASS
    PGVARGTCPT TTGNATYVEA NYPNSYVTYS NIKFGTLNST YSGTSSGGSS SSSTTLTTKA STSTTSSKTT
    TTTSKTSTTS SSSTNVAQLY GQCGGQGWTG PTTCASGTCTKQNDYYSQCL
    66828465 Dictyostelium MYRILKSFIL LSLVNMSLSQ KIGKLTPEVH PPMTFQKCSE GGSCETIQGE VVVDANWRWV HSAQGQNCYT
    discoideum GNTWNPTICP DDETCAENCY LDGANYESVY GVTTSEDSVR LNFVTQSQGK NIGSRLFLMS NESNYQLFHV
    LGQEFTFDVD VSNLDCGLNG ALYLVSMDSD GGSARFPTNE AGAKYGTGYC DAQCPRDLKF ISGSANVDGW
    IPSTNNPNTG YGNLGSCCAE MDLWEANNMA TAVTPHPCDT SSQSVCKSDS CGGAASSNRY GGICDPDGCD
    YNPYRMGNTS FFGPNKMIDT NSVITVVTQF ITDDGSSDGK LTSIKRLYVQ DGNVISQSVS TIDGVEGNEV
    NEEFCTNQKK VFGDEDSFTK HGGLAKMGEA LKDGMVLVLS LWDDYQANML WLDSSYPTTS SPTDPGVARG
    SCPTTSGVPS KVEQNYPNAY VVYSNIKVGP IDSTYKK
    156060391 Sclerotinia MISRVLAISS LLAAARAQQI GTNTAEVHPA LTSIVIDANW RWLHTTSGYT NCYTGNSWDA TLCPDAVTCA
    sclerotiorum 1980 ANCALDGADY SGTYGITTSG NSLKLNFVTK GANTNVGSRT YLMAAGSKTQ YQLLKLLGQE FTFDVDVSNL
    PCGLNGALYF AEMDADGGVS RFPTNKAGAQ YGTGYCDAQC PQDIKFINGQ ANSVGWTPSS NDVNTGTGQY
    GSCCSEMDIW EANKISAAYT PHPCSVDGQT RCTGTDCGIG ARYSSLCDAD GCDFNSYRMG DTGFYGAGLT
    VDTSKVFTVV TQFITNDGTT SGTLSEIRRF YVQNGKVIPN SQSKVTGVSG NSITDSFCAA QKTAFGDTNE
    FATKGGLATM SKALAKGMVL VMSIWDDHSA NMLWLDAPYP ASKSPSAAGV SRGSCSASSG VPADVEANSP
    GASVTYSNIK WGPINSTYSA GTGSNTGSGS GSTTTLVSSV PSSTPTSTTG VPKYGQCGGS GYTGPTNCIG
    STCVSMGQYY SQCQ
    116181754 Chaetomium globosum MYRQVATALS FASLVLGQQV GTLTAETHPS LPIEVCTAPG SCTKEDTTVV LDANWRWTHV TDGYTNCYTG
    CBS 148-51 NAWNETACPD GKTCAANCAI DGAEYEKTYG ITTPEEGALR LNFVTESNVG SRVYLMAGED KYRLFNLLNK
    EFTMDVDVSN LPCGLNGAVY FSEMDEDGGM SRFEGNKAGA KYGTGYCDSQ CPRDIKFING EANSEGWGGE
    DGNSGTGKYG TCCAEMDIWE ANLDATAYTP HPCKVTEQTR CEDDTECGAG DARYEGLCDR DGCDFNSFRL
    GNKEFYGPEK TVDTSKPFTL VTQFVTADGT DTGALQSIRR FYVQDGTVIP NSETVVEGVD PTNEITDDFC
    AQQKTAFGDN NHFKTIGGLP AMGKSLEKMV LVLSIWDDHA VYMNWLDSNY PTDADPTKPG VARGRCDPEA
    GVPETVEAAH PDAYVIYSNI KIGALNSTFA AA
    145230535 Aspergillus niger MSSFQVYRAA LLLSILATAN AQQVGTYTTE THPSLTWQTC TSDGSCTTND GEVVIDANWR WVHSTSSATN
    CYTGNEWDTS ICTDDVTCAA NCALDGATYE ATYGVTTSGS ELRLNFVTQG SSKNIGSRLY LMSDDSNYEL
    FKLLGQEFTF DVDVSNLPCG LNGALYFVAM DADGGTSEYS GNKAGAKYGT GYCDSQCPRD LKFINGEANC
    DGWEPSSNNV NTGVGDHGSC CAEMDVWEAN SISNAFTAHP CDSVSQTMCD GDSCGGTYSA SGDRYSGTCD
    PDGCDYNPYR LGNTDFYGPG LTVDTNSPFT VVTQFITDDG TSSGTLTEIK RLYVQNGEVI ANGASTYSSV
    NGSSITSAFC ESEKTLFGDE NVFDKHGGLE GMGEAMAKGM VLVLSLWDDY AADMLWLDSD YPVNSSASTP
    GVARGTCSTD SGVPATVEAE SPNAYVTYSN IKFGPIGSTY SSGSSSGSGS SSSSSSTTTK ATSTTLKTTS
    TTSSGSSSTS AAQAYGQCGG QGWTGPTTCV SGYTCTYENA YYSQCL
    46241266 Nectria haematococca MYRAIATASA LLATARAQQV CTLNTENKPA LTWAKCTSSG CSNVRGSVVV DANWRWAHST SSSTNCYTGN
    mpVI TWDKTLCPDG KTCADKCCLD GADYSGTYGV TSSGNQLNLK FVTVGPYSTN VGSRLYLMED ENNYQMFDLL
    GNEFTFDVDV NNIGCGLNGA LYFVSMDKDG GKSRFSTNKA GAKYGTGYCD AQCPRDVKFI NGVANSDEWK
    PSDSDKNAGV GKYGTCCPEM DIWEANKIST AYTPHPCKSL TQQSCEGDAC GGTYSATRYA GTCDPDGCDF
    NPYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FIKGSDGKLS EIKRLYVQNG KVIGNPQSEI ANNPGSSVTD
    SFCKAQKVAF NDPDDFNKKG GWSGMSDALA KPMVLVMSLW HDHYANMLWL DSTYPKGSKT PGSARGSCPE
    DSGDPDTLEK EVPNSGVSFS NIKFGPIGST YTGTGGSNPD PEEPEEPEEP VGTVPQYGQC GGINYSGPTA
    CVSPYKCNKI NDFYSQCQ
    1q9h (PDB) # Talaromyces emersonii EQAGTATAEN HPPLTWQECT APGSCTTQNG AVVLDANWRW VHDVNGYTNC YTGNTWDPTY CPDDETCAQN
    CALDGADYEG TYGVTSSGSS LKLNFVTGSN VGSRLYLLQD DSTYQIFKLL NREFSFDVDV SNLPCGLNGA
    LYFVAMDADG GVSKYPNNKA GAKYGTGYCD SQCPRDLKFI DGEANVEGWQ PSSNNANTGI GDHGSCCAEM
    DVWEANSISN AVTPHPCDTP GQTMCSGDDC GGTYSNDRYA GTCDPDGCDF NPYRMGNTSF YGPGKIIDTT
    KPFTVVTQFL TDDGTDTGTL SEIKRFYIQN SNVIPQPNSD ISGVTGNSIT TEFCTAQKQA FGDTDDFSQH
    GGLAKMGAAM QQGMVLVMSL WDDYAAQMLW LDSDYPTDAD PTTPGIARGT CPTDSGVPSD VESQSPNSYV
    TYSNIKFGPI NSTFTAS
    157362170 Polyporus arcularius MFPTLALVSL SFLAIAYGQQ VGTLTAETHP KLSVSQCTAG GSCTTVQRSV VLDSNWRWLH DVGGSTNCYT
    GNTWDDSLCP DPTTCAANCA LDGADYSGTY GITTSGNALS LKFVTQGPYS TNIGSRVYLL SEDDSTYEMF
    NLKNQEFTFD VDMSALPCGL NGALYFVEMD KDGGSGRFPT NKAGSKYGTG YCDTQCPHDI KFINGEANVL
    DWAGSSNDPN AGTGHYGTCC NEMDIWEANS MGAAVTPHVC TVQGQTRCEG TDCGDGDERY DGICDKDGCD
    FNSWRMGDQT FLGPGKTVDT SSKFTVVTQF ITADNTTSGD LSEIRRLYVQ NGKVIANSKT QIAGMDAYDS
    ITDDFCNAQK TTFGDTNTFE QMGGLATMGD AFETGMVLVM SIWDDHEAKM LWLDSDYPTD ADASAPGVSR
    GPCPTTSGDP TDVESQSPGA TVIFSNIKTG PIGSTFTS
    7804885 Leptosphaeria MLSASKAAAI LAFCAHTASA WVVGDQQTET HPKLNWQRCT GKGRSSCTNV NGEVVIDANW RWLAHRSGYT
    maculans NCYTGSEWNQ SACPNNEACT KNCAIEGSDY AGTYGITTSG NQMNIKFITK RPYSTNIGAR TYLMKDEQNY
    EMFQLIGNEF TFDVDLSQRC GMNGALYFVS MPQKGQGAPG AKYGTGYCDA QCARDLKFVR GSANAEGWTK
    SASDPNSGVG KKGACCAQMD VWEANSAATA LTPHSCQPAG YSVCEDTNCG GTYSEDRYAG TCDANGCDFN
    PFRVGVKDFY GKGKTVDTTK KMTVVTQFVG SGNQLSEIKR FYVQDGKVIA NPEPTIPGME WCNTQKKVFQ
    EEAYPFNEFG GMASMSEGMS QGMVLVMSLW DDHYANMLWL DSNWPREADP AKPGVARRDC PTSGGKPSEV
    EAANPNAQVM FSNIKFGPIG STFAHAA
    121852 Phanerochaete MFRTATLLAF TMAAMVFGQQ VGTNTARSHP ALTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT
    chrysosporium GNQWDATLCP DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT
    SANAGTGNYG TCCTEMDIWE ANNDAAAYTP HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF
    LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN GKVIQNSSVK IPGIDPVNSI TDNFCSQQKT
    AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK DPSTPGVARG TCATTSGVPA
    QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV TVPQWGQCGG
    IGYTGSTTCA SPYTCHVLNP YYSQCY
    126013214 Penicillium decumbens MYQRALLFSA LMAGVSAQQV GTQKPETHPP LAWKECTSSG CTSKDGSVVI DANWRWVHSV DGYKNCYTGN
    EWDSTLCPDD ATCATNCAVD GADYAGTYGA TTEGDSLSIN FVTGSNIGSR FYLMEDENKY QMFKLLNKEF
    TFDVDVSTLP CGLNGALYFV SMDADGGMSK YETNKAGAKY GTGYCDSQCP RDLKFINGKG NVEGWKPSAN
    DKNAGVGPHG SCCAEMDIWE ANSISTALTP HPCDTNGQTI CEGDSCGGTY STTRYAGTCD PDGCDFNPFR
    MGNESFYGPG KMVDTKSKMT VVTQFITSDG TDTGSLKEIK RVYVQNGKVI ANSASDVSGI TGNSITSDFC
    TAQKKTFGDE DVFNKHGGLS GMGDALGEGM VLVMSLWDDH NSNMLWLDGE KYPTDAAASK AGVSRGTCST
    DSGKPSTVES ESGSAKVVFS NIKVGSIGST FSA
    156048578 Sclerotinia MTSKIALASL FAAAYGQQIG TYTTETHPSL TWQSCTAKGS CTTQSGSIVL DGNWRWTHST TSSTNCYTGN
    sclerotiorum 1980 TWDATLCPDD ATCAQNCALD GADYSGTYGI TTSGDSLRLN FVTQTANKNV GSRVYLLADN THYKTFNLLN
    QEFTFDVDVS NLPCGLNGAV YFANLPADGG ISSTNKAGAQ YGTGYCDSQC PRDGKFINGK ANVDGWVPSS
    NNPNTGVGNY GSCCAEMDIW EANSISTAVT PHSCDTVTQT VCTGDNCGGT YSTTRYAGTC DPDGCDFNPY
    RQGNESFYGP GKTVDTNSVF TIVTQFLTTD GTSSGTLNEI KRFYVQNGKV IPNSESTISG VTGNSITTPF
    CTAQKTAFGD PTSFSDHGGL ASMSAAFEAG MVLVLSLWDD YYANMLWLDS TYPTTKTGAG GPRGTCSTSS
    GVPASVEASS PNAYVVYSNI KVGAINSTFG
    156712278 Acremonium MYTKFAALAA LVATVRGQAA CSLTAETHPS LQWQKCTAPG SCTTVSGQVT IDANWRWLHQ TNSSTNCYTG
    thermophilum NEWDTSICSS DTDCATKCCL DGADYTGTYG VTASGNSLNL KFVTQGPYSK NIGSRMYLME SESKYQGFTL
    LGQEFTFDVD VSNLGCGLNG ALYFVSMDLD GGVSKYTTNK AGAKYGTGYC DSQCPRDLKF INGQANIDGW
    QPSSNDANAG LGNHGSCCSE MDIWEANKVS AAYTPHPCTT IGQTMCTGDD CGGTYSSDRY AGICDPDGCD
    FNSYRMGDTS FYGPGKTVDT GSKFTVVTQF LTGSDGNLSE IKRFYVQNGK VIPNSESKIA GVSGNSITTD
    FCTAQKTAFG DTNVFEERGG LAQMGKALAE PMVLVLSVWD DHAVNMLWLD STYPTDSTKP GAARGDCPIT
    SGVPADVESQ APNSNVIYSN IRFGPINSTY TGTPSGGNPP GGGTTTTTTT TTSKPSGPTT TTNPSGPQQT
    HWGQCGGQGW TGPTVCQSPY TCKYSNDWYS QCL
    21449327 Aspergillus nidulans MYQRALLFSA LLSVSRAQQA GTAQEEVHPS LTWQRCEASG SCTEVAGSVV LDSNWRWTHS VDGYTNCYTG
    (also known as NEWDATLCPD NESCAQNCAV DGADYEATYG ITSNGDSLTL KFVTGSNVGS RVYLMEDDET YQMFDLLNNE
    Emericella nidulans) FTFDVDVSNF PCGLNGALYF TSMDADGGLS KYEGNTAGAK YGTGYCDSQC PRDIKFINGL GNVEGWEPSD
    SDANAGVGGM GTCCPEMDIW EANSISTAYT PHPCDSVEQT MCEGDSCGGT YSDDRYGGTC DPDGCDFNSY
    RMGNTRFYGP GAIIDTSSKF TVVTQFIADG GSLSEIKRFY VQNGEVIPNS ESNISGVEGN SITSEFCTAQ
    KTAFGDEDIF AQHGGLSAMG DAASAMVLIL SIWDDHHSSM MWLDSSYPTD ADPSQPGVAR GTCEQGAGDP
    DVVESEHADA SVTFSNIKFG PIGSTF
    171683762 Podospora anserine (S MMMKQYLQYL AAGSLMTGLV AGQGVGTQQT ETHPRITWKR CTGKANCTTV QAEVVIDSNW RWIHTSGGTN
    mat+) CYDGNAWNTA ACSTATDCAS KCLMEGAGNY QQTYGASTSG DSLTLKFVTK HEYGTNVGSR FYLMNGASKY
    QMFTLMNNEF TFDVDLSTVE CGLNSALYFV AMEEDGGMRS YPTNKAGAKY GTGYCDAQCA RDLKFVGGKA
    NIEGWRESSN DENAGVGPYG GCCAEIDVWE SNAHAYAFTP HACENNNYHV CERDTCGGTY SEDRFAGGCD
    ANGCDYNPYR MGNPDFYGKG KTVDTTKKFT VVTRFQDDNL EQFFVQNGQK ILAPAPTFDG IPASPNLTPE
    FCSTQFDVFT DRNRFREVGD FPQLNAALRI PMVLVMSIWA DHYANMLWLD SVYPPEKEGE PGAARGPCAQ
    DSGVPSEVKA NYPNAKVVWS NIRFGPIGST VNV
    56718412 Thermoascus MYQRALLFSF FLAAARAQQA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG
    aurantiacus var NTWDTSICPD DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL
    levisporus GQEFTFDVDV SNLPCGLNGA LYFVAMDADG GLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ
    PSANDPNAGV GNHGSCCAEM DVWEANSIST AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF
    NPYRQGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL TEIKRFYVQN GKVIPQSEST ISGVTGNSIT
    TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW LDSTYPTDAD PDTPGVARGT
    CPTTSGVPAD VESQNPNSYV IYSNIKVGPI NSTFTAN
    15824273 Pseudotrichonympha MFAIVLLGLT RSLGTGTNQA ENHPSLSWQN CRSGGSCTQT SGSVVLDSNW RWTHDSSLTN CYDGNEWSSS
    grassii LCPDPKTCSD NCLIDGADYS GTYGITSSGN SLKLVFVTNG PYSTNIGSRV YLLKDESHYQ IFDLKNKEFT
    FTVDDSNLDC GLNGALYFVS MDEDGGTSRF SSNKAGAKYG TGYCDAQCPH DIKFINGEAN VENWKPQTND
    ENAGNGRYGA CCTEMDIWEA NKYATAYTPH ICTVNGEYRC DGSECGDTDS GNRYGGVCDK DGCDFNSYRM
    GNTSFWGPGL IIDTGKPVTV VTQFVTKDGT DNGQLSEIRR KYVQGGKVIE NTVVNIAGMS SGNSITDDFC
    NEQKSAFGDT NDFEKKGGLS GLGKAFDYGM VLVLSLWDDH QVNMLWLDSI YPTDQPASQP GVKRGPCATS
    SGAPSDVESQ HPDSSVTFSD IRFGPIDSTY
    115390801 Aspergillus terreus MHQRALLFSA LVGAVRAQQA GTLTEEVHPP LTWQKCTADG SCTEQSGSVV IDSNWRWLHS TNGSTNCYTG
    NIH2624 NTWDESLCPD NEACAANCAL DGADYESTYG ITTSGDALTL TFVTGENVGS RVYLMAEDDE SYQTFDLVGN
    EFTFDVDVSN LPCGLNGALY FTSMDADGGV SKYPANKAGA KYGTGYCDSQ CPRDLKFING MANVEGWTPS
    DNDKNAGVGG HGSCCPELDI WEANSISSAF TPHPCDDLGQ TMCSGDDCGG TYSETRYAGT CDPDGCDFNA
    YRMGNTSYYG PDKIVDTNSV MTVVTQFIGD GGSLSEIKRL YVQNGKVIAN AQSNVDGVTG NSITSDFCTA
    QKTAFGDQDI FSKHGGLSGM GDAMSAMVLI LSIWDDHNSS MMWLDSTYPE DADASEPGVA RGTCEHGVGD
    PETVESQHPG ATVTFSKIKF GPIGSTYSSN STA
    453223 Phanerochaete MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT
    chrysosporium GNEWDTSLCP DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET
    GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP HPCTTTGQTR CSGDDCARNT GLCDGDGCDF NSFRMGDKTF
    LGKGMTVDTS KPFTVVTQFL TNDNTSTGTL SEIRRIYIQN GKVIQNSVAN IPGVDPVNSI TDNFCAQQKT
    AFGDTNWFAQ KGGLKQMGEA LGNGMVLALS IWDDHAANML WLDSDYPTDK DPSAPGVARG TCATTSGVPS
    DVESQVPNSQ VVFSNIKFGD IGSTFSGTSS PNPPGGSTTS SPVTTSPTPP PTGPTVPQWG QCGGIGYSGS
    TTCASPYTCH VLNPCESILS LQRSSNADQY LQTTRSATKR RLDTALQPRK
    3132 Phanerochaete MRTALALILA LAAFSAVSAQ QAGTITAETH PTLTIQQCTQ SGGCAPLTTK VVLDVNWRWI HSTTGYTNCY
    chrysosporium SGNTWDAILC PDPVTCAANC ALDGADYTGT FGILPSGTSV TLRPVDGLGL RLFLLADDSH YQMFQLLNKE
    FTFDVEMPNM RCGSSGAIHL TAMDADGGLA KYPGNQAGAK YGTGFCSAQC PKGVKFINGQ ANVEGWLGTT
    ATTGTGFFGS CCTDIALWEA NDNSASFAPH PCTTNSQTRC SGSDCTADSG LCDADGCNFN SFRMGNTTFF
    GAGMSVDTTK LFTVVTQFIT SDNTSMGALV EIHRLYIQNG QVIQNSVVNI PGINPATSIT DDLCAQENAA
    FGGTSSFAQH GGLAQVGEAL RSGMVLALSI VNSAADTLWL DSNYPADADP SAPGVARGTC PQDSASIPEA
    PTPSVVFSNI KLGDIGTTFG AGSALFSGRS PPGPVPGSAP ASSATATAPP FGSQCGGLGY AGPTGVCPSP
    YTCQALNIYY SQCI
    16304152 Thermoascus MYQRALLFSF FLAAARAHEA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG
    aurantiacus NTWDTSICPD DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL
    GQEFTFDVDV SNLPCGLNGA LYFVAMDADG NLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ
    PSANDPNAGV GNHGSSCAEM DVWEANSIST AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDTDGCDF
    NPYQPGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL TEIKRFYVQN GKVIPQSEST ISGVTGNSIT
    TEYCTAQKAA FDNTGFFTHG GLQKISQALA QGMVLVMSLW DDHAANMLWL DSTYPTDADP DTPGVARGTC
    PTTSGVPADV ESQNPNSYVI YSNIKVGPIN STFTAN
    156712280 Acremonium MHKRAATLSA LVVAAAGFAR GQGVGTQQTE THPKLTFQKC SAAGSCTTQN GEVVIDANWR WVHDKNGYTN
    thermophilum CYTGNEWNTT ICADAASCAS NCVVDGADYQ GTYGASTSGN ALTLKFVTKG SYATNIGSRM YLMASPTKYA
    MFTLLGHEFA FDVDLSKLPC GLNGAVYFVS MDEDGGTSKY PSNKAGAKYG TGYCDSQCPR DLKFIDGKAN
    SASWQPSSND QNAGVGGMGS CCAEMDIWEA NSVSAAYTPH PCQNYQQHSC SGDDCGGTYS ATRFAGDCDP
    DGCDWNAYRM GVHDFYGNGK TVDTGKKFSI VTQFKGSGST LTEIKQFYVQ DGRKIENPNA TWPGLEPFNS
    ITPDFCKAQK QVFGDPDRFN DMGGFTNMAK ALANPMVLVL SLWDDHYSNM LWLDSTYPTD ADPSAPGKGR
    GTCDTSSGVP SDVESKNGDA TVIYSNIKFG PLDSTYTAS
    5231154 Volvariella volvacea MRASLLAFSL NSAAGQQAGT LQTKNHPSLT SQKCRQGGCP QVNTTIVLDA NWRWTHSTSG STNCYTGNTW
    QATLCPDGKT CAANCALDGA DYTGTYGVTT SGNSLTLQFV TQSNVGARLG YLMADDTTYQ MFNLLNQEFW
    FDVDMSNLPC GLNGALYFSA MARTAAWMPM VVCASTPLIS TRRSTARLLR LPVPPRSRYG RGICDSQCPR
    DIKFINGEAN VQGWQPSPND TNAGTGNYGA CCNKMDVWEA NSISTAYTPH PCTQRGLVRC SGTACGGGSN
    RYGSICDHDG LGFQNLFGMG RTRVRARVGR VKQFNRSSRV VEPISWTKQT TLHLGNLPWK SADCNVQNGR
    VIQNSKVNIP GMPSTMDSVT TEFCNAQKTA FNDTFSFQQK GGMANMSEAL RRGMVLVLSI WDDHAANMLW
    LDSITSAAAC RSTPSEVHAT PLRESQIRSS HSRQTRYVTF TNIKFGPFNS TGTTYTTGSV PTTSTSTGTT
    GSSTPPQPTG VTVPQGQCGG IGYTGPTTCA SPTTCHVLNP YYSQCY
    116200349 Chaetomium globosum MKQYLQYLAA ALPLMSLVSA QGVGTSTSET HPKITWKKCS SGGSCSTVNA EVVIDANWRW LHNADSKNCY
    CBS 148-51 DGNEWTDACT SSDDCTSKCV LEGAEYGKTY GASTSGDSLS LKFLTKHEYG TNIGSRFYLM NGASKYQMFT
    LMNNEFAFDV DLSTVECGLN SALYFVAMEE DGGMASYSTN KAGAKYGTGY CDAQCARDLK FVGGKANYDG
    WTPSSNDANA GVGALGGCCA EIDVWESNAH AFAFTPHACE NNNYHVCEDT TCGGTYSEDR FAGDCDANGC
    DYNPYRVGNT DFYGKGMTVD TSKKFTVVSQ FQENKLTQFF VQNGKKIEIP GPKHEGLPTE SSDITPELCS
    AMPEVFGDRD RFAEVGGFDA LNKALAVPMV LVMSIWDDHY ANMLWLDSSY PPEKAGTPGG DRGPCAQDSG
    VPSEVESQYP DATVVWSNIR FGPIGSTVQV
    4586343 Irpex lacteus MFPKASLIAL SFIAAVYGQQ VGTQMAEVHP KLPSQLCTKS GCTNQNTAVV LDANWRWLHT TSGYTNCYTG
    NSWDATLCPD ATTCAQNCAV DGADYSGTYG ITTSGNALTL KFKTGTNVGS RVYLMQTDTA YQMFQLLNQE
    FTFDVDMSNL PCGLNGALYL SQMDQDGGLS KFPTNKAGAK YGTGYCDSQC PHDIKFINGM ANVAGWAGSA
    SDPNAGSGTL GTCCSEMDIW EANNDAAAFT PHPCSVDGQT QCSGTQCGDD DERYSGLCDK DGCDFNSFRM
    GDKSFLGKGM TVDTSRKFTV VTQFVTTDGT TNGDLHEIRR LYVQDGKVIQ NSVVSIPGID AVDSITDNFC
    AQQKSVFGDT NYFATLGGLK KMGAALKSGM VLAMSVWDDH AASMQWLDSN YPADGDATKP GVARGTCSAD
    SGLPTNVESQ SASASVTFSN IKWGDINTTF TGTGSTSPSS PAGPVSSSTS VASQPTQPAQ GTVAQWGQCG
    GTGFTGPTVC ASPFTCHVVNPYYSQCY
    15321718 Lentinula edodes MFRTAALLSF AYLAVVYGQQ AGTSTAETHP PLTWEQCTSG GSCTTQSSSV VLDSNWRWTH VVGGYTNCYT
    GNEWNTTVCP DGTTCAANCA LDGADYEGTY GISTSGNALT LKFVTASAQT NVGSRVYLMA PGSETEYQMF
    NPLNQEFTFD VDVSALPCGL NGALYFSEMD ADGGLSEYPT NKAGAKYGTG YCDSQCPRDI KFIEGKANVE
    GWTPSSTSPN AGTGGTGICC NEMDIWEANS ISEALTPHPC TAQGGTACTG DSCSSPNSTA GICDQAGCDF
    NSFRMGDTSF YGPGLTVDTT SKITVVTQFI TSDNTTTGDL TAIRRIYVQN GQVIQNSMSN IAGVTPTNEI
    TTDFCDQQKT AFGDTNTFSE KGGLTGMGAA FSRGMVLVLS IWDDDAAEML WLDSTYPVGK TGPGAARGTC
    ATTSGQPDQV ETQSPNAQVV FSNIKFGAIG STFSSTGTGT GTGTGTGTGT GTTTSSAPAA TQTKYGQCGG
    QGWTGATVCA SGSTCTSSGP YYSQCL
    146424875 Pleurotus sp Florida MFRTAALTAF TFAAVVLGQQ VGTLTTENHP ALSIQQCTAT GCTTQQKSVV LDSNWRWTHS TAGATNCYTG
    NAWDPALCPD PATCATNCAI DGADYSGTYG ITTSGNALTL RFVTNGQYSQ NIGSRVYLLD DADHYKLFDL
    KNQEFTFDVD MSGLPCGLNG ALYFSEMAAD GGKAAHAGNN AGAKYGTGYC DAQCPHDIKW INGEANVLDW
    SASATDDNAG NGRYGACCAE MDIWEANSEA TAYTPHVCRD EGLYRCSGTE CGDGNNRYGG VCDKDGCDFN
    SYRMGDKNFL GRGKTIDTTK KVTVVTQFIT DNNTPTGNLV EIRRVYVQNG VVYQNSFSTF PSLSQYNSIS
    DEFCVAQKTL FGDNQYYNTH GGTTKMGDAF DNGMVLIMSL WSDHAAHMLW LDSDYPLDKS PSEPGVSRGA
    CPTSSGDPDD VVANHPNASV TFSNIKYGPI GSTFGGSTPP VSSGGSSVPP VTSTTSSGTT TPTGPTGTVP
    KWGQCGGIGY SGPTACVAGS TCTYSNDWYS QCL
    62006158 Fusarium venenatum MYRAIATASA LIAAVRAQQV CSLTPETKPA LSWSKCTSSG CSNVQGSVTI DANWRWTHQL SGSTNCYTGN
    KWDTSICTSG KVCAEKCCID GAEYASTYGI TSSGNQLSLS FVTKGTYGTN IGSRTYLMED ENTYQMFQLL
    GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ
    PSKSDVNGGI GNLGTCCPEM DIWEANSIST AHTPHPCTKL TQHSCTGDSC GGTYSEDRYG GTCDADGCDF
    NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS EITRLYVQNG KVIANSESKI AGVPGSSLTP
    EFCTAQKKVF GDIDDFEKKG AWGGMSDALE APMVLVMSLW HDHHSNMLWL DSTYPTDSTK LGAQRGSCST
    SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKEGQPEPTN PTNPNPTTPG GTVDQWGQCG GTNYSGPTAC
    KSPFTCKKIN DFYSQCQ
    296027 Phanerochaete MFRTATLLAF TMAAMVFGQQ VGTNTAENHR TLTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT
    chrysosporium GNQWDATLCP DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ
    EFTFDVDMSN LPCGLNGALY LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT
    SANAGTGNYG TCCTEMDIWE ANNDAAAYTP HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF
    LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN GKVIQNSSVK IPGIDLVNSI TDNFCSQQKT
    AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK DPSTPGVARG TCATTSGVPA
    QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV TVPQWGQCGG
    IGYTGSTTCA SPYTCHVLNP YYSQCY
    154449709 Fusicoccum sp MYQTSLLASL SFLLATSQAQ QVGTQTAETH PKLTTQKCTT AGGCTDQSTS IVLDANWRWL HTVDGYTNCY
    BCC4124 TGQEWDTSIC TDGKTCAEKC ALDGADYEST YGISTSGNAL TMNFVTKSSQ TNIGGRVYLL AADSDDTYEL
    FKLKNQEFTF DVDVSNLPCG LNGALYFSEM DSDGGLSKYT TNKAGAKYGT GYCDTQCPHD IKFINGEANV
    QNWTASSTDK NAGTGHYGSC CNEMDIWEAN SQATAFTPHV CEAKVEGQYR CEGTECGDGD NRYGGVCDKD
    GCDFNSYRMG NETFYGSNGS TIDTTKKFTV VTQFITADNT ATGALTEIRR KYVQNDVVIE NSYADYETLS
    KFNSITDDFC AAQKTLSGDT NDFKTKGGIA RMGESFERGM VLVMSVWDDH AANALWLDSS YPTDADASKP
    GVKRGPCSTS SGVPSDVEAN DADSSVIYSN IRYGDIGSTF NKTA
    169859460 Coprinopsis cinerea MFSKVALTAL CFLAVAQAQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY
    okayama TGNAWNSSVC SDGATCAQRC ALEGANYQQT YGITTSGDAL TIKFLTRSEQ TNIGARVYLM ENEDRYQMFN
    LLNKEFTFDV DVSKVPCGIN GALYFIQMDA DGGLSSQPNN RAGAKYGTGY CDSQCPRDIK FINGEANSVG
    WEPSETDPNA GKGQYGICCA EMDIWEANSI SNAYTPHPCQ TVNDGGYQRC QGRDCNQPRY EGLCDPDGCD
    YNPFRMGNKD FYGPGKTVDT NRKMTVVTQF ITHDNTDTGT LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD
    SITQEFCDDA KRAFEDNDSF GRNGGLAHMG RSLAKGHVLA LSIWNDHTAH MLWLDSNYPT DADPNKPGIA
    RGTCPTTGGS PRDTEQNHPD AQVIFSNIKF GDIGSTFSGN
    50400675 Trichoderma MYRKLAVISA FLAAARAQQV CTQQAETHPP LTWQKCTASG CTPQQGSVVL DANWRWTHDT KSTTNCYDGN
    harzianum (anamorph TWSSTLCPDD ATCAKNCCLD GANYSGTYGV TTSGDALTLQ FVTASNVGSR LYLMANDSTY QEFTLSGNEF
    of Hypocrea lixii) SFDVDVSQLP CGLNGALYFV SMDADGGQSK YPGNAAGAKY GTGYCDSQCP RDLKFINGQA NVEGWEPSSN
    NANTGVGGHG SCCSEMDIWE ANSISEALTP HPCETVGQTM CSGDSCGGTY SNDRYGGTCD PDGCDWNPYR
    LGNTSFYGPG SSFALDTTKK LTVVTQFATD GSISRYYVQN GVKFQQPNAQ VGSYSGNTIN TDYCAAEQTA
    FGGTSFTDKG GLAQINKAFQ GGMVLVMSLW DDYAVNMLWL DSTYPTNATA STPGAKRGSC STSSGVPAQV
    EAQSPNSKVI YSNIRFGPIG STGGNTGSNP PGTSTTRAPP SSTGSSPTAT QTHYGQCGGT GWTGPTRCAS
    GYTCQVLNPF YSQCL
    729649 Neurospora crassa MRASLLAFSL AAAVAGGQQA GTLTAKRHPS LTWQKCTRGG CPTLNTTMVL DANWRWTHAT SGSTKCYTGN
    (OR74A) KWQATLCPDG KSCAANCALD GADYTGTYGI TGSGWSLTLQ FVTDNVGARA YLMADDTQYQ MLELLNQELW
    FDVDMSNIPC GLNGALYLSA MDADGGMRKY PTNKAGAKYA TGYCDAQCPR DLKYINGIAN VEGWTPSTND
    ANGIGDHGSC CSEMDIWEAN KVSTAFTPHP CTTIEQHMCE GDSCGGTYSD DRYGVLCDAD GCDFNSYRMG
    NTTFYGEGKT VDTSSKFTVV TQFIKDSAGD LAEIKAFYVQ NGKVIENSQS NVDGVSGNSI TQSFCKSQKT
    AFGDIDDFNK KGGLKQMGKA LAQAMVLVMS IWDDHAANML WLDSTYPVPK VPGAYRGSGP TTSGVPAEVD
    ANAPNSKVAF SNIKFGHLGI SPFSGGSSGT PPSNPSSSAS PTSSTAKPSS TSTASNPSGT GAAHWAQCGG
    IGFSGPTTCP EPYTCAKDHD IYSQCV
    119472134 Neosartorya fischeri MLASTFSYRM YKTALILAAL LGSGQAQQVG TSQAEVHPSM TWQSCTAGGS CTTNNGKVVI DANWRWVHKV
    NRRL 181 GDYTNCYTGN TWDKTLCPDD ATCASNCALE GANYQSTYGA TTSGDSLRLN FVTTSQQKNI GSRLYMMKDD
    TTYEMFKLLN QEFTFDVDVS NLPCGLNGAL YFVAMDADGG MSKYPTNKAG AKYGTGYCDS QCPRDLKFIN
    GQANVEGWQP SSNDANAGTG NHGSCCAEMD IWEANSISTA FTPHPCDTPG QVMCTGDACG GTYSSDRYGG
    TCDPDGCDFN SFRQGNKTFY GPGMTVDTKS KFTVVTQFIT DDGTASGTLK EIKRFYVQNG KVIPNSESTW
    SGVGGNSITN DYCTAQKSLF KDQNVFAKHG GMEGMGAALA QGMVLVMSLW DDHAANMLWL DSNYPTTASS
    STPGVARGTC DISSGVPADV EANHPDASVV YSNIKVGPIG STFNSGGSNP GGGTTTTAKP TTTTTTAGSP
    GGTGVAQHYG QCGGNGWQGP TTCASPYTCQ KLNDFYSQCL
    117935080 Chaetomium MQIKQYLQYL AAALPLVNMA AAQRAGTQQT ETHPRLSWKR CSSGGNCQTV NAEIVIDANW
    thermophilum RWLHDSNYQN CYDGNRWTSA CSSATDCAQK CYLEGANYGS TYGVSTSGDA LTLKFVTKHE
    YGTNIGSRVY LMNGSDKYQM FTLMNNEFAF DVDLSKVECG LNSALYFVAM EEDGGMRSYS
    SNKAGAKYGT GYCDAQCARD LKFVGGKANI EGWRPSTNDA NAGVGPYGAC CAEIDVWESN
    AYAFAFTPHG CLNNNYHVCE TSNCGGTYSE DRFGGLCDAN GCDYNPYRMG NKDFYGKGKT
    VDTSRKFTVV TRFEENKLTQ FFIQDGRKID IPPPTWPGLP NSSAITPELC TNLSKVFDDR DRYEETGGFR
    TINEALRIPM VLVMSIWDGH YASMLWLDSV YPPEKAGQPG AERGPCAPTS GVPAEVEAQF
    PNAQVIWSNI RFGPIGSTYQ V
    154300584 Botryotinia fuckeliana MTSRIALVSL FAAVYGQQVG TYQTETHPSL TWQSCTAKGS CTTNTGSIVL DGNWRWTHGV
    B05-10 GTSTNCYTGN TWDATLCPDD ATCAQNCALE GADYSGTYGI TTSGNSLRLN FVTQSANKNI
    GSRVYLMADT THYKTFNLLN QEFTFDVDVS NLPCGLNGAV YFANLPADGG ISSTNTAGAE
    YGTGYCDSQC PRDMKFIKGQ ANVDGWVPSS NNANTGVGNH GSCCAEMDIW EANSISTAVT
    PHSCDTVTQT VCTGDDCGGT YSSSRYAGTC DPDGCDFNSY RMGDETFYGP GKTVDTNSVF
    TVVTQFLTTD GTASGTLNEI KRFYVQDGKV IPNSYSTISG VSGNSITTPF CDAQKTAFGD PTSFSDHGGL
    ASMSAAFEAG MVLVLSLWDD YYANMLWLDS TYPVGKTSAG GPRGTCDTSS GVPASVEASS
    PNAYVVYSNI KVGAINSTYG
    15824271 Pseudotrichonympha MFVFVLLWLT QSLGTGTNQA ENHPSLSWQN CRSGGSCTQT SGSVVLDSNW RWTHDSSLTN
    grassii CYDGNEWSSS LCPDPKTCSD NCLIDGADYS GTYGITSSGN SLKLVFVTNG PYSTNIGSRV
    YLLKDESHYQ IFDLKNKEFT FTVDDSNLDC GLNGALYFVS MDEDGGTSRF SSNKAGAKYG
    TGYCDAQCPH DIKFINGEAN VENWKPQTND ENAGNGRYGA CCTEMDIWEA NKYATAYTPH
    ICTVNGEYRC DGSECGDTDS GNRYGGVCDK DGCDFNSYRM GNTSFWGPGL IIDTGKPVTV
    VTQFVTKDGT DNGQLSEIRR KYVQGGKVIE NTVVNIAGMS SGNSITDDFC NEQKSAFGDT
    NDFEKKGGLS GLGKAFDYGM VLVLSLWDDH QVNMLWLDSI YPTDQPASQP GVKRGPCATS
    SGAPSDVESQ HPDSSVTFSD IRFGPIDSTY
    4586345 Irpex lacteus MFRKAALLAF SFLAIAHGQQ VGTNQAENHP SLPSQKCTAS GCTTSSTSVV LDANWRWVHT
    TTGYTNCYTG QTWDASICPD GVTCAKACAL DGADYSGTYG ITTSGNALTL QFVKGTNVGS
    RVYLLQDASN YQMFQLINQE FTFDVDMSNL PCGLNGAVYL SQMDQDGGVS RFPTNTAGAK
    YGTGYCDSQC PRDIKFINGE ANVEGWTGSS TDSNSGTGNY GTCCSEMDIW EANSVAAAYT
    PHPCSVNQQT RCTGADCGQG DDRYDGVCDP DGCDFNSFRM GDQTFLGKGL TVDTSRKFTI
    VTQFISDDGT TSGNLAEIRR FYVQDGNVIP NSKVSIAGID AVNSITDDFC TQQKTAFGDT
    NRFAAQGGLK QMGAALKSGM VLALSLWDDH AANMLWLDSD YPTTADASNP GVARGTCPTT
    SGFPRDVESQ SGSATVTYSN IKWGDLNSTF TGTLTTPSGS SSPSSPASTS GSSTSASSSA SVPTQSGTVA
    QWAQCGGIGY SGATTCVSPY TCHVVNAYYS QCY
    46241268 Gibberella avenacea MYRAIATASA LIAAARAQQV CTLTTETKPA LTWSKCTSSG CTDVKGSVGI DANWRWTHQT
    SSSTNCYTGN KWDTSVCTSG ETCAQKCCLD GADYAGTYGI TSSGNQLSLG FVTKGSFSTN
    IGSRTYLMEN ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA LYFVSMDADG GKARYPANKA
    GAKYGTGYCD AQCPRDVKFI NGKANSDGWK PSDSDINAGI GNMGTCCPEM DIWEANSIST
    AFTPHPCTKL TQHACTGDSC GGTYSNDRYG GTCDADGCDF NSYRQGNKTF YGRGSDFNVD
    TTKKVTVVTQ FKKGSNGRLS EITRLYVQNG KVIANSESKI PGNSGSSLTA DFCSKQKSVF
    GDIDDFSKKG GWSGMSDALE SPPMVLVMSL WHDHHSNMLW LDSTYPTDST KLGAQRGSCA
    TTSGVPSDLE RDVPNSKVSF SNIKFGPIGS TYSSGTTNPP PSSTDTSTTP TNPPTGGTVG QYGQCGGQTY
    TGPKDCKSPY TCKKINDFYS QCQ
    6164684 Aspergillus niger MSSFQIYRAA LLLSILATAN AQQVGTYTTE THPSLTWQTC TSDGSCTTND GEVVIDANWR
    WVHSTSSATN CYTGNEWDTS ICTDDVTCAA NCALDGATYE ATYGVTTSGS ELRLNFVTQG
    SSKNIGSRLY LMSDDSNYEL FKLLGQEFTF DVDVSNLPCG LNGALYFVAM DADGGTSEYS
    GNKAGAKYGT GYCDSQCPRD LKFINGEANC DGWEPSSNNV NTGVGDHGSC CAEMDVWEAN
    SISNAFTAHP CDSVSQTMCD GDSCGGTYSA SGDRYSGTCD PDGCDYNPYR LGNTDFYGPG
    LTVDTNSPFT VVTQFITDDG TSSGTLTEIK RLYVQNGEVI ANGASTYSSV NGSSITSAFC ESEKTLFGDE
    NVFDKHGGLE GMGEAMAKGM VLVLSLWDDY AADMLWLDSD YPVNSSASTP GVARGTCSTD
    SGVPATVEAE SPNAYVTYSN IKFGPIGSTY SSGSSSGSGS SSSSSSTTTK ATSTTLKTTS TTSSGSSSTS
    AAQAYGQCGG QGWTGPTTCV SGYTCTYENA YYSQCL
    6164682 Aspergillus niger MHQRALLFSA LLTAVRAQQA GTLTEEVHPS LTWQKCTSEG SCTEQSGSVV IDSNWRWTHS
    VNDSTNCYTG NTWDATLCPD DETCAANCAL DGADYESTYG VTTDGDSLTL KFVTGSNVGS
    RLYLMDTSDE GYQTFNLLDA EFTFDVDVSN LPCGLNGALY FTAMDADGGV SKYPANKAGA
    KYGTGYCDSQ CPRDLKFIDG QANVDGWEPS SNNDNTGIGN HGSCCPEMDI WEANKISTAL
    TPHPCDSSEQ TMCEGNDCGG TYSDDRYGGT CDPDGCDFNP YRMGNDSFYG PGKTIDTGSK
    MTVVTQFITD GSGSLSEIKR YYVQNGNVIA NADSNISGVT GNSITTDFCT AQKKAFGDED
    IFAEHNGLAG ISDAMSSMVL ILSLWDDYYA SMEWLDSDYP ENATATDPGV ARGTCDSESG
    VPATVEGAHP DSSVTFSNIK FGPINSTFSA SA
    33733371 Chrysosporium MYAKFATLAA LVAGAAAQNA CTLTAENHPS LTWSKCTSGG SCTSVQGSIT IDANWRWTHR TDSATNCYEG
    lucknowense NKWDTSYCSD GPSCASKCCI DGADYSSTYG ITTSGNSLNL KFVTKGQYST NIGSRTYLME SDTKYQMFQL
    U.S. Pat. No. 6,573,086-10 LGNEFTFDVD VSNLGCGLNG ALYFVSMDAD GGMSKYSGNK AGAKYGTGYC DSQCPRDLKF INGEANVENW
    QSSTNDANAG TGKYGSCCSE MDVWEANNMA AAFTPHPCXV IGQSRCEGDS CGGTYSTDRY AGICDPDGCD
    FNSYRQGNKT FYGKGMTVDT TKKITVVTQF LKNSAGELSE IKRFYVQNGK VIPNSESTIP GVEGNSITQD
    WCDRQKAAFG DVTDXQDKGG MVQMGKALAG PMVLVMSIWD DHAVNMLWLD STWPIDGAGK PGAERGACPT
    TSGVPAEVEA EAPNSNVIFS NIRFGPIGST VSGLPDGGSG NPNPPVSSST PVPSSSTTSS GSSGPTGGTG
    VAKHYEQCGG IGFTGPTQCE SPYTCTKLND WYSQCL
    29160311 Thielavia australiensis MYAKFATLAA LVAGASAQAV CSLTAETHPS LTWQKCTAPG SCTNVAGSIT IDANWRWTHQ TSSATNCYSG
    SKWDSSICTT GTDCASKCCI DGAEYSSTYG ITTSGNALNL KFVTKGQYST NIGSRTYLME SDTKYQMFKL
    LGNEFTFDVD VSNLGCGLNG ALYFVSMDAD GGMSKYSGNK AGAKYGTGYC DAQCPRDLKF INGEANVEGW
    ESSTNDANAG SGKYGSCCTE MDVWEANNMA TAFTPHPCTT IGQTRCEGDT CGGTYSSDRY AGVCDPDGCD
    FNSYRQGNKT FYGKGMTVDT TKKITVVTQF LKNSAGELSE IKRFYAQDGK VIPNSESTIA GIPGNSITKA
    YCDAQKTVFQ NTDDFTAKGG LVQMGKALAG DMVLVMSVWD DHAVNMLWLD STYPTDQVGV AGAERGACPT
    TSGVPSDVEA NAPNSNVIFS NIRFGPIGST VQGLPSSGGT SSSSSAAPQS TSTKASTTTS AVRTTSTATT
    KTTSSAPAQG TNTAKHWQQC GGNGWTGPTV CESPYKCTKQ NDWYSQCL
    146197087 uncultured symbiotic MLTLVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSKDLCP
    protist of SSDTCSQKCY IEGADYSGTY GIQSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYESFK LKNKEFTFTV
    Reticulitermes DDSKLNCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNMK SQAYTVHACT KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI NNSKTSNLAD TYDSITDKFC DATKEASGDT
    NDFKAKGAMS GFSTNLNNGQ VLVMSLWDDH TANMLWLDST YPTDSSDSTA QRGPCPTSSG VPKDVESQHG
    DATVVFSDIK FGAINSTFKY N
    146197237 uncultured symbiotic MLAAALFTFA CSVGVGTKTP ENHPKLNWQN CASKGSCSQV SGEVTMDSNW RWTHDGNGKN CYDGNTWISS
    protist of Neotermes LCPDDKTCSD KCVLDGAEYQ ATYGIQSNGT ALTLKFVTHG SYSTNIGSRL YLLKDKSTYY VFKLNNKEFT
    koshunensis FSVDVSKLPC GLNGALYFVE MDADGGKAKY AGAKPGAEYG LGYCDAQCPS DLKFINGEAN SEGWKPQSGD
    KNAGNGKYGS CCSEMDVWES NSQATALTPH VCKTTGQQRC SGKSECGGQD GQDRFAGLCD EDGCDFNNWR
    MGDKTFFGPG LIVDTKSPFV VVTQFYGSPV TEIRRKYVQN GKVIENSKSN IPGIDATAAI SDHFCEQQKK
    AFGDTNDFKN KGGFAKLGQV FDRGMVLVLS LWDDHQVAML WLDSTYPTNK DKSQPGVDRG PCPTSSGKPD
    DVESASADAT VVYGNIKFGA LDSTY
    146197067 uncultured symbiotic MLTLVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSKDLCP
    protist of SSNTCSQKCY IEGADYSGTY GIQSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYESFK LKNKEFTFTV
    Reticulitermes DDSKLNCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNMK SQAYTVHACT KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI NNSKTSNLAD TYDSITDKFC DATKEASGDT
    NDFKAKGAMS GFSTNLNNGQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA SRGPCAVSSG VPKDVESQYG
    DATVIYSDIK FGAINSTFKW N
    146197407 uncultured symbiotic MILALLSLAK SLGIATNQAE THPKLTWTRY QSKGSGQTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPTTCSNNC DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAMD EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC TEMDIWEANS MATAYTPHVC TVTGLRRCEG TECGDTDANQ RYNGICDKDG CDFNSYRLGD
    KTFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY VQGGKVIENS KVNIAGITAG NSVTDTFCNE
    QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP TNAAAGALGT ERGACATSSG
    APSDVESQSP DATVTFSDIK FGPIDSTY
    146197157 uncultured symbiotic MLVIALILRG LSVGTGTQQS ETHPSLSWQQ TSKGGSGQSV SGSVVLDSNW RWTHTTDGTT NCYDGNEWSS
    protist of DLCPDASTCS SNCVLEGADY SGTYGITGSG SSLKLGFVTK GSYSTNIGSR VYLLGDESHY KLFKLENNEF
    Hodotermopsis TFTVDDSNLE CGLNGALYFV AMDEDGGASK YSGAKPGAKY GMGYCDAQCP HDMKFINGDA NVEGWKPSDN
    sjoestedti DENAGTGKWG ACCTEMDIWE ANKYATAYTP HICTKNGEYR CEGTDCGDTK DNNRYGGVCD KDGCDFNSWR
    MGNQSFWGPG LIIDTGKPVT VVTQFLADGG SLSEIRRKYV QGGKVIENTV TKISGMDEFD SITDEFCNQQ
    KKAFRDTNDF EKKGGLKGLG TAVDAGVVLV LSLWDDHDVN MLWLDSIYPT DSGSKAGADR GPCATSSGVP
    KDVESNYASA SVTFSDIKFG PIDSTY
    146197403 uncultured symbiotic MLLALFAFGK SLGIATNQAE NHPKLTWTRY QSKGSGQTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPTTCSNNC DLDGADYPGT YGISSSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAMD EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC TEMDIWEANS MATAYTPHVC TVTGIRRCEG TECGDTDANQ RYNGICDKDG CDFNSYRLGD
    KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY VQGGKVIENS KVNIAGMAAG NSITDTFCNE
    QKKAFGDNND FEKKGGLGAL SKQLDSGMVL VLSLWDDHSV NMLWLDSTYP TNAAAGALGT ERGACATSSG
    APSDVESQSP DATVTFSDIK FGPIDSTY
    146197081 uncultured symbiotic MLASVVYLVS LVVSLEIGTQ QSEEHPKLTW QNGSSSVSGS IVLDSNWRWL HDSGTTNCYD GNLWSDDLCP
    protist of NADTCSSKCY IEGADYSGTY GITSSGSKVT LKFVTKGSYS TNIGSRIYLL KDENTYETFK LKNKEFTFTV
    Reticulitermes DDSKLDCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GDGKLGTCCS EMDIWEGNAK SQAYTVHACS KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTVD TKSPVTVVTQ FIGDPLTEIR RVYVQGGKTI NNSKTSNLAD TYDSITDKFC DATKDATGDT
    NDFKAKGAMA GFSTNLNTAQ VLVSVHCGMI IQPICCGLIR RIQRIQQKQV QAVDRVLCRR VFQRMLKASM
    VMLQSRTRTL SLELSTRPLV GISPAGRLFF F
    146197413 uncultured symbiotic MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPTTCSNNC DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LKDTKSYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAMD EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC TEMDIWEANS MATAYTPHVC TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD
    KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY VQGGKVIENS KVNVAGITAG NSVTDTFCNE
    QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP TNAAAGALGT ERGACATSSG
    KPSDVESQSP DATVTFSDIK FGPIDSTY
    146197309 uncultured symbiotic MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD
    protist of Mastotermes AATCGKNCVL EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD
    darwiniensis VSNLPCGLNG ALYHVNMDED GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG
    NGKYGSCCSE MDIWEANSIC SAVTPHVCDN LQQTRCQGTA CGENGGGSRF GSSCDPDGCD FNSWRMGNKT
    FYGPGLIVDT KSKFTVVTQF VGNPVTEIKR KYVQNGKVIE NSYSNIEGMD KFNSVSDKFC TAQKKAFGDT
    DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS DRGPCPTTSG VPADVESKSA
    DANVIYSDIR FGAIDSTYK
    146197227 uncultured symbiotic MLGALVALAS CIGVGTNTPE KHPDLKWTNG GSSVSGSIVV DSNWRWTHIK GETKNCYDGN LWSDKYCPDA
    protist of Neotermes ATCGKNCVLE GADYSGTYGV TTSGDAATLK FVTHGQYSTN VGSRLYLLKD EKTYQMFNLV GKEFTFTVDV
    koshunensis SNLPCGLNGA LYFVQMDSDG GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN
    GKYGSCCSEM DIWEANSMAT AYTPHVCDKL EQTRCSGSAC GQNGGGDRFS SSCDPDGCDF NSWRMGNKTF
    WGPGLIVDTK KPVQVVTQFV GSGGSVTEIK RKYVQGGKVI DNSMTNIAAM SKQYNSVSDE FCQAQKKAFG
    DNDSFTKHGG FRQLGATLSK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP GADRGPCKTS SGVPSDVESQ
    NADSTVKYSD IRFGAIDSTY SK
    146197253 uncultured symbiotic MLAAALFTFA CSVGVGTKTT ETHPKLNWQQ CACKGSCSQV SGEVTMDSNW RWTHDGNGKN CYDGNTWISS
    protist of Neotermes LCPDDKTCSD KCVLDGAEYQ ATYGIQSNGT ALTPKFVTHG SYSTNIGSRL YLLKDKSTYY VFQLNNKEFT
    koshunensis FSVDVSKLPC GLNGALYFVE MDADGGKSKY AGAKPGAEYG LGYCDAQCPS DLKFINGEAN SEGWKPQSGD
    KNAGNGKYGS CCSEMDVWES NSMATALTPH VCKTTGQTRC SGKSECGGQD GQDRFAGNCD EDGCDFNNWR
    MGDKTFFGPG LTVDTKSPFV VVTQFYGSPV TEIRRKYVQN GKVIENAKSN IPGIDATNAI SDTFCEQQKK
    AFGDTNDFKN KGGFTKLGSV FSRGMVLVLS LWDDHQVAML WLDSTYPTNK DKSVPGVDRG PCPTSSGKPD
    DVESASGDAT VVYGNIKFGA LDSTY
    146197099 uncultured symbiotic MFGFLLSLFA LQFALEIGTQ TSESHPSITW ELNGARQSGQ IVIDSNWRWL HDSGTTNCYD GNTWSSDLCP
    protist of DPEKCSQNCY LEGADYSGTY GISASGSQLT LGFVTKGSYS TNIGSRVYLL KDENTYPMFK LKNKEFTFTV
    Reticulitermes DVSNLPCGLN GALYFVAMPS DGGKAKYPLA KPGAKYGMGY CDAQCPHDMK FINGEANVLD WKPQSNDENA
    speratus GTGRYGTCCT EMDIWEANSQ ATAYTVHACS KNARCEGTEC GDDSASQRYN GICDKDGCDF NSWRWGNKTF
    FGPGLTVDSS KPVTVVTQFI GDPLTEIRRI WVQGGKVIQN SFTNVSGITS VDSITNTFCD ESKVATGDTN
    DFKAKGGMSG FSKALDTEVV LVLSLWDDHT ANMLWLDSTY PTDSTAIGAS RGPCATSSGD PKDVESASAN
    ASVKFSDIKF GALDSTY
    146197409 uncultured symbiotic MLASLLPLSN SLGTASNQAE THPKLTWTQY TGKGAGQTVN GEIVLDSNWR WTHKDGTNCY DGNTWSSSLC
    protist of Cryptocercus PDPTTCSNNC NLDGADYPGT YGITTSGNQL KLGFVTHGSY STNIGSRVYL LRDSKNYQMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGAVYFVAMD EDGGTAKHSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRWGARC TEMDIWEANS RATAYTPHIC TKTGLYRCEG TECGDSDTNR YGGVCDKDGC DFNSYRMGDK
    SFFGQGKTVD SSKPVTVVTQ FITDNNQDSG KLTEIRRKYV QGGKVIDNSK VNIAGITAGN PITDTFCDEA
    KKAFGDNNDF EKKGGLSALG TQLEAGFVLV LSLWDDHSVN MLWLDSTYPT NASPGALGVE RGDCAITSGV
    PADVESQSAD ASVTFSDIKF GPIDSTY
    146197315 uncultured symbiotic MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD
    protist of Mastotermes AATCGKNCVL EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD
    darwiniensis VSNLPCGLSG ALYHVNMDED GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG
    NGKYGSCCSE MDIWEANSIC SAVTPHVCDN LQQTRCQGAA CGENGGGSRF GSSCDPDGCD FNSWGMGNKT
    FYGPGLIVDT KSKFTVVTQF VGNPVTEIKR KYVQNGKVIE NSYSNIEGMD KFNSVSDKFC TAQKKAFGDT
    DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS DRGPCPTTSG VPADVESKSA
    DANVIYSDIR FGAIDSTYK
    146197411 uncultured symbiotic MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPTTCSNNC DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAMD EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC TEMDIWEANS MATAYTPHVC TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD
    KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GILSETRRKY VQGGKVIENS KVNVAGITAG NSVTDTFCNE
    QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP TNAAAGALGT ERGACATSSG
    KPSDVESQSP DATVTFSDIK FGPIDSTY
    146197161 uncultured symbiotic MIGIVLIQTV FGIGVGTQQS ESHPSLSWQQ CSKGGSCTSV SGSIVLDSNW RWTHIPDGTT NCYDGNEWSS
    protist of DLCPDPTTCS NNCVLEGADY SGTYGISTSG SSAKLGFVTK GSYSTNIGSR VYLLGDESHY KIFDLKNKEF
    Hodotermopsis TFTVDDSNLE CGLNGALYFV AMDEDGGASR FTLAKPGAKY GTGYCDAQCP HDIKFINGEA NVQDWKPSDN
    sjoestedti DDNAGTGHYG ACCTEMDIWE ANKYATAYTP HICTENGEYR CEGKSCGDSS DDRYGGVCDK DGCDFNSWRL
    GNQSFWGPGL IIDTGKPVTV VTQFVTKDGT DSGALSEIRR KYVQGGKTIE NTVVKISGID EVDSITDEFC
    NQQKQAFGDT NDFEKKGGLS GLGKAFDYGV VLVLSLWDDH DVNMLWLDSV YPTNPAGKAG ADRGPCATSS
    GDPKEVEDKY ASASVTFSDI KFGPIDSTY
    146197323 uncultured symbiotic MLVFGIVSFV YSIGVGTNTA ETHPKLTWKN GGSTTNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD
    protist of Mastotermes AATCGKNCVL EGADYSGTYG VTSSGDALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD
    darwiniensis VSQLPCGLNG ALYFVCMDQD GGMSRYPDNQ AGAKYGTGYC DAQCPTDLKF INGLPNSDGW KPQSNDKNSG
    NGKYGSCCSE MDIWEANSLA TAVTPHVCDQ VGQTRCEGRA CGENGGGDRF GSICDPDGCD FNSWRMGNKT
    FWGPGLIIDT KKPVTVVTQF IGSPVTEIKR EYVQGGKVIE NSYTNIEGMD KFNSISDKFC TAQKKAFGDN
    DSFTKHGGFS KLGQSFTKGQ VLVLSLWDDH TVNMLWLDSV YPTNSKKLGS DRGPCPTSSG VPADVESKNA
    DSSVKYSDIR FGSIDSTYK
    146197077 uncultured symbiotic MLSFVFLLGF GVSLEIGTQQ SENHPTLSWQ QCTSSGSCTS QSGSIVLDSN WRWVHDSGTT NCYDGNEWSS
    protist of DLCPDPETCS KNCYLDGADY SGTYGITSNG SSLKLGFVTE GSYSTNIGSR VYLKKDTNTY QIFKLKNHEF
    Reticulitermes TFTVDVSNLP CGLNGALYFV EMEADGGKGK YPLAKPGAQY GMGYCDAQCP HDMKFINGNA NVLDWKPQET
    speratus DENSGNGRYG TCCTEMDIWE ANSQATAYTP HICTKDGQYQ CEGTECGDSD ANQRYNGVCD KDGCDFNSYR
    LGNKTFFGPG LIVDSKKPVT VVTQFITSNG QDSGDLTEIR RIYVQGGKTI QNSFTNIAGL TSVDSITEAF
    CDESKDLFGD TNDFKAKGGF TAMGKSLDTG VVLVLSLWDD HSVNMLWLDS TYPTDAAAGA LGTQRGPCAT
    SSGAPSDVES QSPDASVTFS DIKFGPLDST Y
    146197089 uncultured symbiotic MLTLVVYLLS LVVSLEIGTQ QSESHPALTW QREGSSASGS IVLDSNWRWV HDSGTTNCYD GNEWSTDLCP
    protist of SSDTCTQKCY IEGADYSGTY GITTSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKNKEFTFTV
    Reticulitermes DDSKLDCGLN GALYFVAMDA DGGKQKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVED WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNAK SQAYTVHACT KSGQYECTGT DCGDSDSRYQ GTCDKDGCDY ASYRWGDHSF
    YGEGKTVDTK QPITVVTQFI GDPLTEIRRL YIQGGKVINN SKTQNLASVY DSITDAFCDA TKAASGDTND
    FKAKGAMAGF SKNLDTPQVL VLSLWDDHTA NMLWLDSTYP TDSRDATAER GPCATSSGVP KDVESNQADA
    SVVFSDIKFG AINSTYSYN
    146197091 uncultured symbiotic MFGFLLSLFA LQFALEIGTQ TSESHPSITW ELNGARQSGQ IVIDSNWRWL HDSGTTNCYD GNTWSSDLCP
    protist of DPEKCSQNCY LEGADYSGTY GISASGSQLT LGFVTKGSYS TNIGSRVYLL KDENTYQMFK LKNKEFTFTV
    Reticulitermes DVSNLPCGLN GALYFVAMPS DGGKAKYPLA KPGAKYGMGY CDAQCPHDMK FINGEANVLD WKPQSNDENA
    speratus GTGRYGTCCT EMDIWEANSQ ATAYTVHACS KNARCEGTEC GDDSASQRYN GICDKDGCDF NSWRWGNKTF
    FGPGLTVDSS KPVTVVTQFI GDPLTEIRRI WVQGGKVIQN SFTNVSGITS VDSITNTFCD ESKVATGDTN
    DFKAKGGMSG FSKALDTEVV LVLSLWDDHT ANMLWLDSTY PSNSTAIGAT RGPCATSSGD PKNVESASAN
    ASVKFSDIKF GAFDSTY
    146197097 uncultured symbiotic MLALVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCP
    protist of SSDTCTSKCY IEGADYSGTY GITSSGSKVT LKFVTKGSYS TNIGSRIYLL KDENTYETFK LKNKEFTFTV
    Reticulitermes DDSQLNCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNAK SQAYTVHACT KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI NNSKTSNLAD TYDSITDKFC DATKEASGDT
    NDFKAKGAMS GFSTNLNTAQ VLVLSLWDDH TANMLWLDST YPTDSTKTGA SRGPCAVTSG VPKDVESQYG
    SAQVVYSDIK FGAINSTY
    146197095 uncultured symbiotic MLALVYFLLS FVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCG
    protist of SSDTCSSKCY IEGADYSGTY GISASGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKGKEFTFTV
    Reticulitermes DDSKLDCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNAK SQAYTVHACT KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTID TKQPVTVVTQ FIGDPLTEIR RVYVQGGKVI NNSKTSNLAN VYDSITDKFC DDTKDATGDT
    NDFKAKGAMS GFSTNLNTAQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA SRGPCAVLSG VPKNVESQHG
    DATVIYSDIK FGAINSTFSY N
    146197401 uncultured symbiotic MFLALFVLGK SLGIATNQAE NHPKLTWTRY QSKGSGQTVN GEVVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPQTCSSNC DLDGADYPGT YGISSSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAME EDGGVAKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC IEMDIWEANS MATAYTPHVC TVTGIHRCEG TECGDTDANQ RYNGICDKDG CDFNSYRMGD
    KSFFGVGKTV DSSKPVTVVT QFVTSNGQDG GTLSEIKRKY VQGGKVIENS KVNIAGITAV NSITDTFCNE
    QKKAFGDNND FEKKGGLGAL SKQLDLGMVL VLSLWDDHSV NMLWLDSTYP TDAAAGALGT ERGACATSSG
    KPSDVESQSP DASVTFSDIK FGPIDSTY
    146197225 uncultured symbiotic MLLCLLSIAN SLGVGTNTAE NHPKLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA
    protist of Neotermes ATCGKNCVIE GADYQGTYGV SSSGDGLTLT FVTHGQYSTN VGSRLYLMKD EKTYQMFNLN GKEFTFTVDV
    koshunensis SNLPCGLNGA LYFVQMDSDG GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN
    GKYGSCCSEM DIWEANSQAT AYTPHVCDKL EQTRCSGSSC GHTGGGERFS SSCDPDGCDF NSWRMGNKTF
    WGPGLIVDTK KPVQVVTQFV GSGNSCTEIK RKYVQGGKVI DNSMSNIAGM SKQYNSVSDD FCQAQKKAFG
    DNDSFTKHGG FRQLGATLGK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP GSDRGPCKTS SGIPADVESQ
    AASSSVKYSD IRFGAIDSTY K
    146197317 uncultured symbiotic MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD
    protist of Mastotermes AATCGKNCVL EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLMK DEKTYQMFNL NGKEFTFTVD
    darwiniensis VSNLPCGLNG ALYHVNMDED GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG
    NGKYGSCCSE MDIWEANSIC SAVTPHVCDT LQQTRCQGTA CGENGGGSRF GSSCDPDGCD FNSWRMGNKT
    FYGPGLIVDT KSKFTVVTQF VGSPVTEIKR KYVQNGKVIE NSFSNIEGMD KFNSISDKFC TAQKKAFGDT
    DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS DRGPCPTTSG VPADVESKSA
    NANVIYSDIR FGAIDSTYK
    146197251 uncultured symbiotic MLLCLLGIAS SLDAGTNTAE NHPQLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA
    protist of Neotermes ATCGQNCVIE GADYQGTYGV SASGNALTLT FVTHGQYSTN VGSRLYLLKD EKTYQIFNLI GKEFTFTVDV
    koshunensis SNLPCGLNGA LYFVQMDADG GTAKYSDNKA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN
    GRYGSCCSEM DVWEANSLAT AYTPHVCDKL EQVRCDGRAC GQNGGGDRFS SSCDPDGCDF NSWRLGNKTF
    WGPGLIVDTK QPVQVVTQWV GSGTSVTEIK RKYVQGGKVI DNSFTKLDSL TKQYNSVSDE FCVAQKKAFG
    DNDSFTKHGG FRQLGATLAK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP GADRGPCKTS SGVPADVESQ
    AASSSVKYSD IRFGAIDSTY K
    146197319 uncultured symbiotic MLGIGFVCIV YSLGVGTNTA ENHPKLTWKN SGSTTNGEVT VDSNWRWTHT KGTTKNCYDG NLWSKDLCPD
    protist of Mastotermes AATCGKNCVL EGADYSGTYG VTSSGDALTL KFVTHGSYST NVGSRLYLLK DEKTYQIFNL NGKEFTFTVD
    darwiniensis VSNLPCGLNG ALYFVNMDAD GGTGRYPDNQ AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG
    NGKYGSCCSE MDIWEANSLA TAVTPHVCDQ VGQTRCEGRA CGENGGGDRF GSSCDPDGCD FNSWRLGNKT
    FWGPGLIVDT KKPVTVVTQF VGSPVTEIKR KYVQGGKVIE NSYTNIEGLD KFNSISDKFC TAQKKAFGDN
    DSFIKHGGFR QLGQSFTKGQ VLVLSLWDDH TVNMLWLDSV YPTNSKKPGA DRGPCPTSSG VPADVESKNA
    GSSVKYSDIR FGSIDSTYK
    146197071 uncultured symbiotic MATLVGILVS LFALEVALEI GTQTSESHPS LSWELNGQRQ TGSIVIDSNW RWLHDSGTTN CYDGNEWSSD
    protist of LCPDPEKCSQ NCYLEGADYS GTYGISSSGN SLQLGFVTKG SYSTNIGSRV YLLKDENTYA TFKLKNKEFT
    Reticulitermes FTADVSNLPC GLNGALYFVA MPADGGKSKY PLAKPGAKYG MGYCDAQCPH DMKFINGEAN ILDWKPSSND
    speratus ENAGAGRYGT CCTEMDIWEA NSQATAYTVH ACSKNARCEG TECGDDDGRY NGICDKDGCD FNSWRWGNKT
    FFGPNLIVDS SKPVTVVTQF IGDPLTEIRR IYVQGGKVIQ NSFTNISGVA SVDSITDAFC NENKVATGDT
    NDFKAKGGMS GFSKALDTEV VLVLSLWDDH TANMLWLDST YPTDSSALGA SRGPCAITSG EPKDVESASA
    NASVKFSDIK FGAIDSTY
    146197075 uncultured symbiotic MLTLVYFLLS LVVSLEIGTQ QSESHPQLSW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCP
    protist of SSDTCTSKCY IEGADYSGTY GITSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKNKEFTFTV
    Reticulitermes DDSKLDCGLN GALYFVAMDA DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS
    speratus GNGKLGTCCS EMDIWEGNAK SQAYTVHACT KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ
    SFYGEGKTVD TKQPLTVVTQ FVGDPLTEIR RVYVQGGKTI NNSKTSNLAD TYDSITDKFC DATKEASGDT
    NDFKAKGAMS GFSTNLNTAQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA SRGPCAVSSG VPKDVESQHG
    DATVIYSDIK FGAINSTFKW N
    146197159 uncultured symbiotic MLSLVSIFLV GLGFSLGVGT QQSESHPSLS WQNCSAKGSC QSVSGSIVLD SNWRWLHDSG TTNCYDGNEW
    protist of STDLCPDAST CDKNCYIEGA DYSGTYGITS SGAQLKLGFV TKGSYSTNIG SRVYLLRDES HYQLFKLKNH
    Hodotermopsis EFTFTVDDSQ LPCGLNGALY FVEMAEDGGA KPGAQYGMGY CDAQCPHDMK FITGEANVKD WKPQETDENA
    sjoestedti GNGHYGACCT EMDIWEANSQ ATAYTPHICS KTGIYRCEGT ECGDNDANQR YNGVCDKDGC DFNSYRLGNK
    TFWGPGLTVD SNKAMIVVTQ FTTSNNQDSG ELSEIRRIYV QGGKTIQNSD TNVQGITTTN KITQAFCDET
    KVTFGDTNDF KAKGGFSGLS KSLESGAVLV LSLWDDHSVN MLWLDSTYPT DSAGKPGADR GPCAITSGDP
    KDVESQSPNA SVTFSDIKFG PIDSTY
    146197405 uncultured symbiotic MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC
    protist of Cryptocercus PDPTTCSNNC DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LKDTKSYEMF KLKNKEFTFT
    punctulatus VDDSKLPCGL NGALYFVAMD EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN
    SGNGRYGACC TEMDIWEANS MATAYTPHVC TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD
    KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY VQGGKVIENS KVNVAGITAG NSVTDTFCNE
    QKKAFGDNND FEKKGGFGAL SKQLVAGMVL VLSLWDDHSV NMLWLDSTYP TNAAAGALGT ERGACATSSG
    KPSDVESQSP DATVTFSDIK FGPIDSTY
    146197327 uncultured symbiotic MLCVGLFGLV YSIGVGTNTQ ETHPKLSWKQ CSSGGSCTTQ QGSVVIDSNW RWTHSTKDLT NCYDGNLWDS
    protist of Mastotermes TLCPDGTTCS KNCVLEGADY SGTYGITSSG DSLTLKFVTH GSYSTNVGSR LYLLKDDNNY QIFNLAGKEF
    darwiniensis TFTVDVSNLP CGLNGALYFV EMDQDGGKGK HKENEAGAKY GTGYCDAQCP TDLKFIDGIA NSDGWKPQDN
    DENSGNGKYG SCCSEMDIWE ANSLATAYTP HVCDTKGQKR CQGTACGENG GGDRFGSECD PDGCDFNSWR
    QGNKSFWGPG LIIDTKKSVQ VVTQFIGSGS SVTEIRRKYV QNGKVIENSY STISGTEKYN SISDDYCNAQ
    KKAFGDTNSF ENHGGFKRFS QHIQDMVLVL SLWDDHTVNM LWLDSVYPTN SNKPGADRGP CETSSGVPAD
    VESKSASASV KYSDIRFGPI DSTYK
    146197261 uncultured symbiotic MLLCLWSIAY SLGVGTNTAE NHPKLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA
    protist of Neotermes ATCGKNCVIE GADYQGTYGV SASGDGLTLT FVTHGQYSTN VGSRLYLMKD EKTYQIFNLN GKEFTFTVDV
    koshunensis SNLPCGLNGA LYFVQMDSDG GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN
    GKYGSCCSEM DIWEANSQAT AYTPHVCDKL EQTRCSGSAC GHTGGGERFS SSCDPDGCDF NSWRMGNKTF
    WGPGLIVDTK KPVQVVTQFV GSGNSCTEIK RKYVQGGKVI DNSMSNIAGM TKQYNSVSDD FCQAQKKAFG
    DNDSFTKHGG FRQLGATLGK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP GSDRGPCKTS SGIPADVESQ
    AASSSVKYSD IRFGAIDSTY K
  • TABLE 2
    Database Position Position
    Sequence Identifier Accession Corresponding to Corresponding to
    (SEQ ID NO:) Number Species of Origin Position 268 Position 411
    BD29555* Unknown 273 422
    340514556 Trichoderma reesei 268 411
    51243029 Penicillium occitanis 273 422
    7cel (PDB) & Trichoderma reesei 251 394
    67516425 Aspergillus nidulans FGSC A4 274 424
    46107376 Gibberella zeae PH-1 268 415
    70992391 Aspergillus fumigatus Af293 277 427
    121699984 Aspergillus clavatus NRRL 1 277 427
    1906845 Claviceps purpurea 269 416
    1gpi (PDB) & Phanerochaete chrysosporium 240 391
    119468034 Neosartorya fischeri NRRL 181 265 414
    7804883 Leptosphaeria maculans 256 401
    85108032 Neurospora crassa N150 268 412
    169859458 Coprinopsis cinerea okayama 270 421
    154292161 Botryotinia fuckeliana B05-10 410
    169615761 # Phaeosphaeria nodorum SN15 246 393
    4883502 Humicola grisea 272 413
    950686 Humicola grisea 270 416
    124491660 Chaetomium thermophilum 272 413
    58045187 Chaetomium thermophilum 270 416
    169601100 # Phaeosphaeria nodorum SN15 237 383
    169870197 Coprinopsis cinerea okayama 269 421
    3913806 Agaricus bisporus 263 414
    169611094 Phaeosphaeria nodorum SN15 270 414
    3131 Phanerochaete chrysosporium 410
    70991503 Aspergillus fumigatus Af293 265 414
    294196 Phanerochaete chrysosporium 258 409
    18997123 Thermoascus aurantiacus 268 418
    4204214 Humicola grisea var thermoidea 272 413
    34582632 Trichoderma viride (also known as 268 411
    Hypochrea rufa)
    156712284 Thermoascus aurantiacus 268 418
    39977899 Magnaporthe grisea (oryzae) 70-15 268 414
    20986705 Talaromyces emersonii 266 416
    22138843 Aspergillus oryzae 265 414
    55775695 Penicillium chrysogenum 276 426
    171676762 Podospora anserina 270 417
    146350520 Pleurotus sp Florida 268 420
    37732123 Gibberella zeae 268 415
    156055188 Sclerotinia sclerotiorum 1980 410
    453224 Phanerochaete chrysosporium 258 409
    50402144 Trichoderma reesei 268 411
    115397177 Aspergillus terreus NIH2624 274 424
    154312003 Botryotinia fuckeliana B05-10 266 416
    49333365 Volvariella volvacea 268 420
    729650 Penicillium janthinellum 274 424
    146424871 Pleurotus sp Florida 267 418
    67538012 Aspergillus nidulans FGSC A4 265 410
    62006162 Fusarium poae 268 415
    146424873 Pleurotus sp Florida 267 418
    295937 Trichoderma viride 268 411
    6179889 # Alternaria alternata 240 386
    119483864 Neosartorya fischeri NRRL 181 278 428
    85083281 Neurospora crassa OR74A 270 412
    3913803 Cryphonectria parasitica 269 416
    60729633 Corticium rolfsii 265 415
    39971383 Magnaporthe grisea 70-15 268 410
    39973029 Magnaporthe grisea 70-15 269 410
    1170141 Fusarium oxysporum 268 415
    121710012 Aspergillus clavatus NRRL 1 265 414
    17902580 Penicillium funiculosum 273 422
    1346226 Humicola grisea var thermoidea 270 416
    156712282 Chaetomium thermophilum 270 416
    169768818 Aspergillus oryzae RIB40 277 427
    46241270 Gibberella pulicaris 268 415
    49333363 Volvariella volvacea 265 418
    46395332 Irpex lacteus 263 414
    50844407 # Chaetomium thermophilum var 245 391
    thermophilum
    4586347 Irpex lacteus 264 415
    3980202 Phanerochaete chrysosporium 258 410
    27125837 Melanocarpus albomyces 273 414
    171696102 Podospora anserina 265 415
    3913802 Cochliobolus carbonum 270 416
    50403723 Trichoderma viride 268 411
    3913798 Aspergillus aculeatus 275 425
    66828465 Dictyostelium discoideum 269 419
    156060391 Sclerotinia sclerotiorum 1980 252 402
    116181754 Chaetomium globosum CBS 148-51 263 413
    145230535 Aspergillus niger 274 424
    46241266 Nectria haematococca mpVI 268 415
    1q9h (PDB) # Talaromyces emersonii 248 398
    157362170 Polyporus arcularius 269 420
    7804885 Leptosphaeria maculans 267 407
    121852 Phanerochaete chrysosporium 258 409
    126013214 Penicillium decumbens 264 415
    156048578 Sclerotinia sclerotiorum 1980 265 413
    156712278 Acremonium thermophilum 269 414
    21449327 Aspergillus nidulans 265 410
    171683762 Podospora anserina 274 415
    56718412 Thermoascus aurantiacus var 268 418
    levisporus
    15824273 Pseudotrichonympha grassii 263 414
    115390801 Aspergillus terreus NIH2624 266 411
    453223 Phanerochaete chrysosporium 258 409
    3132 Phanerochaete chrysosporium 407
    16304152 Thermoascus aurantiacus 268 417
    156712280 Acremonium thermophilum 273 420
    5231154 Volvariella volvacea 281 438
    116200349 Chaetomium globosum CBS 148-51 270 412
    4586343 Irpex lacteus 263 414
    15321718 Lentinula edodes 417
    146424875 Pleurotus sp Florida 267 418
    62006158 Fusarium venenatum 268 415
    296027 Phanerochaete chrysosporium 258 409
    154449709 Fusicoccum sp BCC4124 272 424
    169859460 Coprinopsis cinerea okayama 269 421
    50400675 Trichoderma harzianum 264 407
    729649 Neurospora crassa 262 406
    119472134 Neosartorya fischeri NRRL 181 277 427
    117935080 Chaetomium thermophilum 272 413
    154300584 Botryotinia fuckeliana B05-10 265 413
    15824271 Pseudotrichonympha grassii 263 414
    4586345 Irpex lacteus 263 414
    46241268 Gibberella avenacea 268 416
    6164684 Aspergillus niger 274 424
    6164682 Aspergillus niger 266 412
    33733371 Chrysosporium lucknowense 269 415
    US6573086-10
    29160311 Thielavia australiensis 269 415
    146197087 uncultured symbiotic protist of 260 402
    Reticulitermes speratus
    146197237 uncultured symbiotic protist of 264 409
    Neotermes koshunensis
    146197067 uncultured symbiotic protist of 260 402
    Reticulitermes speratus
    146197407 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197157 uncultured symbiotic protist of 264 410
    Hodotermopsis sjoestedti
    146197403 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197081 uncultured symbiotic protist of 260 410
    Reticulitermes speratus
    146197413 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197309 uncultured symbiotic protist of 259 402
    Mastotermes darwiniensis
    146197227 uncultured symbiotic protist of 258 404
    Neotermes koshunensis
    146197253 uncultured symbiotic protist of 264 409
    Neotermes koshunensis
    146197099 uncultured symbiotic protist of 258 401
    Reticulitermes speratus
    146197409 uncultured symbiotic protist of 260 411
    Cryptocercus punctulatus
    146197315 uncultured symbiotic protist of 259 402
    Mastotermes darwiniensis
    146197411 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197161 uncultured symbiotic protist of 263 413
    Hodotermopsis sjoestedti
    146197323 uncultured symbiotic protist of 259 402
    Mastotermes darwiniensis
    146197077 uncultured symbiotic protist of 264 415
    Reticulitermes speratus
    146197089 uncultured symbiotic protist of 258 400
    Reticulitermes speratus
    146197091 uncultured symbiotic protist of 258 401
    Reticulitermes speratus
    146197097 uncultured symbiotic protist of 260 402
    Reticulitermes speratus
    146197095 uncultured symbiotic protist of 260 402
    Reticulitermes speratus
    146197401 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197225 uncultured symbiotic protist of 258 404
    Neotermes koshunensis
    146197317 uncultured symbiotic protist of 259 402
    Mastotermes darwiniensis
    146197251 uncultured symbiotic protist of 258 404
    Neotermes koshunensis
    146197319 uncultured symbiotic protist of 259 402
    Mastotermes darwiniensis
    146197071 uncultured symbiotic protist of 259 402
    Reticulitermes speratus
    146197075 uncultured symbiotic protist of 260 402
    Reticulitermes speratus
    146197159 uncultured symbiotic protist of 260 410
    Hodotermopsis sjoestedti
    146197405 uncultured symbiotic protist of 261 412
    Cryptocercus punctulatus
    146197327 uncultured symbiotic protist of 264 408
    Mastotermes darwiniensis
    146197261 uncultured symbiotic protist of 258 404
    Neotermes koshunensis
  • TABLE 3
    Signal Catalytic Cellulose
    Database Sequence (SS) Domain (CD) Linker Start Binding
    Accession Start and End Start and End and End Domain (CBD)
    SEQ ID NO: Number Species of Origin Position Position Position Start and End
    BD29555* Unknown 1-25 26-455 456-493 494-529
    340514556 Trichoderma reesei 1-17 18-444 445-479 480-514
    51243029 Penicillium occitanis 1-25 26-455 456-493 494-529
    7cel (PDB) & Trichoderma reesei N/A  1-427 N/A N/A
    67516425 Aspergillus nidulans 1-23 24-457 458-490 491-526
    FGSC A4
    46107376 Gibberella zeae PH-1 1-17 18-448 449-476 477-512
    70992391 Aspergillus fumigatus 1-26 27-460 461-496 497-532
    Af293
    121699984 Aspergillus clavatus 1-27 27-460 461-503 504-539
    NRRL 1
    1906845 Claviceps purpurea 1-19 20-449 N/A N/A
    1gpi (PDB) & Phanerochaete N/A  1-424 N/A N/A
    chrysosporium
    119468034 Neosartorya fischeri 1-17 18-447 N/A N/A
    NRRL 181
    7804883 Leptosphaeria 1-17 18-434 N/A N/A
    maculans
    85108032 Neurospora crassa 1-17 18-445 446-485 486-521
    N150
    169859458 Coprinopsis cinerea 1-18 19-454 N/A N/A
    okayama
    154292161 Botryotinia fuckeliana 1-18 19-443 444-555 556-596
    B05-10
    169615761 # Phaeosphaeria 1  2-426 N/A N/A
    nodorum SN15
    4883502 Humicola grisea 1-22 23-446 N/A N/A
    950686 Humicola grisea 1-18 19-449 450-489 490-525
    124491660 Chaetomium 1-22 23-446 N/A N/A
    thermophilum
    58045187 Chaetomium 1-18 19-449 450-494 495-530
    thermophilum
    169601100 # Phaeosphaeria 1 2-416 N/A N/A
    nodorum SN15
    169870197 Coprinopsis cinerea 1-18 19-454 N/A N/A
    okayama
    3913806 Agaricus bisporus 1-18 19-447 448-470 471-506
    169611094 Phaeosphaeria 1-18 19-447 N/A N/A
    nodorum SN15
    3131 Phanerochaete 1-19 20-443 N/A N/A
    chrysosporium
    70991503 Aspergillus fumigatus 1-17 18-447 N/A N/A
    Af293
    294196 Phanerochaete 1-18 19-442 443-480 481-516
    chrysosporium
    18997123 Thermoascus 1-17 18-451 N/A N/A
    aurantiacus
    4204214 Humicola grisea var 1-22 23-446 N/A N/A
    thermoidea
    34582632 Trichoderma viride 1-18 18-444 445-479 480-514
    (also known as
    Hypochrea rufa)
    156712284 Thermoascus 1-17 18-451 N/A N/A
    aurantiacus
    39977899 Magnaporthe grisea 1-17 18-447 N/A N/A
    (oryzae) 70-15
    20986705 Talaromyces emersonii 1-18 19-449 N/A N/A
    22138843 Aspergillus oryzae 1-17 18-447 N/A N/A
    55775695 Penicillium 1-25 26-459 460-494 495-529
    chrysogenum
    171676762 Podospora anserina 1-18 19-450 451-492 493-528
    146350520 Pleurotus sp Florida 1-18 19-453 N/A N/A
    37732123 Gibberella zeae 1-17 18-448 449-476 477-512
    156055188 Sclerotinia 1-18 19-443 444-546 547-586
    sclerotiorum 1980
    453224 Phanerochaete 1-18 19-442 443-474 475-510
    chrysosporium
    50402144 Trichoderma reesei 1-17 18-444 445-478 479-513
    115397177 Aspergillus terreus 1-23 24-457 458-505 506-541
    NIH2624
    154312003 Botryotinia fuckeliana 1-17 18-449 450-480 481-516
    B05-10
    49333365 Volvariella volvacea 1-18 19-453 N/A N/A
    729650 Penicillium 1-25 26-456 457-502 503-537
    janthinellum
    146424871 Pleurotus sp Florida 1-18 19-451 452-487 488-523
    67538012 Aspergillus nidulans 1-17 18-443 N/A N/A
    FGSC A4
    62006162 Fusarium poae 1-17 18-448 449-475 476-511
    146424873 Pleurotus sp Florida 1-18 19-451 452-487 488-523
    295937 Trichoderma viride 1-17 18-444 445-478 479-513
     6179889 # Alternaria alternata 1 2-419 N/A N/A
    119483864 Neosartorya fischeri 1-26 27-461 462-499 500-535
    NRRL 181
    85083281 Neurospora crassa 1-20 21-445 N/A N/A
    OR74A
    3913803 Cryphonectria 1-18 19-449 N/A N/A
    Parasitica
    60729633 Corticium rolfsii 1-18 19-448 449-492 493-528
    39971383 Magnaporthe grisea 1-17 18-443 N/A N/A
    70-15
    39973029 Magnaporthe grisea 1-19 20-443 N/A N/A
    70-15
    1170141 Fusarium oxysporum 1-17 18-448 449-478 479-514
    121710012 Aspergillus clavatus 1-17 18-447 N/A N/A
    NRRL 1
    17902580 Penicillium 1-25 26-455 456-493 494-529
    funiculosum
    1346226 Humicola grisea var 1-18 19-449 450-489 490-525
    thermoidea
    156712282 Chaetomium 1-18 19-449 450-496 497-532
    thermophilum
    169768818 Aspergillus oryzae 1-25 26-460 N/A N/A
    RIB40
    46241270 Gibberella pulicaris 1-17 18-448 449-474 475-510
    49333363 Volvariella volvacea 1-18 19-451 452-476 477-512
    46395332 Irpex lacteus 1-18 19-447 448-485 486-521
    50844407 # Chaetomium N/A  1-424 425-469 470-505
    thermophilum var
    thermophilum
    4586347 Irpex lacteus 1-18 19-448 449-490 491-526
    3980202 Phanerochaete 1-18 19-443 444-475 476-511
    chrysosporium
    27125837 Melanocarpus 1-23 23-447 N/A N/A
    albomyces
    171696102 Podospora anserina 1-17 17-448 N/A N/A
    3913802 Cochliobolus 1-18 19-449 N/A N/A
    carbonum
    50403723 Trichoderma viride 1-17 18-444 445-479 480-514
    3913798 Aspergillus aculeatus 1-22 23-458 459-505 506-540
    66828465 Dictyostelium 1-19 20-452 N/A N/A
    discoideum
    156060391 Sclerotinia 1-17 18-435 436-470 471-504
    sclerotiorum 1980
    116181754 Chaetomium globosum 1-17 18-446 N/A N/A
    CBS 148-51
    145230535 Aspergillus niger 1-21 22-457 458-500 501-536
    46241266 Nectria haematococca 1-18 18-448 449-472 473-508
    mpVI
    1q9h (PDB) # Talaromyces emersonii N/A  1-431 N/A N/A
    157362170 Polyporus arcularius 1-18 19-453 N/A N/A
    7804885 Leptosphaeria 1-20 21-440 N/A N/A
    maculans
    121852 Phanerochaete 1-18 19-442 443-480 481-516
    chrysosporium
    126013214 Penicillium decumbens 1-17 18-448 N/A N/A
    156048578 Sclerotinia 1-16 17-446 N/A N/A
    sclerotiorum 1980
    156712278 Acremonium 1-17 18-447 448-487 488-523
    thermophilum
    21449327 Aspergillus nidulans 1-17 18-443 N/A N/A
    171683762 Podospora anserina 1-22 23-448 N/A N/A
    56718412 Thermoascus 1-17 18-451 N/A N/A
    aurantiacus var
    levisporus
    15824273 Pseudotrichonympha 1-20 21-447 N/A N/A
    grassii
    115390801 Aspergillus terreus 1-17 18-444 N/A N/A
    NIH2624
    453223 Phanerochaete 1-18 19-442 443-474 475-510
    chrysosporium
    3132 Phanerochaete 1-19 20-436 437-467 468-504
    chrysosporium
    16304152 Thermoascus 1-17 18-450 N/A N/A
    aurantiacus
    156712280 Acremonium 1-21 22-453 N/A N/A
    thermophilum
    5231154 Volvariella volvacea 1-15 16-472 473-500 501-536
    116200349 Chaetomium globosum 1-20 21-445 N/A N/A
    CBS 148-51
    4586343 Irpex lacteus 1-18 19-447 448-481 482-517
    15321718 Lentinula edodes 1-18 19-450 451-480 481-516
    146424875 Pleurotus sp Florida 1-18 19-451 452-487 488-523
    62006158 Fusarium venenatum 1-17 18-448 449-471 472-507
    296027 Phanerochaete 1-18 19-442 443-480 481-516
    chrysosporium
    154449709 Pusicoccum sp 1-19 20-457 N/A N/A
    BCC4124
    169859460 Coprinopsis cinerea 1-18 19-454 N/A N/A
    okayama
    50400675 Trichoderma 1-17 18-440 441-470 471-505
    harzianum
    729649 Neurospora crassa 1-17 18-439 440-480 481-516
    119472134 Neosartorya fischeri 1-26 27-460 461-494 495-530
    NRRL 181
    117935080 Chaetomium 1-22 23-446 N/A N/A
    thermophilum
    154300584 Botryotinia fuckeliana 1-16 17-446 N/A N/A
    B05-10
    15824271 Pseudotrichonympha 1-20 21-447 N/A N/A
    grassii
    4586345 Irpex lacteus 1-18 19-447 448-487 488-523
    46241268 Gibberella avenacea 1-17 18-449 450-478 478-513
    6164684 Aspergillus niger 1-21 22-457 458-500 501-536
    6164682 Aspergillus niger 1-17 18-445 N/A N/A
    33733371 Chrysosporium 1-17 18-448 449-490 491-526
    lucknowense
    US6573086-10
    29160311 Thielavia australiensis 1-18 18-448 449-502 503-538
    146197087 uncultured symbiotic 1-22 23-435 N/A N/A
    protist of
    Reticulitermes speratus
    146197237 uncultured symbiotic 1-20 21-442 N/A N/A
    protist of Neotermes
    koshunensis
    146197067 uncultured symbiotic 1-22 23-435 N/A N/A
    protist of
    Reticulitermes speratus
    146197407 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    punctulatus
    146197157 uncultured symbiotic 1-20 21-443 N/A N/A
    protist of
    Hodotermopsis
    sjoestedti
    146197403 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    punctulatus
    146197081 uncultured symbiotic 1-22 23-443 N/A N/A
    protist of
    Reticuhtermes speratus
    146197413 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    punctulatus
    146197309 uncultured symbiotic 1-20 21-435 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197227 uncultured symbiotic 1-19 20-437 N/A N/A
    protist of Neotermes
    koshunensis
    146197253 uncultured symbiotic 1-21 21-442 N/A N/A
    protist of Neotermes
    koshunensis
    146197099 uncultured symbiotic 1-22 23-434 N/A N/A
    protist of
    Rehculitermes speratus
    146197409 uncultured symbiotic 1-19 20-444 N/A N/A
    protist of Cryptocercus
    punctulatus
    146197315 uncultured symbiotic 1-20 21-435 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197411 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    Punctulatus
    146197161 uncultured symbiotic 1-20 21-446 N/A N/A
    protist of
    Hodotermopsis
    sjoestedti
    146197323 uncultured symbiotic 1-20 21-435 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197077 uncultured symbiotic 1-21 22-448 N/A N/A
    protist of
    Reticuhtermes speratus
    146197089 uncultured symbiotic 1-22 23-433 N/A N/A
    protist of
    Reticuhtermes speratus
    146197091 uncultured symbiotic 1-22 23-434 N/A N/A
    protist of
    Reticuhtermes speratus
    146197097 uncultured symbiotic 1-22 23-435 N/A N/A
    protist of
    Reticuhtermes speratus
    146197095 uncultured symbiotic 1-22 23-435 N/A N/A
    protist of
    Reticuhtermes speratus
    146197401 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    Punctulatus
    146197225 uncultured symbiotic 1-19 20-437 N/A N/A
    protist of Neotermes
    koshunensis
    146197317 uncultured symbiotic 1-20 21-435 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197251 uncultured symbiotic 1-19 20-437 N/A N/A
    protist of Neotermes
    koshunensis
    146197319 uncultured symbiotic 1-20 21-435 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197071 uncultured symbiotic 1-25 26-435 N/A N/A
    protist of
    Reticulitermes speratus
    146197075 uncultured symbiotic 1-22 23-435 N/A N/A
    protist of
    Reticulitermes speratus
    146197159 uncultured symbiotic 1-23 24-443 N/A N/A
    protist of
    Hodotermopsis
    sjoestedti
    146197405 uncultured symbiotic 1-19 20-445 N/A N/A
    protist of Cryptocercus
    punctulatus
    146197327 uncultured symbiotic 1-20 21-441 N/A N/A
    protist of Mastotermes
    darwiniensis
    146197261 uncultured symbiotic 1-19 20-437 N/A N/A
    protist of Neotermes
    koshunensis
  • TABLE 4
    Amino Acid Amino Acid Position of
    Positions of Positions of Active Catalytic
    Sequence Database Fragment in Site Loop in Residues in
    Identifier Accession Amino Acid Sequence of Fragment of Catalytic Domain Sequence Sequence Sequence
    (SEQ ID NO:) Number Species of Origin Including Loop and Catalytic Residue Identifier Identifier Identifier
    BD29555* Unknown NVEG WTPSSNNANTGLG NHGACCA E LDIW E ANS 210-242 214-226 234, 239
    340514556 Trichoderma reesei NVEG WTPSANNANTGIG NHGACCA E LDIW E ANS 205-237 209-221 229, 234
    51243029 Penicillium occitanis NVEG WEPSSNNANTGIG GHGSCCS E MDIW E ANS 210-242 214-226 234, 239
    7cel (PDB) & Trichoderma reesei NVEG WEPSSNNANTGIG GHGSCCS E MDIW Q ANS 188-220 192-204 212, 217
    67516425 Aspergillus nidulans NVEG WESSDTNPNGGVG NHGSCCA E MDIW E ANS 211-243 215-227 235, 240
    FGSC A4
    46107376 Gibberella zeae PH-1 NSDG WQPSDSDVNGGIG NLGTCCP E MDIW E ANS 205-237 209-221 229, 234
    70992391 Aspergillus fumigatus NVEG WQPSSNDANAGTG NHGSCCA E MDIW E ANS 214-246 218-230 238, 243
    Af293
    121699984 Aspergillus clavatus NVEG WTPSSSDANAGNG GHGSCCA E MDIW E ANS 214-246 218-230 238, 243
    NRRL 1
    1906845 Claviceps purpurea NSKD WIPSKSDANAGIG SLGACCR E MDIW E ANN 206-238 210-222 230, 235
    1gpi (PDB) & Phanerochaete NVGN WTETG-SNTGTG SYGTCCS E MDIW E ANN 185-215 189-199 207, 212
    chrysosporium
    119468034 Neosartorya fischeri NVEG WKPSSNDKNAGVG GHGSCCP E MDIW E ANS 202-234 206-218 226, 231
    NRRL 181
    7804883 Leptosphaeria NVEG WQPSKNDQNAGVG GHGSCCA E MDIW E ANS 193-225 197-209 217, 222
    maculans
    85108032 Neurospora crassa NVEG WTPSTNDANAGIG DHGTCCS E MDIW E ANK 205-237 209-221 229, 234
    N150 (OR74A)
    169859458 Coprinopsis cinerea NSAD WTPSETDPNAGRG RYGICCA E MDIW E ANS 207-239 211-223 231, 236
    okayama
    154292161 Botryotinia NVEG WVPDSNSANSGTG NIGSCCS E FDVW E ANS 203-235 207-219 227, 232
    fuckeliana B05-10
    169615761 # Phaeosphaeria NADG WQASTSDPNAGVG KKGACCA E MDVW E ANS 183-215 187-199 207, 212
    nodorum SN15
    4883502 Humicola grisea NIEG WRPSTNDPNAGVG PMGACCA E IDVW E SNA 208-240 212-224 232, 237
    950686 Humicola grisea NIEG WTGSTNDPNAGAG RYGTCCS E MDIW E ANN 207-239 211-223 231, 236
    124491660 Chaetomium NIEG WRPSTNDANAGVG PYGACCA E IDVW E SNA 209-241 213-225 233, 238
    thermophilum
    58045187 Chaetomium NIEN WTPSTNDANAGFG RYGSCCS E MDIW E ANN 207-239 211-223 231, 236
    thermophilum
    169601100 # Phaeosphaeria NVEG WKPSDNDANAGVG GHGSCCA E MDIW E ANS 174-206 178-190 198, 203
    nodorum SN15
    169870197 Coprinopsis cinerea NSVG WEPSETDSNAGRG RYGICCA E MDIW E ANS 207-239 211-223 231, 236
    okayama
    3913806 Agaricus bisporus NSEG WEGSPNDVNAGTG NFGACCG E MDIW E ANS 203-235 207-219 227, 232
    169611094 Phaeosphaeria NVEG WNPSDADPNAGSG KIGACCP E MDIW E ANS 208-240 212-224 232, 237
    nodorum SN15
    3131 Phanerochaete NVQG WNATS--ATTGTG SYGSCCT E LDIW E ANS 204-234 208-218 226, 231
    chrysosporium
    70991503 Aspergillus fumigatus NVEG WEPSSSDKNAGVG GHGSCCP E MDIW E ANS 202-234 206-218 226, 231
    Af293
    294196 Phanerochaete NVEG WNATS--ANAGTG NYGTCCT E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    18997123 Thermoascus NVEG WQPSANDPNAGVG NHGSSCA E MDVW E ANS 205-237 209-221 229, 234
    aurantiacus
    4204214 Humicola grisea var NIEG WRPSTNDPNAGV GPMGACCA E IDVW E SNA 208-240 212-224 232, 237
    thermoidea
    34582632 Trichoderma viride NVEG WEPSSNNANTGIG GHGSCCS E MDIW E ANS 205-237 209-221 229, 234
    (also known as
    Hypochrea rufa)
    156712284 Thermoascus NVEG WQPSANDPNAGVG NHGSCCA E MDVW E ANS 205-237 209-221 229, 234
    aurantiacus
    39977899 Magnaporthe grisea NVEG WQPSSGDANSGVG NMGSCCA E MDIW E ANS 205-237 209-221 229, 234
    (oryzae) 70-15
    20986705 Talaromyces NVEG WQPSSNNANTGIG DHGSCCA E MDVW E ANS 203-235 207-219 227, 232
    emersonii
    22138843 Aspergillus oryzae R-KG WEPSDSDKNAGVG GHGSCCPQMDIW E ANS 203-234 206-218 226, 231
    55775695 Penicillium NVEG WEPSSSDVNGGTG NYGSCCA E MDIW E ANS 213-245 217-229 237, 242
    chrysogenum
    171676762 Podospora anserina NIEG WNPSTNDVNAGAG RYGTCCS E MDIW E ANN 207-239 211-223 231, 236
    146350520 Pleurotus sp Florida NVQG WQPSPNDSNAGKG QYGSCCA E MDIW E ANS 207-239 211-223 231, 236
    37732123 Gibberella zeae NSDG WQPSDSDVNGGIG NLGTCCP E MDIW E ANS 205-237 209-221 229, 234
    156055188 Sclerotinia NNEG WVPDSNSANSGTG NIGSCCS E FDVW E ANS 203-235 207-219 227, 232
    sclerotiorum 1980
    453224 Phanerochaete NVGN WTETG--SNTGTG SYGTCCS E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    50402144 Trichoderma reesei NVEG WEPSSNNANTGIG GHGSCCS E MDIW E ANS 205-237 209-221 229, 234
    115397177 Aspergillus terreus NVEG WEPSANDANAGTG NHGSCCA E MDIW E ANS 211-243 215-227 235, 240
    NIH2624
    154312003 Botryotinia NSVG WTPSSNDVNAGAG QYGSCCS E MDIW E ANK 206-238 210-222 230, 235
    fuckeliana B05-10
    49333365 Volvariella volvacea NVQG WQPSPNDTNAGTG NYGACCN E MDVW E ANS 207-239 211-223 231, 236
    729650 Penicillium NVDG WTPSKNDVNSGIG NHGSCCA E MDIW E ANS 211-243 215-227 235, 240
    janthinellum
    146424871 Pleurotus sp Florida NILD WSASATDANAGNG RYGACCA E MDIW E ANS 206-238 210-222 230, 235
    67538012 Aspergillus nidulans NVEG WEPSDSDANAGVG GMGTCCP E MDIW E ANS 202-234 206-218 226, 231
    FGSC A4
    62006162 Fusarium poae NSDG WEPSKSDVNGGIG NLGTCCP E MDIW E ANS 205-237 209-221 229, 234
    146424873 Pleurotus sp Florida NILD WSGSATDPNAGNG RYGACCA E MDIW E ANS 206-238 210-222 230, 235
    295937 Trichoderma viride NVEG WEPSSNNANTGIG GHGSCCS E MDIW E ANS 205-237 209-221 229, 234
    6179889 # Alternaria alternata NVEG WKPSSNDANAGVG GHGSCCA E MDIW E ANS 177-209 181-193 201, 206
    119483864 Neosartorya fischeri NVEG WTPSSNNENTGLG NYGSCCA E LDIW E SNS 215-247 219-231 239, 244
    NRRL 181
    85083281 Neurospora crassa NIEG WTPSTNDANAGVG PYGGCCA E IDVW E SNA 207-239 211-223 231, 236
    OR74A
    3913803 Cryphonectria NVEG WTPSTNDANAGVG GLGSCCS E MDVW E ANS 206-238 210-222 230, 235
    parasitica
    60729633 Corticium rolfsii NLLD WNATS--ANSGTG SYGSCCP E MDIW E ANK 206-236 210-220 228, 233
    39971383 Magnaporthe grisea NIEG WQPSSTDSSAGIG AQGACCA E IDIW E SNK 205-237 209-221 229, 234
    70-15
    39973029 Magnaporthe grisea NIEG WKPSSNDANAGVG PYGACCA E IDVW E SNA 206-238 210-222 230, 235
    70-15
    1170141 Fusarium oxysporum NSEG WKPSDSDVNAGVG NLGTCCP E MDIW E ANS 205-237 209-221 229, 234
    121710012 Aspergillus clavatus NVEG WKPSDNDKNAGVG GYGSCCP E MDIW E ANS 202-234 206-218 226, 231
    NRRL 1
    17902580 Penicillium NVEG WTPSTNNSNTGIG NHGSCCA E LDIW E ANS 210-242 214-226 234, 239
    funiculosum
    1346226 Humicola grisea var NIEG WTGSTNDPNAGAG RYGTCCS E MDIW E ANN 207-239 211-223 231, 236
    thermoidea
    156712282 Chaetomium NVGN WTPSTNDANAGFG RYGSCCS E MDVW E ANN 207-239 211-223 231, 236
    thermophilum
    169768818 Aspergillus oryzae NVEG WVSSTNNANTGTG NHGSCCA E LDIW E SNS 214-246 218-230 238, 243
    RIB40
    46241270 Gibberella pulicaris NSDG WQPSKSDVNAGIG NMGTCCP E MDIW E ANS 205-237 209-221 229, 234
    49333363 Volvariella volvacea NVAG WNGSPNDTNAGTG NWGACCN E MDIW E ANS 205-237 209-221 229, 234
    46395332 Irpex lacteus NVAG WTGSSSDPNSGTG NYGTCCS E MDIW E ANS 202-234 206-218 226, 231
    50844407 # Chaetomium NIEN WTPSTNDANAGFG RYGSCCS E MDIW E ANN 182-214 186-198 206, 211
    thermophilum var
    thermophilum
    4586347 Irpex lacteus NIVD WTASAGDANSGTG SFGTCCQ E MDIW E ANS 203-235 207-219 227, 232
    3980202 Phanerochaete NVGN WTETG--SNTGTG SYGTCCS E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    27125837 Melanocarpus NIEG WKSSTSDPNAGVG PYGSCCA E IDVW E SNA 210-242 214-226 234, 239
    albomyces
    171696102 Podospora anserina NVEG WGGAD--GNSGTG KYGICCA E MDIW E ANS 206-236 210-220 228, 233
    3913802 Cochliobolus NVEG WNPSDADPNGGAG KIGACCP E MDIW E ANS 208-240 212-224 232, 237
    carbonum
    50403723 Trichoderma viride NVEG WEPSSNNANTGIG GHGSCCS E MDIW E ANS 205-237 209-221 229, 234
    3913798 Aspergillus aculeatus NIEG WEPSSTDVNAGTG NHGSCCP E MDIW E ANS 210-242 214-226 234, 239
    66828465 Dictyostelium NVDG WIPSTNNPNTGYG NLGSCCA E MDLW E ANN 206-238 210-222 230, 235
    discoideum
    156060391 Sclerotinia NSVG WTPSSNDVNTGTG QYGSCCS E MDIW E ANK 192-224 196-208 216, 221
    sclerotiorum 1980
    116181754 Chaetomium NSEG WGGED--GNSGTG KYGTCCA E MDIW E ANL 203-233 207-217 225, 230
    globosum CBS 148-
    51
    145230535 Aspergillus niger NCDG WEPSSNNVNTGVG DHGSCCA E MDVW E ANS 209-241 213-225 233, 238
    46241266 Nectria NSDE WKPSDSDKNAGVG KYGTCCP E MDIW E ANK 205-237 209-221 229, 234
    haematococca mpVI
    1q9h (PDB) # Talaromyces NVEG WQPSSNNANTGIG DHGSCCA E MDVW E ANS 185-217 189-201 209, 214
    emersonii
    157362170 Polyporus arcularius NVLD WAGSSNDPNAGTG HYGTCCN E MDIW E ANS 208-240 212-224 232, 237
    7804885 Leptosphaeria NAEG WTKSASDPNSGVG KKGACCAQMDVW E ANS 204-236 208-220 228, 233
    maculans
    121852 Phanerochaete NVEG WNATS--ANAGTG NYGTCCT E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    126013214 Penicillium NVEG WKPSANDKNAGVG PHGSCCA E MDIW E ANS 201-233 205-217 225, 230
    decumbens
    156048578 Sclerotinia NVDG WVPSSNNPNTGVG NYGSCCA E MDIW E ANS 202-234 206-218 226, 231
    sclerotiorum 1980
    156712278 Acremonium NIDG WQPSSNDANAGLG NHGSCCS E MDIW E ANK 206-238 210-222 230, 235
    thermophilum
    21449327 Aspergillus nidulans NVEG WEPSDSDANAGVG GMGTCCP E MDIW E ANS 202-234 206-218 226, 231
    (also known as
    Emericella nidulans)
    171683762 Podospora anserine NIE GWRESSNDENAGVG PYGGCCA E IDVW E SNA 211-243 215-227 235, 240
    (S mat+)
    56718412 Thermoascus NVEG WQPSANDPNAGVG NHGSCCA E MDVW E ANS 205-237 209-221 229, 234
    aurantiacus var
    levisporus
    15824273 Pseudotrichonympha NVEN WKPQTNDENAGNG RYGACCT E MDIW E ANK 200-232 204-216 224, 229
    grassii
    115390801 Aspergillus terreus NVEG WTPSDNDKNAGVG GHGSCCP E LDIW E ANS 203-235 207-219 227, 232
    NIH2624
    453223 Phanerochaete NVGN WTETG--SNTGTG SYGTCCS E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    3132 Phanerochaete NVEG WLGTT--ATTGTG FFGSCCTDIALW E AND 202-232 206-216 224, 229
    chrysosporium
    16304152 Thermoascus NVEG WQPSANDPNAGVG NHGSSCA E MDVW E ANS 205-237 209-221 229, 234
    aurantiacus
    156712280 Acremonium NSAS WQPSSNDQNAGVG GMGSCCA E MDIW E ANS 210-242 214-226 234, 239
    thermophilum
    5231154 Volvariella volvacea NVQG WQPSPNDTNAGTG NYGACCNKMDVW E ANS 220-252 224-236 244, 249
    116200349 Chaetomium NYDG WTPSSNDANAGVG ALGGCCA E IDVW E SNA 207-239 211-223 231, 236
    globosum CBS 148-
    51
    4586343 Irpex lacteus NVAG WAGSASDPNAGSG TLGTCCS E MDIW E ANN 202-234 206-218 226, 231
    15321718 Lentinula edodes NVEG WTPSSTSPNAGTG GTGICCN E MDIW E ANS 208-240 212-224 232, 237
    146424875 Pleurotus sp Florida NVLD WSASATDDNAGNG RYGACCA E MDIW E ANS 206-238 210-222 230, 235
    62006158 Fusarium venenatum NSDG WQPSKSDVNGGIG NLGTCCP E MDIW E ANS 205-237 209-221 229, 234
    296027 Phanerochaete NVEG WNATS--ANAGTG NYGTCCT E MDIW E ANN 203-233 207-217 225, 230
    chrysosporium
    154449709 Fusicoccum sp NVQN WTASSTDKNAGTG HYGSCCN E MDIW E ANS 209-241 213-225 233, 238
    BCC4124
    169859460 Coprinopsis cinerea NSVG WEPSETDPNAGKG QYGICCA E MDIW E ANS 207-239 211-223 231, 236
    okayama
    50400675 Trichoderma NVEG WEPSSNNANTGVG GHGSCCS E MDIW E ANS 201-233 205-217 225, 230
    harzianum
    (anamorph of
    Hypocrea lixii)
    729649 Neurospora crassa NVEG WTPSTNDAN-GIG DHGSCCS E MDIW E ANK 200-231 204-215 223, 228
    (OR74A)
    119472134 Neosartorya fischeri NVEG WQPSSNDANAGTG NHGSCCA E MDIW E ANS 214-246 218-230 238, 243
    NRRL 181
    117935080 Chaetomium NIEG WRPSTNDANAGVG PYGACCA E IDVW E SNA 209-241 213-225 233, 238
    thermophilum
    154300584 Botryotinia NVDG WVPSSNNANTGVG NHGSCCA E MDIW E ANS 202-234 206-218 226, 231
    fuckeliana B05-10
    15824271 Pseudotrichonympha NVEN WKPQTNDENAGNG RYGACCT E MDIW E ANK 200-232 204-216 224, 229
    grassii
    4586345 Irpex lacteus NVEG WTGSSTDSNSGTG NYGTCCS E MDIW E ANS 202-234 206-218 226, 231
    46241268 Gibberella avenacea NSDG WKPSDSDINAGIG NMGTCCP E MDIW E ANS 205-237 209-221 229, 234
    6164684 Aspergillus niger NCDG WEPSSNNVNTGVG DHGSCCA E MDVW E ANS 209-241 213-225 233, 238
    6164682 Aspergillus niger NVDG WEPSSNNDNTGIG NHGSCCP E MDIW E ANK 203-235 207-219 227, 232
    33733371 Chrysosporium NVEN WQSSTNDANAGTG KYGSCCS E MDVW E ANN 206-238 210-222 230, 235
    lucknowense
    U.S. Pat. No. 6,573,086-10
    29160311 Thielavia NVEG WESSTNDANAGSG KYGSCCT E MDVW E ANN 206-238 210-222 230, 235
    australiensis
    146197087 uncultured symbiotic NVDD WKPQDNDENSGNG KLGTCCS E MDIW E GNM 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197237 uncultured symbiotic NSEG WKPQSGDKNAGNG KYGSCCS E MDVW E SNS 200-232 204-216 224, 229
    protist of Neotermes
    koshunensis
    146197067 uncultured symbiotic NVDD WKPQDNDENSGNG KLGTCCS E MDIW E GNM 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197407 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197157 uncultured symbiotic NVEG WKPSDNDENAGTG KWGACCT E MDIW E ANK 201-233 205-217 225, 230
    protist of
    Hodotermopsis
    sjoestedti
    146197403 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197081 uncultured symbiotic NVDD WKPQDNDENSGDG KLGTCCS E MDIW E GNA 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197413 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197309 uncultured symbiotic NSDG WKPQSNDKNSGNG KYGSCCS E MDIW E ANS 196-228 200-212 220, 225
    protist of
    Mastotermes
    darwiniensis
    146197227 uncultured symbiotic NSDG WKPQKNDKNSGNG KYGSCCS E MDIW E ANS 195-227 199-211 219, 224
    protist of Neotermes
    koshunensis
    146197253 uncultured symbiotic NSEG WKPQSGDKNAGNG KYGSCCS E MDVW E SNS 200-232 204-216 224, 229
    protist of Neotermes
    koshunensis
    146197099 uncultured symbiotic NVLD WKPQSNDENAGTG RYGTCCT E MDIW E ANS 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197409 uncultured symbiotic NVLD WKPQSNDENSGNG RWGARCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197315 uncultured symbiotic NSDG WKPQSNDKNSGNG KYGSCCS E MDIW E ANS 196-228 200-212 220, 225
    protist of
    Mastotermes
    darwiniensis
    146197411 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197161 uncultured symbiotic NVQD WKPSDNDDNAGTG HYGACCT E MDIW E ANK 201-233 205-217 225, 230
    protist of
    Hodotermopsis
    sjoestedti
    146197323 uncultured symbiotic NSDG WKPQSNDKNSGNG KYGSCCS E MDIW E ANS 196-228 200-212 220, 225
    protist of
    Mastotermes
    darwiniensis
    146197077 uncultured symbiotic NVLD WKPQETDENSGNG RYGTCCT E MDIW E ANS 201-233 205-217 225, 230
    protist of
    Reticulitermes
    speratus
    146197089 uncultured symbiotic NVED WKPQDNDENSGNG KLGTCCS E MDIW E GNA 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197091 uncultured symbiotic NVLD WKPQSNDENAGTG RYGTCCT E MDIW E ANS 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197097 uncultured symbiotic NVDD WKPQDNDENSGNG KLGTCCS E MDIW E GNA 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197095 uncultured symbiotic NVDD WKPQDNDENSGNG KLGTCCS E MDIW E GNA 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197401 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCI E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197225 uncultured symbiotic NSDG WKPQKNDKNSGNG KYGSCCS E MDIW E ANS 195-227 199-211 219, 224
    protist of Neotermes
    koshunensis
    146197317 uncultured symbiotic NSDG WKPQSNDKNSGNG KYGSCCS E MDIW E ANS 196-228 200-212 220, 225
    protist of
    Mastotermes
    darwiniensis
    146197251 uncultured symbiotic NSDG WKPQKNDKNSGNG RYGSCCS E MDVW E ANS 195-227 199-211 219, 224
    protist of Neotermes
    koshunensis
    146197319 uncultured symbiotic NSDG WKPQSNDKNSGNG KYGSCCS E MDIW E ANS 196-228 200-212 220, 225
    protist of
    Mastotermes
    darwiniensis
    146197071 uncultured symbiotic NILD WKPSSNDENAGAG RYGTCCT E MDIW E ANS 200-232 204-216 224, 229
    protist of
    Reticulitermes
    speratus
    146197075 uncultured symbiotic NVDD WKPQDNDENSGNG KLGTCCS E MDIW E GNA 197-229 201-213 221, 226
    protist of
    Reticulitermes
    speratus
    146197159 uncultured symbiotic NVKD WKPQETDENAGNG HYGACCT E MDIW E ANS 197-229 201-213 221, 226
    protist of
    Hodotermopsis
    sjoestedti
    146197405 uncultured symbiotic NVLD WKPQSNDENSGNG RYGACCT E MDIW E ANS 198-230 202-214 222, 227
    protist of
    Cryptocercus
    punctulatus
    146197327 uncultured symbiotic NSDG WKPQDNDENSGNG KYGSCCS E MDIW E ANS 201-233 205-217 225, 230
    protist of
    Mastotermes
    darwiniensis
    146197261 uncultured symbiotic NSDG WKPQKNDKNSGNG KYGSCCS E MDIW E ANS 195-227 199-211 219, 224
    protist of Neotermes
    koshunensis
  • TABLE 5
    Tolerance to Tolerance to
    250 mg/L Cellobiose Cellobiose Accumulation
    % Activity in % Activity in
    4-MUL Assay Bagasse Assay
    Substitution(s) (+/−Cellobiose)± (−/+BG)¥
    None 25% 60%
    R273K/R422K 95% 84%
    R273K/Y274Q/ 78% ND
    D281K/Y410H/
    P411G/R422K
  • TABLE 6
    Tolerance to
    250 mg/L Cellobiose Tolerance to
    % Activity in Cellobiose Accumulation
    4-MUL Assay % Activity in Bagasse Assay
    Substitution(s) (+/−Cellobiose)± (−/+BG)¥
    None 23% 74%
    R268K/R411K 92% 94%
    R268A/R411A 92% 95%
    R268A/R411K 97% 94%
    R268K/R411A 97% 102%
    R268K ND 92%
    R268A ND 86%
    R411K ND 89%
    R411A ND 94%
  • TABLE 7
    SEQ ID NO. Amino Acid Sequence
    MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN TSTNCYTGNT
    WNTAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ IFDLLNQEFT FTVDVSHLPC
    GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN VEGWTPSSNN ANTGLGNHGA CCAELDIWEA
    NSISEALTPH PCDTPGLSVC TTDACGGTYS SDRYAGTCDP DGCDFNPYRL GVTDFYGSGK TVDTTKPITV VTQFVTDDGT
    STGTLSEIRR YYVQNGVVIP QPSSKISGVS GNVINSDFCD AEISTFGETA SFSKHGGLAK MGAGMEAGMV LVMSLWDDYS
    VNMLWLDSTY PTNATGTPGA ARGSCPTTSG DPKTVESQSG SSYVTFSDIR VGPFNSTFSG GSSTGGSSTT TASGTTTTKA
    SSTSTSSTST GTGVAAHWGQ CGGQGWTGPT TCASGTTCTV VNPYYSQCL
    MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG NTWSSTLCPD
    NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL GNEFSFDVDV SQLPCGLNGA
    LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE PSSNNANTGI GGHGSCCSEM DIWEANSISE
    ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY
    YVQNGVTFQQ PNAELGSYSG NELNDDYCTA EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT
    NETSSTPGAV RGSCSTSSGV PAQVESQSPN AKVTFSNIKF GPIGSTGNPS GGNPPGGNPP GTTTTRRPAT TTGSSPGPTQ
    SHYGQCGGIG YSGPTVCASG TTCQVLNPYY SQCL
    MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN TSTNCYTGNT
    WNSAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ IFDLLNQEFT FTVDVSHLPC
    GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN VEGWTPSANN ANTGIGNHGA CCAELDIWEA
    NSISEALTPH PCDTPGLSVC TTDACGGTYS SDRYAGTCDP DGCDFNPYRL GVTDFYGSGK TVDTTKPFTV VTQFVTNDGT
    STGSLSEIRR YYVQNGVVIP QPSSKISGIS GNVINSDYCA AEISTFGGTA SFNKHGGLTN MAAGMEAGMV LVMSLWDDYA
    VNMLWLDSTY PTNATGTPGA ARGTCATTSG DPKTVESQSG SSYVTFSDIR VGPFNSTFSG GSSTGGSTTT TASRTTTTSA
    SSTSTSSTST GTGVAGHWGQ CGGQGWTGPT TCVSGTTCTV VNPYYSQCL
    ESACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN CCLDGAAYAS
    TYGVTTSGNS LSIDFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL NGALYFVSMD ADGGVSKYPT
    NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC SEMDIWQANS ISEALTPHPC TTVGQEICEG
    DGCGGTYSDN RYGGTCDPDG CDWNPYRLGN TSFYGPGSSF TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS
    YSGNELNDDY CTAEEAEFGG SSFSDKGGLT QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVRGSCSTS
    SGVPAQVESQ SPNAKVTFSN IKFGPIGSTG NPSG
    MASSFQLYKA LLFFSSLLSA VQAQKVGTQQ AEVHPGLTWQ TCTSSGSCTT VNGEVTIDAN WRWLHTVNGY TNCYTGNEWD
    TSICTSNEVC AEQCAVDGAN YASTYGITTS GSSLRLNFVT QSQQKNIGSR VYLMDDEDTY TMFYLLNKEF TFDVDVSELP
    CGLNGAVYFV SMDADGGKSR YATNEAGAKY GTGYCDSQCP RDLKFINGVA NVEGWESSDT NPNGGVGNHG SCCAEMDIWE
    ANSISTAFTP HPCDTPGQTL CTGDSCGGTY SNDRYGGTCD PDGCDFNSYR QGNKTFYGPG LTVDTNSPVT VVTQFLTDDN
    TDTGTLSEIK RFYVQNGVVI PNSESTYPAN PGNSITTEFC ESQKELFGDV DVFSAHGGMA GMGAALEQGM VLVLSLWDDN
    YSNMLWLDSN YPTDADPTQP GIARGTCPTD SGVPSEVEAQ YPNAYVVYSN IKFGPIGSTF GNGGGSGPTT TVTTSTATST
    TSSATSTATG QAQHWEQCGG NGWTGPTVCA SPWACTVVNS WYSQCL
    MYRAIATASA LIAAVRAQQV CSLTQESKPS LNWSKCTSSG CSNVKGSVTI DANWRWTHQV SGSTNCYTGN KWDTSVCTSG
    KVCAEKCCLD GADYASTYGI TSSGDQLSLS FVTKGPYSTN IGSRTYLMED ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ PSDSDVNGGI GNLGTCCPEM DIWEANSIST
    AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF NSYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGVPGNSLTA DFCTKQKKVF NDPDDFTKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTK LGSQRGSCST SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKSDGTTPTN PTNPSEPSNT ANPNPGTVDQ
    WGQCGGSNYS GPTACKSGFT CKKINDFYSQ CQ
    MLASTFSYRM YKTALILAAL LGSGQAQQVG TSQAEVHPSM TWQSCTAGGS CTTNNGKVVI DANWRWVHKV GDYTNCYTGN
    TWDTTICPDD ATCASNCALE GANYESTYGV TASGNSLRLN FVTTSQQKNI GSRLYMMKDD STYEMFKLLN QEFTFDVDVS
    NLPCGLNGAL YFVAMDADGG MSKYPTNKAG AKYGTGYCDS QCPRDLKFIN GQANVEGWQP SSNDANAGTG NHGSCCAEMD
    IWEANSISTA FTPHPCDTPG QVMCTGDACG GTYSSDRYGG TCDPDGCDFN SFRQGNKTFY GPGMTVDTKS KFTVVTQFIT
    DDGTSSGTLK EIKRFYVQNG KVIPNSESTW TGVSGNSITT EYCTAQKSLF QDQNVFEKHG GLEGMGAALA QGMVLVMSLW
    DDHSANMLWL DSNYPTTASS TTPGVARGTC DISSGVPADV EANHPDAYVV YSNIKVGPIG STFNSGGSNP GGGTTTTTTT
    QPTTTTTTAG NPGGTGVAQH YGQCGGIGWT GPTTCASPYT CQKLNDYYSQ CL
    MLPSTISYRI YKNALFFAAL FGAVQAQKVG TSKAEVHPSM AWQTCAADGT CTTKNGKVVI DANWRWVHDV KGYTNCYTGN
    TWNAELCPDN ESCAENCALE GADYAATYGA TTSGNALSLK FVTQSQQKNI GSRLYMMKDD NTYETFKLLN QEFTFDVDVS
    NLPCGLNGAL YFVSMDADGG LSRYTGNEAG AKYGTGYCDS QCPRDLKFIN GLANVEGWTP SSSDANAGNG GHGSCCAEMD
    IWEANSISTA YTPHPCDTPG QAMCNGDSCG GTYSSDRYGG TCDPDGCDFN SYRQGNKSFY GPGMTVDTKK KMTVVTQFLT
    NDGTATGTLS EIKRFYVQDG KVIANSESTW PNLGGNSLTN DFCKAQKTVF GDMDTFSKHG GMEGMGAALA EGMVLVMSLW
    DDHNSNMLWL DSNSPTTGTS TTPGVARGSC DISSGDPKDL EANHPDASVV YSNIKVGPIG STFNSGGSNP GGSTTTTKPA
    TSTTTTKATT TATTNTTGPT GTGVAQPWAQ CGGIGYSGPT QCAAPYTCTK QNDYYSQCL
    MHPSLQTILL SALFTTAHAQ QACSSKPETH PPLSWSRCSR SGCRSVQGAV TVDANWLWTT VDGSQNCYTG NRWDTSICSS
    EKTCSESCCI DGADYAGTYG VTTTGDALSL KFVQQGPYSK NVGSRLYLMK DESRYEMFTL LGNEFTFDVD VSKLGCGLNG
    ALYFVSMDED GGMKRFPMNK AGAKFGTGYC DSQCPRDVKF INGMANSKDW IPSKSDANAG IGSLGACCRE MDIWEANNIA
    SAFTPHPCKN SAYHSCTGDG CGGTYSKNRY SGDCDPDGCD FNSYRLGNTT FYGPGPKFTI DTTRKISVVT QFLKGRDGSL
    REIKRFYVQN GKVIPNSVSR VRGVPGNSIT QGFCNAQKKM FGAHESFNAK GGMKGMSAAV SKPMVLVMSL WDDHNSNMLW
    LDSTYPTNSR QRGSKRGSCP ASSGRPTDVE SSAPDSTVVF SNIKFGPIGS TFSRGK
    ESACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN CCLDGAAYAS
    TYGVTTSGNS LSIDFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL NGALYFVSMD ADGGVSKYPT
    NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC SEMDIWQANS ISEALTPHPC TTVGQEICEG
    DGCGGTYSDN RYGGTCDPDG CDWNPYRLGN TSFYGPGSSF TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS
    YSGNELNDDY CTAEEAEFGG SSFSDKGGLT QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVRGSCSTS
    SGVPAQVESQ SPNAKVTFSN IKFGPIGSTG NPSG
    MHQRALLFSA LAVAANAQQV GTQKPETHPP LTWQKCTAAG SCSQQSGSVV IDANWRWLHS TKDTTNCYTG NTWNTELCPD
    NESCAQNCAV DGADYAGTYG VTTSGSELKL SFVTGANVGS RLYLMQDDET YQHFNLLNNE FTFDVDVSNL PCGLNGALYF
    VAMDADGGMS KYPSNKAGAK YGTGYCDSQC PRDLKFINGM ANVEGWKPSS NDKNAGVGGH GSCCPEMDIW EANSISTAVT
    PHPCDDVSQT MCSGDACGGT YSATRYAGTC DPDGCDFNPF RMGNESFYGP GKIVDTKSEM TVVTQFITAD GTDTGALSEI
    KRLYVQNGKV IANSVSNVAD VSGNSISSDF CTAQKKAFGD EDIFAKHGGL SGMGKALSEM VLIMSIWDDH HSSMMWLDST
    YPTDADPSKP GVARGTCEHG AGDPEKVESQ HPDASVTFSN IKFGPIGSTY KA
    MYRSLIFATS LLSLAKGQLV GNLYCKGSCT AKNGKVVIDA NWRWLHVKGG YTNCYTGNEW NATACPDNKS CATNCAIDGA
    DYRRLRHYCE RQLLGTEVHH QGLYSTNIGS RTYLMQDDST YQLFKFTGSQ EFTFDVDLSN LPCGLNGALY FVSMDADGGL
    KKYPTNKAGA KYGTGYCDAQ CPRDLKFING EGNVEGWQPS KNDQNAGVGG HGSCCAEMDI WEANSVSTAV TPHSCSTIEQ
    SRCDGDGCGG TYSADRYAGV CDPDGCDFNS YRMGVKDFYG KGKTVDTSKK FTVVTQFIGS GDAMEIKRFY VQNGKTIPQP
    DSTIPGVTGN SITTFFCDAQ KKAFGDKYTF KDKGGMANMP STCNGMVLVM SLWDDHYSNM LWLDSTYPTD KNPDTDAGSG
    RGECAITSGV PADVESQHPD ASVIYSNIKF GPINTTFG
    MLAKFAALAA LVASANAQAV CSLTAETHPS LNWSKCTSSG CTNVAGSITV DANWRWTHIT SGSTNCYSGN EWDTSLCSTN
    TDCATKCCVD GAEYSSTYGI QTSGNSLSLQ FVTKGSYSTN IGSRTYLMNG ADAYQGFELL GNEFTFDVDV SGTGCGLNGA
    LYFVSMDLDG GKAKYTNNKA GAKYGTGYCD AQCPRDLKYI NGIANVEGWT PSTNDANAGI GDHGTCCSEM DIWEANKVST
    AFTPHPCTTI EQHMCEGDSC GGTYSDDRYG GTCDADGCDF NSYRMGNTTF YGEGKTVDTS SKFTVVTQFI KDSAGDLAEI
    KRFYVQNGKV IENSQSNVDG VSGNSITQSF CNAQKTAFGD IDDFNKKGGL KQMGKALAKP MVLVMSIWDD HAANMLWLDS
    TYPVEGGPGA YRGECPTTSG VPAEVEANAP NSKVIFSNIK FGPIGSTFSG GSSGTPPSNP SSSVKPVTST AKPSSTSTAS
    NPSGTGAAHW AQCGGIGFSG PTTCQSPYTC QKINDYYSQC V
    MFKKVALTAL CFLAVAQAQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY TGNSWNSTVC
    SDPTTCAQRC ALEGANYQQT YGITTNGDAL TIKFLTRSQQ TNVGARVYLM ENENRYQMFN LLNKEFTFDV DVSKVPCGIN
    GALYFIQMDA DGGMSKQPNN RAGAKYGTGY CDSQCPRDIK FIDGVANSAD WTPSETDPNA GRGRYGICCA EMDIWEANSI
    SNAYTPHPCR TQNDGGYQRC EGRDCNQPRY EGLCDPDGCD YNPFRMGNKD FYGPGKTVDT NRKMTVVTQF ITHDNTDTGT
    LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD SITEQFCTDQ KNLFGDYSSF ARDGGLAHMG RSLAKGHVLA LSIWNDHGAH
    MLWLDSNYPT DADPNKPGIA RGTCPTTGGT PRETEQNHPD AQVIFSNIKF GDIGSTFSGY
    MYSAAVLATF SFLLGAGAQQ VGTSTAETHP ALTVQKCAAG GTCTDESDSI VLDANWRWLH STSGSTNCYT GNTWDTTLCP
    DAATCTTNCA LDGADYEGTY GITTSGDSLK LSFVTGSNVG SRTYLMDSET TYKEFALLGN EFTFTVDVSK LPCGLNGALY
    FVPMDADGGM SKYPTNKAGA KYGTGYCDAQ CPQDMKFVNG TANVEGWVPD SNSANSGTGN IGSCCSEFDV WEANSMSQAL
    TPHVCTVDSQ TACTGDDCAS NTGVCDGDGC DFNPYRMGNT TFYGSGMTID TSKPFSVVTQ FITDDGTETG TLTEIKRFYV
    QDDVVYEQPS SDISGVSGNS ITDDFCAAQK TAFGDTDYFT QNGGMAAMGK KMADGMVLVL SIWDDYNVNM LWLDSDYPTT
    KDASTPGVSR GSCATDSGVP ATVEAASGSA YVTFSSIKYG PIGSTFNAPA DSSSSVSASS SPAPIASSSS SASIAPVSSV
    VAAIVSSSAQ AISSAAPVVS SSAQAISSAA PVVSSVVSSA APVATSSTKS KCSKVSSTLK TSVAAPATSA TSAAVVATSS
    AASSTGSVPL YGNCTGGKTC SEGTCVVQND YYSQCVASS
    MTWQRCTGTG GSSCTNVNGE IVIDANWRWI HATGGYTNCF DGNEWNKTAC PSNAACTKNC AIEGSDYRGT YGITTSGNSL
    TLKFITKGQY STNVGSRTYL MKDTNNYEMF NLIGNEFTFD VDLSQLPCGL NGALYFVSMP EKGQGTPGAK YGTGKLSQCS
    VHISKTLTDA CARDLKFVGG EANADGWQAS TSDPNAGVGK KGACCAEMDV WEANSMSTAL TPHSCQPEGY AVCEESNCGG
    TYSLDRYAGT CDANGCDFNP YRVGNKDFYG KGKTVDTSKK MTVVTQFLGT GSDLTELKRF YVQDGKVISN PEPTIPGMTG
    NSITQKWCDT QKEVFKEEVY PFNQWGGMAS MGKGMAQGMV LVMSLWDDHY SNMLWLDSTY PTDRDPESPG AARGECAITS
    GAPAEVEANN PDASVMFSNI KFGPIGSTFQ QPA
    MQIKSYIQYL AAALPLLSSV AAQQAGTITA ENHPRMTWKR CSGPGNCQTV QGEVVIDANW RWLHNNGQNC YEGNKWTSQC
    SSATDCAQRC ALDGANYQST YGASTSGDSL TLKFVTKHEY GTNIGSRFYL MANQNKYQMF TLMNNEFAFD VDLSKVECGI
    NSALYFVAME EDGGMASYPS NRAGAKYGTG YCDAQCARDL KFIGGKANIE GWRPSTNDPN AGVGPMGACC AEIDVWESNA
    YAYAFTPHAC GSKNRYHICE TNNCGGTYSD DRFAGYCDAN GCDYNPYRMG NKDFYGKGKT VDTNRKFTVV SRFERNRLSQ
    FFVQDGRKIE VPPPTWPGLP NSADITPELC DAQFRVFDDR NRFAETGGFD ALNEALTIPM VLVMSIWDDH HSNMLWLDSS
    YPPEKAGLPG GDRGPCPTTS GVPAEVEAQY PNAQVVWSNI RFGPIGSTVN V
    MRTAKFATLA ALVASAAAQQ ACSLTTERHP SLSWKKCTAG GQCQTVQASI TLDSNWRWTH QVSGSTNCYT GNKWDTSICT
    DAKSCAQNCC VDGADYTSTY GITTNGDSLS LKFVTKGQYS TNVGSRTYLM DGEDKYQTFE LLGNEFTFDV DVSNIGCGLN
    GALYFVSMDA DGGLSRYPGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG WTGSTNDPNA GAGRYGTCCS EMDIWEANNM
    ATAFTPHPCT IIGQSRCEGD SCGGTYSNER YAGVCDPDGC DFNSYRQGNK TFYGKGMTVD TTKKITVVTQ FLKDANGDLG
    EIKRFYVQDG KIIPNSESTI PGVEGNSITQ DWCDRQKVAF GDIDDFNRKG GMKQMGKALA GPMVLVMSIW DDHASNMLWL
    DSTFPVDAAG KPGAERGACP TTSGVPAEVE AEAPNSNVVF SNIRFGPIGS TVAGLPGAGN GGNNGGNPPP PTTTTSSAPA
    TTTTASAGPK AGRWQQCGGI GFTGPTQCEE PYTCTKLNDW YSQCL
    MQIKQYLQYL AAALPLVNMA AAQRAGTQQT ETHPRLSWKR CSSGGNCQTV NAEIVIDANW RWLHDSNYQN CYDGNRWTSA
    CSSATDCAQK CYLEGANYGS TYGVSTSGDA LTLKFVTKHE YGTNIGSRVY LMNGSDKYQM FTLMNNEFAF DVDLSKVECG
    LNSALYFVAM EEDGGMRSYS SNKAGAKYGT GYCDAQCARD LKFVGGKANI EGWRPSTNDA NAGVGPYGAC CAEIDVWESN
    AYAFAFTPHG CLNNNYHVCE TSNCGGTYSE DRFGGLCDAN GCDYNPYRMG NKDFYGKGKT VDTSRKFTVV TRFEENKLTQ
    FFIQDGRKID IPPPTWPGLP NSSAITPELC TNLSKVFDDR DRYEETGGFR TINEALRIPM VLVMSIWDGH YANMLWLDSV
    YPPEKAGQPG AERGPCAPTS GVPAEVEAQF PNAQVIWSNI RFGPIGSTYQ V
    MMYKKFAALA ALVAGAAAQQ ACSLTTETHP RLTWKRCTSG GNCSTVNGAV TIDANWRWTH TVSGSTNCYT GNEWDTSICS
    DGKSCAQTCC VDGADYSSTY GITTSGDSLN LKFVTKHQHG TNVGSRVYLM ENDTKYQMFE LLGNEFTFDV DVSNLGCGLN
    GALYFVSMDA DGGMSKYSGN KAGAKYGTGY CDAQCPRDLK FINGEANIEN WTPSTNDANA GFGRYGSCCS EMDIWDANNM
    ATAFTPHPCT IIGQSRCEGN SCGGTYSSER YAGVCDPDGC DFNAYRQGDK TFYGKGMTVD TTKKMTVVTQ FHKNSAGVLS
    EIKRFYVQDG KIIANAESKI PGNPGNSITQ EWCDAQKVAF GDIDDFNRKG GMAQMSKALE GPMVLVMSVW DDHYANMLWL
    DSTYPIDKAG TPGAERGACP TTSGVPAEIE AQVPNSNVIF SNIRFGPIGS TVPGLDGSTP SNPTATVAPP TSTTTSVRSS
    TTQISTPTSQ PGGCTTQKWG QCGGIGYTGC TNCVAGTTCT ELNPWYSQCL
    MYRNFLYAAS LLSVARSQLV GTQTTETHPG MTWQSCTAKG SCTTCSDNKA CASNCAVDGA DYKGTYGITA SGNSLQLKFI
    TKGSYSTNIG SRTYLMASDT AYQMFKFDGN KEFTFDVDLS GLPCGFNGAL YFVSMDEDGG LKKYSGNKAG AKYGTGYCDA
    QCPRDLKFIN GEGNVEGWKP SDNDANAGVG GHGSCCAEMD IWEANSISTA VTPHACSTIE QTRCDGDGCG GTYSADRYAG
    VCDPDGCDFN AYRMGVKNFY GKGMTVDTSK KFTVVTQFIG TGDAMEIKRF YVQGGKTIEQ PASTIPGVEG NSITTKFCDQ
    QKQVFGDRYT YKEKGGTANM AKALAQGMVL VMSLWDDHYS NMLWLDSTYP TDKNPDTDLG SGRGSCDVKS GAPADVESKS
    PDATVIYSNI KFGPLNSTY
    MLGKIAIASL SFLAIAKGQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY TGNSWNSSVC
    SDGTTCAQRC ALEGANYQQT YGITTSGNSL TMKFLTRSQG TNVGGRVYLM ENENRYQMFN LLNKEFTFDV DVSKVPCGIN
    GALYFIQMDA DGGMSSQPNN RAGAKYGTGY CDSQCPRDIK FIDGVANSVG WEPSETDSNA GRGRYGICCA EMDIWEANSI
    SNAYTPHPCR TQNDGGYQRC EGRDCNQPRY EGLCDPDGCD YNPFRMGNKD FYGPGKTIDT NRKMTVVTQF ITHDNTDTGT
    LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD SITEQFCTDQ KNLFGDYSSF ARDGGLAHMG RSLAKGHVLA LSIWNDHGAH
    MLWLDSNYPT DADPNKPGIA RGTCPTTGGT PRETEQNHPD AQVIFSNIKF GDIGSTFSGY
    MFPRSILLAL SLTAVALGQQ VGTNMAENHP SLTWQRCTSS GCQNVNGKVT LDANWRWTHR INDFTNCYTG NEWDTSICPD
    GVTCAENCAL DGADYAGTYG VTSSGTALTL KFVTESQQKN IGSRLYLMAD DSNYEIFNLL NKEFTFDVDV SKLPCGLNGA
    LYFSEMAADG GMSSTNTAGA KYGTGYCDSQ CPRDIKFIDG EANSEGWEGS PNDVNAGTGN FGACCGEMDI WEANSISSAY
    TPHPCREPGL QRCEGNTCSV NDRYATECDP DGCDFNSFRM GDKSFYGPGM TVDTNQPITV VTQFITDNGS DNGNLQEIRR
    IYVQNGQVIQ NSNVNIPGID SGNSISAEFC DQAKEAFGDE RSFQDRGGLS GMGSALDRGM VLVLSIWDDH AVNMLWLDSD
    YPLDASPSQP GISRGTCSRD SGKPEDVEAN AGGVQVVYSN IKFGDINSTF NNNGGGGGNP SPTTTRPNSP AQTMWGQCGG
    QGWTGPTACQ SPSTCHVIND FYSQCF
    MYRNLALASL SLFGAARAQQ AGTVTTETHP SLSWKTCTGT GGTSCTTKAG KITLDANWRW THVTTGYTNC YDGNSWNTTA
    CPDGATCTKN CAVDGADYSG TYGITTSSNS LSIKFVTKGS NSANIGSRTY LMESDTKYQM FNLIGQEFTF DVDVSKLPCG
    LNGALYFVEM AADGGIGKGN NKAGAKYGTG YCDSQCPHDI KFINGKANVE GWNPSDADPN AGSGKIGACC PEMDIWEANS
    ISTAYTPHPC KGTGLQECTD DVSCGDGSNR YSGLCDKDGC DFNSYRMGVK DFYGPGATLD TTKKMTVVTQ FLGSGSTLSE
    IKRFYVQNGK VFKNSDSAIE GVTGNSITES FCAAQKTAFG DTNSFKTLGG LNEMGASLAR GHVLVMSLWD DHAVNMLWLD
    STYPTNSTKL GAQRGTCAID SGKPEDVEKN HPDATVVFSD IKFGPIGSTF QQPS
    MVDIQIATFL LLGVVGVAAQ QVGTYIPENH PLLATQSCTA SGGCTTSSSK IVLDANRRWI HSTLGTTSCL TANGWDPTLC
    PDGITCANYC ALDGVSYSST YGITTSGSAL RLQFVTGTNI GSRVFLMADD THYRTFQLLN QELAFDVDVS KLPCGLNGAL
    YFVAMDADGG KSKYPGNRAG AKYGTGYCDS QCPRDVQFIN GQANVQGWNA TSATTGTGSY GSCCTELDIW EANSNAAALT
    PHTCTNNAQT RCSGSNCTSN TGFCDADGCD FNSFRLGNTT FLGAGMSVDT TKTFTVVTQF ITSDNTSTGN LTEIRRFYVQ
    NGNVIPNSVV NVTGIGAVNS ITDPFCSQQK KAFIETNYFA QHGGLAQLGQ ALRTGMVLAF SISDDPANHM LWLDSNFPPS
    ANPAVPGVAR GMCSITSGNP ADVGILNPSP YVSFLNIKFG SIGTTFRPA
    MHQRALLFSA LAVAANAQQV GTQTPETHPP LTWQKCTAAG SCSQQSGSVV IDANWRWLHS TKDTTNCYTG NTWNTELCPD
    NESCAQNCAL DGADYAGTYG VTTSGSELKL SFVTGANVGS RLYLMQDDET YQHFNLLNHE FTFDVDVSNL PCGLNGALYF
    VAMDADGGMS KYPSNKAGAK YGTGYCDSQC PRDLKFINGM ANVEGWEPSS SDKNAGVGGH GSCCPEMDIW EANSISTAVT
    PHPCDDVSQT MCSGDACGGT YSESRYAGTC DPDGCDFNPF RMGNESFYGP GKIVDTKSKM TVVTQFITAD GTDSGALSEI
    KRLYVQNGKV IANSVSNVAG VSGNSITSDF CTAQKKAFGD EDIFAKHGGL SGMGKALSEM VLIMSIWDDH HSSMMWLDST
    YPTDADPSKP GVARGTCEHG AGDPENVESQ HPDASVTFSN IKFGPIGSTY EG
    MFRTATLLAF TMAAMVFGQQ VGTNTAENHR TLTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT GNQWDATLCP
    DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT SANAGTGNYG TCCTEMDIWE ANNDAAAYTP
    HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN
    GKVIQNSSVK IPGIDPVNSI TDNFCSQQKT AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK
    DPSTPGVARG TCATTSGVPA QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV
    TVPQWGQCGG IGYTGSTTCA SPYTCHVLNP YYSQCY
    MYQRALLFSF FLAAARAHEA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG NTWDTSICPD
    DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL GQEFTFDVDV SNLPCGLNGA
    LYFVAMDADG NLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ PSANDPNAGV GNHGSSCAEM DVWEANSIST
    AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF NPYQPGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL
    TEIKRFYVQN GKVIPQSEST ISGVTGNSIT TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW
    LDSTYPTDAD PDTPGVARGT CPTTSGVPAD VESQNPNSYV IYSNIKVGPI NSTFTAN
    MQIKSYIQYL AAALPLLSSV AAQQAGTITA ENHPRMTWKR CSGPGNCQTV QGEVVIDANW RWLHNNGQNC YEGNKWTSQC
    SSATDCAQRC ALDGANYQST YGASTSGDSL TLKFVTKHEY GTNIGSRFYL MANQNKYQMF TLMNNEFAFD VDLSKVECGI
    NSALYFVAME EDGGMASYPS NRAGAKYGTG YCDAQCARDL KFIGGKANIE GWRPSTNDPN AGVGPMGACC AEIDVWESNA
    YAYAFTPHAC GSKNRYHICE TNNCGGTYSD DRFAGYCDAN GCDYNPYRMG NKDFYGKGKT VDTNRKFTVV SRFERNRLSQ
    FFVQDGRKIE VPPPTWPGLP NSADITPELC DAQFRVFDDR NRFAETGGFD ALNEALTIPM VLVMSIWDDH HSNMLWLDSS
    YPPEKAGLPG GDRGPCPTTS GVPAEVEAQY PDAQVVWSNI RFGPIGSTVN V
    MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG NTWSSTLCPD
    NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL GNEFSFDVDV SQLPCGLNGA
    LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE PSSNNANTGI GGHGSCCSEM DIWEANSISE
    ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW DPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY
    YVQNGVTFQQ PNAELGSYSG NGLNDDYCTA EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT
    NETSSTPGAV RGSCSTSSGV PAQVESQSPN AKVTFSNIKF GPIGSTGDPS GGNPPGGNPP GTTTTRRPAT TTGSSPGPTQ
    SHYGQCGGIG YSGPTVCASG TTCQVLNPYY SQCL
    MYQRALLFSF FLAAARAQQA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG NTWDTSICPD
    DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL GQEFTFDVDV SNLPCGLNGA
    LYFVAMDADG GLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ PSANDPNAGV GNHGSCCAEM DVWEANSIST
    AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF NPYRQGNHSF YGPGQIVDTS SKFTVVTQFI TDDGTPSGTL
    TEIKRFYVQN GKVIPQSEST ISGVTGNSIT TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW
    LDSTYPTDAD PDTPGVARGT CPTTSGVPAD VESQYPNSYV IYSNIKVGPI NSTFTAN
    MIRKITTLAA LVGVVRGQAA CSLTAETHPS LTWQKCSSGG SCTNVAGSVT IDANWRWTHT TSGYTNCYTG NKWDTSICST
    NADCASKCCV DGANYQQTYG ASTSGNALSL QYVTQSSGKN VGSRLYLLES ENKYQMFNLL GNEFTFDVDA SKLGCGLNGA
    VYFVSMDADG GQSKYSGNKA GAKYGTGYCD SQCPRDLKYI NGAANVEGWQ PSSGDANSGV GNMGSCCAEM DIWEANSIST
    AYTPHPCSNN AQHSCKGDDC GGTYSSVRYA GDCDPDGCDF NSYRQGNRTF YGPGSNFNVD SSKKVTVVTQ FISSGGQLTD
    IKRFYVQNGK VIPNSQSTIT GVTGNSVTQD YCDKQKTAFG DQNVFNQRGG LRQMGDALAK GMVLVMSVWD DHHSQMLWLD
    STYPTTSTAP GAARGSCSTS SGKPSDVQSQ TPGATVVYSN IKFGPIGSTF KSS
    MLRRALLLSS SAILAVKAQQ AGTATAENHP PLTWQECTAP GSCTTQNGAV VLDANWRWVH DVNGYTNCYT GNTWDPTYCP
    DDETCAQNCA LDGADYEGTY GVTSSGSSLK LNFVTGSNVG SRLYLLQDDS TYQIFKLLNR EFSFDVDVSN LPCGLNGALY
    FVAMDADGGV SKYPNNKAGA KYGTGYCDSQ CPRDLKFIDG EANVEGWQPS SNNANTGIGD HGSCCAEMDV WEANSISNAV
    TPHPCDTPGQ TMCSGDDCGG TYSNDRYAGT CDPDGCDFNP YRMGNTSFYG PGKIIDTTKP FTVVTQFLTD DGTDTGTLSE
    IKRFYIQNSN VIPQPNSDIS GVTGNSITTE FCTAQKQAFG DTDDFSQHGG LAKMGAAMQQ GMVLVMSLWD DYAAQMLWLD
    SDYPTDADPT TPGIARGTCP TDSGVPSDVE SQSPNSYVTY SNIKFGPINS TFTAS
    MHQRALLFSA FWTAVQAQQA GTLTAETHPS LTWQKCAAGG TCTEQKGSVV LDSNWRWLHS VDGSTNCYTG NTWDATLCPD
    NESCASNCAL DGADYEGTYG VTTSGDALTL QFVTGANIGS RLYLMADDDE SYQTFNLLNN EFTFDVDASK LPCGLNGAVY
    FVSMDADGGV AKYSTNKAGA KYGTGYCDSQ CPRDLKFING QVRKGWEPSD SDKNAGVGGH GSCCPQMDIW EANSISTAYT
    PHPCDDTAQT MCEGDTCGGT YSSERYAGTC DPDGCDFNAY RMGNESFYGP SKLVDSSSPV TVVTQFITAD GTDSGALSEI
    KRFYVQGGKV IANAASNVDG VTGNSITADF CTAQKKAFGD DDIFAQHGGL QGMGNALSSM VLTLSIWDDH HSSMMWLDSS
    YPEDADATAP GVARGTCEPH AGDPEKVESQ SGSATVTYSN IKYGPIGSTF DAPA
    MASTLSFKIY KNALLLAAFL GAAQAQQVGT STAEVHPSLT WQKCTAGGSC TSQSGKVVID SNWRWVHNTG GYTNCYTGND
    WDRTLCPDDV TCATNCALDG ADYKGTYGVT ASGSSLRLNF VTQASQKNIG SRLYLMADDS KYEMFQLLNQ EFTFDVDVSN
    LPCGLNGALY FVAMDEDGGM ARYPTNKAGA KYGTGYCDAQ CPRDLKFING QANVEGWEPS SSDVNGGTGN YGSCCAEMDI
    WEANSISTAF TPHPCDDPAQ TRCTGDSCGG TYSSDRYGGT CDPDGCDFNP YRMGNQSFYG PSKIVDTESP FTVVTQFITN
    DGTSTGTLSE IKRFYVQNGK VIPQSVSTIS AVTGNSITDS FCSAQKTAFK DTDVFAKHGG MAGMGAGLAE GMVLVMSLWD
    DHAANMLWLD STYPTSASST TPGAARGSCD ISSGEPSDVE ANHSNAYVVY SNIKVGPLGS TFGSTDSGSG TTTTKVTTTT
    ATKTTTTTGP STTGAAHYAQ CGGQNWTGPT TCASPYTCQR QGDYYSQCL
    MVSAKFAALA ALVASASAQQ VCSLTPESHP PLTWQRCSAG GSCTNVAGSV TLDSNWRWTH TLQGSTNCYS GNEWDTSICT
    TGTKCAQNCC VEGAEYAATY GITTSGNQLN LKFVTEGKYS TNVGSRTYLM ENATKYQGFN LLGNEFTFDV DVSNIGCGLN
    GALYFVSMDL DGGLAKYSGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG WNPSTNDVNA GAGRYGTCCS EMDIWEANNM
    ATAYTPHSCT ILDQSRCEGE SCGGTYSSDR YGGVCDPDGC DFNSYRMGNK EFYGKGKTVD TTKKMTVVTQ FLKNAAGELS
    EIKRFYVQNG VVIPNSVSSI PGVPNQNSIT QDWCDAQKIA FGDPDDNTAK GGLRQMGLAL DKPMVLVMSI WNDHAAHMLW
    LDSTYPVDAA GRPGAERGAC PTTSGVPSEV EAEAPNSNVA FSNIKFGPIG STFNSGSTNP NPISSSTATT PTSTRVSSTS
    TAAQTPTSAP GGTVPRWGQC GGQGYTGPTQ CVAPYTCVVS NQWYSQCL
    MFPYIALVSF SFLSVVLAQQ VGTLTAETHP QLTVQQCTRG GSCTTQQRSV VLDGNWRWLH STSGSNNCYT GNTWDTSLCP
    DAATCSRNCA LDGADYSGTY GITSSGNALT LKFVTHGPYS TNIGSRVYLL ADDSHYQMFN LKNKEFTFDV DVSQLPCGLN
    GALYFSQMDA DGGTGRFPNN KAGAKYGTGY CDSQCPHDIK FINGEANVQG WQPSPNDSNA GKGQYGSCCA EMDIWEANSM
    ASAYTPHPCT VTTPTRCQGN DCGDGDNRYG GVCDKDGCDF NSFRMGDKNF LGPGKTVNTN SKFTVVTQFL TSDNTTSGTL
    SEIRRLYVQN GRVIQNSKVN IPGMASTLDS ITESFCSTQK TVFGDTNSFA SKGGLRAMGN AFDKGMVLVL SIWDDHEAKM
    LWLDSNYPLD KSASAPGVAR GTCATTSGEP KDVESQSPNA QVIFSNIKYG DIGSTYSN
    MYRAIATASA LIAAVRAQQV CSLTQESKPS LNWSKCTSSG CSNVKGSVTI DANWRWTHQV SGSTNCYTGN KWDTSVCTSG
    KVCAERCCLD GADYASTYGI TSSGDQLSLS FVTKGPYSTN IGSRTYLMED ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ PSDSDVNGGI GNLGTCCPEM DIWEANSIST
    AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF NSYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGVPGNSLTA DFCTKQKKVF NDPDDFTKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTK LGSQRGSCST SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKSDGTTPTN PTNPSEPSNT ANPNPGTVDQ
    WGQCGGSNYS GPTACKSGFT CKKINDFYSQ CQ
    MYSAAVLATF SFLLGAGAQQ VGTLKTESHP PLTIQKCAAG GTCTDEADSV VLDANWRWLH STSGSTNCYT GNTWDTTLCP
    DAATCTANCA FDGADYEGTY GITSSGDSLK LSFVTGSNVG SRTYLMDSET TYKEFALLGN EFTFTVDVSK LPCGLNGALY
    FVPMDADGGM SKYPTNKAGA KYGTGYCDAQ CPQDMKFVSG GANNEGWVPD SNSANSGTGN IGSCCSEFDV WEANSMSQAL
    TPHTCTVDGQ TACTGDDCAG NTGVCDADGC DFNPYRMGNT TFYGSGKTID TTKPFSVVTQ FITDDGTETG TLTEIKRFYV
    QDDVVYEQPN SDISGVSGNS ITDDFCTAQK TAFGDTDYFS QKGGMAAMGK KMADGMVLVL SIWDDYNVNM LWLDSDYPTT
    KDASTPGVSR GSCATTSGVP ATVEAASGSA YVTFSSIKYG PIGSTFKAPA DSSSPVVASS SPAAVAAVVS TSSAQAVPSH
    PAVSSSQAAV STPEAVSSAP EVPASSSAAQ SVAPTSTKPK CSKVSQSSTL ATSVAAPATT ATSAAVAATS AASSSGSVPL
    YGNCTGGKTC SEGTCVVQNP WYSQCVASS
    MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT GNEWDTSLCP
    DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP
    HPCTTTGQTR CSGDDCARNT GLCDGDGCDF NSFRMGDKTF LGKGMTVDTS KPFTVVTQFL TNDNTSTGTL SEIRRIYIQN
    GKVIQNSVAN IPGVDPVNSI TDNFCAQQKT AFGDTNWFAQ KGGLKQMGEA LGNGMVLALS IWDDHAANML WLDSDYPTDK
    DPSAPGVARG TCATTSGVPS DVESQVPNSQ VVFSNIKFGD IGSTFSGTSS PNPPGGSTTS SPVTTSPTPP PTGPTVPQWG
    QCGGIGYSGS TTCASPYTCH VLNPYYSQCY
    MYRKLAVISA FLATARAQSA CTLQSETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG NTWSSTLCPD
    NETCAKNCCL DGAAYASTYG VTTSGNSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL GNEFSFDVDV SQLPCGLNGA
    LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE PSSNNANTGI GGHGSCCSEM DIWEANSISE
    ALTPHPCTTV GQEICEGDGC GGTYSDNRYG GTCDPDGCDW NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY
    YVQNGVTFQQ PNAELGSYSG NELNDDYCTA EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT
    NETSSTPGAV RGSCSTSSGV PAQVESQSPN AKVTFSNIKF GPIGSTGNPS GGNPPGGNRG TTTTRRPATT TGSSPGPTQS
    HYGQCGGIGY SGPTVCASGT TCQVLNPYYS QCL
    MPSTYDIYKK LLLLASFLSA SQAQQVGTSK AEVHPSLTWQ TCTSGGSCTT VNGKVVVDAN WRWVHNVDGY NNCYTGNTWD
    TTLCPDDETC ASNCALEGAD YSGTYGVTTS GNSLRLNFVT QASQKNIGSR LYLMEDDSTY KMFKLLNQEF TFDVDVSNLP
    CGLNGAVYFV SMDADGGMAK YPANKAGAKY GTGYCDSQCP RDLKFINGMA NVEGWEPSAN DANAGTGNHG SCCAEMDIWE
    ANSISTAYTP HPCDTPGQVM CTGDSCGGTY SSDRYGGTCD PDGCDFNSYR QGNKTFYGPG MTVDTKSKIT VVTQFLTNDG
    TASGTLSEIK RFYVQNGKVI PNSESTWSGV SGNSITTAYC NAQKTLFGDT DVFTKHGGME GMGAALAEGM VLVLSLWDDH
    NSNMLWLDSN YPTDKPSTTP GVARGSCDIS SGDPKDVEAN DANAYVVYSN IKVGPIGSTF SGSTGGGSSS STTATSKTTT
    TSATKTTTTT TKTTTTTSAS STSTGGAQHW AQCGGIGWTG PTTCVAPYTC QKQNDYYSQC L
    MISKVLAFTS LLAAARAQQA GTLTTETHPP LSVSQCTASG CTTSAQSIVV DANWRWLHST TGSTNCYTGN TWDKTLCPDG
    ATCAANCALD GADYSGVYGI TTSGNSIKLN FVTKGANTNV GSRTYLMAAG STTQYQMLKL LNQEFTFDVD VSNLPCGLNG
    ALYFAAMDAD GGLSRFPTNK AGAKYGTGYC DAQCPQDIKF INGVANSVGW TPSSNDVNAG AGQYGSCCSE MDIWEANKIS
    AAYTPHPCSV DTQTRCTGTD CGIGARYSSL CDADGCDFNS YRQGNTSFYG AGLTVNTNKV FTVVTQFITN DGTASGTLKE
    IRRFYVQNGV VIPNSQSTIA GVPGNSITDS FCAAQKTAFG DTNEFATKGG LATMSKALAK GMVLVMSIWD DHTANMLWLD
    APYPATKSPS APGVTRGSCS ATSGNPVDVE ANSPGSSVTF SNIKWGPINS TYTGSGAAPS VPGTTTVSSA PASTATSGAG
    GVAKYAQCGG SGYSGATACV SGSTCVALNP YYSQCQ
    MFPAATLFAF SLFAAVYGQQ VGTQLAETHP RLTWQKCTRS GGCQTQSNGA IVLDANWRWV HNVGGYTNCY TGNTWNTSLC
    PDGATCAKNC ALDGANYQST YGITTSGNAL TLKFVTQSEQ KNIGSRVYLL ESDTKYQLFN PLNQEFTFDV DVSQLPCGLN
    GAVYFSAMDA DGGMSKFPNN AAGAKYGTGY CDSQCPRDIK FINGEANVQG WQPSPNDTNA GTGNYGACCN EMDVWEANSI
    STAYTPHPCT QQGLVRCSGT ACGGGSNRYG SICDPDGCDF NSFRMGDKSF YGPGLTVNTQ QKFTVVTQFL TNNNSSSGTL
    REIRRLYVQN GRVIQNSKVN IPGMPSTMDS VTTEFCNAQK TAFNDTFSFQ QKGGMANMSE ALRRGMVLVL SIWDDHAANM
    LWLDSNYPTD RPASQPGVAR GTCPTSSGKP SDVENSTANS QVIYSNIKFG DIGSTYSA
    MKGSISYQIY KGALLLSALL NSVSAQQVGT LTAETHPALT WSKCTAGXCS QVSGSVVIDA NWPXVHSTSG STNCYTGNTW
    DATLCPDDVT CAANCAVDGA RRQHLRVTTS GNSLRINFVT TASQKNIGSR LYLLENDTTY QKFNLLNQEF TFDVDVSNLP
    CGLNGALYFV DMDADGGMAK YPTNKAGAKY GTGYCDSQCP RDLKFINGQA NVDGWTPSKN DVNSGIGNHG SCCAEMDIWE
    ANSISNAVTP HPCDTPSQTM CTGQRCGGTY STDRYGGTCD PDGCDFNPYR MGVTNFYGPG ETIDTKSPFT VVTQFLTNDG
    TSTGTLSEIK RFYVQGGKVI GNPQSTIVGV SGNSITDSWC NAQKSAFGDT NEFSKHGGMA GMGAGLADGM VLVMSLWDDH
    ASDMLWLDST YPTNATSTTP GAKRGTCDIS RRPNTVESTY PNAYVIYSNI KTGPLNSTFT GGTTSSSSTT TTTSKSTSTS
    SSSKTTTTVT TTTTSSGSSG TGARDWAQCG GNGWTGPTTC VSPYTCTKQN DWYSQCL
    MFRTAALTAF TLAAVVLGQQ VGTLTAENHP ALSIQQCTAS GCTTQQKSVV LDSNWRWTHS LPVHTNCYTG NAWDASLCPD
    PTTCATNCAI DGADYSGTYG ITTSGNALTL RFVTNGPYSK NIGSRVYLLD DADHYKMFDL KNQEFTFDVD MSGLPCGLNG
    ALYFSEMPAD GGKAAHTSNK AGAKYGTGYC DAQCPHDIKW INGEANILDW SASATDANAG NGRYGACCAE MDIWEANSEA
    TAYTPHVCRD EGLYRCSGTE CGDGDNRYGG VCDKDGCDFN SYRMGDKNFL GRGKTIDTTK KITVVTQFIT DDNTSSGNLV
    EIRRVYVQDG VTYQNSFSTF PSLSQYNSIS DDFCVAQKTL FGDNQYYNTH GGTEKMGDAM ANGMVLIMSL WSDHAAHMLW
    LDSDYPLDKS PSEPGVSRGA CATTTGDPDD VVANHPNASV TFSNIKYGPI GSTYGGSTPP VSSGNTSAPP VTSTTSSGPT
    TPTGPTGTVP KWGQCGGNGY SGPTTCVAGS TCTYSNDWYS QCL
    MYQRALLFSA LLSVSRAQQA GTAQEEVHPS LTWQRCEASG SCTEVAGSVV LDSNWRWTHS VDGYTNCYTG NEWDATLCPD
    NESCAQNCAV DGADYEATYG ITSNGDSLTL KFVTGSNVGS RVYLMEDDET YQMFDLLNNE FTFDVDVSNL PCGLNGALYF
    TSMDADGGLS KYEGNTAGAK YGTGYCDSQC PRDIKFINGL GNVEGWEPSD SDANAGVGGM GTCCPEMDIW EANSISTAYT
    PHPCDSVEQT MCEGDSCGGT YSDDRYGGTC DPDGCDFNSY RMGNTSFYGP GAIIDTSSKF TVVTQFIADG GSLSEIKRFY
    VQNGEVIPNS ESNISGVEGN SITSEFCTAQ KTAFGDEDIF AQHGGLSAMG DAASAMVLIL SIWDDHHSSM MWLDSSYPTD
    ADPSQPGVAR GTCEQGAGDP DVVESEHADA SVTFSNIKFG PIGSTF
    MYRAIATASA LIAAVRAQQV CSLTTETKPA LTWSKCTSSG CSNVQGSVTI DANWRWTHQV SGSTNCHTGN KWDTSVCTSG
    KVCAEKCCVD GADYASTYGI TSSGNQLSLS FVTKGSYGTN IGSRTYLMED ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWE PSKSDVNGGI GNLGTCCPEM DIWEANSIST
    AYTPHPCTKL TQHACTGDSC GGTYSNDRYG GTCDADGCDF NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGNPGSSLTS DFCTTQKKVF GDIDDFAKKG AWNGMSDALE APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTA LGSQRGSCST SSGVPADLEK NVPNSKVAFS NIKFGPIGST YNKEGTQPQP TNPTNPNPTN PTNPGTVDQW
    GQCGGTNYSG PTACKSPFTC KKINDFYSQC Q
    MFRTAALTAF TLAAVVLGQQ VGTLAAENHP ALSIQQCTAS GCTTQQKSVV LDSNWRWTHS TAGATNCYTG NAWDSSLCPN
    PTTCATNCAI DGADYSGTYG ITTSGNSLTL RFVTNGQYSE NIGSRVYLLD DADHYKLFNL KNQEFTFDVD MSGLPCGLNG
    ALYFSEMAAD GGKAAHTGNN AGAKYGTGYC DAQCPHDIKW INGEANILDW SGSATDPNAG NGRYGACCAE MDIWEANSEA
    TAYTPHVCRD EGLYRCSGTE CGDGDNRYGG VCDKDGCDFN SYRMGDKNFL GRGKTIDTTK KITVVTQFIT DDNTPTGNLV
    EIRRVYVQDG VTYQNSFSTF PSLSQYNSIS DDFCVAQKTL FGDNQYYNTH GGTEKMGDSL ANGMVLIMSL WSDHAAHMLW
    LDSDYPLDKS PSEPGVSRGA CATTTGDPDD VVANHPNASV TFSNIKYGPI GSTYGGSTPP VSSGNTSVPP VTSTTSSGPT
    TPTGPTGTVP KWGQCGGIGY SGPTSCVAGS TCTYSNEWYS QCL
    MYQKLALISA FLATARAQSA CTLQAETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG NTWSSTLCPD
    NETCAKNCCL DGAAYASTYG VTTSADSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL GNEFSFDVDV SQLPCGLNGA
    LYFVSMDADG GVTKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE PSSNNANTGI GGHGSCCSEM DIWEANSISE
    ALTPHPCTTV GQEICEGDSC GGTYSGDRYG GTCDPDGCDW NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY
    YVQNGVTFQQ PNAELGDYSG NSLDDDYCAA EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT
    DETSSTPGAV RGSSSTSSGV PAQLESNSPN AKVVYSNIKF GPIGSTGNPS GGNPPGGNPP GTTTPRPATS TGSSPGPTQT
    HYGQCGGIGY IGPTVCASGS TCQVLNPYYS QCL
    MTWQSCTAKG SCTNKNGKIV IDANWRWLHK KEGYDNCYTG NEWDATACPD NKACAANCAV DGADYSGTYG ITAGSNSLKL
    KFITKGSYST NIGSRTYLMK DDTTYEMFKF TGNQEFTFDV DVSNLPCGFN GALYFVSMDA DGGLKKYSTN KAGAKYGTGY
    CDAQCPRDLK FINGEGNVEG WKPSSNDANA GVGGHGSCCA EMDIWEANSV STAVTPHSCS TIEQSRCDGD GCGGTYSADR
    YAGVCDPDGC DFNSYRMGVK DFYGKGKTVD TSKKFTVVTQ FIGTGDAMEI KRFYVQNGKT IAQPASAVPG VEGNSITTKF
    CDQQKAVFGD TYTFKDKGGM ANMAKALANG MVLVMSLWDD HYSNMLWLDS TYPTDKNPDT DLGTGRGECE TSSGVPADVE
    SQHADATVVY SNIKFGPLNS TFG
    MASAISFQVY RSALILSAFL PSITQAQQIG TYTTETHPSM TWETCTSGGS CATNQGSVVM DANWRWVHQV GSTTNCYTGN
    TWDTSICDTD ETCATECAVD GADYESTYGV TTSGSQIRLN FVTQNSNGAN VGSRLYMMAD NTHYQMFKLL NQEFTFDVDV
    SNLPCGLNGA LYFVTMDEDG GVSKYPNNKA GAQYGVGYCD SQCPRDLKFI QGQANVEGWT PSSNNENTGL GNYGSCCAEL
    DIWESNSISQ ALTPHPCDTA TNTMCTGDAC GGTYSSDRYA GTCDPDGCDF NPYRMGNTTF YGPGKTIDTN SPFTVVTQFI
    TDDGTDTGTL SEIRRYYVQN GVTYAQPDSD ISGITGNAIN ADYCTAENTV FDGPGTFAKH GGFSAMSEAM STGMVLVMSL
    WDDYYADMLW LDSTYPTNAS SSTPGAVRGS CSTDSGVPAT IESESPDSYV TYSNIKVGPI GSTFSSGSGS GSSGSGSSGS
    ASTSTTSTKT TAATSTSTAV AQHYSQCGGQ DWTGPTTCVS PYTCQVQNAY YSQCL
    MKAYFEYLVA ALPLLGLATA QQVGKQTTET HPKLSWKKCT GKANCNTVNA EVVIDSNWRW LHDSSGKNCY DGNKWTSACS
    SATDCASKCQ LDGANYGTTY GASTSGDALT LKFVTKHEYG TNIGSRFYLM NGASKYQMFT LMNNEFAFDV DLSTVECGLN
    AALYFVAMEE DGGMASYSSN KAGAKYGTGY CDAQCARDLK FVGGKANIEG WTPSTNDANA GVGPYGGCCA EIDVWESNAH
    SFAFTPHACK TNKYHVCERD NCGGTYSEDR FAGLCDANGC DYNPYRMGNT DFYGKGKTVD TSKKFTVVSR FEENKLTQFF
    VQNGQKIEIP GPKWDGIPSD NANITPEFCS AQFQAFGDRD RFAEVGGFAQ LNSALRMPMV LVMSIWDDHY ANMLWLDSVY
    PPEKEGQPGA ARGDCPQSSG VPAEVESQYA NSKVVYSNIR FGPVGSTVNV
    MFSKFALTGS LLAGAVNAQG VGTQQTETHP QMTWQSCTSP SSCTTNQGEV VIDSNWRWVH DKDGYVNCYT GNTWNTTLCP
    DDKTCAANCV LDGADYSSTY GITTSGNALS LQFVTQSSGK NIGSRTYLME SSTKYHLFDL IGNEFAFDVD LSKLPCGLNG
    ALYFVTMDAD GGMAKYSTNT AGAEYGTGYC DSQCPRDLKF INGQGNVEGW TPSTNDANAG VGGLGSCCSE MDVWEANSMD
    MAYTPHPCET AAQHSCNADE CGGTYSSSRY AGDCDPDGCD WNPFRMGNKD FYGSGDTVDT SQKFTVVTQF HGSGSSLTEI
    SQYYIQGGTK IQQPNSTWPT LTGYNSITDD FCKAQKVEFN DTDVFSEKGG LAQMGAGMAD GMVLVMSLWD DHYANMLWLD
    STYPVDADAS SPGKQRGTCA TTSGVPADVE SSDASATVIY SNIKFGPIGA TY
    MFPAAALLSF TLLAVASAQQ IGTNTAEVHP SLTVSQCTTS GGCTSSTQSI VLDANWRWLH STSGYTNCYT GNQWNSDLCP
    DPDTCATNCA LDGASYESTY GISTDGNAVT LNFVTQGSQT NVGSRVYLLS DDTHYQTFSL LNKEFSFDVD ASNIGCGING
    AVYFVQMDAD GGLSKYSSNK AGAQYGTGYC DSQCPQDIKF INGEANLLDW NATSANSGTG SYGSCCPEMD IWEANKYAAA
    YTPHPCSVSG QTRCTGTSCG AGSERYDGYC DKDGCDFNSW RMGNETFLGP GMTIDTNKKF TIVTQFITDD NTANGTLSEI
    RRLYVQGGTV IQNSVANQPN IPKVNSITDS FCTAQKTEFG DQDYFGTIGG LSQMGKAMSD MVLVMSIWDD YDAEMLWLDS
    NYPTSGSAST PGISRGPCSA TSGLPATVES QQASASVTYS NIKWGDIGST YSGSGSSGSS SSSSSSAASA STSTHTSAAA
    TATSSAAAAT GSPVPAYGQC GGQSYTGSTT CASPYVCKVS NAYYSQCLPA
    MKRALCASLS LLAAAVAQQV GTNEPEVHPK MTWKKCSSGG SCSTVNGEVV IDGNWRWIHN IGGYENCYSG NKWTSVCSTN
    ADCATKCAME GAKYQETYGV STSGDALTLK FVQQNSSGKN VGSRMYLMNG ANKYQMFTLK NNEFAFDVDL SSVECGMNSA
    LYFVPMKEDG GMSTEPNNKA GAKYGTGYCD AQCARDLKFI GGKGNIEGWQ PSSTDSSAGI GAQGACCAEI DIWESNKNAF
    AFTPHPCENN EYHVCTEPNC GGTYADDRYG GGCDANGCDY NPYRMGNPDF YGPGKTIDTN RKFTVISRFE NNRNYQILMQ
    DGVAHRIPGP KFDGLEGETG ELNEQFCTDQ FTVFDERNRF NEVGGWSKLN AAYEIPMVLV MSIWSDHFAN MLWLDSTYPP
    EKAGQPGSAR GPCPADGGDP NGVVNQYPNA KVIWSNVRFG PIGSTYQVD
    MQLTKAGVFL GALMGGAAAQ QVGTQTAENH PKMTWKKCTG KASCTTVNGE VVIDANWRWL HDASSKNCYD GNRWTDSCRT
    ASDCAAKCSL EGADYAKTYG ASTSGDALSL KFVTRHDYGT NIGSRFYLMN GASKYQMFSL LGNEFAFDVD LSTIECGLNS
    ALYFVAMEED GGMKSYSSNK AGAKYGTGYC DAQCARDLKF VGGKANIEGW KPSSNDANAG VGPYGACCAE IDVWESNAHA
    FAFTPHPCTD NKYHVCQDSN CGGTYSDDRF AGKCDANGCD INPYRLGNTD FYGKGKTVDT SKKFTVVTRF ERDALTQFFV
    QNNKRIDMPS PALEGLPATG AITAEYCTNV FNVFGDRNRF DEVGGWSQLQ QALSLPMVLV MSIWDDHYSN MLWLDSVYPP
    DKEGSPGAAR GDCPQDSGVP SEVESQIPGA TVVWSNIRFG PVGSTVNV
    MYRIVATASA LIAAARAQQV CSLNTETKPA LTWSKCTSSG CSDVKGSVVI DANWRWTHQT SGSTNCYTGN KWDTSICTDG
    KTCAEKCCLD GADYSGTYGI TSSGNQLSLG FVTNGPYSKN IGSRTYLMEN ENTYQMFQLL GNEFTFDVDV SGIGCGLNGA
    PHFVSMDEDG GKAKYSGNKA GAKYGTGYCD AQCPRDVKFI NGVANSEGWK PSDSDVNAGV GNLGTCCPEM DIWEANSIST
    AFTPHPCTKL TQHSCTGDSC GGTYSSDRYG GTCDADGCDF NAYRQGNKTF YGPGSNFNID TTKKMTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGNPGSSLTS DFCSKQKSVF GDIDDFSKKG GWNGMSDALS APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTK VGSQRGSCAT TSGKPSDLER DVPNSKVSFS NIKFGPIGST YKSDGTTPNP PASSSTTGSS TPTNPPAGSV
    DQWGQCGGQN YSGPTTCKSP FTCKKINDFY SQCQ
    MYQRALLFSA LATAVSAQQV GTQKAEVHPA LTWQKCTAAG SCTDQKGSVV IDANWRWLHS TEDTTNCYTG NEWNAELCPD
    NEACAKNCAL DGADYSGTYG VTADGSSLKL NFVTSANVGS RLYLMEDDET YQMFNLLNNE FTFDVDVSNL PCGLNGALYF
    VSMDADGGLS KYPGNKAGAK YGTGYCDSQC PRDLKFINGE ANVEGWKPSD NDKNAGVGGY GSCCPEMDIW EANSISTAYT
    PHPCDGMEQT RCDGNDCGGT YSSTRYAGTC DPDGCDFNSF RMGNESFYGP GGLVDTKSPI TVVTQFVTAG GTDSGALKEI
    RRVYVQGGKV IGNSASNVAG VEGDSITSDF CTAQKKAFGD EDIFSKHGGL EGMGKALNKM ALIVSIWDDH ASSMMWLDST
    YPVDADASTP GVARGTCEHG LGDPETVESQ HPDASVTFSN IKFGPIGSTY KSV
    MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN TSTNCYTGNT
    WNTAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ IFDLLNQEFT FTVDVSNLPC
    GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN VEGWTPSTNN SNTGIGNHGS CCAELDIWEA
    NSISEALTPH PCDTPGLTVC TADDCGGTYS SNRYAGTCDP DGCDFNPYRL GVTDFYGSGK TVDTTKPFTV VTQFVTDDGT
    SSGSLSEIRR YYVQNGVVIP QPSSKISGIS GNVINSDFCA AELSAFGETA SFTNHGGLKN MGSALEAGMV LVMSLWDDYS
    VNMLWLDSTY PANETGTPGA ARGSCPTTSG NPKTVESQSG SSYVVFSDIK VGPFNSTFSG GTSTGGSTTT TASGTTSTKA
    STTSTSSTST GTGVAAHWGQ CGGQGWTGPT TCASGTTCTV VNPYYSQCL
    MRTAKFATLA ALVASAAAQQ ACSLTTERHP SLSWNKCTAG GQCQTVQASI TLDSNWRWTH QVSGSTNCYT GNKWDTSICT
    DAKSCAQNCC VDGADYTSTY GITTNGDSLS LKFVTKGQHS TNVGSRTYLM DGEDKYQTFE LLGNEFTFDV DVSNIGCGLN
    GALYFVSMDA DGGLSRYPGN KAGAKYGTGY CDAQCPRDIK FINGEANIEG WTGSTNDPNA GAGRYGTCCS EMDIWEANNM
    ATAFTPHPCT IIGQSRCEGD SCGGTYSNER YAGVCDPDGC DFNSYRQGNK TFYGKGMTVD TTKKITVVTQ FLKDANGDLG
    EIKRFYVQDG KIIPNSESTI PGVEGNSITQ DWCDRQKVAF GDIDDFNRKG GMKQMGKALA GPMVLVMSIW DDHASNMLWL
    DSTFPVDAAG KPGAERGACP TTSGVPAEVE AEAPNSNVVF SNIRFGPIGS TVAGLPGAGN GGNNGGNPPP PTTTTSSAPA
    TTTTASAGPK AGRWQQCGGI GFTGPTQCEE PYICTKLNDW YSQCL
    MMYKKFAALA ALVAGASAQQ ACSLTAENHP SLTWKRCTSG GSCSTVNGAV TIDANWRWTH TVSGSTNCYT GNQWDTSLCT
    DGKSCAQTCC VDGADYSSTY GITTSGDSLN LKFVTKHQYG TNVGSRVYLM ENDTKYQMFE LLGNEFTFDV DVSNLGCGLN
    GALYFVSMDA DGGMSKYSGN KAGAKYGTGY CDAQCPRDLK FINGEANVGN WTPSTNDANA GFGRYGSCCS EMDVWEANNM
    ATAFTPHPCT TVGQSRCEAD TCGGTYSSDR YAGVCDPDGC DFNAYRQGDK TFYGKGMTVD TNKKMTVVTQ FHKNSAGVLS
    EIKRFYVQDG KIIANAESKI PGNPGNSITQ EYCDAQKVAF SNTDDFNRKG GMAQMSKALA GPMVLVMSVW DDHYANMLWL
    DSTYPIDQAG APGAERGACP TTSGVPAEIE AQVPNSNVIF SNIRFGPIGS TVPGLDGSNP GNPTTTVVPP ASTSTSRPTS
    STSSPVSTPT GQPGGCTTQK WGQCGGIGYT GCTNCVAGTT CTQLNPWYSQ CL
    MASLSLSKIC RNALILSSVL STAQGQQVGT YQTETHPSMT WQTCGNGGSC STNQGSVVLD ANWRWVHQTG SSSNCYTGNK
    WDTSYCSTND ACAQKCALDG ADYSNTYGIT TSGSEVRLNF VTSNSNGKNV GSRVYMMADD THYEVYKLLN QEFTFDVDVS
    KLPCGLNGAL YFVVMDADGG VSKYPNNKAG AKYGTGYCDS QCPRDLKFIQ GQANVEGWVS STNNANTGTG NHGSCCAELD
    IWESNSISQA LTPHPCDTPT NTLCTGDACG GTYSSDRYSG TCDPDGCDFN PYRVGNTTFY GPGKTIDTNK PITVVTQFIT
    DDGTSSGTLS EIKRFYVQDG VTYPQPSADV SGLSGNTINS EYCTAENTLF EGSGSFAKHG GLAGMGEAMS TGMVLVMSLW
    DDYYANMLWL DSNYPTNEST SKPGVARGTC STSSGVPSEV EASNPSAYVA YSNIKVGPIG STFKS
    MYRAIATASA LIAAVRAQQV CSLTPETKPA LSWSKCTSSG CSNVQGSVTI DANWRWTHQL SGSTNCYTGN KWDTSICTSG
    KVCAEKCCID GAEYASTYGI TSSGNQLSLS FVTKGAYGTN IGSRTYLMED ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ PSKSDVNAGI GNMGTCCPEM DIWEANSIST
    AYTPHPCTKL TQHSCTGDSC GGTYSNDRYG GTCDADGCDF NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGVPGSSLTP EFCTAQKKVF GDTDDFAKKG AWSGMSDALE APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTK LGAQRGSCST SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKEGVPEPTN PTNPTNPTNP TNPGTVDQWA
    QCGGTNYSGP TACKSPFTCK KINDFYSQCQ
    MFPKSSLLVL SFLATAYAQQ VGTQTAEVHP SLNWARCTSS GCTNVAGSVT LDANWRWLHT TSGYTNCYTG NSWNTTLCPD
    GATCAQNCAL DGANYQSTCG ITTSGNALTL KFVTQGEQKN IGSRVYLMAS ESRYEMFGLL NKEFTFDVDV SNLPCGLNGA
    LYFSSMDADG GMAKNPGNKA GAKYGTGYCD SQCPRDIKFI NGEANVAGWN GSPNDTNAGT GNWGACCNEM DIWEANSISA
    AYTPHPCTVQ GLSRCSGTAC GTNDRYGTVC DPDGCDFNSY RMGDKTYYGP GGTGVDTRSK FTVVTQFLTN NNSSSGTLSE
    IRRLYVQNGR VVQNSKVNIP GMSNTLDSIT TGFCDSQKTA FGDTRSFQNK GGMSAMGQAL GAGMVLVLSV WDDHAANMLW
    LDSNYPVDAD PSKPGIARGT CSTTSGKPTD VEQSAANSSV TFSNIKFGDI GTTYTGGSVT TTPGNPGTTT STAPGAVQTK
    WGQCGGQGWT GPTRCESGST CTVVNQWYSQ CI
    MFRKAALLAF SFLAIAHGQQ VGTNQAENHP SLPSQHCTAS GCTTSSTSVV LDANWRWVHT TTGYTNCYTG QTWDASICPD
    GVTCAKACAL DGADYSGTYG ITTSGNALTL QFVKGTNVGS RVYLLQDASN YQLFKLINQE FTFDVDMSNL PCGLNGAVYL
    SQMDQDGGVS RFPTNTAGAK YGTGYCDSQC PRDIKFINGE ANVAGWTGSS SDPNSGTGNY GTCCSEMDIW EANSVAAAYT
    PHPCSVNQQT RCTGADCGQD ANRYKGVCDP DGCDFNSFRM GDQTFLGKGL TVDTSRKFTI VTQFISDDGT SSGNLAEIRR
    FYVQDGKVIP NSKVNIAGCD AVNSITDKFC TQQKTAFGDT NRFADQGGLK QMGAALKSGM VLALSLWDDH AANMLWLDSD
    YPTTADASKP GVARGTCPNT SGVPKDVESQ SGSATVTYSN IKWGDLNSTF SGTASNPTGP SSSPSGPSSS SSSTAGSQPT
    QPSSGSVAQW GQCGGIGYSG ATGCVSPYTC HVVNPYYSQC Y
    TETHPRLTWK RCTSGGNCST VNGAVTIDAN WRWTHTVSGS TNCYTGNEWD TSICSDGKSC AQTCCVDGAD YSSTYGITTS
    GDSLNLKFVT KHQHGTNVGS RVYLMENDTK YQMFELLGNE FTFDVDVSNL GCGLNGALYF VSMDADGGMS KYSGNKAGAK
    YGTGYCDAQC PRDLKFINGE ANIENWTPST NDANAGFGRY GSCCSEMDIW EANNMATAFT PHPCTIIGQS RCEGNSCGGT
    YSSERYAGVC DPDGCDFNAY RQGDKTFYGK GMTVDTTKKM TVVTQFHKNS AGVLSEIKRF YVQDGKIIAN AESKIPGNPG
    NSITQEWCDA QKVAFGDIDD FNRKGGMAQM SKALEGPMVL VMSVWDDHYA NMLWLDSTYP IDKAGTPGAE RGACPTTSGV
    PAEIEAQVPN SNVIFSNIRF GPIGSTVPGL DGSTPSNPTA TVAPPTSTTT SVRSSTTQIS TPTSQPGGCT TQKWGQCGGI
    GYTGCTNCVA GTTCTELNPW YSQCL
    MFHKAVLVAF SLVTIVHGQQ AGTQTAENHP QLSSQKCTAG GSCTSASTSV VLDSNWRWVH TTSGYTNCYT GNTWDASICS
    DPVSCAQNCA LDGADYAGTY GITTSGDALT LKFVTGSNVG SRVYLMEDET NYQMFKLMNQ EFTFDVDVSN LPCGLNGAVY
    FVQMDQDGGT SKFPNNKAGA KFGTGYCDSQ CPQDIKFING EANIVDWTAS AGDANSGTGS FGTCCQEMDI WEANSISAAY
    TPHPCTVTEQ TRCSGSDCGQ GSDRFNGICD PDGCDFNSFR MGNTEFYGKG LTVDTSQKFT IVTQFISDDG TADGNLAEIR
    RFYVQNGKVI PNSVVQITGI DPVNSITEDF CTQQKTVFGD TNNFAAKGGL KQMGEAVKNG MVLALSLWDD YAAQMLWLDS
    DYPTTADPSQ PGVARGTCPT TSGVPSQVEG QEGSSSVIYS NIKFGDLNST FTGTLTNPSS PAGPPVTSSP SEPSQSTQPS
    QPAQPTQPAG TAAQWAQCGG MGFTGPTVCA SPFTCHVLNP YYSQCY
    MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT GNEWNTSLCP
    DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP
    HPCTTTGQTR CSGDDCARNT GLCDHGDGCD FNSFRMGDKT FLGKGMTVDT SKPFTDVTQF LTNDNTSTGT LSEIRRIYIQ
    NGKVIQNSVA NIPGVDPVNS ITDNFCAQQK TAFGDTNWFA QKGGLKQMGE ALGNGMVLAL SIWDDHAANM LWLDSDYPTD
    KDPSAPGVAR GTCATTSGVP SDVESQVPNS QVVFSNIKFG DIGSTFSGTS SPNPPGGSTT SSPVTTSPTP PPTGPTVPQW
    GQCGGIGYSG STTCASPYTC HVLNPYYSQC Y
    MMMKQYLQYL AAALPLVGLA AGQRAGNETP ENHPPLTWQR CTAPGNCQTV NAEVVIDANW RWLHDDNMQN CYDGNQWTNA
    CSTATDCAEK CMIEGAGDYL GTYGASTSGD ALTLKFVTKH EYGTNVGSRF YLMNGPDKYQ MFNLMGNELA FDVDLSTVEC
    GINSALYFVA MEEDGGMASY PSNQAGARYG TGYCDAQCAR DLKFVGGKAN IEGWKSSTSD PNAGVGPYGS CCAEIDVWES
    NAYAFAFTPH ACTTNEYHVC ETTNCGGTYS EDRFAGKCDA NGCDYNPYRM GNPDFYGKGK TLDTSRKFTV VSRFEENKLS
    QYFIQDGRKI EIPPPTWEGM PNSSEITPEL CSTMFDVFND RNRFEEVGGF EQLNNALRVP MVLVMSIWDD HYANMLWLDS
    IYPPEKEGQP GAARGDCPTD SGVPAEVEAQ FPDAQVVWSN IRFGPIGSTY DF
    MYRSATFLTF ASLVLGQQVG TYTAERHPSM PIQVCTAPGQ CTRESTEVVL DANWRWTHIT NGYTNCYTGN EWNATACPDG
    ATCAKNCAVD GADYSGTYGI TTPSSGALRL QFVKKNDNGQ NVGSRVYLMA SSDKYKLFNL LNKEFTFDVD VSKLPCGLNG
    AVYFSEMLED GGLKSFSGNK AGAKYGTGYC DSQCPQDIKF INGEANVEGW GGADGNSGTG KYGICCAEMD IWEANSDATA
    YTPHVCSVNE QTRCEGVDCG AGSDRYNSIC DKDGCDFNSY RLGNREFYGP GKTVDTTRPF TIVTQFVTDD GTDSGNLKSI
    HRYYVQDGNV IPNSVTEVAG VDQTNFISEG FCEQQKSAFG DNNYFGQLGG MRAMGESLKK MVLVLSIWDD HAVNMNWLDS
    IFPNDADPEQ PGVARGRCDP ADGVPATIEA AHPDAYVIYS NIKFGAINST FTAN
    MYRTLAFASL SLYGAARAQQ VGTSTAENHP KLTWQTCTGT GGTNCSNKSG SVVLDSNWRW AHNVGGYTNC YTGNSWSTQY
    CPDGDSCTKN CAIDGADYSG TYGITTSNNA LSLKFVTKGS FSSNIGSRTY LMETDTKYQM FNLINKEFTF DVDVSKLPCG
    LNGALYFVEM AADGGIGKGN NKAGAKYGTG YCDSQCPHDI KFINGKANVE GWNPSDADPN GGAGKIGACC PEMDIWEANS
    ISTAYTPHPC RGVGLQECSD AASCGDGSNR YDGQCDKDGC DFNSYRMGVK DFYGPGATLD TTKKMTVITQ FLGSGSSLSE
    IKRFYVQNGK VYKNSQSAVA GVTGNSITES FCTAQKKAFG DTSSFAALGG LNEMGASLAR GHVLIMSLWG DHAVNMLWLD
    STYPTDADPS KPGAARGTCP TTSGKPEDVE KNSPDATVVF SNIKFGPIGS TFAQPA
    MYQKLALISA FLATARAQSA CTLQAETHPP LTWQKCSSGG TCTQQTGSVV IDANWRWTHA TNSSTNCYDG NTWSSTLCPD
    NETCAKNCCL DGAAYASTYG VTTSADSLSI GFVTQSAQKN VGARLYLMAS DTTYQEFTLL GNEFSFDVDV SQLPCGLNGA
    LYFVSMDADG GVSKYPTNTA GAKYGTGYCD SQCPRDLKFI NGQANVEGWE PSSNNANTGI GGHGSCCSEM DIWEANSISE
    ALTPHPCTTV GQEICDGDSC GGTYSGDRYG GTCDPDGCDW NPYRLGNTSF YGPGSSFTLD TTKKLTVVTQ FETSGAINRY
    YVQNGVTFQQ PNAELGDYSG NSLDDDYCAA EEAEFGGSSF SDKGGLTQFK KATSGGMVLV MSLWDDYYAN MLWLDSTYPT
    NETSSTPGAV RGSCSTSSGV PAQLESNSPN AKVVYSNIKF GPIGSTGNSS GGNPPGGNPP GTTTTRRPAT STGSSPGPTQ
    THYGQCGGIG YSGPTVCASG STCQVLNPYY SQCL
    MVDSFSIYKT ALLLSMLATS NAQQVGTYTA ETHPSLTWQT CSGSGSCTTT SGSVVIDANW RWVHEVGGYT NCYSGNTWDS
    SICSTDTTCA SECALEGATY ESTYGVTTSG SSLRLNFVTT ASQKNIGSRL YLLADDSTYE TFKLFNREFT FDVDVSNLPC
    GLNGALYFVS MDADGGVSRF PTNKAGAKYG TGYCDSQCPR DLKFIDGQAN IEGWEPSSTD VNAGTGNHGS CCPEMDIWEA
    NSISSAFTAH PCDSVQQTMC TGDTCGGTYS DTTDRYSGTC DPDGCDFNPY RFGNTNFYGP GKTVDNSKPF TVVTQFITHD
    GTDTGTLTEI RRLYVQNGVV IGNGPSTYTA ASGNSITESF CKAEKTLFGD TNVFETHGGL SAMGDALGDG MVLVLSLWDD
    HAADMLWLDS DYPTTSCASS PGVARGTCPT TTGNATYVEA NYPNSYVTYS NIKFGTLNST YSGTSSGGSS SSSTTLTTKA
    STSTTSSKTT TTTSKTSTTS SSSTNVAQLY GQCGGQGWTG PTTCASGTCTKQNDYYSQCL
    MYRILKSFIL LSLVNMSLSQ KIGKLTPEVH PPMTFQKCSE GGSCETIQGE VVVDANWRWV HSAQGQNCYT GNTWNPTICP
    DDETCAENCY LDGANYESVY GVTTSEDSVR LNFVTQSQGK NIGSRLFLMS NESNYQLFHV LGQEFTFDVD VSNLDCGLNG
    ALYLVSMDSD GGSARFPTNE AGAKYGTGYC DAQCPRDLKF ISGSANVDGW IPSTNNPNTG YGNLGSCCAE MDLWEANNMA
    TAVTPHPCDT SSQSVCKSDS CGGAASSNRY GGICDPDGCD YNPYRMGNTS FFGPNKMIDT NSVITVVTQF ITDDGSSDGK
    LTSIKRLYVQ DGNVISQSVS TIDGVEGNEV NEEFCTNQKK VFGDEDSFTK HGGLAKMGEA LKDGMVLVLS LWDDYQANML
    WLDSSYPTTS SPTDPGVARG SCPTTSGVPS KVEQNYPNAY VVYSNIKVGP IDSTYKK
    MISRVLAISS LLAAARAQQI GTNTAEVHPA LTSIVIDANW RWLHTTSGYT NCYTGNSWDA TLCPDAVTCA ANCALDGADY
    SGTYGITTSG NSLKLNFVTK GANTNVGSRT YLMAAGSKTQ YQLLKLLGQE FTFDVDVSNL PCGLNGALYF AEMDADGGVS
    RFPTNKAGAQ YGTGYCDAQC PQDIKFINGQ ANSVGWTPSS NDVNTGTGQY GSCCSEMDIW EANKISAAYT PHPCSVDGQT
    RCTGTDCGIG ARYSSLCDAD GCDFNSYRMG DTGFYGAGLT VDTSKVFTVV TQFITNDGTT SGTLSEIRRF YVQNGKVIPN
    SQSKVTGVSG NSITDSFCAA QKTAFGDTNE FATKGGLATM SKALAKGMVL VMSIWDDHSA NMLWLDAPYP ASKSPSAAGV
    SRGSCSASSG VPADVEANSP GASVTYSNIK WGPINSTYSA GTGSNTGSGS GSTTTLVSSV PSSTPTSTTG VPKYGQCGGS
    GYTGPTNCIG STCVSMGQYY SQCQ
    MYRQVATALS FASLVLGQQV GTLTAETHPS LPIEVCTAPG SCTKEDTTVV LDANWRWTHV TDGYTNCYTG NAWNETACPD
    GKTCAANCAI DGAEYEKTYG ITTPEEGALR LNFVTESNVG SRVYLMAGED KYRLFNLLNK EFTMDVDVSN LPCGLNGAVY
    FSEMDEDGGM SRFEGNKAGA KYGTGYCDSQ CPRDIKFING EANSEGWGGE DGNSGTGKYG TCCAEMDIWE ANLDATAYTP
    HPCKVTEQTR CEDDTECGAG DARYEGLCDR DGCDFNSFRL GNKEFYGPEK TVDTSKPFTL VTQFVTADGT DTGALQSIRR
    FYVQDGTVIP NSETVVEGVD PTNEITDDFC AQQKTAFGDN NHFKTIGGLP AMGKSLEKMV LVLSIWDDHA VYMNWLDSNY
    PTDADPTKPG VARGRCDPEA GVPETVEAAH PDAYVIYSNI KIGALNSTFA AA
    MSSFQVYRAA LLLSILATAN AQQVGTYTTE THPSLTWQTC TSDGSCTTND GEVVIDANWR WVHSTSSATN CYTGNEWDTS
    ICTDDVTCAA NCALDGATYE ATYGVTTSGS ELRLNFVTQG SSKNIGSRLY LMSDDSNYEL FKLLGQEFTF DVDVSNLPCG
    LNGALYFVAM DADGGTSEYS GNKAGAKYGT GYCDSQCPRD LKFINGEANC DGWEPSSNNV NTGVGDHGSC CAEMDVWEAN
    SISNAFTAHP CDSVSQTMCD GDSCGGTYSA SGDRYSGTCD PDGCDYNPYR LGNTDFYGPG LTVDTNSPFT VVTQFITDDG
    TSSGTLTEIK RLYVQNGEVI ANGASTYSSV NGSSITSAFC ESEKTLFGDE NVFDKHGGLE GMGEAMAKGM VLVLSLWDDY
    AADMLWLDSD YPVNSSASTP GVARGTCSTD SGVPATVEAE SPNAYVTYSN IKFGPIGSTY SSGSSSGSGS SSSSSSTTTK
    ATSTTLKTTS TTSSGSSSTS AAQAYGQCGG QGWTGPTTCV SGYTCTYENA YYSQCL
    MYRAIATASA LLATARAQQV CTLNTENKPA LTWAKCTSSG CSNVRGSVVV DANWRWAHST SSSTNCYTGN TWDKTLCPDG
    KTCADKCCLD GADYSGTYGV TSSGNQLNLK FVTVGPYSTN VGSRLYLMED ENNYQMFDLL GNEFTFDVDV NNIGCGLNGA
    LYFVSMDKDG GKSRFSTNKA GAKYGTGYCD AQCPRDVKFI NGVANSDEWK PSDSDKNAGV GKYGTCCPEM DIWEANKIST
    AYTPHPCKSL TQQSCEGDAC GGTYSATRYA GTCDPDGCDF NPYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FIKGSDGKLS
    EIKRLYVQNG KVIGNPQSEI ANNPGSSVTD SFCKAQKVAF NDPDDFNKKG GWSGMSDALA KPMVLVMSLW HDHYANMLWL
    DSTYPKGSKT PGSARGSCPE DSGDPDTLEK EVPNSGVSFS NIKFGPIGST YTGTGGSNPD PEEPEEPEEP VGTVPQYGQC
    GGINYSGPTA CVSPYKCNKI NDFYSQCQ
    EQAGTATAEN HPPLTWQECT APGSCTTQNG AVVLDANWRW VHDVNGYTNC YTGNTWDPTY CPDDETCAQN CALDGADYEG
    TYGVTSSGSS LKLNFVTGSN VGSRLYLLQD DSTYQIFKLL NREFSFDVDV SNLPCGLNGA LYFVAMDADG GVSKYPNNKA
    GAKYGTGYCD SQCPRDLKFI DGEANVEGWQ PSSNNANTGI GDHGSCCAEM DVWEANSISN AVTPHPCDTP GQTMCSGDDC
    GGTYSNDRYA GTCDPDGCDF NPYRMGNTSF YGPGKIIDTT KPFTVVTQFL TDDGTDTGTL SEIKRFYIQN SNVIPQPNSD
    ISGVTGNSIT TEFCTAQKQA FGDTDDFSQH GGLAKMGAAM QQGMVLVMSL WDDYAAQMLW LDSDYPTDAD PTTPGIARGT
    CPTDSGVPSD VESQSPNSYV TYSNIKFGPI NSTFTAS
    MFPTLALVSL SFLAIAYGQQ VGTLTAETHP KLSVSQCTAG GSCTTVQRSV VLDSNWRWLH DVGGSTNCYT GNTWDDSLCP
    DPTTCAANCA LDGADYSGTY GITTSGNALS LKFVTQGPYS TNIGSRVYLL SEDDSTYEMF NLKNQEFTFD VDMSALPCGL
    NGALYFVEMD KDGGSGRFPT NKAGSKYGTG YCDTQCPHDI KFINGEANVL DWAGSSNDPN AGTGHYGTCC NEMDIWEANS
    MGAAVTPHVC TVQGQTRCEG TDCGDGDERY DGICDKDGCD FNSWRMGDQT FLGPGKTVDT SSKFTVVTQF ITADNTTSGD
    LSEIRRLYVQ NGKVIANSKT QIAGMDAYDS ITDDFCNAQK TTFGDTNTFE QMGGLATMGD AFETGMVLVM SIWDDHEAKM
    LWLDSDYPTD ADASAPGVSR GPCPTTSGDP TDVESQSPGA TVIFSNIKTG PIGSTFTS
    MLSASKAAAI LAFCAHTASA WVVGDQQTET HPKLNWQRCT GKGRSSCTNV NGEVVIDANW RWLAHRSGYT NCYTGSEWNQ
    SACPNNEACT KNCAIEGSDY AGTYGITTSG NQMNIKFITK RPYSTNIGAR TYLMKDEQNY EMFQLIGNEF TFDVDLSQRC
    GMNGALYFVS MPQKGQGAPG AKYGTGYCDA QCARDLKFVR GSANAEGWTK SASDPNSGVG KKGACCAQMD VWEANSAATA
    LTPHSCQPAG YSVCEDTNCG GTYSEDRYAG TCDANGCDFN PFRVGVKDFY GKGKTVDTTK KMTVVTQFVG SGNQLSEIKR
    FYVQDGKVIA NPEPTIPGME WCNTQKKVFQ EEAYPFNEFG GMASMSEGMS QGMVLVMSLW DDHYANMLWL DSNWPREADP
    AKPGVARRDC PTSGGKPSEV EAANPNAQVM FSNIKFGPIG STFAHAA
    MFRTATLLAF TMAAMVFGQQ VGTNTARSHP ALTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT GNQWDATLCP
    DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT SANAGTGNYG TCCTEMDIWE ANNDAAAYTP
    HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN
    GKVIQNSSVK IPGIDPVNSI TDNFCSQQKT AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK
    DPSTPGVARG TCATTSGVPA QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV
    TVPQWGQCGG IGYTGSTTCA SPYTCHVLNP YYSQCY
    MYQRALLFSA LMAGVSAQQV GTQKPETHPP LAWKECTSSG CTSKDGSVVI DANWRWVHSV DGYKNCYTGN EWDSTLCPDD
    ATCATNCAVD GADYAGTYGA TTEGDSLSIN FVTGSNIGSR FYLMEDENKY QMFKLLNKEF TFDVDVSTLP CGLNGALYFV
    SMDADGGMSK YETNKAGAKY GTGYCDSQCP RDLKFINGKG NVEGWKPSAN DKNAGVGPHG SCCAEMDIWE ANSISTALTP
    HPCDTNGQTI CEGDSCGGTY STTRYAGTCD PDGCDFNPFR MGNESFYGPG KMVDTKSKMT VVTQFITSDG TDTGSLKEIK
    RVYVQNGKVI ANSASDVSGI TGNSITSDFC TAQKKTFGDE DVFNKHGGLS GMGDALGEGM VLVMSLWDDH NSNMLWLDGE
    KYPTDAAASK AGVSRGTCST DSGKPSTVES ESGSAKVVFS NIKVGSIGST FSA
    MTSKIALASL FAAAYGQQIG TYTTETHPSL TWQSCTAKGS CTTQSGSIVL DGNWRWTHST TSSTNCYTGN TWDATLCPDD
    ATCAQNCALD GADYSGTYGI TTSGDSLRLN FVTQTANKNV GSRVYLLADN THYKTFNLLN QEFTFDVDVS NLPCGLNGAV
    YFANLPADGG ISSTNKAGAQ YGTGYCDSQC PRDGKFINGK ANVDGWVPSS NNPNTGVGNY GSCCAEMDIW EANSISTAVT
    PHSCDTVTQT VCTGDNCGGT YSTTRYAGTC DPDGCDFNPY RQGNESFYGP GKTVDTNSVF TIVTQFLTTD GTSSGTLNEI
    KRFYVQNGKV IPNSESTISG VTGNSITTPF CTAQKTAFGD PTSFSDHGGL ASMSAAFEAG MVLVLSLWDD YYANMLWLDS
    TYPTTKTGAG GPRGTCSTSS GVPASVEASS PNAYVVYSNI KVGAINSTFG
    MYTKFAALAA LVATVRGQAA CSLTAETHPS LQWQKCTAPG SCTTVSGQVT IDANWRWLHQ TNSSTNCYTG NEWDTSICSS
    DTDCATKCCL DGADYTGTYG VTASGNSLNL KFVTQGPYSK NIGSRMYLME SESKYQGFTL LGQEFTFDVD VSNLGCGLNG
    ALYFVSMDLD GGVSKYTTNK AGAKYGTGYC DSQCPRDLKF INGQANIDGW QPSSNDANAG LGNHGSCCSE MDIWEANKVS
    AAYTPHPCTT IGQTMCTGDD CGGTYSSDRY AGICDPDGCD FNSYRMGDTS FYGPGKTVDT GSKFTVVTQF LTGSDGNLSE
    IKRFYVQNGK VIPNSESKIA GVSGNSITTD FCTAQKTAFG DTNVFEERGG LAQMGKALAE PMVLVLSVWD DHAVNMLWLD
    STYPTDSTKP GAARGDCPIT SGVPADVESQ APNSNVIYSN IRFGPINSTY TGTPSGGNPP GGGTTTTTTT TTSKPSGPTT
    TTNPSGPQQT HWGQCGGQGW TGPTVCQSPY TCKYSNDWYS QCL
    MYQRALLFSA LLSVSRAQQA GTAQEEVHPS LTWQRCEASG SCTEVAGSVV LDSNWRWTHS VDGYTNCYTG NEWDATLCPD
    NESCAQNCAV DGADYEATYG ITSNGDSLTL KFVTGSNVGS RVYLMEDDET YQMFDLLNNE FTFDVDVSNF PCGLNGALYF
    TSMDADGGLS KYEGNTAGAK YGTGYCDSQC PRDIKFINGL GNVEGWEPSD SDANAGVGGM GTCCPEMDIW EANSISTAYT
    PHPCDSVEQT MCEGDSCGGT YSDDRYGGTC DPDGCDFNSY RMGNTRFYGP GAIIDTSSKF TVVTQFIADG GSLSEIKRFY
    VQNGEVIPNS ESNISGVEGN SITSEFCTAQ KTAFGDEDIF AQHGGLSAMG DAASAMVLIL SIWDDHHSSM MWLDSSYPTD
    ADPSQPGVAR GTCEQGAGDP DVVESEHADA SVTFSNIKFG PIGSTF
    MMMKQYLQYL AAGSLMTGLV AGQGVGTQQT ETHPRITWKR CTGKANCTTV QAEVVIDSNW RWIHTSGGTN CYDGNAWNTA
    ACSTATDCAS KCLMEGAGNY QQTYGASTSG DSLTLKFVTK HEYGTNVGSR FYLMNGASKY QMFTLMNNEF TFDVDLSTVE
    CGLNSALYFV AMEEDGGMRS YPTNKAGAKY GTGYCDAQCA RDLKFVGGKA NIEGWRESSN DENAGVGPYG GCCAEIDVWE
    SNAHAYAFTP HACENNNYHV CERDTCGGTY SEDRFAGGCD ANGCDYNPYR MGNPDFYGKG KTVDTTKKFT VVTRFQDDNL
    EQFFVQNGQK ILAPAPTFDG IPASPNLTPE FCSTQFDVFT DRNRFREVGD FPQLNAALRI PMVLVMSIWA DHYANMLWLD
    SVYPPEKEGE PGAARGPCAQ DSGVPSEVKA NYPNAKVVWS NIRFGPIGST VNV
    MYQRALLFSF FLAAARAQQA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG NTWDTSICPD
    DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL GQEFTFDVDV SNLPCGLNGA
    LYFVAMDADG GLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ PSANDPNAGV GNHGSCCAEM DVWEANSIST
    AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDPDGCDF NPYRQGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL
    TEIKRFYVQN GKVIPQSEST ISGVTGNSIT TEYCTAQKAA FGDNTGFFTH GGLQKISQAL AQGMVLVMSL WDDHAANMLW
    LDSTYPTDAD PDTPGVARGT CPTTSGVPAD VESQNPNSYV IYSNIKVGPI NSTFTAN
    MFAIVLLGLT RSLGTGTNQA ENHPSLSWQN CRSGGSCTQT SGSVVLDSNW RWTHDSSLTN CYDGNEWSSS LCPDPKTCSD
    NCLIDGADYS GTYGITSSGN SLKLVFVTNG PYSTNIGSRV YLLKDESHYQ IFDLKNKEFT FTVDDSNLDC GLNGALYFVS
    MDEDGGTSRF SSNKAGAKYG TGYCDAQCPH DIKFINGEAN VENWKPQTND ENAGNGRYGA CCTEMDIWEA NKYATAYTPH
    ICTVNGEYRC DGSECGDTDS GNRYGGVCDK DGCDFNSYRM GNTSFWGPGL IIDTGKPVTV VTQFVTKDGT DNGQLSEIRR
    KYVQGGKVIE NTVVNIAGMS SGNSITDDFC NEQKSAFGDT NDFEKKGGLS GLGKAFDYGM VLVLSLWDDH QVNMLWLDSI
    YPTDQPASQP GVKRGPCATS SGAPSDVESQ HPDSSVTFSD IRFGPIDSTY
    MHQRALLFSA LVGAVRAQQA GTLTEEVHPP LTWQKCTADG SCTEQSGSVV IDSNWRWLHS TNGSTNCYTG NTWDESLCPD
    NEACAANCAL DGADYESTYG ITTSGDALTL TFVTGENVGS RVYLMAEDDE SYQTFDLVGN EFTFDVDVSN LPCGLNGALY
    FTSMDADGGV SKYPANKAGA KYGTGYCDSQ CPRDLKFING MANVEGWTPS DNDKNAGVGG HGSCCPELDI WEANSISSAF
    TPHPCDDLGQ TMCSGDDCGG TYSETRYAGT CDPDGCDFNA YRMGNTSYYG PDKIVDTNSV MTVVTQFIGD GGSLSEIKRL
    YVQNGKVIAN AQSNVDGVTG NSITSDFCTA QKTAFGDQDI FSKHGGLSGM GDAMSAMVLI LSIWDDHNSS MMWLDSTYPE
    DADASEPGVA RGTCEHGVGD PETVESQHPG ATVTFSKIKF GPIGSTYSSN STA
    MFRAAALLAF TCLAMVSGQQ AGTNTAENHP QLQSQQCTTS GGCKPLSTKV VLDSNWRWVH STSGYTNCYT GNEWDTSLCP
    DGKTCAANCA LDGADYSGTY GITSTGTALT LKFVTGSNVG SRVYLMADDT HYQLLKLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM SKYPGNKAGA KYGTGYCDSQ CPKDIKFING EANVGNWTET GSNTGTGSYG TCCSEMDIWE ANNDAAAFTP
    HPCTTTGQTR CSGDDCARNT GLCDGDGCDF NSFRMGDKTF LGKGMTVDTS KPFTVVTQFL TNDNTSTGTL SEIRRIYIQN
    GKVIQNSVAN IPGVDPVNSI TDNFCAQQKT AFGDTNWFAQ KGGLKQMGEA LGNGMVLALS IWDDHAANML WLDSDYPTDK
    DPSAPGVARG TCATTSGVPS DVESQVPNSQ VVFSNIKFGD IGSTFSGTSS PNPPGGSTTS SPVTTSPTPP PTGPTVPQWG
    QCGGIGYSGS TTCASPYTCH VLNPCESILS LQRSSNADQY LQTTRSATKR RLDTALQPRK
    MRTALALILA LAAFSAVSAQ QAGTITAETH PTLTIQQCTQ SGGCAPLTTK VVLDVNWRWI HSTTGYTNCY SGNTWDAILC
    PDPVTCAANC ALDGADYTGT FGILPSGTSV TLRPVDGLGL RLFLLADDSH YQMFQLLNKE FTFDVEMPNM RCGSSGAIHL
    TAMDADGGLA KYPGNQAGAK YGTGFCSAQC PKGVKFINGQ ANVEGWLGTT ATTGTGFFGS CCTDIALWEA NDNSASFAPH
    PCTTNSQTRC SGSDCTADSG LCDADGCNFN SFRMGNTTFF GAGMSVDTTK LFTVVTQFIT SDNTSMGALV EIHRLYIQNG
    QVIQNSVVNI PGINPATSIT DDLCAQENAA FGGTSSFAQH GGLAQVGEAL RSGMVLALSI VNSAADTLWL DSNYPADADP
    SAPGVARGTC PQDSASIPEA PTPSVVFSNI KLGDIGTTFG AGSALFSGRS PPGPVPGSAP ASSATATAPP FGSQCGGLGY
    AGPTGVCPSP YTCQALNIYY SQCI
    MYQRALLFSF FLAAARAHEA GTVTAENHPS LTWQQCSSGG SCTTQNGKVV IDANWRWVHT TSGYTNCYTG NTWDTSICPD
    DVTCAQNCAL DGADYSGTYG VTTSGNALRL NFVTQSSGKN IGSRLYLLQD DTTYQIFKLL GQEFTFDVDV SNLPCGLNGA
    LYFVAMDADG NLSKYPGNKA GAKYGTGYCD SQCPRDLKFI NGQANVEGWQ PSANDPNAGV GNHGSSCAEM DVWEANSIST
    AVTPHPCDTP GQTMCQGDDC GGTYSSTRYA GTCDTDGCDF NPYQPGNHSF YGPGKIVDTS SKFTVVTQFI TDDGTPSGTL
    TEIKRFYVQN GKVIPQSEST ISGVTGNSIT TEYCTAQKAA FDNTGFFTHG GLQKISQALA QGMVLVMSLW DDHAANMLWL
    DSTYPTDADP DTPGVARGTC PTTSGVPADV ESQNPNSYVI YSNIKVGPIN STFTAN
    MHKRAATLSA LVVAAAGFAR GQGVGTQQTE THPKLTFQKC SAAGSCTTQN GEVVIDANWR WVHDKNGYTN CYTGNEWNTT
    ICADAASCAS NCVVDGADYQ GTYGASTSGN ALTLKFVTKG SYATNIGSRM YLMASPTKYA MFTLLGHEFA FDVDLSKLPC
    GLNGAVYFVS MDEDGGTSKY PSNKAGAKYG TGYCDSQCPR DLKFIDGKAN SASWQPSSND QNAGVGGMGS CCAEMDIWEA
    NSVSAAYTPH PCQNYQQHSC SGDDCGGTYS ATRFAGDCDP DGCDWNAYRM GVHDFYGNGK TVDTGKKFSI VTQFKGSGST
    LTEIKQFYVQ DGRKIENPNA TWPGLEPFNS ITPDFCKAQK QVFGDPDRFN DMGGFTNMAK ALANPMVLVL SLWDDHYSNM
    LWLDSTYPTD ADPSAPGKGR GTCDTSSGVP SDVESKNGDA TVIYSNIKFG PLDSTYTAS
    MRASLLAFSL NSAAGQQAGT LQTKNHPSLT SQKCRQGGCP QVNTTIVLDA NWRWTHSTSG STNCYTGNTW QATLCPDGKT
    CAANCALDGA DYTGTYGVTT SGNSLTLQFV TQSNVGARLG YLMADDTTYQ MFNLLNQEFW FDVDMSNLPC GLNGALYFSA
    MARTAAWMPM VVCASTPLIS TRRSTARLLR LPVPPRSRYG RGICDSQCPR DIKFINGEAN VQGWQPSPND TNAGTGNYGA
    CCNKMDVWEA NSISTAYTPH PCTQRGLVRC SGTACGGGSN RYGSICDHDG LGFQNLFGMG RTRVRARVGR VKQFNRSSRV
    VEPISWTKQT TLHLGNLPWK SADCNVQNGR VIQNSKVNIP GMPSTMDSVT TEFCNAQKTA FNDTFSFQQK GGMANMSEAL
    RRGMVLVLSI WDDHAANMLW LDSITSAAAC RSTPSEVHAT PLRESQIRSS HSRQTRYVTF TNIKFGPFNS TGTTYTTGSV
    PTTSTSTGTT GSSTPPQPTG VTVPQGQCGG IGYTGPTTCA SPTTCHVLNP YYSQCY
    MKQYLQYLAA ALPLMSLVSA QGVGTSTSET HPKITWKKCS SGGSCSTVNA EVVIDANWRW LHNADSKNCY DGNEWTDACT
    SSDDCTSKCV LEGAEYGKTY GASTSGDSLS LKFLTKHEYG TNIGSRFYLM NGASKYQMFT LMNNEFAFDV DLSTVECGLN
    SALYFVAMEE DGGMASYSTN KAGAKYGTGY CDAQCARDLK FVGGKANYDG WTPSSNDANA GVGALGGCCA EIDVWESNAH
    AFAFTPHACE NNNYHVCEDT TCGGTYSEDR FAGDCDANGC DYNPYRVGNT DFYGKGMTVD TSKKFTVVSQ FQENKLTQFF
    VQNGKKIEIP GPKHEGLPTE SSDITPELCS AMPEVFGDRD RFAEVGGFDA LNKALAVPMV LVMSIWDDHY ANMLWLDSSY
    PPEKAGTPGG DRGPCAQDSG VPSEVESQYP DATVVWSNIR FGPIGSTVQV
    MFPKASLIAL SFIAAVYGQQ VGTQMAEVHP KLPSQLCTKS GCTNQNTAVV LDANWRWLHT TSGYTNCYTG NSWDATLCPD
    ATTCAQNCAV DGADYSGTYG ITTSGNALTL KFKTGTNVGS RVYLMQTDTA YQMFQLLNQE FTFDVDMSNL PCGLNGALYL
    SQMDQDGGLS KFPTNKAGAK YGTGYCDSQC PHDIKFINGM ANVAGWAGSA SDPNAGSGTL GTCCSEMDIW EANNDAAAFT
    PHPCSVDGQT QCSGTQCGDD DERYSGLCDK DGCDFNSFRM GDKSFLGKGM TVDTSRKFTV VTQFVTTDGT TNGDLHEIRR
    LYVQDGKVIQ NSVVSIPGID AVDSITDNFC AQQKSVFGDT NYFATLGGLK KMGAALKSGM VLAMSVWDDH AASMQWLDSN
    YPADGDATKP GVARGTCSAD SGLPTNVESQ SASASVTFSN IKWGDINTTF TGTGSTSPSS PAGPVSSSTS VASQPTQPAQ
    GTVAQWGQCG GTGFTGPTVC ASPFTCHVVN PYYSQCY
    MFRTAALLSF AYLAVVYGQQ AGTSTAETHP PLTWEQCTSG GSCTTQSSSV VLDSNWRWTH VVGGYTNCYT GNEWNTTVCP
    DGTTCAANCA LDGADYEGTY GISTSGNALT LKFVTASAQT NVGSRVYLMA PGSETEYQMF NPLNQEFTFD VDVSALPCGL
    NGALYFSEMD ADGGLSEYPT NKAGAKYGTG YCDSQCPRDI KFIEGKANVE GWTPSSTSPN AGTGGTGICC NEMDIWEANS
    ISEALTPHPC TAQGGTACTG DSCSSPNSTA GICDQAGCDF NSFRMGDTSF YGPGLTVDTT SKITVVTQFI TSDNTTTGDL
    TAIRRIYVQN GQVIQNSMSN IAGVTPTNEI TTDFCDQQKT AFGDTNTFSE KGGLTGMGAA FSRGMVLVLS IWDDDAAEML
    WLDSTYPVGK TGPGAARGTC ATTSGQPDQV ETQSPNAQVV FSNIKFGAIG STFSSTGTGT GTGTGTGTGT GTTTSSAPAA
    TQTKYGQCGG QGWTGATVCA SGSTCTSSGP YYSQCL
    MFRTAALTAF TFAAVVLGQQ VGTLTTENHP ALSIQQCTAT GCTTQQKSVV LDSNWRWTHS TAGATNCYTG NAWDPALCPD
    PATCATNCAI DGADYSGTYG ITTSGNALTL RFVTNGQYSQ NIGSRVYLLD DADHYKLFDL KNQEFTFDVD MSGLPCGLNG
    ALYFSEMAAD GGKAAHAGNN AGAKYGTGYC DAQCPHDIKW INGEANVLDW SASATDDNAG NGRYGACCAE MDIWEANSEA
    TAYTPHVCRD EGLYRCSGTE CGDGNNRYGG VCDKDGCDFN SYRMGDKNFL GRGKTIDTTK KVTVVTQFIT DNNTPTGNLV
    EIRRVYVQNG VVYQNSFSTF PSLSQYNSIS DEFCVAQKTL FGDNQYYNTH GGTTKMGDAF DNGMVLIMSL WSDHAAHMLW
    LDSDYPLDKS PSEPGVSRGA CPTSSGDPDD VVANHPNASV TFSNIKYGPI GSTFGGSTPP VSSGGSSVPP VTSTTSSGTT
    TPTGPTGTVP KWGQCGGIGY SGPTACVAGS TCTYSNDWYS QCL
    MYRAIATASA LIAAVRAQQV CSLTPETKPA LSWSKCTSSG CSNVQGSVTI DANWRWTHQL SGSTNCYTGN KWDTSICTSG
    KVCAEKCCID GAEYASTYGI TSSGNQLSLS FVTKGTYGTN IGSRTYLMED ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKAKYPGNKA GAKYGTGYCD AQCPRDVKFI NGQANSDGWQ PSKSDVNGGI GNLGTCCPEM DIWEANSIST
    AHTPHPCTKL TQHSCTGDSC GGTYSEDRYG GTCDADGCDF NAYRQGNKTF YGPGSGFNVD TTKKVTVVTQ FHKGSNGRLS
    EITRLYVQNG KVIANSESKI AGVPGSSLTP EFCTAQKKVF GDIDDFEKKG AWGGMSDALE APMVLVMSLW HDHHSNMLWL
    DSTYPTDSTK LGAQRGSCST SSGVPADLEK NVPNSKVAFS NIKFGPIGST YKEGQPEPTN PTNPNPTTPG GTVDQWGQCG
    GTNYSGPTAC KSPFTCKKIN DFYSQCQ
    MFRTATLLAF TMAAMVFGQQ VGTNTAENHR TLTSQKCTKS GGCSNLNTKI VLDANWRWLH STSGYTNCYT GNQWDATLCP
    DGKTCAANCA LDGADYTGTY GITASGSSLK LQFVTGSNVG SRVYLMADDT HYQMFQLLNQ EFTFDVDMSN LPCGLNGALY
    LSAMDADGGM AKYPTNKAGA KYGTGYCDSQ CPRDIKFING EANVEGWNAT SANAGTGNYG TCCTEMDIWE ANNDAAAYTP
    HPCTTNAQTR CSGSDCTRDT GLCDADGCDF NSFRMGDQTF LGKGLTVDTS KPFTVVTQFI TNDGTSAGTL TEIRRLYVQN
    GKVIQNSSVK IPGIDLVNSI TDNFCSQQKT AFGDTNYFAQ HGGLKQVGEA LRTGMVLALS IWDDYAANML WLDSNYPTNK
    DPSTPGVARG TCATTSGVPA QIEAQSPNAY VVFSNIKFGD LNTTYTGTVS SSSVSSSHSS TSTSSSHSSS STPPTQPTGV
    TVPQWGQCGG IGYTGSTTCA SPYTCHVLNP YYSQCY
    MYQTSLLASL SFLLATSQAQ QVGTQTAETH PKLTTQKCTT AGGCTDQSTS IVLDANWRWL HTVDGYTNCY TGQEWDTSIC
    TDGKTCAEKC ALDGADYEST YGISTSGNAL TMNFVTKSSQ TNIGGRVYLL AADSDDTYEL FKLKNQEFTF DVDVSNLPCG
    LNGALYFSEM DSDGGLSKYT TNKAGAKYGT GYCDTQCPHD IKFINGEANV QNWTASSTDK NAGTGHYGSC CNEMDIWEAN
    SQATAFTPHV CEAKVEGQYR CEGTECGDGD NRYGGVCDKD GCDFNSYRMG NETFYGSNGS TIDTTKKFTV VTQFITADNT
    ATGALTEIRR KYVQNDVVIE NSYADYETLS KFNSITDDFC AAQKTLSGDT NDFKTKGGIA RMGESFERGM VLVMSVWDDH
    AANALWLDSS YPTDADASKP GVKRGPCSTS SGVPSDVEAN DADSSVIYSN IRYGDIGSTF NKTA
    MFSKVALTAL CFLAVAQAQQ VGREVAENHP RLPWQRCTRN GGCQTVSNGQ VVLDANWRWL HVTDGYTNCY TGNAWNSSVC
    SDGATCAQRC ALEGANYQQT YGITTSGDAL TIKFLTRSEQ TNIGARVYLM ENEDRYQMFN LLNKEFTFDV DVSKVPCGIN
    GALYFIQMDA DGGLSSQPNN RAGAKYGTGY CDSQCPRDIK FINGEANSVG WEPSETDPNA GKGQYGICCA EMDIWEANSI
    SNAYTPHPCQ TVNDGGYQRC QGRDCNQPRY EGLCDPDGCD YNPFRMGNKD FYGPGKTVDT NRKMTVVTQF ITHDNTDTGT
    LVDIRRLYVQ DGRVIANPPT NFPGLMPAHD SITQEFCDDA KRAFEDNDSF GRNGGLAHMG RSLAKGHVLA LSIWNDHTAH
    MLWLDSNYPT DADPNKPGIA RGTCPTTGGS PRDTEQNHPD AQVIFSNIKF GDIGSTFSGN
    MYRKLAVISA FLAAARAQQV CTQQAETHPP LTWQKCTASG CTPQQGSVVL DANWRWTHDT KSTTNCYDGN TWSSTLCPDD
    ATCAKNCCLD GANYSGTYGV TTSGDALTLQ FVTASNVGSR LYLMANDSTY QEFTLSGNEF SFDVDVSQLP CGLNGALYFV
    SMDADGGQSK YPGNAAGAKY GTGYCDSQCP RDLKFINGQA NVEGWEPSSN NANTGVGGHG SCCSEMDIWE ANSISEALTP
    HPCETVGQTM CSGDSCGGTY SNDRYGGTCD PDGCDWNPYR LGNTSFYGPG SSFALDTTKK LTVVTQFATD GSISRYYVQN
    GVKFQQPNAQ VGSYSGNTIN TDYCAAEQTA FGGTSFTDKG GLAQINKAFQ GGMVLVMSLW DDYAVNMLWL DSTYPTNATA
    STPGAKRGSC STSSGVPAQV EAQSPNSKVI YSNIRFGPIG STGGNTGSNP PGTSTTRAPP SSTGSSPTAT QTHYGQCGGT
    GWTGPTRCAS GYTCQVLNPF YSQCL
    MRASLLAFSL AAAVAGGQQA GTLTAKRHPS LTWQKCTRGG CPTLNTTMVL DANWRWTHAT SGSTKCYTGN KWQATLCPDG
    KSCAANCALD GADYTGTYGI TGSGWSLTLQ FVTDNVGARA YLMADDTQYQ MLELLNQELW FDVDMSNIPC GLNGALYLSA
    MDADGGMRKY PTNKAGAKYA TGYCDAQCPR DLKYINGIAN VEGWTPSTND ANGIGDHGSC CSEMDIWEAN KVSTAFTPHP
    CTTIEQHMCE GDSCGGTYSD DRYGVLCDAD GCDFNSYRMG NTTFYGEGKT VDTSSKFTVV TQFIKDSAGD LAEIKAFYVQ
    NGKVIENSQS NVDGVSGNSI TQSFCKSQKT AFGDIDDFNK KGGLKQMGKA LAQAMVLVMS IWDDHAANML WLDSTYPVPK
    VPGAYRGSGP TTSGVPAEVD ANAPNSKVAF SNIKFGHLGI SPFSGGSSGT PPSNPSSSAS PTSSTAKPSS TSTASNPSGT
    GAAHWAQCGG IGFSGPTTCP EPYTCAKDHD IYSQCV
    MLASTFSYRM YKTALILAAL LGSGQAQQVG TSQAEVHPSM TWQSCTAGGS CTTNNGKVVI DANWRWVHKV GDYTNCYTGN
    TWDKTLCPDD ATCASNCALE GANYQSTYGA TTSGDSLRLN FVTTSQQKNI GSRLYMMKDD TTYEMFKLLN QEFTFDVDVS
    NLPCGLNGAL YFVAMDADGG MSKYPTNKAG AKYGTGYCDS QCPRDLKFIN GQANVEGWQP SSNDANAGTG NHGSCCAEMD
    IWEANSISTA FTPHPCDTPG QVMCTGDACG GTYSSDRYGG TCDPDGCDFN SFRQGNKTFY GPGMTVDTKS KFTVVTQFIT
    DDGTASGTLK EIKRFYVQNG KVIPNSESTW SGVGGNSITN DYCTAQKSLF KDQNVFAKHG GMEGMGAALA QGMVLVMSLW
    DDHAANMLWL DSNYPTTASS STPGVARGTC DISSGVPADV EANHPDASVV YSNIKVGPIG STFNSGGSNP GGGTTTTAKP
    TTTTTTAGSP GGTGVAQHYG QCGGNGWQGP TTCASPYTCQ KLNDFYSQCL
    MQIKQYLQYL AAALPLVNMA AAQRAGTQQT ETHPRLSWKR CSSGGNCQTV NAEIVIDANW RWLHDSNYQN CYDGNRWTSA
    CSSATDCAQK CYLEGANYGS TYGVSTSGDA LTLKFVTKHE YGTNIGSRVY LMNGSDKYQM FTLMNNEFAF DVDLSKVECG
    LNSALYFVAM EEDGGMRSYS SNKAGAKYGT GYCDAQCARD LKFVGGKANI EGWRPSTNDA NAGVGPYGAC CAEIDVWESN
    AYAFAFTPHG CLNNNYHVCE TSNCGGTYSE DRFGGLCDAN GCDYNPYRMG NKDFYGKGKT VDTSRKFTVV TRFEENKLTQ
    FFIQDGRKID IPPPTWPGLP NSSAITPELC TNLSKVFDDR DRYEETGGFR TINEALRIPM VLVMSIWDGH YASMLWLDSV
    YPPEKAGQPG AERGPCAPTS GVPAEVEAQF PNAQVIWSNI RFGPIGSTYQ V
    MTSRIALVSL FAAVYGQQVG TYQTETHPSL TWQSCTAKGS CTTNTGSIVL DGNWRWTHGV GTSTNCYTGN TWDATLCPDD
    ATCAQNCALE GADYSGTYGI TTSGNSLRLN FVTQSANKNI GSRVYLMADT THYKTFNLLN QEFTFDVDVS NLPCGLNGAV
    YFANLPADGG ISSTNTAGAE YGTGYCDSQC PRDMKFIKGQ ANVDGWVPSS NNANTGVGNH GSCCAEMDIW EANSISTAVT
    PHSCDTVTQT VCTGDDCGGT YSSSRYAGTC DPDGCDFNSY RMGDETFYGP GKTVDTNSVF TVVTQFLTTD GTASGTLNEI
    KRFYVQDGKV IPNSYSTISG VSGNSITTPF CDAQKTAFGD PTSFSDHGGL ASMSAAFEAG MVLVLSLWDD YYANMLWLDS
    TYPVGKTSAG GPRGTCDTSS GVPASVEASS PNAYVVYSNI KVGAINSTYG
    MFVFVLLWLT QSLGTGTNQA ENHPSLSWQN CRSGGSCTQT SGSVVLDSNW RWTHDSSLTN CYDGNEWSSS LCPDPKTCSD
    NCLIDGADYS GTYGITSSGN SLKLVFVTNG PYSTNIGSRV YLLKDESHYQ IFDLKNKEFT FTVDDSNLDC GLNGALYFVS
    MDEDGGTSRF SSNKAGAKYG TGYCDAQCPH DIKFINGEAN VENWKPQTND ENAGNGRYGA CCTEMDIWEA NKYATAYTPH
    ICTVNGEYRC DGSECGDTDS GNRYGGVCDK DGCDFNSYRM GNTSFWGPGL IIDTGKPVTV VTQFVTKDGT DNGQLSEIRR
    KYVQGGKVIE NTVVNIAGMS SGNSITDDFC NEQKSAFGDT NDFEKKGGLS GLGKAFDYGM VLVLSLWDDH QVNMLWLDSI
    YPTDQPASQP GVKRGPCATS SGAPSDVESQ HPDSSVTFSD IRFGPIDSTY
    MFRKAALLAF SFLAIAHGQQ VGTNQAENHP SLPSQKCTAS GCTTSSTSVV LDANWRWVHT TTGYTNCYTG QTWDASICPD
    GVTCAKACAL DGADYSGTYG ITTSGNALTL QFVKGTNVGS RVYLLQDASN YQMFQLINQE FTFDVDMSNL PCGLNGAVYL
    SQMDQDGGVS RFPTNTAGAK YGTGYCDSQC PRDIKFINGE ANVEGWTGSS TDSNSGTGNY GTCCSEMDIW EANSVAAAYT
    PHPCSVNQQT RCTGADCGQG DDRYDGVCDP DGCDFNSFRM GDQTFLGKGL TVDTSRKFTI VTQFISDDGT TSGNLAEIRR
    FYVQDGNVIP NSKVSIAGID AVNSITDDFC TQQKTAFGDT NRFAAQGGLK QMGAALKSGM VLALSLWDDH AANMLWLDSD
    YPTTADASNP GVARGTCPTT SGFPRDVESQ SGSATVTYSN IKWGDLNSTF TGTLTTPSGS SSPSSPASTS GSSTSASSSA
    SVPTQSGTVA QWAQCGGIGY SGATTCVSPY TCHVVNAYYS QCY
    MYRAIATASA LIAAARAQQV CTLTTETKPA LTWSKCTSSG CTDVKGSVGI DANWRWTHQT SSSTNCYTGN KWDTSVCTSG
    ETCAQKCCLD GADYAGTYGI TSSGNQLSLG FVTKGSFSTN IGSRTYLMEN ENTYQMFQLL GNEFTFDVDV SNIGCGLNGA
    LYFVSMDADG GKARYPANKA GAKYGTGYCD AQCPRDVKFI NGKANSDGWK PSDSDINAGI GNMGTCCPEM DIWEANSIST
    AFTPHPCTKL TQHACTGDSC GGTYSNDRYG GTCDADGCDF NSYRQGNKTF YGRGSDFNVD TTKKVTVVTQ FKKGSNGRLS
    EITRLYVQNG KVIANSESKI PGNSGSSLTA DFCSKQKSVF GDIDDFSKKG GWSGMSDALE SPPMVLVMSL WHDHHSNMLW
    LDSTYPTDST KLGAQRGSCA TTSGVPSDLE RDVPNSKVSF SNIKFGPIGS TYSSGTTNPP PSSTDTSTTP TNPPTGGTVG
    QYGQCGGQTY TGPKDCKSPY TCKKINDFYS QCQ
    MSSFQIYRAA LLLSILATAN AQQVGTYTTE THPSLTWQTC TSDGSCTTND GEVVIDANWR WVHSTSSATN CYTGNEWDTS
    ICTDDVTCAA NCALDGATYE ATYGVTTSGS ELRLNFVTQG SSKNIGSRLY LMSDDSNYEL FKLLGQEFTF DVDVSNLPCG
    LNGALYFVAM DADGGTSEYS GNKAGAKYGT GYCDSQCPRD LKFINGEANC DGWEPSSNNV NTGVGDHGSC CAEMDVWEAN
    SISNAFTAHP CDSVSQTMCD GDSCGGTYSA SGDRYSGTCD PDGCDYNPYR LGNTDFYGPG LTVDTNSPFT VVTQFITDDG
    TSSGTLTEIK RLYVQNGEVI ANGASTYSSV NGSSITSAFC ESEKTLFGDE NVFDKHGGLE GMGEAMAKGM VLVLSLWDDY
    AADMLWLDSD YPVNSSASTP GVARGTCSTD SGVPATVEAE SPNAYVTYSN IKFGPIGSTY SSGSSSGSGS SSSSSSTTTK
    ATSTTLKTTS TTSSGSSSTS AAQAYGQCGG QGWTGPTTCV SGYTCTYENA YYSQCL
    MHQRALLFSA LLTAVRAQQA GTLTEEVHPS LTWQKCTSEG SCTEQSGSVV IDSNWRWTHS VNDSTNCYTG NTWDATLCPD
    DETCAANCAL DGADYESTYG VTTDGDSLTL KFVTGSNVGS RLYLMDTSDE GYQTFNLLDA EFTFDVDVSN LPCGLNGALY
    FTAMDADGGV SKYPANKAGA KYGTGYCDSQ CPRDLKFIDG QANVDGWEPS SNNDNTGIGN HGSCCPEMDI WEANKISTAL
    TPHPCDSSEQ TMCEGNDCGG TYSDDRYGGT CDPDGCDFNP YRMGNDSFYG PGKTIDTGSK MTVVTQFITD GSGSLSEIKR
    YYVQNGNVIA NADSNISGVT GNSITTDFCT AQKKAFGDED IFAEHNGLAG ISDAMSSMVL ILSLWDDYYA SMEWLDSDYP
    ENATATDPGV ARGTCDSESG VPATVEGAHP DSSVTFSNIK FGPINSTFSA SA
    MYAKFATLAA LVAGAAAQNA CTLTAENHPS LTWSKCTSGG SCTSVQGSIT IDANWRWTHR TDSATNCYEG NKWDTSYCSD
    GPSCASKCCI DGADYSSTYG ITTSGNSLNL KFVTKGQYST NIGSRTYLME SDTKYQMFQL LGNEFTFDVD VSNLGCGLNG
    ALYFVSMDAD GGMSKYSGNK AGAKYGTGYC DSQCPRDLKF INGEANVENW QSSTNDANAG TGKYGSCCSE MDVWEANNMA
    AAFTPHPCXV IGQSRCEGDS CGGTYSTDRY AGICDPDGCD FNSYRQGNKT FYGKGMTVDT TKKITVVTQF LKNSAGELSE
    IKRFYVQNGK VIPNSESTIP GVEGNSITQD WCDRQKAAFG DVTDXQDKGG MVQMGKALAG PMVLVMSIWD DHAVNMLWLD
    STWPIDGAGK PGAERGACPT TSGVPAEVEA EAPNSNVIFS NIRFGPIGST VSGLPDGGSG NPNPPVSSST PVPSSSTTSS
    GSSGPTGGTG VAKHYEQCGG IGFTGPTQCE SPYTCTKLND WYSQCL
    MYAKFATLAA LVAGASAQAV CSLTAETHPS LTWQKCTAPG SCTNVAGSIT IDANWRWTHQ TSSATNCYSG SKWDSSICTT
    GTDCASKCCI DGAEYSSTYG ITTSGNALNL KFVTKGQYST NIGSRTYLME SDTKYQMFKL LGNEFTFDVD VSNLGCGLNG
    ALYFVSMDAD GGMSKYSGNK AGAKYGTGYC DAQCPRDLKF INGEANVEGW ESSTNDANAG SGKYGSCCTE MDVWEANNMA
    TAFTPHPCTT IGQTRCEGDT CGGTYSSDRY AGVCDPDGCD FNSYRQGNKT FYGKGMTVDT TKKITVVTQF LKNSAGELSE
    IKRFYAQDGK VIPNSESTIA GIPGNSITKA YCDAQKTVFQ NTDDFTAKGG LVQMGKALAG DMVLVMSVWD DHAVNMLWLD
    STYPTDQVGV AGAERGACPT TSGVPSDVEA NAPNSNVIFS NIRFGPIGST VQGLPSSGGT SSSSSAAPQS TSTKASTTTS
    AVRTTSTATT KTTSSAPAQG TNTAKHWQQC GGNGWTGPTV CESPYKCTKQ NDWYSQCL
    MLTLVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSKDLCP SSDTCSQKCY
    IEGADYSGTY GIQSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYESFK LKNKEFTFTV DDSKLNCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GNGKLGTCCS EMDIWEGNMK SQAYTVHACT
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI
    NNSKTSNLAD TYDSITDKFC DATKEASGDT NDFKAKGAMS GFSTNLNNGQ VLVMSLWDDH TANMLWLDST YPTDSSDSTA
    QRGPCPTSSG VPKDVESQHG DATVVFSDIK FGAINSTFKY N
    MLAAALFTFA CSVGVGTKTP ENHPKLNWQN CASKGSCSQV SGEVTMDSNW RWTHDGNGKN CYDGNTWISS LCPDDKTCSD
    KCVLDGAEYQ ATYGIQSNGT ALTLKFVTHG SYSTNIGSRL YLLKDKSTYY VFKLNNKEFT FSVDVSKLPC GLNGALYFVE
    MDADGGKAKY AGAKPGAEYG LGYCDAQCPS DLKFINGEAN SEGWKPQSGD KNAGNGKYGS CCSEMDVWES NSQATALTPH
    VCKTTGQQRC SGKSECGGQD GQDRFAGLCD EDGCDFNNWR MGDKTFFGPG LIVDTKSPFV VVTQFYGSPV TEIRRKYVQN
    GKVIENSKSN IPGIDATAAI SDHFCEQQKK AFGDTNDFKN KGGFAKLGQV FDRGMVLVLS LWDDHQVAML WLDSTYPTNK
    DKSQPGVDRG PCPTSSGKPD DVESASADAT VVYGNIKFGA LDSTY
    MLTLVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSKDLCP SSNTCSQKCY
    IEGADYSGTY GIQSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYESFK LKNKEFTFTV DDSKLNCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GNGKLGTCCS EMDIWEGNMK SQAYTVHACT
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI
    NNSKTSNLAD TYDSITDKFC DATKEASGDT NDFKAKGAMS GFSTNLNNGQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA
    SRGPCAVSSG VPKDVESQYG DATVIYSDIK FGAINSTFKW N
    MILALLSLAK SLGIATNQAE THPKLTWTRY QSKGSGQTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPTTCSNNC
    DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAMD
    EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC TEMDIWEANS MATAYTPHVC
    TVTGLRRCEG TECGDTDANQ RYNGICDKDG CDFNSYRLGD KTFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY
    VQGGKVIENS KVNIAGITAG NSVTDTFCNE QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP
    TNAAAGALGT ERGACATSSG APSDVESQSP DATVTFSDIK FGPIDSTY
    MLVIALILRG LSVGTGTQQS ETHPSLSWQQ TSKGGSGQSV SGSVVLDSNW RWTHTTDGTT NCYDGNEWSS DLCPDASTCS
    SNCVLEGADY SGTYGITGSG SSLKLGFVTK GSYSTNIGSR VYLLGDESHY KLFKLENNEF TFTVDDSNLE CGLNGALYFV
    AMDEDGGASK YSGAKPGAKY GMGYCDAQCP HDMKFINGDA NVEGWKPSDN DENAGTGKWG ACCTEMDIWE ANKYATAYTP
    HICTKNGEYR CEGTDCGDTK DNNRYGGVCD KDGCDFNSWR MGNQSFWGPG LIIDTGKPVT VVTQFLADGG SLSEIRRKYV
    QGGKVIENTV TKISGMDEFD SITDEFCNQQ KKAFRDTNDF EKKGGLKGLG TAVDAGVVLV LSLWDDHDVN MLWLDSIYPT
    DSGSKAGADR GPCATSSGVP KDVESNYASA SVTFSDIKFG PIDSTY
    MLLALFAFGK SLGIATNQAE NHPKLTWTRY QSKGSGQTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPTTCSNNC
    DLDGADYPGT YGISSSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAMD
    EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC TEMDIWEANS MATAYTPHVC
    TVTGIRRCEG TECGDTDANQ RYNGICDKDG CDFNSYRLGD KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY
    VQGGKVIENS KVNIAGMAAG NSITDTFCNE QKKAFGDNND FEKKGGLGAL SKQLDSGMVL VLSLWDDHSV NMLWLDSTYP
    TNAAAGALGT ERGACATSSG APSDVESQSP DATVTFSDIK FGPIDSTY
    MLASVVYLVS LVVSLEIGTQ QSEEHPKLTW QNGSSSVSGS IVLDSNWRWL HDSGTTNCYD GNLWSDDLCP NADTCSSKCY
    IEGADYSGTY GITSSGSKVT LKFVTKGSYS TNIGSRIYLL KDENTYETFK LKNKEFTFTV DDSKLDCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GDGKLGTCCS EMDIWEGNAK SQAYTVHACS
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTVD TKSPVTVVTQ FIGDPLTEIR RVYVQGGKTI
    NNSKTSNLAD TYDSITDKFC DATKDATGDT NDFKAKGAMA GFSTNLNTAQ VLVSVHCGMI IQPICCGLIR RIQRIQQKQV
    QAVDRVLCRR VFQRMLKASM VMLQSRTRTL SLELSTRPLV GISPAGRLFF F
    MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPTTCSNNC
    DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LKDTKSYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAMD
    EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC TEMDIWEANS MATAYTPHVC
    TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY
    VQGGKVIENS KVNVAGITAG NSVTDTFCNE QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP
    TNAAAGALGT ERGACATSSG KPSDVESQSP DATVTFSDIK FGPIDSTY
    MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD AATCGKNCVL
    EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD VSNLPCGLNG ALYHVNMDED
    GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG NGKYGSCCSE MDIWEANSIC SAVTPHVCDN
    LQQTRCQGTA CGENGGGSRF GSSCDPDGCD FNSWRMGNKT FYGPGLIVDT KSKFTVVTQF VGNPVTEIKR KYVQNGKVIE
    NSYSNIEGMD KFNSVSDKFC TAQKKAFGDT DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS
    DRGPCPTTSG VPADVESKSA DANVIYSDIR FGAIDSTYK
    MLGALVALAS CIGVGTNTPE KHPDLKWTNG GSSVSGSIVV DSNWRWTHIK GETKNCYDGN LWSDKYCPDA ATCGKNCVLE
    GADYSGTYGV TTSGDAATLK FVTHGQYSTN VGSRLYLLKD EKTYQMFNLV GKEFTFTVDV SNLPCGLNGA LYFVQMDSDG
    GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN GKYGSCCSEM DIWEANSMAT AYTPHVCDKL
    EQTRCSGSAC GQNGGGDRFS SSCDPDGCDF NSWRMGNKTF WGPGLIVDTK KPVQVVTQFV GSGGSVTEIK RKYVQGGKVI
    DNSMTNIAAM SKQYNSVSDE FCQAQKKAFG DNDSFTKHGG FRQLGATLSK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP
    GADRGPCKTS SGVPSDVESQ NADSTVKYSD IRFGAIDSTY SK
    MLAAALFTFA CSVGVGTKTT ETHPKLNWQQ CACKGSCSQV SGEVTMDSNW RWTHDGNGKN CYDGNTWISS LCPDDKTCSD
    KCVLDGAEYQ ATYGIQSNGT ALTPKFVTHG SYSTNIGSRL YLLKDKSTYY VFQLNNKEFT FSVDVSKLPC GLNGALYFVE
    MDADGGKSKY AGAKPGAEYG LGYCDAQCPS DLKFINGEAN SEGWKPQSGD KNAGNGKYGS CCSEMDVWES NSMATALTPH
    VCKTTGQTRC SGKSECGGQD GQDRFAGNCD EDGCDFNNWR MGDKTFFGPG LTVDTKSPFV VVTQFYGSPV TEIRRKYVQN
    GKVIENAKSN IPGIDATNAI SDTFCEQQKK AFGDTNDFKN KGGFTKLGSV FSRGMVLVLS LWDDHQVAML WLDSTYPTNK
    DKSVPGVDRG PCPTSSGKPD DVESASGDAT VVYGNIKFGA LDSTY
    MFGFLLSLFA LQFALEIGTQ TSESHPSITW ELNGARQSGQ IVIDSNWRWL HDSGTTNCYD GNTWSSDLCP DPEKCSQNCY
    LEGADYSGTY GISASGSQLT LGFVTKGSYS TNIGSRVYLL KDENTYPMFK LKNKEFTFTV DVSNLPCGLN GALYFVAMPS
    DGGKAKYPLA KPGAKYGMGY CDAQCPHDMK FINGEANVLD WKPQSNDENA GTGRYGTCCT EMDIWEANSQ ATAYTVHACS
    KNARCEGTEC GDDSASQRYN GICDKDGCDF NSWRWGNKTF FGPGLTVDSS KPVTVVTQFI GDPLTEIRRI WVQGGKVIQN
    SFTNVSGITS VDSITNTFCD ESKVATGDTN DFKAKGGMSG FSKALDTEVV LVLSLWDDHT ANMLWLDSTY PTDSTAIGAS
    RGPCATSSGD PKDVESASAN ASVKFSDIKF GALDSTY
    MLASLLPLSN SLGTASNQAE THPKLTWTQY TGKGAGQTVN GEIVLDSNWR WTHKDGTNCY DGNTWSSSLC PDPTTCSNNC
    NLDGADYPGT YGITTSGNQL KLGFVTHGSY STNIGSRVYL LRDSKNYQMF KLKNKEFTFT VDDSKLPCGL NGAVYFVAMD
    EDGGTAKHSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRWGARC TEMDIWEANS RATAYTPHIC
    TKTGLYRCEG TECGDSDTNR YGGVCDKDGC DFNSYRMGDK SFFGQGKTVD SSKPVTVVTQ FITDNNQDSG KLTEIRRKYV
    QGGKVIDNSK VNIAGITAGN PITDTFCDEA KKAFGDNNDF EKKGGLSALG TQLEAGFVLV LSLWDDHSVN MLWLDSTYPT
    NASPGALGVE RGDCAITSGV PADVESQSAD ASVTFSDIKF GPIDSTY
    MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD AATCGKNCVL
    EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD VSNLPCGLSG ALYHVNMDED
    GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG NGKYGSCCSE MDIWEANSIC SAVTPHVCDN
    LQQTRCQGAA CGENGGGSRF GSSCDPDGCD FNSWGMGNKT FYGPGLIVDT KSKFTVVTQF VGNPVTEIKR KYVQNGKVIE
    NSYSNIEGMD KFNSVSDKFC TAQKKAFGDT DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS
    DRGPCPTTSG VPADVESKSA DANVIYSDIR FGAIDSTYK
    MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPTTCSNNC
    DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAMD
    EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC TEMDIWEANS MATAYTPHVC
    TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GILSETRRKY
    VQGGKVIENS KVNVAGITAG NSVTDTFCNE QKKAFGDNND FEKKGGLGAL SKQLDAGMVL VLSLWDDHSV NMLWLDSTYP
    TNAAAGALGT ERGACATSSG KPSDVESQSP DATVTFSDIK FGPIDSTY
    MIGIVLIQTV FGIGVGTQQS ESHPSLSWQQ CSKGGSCTSV SGSIVLDSNW RWTHIPDGTT NCYDGNEWSS DLCPDPTTCS
    NNCVLEGADY SGTYGISTSG SSAKLGFVTK GSYSTNIGSR VYLLGDESHY KIFDLKNKEF TFTVDDSNLE CGLNGALYFV
    AMDEDGGASR FTLAKPGAKY GTGYCDAQCP HDIKFINGEA NVQDWKPSDN DDNAGTGHYG ACCTEMDIWE ANKYATAYTP
    HICTENGEYR CEGKSCGDSS DDRYGGVCDK DGCDFNSWRL GNQSFWGPGL IIDTGKPVTV VTQFVTKDGT DSGALSEIRR
    KYVQGGKTIE NTVVKISGID EVDSITDEFC NQQKQAFGDT NDFEKKGGLS GLGKAFDYGV VLVLSLWDDH DVNMLWLDSV
    YPTNPAGKAG ADRGPCATSS GDPKEVEDKY ASASVTFSDI KFGPIDSTY
    MLVFGIVSFV YSIGVGTNTA ETHPKLTWKN GGSTTNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD AATCGKNCVL
    EGADYSGTYG VTSSGDALTL KFVTHGSYST NVGSRLYLLK DEKTYQMFNL NGKEFTFTVD VSQLPCGLNG ALYFVCMDQD
    GGMSRYPDNQ AGAKYGTGYC DAQCPTDLKF INGLPNSDGW KPQSNDKNSG NGKYGSCCSE MDIWEANSLA TAVTPHVCDQ
    VGQTRCEGRA CGENGGGDRF GSICDPDGCD FNSWRMGNKT FWGPGLIIDT KKPVTVVTQF IGSPVTEIKR EYVQGGKVIE
    NSYTNIEGMD KFNSISDKFC TAQKKAFGDN DSFTKHGGFS KLGQSFTKGQ VLVLSLWDDH TVNMLWLDSV YPTNSKKLGS
    DRGPCPTSSG VPADVESKNA DSSVKYSDIR FGSIDSTYK
    MLSFVFLLGF GVSLEIGTQQ SENHPTLSWQ QCTSSGSCTS QSGSIVLDSN WRWVHDSGTT NCYDGNEWSS DLCPDPETCS
    KNCYLDGADY SGTYGITSNG SSLKLGFVTE GSYSTNIGSR VYLKKDTNTY QIFKLKNHEF TFTVDVSNLP CGLNGALYFV
    EMEADGGKGK YPLAKPGAQY GMGYCDAQCP HDMKFINGNA NVLDWKPQET DENSGNGRYG TCCTEMDIWE ANSQATAYTP
    HICTKDGQYQ CEGTECGDSD ANQRYNGVCD KDGCDFNSYR LGNKTFFGPG LIVDSKKPVT VVTQFITSNG QDSGDLTEIR
    RIYVQGGKTI QNSFTNIAGL TSVDSITEAF CDESKDLFGD TNDFKAKGGF TAMGKSLDTG VVLVLSLWDD HSVNMLWLDS
    TYPTDAAAGA LGTQRGPCAT SSGAPSDVES QSPDASVTFS DIKFGPLDST Y
    MLTLVVYLLS LVVSLEIGTQ QSESHPALTW QREGSSASGS IVLDSNWRWV HDSGTTNCYD GNEWSTDLCP SSDTCTQKCY
    IEGADYSGTY GITTSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKNKEFTFTV DDSKLDCGLN GALYFVAMDA
    DGGKQKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVED WKPQDNDENS GNGKLGTCCS EMDIWEGNAK SQAYTVHACT
    KSGQYECTGT DCGDSDSRYQ GTCDKDGCDY ASYRWGDHSF YGEGKTVDTK QPITVVTQFI GDPLTEIRRL YIQGGKVINN
    SKTQNLASVY DSITDAFCDA TKAASGDTND FKAKGAMAGF SKNLDTPQVL VLSLWDDHTA NMLWLDSTYP TDSRDATAER
    GPCATSSGVP KDVESNQADA SVVFSDIKFG AINSTYSYN
    MFGFLLSLFA LQFALEIGTQ TSESHPSITW ELNGARQSGQ IVIDSNWRWL HDSGTTNCYD GNTWSSDLCP DPEKCSQNCY
    LEGADYSGTY GISASGSQLT LGFVTKGSYS TNIGSRVYLL KDENTYQMFK LKNKEFTFTV DVSNLPCGLN GALYFVAMPS
    DGGKAKYPLA KPGAKYGMGY CDAQCPHDMK FINGEANVLD WKPQSNDENA GTGRYGTCCT EMDIWEANSQ ATAYTVHACS
    KNARCEGTEC GDDSASQRYN GICDKDGCDF NSWRWGNKTF FGPGLTVDSS KPVTVVTQFI GDPLTEIRRI WVQGGKVIQN
    SFTNVSGITS VDSITNTFCD ESKVATGDTN DFKAKGGMSG FSKALDTEVV LVLSLWDDHT ANMLWLDSTY PSNSTAIGAT
    RGPCATSSGD PKNVESASAN ASVKFSDIKF GAFDSTY
    MLALVYFLLS LVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCP SSDTCTSKCY
    IEGADYSGTY GITSSGSKVT LKFVTKGSYS TNIGSRIYLL KDENTYETFK LKNKEFTFTV DDSQLNCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GNGKLGTCCS EMDIWEGNAK SQAYTVHACT
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTVD TKQPVTVVTQ FIGDPLTEIR RLYVQGGKTI
    NNSKTSNLAD TYDSITDKFC DATKEASGDT NDFKAKGAMS GFSTNLNTAQ VLVLSLWDDH TANMLWLDST YPTDSTKTGA
    SRGPCAVTSG VPKDVESQYG SAQVVYSDIK FGAINSTY
    MLALVYFLLS FVVSLEIGTQ QSEDHPKLTW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCG SSDTCSSKCY
    IEGADYSGTY GISASGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKGKEFTFTV DDSKLDCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GNGKLGTCCS EMDIWEGNAK SQAYTVHACT
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTID TKQPVTVVTQ FIGDPLTEIR RVYVQGGKVI
    NNSKTSNLAN VYDSITDKFC DDTKDATGDT NDFKAKGAMS GFSTNLNTAQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA
    SRGPCAVLSG VPKNVESQHG DATVIYSDIK FGAINSTFSY N
    MFLALFVLGK SLGIATNQAE NHPKLTWTRY QSKGSGQTVN GEVVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPQTCSSNC
    DLDGADYPGT YGISSSGNSL KLGFVTHGSY STNIGSRVYL LRDSKNYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAME
    EDGGVAKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC IEMDIWEANS MATAYTPHVC
    TVTGIHRCEG TECGDTDANQ RYNGICDKDG CDFNSYRMGD KSFFGVGKTV DSSKPVTVVT QFVTSNGQDG GTLSEIKRKY
    VQGGKVIENS KVNIAGITAV NSITDTFCNE QKKAFGDNND FEKKGGLGAL SKQLDLGMVL VLSLWDDHSV NMLWLDSTYP
    TDAAAGALGT ERGACATSSG KPSDVESQSP DASVTFSDIK FGPIDSTY
    MLLCLLSIAN SLGVGTNTAE NHPKLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA ATCGKNCVIE
    GADYQGTYGV SSSGDGLTLT FVTHGQYSTN VGSRLYLMKD EKTYQMFNLN GKEFTFTVDV SNLPCGLNGA LYFVQMDSDG
    GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN GKYGSCCSEM DIWEANSQAT AYTPHVCDKL
    EQTRCSGSSC GHTGGGERFS SSCDPDGCDF NSWRMGNKTF WGPGLIVDTK KPVQVVTQFV GSGNSCTEIK RKYVQGGKVI
    DNSMSNIAGM SKQYNSVSDD FCQAQKKAFG DNDSFTKHGG FRQLGATLGK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP
    GSDRGPCKTS SGIPADVESQ AASSSVKYSD IRFGAIDSTY K
    MLCIGLISFV YSLGVGTNTA ETHPKLTWKN GGQTVNGEVT VDSNWRWTHT KGSTKNCYDG NLWSKDLCPD AATCGKNCVL
    EGADYSGTYG VTSSGNALTL KFVTHGSYST NVGSRLYLMK DEKTYQMFNL NGKEFTFTVD VSNLPCGLNG ALYHVNMDED
    GGTKRYPDNE AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG NGKYGSCCSE MDIWEANSIC SAVTPHVCDT
    LQQTRCQGTA CGENGGGSRF GSSCDPDGCD FNSWRMGNKT FYGPGLIVDT KSKFTVVTQF VGSPVTEIKR KYVQNGKVIE
    NSFSNIEGMD KFNSISDKFC TAQKKAFGDT DSFTKHGGFK QLGSALAKGM VLVLSLWDDH TVNMLWLDSV YPTNSKKAGS
    DRGPCPTTSG VPADVESKSA NANVIYSDIR FGAIDSTYK
    MLLCLLGIAS SLDAGTNTAE NHPQLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA ATCGQNCVIE
    GADYQGTYGV SASGNALTLT FVTHGQYSTN VGSRLYLLKD EKTYQIFNLI GKEFTFTVDV SNLPCGLNGA LYFVQMDADG
    GTAKYSDNKA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN GRYGSCCSEM DVWEANSLAT AYTPHVCDKL
    EQVRCDGRAC GQNGGGDRFS SSCDPDGCDF NSWRLGNKTF WGPGLIVDTK QPVQVVTQWV GSGTSVTEIK RKYVQGGKVI
    DNSFTKLDSL TKQYNSVSDE FCVAQKKAFG DNDSFTKHGG FRQLGATLAK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP
    GADRGPCKTS SGVPADVESQ AASSSVKYSD IRFGAIDSTY K
    MLGIGFVCIV YSLGVGTNTA ENHPKLTWKN SGSTTNGEVT VDSNWRWTHT KGTTKNCYDG NLWSKDLCPD AATCGKNCVL
    EGADYSGTYG VTSSGDALTL KFVTHGSYST NVGSRLYLLK DEKTYQIFNL NGKEFTFTVD VSNLPCGLNG ALYFVNMDAD
    GGTGRYPDNQ AGAKYGTGYC DAQCPTDLKF INGIPNSDGW KPQSNDKNSG NGKYGSCCSE MDIWEANSLA TAVTPHVCDQ
    VGQTRCEGRA CGENGGGDRF GSSCDPDGCD FNSWRLGNKT FWGPGLIVDT KKPVTVVTQF VGSPVTEIKR KYVQGGKVIE
    NSYTNIEGLD KFNSISDKFC TAQKKAFGDN DSFIKHGGFR QLGQSFTKGQ VLVLSLWDDH TVNMLWLDSV YPTNSKKPG
    DRGPCPTSSG VPADVESKNA GSSVKYSDIR FGSIDSTYK
    MATLVGILVS LFALEVALEI GTQTSESHPS LSWELNGQRQ TGSIVIDSNW RWLHDSGTTN CYDGNEWSSD LCPDPEKCSQ
    NCYLEGADYS GTYGISSSGN SLQLGFVTKG SYSTNIGSRV YLLKDENTYA TFKLKNKEFT FTADVSNLPC GLNGALYFVA
    MPADGGKSKY PLAKPGAKYG MGYCDAQCPH DMKFINGEAN ILDWKPSSND ENAGAGRYGT CCTEMDIWEA NSQATAYTVH
    ACSKNARCEG TECGDDDGRY NGICDKDGCD FNSWRWGNKT FFGPNLIVDS SKPVTVVTQF IGDPLTEIRR IYVQGGKVIQ
    NSFTNISGVA SVDSITDAFC NENKVATGDT NDFKAKGGMS GFSKALDTEV VLVLSLWDDH TANMLWLDST YPTDSSALGA
    SRGPCAITSG EPKDVESASA NASVKFSDIK FGAIDSTY
    MLTLVYFLLS LVVSLEIGTQ QSESHPQLSW QNGSSSVSGS IVLDSNWRWV HDSGTTNCYD GNLWSTDLCP SSDTCTSKCY
    IEGADYSGTY GITSSGSKLT LKFVTKGSYS TNIGSRVYLL KDENTYETFK LKNKEFTFTV DDSKLDCGLN GALYFVAMDA
    DGGKAKYSSF KPGAKYGMGY CDAQCPHDMK FISGKANVDD WKPQDNDENS GNGKLGTCCS EMDIWEGNAK SQAYTVHACT
    KSGQYECTGQ QCGDTDSGDR FKGTCDKDGC DYASWRWGDQ SFYGEGKTVD TKQPLTVVTQ FVGDPLTEIR RVYVQGGKTI
    NNSKTSNLAD TYDSITDKFC DATKEASGDT NDFKAKGAMS GFSTNLNTAQ VLVMSLWDDH TANMLWLDST YPTDSTKTGA
    SRGPCAVSSG VPKDVESQHG DATVIYSDIK FGAINSTFKW N
    MLSLVSIFLV GLGFSLGVGT QQSESHPSLS WQNCSAKGSC QSVSGSIVLD SNWRWLHDSG TTNCYDGNEW STDLCPDAST
    CDKNCYIEGA DYSGTYGITS SGAQLKLGFV TKGSYSTNIG SRVYLLRDES HYQLFKLKNH EFTFTVDDSQ LPCGLNGALY
    FVEMAEDGGA KPGAQYGMGY CDAQCPHDMK FITGEANVKD WKPQETDENA GNGHYGACCT EMDIWEANSQ ATAYTPHICS
    KTGIYRCEGT ECGDNDANQR YNGVCDKDGC DFNSYRLGNK TFWGPGLTVD SNKAMIVVTQ FTTSNNQDSG ELSEIRRIYV
    QGGKTIQNSD TNVQGITTTN KITQAFCDET KVTFGDTNDF KAKGGFSGLS KSLESGAVLV LSLWDDHSVN MLWLDSTYPT
    DSAGKPGADR GPCAITSGDP KDVESQSPNA SVTFSDIKFG PIDSTY
    MILALLVLGK SLGIATNQAE THPKLTWTRY QSKGSGSTVN GEIVLDSNWR WTHHSGTNCY DGNTWSTSLC PDPTTCSNNC
    DLDGADYPGT YGISTSGNSL KLGFVTHGSY STNIGSRVYL LKDTKSYEMF KLKNKEFTFT VDDSKLPCGL NGALYFVAMD
    EDGGVSKNSI NKAGAQYGTG YCDAQCPHDM KFINGEANVL DWKPQSNDEN SGNGRYGACC TEMDIWEANS MATAYTPHVC
    TVTGLRRCEG TECGDTDNDQ RYNGICDKDG CDFNSYRLGD KSFFGVGKTV DSSKPVTVVT QFVTSNGQDS GTLSEIRRKY
    VQGGKVIENS KVNVAGITAG NSVTDTFCNE QKKAFGDNND FEKKGGFGAL SKQLVAGMVL VLSLWDDHSV NMLWLDSTYP
    TNAAAGALGT ERGACATSSG KPSDVESQSP DATVTFSDIK FGPIDSTY
    MLCVGLFGLV YSIGVGTNTQ ETHPKLSWKQ CSSGGSCTTQ QGSVVIDSNW RWTHSTKDLT NCYDGNLWDS TLCPDGTTCS
    KNCVLEGADY SGTYGITSSG DSLTLKFVTH GSYSTNVGSR LYLLKDDNNY QIFNLAGKEF TFTVDVSNLP CGLNGALYFV
    EMDQDGGKGK HKENEAGAKY GTGYCDAQCP TDLKFIDGIA NSDGWKPQDN DENSGNGKYG SCCSEMDIWE ANSLATAYTP
    HVCDTKGQKR CQGTACGENG GGDRFGSECD PDGCDFNSWR QGNKSFWGPG LIIDTKKSVQ VVTQFIGSGS SVTEIRRKYV
    QNGKVIENSY STISGTEKYN SISDDYCNAQ KKAFGDTNSF ENHGGFKRFS QHIQDMVLVL SLWDDHTVNM LWLDSVYPTN
    SNKPGADRGP CETSSGVPAD VESKSASASV KYSDIRFGPI DSTYK
    MLLCLWSIAY SLGVGTNTAE NHPKLSWKNG GSSVSGSVTV DANWRWTHIK GETKNCYDGN LWSDKYCPDA ATCGKNCVIE
    GADYQGTYGV SASGDGLTLT FVTHGQYSTN VGSRLYLMKD EKTYQIFNLN GKEFTFTVDV SNLPCGLNGA LYFVQMDSDG
    GMAKYPDNQA GAKYGTGYCD AQCPTDLKFI NGIPNSDGWK PQKNDKNSGN GKYGSCCSEM DIWEANSQAT AYTPHVCDKL
    EQTRCSGSAC GHTGGGERFS SSCDPDGCDF NSWRMGNKTF WGPGLIVDTK KPVQVVTQFV GSGNSCTEIK RKYVQGGKVI
    DNSMSNIAGM TKQYNSVSDD FCQAQKKAFG DNDSFTKHGG FRQLGATLGK GHVLVLSLWD DHDVNMLWLD SVYPTNSNKP
    GSDRGPCKTS SGIPADVESQ AASSSVKYSD IRFGAIDSTY K
    SEQ ID NO: 299 QSACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN CCLDGAAYAS
    TYGVTTSGNS LSIGFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL NGALYFVSMD ADGGVSKYPT
    NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC SEMDIWEANS ISEALTPHPC TTVGQEICEG
    DGCGGTYSDN AYGGTCDPDG CDWNPYRLGN TSFYGPGSSF TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS
    YSGNELNDDY CTAEEAEFGG SSFSDKGGLT QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVRGSCSTS
    SGVPAQVESQ SPNAKVTFSN IKFGPIGSTG NPSGGNPPGG NPPGTTTTRR PATTTGSSPG PTQSHYGQCG GIGYSGPTVC
    ASGTTCQVLN PYYSQCL
    SEQ ID NO: 300 QSACTLQSET HPPLTWQKCS SGGTCTQQTG SVVIDANWRW THATNSSTNC YDGNTWSSTL CPDNETCAKN CCLDGAAYAS
    TYGVTTSGNS LSIGFVTQSA QKNVGARLYL MASDTTYQEF TLLGNEFSFD VDVSQLPCGL NGALYFVSMD ADGGVSKYPT
    NTAGAKYGTG YCDSQCPRDL KFINGQANVE GWEPSSNNAN TGIGGHGSCC SEMDIWEANS ISEALTPHPC TTVGQEICEG
    DGCGGTYSDN RYGGTCDPDG CDWNPYRLGN TSFYGPGSSF TLDTTKKLTV VTQFETSGAI NRYYVQNGVT FQQPNAELGS
    YSGNELNDDY CTAEEAEFGG SSFSDKGGLT QFKKATSGGM VLVMSLWDDY YANMLWLDST YPTNETSSTP GAVAGSCSTS
    SGVPAQVESQ SPNAKVTFSN IKFGPIGSTG NPSGGNPPGG NPPGTTTTRR PATTTGSSPG PTQSHYGQCG GIGYSGPTVC
    ASGTTCQVLN PYYSQCL
    SEQ ID NO: 301 MSALNSFNMY KSALILGSLL ATAGAQQIGT YTAETHPSLS WSTCKSGGSC TTNSGAITLD ANWRWVHGVN TSTNCYTGNT
    WNTAICDTDA SCAQDCALDG ADYSGTYGIT TSGNSLRLNF VTGSNVGSRT YLMADNTHYQ IFDLLNQEFT FTVDVSHLPC
    GLNGALYFVT MDADGGVSKY PNNKAGAQYG VGYCDSQCPR DLKFIAGQAN VEGWTPSSNN ANTGLGNHGA CCAELDIWEA
    NSISEALTPH PCDTPGLSVC TTDACGGTYS SDKYAGTCDP DGCDFNPYRL GVTDFYGSGK TVDTTKPITV VTQFVTDDGT
    STGTLSEIRR YYVQNGVVIP QPSSKISGVS GNVINSDFCD AEISTFGETA SFSKHGGLAK MGAGMEAGMV LVMSLWDDYS
    VNMLWLDSTY PTNATGTPGA AKGSCPTTSG DPKTVESQSG SSYVTFSDIR VGPFNSTFSG GSSTGGSSTT TASGTTTTKA
    SSTSTSSTST GTGVAAHWGQ CGGQGWTGPT TCASGTTCTV VNPYYSQCL
    SEQ ID NO: 302 QQIGTYTAET HPSLSWSTCK SGGSCTTNSG AITLDANWRW VHGVNTSTNC YTGNTWNTAI CDTDASCAQD CALDGADYSG
    TYGITTSGNS LRLNFVTGSN VGSRTYLMAD NTHYQIFDLL NQEFTFTVDV SHLPCGLNGA LYFVTMDADG GVSKYPNNKA
    GAQYGVGYCD SQCPRDLKFI AGQANVEGWT PSSNNANTGL GNHGACCAEL DIWEANSISE ALTPHPCDTP GLSVCTTDAC
    GGTYSSDKYA GTCDPDGCDF NPYRLGVTDF YGSGKTVDTT KPITVVTQFV TDDGTSTGTL SEIRRYYVQN GVVIPQPSSK
    ISGVSGNVIN SDFCDAEIST FGETASFSKH GGLAKMGAGM EAGMVLVMSL WDDYSVNMLW LDSTYPTNAT GTPGAAKGSC
    PTTSGDPKTV ESQSGSSYVT FSDIRVGPFN STFSGGSSTG GSSTTTASGT TTTKASSTST SSTSTGTGVA AHWGQCGGQG
    WTGPTTCASG TTCTVVNPYY SQCL

Claims (16)

What is claimed is:
1. A polypeptide comprising a variant cellobiohydrolase I (“CBH I”) catalytic domain as compared to a reference CBH I catalytic domain, comprising:
(a) a substitution at the amino acid position corresponding to R268 of T. reesei CBH I (“R268 substitution”);
(b) a substitution at the amino acid position corresponding to R411 of T. reesei CBH I (“R411 substitution”); or
(c) both an R268 substitution and an R411 substitution,
wherein substitution (a), (b) or (c) decreases product inhibition as compared to the reference CBH I catalytic domain.
2. A method for producing ethanol, comprising:
(a) treating biomass with a composition according to any one of claims 37 to 43 or with a fermentation broth according to claim 1, thereby producing monosaccharides; and
(b) culturing a fermenting microorganism in the presence of the monosaccharides produced in step (a) under fermentation conditions, thereby producing ethanol.
3. The method of claim 2, further comprising, prior to step (a), pretreating the biomass.
4. The method of claim 2, wherein said fermenting microorganism is a bacterium or a yeast.
5. The method of claim 4, wherein said fermenting microorganism is a bacterium selected from Zymomonas mobilis, Escherichia coli and Klebsiella oxytoca.
6. The method of claim 4, wherein said fermenting microorganism is a yeast selected from Saccharomyces cerevisiae, Saccharomyces uvarum, Kluyveromyces fragilis, Kluyveromyces lactis, Candida pseudotropicalis, and Pachysolen tannophilus.
7. The method of claim 2, wherein said biomass is corn stover, bagasses, sorghum, giant reed, elephant grass, miscanthus, Japanese cedar, wheat straw, switchgrass, hardwood pulp, softwood pulp, crushed sugar cane, energy cane, or Napier grass.
8. A method for generating a nucleic acid that encodes a product tolerant variant CBH I polypeptide, comprising modifying the nucleotide sequence of a CBH I-encoding nucleic acid so that the nucleic acid encodes a variant CBH I polypeptide, wherein said variant CBH I polypeptide comprises:
(i) an R268 substitution;
(ii) an R411 substitution; or
(iii) both an R268 substitution and an R411 substitution,
thereby generating a nucleic acid that encodes a product tolerant variant CBH I polypeptide.
9. The method of claim 8, wherein the modification is by site directed mutagenesis.
10. The method of claim 8, wherein variant CBH I polypeptide comprises an R268 substitution.
11. The method of claim 10, wherein the R268 substituent is a lysine.
12. The method of claim 10, wherein the R268 substituent is an alanine.
13. The method of claim 8, which comprises an R411 substitution.
14. The method of claim 13, wherein the R411 substituent is a lysine.
15. The method of claim 13, wherein the R411 substituent is an alanine.
16. A method for producing ethanol, comprising:
(a) treating biomass with a fermentation broth according to claim 1, thereby producing monosaccharides; and
(b) culturing a fermenting microorganism in the presence of the monosaccharides produced in step (a) under fermentation conditions, thereby producing ethanol.
US14/816,992 2010-10-06 2015-08-03 Variant cbh i polypeptides with reduced product inhibition Abandoned US20150329880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/816,992 US20150329880A1 (en) 2010-10-06 2015-08-03 Variant cbh i polypeptides with reduced product inhibition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39039210P 2010-10-06 2010-10-06
PCT/US2011/055181 WO2012048171A2 (en) 2010-10-06 2011-10-06 Variant cbh i polypeptides with reduced product inhibition
US201313824317A 2013-12-18 2013-12-18
US14/816,992 US20150329880A1 (en) 2010-10-06 2015-08-03 Variant cbh i polypeptides with reduced product inhibition

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2011/055181 Division WO2012048171A2 (en) 2010-10-06 2011-10-06 Variant cbh i polypeptides with reduced product inhibition
US13/824,317 Division US9096871B2 (en) 2010-10-06 2011-10-06 Variant CBH I polypeptides with reduced product inhibition

Publications (1)

Publication Number Publication Date
US20150329880A1 true US20150329880A1 (en) 2015-11-19

Family

ID=45002108

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/824,317 Expired - Fee Related US9096871B2 (en) 2010-10-06 2011-10-06 Variant CBH I polypeptides with reduced product inhibition
US13/824,315 Expired - Fee Related US9234216B2 (en) 2010-10-06 2011-10-06 Variant CBH I polypeptides
US14/816,992 Abandoned US20150329880A1 (en) 2010-10-06 2015-08-03 Variant cbh i polypeptides with reduced product inhibition

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/824,317 Expired - Fee Related US9096871B2 (en) 2010-10-06 2011-10-06 Variant CBH I polypeptides with reduced product inhibition
US13/824,315 Expired - Fee Related US9234216B2 (en) 2010-10-06 2011-10-06 Variant CBH I polypeptides

Country Status (8)

Country Link
US (3) US9096871B2 (en)
EP (2) EP2625268B1 (en)
JP (2) JP2014502145A (en)
AR (2) AR083355A1 (en)
BR (2) BR112013008347A2 (en)
CA (2) CA2811787A1 (en)
MY (1) MY153084A (en)
WO (2) WO2012048171A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279163B2 (en) 2011-08-31 2016-03-08 Iogen Energy Corporation Cellobiohydrolase enzymes
US20140287471A1 (en) * 2011-10-06 2014-09-25 Bp Corporation North America Inc. Variant cbh i polypeptides with reduced product inhibition
US20160122734A1 (en) * 2012-12-12 2016-05-05 Danisco Us Inc. Variants of cellobiohydrolases
CN104870643A (en) * 2012-12-12 2015-08-26 丹尼斯科美国公司 Variants of cellobiohydrolases
CA2892786A1 (en) 2012-12-12 2014-06-19 Danisco Us Inc. Variants of cellobiohydrolases
US8778641B1 (en) * 2013-02-12 2014-07-15 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
CN110628749A (en) 2013-03-08 2019-12-31 诺维信公司 Cellobiohydrolase variants and polynucleotides encoding same
WO2015182570A1 (en) * 2014-05-27 2015-12-03 国立研究開発法人産業技術総合研究所 Cellobiohydrolase having improved thermal stability
WO2016037096A1 (en) 2014-09-05 2016-03-10 Novozymes A/S Carbohydrate binding module variants and polynucleotides encoding same
DK3191587T3 (en) 2014-09-08 2019-10-14 Novozymes As Cellobiohydrolase variants and polynucleotides encoding them
US10557127B2 (en) 2015-02-24 2020-02-11 Novozymes A/S Cellobiohydrolase variants and polynucleotides encoding same
ES2589186B1 (en) 2015-04-08 2017-09-05 Abengoa Bioenergía Nuevas Tecnologías, S.A. IMPROVED CELOBIOHIDROLASA VARIANTS 1
EP3433358B1 (en) 2016-03-24 2022-07-06 Novozymes A/S Cellobiohydrolase variants and polynucleotides encoding same
CN111690702A (en) * 2020-06-23 2020-09-22 中国科学院过程工程研究所 Method for degrading plant biomass by cooperation of hydrothermal pretreatment and high-temperature mixed enzyme
EP4447989A1 (en) * 2021-12-16 2024-10-23 Novozymes A/S Oral care composition comprising enzymes

Family Cites Families (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366558A (en) 1979-03-23 1994-11-22 Brink David L Method of treating biomass material
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US5021246A (en) 1984-03-30 1991-06-04 Anheuser-Busch, Incorporated Step mashing process for producing low alcohol beer
US4885249A (en) 1984-12-05 1989-12-05 Allelix, Inc. Aspergillus niger transformation system
US4943674A (en) 1987-05-26 1990-07-24 Calgene, Inc. Fruit specific transcriptional factors
CH0229046H1 (en) 1985-03-30 1998-07-15 Stuart Alan Kauffman METHOD FOR OBTAINING DNA, RNA, PEPTIDES, POLYPEPTINIQUE. DES OR PROTEINS BY MEANS OF A DNA RECOMBINANT TECH
US5198345A (en) 1985-04-15 1993-03-30 Gist-Brocades N.V. Vectors in use in filamentous fungi
US5364770A (en) 1985-08-29 1994-11-15 Genencor International Inc. Heterologous polypeptides expressed in aspergillus
US5766912A (en) 1986-03-17 1998-06-16 Novo Nordisk A/S Humicola lipase produced in aspergillus
US5536661A (en) 1987-03-10 1996-07-16 Novo Nordisk A/S Process for the production of protein products in aspergillus
US5107065A (en) 1986-03-28 1992-04-21 Calgene, Inc. Anti-sense regulation of gene expression in plant cells
DE3623533A1 (en) 1986-07-12 1988-01-21 Beiersdorf Ag PYRIDO (1,8) NAPHTHYRIDINONE, METHOD FOR THE PRODUCTION AND USE THEREOF, AND PREPARATIONS CONTAINING THESE COMPOUNDS
NZ221259A (en) 1986-07-31 1990-05-28 Calgene Inc Seed specific transcriptional regulation
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US4788066A (en) 1987-12-14 1988-11-29 Grain Processing Corporation Preparation of low alcohol beer
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US6054270A (en) 1988-05-03 2000-04-25 Oxford Gene Technology Limited Analying polynucleotide sequences
NZ230375A (en) 1988-09-09 1991-07-26 Lubrizol Genetics Inc Synthetic gene encoding b. thuringiensis insecticidal protein
US5217879A (en) 1989-01-12 1993-06-08 Washington University Infectious Sindbis virus vectors
ES2164633T3 (en) 1989-02-24 2002-03-01 Monsanto Technology Llc SYNTHETIC VEGETABLE GENES AND PROCEDURE FOR PREPARATION.
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
DK494089D0 (en) 1989-10-06 1989-10-06 Novo Nordisk As
US5866406A (en) 1990-02-02 1999-02-02 The Board Of Regents Of The University Of Nebraska Oxidase-producing aspergillus niger
US5593963A (en) 1990-09-21 1997-01-14 Mogen International Expression of phytase in plants
KR100225087B1 (en) 1990-03-23 1999-10-15 한스 발터라벤 The expression of phytase in plants
US5326477A (en) 1990-05-07 1994-07-05 Bio-Sep, Inc. Process for digesting solid waste
DK115890D0 (en) * 1990-05-09 1990-05-09 Novo Nordisk As ENZYME
US5639949A (en) 1990-08-20 1997-06-17 Ciba-Geigy Corporation Genes for the synthesis of antipathogenic substances
CA2096843C (en) 1990-11-23 2007-08-07 Kathleen D'halluin Process for transforming monocotyledonous plants
AU9166691A (en) 1990-12-20 1992-07-22 Ixsys, Inc. Optimization of binding proteins
NL9100050A (en) 1991-01-11 1992-08-03 Heineken Technische Beheer Bv PROCESS FOR THE CONTINUOUS PREPARATION OF WORT.
US5405624A (en) 1991-02-14 1995-04-11 Bio-Technical Resources Process for producing a product with an intensified beer flavor
DE69232666T2 (en) 1991-04-01 2003-03-20 Merck & Co., Inc. GENES INFLUENCING AND USING THE PROTEOLYTIC ACTIVITY OF PICHIA
GB9114259D0 (en) 1991-07-02 1991-08-21 Ici Plc Plant derived enzyme and dna sequences
UA48104C2 (en) 1991-10-04 2002-08-15 Новартіс Аг Dna fragment including sequence that codes an insecticide protein with optimization for corn, dna fragment providing directed preferable for the stem core expression of the structural gene of the plant related to it, dna fragment providing specific for the pollen expression of related to it structural gene in the plant, recombinant dna molecule, method for obtaining a coding sequence of the insecticide protein optimized for corn, method of corn plants protection at least against one pest insect
US5632957A (en) 1993-11-01 1997-05-27 Nanogen Molecular biological diagnostic systems including electrodes
IL104704A0 (en) 1992-02-13 1993-06-10 Gist Brocades Nv Stabilized aqueous liquid formulation of phytase
JPH05236997A (en) 1992-02-28 1993-09-17 Hitachi Ltd Chip for catching polynucleotide
GB9216151D0 (en) 1992-07-29 1992-09-09 Ici Plc Containment of plant germplasm
DK0677097T3 (en) 1992-12-31 1997-02-03 Metallgesellschaft Ag Process for making beer
CA2156720A1 (en) 1993-02-26 1994-09-01 Jean C. Kridl Geminivirus-based gene expression system
US6045996A (en) 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US6468742B2 (en) 1993-11-01 2002-10-22 Nanogen, Inc. Methods for determination of single nucleic acid polymorphisms using bioelectronic microchip
DK131193D0 (en) 1993-11-23 1993-11-23 Novo Nordisk As
US5571703A (en) 1993-12-23 1996-11-05 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial ethanol production process
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5824531A (en) 1994-03-29 1998-10-20 Novid Nordisk Alkaline bacilus amylase
US5750870A (en) 1994-06-17 1998-05-12 Agritope, Inc. Plant genetic transformation methods and transgenic plants
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5582681A (en) 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5830645A (en) 1994-12-09 1998-11-03 The Regents Of The University Of California Comparative fluorescence hybridization to nucleic acid arrays
US5705369A (en) 1994-12-27 1998-01-06 Midwest Research Institute Prehydrolysis of lignocellulose
JP3307947B2 (en) 1995-01-26 2002-07-29 ノボザイムス アクティーゼルスカブ Animal feed additive containing xylanase
US6093562A (en) 1996-02-05 2000-07-25 Novo Nordisk A/S Amylase variants
US5959098A (en) 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
JPH11500922A (en) 1995-03-03 1999-01-26 ノバルティス・アクチエンゲゼルシャフト Regulation of gene expression in plants by receptor-mediated transactivation in the presence of chemical ligands
EP0831854A4 (en) 1995-06-06 2001-01-24 Isis Pharmaceuticals Inc Oligonucleotides having phosphorothioate linkages of high chiral purity
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5985662A (en) 1995-07-13 1999-11-16 Isis Pharmaceuticals Inc. Antisense inhibition of hepatitis B virus replication
AU6513096A (en) 1995-07-19 1997-02-18 Novo Nordisk A/S Treatment of fabrics
WO1997016533A1 (en) 1995-10-31 1997-05-09 The Regents Of The University Of California Mammalian artificial chromosomes and methods of using same
US5965408A (en) 1996-07-09 1999-10-12 Diversa Corporation Method of DNA reassembly by interrupting synthesis
CN1203627A (en) 1995-12-07 1998-12-30 诺沃挪第克公司 Selective inactivation of enzyme activities
US6171820B1 (en) 1995-12-07 2001-01-09 Diversa Corporation Saturation mutagenesis in directed evolution
US6537776B1 (en) 1999-06-14 2003-03-25 Diversa Corporation Synthetic ligation reassembly in directed evolution
US6352842B1 (en) 1995-12-07 2002-03-05 Diversa Corporation Exonucease-mediated gene assembly in directed evolution
US6238884B1 (en) 1995-12-07 2001-05-29 Diversa Corporation End selection in directed evolution
US6358709B1 (en) 1995-12-07 2002-03-19 Diversa Corporation End selection in directed evolution
US6740506B2 (en) 1995-12-07 2004-05-25 Diversa Corporation End selection in directed evolution
US6361974B1 (en) 1995-12-07 2002-03-26 Diversa Corporation Exonuclease-mediated nucleic acid reassembly in directed evolution
US5830696A (en) 1996-12-05 1998-11-03 Diversa Corporation Directed evolution of thermophilic enzymes
US6022963A (en) 1995-12-15 2000-02-08 Affymetrix, Inc. Synthesis of oligonucleotide arrays using photocleavable protecting groups
US6013440A (en) 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
US6025155A (en) 1996-04-10 2000-02-15 Chromos Molecular Systems, Inc. Artificial chromosomes, uses thereof and methods for preparing artificial chromosomes
US6197070B1 (en) 1996-05-15 2001-03-06 The Procter & Gamble Company Detergent compositions comprising alpha combination of α-amylases for malodor stripping
WO1997046313A1 (en) 1996-06-07 1997-12-11 Eos Biotechnology, Inc. Immobilised linear oligonucleotide arrays
US5833857A (en) 1996-06-07 1998-11-10 Lytal Family Trust Mobile Bioreactor and Biogenerator
AU4067297A (en) 1996-08-16 1998-03-06 International Paper Company Enzymatic freeness enhancement
US6326341B1 (en) 1996-09-11 2001-12-04 The Procter & Gamble Company Low foaming automatic dishwashing compositions
US6451063B1 (en) 1996-09-25 2002-09-17 Genencor International, Inc. Cellulase for use in industrial processes
US6069122A (en) 1997-06-16 2000-05-30 The Procter & Gamble Company Dishwashing detergent compositions containing organic diamines for improved grease cleaning, sudsing, low temperature stability and dissolution
US6326204B1 (en) 1997-01-17 2001-12-04 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
DE19703364A1 (en) 1997-01-30 1998-08-06 Henkel Ecolab Gmbh & Co Ohg Paste-like detergent and cleaning agent
CN1089112C (en) 1997-03-18 2002-08-14 2B公开股份有限公司 Method for using plant biomass and screw extruder for carrying out said method
JP4307563B2 (en) 1997-04-07 2009-08-05 ユニリーバー・ナームローゼ・ベンノートシャープ Agrobacterium-mediated transformation of filamentous fungi, especially those belonging to the genus Aspergillus
AUPO758297A0 (en) 1997-06-27 1997-07-24 Rowe, James Baber Control of acidic gut syndrome
US6826296B2 (en) 1997-07-25 2004-11-30 Affymetrix, Inc. Method and system for providing a probe array chip design database
CA2212304A1 (en) 1997-08-04 1999-02-04 Guy W. Miller Treatment of animal waste
US6001643A (en) 1997-08-04 1999-12-14 C-Med Inc. Controlled hydrodynamic cell culture environment for three dimensional tissue growth
AU8908198A (en) 1997-08-15 1999-03-08 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
CN1249418C (en) 1997-09-11 2006-04-05 生物风险公司 Method of making high density arrays
US6465178B2 (en) 1997-09-30 2002-10-15 Surmodics, Inc. Target molecule attachment to surfaces
CA2308119C (en) 1997-10-30 2014-06-03 Novo Nordisk A/S .alpha.-amylase mutants
DE69812403T2 (en) 1997-11-10 2004-01-29 Procter & Gamble METHOD FOR PRODUCING A DETERGENT TABLET
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US20030013154A1 (en) 1998-02-24 2003-01-16 Chiron Corporation Pichia secretory leader for protein expression
CA2323638A1 (en) 1998-04-03 1999-10-14 Phylos, Inc. Addressable protein arrays
AU3408199A (en) 1998-05-01 1999-11-23 Novo Nordisk A/S Enhancers such as n-hydroxyacetanilide
US6048695A (en) 1998-05-04 2000-04-11 Baylor College Of Medicine Chemically modified nucleic acids and methods for coupling nucleic acids to solid support
DE19824705A1 (en) 1998-06-03 1999-12-09 Henkel Kgaa Detergents and cleaning agents containing amylase and protease
JP4335995B2 (en) 1998-07-22 2009-09-30 昭 神谷 Environmentally friendly granular cleaning composition
GB2340755B (en) 1998-08-24 2002-09-25 Cannon Rubber Ltd Breast pump insert
US6316245B1 (en) 1998-09-16 2001-11-13 Biongene Co., Ltd. Mutant cells of Pichia
WO2000015899A1 (en) 1998-09-17 2000-03-23 Novozymes North America, Inc. Methods for deinking and decolorizing printed paper
US6277628B1 (en) 1998-10-02 2001-08-21 Incyte Genomics, Inc. Linear microarrays
US6277489B1 (en) 1998-12-04 2001-08-21 The Regents Of The University Of California Support for high performance affinity chromatography and other uses
US7220542B2 (en) 2000-07-17 2007-05-22 Van Den Brink Johannes Maarten Expression cloning in filamentous fungi
EP1142992A4 (en) * 1998-12-24 2003-05-14 Takara Bio Inc Polypeptides
US6511824B1 (en) 1999-03-17 2003-01-28 Exelixis, Inc. Nucleic acids and polypeptides of invertebrate TWIK channels and methods of use
US6309871B1 (en) 1999-03-31 2001-10-30 Novozymes A/S Polypeptides having alkaline α-amylase activity
US6221653B1 (en) 1999-04-27 2001-04-24 Agilent Technologies, Inc. Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids
JP4257759B2 (en) * 1999-07-06 2009-04-22 明治製菓株式会社 Novel promoter and protein expression method using the same
US8637293B2 (en) * 1999-07-13 2014-01-28 Alliance For Sustainable Energy, Llc Cellobiohydrolase I enzymes
US7375197B2 (en) * 2002-01-14 2008-05-20 Midwest Research Institute Cellobiohydrolase I gene and improved variants
US6653151B2 (en) 1999-07-30 2003-11-25 Large Scale Proteomics Corporation Dry deposition of materials for microarrays using matrix displacement
US6409841B1 (en) 1999-11-02 2002-06-25 Waste Energy Integrated Systems, Llc. Process for the production of organic products from diverse biomass sources
US20010008765A1 (en) 1999-12-06 2001-07-19 Fuji Photo Film Co., Ltd. DNA chip and reactive solid carrier
US6531644B1 (en) 2000-01-14 2003-03-11 Exelixis, Inc. Methods for identifying anti-cancer drug targets
EP1276869A2 (en) 2000-01-21 2003-01-22 The Scripps Research Institute Methods and compositions to modulate expression in plants
US6656721B1 (en) 2000-08-08 2003-12-02 Roche Vitamins, Inc. Polynucleotide portions of the biotin operon from B. subtilis for use in enhanced fermentation
US6423145B1 (en) 2000-08-09 2002-07-23 Midwest Research Institute Dilute acid/metal salt hydrolysis of lignocellulosics
EP1332153A4 (en) 2000-10-12 2006-01-11 Exelixis Inc Human ect2 and methods of use
AU2002251724B2 (en) 2000-10-24 2007-06-21 Syngenta Participations Ag Control of gene expression in plants
US6309872B1 (en) 2000-11-01 2001-10-30 Novozymes Biotech, Inc Polypeptides having glucoamylase activity and nucleic acids encoding same
US6642019B1 (en) 2000-11-22 2003-11-04 Synthecan, Inc. Vessel, preferably spherical or oblate spherical for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
EP1390468A4 (en) 2001-04-23 2004-09-22 Elitra Pharmaceuticals Inc Identification of essential genes of aspegillus fumigatus and methods of use
WO2003012071A2 (en) 2001-08-03 2003-02-13 Elitra Pharmaceuticals, Inc. Nucleic acids of aspergillus fumigatus encoding industrial enzymes and methods of use
CN1821412A (en) 2001-08-27 2006-08-23 辛根塔参与股份公司 Self processing plants and plant parts
US6673595B2 (en) 2001-08-27 2004-01-06 Biocrystal, Ltd Automated cell management system for growth and manipulation of cultured cells
JP2003070458A (en) 2001-09-04 2003-03-11 Mitsubishi Heavy Ind Ltd Three-dimensional clinostat, cell culture apparatus, organism raising apparatus and material forming apparatus
JP2003070464A (en) 2001-09-04 2003-03-11 Mitsubishi Heavy Ind Ltd Method for culturing cell, method for producing artificial organ and the resultant artificial organ
EP1485408A2 (en) 2002-03-13 2004-12-15 Bayer CropScience S.A. Mutagenesis of aspergillus fungi and genes essential for growth
US6776979B2 (en) 2002-12-30 2004-08-17 Marvin B. Frager Periodontal treatment compound and method of use
JP2004236514A (en) 2003-02-04 2004-08-26 Hitachi Ltd Culture apparatus
US7604987B2 (en) 2003-02-06 2009-10-20 National University Of Singapore Bioreactor for growing cell or tissue cultures
WO2004078919A2 (en) * 2003-02-27 2004-09-16 Midwest Research Institute Superactive cellulase formulation using cellobiohydrolase-1 from penicillium funiculosum
US20040231060A1 (en) 2003-03-07 2004-11-25 Athenix Corporation Methods to enhance the activity of lignocellulose-degrading enzymes
US6893849B2 (en) 2003-03-31 2005-05-17 Council Of Scientific And Industrial Research Fermentation process for production of xylitol from Pichia sp
EP1613761B1 (en) 2003-03-31 2009-09-02 Novozymes Inc. Methods for producing biological substances in enzyme-deficient mutants of aspergillus niger
JP5427342B2 (en) * 2003-04-01 2014-02-26 ジェネンコー・インターナショナル・インク Mutant Humicola Grisea CBH1.1
WO2005012341A2 (en) 2003-07-30 2005-02-10 Zymogenetics, Inc. Pichia methanolica secretory signal
US7884261B2 (en) 2004-06-30 2011-02-08 CERES,Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant growth rate and biomass in plants
US20050227930A1 (en) 2004-04-08 2005-10-13 Kgk Synergize Inc. Cholesterol lowering combination
JP4752047B2 (en) 2004-06-30 2011-08-17 国立大学法人北海道大学 Method for producing cell culture substrate and cell culture method
US7378256B2 (en) 2004-11-18 2008-05-27 Genencor International, Inc. Aspergillus niger promoter for expressing genes in host cells
JP4563782B2 (en) 2004-11-26 2010-10-13 株式会社日立製作所 Incubator
EP1856263A1 (en) 2005-03-01 2007-11-21 DSMIP Assets B.V. Aspergillus promotors for expressing a gene in a fungal cell
KR20070122197A (en) 2005-03-22 2007-12-28 산토리 가부시키가이샤 Ventilating/stirring culture tank
CN101160409B (en) 2005-04-12 2013-04-24 纳幕尔杜邦公司 Process for biomass treatment for obtaining fermentable sugars
EP1932905A4 (en) 2005-10-05 2010-01-06 Asahi Breweries Ltd Method of producing fungal culture
WO2007094852A2 (en) * 2006-02-10 2007-08-23 Verenium Corporation Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them
ITMI20061843A1 (en) 2006-09-27 2008-03-28 Immobiliare G M S R L FORMULATIONS OF MEDIUM CULTURALS SUITABLE FOR INDUSTRIAL APPLICATION
AR065544A1 (en) * 2007-01-30 2009-06-17 Verenium Corp ENZYMES FOR THE TREATMENT OF NUCLEIC ACID LIGNOCELLULOSICS THAT CODE AND METHODS TO PREPARE AND USE THEM
US20080311612A1 (en) 2007-06-15 2008-12-18 Pioneer Hi-Bred International, Inc. Functional Expression of Higher Plant Nitrate Transporters in Pichia Pastoris
AU2008282101A1 (en) 2007-07-31 2009-02-05 Bp Corporation North America Inc. Tailored multi-site combinatorial assembly
RU2378372C2 (en) * 2008-03-03 2010-01-10 ООО НПК "Фермтек" Genetic maker to ensure expression of target homologous and heterologous genes in cells of filamentous fungus penicillium verruculosum; used as host, method for making strain of fungus penicillium verruculosum and method for making enzymatic agent
BRPI0911966B1 (en) * 2008-05-11 2018-11-13 Univ Stellenbosch polynucleotide encoding a cellobiohydrolase
US7741075B2 (en) 2008-06-06 2010-06-22 Board Of Regents Of The University Of Nebraska Pichia pastoris PIR1 secretion signal peptide for recombinant protein expression and Pichia pastoris PIR1 and PIR2 anchor domain peptides for recombinant surface display
US8518690B2 (en) 2008-09-09 2013-08-27 Battelle Memorial Institute Production of bio-based materials using photobioreactors with binary cultures
US9012719B2 (en) * 2009-02-06 2015-04-21 Syngenta Participations Ag Modification of multidomain enzyme for expression in plants
CN106167796B (en) * 2009-11-06 2019-06-04 诺维信股份有限公司 Composition for saccharified cellulosic material
ES2549328T3 (en) 2010-02-11 2015-10-27 Süd-Chemie Ip Gmbh & Co. Kg Optimized cellulose enzymes

Also Published As

Publication number Publication date
EP2625268A2 (en) 2013-08-14
AR083355A1 (en) 2013-02-21
WO2012048171A3 (en) 2012-07-19
US20130203128A1 (en) 2013-08-08
JP2014502145A (en) 2014-01-30
BR112013008048A2 (en) 2016-06-14
MY153084A (en) 2014-12-31
WO2012048171A9 (en) 2012-08-30
US9096871B2 (en) 2015-08-04
CA2811789A1 (en) 2012-04-12
AR083354A1 (en) 2013-02-21
US20140147894A1 (en) 2014-05-29
WO2012051055A3 (en) 2012-06-28
EP2625268B1 (en) 2015-12-30
CA2811787A1 (en) 2012-04-19
WO2012051055A2 (en) 2012-04-19
JP2014502144A (en) 2014-01-30
BR112013008347A2 (en) 2016-06-14
US9234216B2 (en) 2016-01-12
WO2012048171A2 (en) 2012-04-12
EP2625269A2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
US9096871B2 (en) Variant CBH I polypeptides with reduced product inhibition
EP2076594B1 (en) Process for enzymatic hydrolysis of pretreated lignocellulosic feedstocks
EP2188381B1 (en) Enzymatic hydrolysis of lignocellulosic feedstocks using accessory enzymes
US9080163B2 (en) Cellobiohydrolase variants
US11584783B2 (en) Processes for producing a fermentation product
JP2018068319A (en) Methods for improving cellulose converting processes
CA2689910A1 (en) Compositions for degrading cellulosic material
EP2606131A1 (en) Use of glycoside hydrolase 61 family proteins in processing of cellulose
US20120276594A1 (en) Cellobiohydrolase variants
CN111094562A (en) Polypeptides having trehalase activity and their use in methods of producing fermentation products
WO2015084596A1 (en) Compositions comprising a beta-glucosidase polypeptide and methods of use
US8975058B2 (en) Endoglucanases for treatment of cellulosic material
US20140287471A1 (en) Variant cbh i polypeptides with reduced product inhibition
WO2014078546A2 (en) Variant cbh ii polypeptides with improved specific activity

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION