US20150320546A1 - Artificial eyes and manufacture thereof - Google Patents
Artificial eyes and manufacture thereof Download PDFInfo
- Publication number
- US20150320546A1 US20150320546A1 US14/805,023 US201514805023A US2015320546A1 US 20150320546 A1 US20150320546 A1 US 20150320546A1 US 201514805023 A US201514805023 A US 201514805023A US 2015320546 A1 US2015320546 A1 US 2015320546A1
- Authority
- US
- United States
- Prior art keywords
- eye
- artificial eye
- artificial
- substrate
- eye according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000036961 partial effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 7
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 7
- 238000004040 coloring Methods 0.000 claims description 5
- 210000003786 sclera Anatomy 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004922 lacquer Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 239000002318 adhesion promoter Substances 0.000 claims description 2
- 210000004279 orbit Anatomy 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 34
- 210000003462 vein Anatomy 0.000 description 10
- 238000000859 sublimation Methods 0.000 description 9
- 230000008022 sublimation Effects 0.000 description 9
- 239000000976 ink Substances 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 4
- 238000012505 colouration Methods 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 239000007767 bonding agent Substances 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 241000593500 Cladium jamaicense Species 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/141—Artificial eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/025—Other specific inorganic materials not covered by A61L27/04 - A61L27/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/171—Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
- B29C64/182—Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/16—Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Definitions
- the present invention seeks to overcome or at least mitigate the problems of the prior art.
- a second aspect of the present invention provides an artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a powder material bound together by a binder to form a shaped solid substrate, the binder being selectively coloured in at least in a region thereof to simulate at least an iris portion of an eye.
- a third aspect of the present invention provides an artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a shaped substrate upon at least a region of which dye-sublimated ink is applied to simulate at least an iris of an eye.
- the artificial eyes and the method of the present invention have been found to provide a relatively low cost and effective alternative to traditional manufacturing methods.
- FIG. 1 is a perspective view of a domed artificial eye (ocular prosthesis) according to a first embodiment of the present invention
- FIG. 2 is a perspective view of the artificial eye of FIG. 1 from a different angle
- FIG. 3 is a perspective view of an artificial eye according to a second embodiment of the present invention.
- FIG. 4 is a captured digital image of an eye
- FIG. 5 is a digital image that has been manipulated and is ready for subsequent use
- FIG. 6 is a flow chart illustrating a manufacturing method according to another embodiment of the present invention for manufacturing the prostheses of FIGS. 1 , 2 and 3 ;
- FIG. 7 is a plan view of a partially formed domed artificial eye (ocular prosthesis) according to a third embodiment of the present invention.
- FIG. 9 is a perspective view of domed artificial eye according of FIG. 7 at a later stage of manufacture.
- FIG. 10 is a perspective view of domed artificial eye according of FIG. 7 at a still later stage of manufacture.
- the method of both embodiments of the present invention commences with the acquisition of an image of the visible portion of an existing eye at step S 200 .
- This image is preferably taken using a high quality digital camera such as a single lens reflex (SLR) camera.
- the image may be of a particular patient's eye before being replaced, may be of a patient's other eye that is not being replaced (if the eye to be replaced is injured to the extent that an image may not be acquired), or if the artificial eye is to be a “stock” eye it may simply be of any person's eye in order to be used with a collection that is representative of a number of different general eye colours and sizes for subsequent “off the shelf” use.
- the image 22 that is acquired is incomplete since only a portion of the eye in situ can be made visible at any time.
- the image 22 comprises a pupil 12 , iris 14 , and sclera 15 having a particular pattern of veins 17 visible thereon.
- the image is edited using suitable photo manipulation software such as Adobe Photoshop®.
- the iris 14 and pupil 12 are separated from the remainder of the image and the image is colour corrected to remove a colour cast that may be present due to the lighting conditions under which the photograph is acquired.
- the image 22 is adjusted to account for the particular colour profile of the printer upon which the image will be output.
- the image is typically acquired and stored as an RGB image whereas the printer prints using a CYMK colour palette and appropriate corrections should be made.
- simulated veins 16 are applied to the image and the image canvas is extended to a sufficient area for subsequent coverage of an artificial eye blank to provide a manipulated image 24 as illustrated in FIG. 5 .
- a suitable Photoshop brush may be used to apply the simulated veins.
- the veins 17 from the acquired image may be retained, and simulated veins 16 may be matched thereto for the remainder of the canvas.
- the manipulated image 24 is scaled to an appropriate size.
- the size it is preferable that consideration is made for the apparent enlargement of the features of the eye that will occur as a result of optical effects caused by the subsequent encapsulation process, as well as a general desire to have the iris 14 of the artificial eye appear slightly smaller than the iris of the patient's “real” eye since this tends to draw attention away from the artificial eye and it is therefore less noticeable.
- FIGS. 1 and 2 A finished stock eye according to this embodiment is shown in FIGS. 1 and 2 and is generally indicated by the numeral 10 .
- the eye 10 is generally in the shape of a hollow dome, having an outer convex surface 18 and an inner concave surface 20 .
- Eyes 10 of this type may be used in conjunction with a so-called “orbital implant”. These are a substantially hemispherical replacements for an eye that has been removed that are manufactured from a natural porous material such as coral, or an equivalent artificial material, which subsequently becomes ingrown with the blood vessels and the tissue of the patient and is therefore integrated into the body.
- An artificial eye 10 of the type shown in FIGS. 1 and 2 can then be secured as the visible “cover” over this orbital implant and mounted thereto by use of a suitable small peg that locates within the orbital implant.
- the scaled image produced at S 206 is overlaid on a CAD model of the required prosthesis and is positioned at an appropriate location with pupil 12 at the frontal portion of the model.
- the image is also overlain on a reverse (concave) face of the model in register the same image on the convex face.
- a silica powder having the designation ZB150 and a binder having the designation ZB60 are used. Both are supplied by Z Corporation. This powder is bleached to produce objects that are by default white or substantially so.
- the artificial eyes are preferably printed using this printer with the outermost (anterior) portion of the eye 10 when fitted uppermost on the print bed since this produces a strong finished eye.
- the print bed is substantially larger than a single artificial eye, multiple eyes can be manufactured simultaneously in an X and Y direction, and may also be stacked on top of each other in the Z direction.
- the artificial eye 10 may then be encapsulated in an acrylic material using a suitable known technique of the type that has been employed for prior art PMMA artificial eyes, before being fitted to a patient.
- step S 218 the scaled and colour corrected image is printed onto a transfer material, which in this embodiment is dye sublimation film using dye sublimation ink in an inkjet printer.
- a preferred ink is Artrainium ink supplied by Sawgrass of Sheffield, UK in CYMK and light cyan light magenta colours.
- the cornea blank is then pre-coated with an adhesion promoter such as Digicoat as supplied by Octi-tech Limited of Sheffield, UK, which is then wiped off and followed by application of a sublimation coat that may also be supplied by Octi-tech Limited in the Digicoat range. This process occurs at step S 220 .
- an adhesion promoter such as Digicoat as supplied by Octi-tech Limited of Sheffield, UK, which is then wiped off and followed by application of a sublimation coat that may also be supplied by Octi-tech Limited in the Digicoat range.
- step S 216 the printed blank is then encapsulated at step S 216 in the same known manner as with the method of the first embodiment, ready for the artificial eye to be fitted to a patient.
- both embodiments of the present invention result in a cost effective way in which artificial eyes may be produced at significantly less cost than prior art techniques, which means that higher quality artificial eyes may be supplied in developing countries where previously the cost would be prohibitive.
- the resultant artificial eyes have been found to be of at least similar or of higher quality than those produced by prior art methods
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Materials Engineering (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Heart & Thoracic Surgery (AREA)
- Ophthalmology & Optometry (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
A method of manufacturing an artificial eye for fitting as a whole or partial replacement of a patient's original eye is provided. The method includes providing a digitally acquired image of an iris and transferring the image to a substrate comprising at least the frontal region of an artificial eye.
Description
- This application is a U.S. divisional patent application of U.S. patent application Ser. No. 13/978,390 filed Jul. 4, 2013, which is a 35 USC 371 application of International PCT Patent Application No. PCT/GB2012/050010 filed on Jan. 5, 2012, and further claims priority to GB 1100081.7 filed Jan. 5, 2011; the entire contents of which are hereby incorporated by reference herein in their entireties.
- The present invention relates to artificial eyes (ocular prostheses) and methods of manufacture thereof. More particularly, the present invention relates to rapid manufacturing techniques for artificial eyes and artificial eyes produced by such techniques.
- Artificial eyes have been prepared for patients whose eye(s) have been damaged due to injury or disease for several centuries. However, the techniques used remain skilled and labour intensive. Commonly, the prosthesis is made from acrylic plastics such as polymethylmethacrylate (PMMA) and this is encapsulated. Prior to encapsulation, maxillofacial prosthetists and ocularists simulate the colour of the iris and sclera using individual hand-painting techniques with the patient present (or from an image of the patient's eye). A variety of artists media are used which are applied by pencils, crayons, cotton or a brush. This technique requires inherent artistic ability and is time consuming and expensive. The result is dependent upon operator ability and experience.
- Various proposals have been made to decrease the cost of prosthesis manufacturing by utilising modern digital imaging and CADCAM techniques. For example US20060173541 (Friel) discloses the use of digital imaging of an iris in conjunction with use of techniques such as selective laser sintering, stereo lithography to manufacture a bespoke prosthesis. However, the approach disclosed is still relatively complex requiring a number of separate components to manufacture the finished artificial eye.
- The present invention seeks to overcome or at least mitigate the problems of the prior art.
- A first aspect of the present invention provides a method of manufacturing an artificial eye for fitting as a whole or partial replacement of a patient's original eye, the method comprising the steps of:
-
- a) providing a digitally acquired image of an iris; and
- b) transferring the image to a substrate comprising at least the frontal region of an artificial eye.
- Preferably there is a further step f) intermediate steps a) and b) of overlaying the image onto a 3D CAD model of an artificial eye.
- In step b) the image is preferably transferred to the substrate as an inherent part of the forming of the substrate in the 3D printer. This has been found to be a particularly effective way of producing artificial eyes in a cost-effective manner. The colouration of the features of the eye (veins and/or iris) can advantageously be improved (be better defined) if the coloured features are configured to print to a predetermined depth below a surface layer of the substrate.
- A second aspect of the present invention provides an artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a powder material bound together by a binder to form a shaped solid substrate, the binder being selectively coloured in at least in a region thereof to simulate at least an iris portion of an eye.
- A third aspect of the present invention provides an artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a shaped substrate upon at least a region of which dye-sublimated ink is applied to simulate at least an iris of an eye.
- The artificial eyes and the method of the present invention have been found to provide a relatively low cost and effective alternative to traditional manufacturing methods.
- Preferred and/or optional features of the above three aspects of the present invention are disclosed in the dependent claims appended hereto.
- Embodiments of the present invention will now be described in detail with reference to the accompanying drawings in which:
-
FIG. 1 is a perspective view of a domed artificial eye (ocular prosthesis) according to a first embodiment of the present invention; -
FIG. 2 is a perspective view of the artificial eye ofFIG. 1 from a different angle; -
FIG. 3 is a perspective view of an artificial eye according to a second embodiment of the present invention; -
FIG. 4 is a captured digital image of an eye; -
FIG. 5 is a digital image that has been manipulated and is ready for subsequent use; -
FIG. 6 is a flow chart illustrating a manufacturing method according to another embodiment of the present invention for manufacturing the prostheses ofFIGS. 1 , 2 and 3; -
FIG. 7 is a plan view of a partially formed domed artificial eye (ocular prosthesis) according to a third embodiment of the present invention; -
FIG. 8 is a perspective view of the partially formed domed artificial eye ofFIG. 7 ; -
FIG. 9 is a perspective view of domed artificial eye according ofFIG. 7 at a later stage of manufacture; and -
FIG. 10 is a perspective view of domed artificial eye according ofFIG. 7 at a still later stage of manufacture. - With reference to in particular
FIG. 6 , manufacturing methods according to two embodiments of the present invention are illustrated, in which certain steps are common, and other steps are not as described below. - The method of both embodiments of the present invention commences with the acquisition of an image of the visible portion of an existing eye at step S200. This image is preferably taken using a high quality digital camera such as a single lens reflex (SLR) camera. The image may be of a particular patient's eye before being replaced, may be of a patient's other eye that is not being replaced (if the eye to be replaced is injured to the extent that an image may not be acquired), or if the artificial eye is to be a “stock” eye it may simply be of any person's eye in order to be used with a collection that is representative of a number of different general eye colours and sizes for subsequent “off the shelf” use.
- With reference to
FIG. 4 theimage 22 that is acquired is incomplete since only a portion of the eye in situ can be made visible at any time. Theimage 22 comprises apupil 12,iris 14, andsclera 15 having a particular pattern ofveins 17 visible thereon. At step S202 the image is edited using suitable photo manipulation software such as Adobe Photoshop®. At this stage, theiris 14 andpupil 12 are separated from the remainder of the image and the image is colour corrected to remove a colour cast that may be present due to the lighting conditions under which the photograph is acquired. In addition, theimage 22 is adjusted to account for the particular colour profile of the printer upon which the image will be output. In particular, the image is typically acquired and stored as an RGB image whereas the printer prints using a CYMK colour palette and appropriate corrections should be made. - At step S204 simulated
veins 16 are applied to the image and the image canvas is extended to a sufficient area for subsequent coverage of an artificial eye blank to provide a manipulatedimage 24 as illustrated inFIG. 5 . In particular, a suitable Photoshop brush may be used to apply the simulated veins. In a variant of the process theveins 17 from the acquired image may be retained, and simulatedveins 16 may be matched thereto for the remainder of the canvas. - At step S206 the manipulated
image 24 is scaled to an appropriate size. In selecting the size, it is preferable that consideration is made for the apparent enlargement of the features of the eye that will occur as a result of optical effects caused by the subsequent encapsulation process, as well as a general desire to have theiris 14 of the artificial eye appear slightly smaller than the iris of the patient's “real” eye since this tends to draw attention away from the artificial eye and it is therefore less noticeable. - At this point, the process diverges dependent upon the type of artificial eye that is required. Considering the first or “stock” process:
- This process is primarily to be used for the production of stock or “off the shelf” eyes that may be produced in a range of standard sizes and colours, and which may be used as a temporary artificial eye, or a lower cost permanent eye, e.g. to be used in developing countries. In addition to the entirely off the shelf approach, a standard sized and shaped prosthesis may be used in conjunction with an image which has been matched to a particular patient by the acquisition process set out above. A finished stock eye according to this embodiment is shown in
FIGS. 1 and 2 and is generally indicated by thenumeral 10. Theeye 10 is generally in the shape of a hollow dome, having anouter convex surface 18 and an innerconcave surface 20. -
Eyes 10 of this type may be used in conjunction with a so-called “orbital implant”. These are a substantially hemispherical replacements for an eye that has been removed that are manufactured from a natural porous material such as coral, or an equivalent artificial material, which subsequently becomes ingrown with the blood vessels and the tissue of the patient and is therefore integrated into the body. Anartificial eye 10 of the type shown inFIGS. 1 and 2 can then be secured as the visible “cover” over this orbital implant and mounted thereto by use of a suitable small peg that locates within the orbital implant. - Further manufacture of this form of
artificial eye 10 is as follows: - At step S208 the scaled image produced at S206 is overlaid on a CAD model of the required prosthesis and is positioned at an appropriate location with
pupil 12 at the frontal portion of the model. In a preferred embodiment the image is also overlain on a reverse (concave) face of the model in register the same image on the convex face. - In a preferred embodiment, Magics rapid prototyping software, produced by Materialise of Leuven, Belgium is used for this stage of the process with the CAD model being in STL format. In one variant, the scaling of the
image 24 is undertaken at this stage in Magics, rather than or in addition to the scaling that is undertaken at step S206 in Photoshop. A close-up image of the patient's real eye may be used at this stage to ensure that a size and position good match is achieved for the artificial eye. The Magics software may then export the finished model in a suitable CAD file format for manufacturing on a 3D printer. - At step S210 in a preferred embodiment of the present invention, a Z Corporation Spectrum model 510 3D printer is used and Magics exports the CAD file in the proprietary ZPR or ZCP format that is suitable for use with this type of printer.
- Z Corporation produces a range of 3D printers that also includes models 450 and 650, which function using a proprietary process that builds up a 3D product in layers from powder material, and are also suitable for use in the method of the present invention. The printer has four print heads that “print” a binder material into powder selectively in conjunction with coloured inks (one head for each colour) to produce coloured 3 dimensional objects, in a manner akin to a standard inkjet printer. The printers have a resolution upwards of 300×300 dpi in the X and Y direction and a layer thickness of as little as 0.1 mm (Z direction). The way in which the colour is mixed in with the binder means that the colour penetrates a distance into the eye itself and is an intrinsic part of the finished eye, rather than a layer on the surface.
- In this embodiment, a silica powder having the designation ZB150 and a binder having the designation ZB60 are used. Both are supplied by Z Corporation. This powder is bleached to produce objects that are by default white or substantially so. The artificial eyes are preferably printed using this printer with the outermost (anterior) portion of the
eye 10 when fitted uppermost on the print bed since this produces a strong finished eye. As the print bed is substantially larger than a single artificial eye, multiple eyes can be manufactured simultaneously in an X and Y direction, and may also be stacked on top of each other in the Z direction. - In a preferred embodiment, as a result of superimposing the
image 24 onto both the convex and concave faces of the CAD model the image is printed on bothfaces - Once the printing process is complete, at step S212 the
artificial eyes 10 are removed from the bed of powder and are cleaned using a stiff brush or by sand blasting and are then air brushed with compressed air to remove any remaining dust and particles. - At step S214 the
artificial eye 10 is then immersed in a low viscosity bonding agent that is substantially colourless, for example cyanoacrylate, in this embodiment Procure PC08 produced by Cyanotech of Dudley, UK. This product has the advantage of being an approved substance for use in the manufacturing of medical devices. - Once removed from the bonding agent and when curing is complete, at step S216 the
artificial eye 10 may then be encapsulated in an acrylic material using a suitable known technique of the type that has been employed for prior art PMMA artificial eyes, before being fitted to a patient. - In the second embodiment, the manufacturing steps after S206 differ and are as follows:
- At step S218 the scaled and colour corrected image is printed onto a transfer material, which in this embodiment is dye sublimation film using dye sublimation ink in an inkjet printer. A preferred ink is Artrainium ink supplied by Sawgrass of Sheffield, UK in CYMK and light cyan light magenta colours.
- In this embodiment a cornea blank has the general solid domed shape of the finished
artificial eye 110 shown inFIG. 3 , but no colouring, is manufactured from PMMA using a known process. The blank of this embodiment is termed “bespoke” because the rear (anterior) thereof is shaped in accordance with a cast that has been taken of a particular patient's eye socket, again using a known process, and thus is specifically intended for use with that patient. - The cornea blank is then pre-coated with an adhesion promoter such as Digicoat as supplied by Octi-tech Limited of Sheffield, UK, which is then wiped off and followed by application of a sublimation coat that may also be supplied by Octi-tech Limited in the Digicoat range. This process occurs at step S220.
- At step S222 the pre-treated cornea blank is then loaded at a predetermined location into a vacuum press for the dye sublimation ink to be transferred onto the blank. A suitable vacuum press for this to be achieved is a Pictaflex PF480/6 model as supplied by I-Sub of Kettering, UK. This press has a sufficiently large bed that an array of blank prostheses may be arranged at suitable locations that correspond to printed images on the sublimation film, and the transfer may then simultaneously have images transferred to them. In a preferred embodiment, a supporting grid (e.g. of sheet metal with an array of apertures provided therein) is preferably placed around the individual images to prevent the sublimation film from sagging during the image application process set out below.
- In the vacuum press machine, the chamber is heated, the bed supporting the blank prosthesis is raised and a vacuum is generated in order to suck the sublimation film onto the blank. The heat causes the sublimation ink to be transferred from the film onto the prosthesis in an appropriate location. After an appropriate dwell time, the vacuum is removed and the film and blank separated and the press is allowed to cool.
- Table 1 below sets out examples of various heat and dwell time parameters that have been used. Example 5 has been found to provide the best results.
-
TABLE 1 Standard Setting Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Pre-heat temp 120 no pre-heat no pre-heat no pre-heat no pre-heat no pre-heat no pre-heat (° C.) Pre-heat time 20 0c 0 0 0 0 0 (sec) Fill temp (° C.) 135 135 135 145 135 135 135 Vacuum time 8 8 8 12 12 12 12 (sec) Air temp (° C.) 190 190 200 220 180 190 200 Transfer 170 180 190 200 160 175 185 temp* (° C.) Print time 150 160 170 180 160 120 120 (sec) Release time 15 15 15 20 15 5 5 (sec) Cooling time 15 15 30 35 30 30 30 (sec) Unload 60 60 60 60 35 35 35 (sec) *Transfer temp = ideal temperature to transfer the image from film to eye - The blank is then removed from the vacuum press at step S224 and a clear lacquer is then applied to the image that has been transferred so to minimise the bleeding of colours at step S226, to produce the
artificial eye 110 illustrated inFIG. 3 A currently preferred lacquer is “Very high temperature lacquer” supplied by Hycote of Oldham, UK. - Like features of this
eye 110 are designated by like numerals compared toFIGS. 1 and 2 , but with the addition of the prefix “1”. - At step S216, the printed blank is then encapsulated at step S216 in the same known manner as with the method of the first embodiment, ready for the artificial eye to be fitted to a patient.
-
FIGS. 7 to 10 illustrate an artificial eye and manufacturing process according to a third embodiment of the present invention, in which like parts are labelled by like numerals with the addition of the suffix ′. - The
eye 10′ and process of the third embodiment is a variation of that of the first embodiment, so only differences from the first embodiment are discussed in detail. - Referring to
FIGS. 7 and 8 an alternative way of building up the colouration ofveins 16′ is shown. In this embodiment, instead of printing the vein colour on the surface layer of powder, a predetermined depth of material (e.g. 0.2-1 mm) is coloured below the surface parallel to the posterior-anterior axis, as the eye is built up. This has been found to improve the colour and clarity of the veins. A similar approach (not shown) is also used to improve iris colouration. It will be appreciated that although the veins are illustrated standing proud of the sclera 15′ to explain this approach, in reality, both would be built up together at the same level. - It will also be noted in
FIGS. 7 and 8 that the 3D printed portion of theeye 10′ has a regular domed shaped that is a full or part hemisphere. Forming a part hemisphere enables a transparent “skirt”portion 26′ of poly methyl methacrylate (PMMA) encapsulation material to be formed as part of the encapsulation process as shown inFIG. 9 . - This approach is advantageous in certain instances as it then allows the perimeter
free edge 28′ of theskirt 26′ to be removed (e.g by milling or grinding) to customise theeye 10′ to a particular patient after encapsulation has been completed, as illustrated inFIG. 10 . - It will be appreciated that numerous changes may be made within the scope of the present invention. For example certain steps of the processes may be altered in their order; various steps may be taken at different times and in different locations. Other suitable 3D printers, dye sublimation materials, and vacuum presses, and image manipulation techniques and software may be used. The blanks/substrate used need not have a wholly domed shape. For example, the iris region may be substantially flat, and the finished domed shape built up from the encapsulation material.
- It will be appreciated that terms such as front and rear, upper and lower are used for ease of explanation, and should not be regarded as limiting.
- It will further be appreciated that the methods of both embodiments of the present invention result in a cost effective way in which artificial eyes may be produced at significantly less cost than prior art techniques, which means that higher quality artificial eyes may be supplied in developing countries where previously the cost would be prohibitive. The resultant artificial eyes have been found to be of at least similar or of higher quality than those produced by prior art methods
Claims (18)
1. An artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a powder material bound together by a binder to form a shaped solid substrate, the binder being selectively coloured in at least in a region thereof to simulate at least an iris portion of an eye.
2. An artificial eye according to claim 1 wherein the substrate is non-planar.
3. An artificial eye according to claim 2 wherein the substrate is a dome-shaped, at least in the region that is selectively coloured.
4. An artificial eye according to claim 1 wherein the substrate is a shell-like structure.
5. An artificial eye according to claim 4 wherein the binder is selectively coloured on the concave and convex surfaces of the structure.
6. An artificial eye according to claim 5 wherein the selective colouring is printed to a predetermined depth below a surface layer of the substrate.
7. An artificial eye according to claim 6 wherein the predetermined depth is between 0.2 mm and 1.0 mm below the surface.
8. An artificial eye according to claim 1 wherein the powder is a silica based powder.
9. An artificial eye according to claim 1 wherein the powder is substantially white.
10. An artificial eye according to claim 1 wherein the colouring or ink further simulates a sclera portion of the eye.
11. An artificial eye according to claim 1 wherein the eye is encapsulated in an acrylic material.
12. An artificial eye for fitting as a whole or partial replacement of a patient's original eye comprising a shaped substrate upon at least a region of which dye-sublimated ink is applied to simulate at least an iris of an eye.
13. An artificial eye according to claim 12 wherein the substrate is non-planar, preferably dome-shaped at least in the region where ink is applied.
14. An artificial eye according to claim 12 further comprising an adhesion promoter to enhance adhesion of the ink to the substrate.
15. An artificial eye according to claim 12 further comprising a lacquer covering at least the ink.
16. An artificial eye according to claim 12 wherein the substrate comprises at least in part PMMA.
17. An artificial eye according to claim 12 wherein the substrate is a bespoke blank shaped to conform to a particular patient's eye socket.
18. An artificial eye according to claim 12 wherein the colouring or ink further simulates a sclera portion of the eye.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/805,023 US20150320546A1 (en) | 2011-01-05 | 2015-07-21 | Artificial eyes and manufacture thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1100081.7A GB2487055B (en) | 2011-01-05 | 2011-01-05 | Artificial eyes and manufacture thereof |
GB1100081.7 | 2011-01-05 | ||
PCT/GB2012/050010 WO2012093257A1 (en) | 2011-01-05 | 2012-01-05 | Artificial eyes and manufacture thereof |
US201313978390A | 2013-08-13 | 2013-08-13 | |
US14/805,023 US20150320546A1 (en) | 2011-01-05 | 2015-07-21 | Artificial eyes and manufacture thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2012/050010 Division WO2012093257A1 (en) | 2011-01-05 | 2012-01-05 | Artificial eyes and manufacture thereof |
US13/978,390 Division US9101464B2 (en) | 2011-01-05 | 2012-01-05 | Artificial eyes and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150320546A1 true US20150320546A1 (en) | 2015-11-12 |
Family
ID=43639045
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/978,390 Expired - Fee Related US9101464B2 (en) | 2011-01-05 | 2012-01-05 | Artificial eyes and manufacture thereof |
US14/805,023 Abandoned US20150320546A1 (en) | 2011-01-05 | 2015-07-21 | Artificial eyes and manufacture thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/978,390 Expired - Fee Related US9101464B2 (en) | 2011-01-05 | 2012-01-05 | Artificial eyes and manufacture thereof |
Country Status (9)
Country | Link |
---|---|
US (2) | US9101464B2 (en) |
EP (1) | EP2661238B1 (en) |
BR (1) | BR112013017439A2 (en) |
ES (1) | ES2687852T3 (en) |
GB (1) | GB2487055B (en) |
HU (1) | HUE039606T2 (en) |
PL (1) | PL2661238T3 (en) |
WO (1) | WO2012093257A1 (en) |
ZA (1) | ZA201305853B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217574A1 (en) * | 2016-06-17 | 2017-12-21 | 주식회사 캐리마 | Method for manufacturing artificial eyeball by using 3d printing and vacuum adsorption process |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2487055B (en) | 2011-01-05 | 2017-08-02 | The Manchester Metropolitan Univ | Artificial eyes and manufacture thereof |
GB2504665A (en) * | 2012-07-04 | 2014-02-12 | Univ Manchester Metropolitan | Artificial eyes and manufacture thereof |
US9107728B2 (en) * | 2012-09-23 | 2015-08-18 | Mark Philip Breazzano | Eyeball stabilizing apparatus and method of use |
US10595987B2 (en) | 2013-07-17 | 2020-03-24 | John M. Stolpe | Prosthetic iris preparation method |
US9517650B1 (en) * | 2013-07-17 | 2016-12-13 | John M. Stolpe | Prosthetic iris preparation method |
CN106232339A (en) * | 2014-02-11 | 2016-12-14 | 曼彻斯特城市大学 | Artificial eye and manufacture thereof |
DE102015014324A1 (en) * | 2015-11-05 | 2017-05-11 | Novartis Ag | Eye model |
KR101839482B1 (en) * | 2016-06-17 | 2018-03-16 | 주식회사 캐리마 | A Manufacturing Method Of An Ocular Prosthesis |
KR101966334B1 (en) * | 2017-06-28 | 2019-04-08 | 주식회사 캐리마 | Method of manufacturing an ocular prosthesis |
WO2019004497A1 (en) * | 2017-06-28 | 2019-01-03 | 주식회사 캐리마 | Artificial eye production method |
KR101999220B1 (en) * | 2017-12-20 | 2019-07-11 | 재단법인 아산사회복지재단 | 3-dimensional artificial eye generation method, computer program for the same and 3-dimensional artificial eye generation system |
KR102335747B1 (en) * | 2019-12-24 | 2021-12-08 | (주)캐리마 | Manufacturing system of an artificial eye |
CN114248447A (en) * | 2021-12-22 | 2022-03-29 | 金晖博 | Artificial eye manufacturing method based on 3D computer modeling |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2593150A (en) * | 1948-04-02 | 1952-04-15 | American Optical Corp | Artificial eye and method of making same |
US2675561A (en) * | 1947-03-28 | 1954-04-20 | Eric D Clarke | Artificial eye and method of making |
US5108427A (en) * | 1991-01-07 | 1992-04-28 | Majercik Stephen M | Active pupillary prosthesis |
US5326346A (en) * | 1992-07-27 | 1994-07-05 | Board Of Regents, The University Of Texas System | Light-cured urethane dimethacrylate ocular prosthesis |
US20050168688A1 (en) * | 1999-11-01 | 2005-08-04 | Praful Doshi | Tinted lenses and methods of manufacture |
US20060113054A1 (en) * | 2004-12-01 | 2006-06-01 | Silvestrini Thomas A | Method of making an ocular implant |
US20090326651A1 (en) * | 2007-12-31 | 2009-12-31 | Ronald Spoor | Ophthalmic Device Formed by Additive Fabrication and Method Thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2497873A (en) | 1944-11-08 | 1950-02-21 | Stanley F Erpf | Artificial eye |
US5733333A (en) * | 1996-09-16 | 1998-03-31 | Sankey; Gregory | Artificial eye |
US6007318A (en) * | 1996-12-20 | 1999-12-28 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US6143026A (en) * | 1998-02-04 | 2000-11-07 | Meakem; Thomas J. | Process for the production of a prosthetic eye |
US6139577A (en) * | 1998-03-06 | 2000-10-31 | Schleipman; Fredrick | Dilating ocular prosthesis |
US7001660B2 (en) * | 2001-07-16 | 2006-02-21 | Gilbert Garitano | Images in solids surfaces |
US7291294B2 (en) * | 2002-07-11 | 2007-11-06 | Carole Lewis Stolpe | Iris assembly for a prosthetic eye device |
US8303746B2 (en) * | 2005-02-01 | 2012-11-06 | Friel Timothy P | Ocular prosthesis and fabrication method of same |
US20080046078A1 (en) * | 2006-08-15 | 2008-02-21 | Singer Matthew A | Silicone based ocular prosthesis, and method for making same |
CN101616785B (en) | 2007-01-10 | 2014-01-08 | 3D系统公司 | Three-dimensional printing material system with improved color, article performance, and ease of use |
US20090186554A1 (en) * | 2008-01-18 | 2009-07-23 | Tohickon Corporation | Pad printing with vitreous enamels |
WO2012061124A1 (en) | 2010-10-25 | 2012-05-10 | Carole Lewis | Digital keratoconus scleral shell prosthetic eye device |
GB2487055B (en) | 2011-01-05 | 2017-08-02 | The Manchester Metropolitan Univ | Artificial eyes and manufacture thereof |
-
2011
- 2011-01-05 GB GB1100081.7A patent/GB2487055B/en not_active Expired - Fee Related
-
2012
- 2012-01-05 ES ES12700295.4T patent/ES2687852T3/en active Active
- 2012-01-05 PL PL12700295T patent/PL2661238T3/en unknown
- 2012-01-05 HU HUE12700295A patent/HUE039606T2/en unknown
- 2012-01-05 BR BR112013017439A patent/BR112013017439A2/en not_active Application Discontinuation
- 2012-01-05 EP EP12700295.4A patent/EP2661238B1/en active Active
- 2012-01-05 US US13/978,390 patent/US9101464B2/en not_active Expired - Fee Related
- 2012-01-05 WO PCT/GB2012/050010 patent/WO2012093257A1/en active Application Filing
-
2013
- 2013-08-02 ZA ZA2013/05853A patent/ZA201305853B/en unknown
-
2015
- 2015-07-21 US US14/805,023 patent/US20150320546A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2675561A (en) * | 1947-03-28 | 1954-04-20 | Eric D Clarke | Artificial eye and method of making |
US2593150A (en) * | 1948-04-02 | 1952-04-15 | American Optical Corp | Artificial eye and method of making same |
US5108427A (en) * | 1991-01-07 | 1992-04-28 | Majercik Stephen M | Active pupillary prosthesis |
US5326346A (en) * | 1992-07-27 | 1994-07-05 | Board Of Regents, The University Of Texas System | Light-cured urethane dimethacrylate ocular prosthesis |
US20050168688A1 (en) * | 1999-11-01 | 2005-08-04 | Praful Doshi | Tinted lenses and methods of manufacture |
US20060113054A1 (en) * | 2004-12-01 | 2006-06-01 | Silvestrini Thomas A | Method of making an ocular implant |
US20090326651A1 (en) * | 2007-12-31 | 2009-12-31 | Ronald Spoor | Ophthalmic Device Formed by Additive Fabrication and Method Thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217574A1 (en) * | 2016-06-17 | 2017-12-21 | 주식회사 캐리마 | Method for manufacturing artificial eyeball by using 3d printing and vacuum adsorption process |
CN107771067A (en) * | 2016-06-17 | 2018-03-06 | 卡利玛股份有限公司 | Artificial eyeball manufacturing method using three-dimensional printing process and vacuum adsorption process |
Also Published As
Publication number | Publication date |
---|---|
US20130317609A1 (en) | 2013-11-28 |
BR112013017439A2 (en) | 2017-07-04 |
ES2687852T3 (en) | 2018-10-29 |
ZA201305853B (en) | 2014-04-30 |
PL2661238T3 (en) | 2018-12-31 |
US9101464B2 (en) | 2015-08-11 |
HUE039606T2 (en) | 2019-01-28 |
EP2661238A1 (en) | 2013-11-13 |
WO2012093257A1 (en) | 2012-07-12 |
EP2661238B1 (en) | 2018-06-27 |
GB2487055B (en) | 2017-08-02 |
GB2487055A (en) | 2012-07-11 |
GB201100081D0 (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9101464B2 (en) | Artificial eyes and manufacture thereof | |
US10996492B2 (en) | Colored contact lens based on amorphous images | |
US7291294B2 (en) | Iris assembly for a prosthetic eye device | |
US20170165050A1 (en) | Artificial eyes and manufacture thereof | |
EP1224501B1 (en) | Tinted contact lens and method for making same | |
CA2593860C (en) | Ocular prosthesis and fabrication method of same | |
US7189344B2 (en) | Method for producing a synthetic material part | |
US7503827B2 (en) | Artificial glass eye and methods of manufacture therefor | |
JP3984585B2 (en) | Manufacturing method of mask | |
US20220168079A1 (en) | Method for providing a natural colour and optical depth to a dental object | |
GB2504665A (en) | Artificial eyes and manufacture thereof | |
SEDLAK et al. | DESIGN AND PRODUCTION OF EYE PROSTHESIS USING 3D PRINTING. | |
FR2768967A1 (en) | PROCESS FOR THE MANUFACTURE AND REPRODUCTION OF AT LEAST PART OF AN OBJECT OR AN INDIVIDUAL | |
JP5868223B2 (en) | Three-dimensional molded product and manufacturing method thereof, decorative sheet and manufacturing method thereof | |
Żmudzki et al. | CAD/CAM silicone auricular prosthesis with thermoformed stiffening insert | |
KR20040080050A (en) | A ocular prosthesis and it's manufacturing method | |
KR20100010837A (en) | Tooth formolding manufacturing for luminate | |
US7029608B1 (en) | Iris assembly for a prosthetic eye device | |
ES2299021T3 (en) | PROCEDURE FOR THE REPRODUCTION OF A PHOTOGRAPHIC IMAGE IN A GLASS ARTICLE. | |
CA2525347C (en) | Iris assembly for a prosthetic eye device | |
CN115721447A (en) | Artificial eye piece manufacturing method, artificial eye piece and artificial eye | |
JP4167757B2 (en) | Wood grain photographing method and wood grain decorative paper printing method | |
MX2009014120A (en) | Ocular prosthesis. | |
JP2005277871A (en) | Method of compositing image controlled in appearance of natural lumber surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |