US20150329060A1 - Bicycle Carrier - Google Patents
Bicycle Carrier Download PDFInfo
- Publication number
- US20150329060A1 US20150329060A1 US14/711,500 US201514711500A US2015329060A1 US 20150329060 A1 US20150329060 A1 US 20150329060A1 US 201514711500 A US201514711500 A US 201514711500A US 2015329060 A1 US2015329060 A1 US 2015329060A1
- Authority
- US
- United States
- Prior art keywords
- pedal
- jaw
- receiving
- main body
- bicycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000969 carrier Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R9/00—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
- B60R9/08—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like specially adapted for sports gear
- B60R9/10—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like specially adapted for sports gear for cycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62H—CYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
- B62H3/00—Separate supports or holders for parking or storing cycles
- B62H3/10—Separate supports or holders for parking or storing cycles involving forked supports or brackets embracing the bottom part of the frame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R9/00—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
- B60R9/04—Carriers associated with vehicle roof
- B60R9/048—Carriers characterised by article-gripping, -covering,-retaining, or -locking means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R9/00—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
- B60R9/06—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like at vehicle front or rear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R9/00—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
- B60R9/08—Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like specially adapted for sports gear
Definitions
- the present invention relates generally to bicycle carriers. More specifically, the present invention is a bicycle rack that holds bicycles in a fanned out manner to prevent the bicycles from contacting with and causing damage to each other
- the bicycle can be translated (i.e. moved vertically and horizontally) and rotated by means of a cradle that receives the down tube.
- the handlebars can be offset from each other; the resulting positioning negates the issue of colliding bicycle components and resulting damage to the bicycles.
- the present invention also sufficiently offsets bicycles from a transporting vehicle, preventing any damage to the vehicle. Additionally, the present invention is simple to use, wherein bicycles can easily be mounted and removed.
- FIG. 1 is a perspective view of the present invention, wherein the secondary beam is attached to the main beam.
- FIG. 2 is a perspective view of the present invention, wherein the secondary beam is detached from the primary beam.
- FIG. 3 is a top plan view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out.
- FIG. 4 is a right side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out.
- FIG. 5 is a left side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out.
- FIG. 6 is a front elevational view of the present invention, wherein the first pedal-receiving clamp and the second pedal-receiving clamp are closed;
- FIG. 7 is a front elevational view thereof, wherein the first pedal-receiving clamp and the second pedal-receiving clamp are open.
- FIG. 8 is a top plan view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted.
- FIG. 9 is a right side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted.
- FIG. 10 is a front elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted.
- FIG. 11 is a front sectional view of the pedal arm showing the internal lock pin.
- the present invention is a bicycle rack that allows multiple bicycles to be secured in a fanned out position.
- the present invention secures the bicycles such that they do not impact each other, minimizing scrapes, bumps, and other wear and tear that normally results from placing multiple bicycles on a traditional bicycle rack.
- the present invention is provided for use with motor vehicles, being secured to a trailer hitch or similar coupling mount of a vehicle.
- the present invention comprises a mounting section 1 , a main body 2 , and a plurality of bicycle-receiving subassemblies 4 .
- the mounting section 1 is provided to couple with a corresponding part of a vehicle, most commonly a hitch.
- the mounting section 1 thus allows the present invention to be secured to the vehicle.
- the main body 2 extends away from the mounting section 1 ; this is done to provide sufficient room for one or more bicycles to be secured along the main body 2 , away from the vehicle.
- the plurality of bicycle-receiving subassemblies 4 is provided to hold one or more bicycles in a secure position, with bracing components provided for each pedal as well as the bicycle frame, i.e. the down tube. These bracing components allow the bicycles to be angled about a longitudinal (with respect to the main body 2 ) axis 9 , effectively “fanning” out the bicycles and preventing collisions between the bicycles during transport.
- the mounting section 1 and the main body 2 are preferably square tubes that are positioned perpendicular to each other.
- the mounting section 1 is terminally connected to the main body 2 , wherein the mounting section 1 is positioned at one end of the main body 2 , forming an “L” shape.
- the mounting section 1 and the main body 2 are adjacently connected to each other by means of a hitch brace 3 .
- the hitch brace 3 is adjacently connected to both the mounting section 1 and the main body 2 , and comprises a first plate 31 and a second plate 32 .
- the first plate 31 and the second plate 32 are both adjacently connected to the mounting section 1 and the main body 2 , wherein the first plate 31 and the second plate 32 are positioned opposite each other about the mounting section 1 and the main body 2 .
- the positioning of the first plate 31 and the second plate 32 on either side of the mounting section 1 and the main body 2 provides support in order to hold the mounting section 1 and the main body 2 in the “L” shape.
- the combination and configuration of the mounting section 1 and the main body 2 allows the present invention to be coupled to a vehicle, while providing ample space for receiving and securing bicycles.
- each of the plurality of bicycle-receiving subassemblies 4 is positioned along the main body 2 , wherein each of the plurality of bicycle-receiving subassemblies 4 is capable of securing a bicycle at multiple points (i.e. the pedals and the down tube).
- each of the plurality of bicycle-receiving subassemblies 4 comprises a frame-receiving cradle 41 , a first pedal-receiving clamp 50 , a second pedal-receiving clamp 60 , and a pedal arm 71 .
- the first pedal-receiving clamp 50 , the frame-receiving cradle 41 , and the pedal arm 71 are adjacently connected to the main body 2 , wherein the frame-receiving cradle 41 is positioned in between the first pedal-receiving clamp 50 and the pedal arm 71 , as depicted in FIG. 3 .
- the second pedal-receiving clamp 60 is adjacently connected to the pedal arm 71 , and is positioned along the pedal arm 71 opposite the main body 2 , wherein the pedal arm 71 horizontally and vertically offsets the second pedal-receiving clamp 60 from the first pedal-receiving clamp 50 , as depicted by FIG. 6-7 .
- the first pedal-receiving clamp 50 and the second pedal-receiving clamp 60 provide a means for supporting the pedals of the bicycle, while the frame-receiving cradle 41 supports the down tube of the bicycle.
- the pedal arm 71 is pivotally connected to the main body 2 , wherein each of the plurality of bicycle-receiving subassemblies 4 further comprises an at least one flange 81 , and the pedal arm 71 comprises a pivot block 72 , a bolt 73 , and a lock pin 74 .
- the at least one flange 81 is adjacently connected to the main body 2 and extends away from the main body 2 .
- the pivot block 72 is positioned along the pedal arm 71 opposite the second pedal-receiving clamp 60 , adjacent to the main body 2 .
- the bolt 73 traverses through the at least one flange 81 and the pivot block 72 , wherein the pedal arm 71 is pivotally connected to the main body 2 .
- the lock pin 74 engages the pivot block 72 and the at least one flange 81 , securing the pedal arm 71 in either a perpendicular or parallel position relative to the main body 2 .
- the lock pin 74 is integrated into the pivot block 72 and the at least one flange 81 as a ball detent as depicted in FIG. 11 , however, other variations are possible.
- the pivotal nature of the pedal arm 71 allows the present invention to become more compact when the pedal arm 71 is positioned parallel to the main body 2 , thus decreasing the storage size when the present invention is not in use. This can be seen by comparing FIG. 3-6 to FIG. 8-10 .
- the frame-receiving cradle 41 comprises an extension member 42 and a frame brace 46 .
- the frame brace 46 is a cradle structure that supports the down tube, while the extension member 42 is a support that offsets the frame brace 46 from the main body 2 .
- the extension member 42 is adjacently connected to the main body 2
- the frame brace 46 is adjacently connected to the extension member 42 opposite the main body 2 .
- the frame brace 46 is pivotally connected to the extension member 42 in order to support any bicycle, as the down tube of each bicycle may be angled differently.
- the frame brace 46 allows the bicycle being secured to be rotated about the longitudinal axis 9 in order to offset the handle bars of each adjacent bicycle.
- the frame brace 46 comprises a plurality of cradle sections, wherein each of the plurality of cradle sections has a different radius.
- the plurality of cradle sections further lends the frame brace 46 to being compatible with any type of bicycle.
- the extension member 42 is a telescoping structure that allows the height of the frame brace 46 to be adjusted, wherein the extension member 42 comprises a cradle base 43 , a cradle arm 44 , and an adjustment pin 45 .
- the cradle base 43 is adjacently connected to the main body 2 and the cradle arm 44 is slidably connected to the cradle base 43 , while the frame brace 46 is adjacently connected to the cradle arm 44 opposite the main body 2 .
- the cradle arm 44 can be positioned into or around the cradle base 43 .
- the cradle base 43 is positioned perpendicular to the main body 2 , such that the frame brace 46 moves in a vertical direction when the cradle arm 44 is slid along the cradle base 43 .
- the ability to adjust the height of the frame brace 46 further enhances the ability of the present invention to support any bicycle and assists in offsetting the handlebars of adjacent bicycles from each other.
- the adjustment pin 45 is used to lock the cradle arm 44 in position along the cradle base 43 , wherein the adjustment pin 45 is positioned through both the cradle arm 44 and the cradle base 43 .
- the frame-receiving cradle 41 further comprises a frame cushioning surface 47 and a frame strap 48 .
- the frame cushioning surface 47 is positioned about the frame brace 46 opposite the extension member 42 , wherein the frame cushioning surface 47 provides the point of contact between the frame-receiving cradle 41 and the bicycle.
- the frame cushioning surface 47 acts to minimize the impact to the bicycle frame while the bicycle is being supported and ultimately serves to protect against dings, scratches, and other damage to the bicycle frame that can often occur from transporting bicycles.
- the frame strap 48 is adjacently connected to the frame brace 46 and provides a means for securing the down tube to the frame brace 46 .
- the frame strap 48 comprises utilizes a hook and loop fastener, wherein the frame strap 48 is fixed to the frame brace 46 at one end, while a free end of the frame strap 48 is wrapped around the down tube and attached to the body of the frame strap 48 . It is also possible for the frame strap 48 to use alternative fastening means in other embodiments of the present invention.
- the first pedal-receiving clamp 50 comprises a first jaw 51 , a second jaw 52 , and a first jaw fastener 53 .
- the first jaw 51 is adjacently and directly connected to the main body 2
- the second jaw 52 is hingedly connected to the first jaw 51 opposite the main body 2 .
- the first jaw 51 and the second jaw 52 form a first clamp mouth into which a pedal of the bicycle is positioned and secured.
- the first clamp mouth is oriented away from the main body 2 , however, it is possible for the first clamp mouth to be oriented adjacent to the main body 2 in other embodiments of the present invention.
- the first pedal-receiving clamp 50 can be tightened to secure the pedal.
- the first jaw 51 and the second jaw 52 are secured closed around the pedal using the first jaw fastener 53 , which engages both the first jaw 51 and the second jaw 52 .
- the first jaw fastener 53 is a spring-loaded latch pin and comprises a first pin 54 , a first spring 55 , a first catch 56 , and a first stop 57 .
- the first stop 57 is terminally connected to the first pin 54 and the first catch 56 is adjacently connected to the first pin 54 opposite the first stop 57 , while the first spring 55 is positioned around the first pin 54 .
- the first pin 54 traverses through the second jaw 52 , wherein the first spring 55 is positioned in between the second jaw 52 and the first stop 57 .
- the first pin 54 When the pedal is positioned in between the first jaw 51 and the second jaw 52 , the first pin 54 is pulled towards the first jaw 51 , compressing the first spring 55 between the second jaw 52 and the first stop 57 . The first pin 54 is then inserted into a notch in the first jaw 51 , wherein the first catch 56 engages the first jaw 51 , thus clenching together the first jaw 51 and the second jaw 52 .
- the first pedal-receiving clamp 50 further comprises a first pedal cushioning surface 58 and a second pedal cushioning surface 59 .
- the first pedal cushioning surface 58 is positioned about the first jaw 51 opposite the main body 2
- the second pedal cushioning surface 59 is positioned about the second jaw 52 .
- the first pedal cushioning surface 58 and the second pedal cushioning surface 59 encompass the first clamp mouth, wherein the first pedal cushioning surface 58 and the second pedal cushioning surface 59 provide the point of contact for engaging the pedal.
- first pedal cushioning surface 58 and the second pedal cushioning surface 59 act to minimize the impact to the pedal while the bicycle is being supported, and ultimately serve to protect against dings, scratches, and other damage to the pedal that can often occur from transporting bicycles. Additionally, the first pedal cushioning surface 58 and the second pedal cushioning surface 59 provide better grip, boosting the securing capabilities of the first pedal-receiving clamp 50 even more.
- the second pedal-receiving clamp 60 comprises a third jaw 61 , a fourth jaw 62 , and a second jaw fastener 63 .
- the third jaw 61 is adjacently and directly connected to the pedal arm 71
- the fourth jaw 62 is hingedly connected to the third jaw 61 opposite the pedal arm 71 .
- the third jaw 61 and the fourth jaw 62 form a second clamp mouth into which a subsequent pedal of the bicycle is positioned and secured.
- the second clamp mouth is oriented towards the main body 2 (i.e. same direction as the first clamp mouth).
- the second clamp mouth is oriented away from the main body 2 in other embodiments of the present invention, however, the second clamp mouth is ideally oriented in the same direction as the first clamp mouth.
- the second jaw fastener 63 is a spring-loaded latch pin and comprises a second pin 64 , a second spring 65 , a second catch 66 , and a second stop 67 .
- the second stop 67 is terminally connected to the second pin 64 and the second catch 66 is adjacently connected to the second pin 64 opposite the second stop 67 , while the second spring 65 is positioned around the second pin 64 .
- the second pin 64 traverses through the fourth jaw 62 , wherein the second spring 65 is positioned in between the fourth jaw 62 and the second stop 67 .
- the second pin 64 When the subsequent pedal is positioned in between the third jaw 61 and the fourth jaw 62 , the second pin 64 is pulled towards the third jaw 61 , compressing the second spring 65 between the fourth jaw 62 and the second stop 67 . The second pin 64 is then inserted into a notch in the third jaw 61 , wherein the second catch 66 engages the third jaw 61 , thus clenching together the third jaw 61 and the fourth jaw 62 .
- the second pedal-receiving clamp 60 further comprises a third pedal cushioning surface 68 and a fourth pedal cushioning surface 69 .
- the third pedal cushioning surface 68 is positioned about the third jaw 61 opposite the pedal arm 71
- the fourth pedal cushioning surface 69 is positioned about the fourth jaw 62 .
- the third pedal cushioning surface 68 and the fourth pedal cushioning surface 69 encompass the second clamp mouth, wherein the third pedal cushioning surface 68 and the fourth pedal cushioning surface 69 provide the point of contact for engaging the subsequent pedal.
- the third pedal cushioning surface 68 and the fourth pedal cushioning surface 69 act to minimize the impact to the subsequent pedal while the bicycle is being supported, and ultimately serve to protect against dings, scratches, and other damage to the subsequent pedal that can often occur from transporting bicycles. Additionally, the third pedal cushioning surface 68 and the fourth pedal cushioning surface 69 provide better grip, boosting the securing capabilities of the second pedal-receiving clamp 60 even more.
- the frame brace 46 receives the frame of bicycle and can rotate about the longitudinal axis 9 even as the pedals of the bicycle are secured by the first pedal-receiving clamp 50 and the second pedal receiving clamp. This allows the angle of the bicycle to be adjusted, which is especially important when using the present invention with multiple bicycles.
- a user can ensure that the handlebars of each bicycle are offset from the handle bars of adjacent bicycles. For example, a first bicycle may be secured at a 0 degree angle, e.g. parallel to the ground. A second bicycle may be angled upwards at 30 degrees, resulting in its handlebars being offset from the handlebars of the first bicycle in both a vertical and horizontal direction.
- the height-adjustable nature of the frame brace 46 additionally affords the present invention the ability to essentially eliminate transport related damage via a fanned configuration of bicycles, heretofore unseen in the prior art.
- the main body 2 comprises a primary beam 21 and a secondary beam 22 .
- the secondary beam 22 can be attached to or detached from the primary beam 21 as needed, effectively extending or reducing the length of the main body 2 and increasing or reducing the transport capacity.
- the number of the plurality of bicycle-receiving subassemblies 4 positioned along both the primary beam 21 and the secondary beam 22 is specifically two, however, the number may vary in other embodiments of the present invention.
- the secondary beam 22 can be secured to the primary beam 21 using a fastening pin similar to the adjustment pin 45 of the extension member 42 , a bolt and nut and washer combination, or any similar fastening means.
- the provision of the secondary beam 22 allows for storage capacity to be increased when necessary without unnecessarily increasing the size of the present invention. Potentially, multiple secondary beams can be attached to provide even greater capacity, although care must be taken to not add so many secondary beams that the resulting stress is greater than the tolerances of the present invention.
- the present invention is secured to a vehicle by means of the mounting section 1 .
- the bicycles are prepared for loading in order from heaviest to lightest; this is so that the heaviest bicycle is placed closest to the vehicle hitch, minimizing torque and stress experienced by the present invention.
- Bicycle placement entails orienting the bicycle such that the front wheel faces vehicle left (i.e. driver's side) and the rear wheel faces vehicle right (i.e. passenger side).
- the pedals are then simultaneously placed into the first pedal-receiving clamp 50 and the second pedal-receiving clamp 60 , after which the down tube is placed onto the frame brace 46 .
- the bicycle is then secured by engaging the first jaw fastener 53 and the second jaw fastener 63 , and by wrapping the frame strap 48 around the down tube and the frame brace 46 .
- To adjust the bicycle height and angle i.e. “fan out” the bicycle is raised or lowered by means of the cradle arm 44 , which can be extended out of or retracted towards the cradle base 43 while the adjustment pin 45 of the extension member 42 is removed.
- the adjustment pin 45 of the extension member 42 is then reinserted to secure the frame brace 46 in the new desired position. This securing process is then repeated for each bicycle which is to be transported by the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
Abstract
Description
- The current application claims a priority to the U.S. Provisional Patent application Ser. No. 61/992,967 filed on May 14, 2014.
- The present invention relates generally to bicycle carriers. More specifically, the present invention is a bicycle rack that holds bicycles in a fanned out manner to prevent the bicycles from contacting with and causing damage to each other
- In the modern world bicycles are utilized by many people as a form of transportation, a hobby, or even a means of exercise. Bicycles, in relation to motor vehicles, are inexpensive, less polluting, and a respectable means of exercise. Different individuals find bicycles appealing for some of these reasons or other reasons. While the result is a large number of persons who own a bicycle, this also creates a need for bicycle friendly transportation. While some will rarely, if ever, need to transport their bicycle, there are others who will need to transport their bicycle over long distances (perhaps as part of a move, a visit to a more bicycle friendly locale, or because they have a mountain bike which they wish to avoid using on paved surfaces). There are a number of bicycle transporting apparatuses which have been created in response, though not without shortcomings.
- One significant issue with current bicycle carriers is that they do not fully immobilize or separate bicycles from each other, the subsequent rattling causing collisions which ultimately result in dents, scrapes, and other damage. This damage is most common in the region of the handlebars, as the handlebars protrude sideways from the bicycle, increasing what is otherwise a slim profile. Without sufficient space, which is difficult when trying to minimize bulk of a bicycle carrier, contact between adjacent bicycles is almost inevitable with existing bicycle carriers. This results in bicycles being destroyed; they hit and rub against each other, pedals collide with and damage spokes of adjacent bicycles, handlebars tear holes in adjacent seats, and paint is scratched off the frame.
- It is therefore an object of the present invention to provide a bicycle rack that addresses the above issues by rotating the bicycles with respect to each other, creating a fanned configuration. By using pedal-receiving clamps to secure the pedals, the bicycle can be translated (i.e. moved vertically and horizontally) and rotated by means of a cradle that receives the down tube. By next moving the cradle for each stored bicycle, the handlebars can be offset from each other; the resulting positioning negates the issue of colliding bicycle components and resulting damage to the bicycles. The present invention also sufficiently offsets bicycles from a transporting vehicle, preventing any damage to the vehicle. Additionally, the present invention is simple to use, wherein bicycles can easily be mounted and removed.
-
FIG. 1 is a perspective view of the present invention, wherein the secondary beam is attached to the main beam. -
FIG. 2 is a perspective view of the present invention, wherein the secondary beam is detached from the primary beam. -
FIG. 3 is a top plan view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out. -
FIG. 4 is a right side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out. -
FIG. 5 is a left side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is fanned out. -
FIG. 6 is a front elevational view of the present invention, wherein the first pedal-receiving clamp and the second pedal-receiving clamp are closed; and -
FIG. 7 is a front elevational view thereof, wherein the first pedal-receiving clamp and the second pedal-receiving clamp are open. -
FIG. 8 is a top plan view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted. -
FIG. 9 is a right side elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted. -
FIG. 10 is a front elevational view of the present invention, wherein the pedal arm for each of the plurality of bicycle-receiving subassemblies is retracted. -
FIG. 11 is a front sectional view of the pedal arm showing the internal lock pin. - All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
- The present invention is a bicycle rack that allows multiple bicycles to be secured in a fanned out position. The present invention secures the bicycles such that they do not impact each other, minimizing scrapes, bumps, and other wear and tear that normally results from placing multiple bicycles on a traditional bicycle rack. The present invention is provided for use with motor vehicles, being secured to a trailer hitch or similar coupling mount of a vehicle.
- In reference to
FIG. 1 , the present invention comprises amounting section 1, amain body 2, and a plurality of bicycle-receivingsubassemblies 4. Themounting section 1 is provided to couple with a corresponding part of a vehicle, most commonly a hitch. Themounting section 1 thus allows the present invention to be secured to the vehicle. Themain body 2 extends away from themounting section 1; this is done to provide sufficient room for one or more bicycles to be secured along themain body 2, away from the vehicle. The plurality of bicycle-receivingsubassemblies 4 is provided to hold one or more bicycles in a secure position, with bracing components provided for each pedal as well as the bicycle frame, i.e. the down tube. These bracing components allow the bicycles to be angled about a longitudinal (with respect to the main body 2)axis 9, effectively “fanning” out the bicycles and preventing collisions between the bicycles during transport. - The
mounting section 1 and themain body 2 are preferably square tubes that are positioned perpendicular to each other. In reference toFIG. 4-5 , themounting section 1 is terminally connected to themain body 2, wherein themounting section 1 is positioned at one end of themain body 2, forming an “L” shape. Themounting section 1 and themain body 2 are adjacently connected to each other by means of ahitch brace 3. Thehitch brace 3 is adjacently connected to both themounting section 1 and themain body 2, and comprises afirst plate 31 and asecond plate 32. Thefirst plate 31 and thesecond plate 32 are both adjacently connected to themounting section 1 and themain body 2, wherein thefirst plate 31 and thesecond plate 32 are positioned opposite each other about themounting section 1 and themain body 2. The positioning of thefirst plate 31 and thesecond plate 32 on either side of themounting section 1 and themain body 2 provides support in order to hold themounting section 1 and themain body 2 in the “L” shape. The combination and configuration of themounting section 1 and themain body 2 allows the present invention to be coupled to a vehicle, while providing ample space for receiving and securing bicycles. - In reference to
FIG. 1 , the plurality of bicycle-receivingsubassemblies 4 is positioned along themain body 2, wherein each of the plurality of bicycle-receivingsubassemblies 4 is capable of securing a bicycle at multiple points (i.e. the pedals and the down tube). To this end, each of the plurality of bicycle-receivingsubassemblies 4 comprises a frame-receivingcradle 41, a first pedal-receivingclamp 50, a second pedal-receivingclamp 60, and apedal arm 71. The first pedal-receivingclamp 50, the frame-receivingcradle 41, and thepedal arm 71 are adjacently connected to themain body 2, wherein the frame-receivingcradle 41 is positioned in between the first pedal-receivingclamp 50 and thepedal arm 71, as depicted inFIG. 3 . The second pedal-receivingclamp 60 is adjacently connected to thepedal arm 71, and is positioned along thepedal arm 71 opposite themain body 2, wherein thepedal arm 71 horizontally and vertically offsets the second pedal-receivingclamp 60 from the first pedal-receivingclamp 50, as depicted byFIG. 6-7 . The first pedal-receivingclamp 50 and the second pedal-receivingclamp 60 provide a means for supporting the pedals of the bicycle, while the frame-receivingcradle 41 supports the down tube of the bicycle. In the preferred embodiment of the present invention, thepedal arm 71 is pivotally connected to themain body 2, wherein each of the plurality of bicycle-receivingsubassemblies 4 further comprises an at least oneflange 81, and thepedal arm 71 comprises apivot block 72, abolt 73, and alock pin 74. The at least oneflange 81 is adjacently connected to themain body 2 and extends away from themain body 2. Thepivot block 72 is positioned along thepedal arm 71 opposite the second pedal-receivingclamp 60, adjacent to themain body 2. Thebolt 73 traverses through the at least oneflange 81 and thepivot block 72, wherein thepedal arm 71 is pivotally connected to themain body 2. Thelock pin 74 engages thepivot block 72 and the at least oneflange 81, securing thepedal arm 71 in either a perpendicular or parallel position relative to themain body 2. Ideally thelock pin 74 is integrated into thepivot block 72 and the at least oneflange 81 as a ball detent as depicted inFIG. 11 , however, other variations are possible. The pivotal nature of thepedal arm 71 allows the present invention to become more compact when thepedal arm 71 is positioned parallel to themain body 2, thus decreasing the storage size when the present invention is not in use. This can be seen by comparingFIG. 3-6 toFIG. 8-10 . - In reference to
FIG. 4-5 , the frame-receivingcradle 41 comprises anextension member 42 and aframe brace 46. Theframe brace 46 is a cradle structure that supports the down tube, while theextension member 42 is a support that offsets theframe brace 46 from themain body 2. As such, theextension member 42 is adjacently connected to themain body 2, while theframe brace 46 is adjacently connected to theextension member 42 opposite themain body 2. Furthermore, theframe brace 46 is pivotally connected to theextension member 42 in order to support any bicycle, as the down tube of each bicycle may be angled differently. Additionally, the pivotal connection of theframe brace 46 allows the bicycle being secured to be rotated about thelongitudinal axis 9 in order to offset the handle bars of each adjacent bicycle. Theframe brace 46 comprises a plurality of cradle sections, wherein each of the plurality of cradle sections has a different radius. The plurality of cradle sections further lends theframe brace 46 to being compatible with any type of bicycle. - In the preferred embodiment of the present invention, the
extension member 42 is a telescoping structure that allows the height of theframe brace 46 to be adjusted, wherein theextension member 42 comprises acradle base 43, acradle arm 44, and anadjustment pin 45. In reference toFIG. 4-5 , thecradle base 43 is adjacently connected to themain body 2 and thecradle arm 44 is slidably connected to thecradle base 43, while theframe brace 46 is adjacently connected to thecradle arm 44 opposite themain body 2. Thecradle arm 44 can be positioned into or around thecradle base 43. Thecradle base 43 is positioned perpendicular to themain body 2, such that theframe brace 46 moves in a vertical direction when thecradle arm 44 is slid along thecradle base 43. The ability to adjust the height of theframe brace 46 further enhances the ability of the present invention to support any bicycle and assists in offsetting the handlebars of adjacent bicycles from each other. Theadjustment pin 45 is used to lock thecradle arm 44 in position along thecradle base 43, wherein theadjustment pin 45 is positioned through both thecradle arm 44 and thecradle base 43. - In further reference to
FIG. 4-5 , the frame-receivingcradle 41 further comprises aframe cushioning surface 47 and aframe strap 48. Theframe cushioning surface 47 is positioned about theframe brace 46 opposite theextension member 42, wherein theframe cushioning surface 47 provides the point of contact between the frame-receivingcradle 41 and the bicycle. Theframe cushioning surface 47 acts to minimize the impact to the bicycle frame while the bicycle is being supported and ultimately serves to protect against dings, scratches, and other damage to the bicycle frame that can often occur from transporting bicycles. Theframe strap 48 is adjacently connected to theframe brace 46 and provides a means for securing the down tube to theframe brace 46. In the preferred embodiment of the present invention, theframe strap 48 comprises utilizes a hook and loop fastener, wherein theframe strap 48 is fixed to theframe brace 46 at one end, while a free end of theframe strap 48 is wrapped around the down tube and attached to the body of theframe strap 48. It is also possible for theframe strap 48 to use alternative fastening means in other embodiments of the present invention. - In reference to
FIG. 6-7 , the first pedal-receivingclamp 50 comprises afirst jaw 51, asecond jaw 52, and afirst jaw fastener 53. Thefirst jaw 51 is adjacently and directly connected to themain body 2, while thesecond jaw 52 is hingedly connected to thefirst jaw 51 opposite themain body 2. Together thefirst jaw 51 and thesecond jaw 52 form a first clamp mouth into which a pedal of the bicycle is positioned and secured. In the preferred embodiment of the present invention, the first clamp mouth is oriented away from themain body 2, however, it is possible for the first clamp mouth to be oriented adjacent to themain body 2 in other embodiments of the present invention. Once the pedal has been appropriately positioned in between thefirst jaw 51 and thesecond jaw 52, the first pedal-receivingclamp 50 can be tightened to secure the pedal. Thefirst jaw 51 and thesecond jaw 52 are secured closed around the pedal using thefirst jaw fastener 53, which engages both thefirst jaw 51 and thesecond jaw 52. - In the preferred embodiment of the present invention, the
first jaw fastener 53 is a spring-loaded latch pin and comprises afirst pin 54, afirst spring 55, afirst catch 56, and afirst stop 57. In reference toFIG. 6-7 , thefirst stop 57 is terminally connected to thefirst pin 54 and thefirst catch 56 is adjacently connected to thefirst pin 54 opposite thefirst stop 57, while thefirst spring 55 is positioned around thefirst pin 54. Thefirst pin 54 traverses through thesecond jaw 52, wherein thefirst spring 55 is positioned in between thesecond jaw 52 and thefirst stop 57. When the pedal is positioned in between thefirst jaw 51 and thesecond jaw 52, thefirst pin 54 is pulled towards thefirst jaw 51, compressing thefirst spring 55 between thesecond jaw 52 and thefirst stop 57. Thefirst pin 54 is then inserted into a notch in thefirst jaw 51, wherein thefirst catch 56 engages thefirst jaw 51, thus clenching together thefirst jaw 51 and thesecond jaw 52. - In further reference to
FIG. 6-7 , the first pedal-receivingclamp 50 further comprises a firstpedal cushioning surface 58 and a secondpedal cushioning surface 59. The firstpedal cushioning surface 58 is positioned about thefirst jaw 51 opposite themain body 2, while the secondpedal cushioning surface 59 is positioned about thesecond jaw 52. Together the firstpedal cushioning surface 58 and the secondpedal cushioning surface 59 encompass the first clamp mouth, wherein the firstpedal cushioning surface 58 and the secondpedal cushioning surface 59 provide the point of contact for engaging the pedal. Similar to theframe cushioning surface 47, the firstpedal cushioning surface 58 and the secondpedal cushioning surface 59 act to minimize the impact to the pedal while the bicycle is being supported, and ultimately serve to protect against dings, scratches, and other damage to the pedal that can often occur from transporting bicycles. Additionally, the firstpedal cushioning surface 58 and the secondpedal cushioning surface 59 provide better grip, boosting the securing capabilities of the first pedal-receivingclamp 50 even more. - In reference to
FIG. 6-7 , the second pedal-receivingclamp 60 comprises athird jaw 61, afourth jaw 62, and asecond jaw fastener 63. Thethird jaw 61 is adjacently and directly connected to thepedal arm 71, while thefourth jaw 62 is hingedly connected to thethird jaw 61 opposite thepedal arm 71. Together thethird jaw 61 and thefourth jaw 62 form a second clamp mouth into which a subsequent pedal of the bicycle is positioned and secured. In the preferred embodiment of the present invention, the second clamp mouth is oriented towards the main body 2 (i.e. same direction as the first clamp mouth). It is also possible for the second clamp mouth to be oriented away from themain body 2 in other embodiments of the present invention, however, the second clamp mouth is ideally oriented in the same direction as the first clamp mouth. Once the subsequent pedal has been appropriately positioned in between thethird jaw 61 and thefourth jaw 62, the second pedal-receivingclamp 60 can be tightened to secure the subsequent pedal. Thethird jaw 61 and thefourth jaw 62 are secured closed around the subsequent pedal using thesecond jaw fastener 63, which engages both thethird jaw 61 and thefourth jaw 62. - In the preferred embodiment of the present invention, the
second jaw fastener 63 is a spring-loaded latch pin and comprises asecond pin 64, asecond spring 65, asecond catch 66, and asecond stop 67. In reference toFIG. 6-7 , thesecond stop 67 is terminally connected to thesecond pin 64 and thesecond catch 66 is adjacently connected to thesecond pin 64 opposite thesecond stop 67, while thesecond spring 65 is positioned around thesecond pin 64. Thesecond pin 64 traverses through thefourth jaw 62, wherein thesecond spring 65 is positioned in between thefourth jaw 62 and thesecond stop 67. When the subsequent pedal is positioned in between thethird jaw 61 and thefourth jaw 62, thesecond pin 64 is pulled towards thethird jaw 61, compressing thesecond spring 65 between thefourth jaw 62 and thesecond stop 67. Thesecond pin 64 is then inserted into a notch in thethird jaw 61, wherein thesecond catch 66 engages thethird jaw 61, thus clenching together thethird jaw 61 and thefourth jaw 62. - In further reference to
FIG. 6-7 , the second pedal-receivingclamp 60 further comprises a thirdpedal cushioning surface 68 and a fourthpedal cushioning surface 69. The thirdpedal cushioning surface 68 is positioned about thethird jaw 61 opposite thepedal arm 71, while the fourthpedal cushioning surface 69 is positioned about thefourth jaw 62. Together the thirdpedal cushioning surface 68 and the fourthpedal cushioning surface 69 encompass the second clamp mouth, wherein the thirdpedal cushioning surface 68 and the fourthpedal cushioning surface 69 provide the point of contact for engaging the subsequent pedal. Similar to the firstpedal cushioning surface 58 and the secondpedal cushioning surface 59, the thirdpedal cushioning surface 68 and the fourthpedal cushioning surface 69 act to minimize the impact to the subsequent pedal while the bicycle is being supported, and ultimately serve to protect against dings, scratches, and other damage to the subsequent pedal that can often occur from transporting bicycles. Additionally, the thirdpedal cushioning surface 68 and the fourthpedal cushioning surface 69 provide better grip, boosting the securing capabilities of the second pedal-receivingclamp 60 even more. - The
frame brace 46 receives the frame of bicycle and can rotate about thelongitudinal axis 9 even as the pedals of the bicycle are secured by the first pedal-receivingclamp 50 and the second pedal receiving clamp. This allows the angle of the bicycle to be adjusted, which is especially important when using the present invention with multiple bicycles. By using theframe brace 46 to orient each bicycle at a different angle, a user can ensure that the handlebars of each bicycle are offset from the handle bars of adjacent bicycles. For example, a first bicycle may be secured at a 0 degree angle, e.g. parallel to the ground. A second bicycle may be angled upwards at 30 degrees, resulting in its handlebars being offset from the handlebars of the first bicycle in both a vertical and horizontal direction. Since the handlebars are offset from each other they will not hit or bump each other during transport, reducing wear and tear which is normally encountered when using regular bicycle carriers to transport more than one bicycle. The height-adjustable nature of theframe brace 46 additionally affords the present invention the ability to essentially eliminate transport related damage via a fanned configuration of bicycles, heretofore unseen in the prior art. - While the present invention could potentially be used for any number of bicycles, the exact number of bicycles that need to be transported may vary from time to time. As such, in the preferred embodiment of the present invention, the
main body 2 comprises aprimary beam 21 and asecondary beam 22. In reference toFIG. 1-2 , thesecondary beam 22 can be attached to or detached from theprimary beam 21 as needed, effectively extending or reducing the length of themain body 2 and increasing or reducing the transport capacity. In the preferred embodiment, the number of the plurality of bicycle-receivingsubassemblies 4 positioned along both theprimary beam 21 and thesecondary beam 22 is specifically two, however, the number may vary in other embodiments of the present invention. Thesecondary beam 22 can be secured to theprimary beam 21 using a fastening pin similar to theadjustment pin 45 of theextension member 42, a bolt and nut and washer combination, or any similar fastening means. The provision of thesecondary beam 22 allows for storage capacity to be increased when necessary without unnecessarily increasing the size of the present invention. Potentially, multiple secondary beams can be attached to provide even greater capacity, although care must be taken to not add so many secondary beams that the resulting stress is greater than the tolerances of the present invention. A description of how bicycles are secured to the present invention now follows. - First the present invention is secured to a vehicle by means of the mounting
section 1. Next, the bicycles are prepared for loading in order from heaviest to lightest; this is so that the heaviest bicycle is placed closest to the vehicle hitch, minimizing torque and stress experienced by the present invention. Bicycle placement entails orienting the bicycle such that the front wheel faces vehicle left (i.e. driver's side) and the rear wheel faces vehicle right (i.e. passenger side). The pedals are then simultaneously placed into the first pedal-receivingclamp 50 and the second pedal-receivingclamp 60, after which the down tube is placed onto theframe brace 46. The bicycle is then secured by engaging thefirst jaw fastener 53 and thesecond jaw fastener 63, and by wrapping theframe strap 48 around the down tube and theframe brace 46. To adjust the bicycle height and angle (i.e. “fan out”) the bicycle is raised or lowered by means of thecradle arm 44, which can be extended out of or retracted towards thecradle base 43 while theadjustment pin 45 of theextension member 42 is removed. Theadjustment pin 45 of theextension member 42 is then reinserted to secure theframe brace 46 in the new desired position. This securing process is then repeated for each bicycle which is to be transported by the present invention. - Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/711,500 US9180821B1 (en) | 2014-05-14 | 2015-05-13 | Bicycle carrier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461992967P | 2014-05-14 | 2014-05-14 | |
US14/711,500 US9180821B1 (en) | 2014-05-14 | 2015-05-13 | Bicycle carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
US9180821B1 US9180821B1 (en) | 2015-11-10 |
US20150329060A1 true US20150329060A1 (en) | 2015-11-19 |
Family
ID=54363351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/711,500 Expired - Fee Related US9180821B1 (en) | 2014-05-14 | 2015-05-13 | Bicycle carrier |
Country Status (1)
Country | Link |
---|---|
US (1) | US9180821B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD829636S1 (en) * | 2016-09-23 | 2018-10-02 | Rhino Rack Australia Pty Limited | Bicycle axle adaptor for a vehicle bicycle carrier |
AT524815A3 (en) * | 2021-02-22 | 2022-10-15 | Manfred Hafele Gmbh | integrated bike rack |
PL131787U1 (en) * | 2022-11-11 | 2024-05-13 | TMK System s.r.o. | Carrier for micromobile devices on the vehicle's towing hitch |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2948496A1 (en) * | 2014-05-13 | 2015-11-19 | Marcus ROBINSON | Transition area bicycle rack |
US11312313B2 (en) * | 2020-09-10 | 2022-04-26 | Michael L. Puldy | Bicycle rack |
US11142133B1 (en) * | 2020-11-16 | 2021-10-12 | Joseph Oshman | Bike racks including adjustable hooks |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796333A (en) * | 1971-08-13 | 1974-03-12 | K Goldstein | Detachable carrier for vehicles |
US3765581A (en) * | 1972-07-10 | 1973-10-16 | I Kosecoff | Bike carrier |
FR2551705A1 (en) * | 1983-09-12 | 1985-03-15 | Macorex Exploit Ets | BICYCLE HOLDER FOR EQUIPPING THE CARRIER BARS OF A MOTOR VEHICLE |
US4676414A (en) * | 1986-02-24 | 1987-06-30 | Orlando Deguevara | Article carrier |
US5527146A (en) * | 1989-08-23 | 1996-06-18 | Softride, Inc. | Vehicle-mounted articulated support rack |
US5067641A (en) * | 1990-01-30 | 1991-11-26 | Valley Industries, Inc. | Vehicle bicycle carrier |
US5096102A (en) * | 1990-05-18 | 1992-03-17 | Tolson Carl J | Article carrier mounted to license plate receiver of a motor vehicle |
US5190195A (en) * | 1991-03-15 | 1993-03-02 | Reese Products | Hitch mounted bicycle rack |
CA2077917C (en) * | 1992-09-10 | 1995-11-28 | Bruce C. Hewson | Swing-down bicycle carrier for vehicles |
US5460304A (en) * | 1993-10-05 | 1995-10-24 | Porter; Lawrence T. | Modular vehicular carrier system |
US5476203A (en) * | 1994-01-24 | 1995-12-19 | Fletcher; James D. | Bicycle crank shaft support carrier |
US5549231A (en) * | 1994-01-24 | 1996-08-27 | Fletcher; James D. | Bicycle carrier for motor vehicles |
US5526971A (en) * | 1994-05-06 | 1996-06-18 | Despain; Steven S. | Bicycle rack |
US5469997A (en) * | 1994-09-13 | 1995-11-28 | Carlson; David C. | Multi-bicycle rear mounting bicycle rack |
US5685686A (en) * | 1996-03-22 | 1997-11-11 | Yakima Products | Article-carrying rack and mount for mounting the same |
DE19826077A1 (en) * | 1997-06-13 | 1998-12-17 | Thule Ind Ab | Load carrier for bicycle |
IT1307054B1 (en) * | 1999-09-24 | 2001-10-23 | Fabio Pedrini | BICYCLE HOLDER FOR VEHICLES. |
US6234372B1 (en) * | 1999-10-12 | 2001-05-22 | George Rivera | Combination bicycle mount and collapsible holder to be coupled to a trailer hitch of a motor vehicle |
JP2003072476A (en) * | 2001-09-03 | 2003-03-12 | Car Mate Mfg Co Ltd | Roof carrier for bicycle |
US6644525B1 (en) * | 2002-01-29 | 2003-11-11 | R. A. Allen Company, Inc. | Hitch rack |
US20040004099A1 (en) * | 2002-07-03 | 2004-01-08 | Crouch Samuel Wesley | Motorcycle lifting device and carrier rack assembly |
US20050082329A1 (en) * | 2003-10-20 | 2005-04-21 | Simon Cohen | Bicycle carrier for motor vehicles |
US8496148B2 (en) * | 2006-06-29 | 2013-07-30 | Michael Kent Farney | Bicycle carrier |
DE102006031693A1 (en) * | 2006-07-08 | 2008-01-17 | Magna Car Top Systems Gmbh | Carrying device for a bicycle |
US10946805B2 (en) * | 2008-04-18 | 2021-03-16 | Shawn Skoff | Surfboard rack for vehicles |
KR101171790B1 (en) * | 2010-07-30 | 2012-08-13 | 현대자동차주식회사 | Drawing type bicycle carrier |
-
2015
- 2015-05-13 US US14/711,500 patent/US9180821B1/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD829636S1 (en) * | 2016-09-23 | 2018-10-02 | Rhino Rack Australia Pty Limited | Bicycle axle adaptor for a vehicle bicycle carrier |
AT524815A3 (en) * | 2021-02-22 | 2022-10-15 | Manfred Hafele Gmbh | integrated bike rack |
AT524815B1 (en) * | 2021-02-22 | 2023-03-15 | Manfred Hafele Gmbh | integrated bike rack |
PL131787U1 (en) * | 2022-11-11 | 2024-05-13 | TMK System s.r.o. | Carrier for micromobile devices on the vehicle's towing hitch |
Also Published As
Publication number | Publication date |
---|---|
US9180821B1 (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9180821B1 (en) | Bicycle carrier | |
US4189274A (en) | Two-wheeled cycle bumper carrier for motor vehicles | |
US5065921A (en) | Bicycle rack for mounting on a van | |
US10787130B2 (en) | Vehicle mounted bicycle carrier | |
US9758184B1 (en) | Three wheel cargo cart with lifting drawbar | |
US5820002A (en) | Lockable bicycle rack | |
US9409508B2 (en) | Portable and adjustable motorcycle wheel chock | |
US20110240700A1 (en) | Bicycle Carrier | |
US10166932B2 (en) | Bicycle mount device | |
US9744910B2 (en) | Foldable load carrier with a latching brace | |
US8272547B1 (en) | Motorcycle carrier apparatus | |
US7686549B1 (en) | Motorcycle stand for motorcycle transport | |
US6729632B2 (en) | Collapsible rack for an automotive body panel | |
US10577040B1 (en) | Device and method of adapting bicycle carrier as maintenance stand | |
US10046712B1 (en) | Vehicle bicycle rack | |
US20080011795A1 (en) | Bicycle transport rack | |
US9272654B1 (en) | Spring-loaded bumper clamp for vehicular trailers | |
US20110259931A1 (en) | Auxiliary rack for an ATV | |
US8839998B1 (en) | Chainsaw rack for pickup trucks, off road utility vehicles and the like | |
US20190047483A1 (en) | Motorcycle tie-down rack | |
US20070207005A1 (en) | Cargo restraining device | |
US20160243998A1 (en) | A Carrier For Mounting To A Vehicle | |
US8382142B2 (en) | Motorcycle trailer | |
US20180147996A1 (en) | Bike carrier | |
WO2009018604A1 (en) | Bicycle transport support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, MICRO ENTITY (ORIGINAL EVENT CODE: M3551); ENTITY STATUS OF PATENT OWNER: MICROENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20231110 |