US20150326185A1 - Receiver with variable gain control transimpedance amplifier - Google Patents

Receiver with variable gain control transimpedance amplifier Download PDF

Info

Publication number
US20150326185A1
US20150326185A1 US14/807,429 US201514807429A US2015326185A1 US 20150326185 A1 US20150326185 A1 US 20150326185A1 US 201514807429 A US201514807429 A US 201514807429A US 2015326185 A1 US2015326185 A1 US 2015326185A1
Authority
US
United States
Prior art keywords
lpf
adjustable
adjustable lpf
operational amplifiers
gain control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/807,429
Inventor
Mohyee Mikhemar
Amir HADJl-ABDOLHAMID
Hooman Darabi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US14/807,429 priority Critical patent/US20150326185A1/en
Publication of US20150326185A1 publication Critical patent/US20150326185A1/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Priority to US15/427,398 priority patent/US10205438B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • H03F1/086Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0029Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/32Automatic control in amplifiers having semiconductor devices the control being dependent upon ambient noise level or sound level
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
    • H03H11/1252Two integrator-loop-filters
    • H03H11/1256Tow-Thomas biquad
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/91Indexing scheme relating to amplifiers the amplifier has a current mode topology
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45332Indexing scheme relating to differential amplifiers the AAC comprising one or more capacitors as feedback circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45336Indexing scheme relating to differential amplifiers the AAC comprising one or more resistors as feedback circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
    • H03H11/1252Two integrator-loop-filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1291Current or voltage controlled filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Definitions

  • the present invention is generally in the field of electronic circuits and systems. More specifically, the present invention is in the field of communications circuits and systems.
  • RF radio frequency
  • a low noise amplifier may be used to boost the reception signal prior to down-conversion from RF to baseband by a mixer stage in the receiver “front-end.”
  • the baseband signal is then normally filtered by a high-order low-pass filter (LPF), for example a 4 th -order or 5 th -order LPF, which provides substantial additional “back-end” gain in the conventional receiver design.
  • LPF high-order low-pass filter
  • the gain control provided by the receiver as a whole may be primarily produced by the receiver back-end, with the high-order LPF contributing a significant portion of the overall gain. Due to the stringent requirements imposed on the high-order LPF in conventional receiver designs, however, the high-order LPF typically consumes much of the power and dominates most of the area required to implement the receiver. As communications technologies move toward ever smaller device sizes and adopt ever lower power consumption constraints, as represented by the 40 nm technology node, for example, the relative bulk and high power consumption of conventional receiver architectures have become ever more undesirable.
  • the present invention is directed to a compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter, substantially as shown in and/or described in connection with at least one of the figures, and as set forth more completely in the claims.
  • FIG. 1 is a block diagram of a compact low-power receiver according to one embodiment of the present invention.
  • FIG. 2A is a block diagram of a current mode buffer based transimpedance amplifier (TIA) providing variable gain control according to one embodiment of the present invention.
  • TIA current mode buffer based transimpedance amplifier
  • FIG. 2B illustrates a circuit corresponding to the variable gain control TIA of FIG. 2A .
  • FIG. 2C illustrates exemplary cross-coupling of cascode devices included in the example circuit of FIG. 2B to provide gain control.
  • FIG. 3 is a block diagram of a digitally controlled interface circuit suitable for use in a compact low-power receiver, according to one embodiment of the present invention.
  • FIG. 4A is a block diagram of a r-order adjustable low-pass filter (LPF) suitable for use in a compact low-power receiver, according to one embodiment of the present invention.
  • LPF r-order adjustable low-pass filter
  • FIG. 4B is a block diagram of a variable resistance block implemented in the 2 nd -order adjustable LPF of FIG. 4A .
  • FIG. 4C is a block diagram of a variable capacitor implemented in the 2 nd -order adjustable LPF of FIG. 4A .
  • the present invention is directed to a compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter.
  • FIG. 1 is a block diagram of transceiver 100 comprising a receiver including a circuit combination having a shared functionality, which is implemented using a digitally controlled interface circuit, according to one embodiment of the present invention capable of overcoming the disadvantages associated with conventional designs. It is noted that the arrangement shown in FIG. 1 is for the purpose of providing an overview, and elements shown in that figure are conceptual representation of physical and electrical elements, and are thus not intended to show dimensions or relative sizes or scale.
  • Transceiver 100 comprises antenna 102 , transceiver input/output routing switches 103 a and 103 b , duplexer 104 , transmit/receive (T/R) switch 105 , transmitter 106 , and compact low-power receiver 110 including shared functionality circuit combinations 116 a and 116 b implemented using respective digitally controlled interface circuits 160 a and 160 b .
  • receiver 110 comprises low noise amplifier (LNA) 112 including adjustable transconductance amplifier 113 configured to provide digital gain control, mixers 114 a and 114 b working in conjunction with, respectively, in-phase (I) and quadrature-phase (Q) signals provided by a local oscillator (local oscillator not shown in FIG.
  • LNA low noise amplifier
  • I in-phase
  • Q quadrature-phase
  • receiver 110 includes digitally controlled interface circuits 160 a and 160 b , second-order adjustable low-pass filters (2 nd -order adjustable LPFs) 170 a and 170 b , analog-to-digital converters (ADCs) 11 . 8 a and 118 b , interface control units 172 a and 172 b , and digital processors 120 a and 120 b to perform back-end processing of the respective I and Q signal components.
  • second-order adjustable low-pass filters (2 nd -order adjustable LPFs) 170 a and 170 b
  • ADCs analog-to-digital converters
  • Transceiver 100 may be utilized in a cellular telephone or other mobile device communicating at radio frequency (RF), for example, such as in a frequency range from approximately 0.8 GHz to approximately 2.2 GHz.
  • RF radio frequency
  • shared functionality circuit combination 116 a comprises variable gain control TIA 130 a and 2 nd -order adjustable LPF 170 a , which may both be analog circuits, for example, and digitally controlled interface circuit 160 a mediating their connection.
  • digitally controlled interface circuit 160 a receives control data from ADC 118 a , via interface control unit 172 a .
  • shared functionality circuit combination 116 b comprises variable gain control TIA 130 b, 2nd-order adjustable LPF 170 b , and digitally controlled interface circuit 160 b receiving control data from ADC 118 b via interface control unit 172 b .
  • interface control units 172 a and 1726 are shown as discrete circuit elements, in FIG. 1 , in other embodiments interface control units 172 a and 172 b may be incorporated into respective digitally controlled interface circuits 160 a and 160 b , or into respective ADCs 118 a and 118 b , for example.
  • the embodiment of the present invention shown in FIG. 1 produces a substantial majority of the overall receiver gain in the form of front-end gain.
  • the receiver front-end including LNA 112 , mixers 114 a and 114 b , and variable gain control TIAs 130 a and 130 b can be implemented so as to contribute approximately 50 dB of the overall receiver gain, while 2nd-order adjustable LPFs 170 a and 170 b may be relied upon for a substantially smaller gain contribution, e.g., approximately 15 dB of gain.
  • the increase in front-end gain provided by compact low-power receiver 110 reduces the reliance on back-end gain in embodiments of the present invention, thereby relaxing the noise requirement on the LPFs used for filtering in the receiver back-end. Consequently, 2nd-order adjustable LPFs 170 a and 170 b can be implemented in place of the 4 th -order or 5 th -order LPFs required by conventional designs. Moreover, due in part to the operational synergy of shared functionality circuit combinations 116 a and 116 b facilitated by respective digitally controlled interface circuits 160 a and 160 b , that substitution can be made without sacrificing receiver performance, thereby reducing the area requirements and power requirements flowing from use of high-order LPF in conventional designs without imposition of a significant performance cost.
  • compact low-power receiver 110 can be an integrated circuit (IC) fabricated on a single semiconductor die using a 40 nm process technology, for example.
  • IC integrated circuit
  • FIGS. 2A , 2 B, 2 C, 3 , 4 A, 4 B, and 4 C show conceptual representations of a specific implementational example of a variable gain control TIA suitable for use in a shared functionality circuit combination, according to one embodiment of the present invention.
  • FIG. 3 shows an exemplary implementation for a digitally controlled interface circuit for facilitating shared functionality by a circuit combination
  • FIGS. 4A , 4 B, and 4 C depict conceptual representations of an 2nd-order adjustable LPF and its included variable resistive and variable capacitive components.
  • FIG. 2A shows variable gain control TIA 230 A including adjustable current mode buffer 232 , according to one embodiment of the present invention, corresponding to variable gain control TIM 130 a and 130 b including respective adjustable current mode buffers 132 a and 132 b , in FIG. 1 .
  • Adjustable current mode buffer 232 may be configured for use with a low voltage power supply, for example, an approximately 1.2V power supply.
  • variable gain control TIA 230 A comprises RC network 234 .
  • RC network 234 includes output resistor 236 and output capacitor 237 coupled in parallel across differential outputs 238 a and 238 b .
  • Output resistor 236 is configured to provide variable gain control by determining the maximum gain provided by variable gain control TIA 230 A. Together, output resistor 236 and output capacitor 237 determine the pole frequency of variable gain control TIA 230 A. As further shown by FIG.
  • variable gain control TIA 230 A receives differential currents at differential inputs 231 a and 231 b , and provides a voltage signal Vow across differential outputs 238 a and 238 b coupled by output resistor 236 and output capacitor 237 .
  • FIG. 2B illustrates circuit arrangement 230 B corresponding to variable gain control TIA 230 A, in FIG. 2A , according to one embodiment of the present invention.
  • circuit arrangement 230 B may be implemented using a folded cascode circuit topology, thereby enabling use of a low voltage power supply, such as an approximately 1.2V supply, for example, to power the variable gain control TIA corresponding to circuit arrangement 230 B.
  • Circuit arrangement 230 B includes input devices 242 a and 242 b coupled to respective differential inputs 231 a and 231 b , and coupled to ground through respective input resistors 233 a and 233 b .
  • circuit arrangement 230 B includes input cascode devices 244 a and 244 b , folded cascode grouping 250 including cascode output devices 252 a and 252 b coupled to output resistor 236 and output capacitor 237 , devices 246 a and 246 b coupled to supply voltage V DD , and devices 248 a and 248 b coupled to ground.
  • FIG. 1 circuit arrangement 230 B includes input devices 242 a and 242 b coupled to respective differential inputs 231 a and 231 b , and coupled to ground through respective input resistors 233 a and 233 b .
  • circuit arrangement 230 B includes input cascode devices 244 a and 244 b , folded cascode grouping 250 including cascode output devices 252 a and 252 b coupled to output resistor
  • input devices 242 a and 242 b and input cascode devices 244 a and 244 b may be n-channel field-effect transistors (NFETs), and devices 248 a and 248 b may comprise NFETs sharing a common gate contact.
  • devices 246 a and 246 b and output cascode devices 252 a and 252 b may comprise PFETs sharing common gate contacts. It is noted that the directional arrows shown in FIG. 2B are provided to indicate the direction of current flow in circuit arrangement 230 B.
  • FIG. 2C shows a more detailed example of folded cascode grouping 250 illustrating exemplary cross-coupling of output cascode devices, e.g., output cascode PFETs 252 a and 252 b , to provide gain control, according to one embodiment of the present invention.
  • folded cascode grouping 250 in addition to output cascode devices 252 a and 252 b , folded cascode grouping 250 includes cross-coupling devices 254 a and 254 b , also shown as PFETs in that figure, configured to couple opposite power terminals of output cascode devices 252 a and 252 b .
  • cross-coupling device 254 a is shown to couple the drain of PFET 252 a to the source of PFET 252 b
  • cross-coupling device 254 b couples the source of PFET 252 a to the drain of PFET 252 b.
  • FIGS. 2A , 2 B, and 2 C applied to output cascode devices 252 a and 252 b , in other embodiments a similar approach may be adopted using input cascode devices 244 a and 244 b , either in addition to, or in lieu of, cross-coupling of output cascode devices 252 a and 252 b .
  • the approach to implementing gain control illustrated in FIGS. 2A , 2 B, and 2 C can provide a gain control range of greater than 30 dB, such as a gain control range of 50 dB, and provide accurate gain control steps of less than approximately 1 dB each, for example.
  • FIG. 3 is a block diagram of digitally controlled interface circuit 360 suitable for implementation in a shared functionality circuit combination represented by circuit combination 316 , according to one embodiment of the present invention.
  • Shared functionality circuit combination 316 including variable gain control TIA 330 , digitally controlled interface circuit 360 , and 2nd-order adjustable LPF 370 corresponds to either or both of shared functionality circuit combinations 116 a and 116 b including respective variable gain control TIAs 130 a and 130 b , digitally controlled interface circuits 160 a and 160 b , and 2 nd -order adjustable LPFs 170 a and 170 b , in FIG. 1 .
  • Also shown in FIG. 3 are ADC 318 and interface control unit 372 , corresponding respectively to ADCs 118 a and 118 b and interface control units 172 a and 172 b , in FIG. 1 .
  • variable gain control TIA 330 and 2nd-order adjustable LPF 370 are typically implemented as analog circuits. Consequently, despite their specific representation in the embodiment of FIG. 3 , more generally, variable gain control TIA 330 and 2nd-order adjustable LPF 370 may correspond to any two analog circuits connected by digitally controlled interface circuit 360 .
  • digitally controlled interface circuit 360 receives control data from ADC 318 , e.g., digital control data, via interface control unit 372 .
  • interface control unit 372 is shown as a discrete circuit element, in other embodiments interface control unit 372 may be incorporated into digitally controlled interface circuit 360 , or into ADC 318 , for example.
  • adjustable current mode buffer 332 provides differential outputs 338 a and 338 b of variable gain control TIA 330 , corresponding respectively to differential outputs 238 a and 238 b , in FIG. 2A .
  • 2nd-order adjustable LPF 370 includes differential inputs 371 a and 371 b .
  • Differential outputs 338 a and 338 b are characterized by voltage V OUT , which can be understood to include contributions from a first direct-current (DC) offset and a first common mode voltage at differential outputs 338 a and 338 b .
  • differential inputs 371 a and 371 b are characterized by voltage V IN , which can be understood to include contributions from a second DC offset and a second common mode voltage at differential inputs 371 a and 371 b .
  • Digitally controlled interface circuit 360 is configured not only to connect differential outputs 338 a and 338 b to respective differential inputs 371 a and 371 b , but to match their respective first and second DC offsets and common mode voltages as well, thereby facilitating the shared functionality of circuit combination 316 .
  • digitally controlled interface circuit 360 includes current blocks 361 a and 361 b configured to generate currents “i a ” and “i b ” flowing through respective resistors 365 a and 365 b .
  • Currents i s and i b can be tuned using the adjustable current sources internal to respective current blocks 361 a and 361 b .
  • current i a can be tuned using adjustable current sources 362 a , 364 a , 366 a , and 368 a
  • tuning of current i b can be performed using adjustable current sources 362 b , 364 b , 366 b , and 368 b .
  • the adjustable current sources internal to current blocks 361 a and 361 b may comprise cross-coupled pairs (cross-coupling not explicitly shown in FIG. 3 ).
  • adjustable current sources 362 a and 368 a may be cross-coupled so as to be concurrently adjusted by the same trimming code.
  • adjustable current sources 364 a and 366 a , 362 b and 368 b , and 361 b and 366 b may each compose a cross-coupled adjustable current source pair.
  • V OUT V IN +R ( i a ⁇ i b ); (Equation 1)
  • R is the resistance value of nominally identical resistors 365 a and 365 b .
  • V OUT COMMON MODE R [( i a +i b )/2 ]+V IN COMMON MODE ; (Equation 2)
  • the first DC offset and first common mode voltage at differential outputs 338 a and 338 b can be matched to the second DC offset and second common mode voltage at inputs 371 a and 371 b through the selection of appropriate trimming codes for the adjustable current sources contained by each of current blocks 361 a and 361 b .
  • Those trimming codes e.g., digital trimming codes, can be generated by interface control unit 372 , according to data provided by ADC 318 , for example.
  • the shared functionality of circuit combination 316 may correspond to implementation of a higher order receive signal filtering than can be provided by 2nd-order adjustable LPF 370 alone.
  • 2 nd -order LPF 370 represents a two-pole adjustable LPF.
  • an effective three-pole adjustable LPF can be generated by the synergy produced by shared functionality circuit combination 316 .
  • variable gain control TIA 330 can be configured to supply one pole of three-pole LPF, while 2nd-order adjustable LPF 370 can supply an additional two poles, resulting in shared functionality circuit combination 316 effectively implementing a three-pole adjustable LPF.
  • shared functionality is facilitated by digitally controlled interface circuit 360 , which may be used to connect variable gain control TIA 330 and 2 nd -order adjustable LPF 370 , and to provided DC offset and common mode voltage matching for variable gain control TIA 330 and 2 nd -order adjustable LPF 370 .
  • shared functionality circuit combination 316 may implement a three-pole adjustable low-pass Chebyshev filter.
  • FIG. 4A is a block diagram of 2 nd -order adjustable LPF 470 suitable for use in a circuit combination having a shared functionality, according to one embodiment of the present invention.
  • Second-order adjustable LPF 470 having differential inputs 471 a and 471 b corresponds to 2 nd -order adjustable LPF 370 having differential inputs 371 a and 371 b , in FIG. 3 .
  • the present embodiment represents a specific implementation of a 2 nd -order adjustable LPF, the present inventive principles can be applied more generally to other types of adjustable filters, such as 3 rd -order or higher adjustable LPFs, or adjustable high-pass, band-pass, or notch filters, for example.
  • 2 nd -order adjustable LPF 470 includes variable resistance input block 480 a coupled to differential inputs 471 a and 471 b .
  • 2 nd -order adjustable LPF 470 comprises operational amplifiers (op-amps) 474 a and 474 b , variable resistance transition block 480 b , fixed resistors 472 a and 472 b , variable capacitors 490 a , 490 b , 490 c , and 490 d (hereinafter “variable capacitors 490 a - 490 d ”), and variable resistors 480 c and 480 d.
  • each input to op-amps 474 and 476 is coupled to a corresponding op-amp output by a respective one of variable capacitors 490 a - 490 d .
  • Gain control for 2 nd -order adjustable LPF 470 can be provided through adjustment of variable resistance input block 480 a , for example, while the pole and frequency characteristics of 2 nd -order adjustable LPF 470 can be tuned using variable resistors 480 c and 480 d , and variable capacitors 490 a - 490 d , for example.
  • 2 nd -order adjustable LPF 470 may be implemented in a multi-mode RF receiver to concurrently support communications in a second-generation wireless telephone technology ( 2 G) mode, as well as in a 30 mode, for example, through scaling of variable capacitors 490 a - 490 d and tuning of the variable resistances internal to 2 nd -order adjustable LPF 470 .
  • 2 G second-generation wireless telephone technology
  • the present inventive concepts enable reduction of the number of op-amps required for filter implementation, when compared with conventional designs.
  • a conventional two-pole bi-quad filter design requires three op-amps for its implementation, while the present embodiment provides a two-pole adjustable LPF using no more than two op-amps, e.g., op-amps 474 and 476 .
  • FIG. 4A discloses a design in which the number of op-amps required for filter implementation does not exceed the number of poles characterizing the filter.
  • FIG. 4B is a block diagram of a variable resistance block implemented in 2 nd -order adjustable LPF 470 of FIG. 4A , according to one embodiment of the present invention.
  • Variable resistance block 480 can correspond to either or both of variable resistance input block 480 a and variable resistance transition block 480 b .
  • variable resistors 480 c and 480 d can be implemented in combination according to the arrangement shown in FIG. 4B .
  • variable resistance block 480 comprises network 486 of switchable unit resistors arranged in series, and parallel array 482 of switchable resistors situated between differential inputs 481 a and 481 b of variable resistance block 480 and series resistance network 486 .
  • parallel array 482 is situated between differential inputs 471 a and 471 b of 2 nd order adjustable LPF 470 and series resistance network 486 .
  • adjustment of the resistance provided by series resistance network 486 may be performed to provide gain control, while adjustment of the resistance provided by parallel array 482 can be performed to assure constant input impedance to variable resistance block 480 .
  • parallel array 482 comprises a number “n 1 ” of resistive branches 484 , each coupled in parallel to all others, and each controlled by a respective switch 483 .
  • selective activation or deactivation of one or more of switches 483 serves to vary the resistance of parallel array 482 .
  • series resistance network 486 of variable resistance block 480 comprises unit resistors 487 a 1 , 487 a 2 , . . .
  • unit resistors 487 a 1 - 487 a n2 which can be switched in or out of series resistance network 486 by respective switches 485 a 1 , 485 a 2 , . . . , 485 a n2 (hereinafter “switches 485 a 1 - 485 a n2 ”).
  • series resistance network 486 also comprises unit resistors 487 b 1 , 487 b 2 , . . .
  • switches 487 b 1 - 487 b n2 which can be switched in or out of series resistance network 486 by respective switches 485 b 1 , 485 b 2 , . . . , 485 b n2 (hereinafter “switches 485 b 1 - 485 b n2 ”).
  • switches 483 , 485 a 1 - 485 a 2 , and 485 b 1 - 485 b n2 can comprise native devices, thereby resulting in a reduced “ON” resistance.
  • FIG. 4C is a block diagram of variable capacitor 490 implemented in the 2 nd -order adjustable LPF of FIG. 4A , according to one embodiment of the present invention.
  • Variable capacitor 490 correspond to any or all of variable capacitors 490 a - 490 d , in FIG. 4A .
  • variable capacitor 490 comprises network 492 of switchable unit capacitors arranged in parallel.
  • network 492 comprises a number “n” of switched unit capacitor branches 494 , each including a unit capacitor 496 a , 496 b , . . .
  • unit capacitors 496 a - 496 n (hereinafter “unit capacitors 496 a - 496 n ”) and a respective switch 498 a , 498 b , . . . , 498 n (hereinafter “switches 498 a - 498 n ”) for switching respective unit capacitors 496 a - 496 n into and out of the collective capacitance produced by network 492 .
  • Implementation of the embodiments shown in FIGS. 4B and 4C in the embodiment of FIG. 4A can enable tuning of 2 nd -order adjustable LPF 470 to advantageously ensure that the RC of the filter remains substantially constant over process-voltage-temperature (PVT) variations.
  • PVT process-voltage-temperature
  • embodiments of the present invention enable circuit combinations exhibiting shared functionality.
  • embodiments of the present invention interface a variable gain control TIA and a 2 nd -order adjustable LPF to produce an effective three-pole adjustable LPF suitable for use in a compact low-power RF receiver or transceiver.
  • embodiments of the present invention enable a highly tunable LPF capable of maintaining a substantially constant RC over PVT variations.

Abstract

According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TIA) implemented using a current mode buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is generally in the field of electronic circuits and systems. More specifically, the present invention is in the field of communications circuits and systems.
  • 2. Background Art
  • As communications technologies move toward ever smaller device sizes and adopt ever lower power consumption constraints, identifying and harnessing operational synergies through the use of circuit combinations capable of sharing system functionality becomes increasingly important. Consider, for example, a conventional radio frequency (RF) receiver implemented in a communications transceiver. A conventional receiver typically utilizes several stages to amplify and process what may often be a weak reception signal. For instance, a low noise amplifier (LNA) may be used to boost the reception signal prior to down-conversion from RF to baseband by a mixer stage in the receiver “front-end.” The baseband signal is then normally filtered by a high-order low-pass filter (LPF), for example a 4th-order or 5th-order LPF, which provides substantial additional “back-end” gain in the conventional receiver design.
  • In such a conventional receiver, the gain control provided by the receiver as a whole may be primarily produced by the receiver back-end, with the high-order LPF contributing a significant portion of the overall gain. Due to the stringent requirements imposed on the high-order LPF in conventional receiver designs, however, the high-order LPF typically consumes much of the power and dominates most of the area required to implement the receiver. As communications technologies move toward ever smaller device sizes and adopt ever lower power consumption constraints, as represented by the 40 nm technology node, for example, the relative bulk and high power consumption of conventional receiver architectures have become ever more undesirable.
  • Thus, there is a need to overcome the drawbacks and deficiencies in the art by providing an interface circuit configured to facilitate generation of the synergies possible through shared functionality by a circuit combination, thereby enabling design of more efficient communications systems, such as a compact low-power receiver architecture suitable for implementation as part of a mobile device transceiver, for example.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter, substantially as shown in and/or described in connection with at least one of the figures, and as set forth more completely in the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a compact low-power receiver according to one embodiment of the present invention.
  • FIG. 2A is a block diagram of a current mode buffer based transimpedance amplifier (TIA) providing variable gain control according to one embodiment of the present invention.
  • FIG. 2B illustrates a circuit corresponding to the variable gain control TIA of FIG. 2A.
  • FIG. 2C illustrates exemplary cross-coupling of cascode devices included in the example circuit of FIG. 2B to provide gain control.
  • FIG. 3 is a block diagram of a digitally controlled interface circuit suitable for use in a compact low-power receiver, according to one embodiment of the present invention.
  • FIG. 4A is a block diagram of a r-order adjustable low-pass filter (LPF) suitable for use in a compact low-power receiver, according to one embodiment of the present invention.
  • FIG. 4B is a block diagram of a variable resistance block implemented in the 2nd-order adjustable LPF of FIG. 4A.
  • FIG. 4C is a block diagram of a variable capacitor implemented in the 2nd-order adjustable LPF of FIG. 4A.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to a compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter. Although the invention is described with respect to specific embodiments, the principles of the invention, as defined by the claims appended herein, can obviously be applied beyond the specifically described embodiments of the invention described herein. Moreover, in the description of the present invention, certain details have been left out in order to not obscure the inventive aspects of the invention. The details left out are within the knowledge of a person of ordinary skill in the art.
  • The drawings in the present application and their accompanying detailed description are directed to merely exemplary embodiments of the invention. To maintain brevity, other embodiments of the invention, which use the principles of the present invention are not specifically described in the present application and are not specifically illustrated by the present drawings.
  • FIG. 1 is a block diagram of transceiver 100 comprising a receiver including a circuit combination having a shared functionality, which is implemented using a digitally controlled interface circuit, according to one embodiment of the present invention capable of overcoming the disadvantages associated with conventional designs. It is noted that the arrangement shown in FIG. 1 is for the purpose of providing an overview, and elements shown in that figure are conceptual representation of physical and electrical elements, and are thus not intended to show dimensions or relative sizes or scale.
  • Transceiver 100 comprises antenna 102, transceiver input/ output routing switches 103 a and 103 b, duplexer 104, transmit/receive (T/R) switch 105, transmitter 106, and compact low-power receiver 110 including shared functionality circuit combinations 116 a and 116 b implemented using respective digitally controlled interface circuits 160 a and 160 b. As shown in FIG. 1, receiver 110 comprises low noise amplifier (LNA) 112 including adjustable transconductance amplifier 113 configured to provide digital gain control, mixers 114 a and 114 b working in conjunction with, respectively, in-phase (I) and quadrature-phase (Q) signals provided by a local oscillator (local oscillator not shown in FIG. 1), and variable gain control transimpedance amplifiers (TIAs) 130 a and 130 b including respective adjustable current mode buffers 132 a and 132 b. As further shown in FIG. 1, receiver 110 includes digitally controlled interface circuits 160 a and 160 b, second-order adjustable low-pass filters (2nd-order adjustable LPFs) 170 a and 170 b, analog-to-digital converters (ADCs) 11.8 a and 118 b, interface control units 172 a and 172 b, and digital processors 120 a and 120 b to perform back-end processing of the respective I and Q signal components.
  • It is noted that although the I and Q receive signal paths are represented by single lines joining, for example, mixer 114 a and variable gain control TIA 130 a, variable gain control TIA 130 a and digitally controlled interface circuit 160 a, digitally controlled interface circuit 160 a and 2nd-order adjustable LPF 170 a, and 2nd-order adjustable LPF and ADC 118 a, those signals may in fact be differential signals. Transceiver 100 may be utilized in a cellular telephone or other mobile device communicating at radio frequency (RF), for example, such as in a frequency range from approximately 0.8 GHz to approximately 2.2 GHz.
  • According to the embodiment of FIG. 1, shared functionality circuit combination 116 a comprises variable gain control TIA 130 a and 2nd-order adjustable LPF 170 a, which may both be analog circuits, for example, and digitally controlled interface circuit 160 a mediating their connection. As shown in FIG. 1, digitally controlled interface circuit 160 a receives control data from ADC 118 a, via interface control unit 172 a. Similarly, shared functionality circuit combination 116 b comprises variable gain control TIA 130 b, 2nd-order adjustable LPF 170 b, and digitally controlled interface circuit 160 b receiving control data from ADC 118 b via interface control unit 172 b. It is noted that although interface control units 172 a and 1726 are shown as discrete circuit elements, in FIG. 1, in other embodiments interface control units 172 a and 172 b may be incorporated into respective digitally controlled interface circuits 160 a and 160 b, or into respective ADCs 118 a and 118 b, for example.
  • In marked contrast to conventional receiver implementations relying on substantial back-end gain, such as approximately 40 dB of gain produced by 4th-order or 5th-order LPFs, for example, the embodiment of the present invention shown in FIG. 1 produces a substantial majority of the overall receiver gain in the form of front-end gain. For example, the receiver front-end including LNA 112, mixers 114 a and 114 b, and variable gain control TIAs 130 a and 130 b can be implemented so as to contribute approximately 50 dB of the overall receiver gain, while 2nd-order adjustable LPFs 170 a and 170 b may be relied upon for a substantially smaller gain contribution, e.g., approximately 15 dB of gain.
  • The increase in front-end gain provided by compact low-power receiver 110 reduces the reliance on back-end gain in embodiments of the present invention, thereby relaxing the noise requirement on the LPFs used for filtering in the receiver back-end. Consequently, 2nd-order adjustable LPFs 170 a and 170 b can be implemented in place of the 4th-order or 5th-order LPFs required by conventional designs. Moreover, due in part to the operational synergy of shared functionality circuit combinations 116 a and 116 b facilitated by respective digitally controlled interface circuits 160 a and 160 b, that substitution can be made without sacrificing receiver performance, thereby reducing the area requirements and power requirements flowing from use of high-order LPF in conventional designs without imposition of a significant performance cost. As a result, the compact low-power receiver architecture disclosed herein is particularly well suited to meet fine dimensional and low power supply constraints as fabrication technologies transition to the 40 nm node and beyond. Thus, in one embodiment, compact low-power receiver 110 can be an integrated circuit (IC) fabricated on a single semiconductor die using a 40 nm process technology, for example.
  • The operation of shared functionality circuit combinations 116 a and 116 b, as well as the advantages accruing from implementation of respective digitally controlled interface circuits 160 a and 160 b, will now be further described by reference to FIGS. 2A, 2B, 2C, 3, 4A, 4B, and 4C. FIGS. 2A, 2B, and 2C show conceptual representations of a specific implementational example of a variable gain control TIA suitable for use in a shared functionality circuit combination, according to one embodiment of the present invention. FIG. 3, shows an exemplary implementation for a digitally controlled interface circuit for facilitating shared functionality by a circuit combination, while FIGS. 4A, 4B, and 4C depict conceptual representations of an 2nd-order adjustable LPF and its included variable resistive and variable capacitive components.
  • Referring to FIG. 2A, FIG. 2A shows variable gain control TIA 230A including adjustable current mode buffer 232, according to one embodiment of the present invention, corresponding to variable gain control TIM 130 a and 130 b including respective adjustable current mode buffers 132 a and 132 b, in FIG. 1. Adjustable current mode buffer 232 may be configured for use with a low voltage power supply, for example, an approximately 1.2V power supply.
  • As shown by FIG. 2A, in addition to adjustable current mode buffer 232, variable gain control TIA 230A comprises RC network 234. RC network 234 includes output resistor 236 and output capacitor 237 coupled in parallel across differential outputs 238 a and 238 b. Output resistor 236 is configured to provide variable gain control by determining the maximum gain provided by variable gain control TIA 230A. Together, output resistor 236 and output capacitor 237 determine the pole frequency of variable gain control TIA 230A. As further shown by FIG. 2A, variable gain control TIA 230A receives differential currents at differential inputs 231 a and 231 b, and provides a voltage signal Vow across differential outputs 238 a and 238 b coupled by output resistor 236 and output capacitor 237.
  • Continuing to FIG. 2B, FIG. 2B illustrates circuit arrangement 230B corresponding to variable gain control TIA 230A, in FIG. 2A, according to one embodiment of the present invention. As shown in FIG. 2B, circuit arrangement 230B may be implemented using a folded cascode circuit topology, thereby enabling use of a low voltage power supply, such as an approximately 1.2V supply, for example, to power the variable gain control TIA corresponding to circuit arrangement 230B.
  • Circuit arrangement 230B includes input devices 242 a and 242 b coupled to respective differential inputs 231 a and 231 b, and coupled to ground through respective input resistors 233 a and 233 b. As also shown in FIG. 2B, circuit arrangement 230B includes input cascode devices 244 a and 244 b, folded cascode grouping 250 including cascode output devices 252 a and 252 b coupled to output resistor 236 and output capacitor 237, devices 246 a and 246 b coupled to supply voltage VDD, and devices 248 a and 248 b coupled to ground. According to one embodiment, as shown for example in FIG. 2B, input devices 242 a and 242 b and input cascode devices 244 a and 244 b may be n-channel field-effect transistors (NFETs), and devices 248 a and 248 b may comprise NFETs sharing a common gate contact. In addition, according to the embodiment of FIG. 2B, devices 246 a and 246 b and output cascode devices 252 a and 252 b may comprise PFETs sharing common gate contacts. It is noted that the directional arrows shown in FIG. 2B are provided to indicate the direction of current flow in circuit arrangement 230B.
  • Referring now to FIG. 2C, FIG. 2C shows a more detailed example of folded cascode grouping 250 illustrating exemplary cross-coupling of output cascode devices, e.g., output cascode PFETs 252 a and 252 b, to provide gain control, according to one embodiment of the present invention. As shown in FIG. 2C, in addition to output cascode devices 252 a and 252 b, folded cascode grouping 250 includes cross-coupling devices 254 a and 254 b, also shown as PFETs in that figure, configured to couple opposite power terminals of output cascode devices 252 a and 252 b. For example, cross-coupling device 254 a is shown to couple the drain of PFET 252 a to the source of PFET 252 b, while cross-coupling device 254 b couples the source of PFET 252 a to the drain of PFET 252 b.
  • As a result of the arrangement shown in FIG. 2C, current can flow from the power terminals of output cascode device 252 a to the opposite power terminals of output cascode device 252 b under the control of cross-coupling devices 254 a and 254 b, thereby controllably adjusting VOUT. Thus, one or both of cross-coupling devices 254 a and 254 b can be selectively activated so as to contribute to the gain control provided by variable gain control TIA 230A. Although the present figures show the cross-coupling scheme of FIG. 2C applied to output cascode devices 252 a and 252 b, in other embodiments a similar approach may be adopted using input cascode devices 244 a and 244 b, either in addition to, or in lieu of, cross-coupling of output cascode devices 252 a and 252 b. The approach to implementing gain control illustrated in FIGS. 2A, 2B, and 2C can provide a gain control range of greater than 30 dB, such as a gain control range of 50 dB, and provide accurate gain control steps of less than approximately 1 dB each, for example.
  • Moving on to FIG. 3, FIG. 3 is a block diagram of digitally controlled interface circuit 360 suitable for implementation in a shared functionality circuit combination represented by circuit combination 316, according to one embodiment of the present invention. Shared functionality circuit combination 316 including variable gain control TIA 330, digitally controlled interface circuit 360, and 2nd-order adjustable LPF 370 corresponds to either or both of shared functionality circuit combinations 116 a and 116 b including respective variable gain control TIAs 130 a and 130 b, digitally controlled interface circuits 160 a and 160 b, and 2nd-order adjustable LPFs 170 a and 170 b, in FIG. 1. Also shown in FIG. 3 are ADC 318 and interface control unit 372, corresponding respectively to ADCs 118 a and 118 b and interface control units 172 a and 172 b, in FIG. 1.
  • As previously mentioned, variable gain control TIA 330 and 2nd-order adjustable LPF 370 are typically implemented as analog circuits. Consequently, despite their specific representation in the embodiment of FIG. 3, more generally, variable gain control TIA 330 and 2nd-order adjustable LPF 370 may correspond to any two analog circuits connected by digitally controlled interface circuit 360. As shown in FIG. 3, digitally controlled interface circuit 360 receives control data from ADC 318, e.g., digital control data, via interface control unit 372. It is again noted that although interface control unit 372 is shown as a discrete circuit element, in other embodiments interface control unit 372 may be incorporated into digitally controlled interface circuit 360, or into ADC 318, for example.
  • As shown in FIG. 3, adjustable current mode buffer 332 provides differential outputs 338 a and 338 b of variable gain control TIA 330, corresponding respectively to differential outputs 238 a and 238 b, in FIG. 2A. As further shown by FIG. 3, 2nd-order adjustable LPF 370 includes differential inputs 371 a and 371 b. Differential outputs 338 a and 338 b are characterized by voltage VOUT, which can be understood to include contributions from a first direct-current (DC) offset and a first common mode voltage at differential outputs 338 a and 338 b. Analogously, differential inputs 371 a and 371 b are characterized by voltage VIN, which can be understood to include contributions from a second DC offset and a second common mode voltage at differential inputs 371 a and 371 b. Digitally controlled interface circuit 360 is configured not only to connect differential outputs 338 a and 338 b to respective differential inputs 371 a and 371 b, but to match their respective first and second DC offsets and common mode voltages as well, thereby facilitating the shared functionality of circuit combination 316.
  • According to the embodiment of FIG. 3, digitally controlled interface circuit 360 includes current blocks 361 a and 361 b configured to generate currents “ia” and “ib” flowing through respective resistors 365 a and 365 b. Currents is and ib can be tuned using the adjustable current sources internal to respective current blocks 361 a and 361 b. For example, current ia can be tuned using adjustable current sources 362 a, 364 a, 366 a, and 368 a, while tuning of current ib can be performed using adjustable current sources 362 b, 364 b, 366 b, and 368 b. In one embodiment, the adjustable current sources internal to current blocks 361 a and 361 b may comprise cross-coupled pairs (cross-coupling not explicitly shown in FIG. 3). For example, adjustable current sources 362 a and 368 a may be cross-coupled so as to be concurrently adjusted by the same trimming code. Similarly, adjustable current sources 364 a and 366 a, 362 b and 368 b, and 361 b and 366 b may each compose a cross-coupled adjustable current source pair.
  • As may be understood from an examination of FIG. 3:

  • V OUT =V IN +R(i a −i b);  (Equation 1)
  • where R is the resistance value of nominally identical resistors 365 a and 365 b. Moreover:

  • V OUT COMMON MODE =R[(i a +i b)/2]+V IN COMMON MODE;  (Equation 2)
  • According to Equations 1 and 2, the first DC offset and first common mode voltage at differential outputs 338 a and 338 b can be matched to the second DC offset and second common mode voltage at inputs 371 a and 371 b through the selection of appropriate trimming codes for the adjustable current sources contained by each of current blocks 361 a and 361 b. Those trimming codes, e.g., digital trimming codes, can be generated by interface control unit 372, according to data provided by ADC 318, for example.
  • According to the specific embodiment shown in FIG. 3, the shared functionality of circuit combination 316 may correspond to implementation of a higher order receive signal filtering than can be provided by 2nd-order adjustable LPF 370 alone. For example, 2nd-order LPF 370 represents a two-pole adjustable LPF. However, an effective three-pole adjustable LPF can be generated by the synergy produced by shared functionality circuit combination 316. In other words, variable gain control TIA 330 can be configured to supply one pole of three-pole LPF, while 2nd-order adjustable LPF 370 can supply an additional two poles, resulting in shared functionality circuit combination 316 effectively implementing a three-pole adjustable LPF. Moreover, that shared functionality is facilitated by digitally controlled interface circuit 360, which may be used to connect variable gain control TIA 330 and 2nd-order adjustable LPF 370, and to provided DC offset and common mode voltage matching for variable gain control TIA 330 and 2nd-order adjustable LPF 370. In one embodiment, for example, shared functionality circuit combination 316 may implement a three-pole adjustable low-pass Chebyshev filter.
  • Continuing to FIG. 4A, FIG. 4A is a block diagram of 2nd-order adjustable LPF 470 suitable for use in a circuit combination having a shared functionality, according to one embodiment of the present invention. Second-order adjustable LPF 470 having differential inputs 471 a and 471 b corresponds to 2nd-order adjustable LPF 370 having differential inputs 371 a and 371 b, in FIG. 3. It is noted that although the present embodiment represents a specific implementation of a 2nd-order adjustable LPF, the present inventive principles can be applied more generally to other types of adjustable filters, such as 3rd-order or higher adjustable LPFs, or adjustable high-pass, band-pass, or notch filters, for example.
  • As shown in FIG. 4A, according to the present embodiment, 2nd-order adjustable LPF 470 includes variable resistance input block 480 a coupled to differential inputs 471 a and 471 b. In addition, 2nd-order adjustable LPF 470 comprises operational amplifiers (op-amps) 474 a and 474 b, variable resistance transition block 480 b, fixed resistors 472 a and 472 b, variable capacitors 490 a, 490 b, 490 c, and 490 d (hereinafter “variable capacitors 490 a-490 d”), and variable resistors 480 c and 480 d.
  • As further shown in FIG. 4A, each input to op- amps 474 and 476 is coupled to a corresponding op-amp output by a respective one of variable capacitors 490 a-490 d. Gain control for 2nd-order adjustable LPF 470 can be provided through adjustment of variable resistance input block 480 a, for example, while the pole and frequency characteristics of 2nd-order adjustable LPF 470 can be tuned using variable resistors 480 c and 480 d, and variable capacitors 490 a-490 d, for example. Thus, in one embodiment 2nd-order adjustable LPF 470 may be implemented in a multi-mode RF receiver to concurrently support communications in a second-generation wireless telephone technology (2G) mode, as well as in a 30 mode, for example, through scaling of variable capacitors 490 a-490 d and tuning of the variable resistances internal to 2nd-order adjustable LPF 470.
  • Moreover, by cross-coupling the outputs of op-amp 474 to the inputs of op-amp 476 through variable resistance transition block 480 b, the present inventive concepts enable reduction of the number of op-amps required for filter implementation, when compared with conventional designs. For example, a conventional two-pole bi-quad filter design requires three op-amps for its implementation, while the present embodiment provides a two-pole adjustable LPF using no more than two op-amps, e.g., op- amps 474 and 476. In other words, FIG. 4A discloses a design in which the number of op-amps required for filter implementation does not exceed the number of poles characterizing the filter.
  • Referring to FIG. 4B, FIG. 4B is a block diagram of a variable resistance block implemented in 2nd-order adjustable LPF 470 of FIG. 4A, according to one embodiment of the present invention. Variable resistance block 480 can correspond to either or both of variable resistance input block 480 a and variable resistance transition block 480 b, In addition, in one embodiment, variable resistors 480 c and 480 d can be implemented in combination according to the arrangement shown in FIG. 4B.
  • As shown in FIG. 4B, variable resistance block 480 comprises network 486 of switchable unit resistors arranged in series, and parallel array 482 of switchable resistors situated between differential inputs 481 a and 481 b of variable resistance block 480 and series resistance network 486. For example, where variable resistance block 480 corresponds to variable resistance input block 480 a, parallel array 482 is situated between differential inputs 471 a and 471 b of 2nd order adjustable LPF 470 and series resistance network 486. In that particular implementation, adjustment of the resistance provided by series resistance network 486 may be performed to provide gain control, while adjustment of the resistance provided by parallel array 482 can be performed to assure constant input impedance to variable resistance block 480.
  • According to the embodiment of FIG. 4B, parallel array 482 comprises a number “n1” of resistive branches 484, each coupled in parallel to all others, and each controlled by a respective switch 483. As may be understood from the embodiment of FIG. 4B, selective activation or deactivation of one or more of switches 483 serves to vary the resistance of parallel array 482. As further shown in FIG. 4B, series resistance network 486 of variable resistance block 480 comprises unit resistors 487 a 1, 487 a 2, . . . , 487 a n2 (hereinafter “unit resistors 487 a 1-487 a n2”) which can be switched in or out of series resistance network 486 by respective switches 485 a 1, 485 a 2, . . . , 485 a n2 (hereinafter “switches 485 a 1-485 a n2”). In addition, series resistance network 486 also comprises unit resistors 487 b 1, 487 b 2, . . . , 487 b n2 (hereinafter “unit resistors 487 b 1-487 b n2”) which can be switched in or out of series resistance network 486 by respective switches 485 b 1, 485 b 2, . . . , 485 b n2 (hereinafter “switches 485 b 1-485 b n2”). In one embodiment, for example, switches 483, 485 a 1-485 a 2, and 485 b 1-485 b n2 can comprise native devices, thereby resulting in a reduced “ON” resistance.
  • Continuing to FIG. 4C, FIG. 4C is a block diagram of variable capacitor 490 implemented in the 2nd-order adjustable LPF of FIG. 4A, according to one embodiment of the present invention. Variable capacitor 490 correspond to any or all of variable capacitors 490 a-490 d, in FIG. 4A. As shown in FIG. 4C, variable capacitor 490 comprises network 492 of switchable unit capacitors arranged in parallel. For example, according to the embodiment of FIG. 4C, network 492 comprises a number “n” of switched unit capacitor branches 494, each including a unit capacitor 496 a, 496 b, . . . , 496 n (hereinafter “unit capacitors 496 a-496 n”) and a respective switch 498 a, 498 b, . . . , 498 n (hereinafter “switches 498 a-498 n”) for switching respective unit capacitors 496 a-496 n into and out of the collective capacitance produced by network 492.
  • Implementation of the embodiments shown in FIGS. 4B and 4C in the embodiment of FIG. 4A, for example, can enable tuning of 2nd-order adjustable LPF 470 to advantageously ensure that the RC of the filter remains substantially constant over process-voltage-temperature (PVT) variations.
  • Thus, by providing a digitally controlled interface circuit to connect two analog circuits and to concurrently perform DC offset and common mode voltage matching, embodiments of the present invention enable circuit combinations exhibiting shared functionality. For example, embodiments of the present invention interface a variable gain control TIA and a 2nd-order adjustable LPF to produce an effective three-pole adjustable LPF suitable for use in a compact low-power RF receiver or transceiver. Moreover, by implementing variable capacitors and variable resistors using respective networks of switchable unit capacitors and unit resistors, embodiments of the present invention enable a highly tunable LPF capable of maintaining a substantially constant RC over PVT variations.
  • From the above description of the invention it is manifest that various techniques can be used for implementing the concepts of the present invention without departing from its scope. Moreover, while the invention has been described with specific reference to certain embodiments, a person of ordinary skill in the art would recognize that changes can be made in form and detail without departing from the spirit and the scope of the invention. The described embodiments are to be considered in all respects as illustrative and not restrictive. It should also be understood that the invention is not limited to the particular embodiments described herein, but is capable of many rearrangements, Modifications, and substitutions without departing from the scope of the invention.

Claims (20)

What is claimed is:
1. An adjustable low-pass filter (LPF) in a compact low-power receiver, the adjustable LPF comprising:
a resistance input block; and
a plurality of operational amplifiers, wherein
an input of at least one of the plurality of operational amplifiers is coupled to an output of the at least one of the plurality of operational amplifiers by at least one capacitor; and
a number of the plurality of operational amplifiers does not exceed a number of poles characterizing the adjustable LPF.
2. The adjustable LPF of claim 1, wherein the resistance input block includes a network of switchable unit resistors situated between an input of the adjustable LPF and the network.
3. The adjustable LPF of claim 1, wherein the at least one capacitor includes a network of switchable unit capacitors.
4. The adjustable LPF of claim 1, wherein:
the adjustable LPF includes a two-pole adjustable LPF; and
the number of the plurality of operational amplifiers is two.
5. The adjustable LPF of claim 1, wherein the compact low-power receiver utilizes a three-pole low-pass Chebyshev filter.
6. The adjustable LPF of claim 1, wherein the resistance input block includes:
a network of switchable unit resistors arranged in series and a parallel array of switchable resistors situated between an input of the adjustable LPF and the network.
7. The adjustable LPF of claim 6, wherein the parallel array and the network include native devices for controlling the switchable resistors and the switchable unit resistors.
8. A system including the adjustable LPF of claim 1, a variable gain control transimpedance amplifier (TIA), and a digitally controlled interface circuit connecting an output of the variable gain control TIA to an input of the adjustable LPF.
9. The system of claim 8, wherein the digitally controlled interface circuit is configured to match a first direct-current (DC) offset and first common mode voltage of the output of the variable gain control TIA to a respective second DC offset and second common mode voltage of the input of the adjustable LPF.
10. An adjustable low-pass filter (LPF) in a compact low-power receiver, the adjustable LPF comprising:
a plurality of operational amplifiers, wherein
an input of at least one of the plurality of operational amplifiers is coupled to an output of the at least one of the plurality of operational amplifiers by at least one capacitor; and
a number of the plurality of operational amplifiers does not exceed a number of poles characterizing the adjustable LPF.
11. The adjustable LPF of claim 10, wherein the at least one capacitor includes a network of switchable unit capacitors.
12. The adjustable LPF of claim 10, wherein the adjustable LPF includes a two-pole adjustable LPF.
13. The adjustable LPF of claim 10, wherein the number of the plurality of operational amplifiers is two.
14. The adjustable LPF of claim 12, wherein the number of the plurality of operational amplifiers is two.
15. A system including the adjustable LPF of claim 10, a variable gain control transimpedance amplifier (TIA), and a digitally controlled interface circuit connecting an output of the variable gain control TIA to an input of the adjustable LPF.
16. An adjustable low-pass filter (LPF) in a compact low-power receiver, the adjustable LPF comprising:
a plurality of operational amplifiers, wherein
a number of the plurality of operational amplifiers is less than or equal to a number of poles characterizing the adjustable LPF.
17. The adjustable LPF of claim 16, wherein the number of the plurality of operational amplifiers is two.
18. The adjustable LPF of claim 16, further comprising:
a resistance input block that includes a network of switchable unit resistors.
19. The adjustable LPF of claim 16, wherein the compact low-power receiver utilizes a three-pole low-pass Chebyshev filter.
20. The adjustable LPF of claim 16, wherein an input of at least one of the plurality of operational amplifiers is coupled to an output of the at least one of the plurality of operational amplifiers by a capacitor.
US14/807,429 2010-07-20 2015-07-23 Receiver with variable gain control transimpedance amplifier Abandoned US20150326185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/807,429 US20150326185A1 (en) 2010-07-20 2015-07-23 Receiver with variable gain control transimpedance amplifier
US15/427,398 US10205438B2 (en) 2010-07-20 2017-02-08 Adjustable low-pass filter in a compact low-power receiver

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/804,397 US8452253B2 (en) 2010-07-20 2010-07-20 Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US13/901,390 US9112745B2 (en) 2010-07-20 2013-05-23 Receiver with variable gain control transimpedance amplifier
US14/807,429 US20150326185A1 (en) 2010-07-20 2015-07-23 Receiver with variable gain control transimpedance amplifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/901,390 Division US9112745B2 (en) 2010-07-20 2013-05-23 Receiver with variable gain control transimpedance amplifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/427,398 Division US10205438B2 (en) 2010-07-20 2017-02-08 Adjustable low-pass filter in a compact low-power receiver

Publications (1)

Publication Number Publication Date
US20150326185A1 true US20150326185A1 (en) 2015-11-12

Family

ID=45494034

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/804,397 Active 2031-07-21 US8452253B2 (en) 2010-07-20 2010-07-20 Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US13/901,500 Active US9042858B2 (en) 2010-07-20 2013-05-23 Device including a plurality of analog circuits and an interface that matches characteristics of the analog circuits
US13/901,390 Active US9112745B2 (en) 2010-07-20 2013-05-23 Receiver with variable gain control transimpedance amplifier
US14/807,429 Abandoned US20150326185A1 (en) 2010-07-20 2015-07-23 Receiver with variable gain control transimpedance amplifier
US15/427,398 Active US10205438B2 (en) 2010-07-20 2017-02-08 Adjustable low-pass filter in a compact low-power receiver

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/804,397 Active 2031-07-21 US8452253B2 (en) 2010-07-20 2010-07-20 Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US13/901,500 Active US9042858B2 (en) 2010-07-20 2013-05-23 Device including a plurality of analog circuits and an interface that matches characteristics of the analog circuits
US13/901,390 Active US9112745B2 (en) 2010-07-20 2013-05-23 Receiver with variable gain control transimpedance amplifier

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/427,398 Active US10205438B2 (en) 2010-07-20 2017-02-08 Adjustable low-pass filter in a compact low-power receiver

Country Status (1)

Country Link
US (5) US8452253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656061A (en) * 2016-12-30 2017-05-10 光梓信息科技(上海)有限公司 Transimpedance amplifier
CN107834995A (en) * 2017-11-23 2018-03-23 西安电子科技大学 Multifunctional ultrasonic imaging system
US11595069B2 (en) 2021-07-14 2023-02-28 Apple Inc. Transimpedance amplifier (TIA) with tunable input resistance

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457580B2 (en) * 2010-07-20 2013-06-04 Broadcom Corporation Compact low-power receiver architecture and related method
US8452253B2 (en) * 2010-07-20 2013-05-28 Broadcom Corporation Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US8971835B2 (en) * 2011-01-05 2015-03-03 Intel Mobile Communications GmbH Receiver with wide dynamic range and low power consumption
US9263993B2 (en) 2014-04-22 2016-02-16 Mediatek Inc. Low pass filter with common-mode noise reduction
US9419573B2 (en) 2014-06-27 2016-08-16 Nxp, B.V. Variable gain transimpedance amplifier
US9300264B2 (en) * 2014-08-22 2016-03-29 Mediatek Inc. Receiver arrangement and method of performing operations of receiver
US9325332B2 (en) 2014-08-27 2016-04-26 International Business Machines Corporation Adjusting the magnitude of a capacitance of a digitally controlled circuit
EP3386480A1 (en) 2015-12-07 2018-10-17 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Compositions of therapeutic substances, methods and uses thereof
US9729119B1 (en) * 2016-03-04 2017-08-08 Atmel Corporation Automatic gain control for received signal strength indication
US10158344B2 (en) * 2017-01-13 2018-12-18 GM Global Technology Operations LLC Tunable bandpass filter
GB201701391D0 (en) * 2017-01-27 2017-03-15 Nordic Semiconductor Asa Radio receivers
US10338224B2 (en) 2017-03-27 2019-07-02 Analog Devices Global Unlimited Company High dynamic range analog front-end receiver for long range LIDAR
CN107666287A (en) * 2017-09-14 2018-02-06 西安电子科技大学 Variable gain trans-impedance amplifier
US10211865B1 (en) * 2018-06-22 2019-02-19 Futurewei Technologies, Inc. Fully differential adjustable gain devices and methods for use therewith
US10581472B2 (en) * 2018-06-22 2020-03-03 Futurewei Technologies, Inc. Receiver with reduced mixer-filter interaction distortion
US11555897B2 (en) 2018-07-02 2023-01-17 Analog Devices International Unlimited Company Transimpedance amplifier with pulse widening
US10727847B1 (en) 2019-02-07 2020-07-28 International Business Machines Corporation Digital control of a voltage controlled oscillator frequency
KR20210041358A (en) 2019-10-07 2021-04-15 삼성전자주식회사 Reconfigurable analog filter and integrated circuit including the same
CN111464010A (en) * 2020-04-24 2020-07-28 湖南大学 Vehicle-mounted charger with variable load filter capacitor for rail transit and control method
US11658616B2 (en) 2021-04-22 2023-05-23 Analog Devices International Unlimited Company Method and apparatus to reduce inter symbol interference and adjacent channel interference in mixer and TIA for RF applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002404B2 (en) * 2003-02-27 2006-02-21 Infineon Technologies Ag Tuning circuit for a filter
US20060068742A1 (en) * 2004-09-30 2006-03-30 Texas Instruments Incorporated High order trans-impedance filter with a single operational amplifier
US7051063B2 (en) * 2002-05-03 2006-05-23 Atheros Communications, Inc. Integrated low power channel select filter having high dynamic range and bandwidth
US20070159247A1 (en) * 2006-01-09 2007-07-12 Samsung Electronics Co., Ltd. CMOS amplifier of filter for ultra wideband application and method of the same
US20080197924A1 (en) * 2007-02-16 2008-08-21 Fujitsu Limited Variable gain amplifier circuit and filter circuit
US20110012678A1 (en) * 2009-07-20 2011-01-20 Texas Instruments Incorporated Transfer-function control in an active filter

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593250A (en) * 1985-08-26 1986-06-03 Hughes Aircraft Company Operational amplifier compensation technique for biquadratic notch active filters
US5392003A (en) * 1993-08-09 1995-02-21 Motorola, Inc. Wide tuning range operational transconductance amplifiers
EP0707379A1 (en) * 1994-10-11 1996-04-17 BELL TELEPHONE MANUFACTURING COMPANY Naamloze Vennootschap Tunable quadrature phase shifter
US6459889B1 (en) * 2000-02-29 2002-10-01 Motorola, Inc. DC offset correction loop for radio receiver
US6606359B1 (en) * 2000-07-26 2003-08-12 Motorola, Inc Area-optimum rapid acquisition cellular multi-protocol digital DC offset correction scheme
US6433638B1 (en) * 2000-09-06 2002-08-13 International Business Machines Corporation Fully balanced transimpedance amplifier for high speed and low voltage applications
US6545534B1 (en) * 2001-02-13 2003-04-08 Analog Devices, Inc. Low voltage variable gain amplifier with constant input impedance and adjustable one-pole filtering characteristic
US6452443B1 (en) * 2001-08-08 2002-09-17 Young Chang Company Limited Stable, low-noise bimodal audio filter circuit
US6657495B2 (en) * 2002-04-01 2003-12-02 Texas Instruments Incorporated Operational amplifier output stage and method
ITMI20031566A1 (en) * 2003-07-31 2005-02-01 Roberto Cavazzoni ACTIVE FILTER.
US6977547B2 (en) * 2003-11-28 2005-12-20 Texas Instruments Incorporated Minimizing changes in the amplification factor of an amplification circuit during operation
US7098718B2 (en) * 2003-12-11 2006-08-29 The Trustees Of Boston University Tunable current-mode integrator for low-frequency filters
US7129782B2 (en) * 2004-03-30 2006-10-31 Intel Corporation Fully differential amplifier with start up circuit
DE602004016986D1 (en) * 2004-08-13 2008-11-20 Dialog Semiconductor Gmbh Differential amplifier stage with low supply voltage
KR100618354B1 (en) * 2005-02-04 2006-08-31 삼성전자주식회사 Ultra wide band filter for using cross-coupled transistor pair
JP5120383B2 (en) * 2007-12-26 2013-01-16 パナソニック株式会社 Electronic tuner and high frequency receiver using the same
US8126422B2 (en) * 2008-04-15 2012-02-28 Freescale Semiconductor, Inc. Receiver having voltage-to-current and current-to-voltage converters
US8260227B2 (en) * 2008-06-10 2012-09-04 Mediatek Inc. Direct conversion receiver and DC offset concellation method
US7948323B2 (en) * 2009-05-06 2011-05-24 Mindspeed Technologies, Inc. Linear transimpedance amplifier with wide dynamic range for high rate applications
US8452253B2 (en) * 2010-07-20 2013-05-28 Broadcom Corporation Compact low-power receiver including transimpedance amplifier, digitally controlled interface circuit, and low pass filter
US8970292B2 (en) * 2012-02-01 2015-03-03 Texas Instruments Incorporated Universal filter implementing second-order transfer function
US9263993B2 (en) * 2014-04-22 2016-02-16 Mediatek Inc. Low pass filter with common-mode noise reduction
US9813044B2 (en) * 2016-02-03 2017-11-07 Stmicroelectronics S.R.L. High gain filter circuit with an accurate transfer function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051063B2 (en) * 2002-05-03 2006-05-23 Atheros Communications, Inc. Integrated low power channel select filter having high dynamic range and bandwidth
US7002404B2 (en) * 2003-02-27 2006-02-21 Infineon Technologies Ag Tuning circuit for a filter
US20060068742A1 (en) * 2004-09-30 2006-03-30 Texas Instruments Incorporated High order trans-impedance filter with a single operational amplifier
US20070159247A1 (en) * 2006-01-09 2007-07-12 Samsung Electronics Co., Ltd. CMOS amplifier of filter for ultra wideband application and method of the same
US20080197924A1 (en) * 2007-02-16 2008-08-21 Fujitsu Limited Variable gain amplifier circuit and filter circuit
US20110012678A1 (en) * 2009-07-20 2011-01-20 Texas Instruments Incorporated Transfer-function control in an active filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656061A (en) * 2016-12-30 2017-05-10 光梓信息科技(上海)有限公司 Transimpedance amplifier
CN106656061B (en) * 2016-12-30 2022-09-16 光梓信息科技(上海)有限公司 Transimpedance amplifier
CN107834995A (en) * 2017-11-23 2018-03-23 西安电子科技大学 Multifunctional ultrasonic imaging system
US11595069B2 (en) 2021-07-14 2023-02-28 Apple Inc. Transimpedance amplifier (TIA) with tunable input resistance
US11791856B2 (en) 2021-07-14 2023-10-17 Apple Inc. Transimpedance amplifier (TIA) with tunable input resistance

Also Published As

Publication number Publication date
US20170149412A1 (en) 2017-05-25
US20120021712A1 (en) 2012-01-26
US9112745B2 (en) 2015-08-18
US20130259163A1 (en) 2013-10-03
US8452253B2 (en) 2013-05-28
US10205438B2 (en) 2019-02-12
US9042858B2 (en) 2015-05-26
US20130259172A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US10205438B2 (en) Adjustable low-pass filter in a compact low-power receiver
US7529529B2 (en) Low noise, high-linearity RF front end receiver
US8112059B2 (en) Mixer circuit, integrated circuit device and radio frequency communication unit
US8620242B2 (en) High performance transmitter preamplification chain with calibration feedback
US20070024377A1 (en) Impedance matching techiques for multi-band or wideband RF amplifiers and associated amplifier designs
US9166632B1 (en) Mixer circuits with programmable characteristics
Wang et al. Highly reconfigurable analog baseband for multistandard wireless receivers in 65-nm CMOS
US8929844B2 (en) Variable gain control transformer and RF transmitter utilizing same
US8989688B2 (en) Low-noise TIA-to-ADC interface with a wide-range of passive gain control
CN107005216B (en) Attenuator
KR20050027993A (en) Switchable gain amplifier
US7787830B2 (en) Transceiver and method of operating an electrical circuit
CN111213321A (en) Reconfigurable wideband current mode filter
KR100882406B1 (en) Reconfigurable frequency filter
US9929760B2 (en) Ultra-low-power RF receiver frontend with tunable matching networks
US20070232253A1 (en) Method for active Gm-C filter gain control
Fan et al. A reconfigurable 0.7–2.6 GHz wideband mixer for multi-mode multi-standard receivers in 0.18 μm RF CMOS
CN216565125U (en) Multimode RXFE circuit
CN117240222A (en) Down-conversion circuit and front-end circuit
Abdalla et al. A broadband high linearity inductorless CMOS variable gain amplifier for square kilometer array
CN116260474A (en) Multimode RXFE circuit
Chen et al. A power-scalable reconfigurable active-RC complex band-pass filter for a multimode GNSS receiver
Matei et al. A programmable band-select filter for digital if software defined radio receivers
CN116169961A (en) Low-noise amplifier and corresponding electronic equipment
Abdelsalam et al. On the use of a programmable front-end for multi-band/multi-standard applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION