US20150293628A1 - Method for detecting touch display panel - Google Patents

Method for detecting touch display panel Download PDF

Info

Publication number
US20150293628A1
US20150293628A1 US14/685,741 US201514685741A US2015293628A1 US 20150293628 A1 US20150293628 A1 US 20150293628A1 US 201514685741 A US201514685741 A US 201514685741A US 2015293628 A1 US2015293628 A1 US 2015293628A1
Authority
US
United States
Prior art keywords
capacitance
display panel
lines
touch display
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/685,741
Inventor
Chiou-Ling Yeh
Shih-Hsin Juan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultra Chip Inc
Original Assignee
Ultra Chip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultra Chip Inc filed Critical Ultra Chip Inc
Assigned to Ultra Chip Inc. reassignment Ultra Chip Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUAN, SHIH-HSIN, YEH, CHIOU-LING
Publication of US20150293628A1 publication Critical patent/US20150293628A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention is related to a method for detecting a touch display panel, and more particularly related to a method for detecting a touch display panel by using the same detection voltage waves to eliminate the unwanted capacitance characteristic.
  • STN super-twisted nematic
  • LCD liquid crystal display
  • TFT thin-film transistor
  • Touch sensitivity of the touch display panel is an important index for the electronic devices.
  • the parameters related to capacitance characteristic are the most important ones, and thus in practice, the method for detecting the touch display panel detects the capacitance characteristic of the touch display panel as a conductor touching the touch display panel.
  • the typical touch display panel includes a plurality of data lines and a plurality of driving lines crossing the data lines arrayed on the touch display panel, there would be equivalent capacitances, which may be composed of at least one of coupling capacitance, stray capacitance, capacitance from other functional circuits and etc., formed between the data lines and a ground, between the driving lines and the ground, between the data lines and the driving lines, between the data lines, and between the driving lines.
  • capacitance characteristic of one of the data lines or the driving lines with respective to the ground, the influence of capacitance characteristic of other equivalent capacitances is inevitable and thus may lead to inaccuracy of detected result. Accordingly, there exists the need to improve the detecting method in present.
  • a method for detecting a touch display panel is provided in the present invention. This method is capable to eliminate the unwanted capacitance characteristics through inputting identical detection voltage waves to access the capacitance characteristic to be detected.
  • a method for detecting a touch display panel is provided in accordance with an embodiment of the present invention.
  • the method is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor.
  • the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, and at least one first capacitance between the data lines and the driving lines.
  • the method comprises: (a) electing one of the conductive lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • the step (b) further comprises a step (b 0 ) of inputting the detection voltage wave to the crossing nodes to eliminate capacitance characteristic of the second capacitance.
  • the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the data lines.
  • the method comprises: (a) electing one of the data lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the driving lines.
  • the method comprises: (a) electing one of the driving lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • the driving circuit is at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
  • the unwanted capacitance characteristics can be eliminated such that the sensing characteristic of the data lines and/or the driving lines can be identified.
  • the method provided in the present invention is quite simple and highly applicable.
  • FIG. 1 is a first schematic view of the touch display panel in accordance with a first preferred embodiment of the present invention
  • FIG. 1A is a second schematic view of the touch display panel in accordance with the first preferred embodiment of the present invention.
  • FIG. 2 is a flow chart showing the method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention
  • FIG. 3 is a schematic view of the touch display panel in accordance with a second preferred embodiment of the present invention.
  • FIG. 4 is a flow chart showing the method for detecting the touch display panel in accordance with the second preferred embodiment of the present invention.
  • FIG. 5 is a schematic view of the touch display panel in accordance with a third preferred embodiment of the present invention.
  • FIG. 6 is a flow chart showing the method for detecting the touch display panel in accordance with the third preferred embodiment of the present invention.
  • FIG. 7 is a schematic view of the touch display panel in accordance with a fourth preferred embodiment of the present invention.
  • FIG. 8 is a flow chart showing the method for detecting the touch display panel in accordance with the fourth preferred embodiment of the present invention.
  • FIG. 1 is a first schematic view of the touch display panel in accordance with a first preferred embodiment of the present invention
  • FIG. 1A is a second schematic view of the touch display panel in accordance with the first preferred embodiment of the present invention.
  • the method for detecting a touch display panel provided in accordance with an embodiment of the present invention is applied to a touch display panel 1 , such as a STN LCD panel.
  • the touch display panel 1 is electrically coupled to a driving circuit 2 and includes a plurality of conductive lines 11 (only one of them is labeled in the figure).
  • These conductive lines 11 are composed of a plurality of data lines 111 , 111 a , 111 b and a plurality of driving lines 112 , 112 a , 112 b .
  • These data lines 111 , 111 a , 111 b are arrayed on the touch display panel 1 along a first direction D 1 (or X direction in the figure).
  • the driving lines 112 , 112 a , 112 b are arrayed on the touch display panel 1 along a second direction D 2 (or Y direction in the figure) so as to cross the plurality of data lines 111 , 111 a , 111 b.
  • first capacitance module 4 , 4 a , or 4 b located between the data line 111 , 111 a , or 111 b and the corresponded ground 3 , 3 a , or 3 b .
  • the number of such first capacitance module can be plural in accordance with another embodiment of the present invention.
  • second capacitance module 4 c , 4 d , 4 e located between the driving line 112 , 112 a , 112 b and the corresponded ground 3 c , 3 d , 3 e .
  • the number of such second capacitance module 4 c , 4 d , 4 e can be plural in accordance with another embodiment of the present invention.
  • At least one first capacitance 5 , 5 a , 5 b , 5 c , 5 d , 5 e , 5 f , 5 g , 5 h located between the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b.
  • the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b are well known in the art, and the other conductive lines on the touch display panel capable of conducting electrical signal are within the scope of the present invention.
  • the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b are electrically coupled to the driving circuit 2 , which can be at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
  • the driving circuit 2 includes the data line driving circuit and the driving line driving circuit
  • the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b are electrically coupled to the data line driving circuit and the driving line driving circuit respectively
  • the driving circuit 2 is the capacitive touch sensing circuit
  • all the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b are electrically coupled to the capacitive touch sensing circuit.
  • these grounds 3 - 3 e can be a relative ground or an absolute ground, and these grounds 3 - 3 e can be a single grounded end or a plurality of different grounded ones, which depends on the need of circuit design in practice.
  • the first capacitance module 4 , 4 a , 4 b in the present embodiment is defined as the equivalent capacitance between the data line 111 , 111 a , 111 b and the ground of the driving circuit 2 or of the touch display panel 1 .
  • there might be self capacitance, stray capacitance, coupling capacitance or capacitance from the other functional circuits located on the electrically connection path between the data lines 111 , 111 a , 111 b and the driving circuit 2 and the combination of at least one of the above mentioned capacitances can be equivalent to a capacitance value corresponding to the first capacitance module 4 , 4 a , 4 b defined in the present embodiment.
  • the definition of the second capacitance module 4 c , 4 d , 4 e is identical to the first capacitance module 4 , 4 a , 4 b and thus is not repeated here.
  • the first capacitance 5 - 5 h is defined as equivalent to the coupling capacitance and the stray capacitance between the data lines 111 , 111 a , 111 b and the driving lines 112 , 112 a , 112 b .
  • the capacitance equivalent to the coupling capacitance and the stray capacitance is defined as the first capacitance 5 - 5 h (the first capacitance 5 is corresponding to the data line 111 and the driving line 112 , the first capacitance 5 a is corresponding to the data line 111 a and the driving line 112 , and so on).
  • FIG. 2 is a flow chart showing the method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention.
  • the method for detecting a touch display panel provided in accordance with the present invention is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor (not shown).
  • the conductor can be a touch pen or a finger.
  • the capacitance characteristics can be such as charging and discharging time of the capacitor, which can be illustrated by a waveform, and charge storage capacity.
  • the method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention comprises the steps of:
  • Step S 101 electing one of the conductive lines as a detection line for detecting capacitance characteristic
  • Step S 102 inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • the step S 101 is executed to elect one of the conductive lines as a detection line for detecting capacitance characteristic.
  • the touch sensing circuit (not shown) is used for electing the detection line among the conductive lines.
  • the data line 111 a is elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • the step S 102 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance so as to detect capacitance characteristic between the detection line and the ground separately.
  • a detecting circuit such as the touch sensing circuit, is utilized for inputting the detection voltage wave 100 to the data line 111 a .
  • the waveform of the detection voltage wave can be a periodic voltage wave or a single one. In the present embodiment, the periodic voltage wave is preferred but only one period of the wave is shown to simplify the figure.
  • the detection voltage wave is also inputted to the driving lines 112 , 112 a , 112 b which cross the data line 111 a to eliminate capacitance characteristic of the first capacitances 5 a , 5 d , 5 g .
  • capacitance characteristic of the first capacitances 5 a , 5 d , 5 g are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected and recorded directly by using the touch sensing circuit.
  • FIG. 3 is a schematic view of the touch display panel in accordance with a second preferred embodiment of the present invention.
  • the driving lines 112 , 112 a , 112 b of the present embodiment which are arrayed along the second direction D 2 to cross the data lines 111 , 111 a , 111 b , have a plurality of crossing nodes A, B, C, D, E, F, G, H, I, and there exist a second capacitance 6 between the data line 111 a and the crossing node F and a second capacitance 6 a between the data line 111 a and the crossing node I.
  • the second capacitances 6 , 6 a are defined as the equivalent capacitances of the coupling capacitance and the stray capacitance between the data line 111 a and the crossing node F as well as the crossing node I respectively, which is not repeated here.
  • FIG. 4 is a flow chart showing the method for detecting the touch display panel in accordance with the second preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the second preferred embodiment of the present invention comprises the steps of:
  • Step 5201 electing one of the conductive lines as a detection line for detecting capacitance characteristic
  • Step S 202 inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to the crossing nodes and the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • the step S 201 is executed to elect one of the conductive lines as a detection line for detecting capacitance characteristic.
  • the data line 111 a is also elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • the step S 202 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the crossing nodes and the conductive lines which cross the detection line to eliminate capacitance characteristics of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristics of the first capacitances 5 a , 5 d , 5 g and the second capacitances 6 , 6 a , capacitance characteristic of the first capacitance module 4 a cannot be separately detected when merely inputting the detection voltage wave 100 to the data line 111 a .
  • the detection voltage wave 100 is also inputted to the driving lines 112 , 112 a , 112 b which cross the data line 111 a and the crossing nodes F, Ito eliminate capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the second capacitances 6 , 6 a . Since the two ends of the first capacitances 5 a , 5 d , 5 g and the second capacitances 6 , 6 a are provided with identical voltage waves, there would be no charging and discharging effect and the capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the second capacitances 6 , 6 a can be eliminated.
  • capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the second capacitances 6 , 6 a are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected directly by using the touch sensing circuit.
  • FIG. 5 is a schematic view of the touch display panel in accordance with a third preferred embodiment of the present invention.
  • the present embodiment has a third capacitance 7 between the data line 111 and data line 111 a and a third capacitance 7 a between the data line 111 a and the data line 111 b .
  • the third capacitances 7 , 7 a are defined as the equivalent capacitances of the coupling capacitance and the stray capacitance between the data line 111 and the data line 111 a as well as the data line 111 a and the data line 111 b respectively.
  • the other portion of the present embodiment is identical to the first preferred embodiment and thus is not repeated here.
  • FIG. 6 is a flow chart showing the method for detecting the touch display panel in accordance with the third preferred embodiment of the present invention.
  • the method for detecting a touch display panel provided in accordance with the third preferred embodiment of the present invention comprises the steps of:
  • Step S 301 electing one of the data lines of the conductive lines as a detection line for detecting capacitance characteristic
  • Step S 302 inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the third capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • the step S 301 is executed to elect one of the data lines of the conductive lines as a detection line for detecting capacitance characteristic.
  • the data line 111 a is elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • the step S 302 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the third capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the third capacitances 7 , 7 a , capacitance characteristic of the first capacitance module 4 a cannot be separately detected when merely inputting the detection voltage wave 100 to the data line 111 a .
  • the detection voltage wave 100 is also inputted to the driving lines 112 , 112 a , 112 b which cross the data line 111 a and the data lines 111 , 111 b adjacent to the data line 111 a to eliminate capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the third capacitances 7 , 7 a.
  • capacitance characteristic of the first capacitances 5 a , 5 d , 5 g and the third capacitances 7 , 7 a are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected directly by using the touch sensing circuit.
  • FIG. 7 is a schematic view of the touch display panel in accordance with a fourth preferred embodiment of the present invention.
  • the present embodiment has a fourth capacitance 8 between the driving line 112 and driving line 112 a and a fourth capacitance 8 a between the driving line 112 a and the driving line 112 b .
  • the fourth capacitances 8 , 8 a are defined as the equivalent capacitances of coupling capacitance and stray capacitance between the driving line 112 and the driving line 112 a as well as the driving line 112 a and the driving line 112 b respectively.
  • the other portion of the present embodiment is identical to the first preferred embodiment and thus is not repeated here.
  • FIG. 8 is a flow chart showing the method for detecting the touch display panel in accordance with the fourth preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the fourth preferred embodiment of the present invention comprises the steps of:
  • Step S 401 electing one of the driving lines of the conductive lines as a detection line for detecting capacitance characteristic
  • Step S 402 inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the fourth capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • the step S 401 is executed to elect one of the driving lines of the conductive lines as a detection line for detecting capacitance characteristic.
  • the driving line 112 a is elected as the detection line for detecting capacitive characteristic of the second capacitance module 4 d.
  • the step S 402 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the fourth capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristic of the first capacitances 5 c , 5 d , 5 e and the fourth capacitances 8 , 8 a , capacitance characteristic of the second capacitance module 4 d cannot be separately detected when merely inputting the detection voltage wave 100 to the driving line 112 a .
  • the detection voltage wave 100 is also inputted to the data lines 111 , 111 a , 111 b which cross the driving line 112 a and the driving lines 112 , 112 b adjacent to the driving line 112 a to eliminate capacitance characteristic of the first capacitances 5 c , 5 d , 5 e and the fourth capacitances 8 , 8 a.
  • capacitance characteristic of the first capacitances 5 c , 5 d , 5 e and the fourth capacitances 8 , 8 a are eliminated, capacitance characteristic of the second capacitance module 4 d between the data line 112 a and the ground 3 d can be detected directly by using the touch sensing circuit.
  • the unwanted capacitance characteristics can be eliminated such that the desired capacitance characteristic of the data lines and/or the driving lines can be identified.
  • the method provided in the present invention is quite simple and highly applicable in practice.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A method for detecting a touch display panel which includes a plurality of conductive lines which are composed of a plurality of data lines and driving lines is used to detect capacitance characteristics of the touch display panel. Between the data lines and ground has at least one first capacitance module, between the driving lines and ground has at least one second capacitance module, and between the data lines and the driving lines has at least one capacitance. The method includes electing one as a detection line in the conductive lines for detecting capacitance characteristic, then inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the conductive lines which are cross the detection line to eliminate capacitance characteristic of the capacitance; detecting capacitance characteristic between the detection line and ground at last.

Description

    FIELD OF THE INVENTION
  • The present invention is related to a method for detecting a touch display panel, and more particularly related to a method for detecting a touch display panel by using the same detection voltage waves to eliminate the unwanted capacitance characteristic.
  • BACKGROUND OF THE INVENTION
  • Attending with rapid development of technology, super-twisted nematic (STN) liquid crystal display (LCD) and thin-film transistor (TFT) LCD have been widely used on the electronic devices such as flat panel displays, mobile phones, tablets, notebooks, personal digital assistances (PDA) and etc., to replace the traditional displays successively. In addition, because of the advance technology, a lot of touch display panels are also applied to the above mentioned electronic devices.
  • Touch sensitivity of the touch display panel is an important index for the electronic devices. Among the various parameters for detecting the touch display panel, the parameters related to capacitance characteristic are the most important ones, and thus in practice, the method for detecting the touch display panel detects the capacitance characteristic of the touch display panel as a conductor touching the touch display panel. However, the typical touch display panel includes a plurality of data lines and a plurality of driving lines crossing the data lines arrayed on the touch display panel, there would be equivalent capacitances, which may be composed of at least one of coupling capacitance, stray capacitance, capacitance from other functional circuits and etc., formed between the data lines and a ground, between the driving lines and the ground, between the data lines and the driving lines, between the data lines, and between the driving lines. When detecting capacitance characteristic of one of the data lines or the driving lines with respective to the ground, the influence of capacitance characteristic of other equivalent capacitances is inevitable and thus may lead to inaccuracy of detected result. Accordingly, there exists the need to improve the detecting method in present.
  • BRIEF SUMMARY OF INVENTION
  • In view of the conventional method for detecting a touch display panel, which has the problem about inaccuracy of detected result due to the influence of the capacitance characteristic of the other equivalent capacitances, a method for detecting a touch display panel is provided in the present invention. This method is capable to eliminate the unwanted capacitance characteristics through inputting identical detection voltage waves to access the capacitance characteristic to be detected.
  • Based on the above mentioned object, a method for detecting a touch display panel is provided in accordance with an embodiment of the present invention. The method is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor. The touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, and at least one first capacitance between the data lines and the driving lines. The method comprises: (a) electing one of the conductive lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • In accordance with a preferred embodiment of the present invention, wherein the driving lines, which are arrayed on the touch display panel along a second direction to cross the data lines, have a plurality of crossing nodes, and when at least one second capacitance is formed between the detection line and the crossing nodes, the step (b) further comprises a step (b0) of inputting the detection voltage wave to the crossing nodes to eliminate capacitance characteristic of the second capacitance.
  • Another method for detecting a touch display panel is provided in accordance with an embodiment of the present invention. The method is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor. The touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the data lines. The method comprises: (a) electing one of the data lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • Another method for detecting a touch display panel is also provided in accordance with an embodiment of the present invention. The method is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor. The touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the driving lines. The method comprises: (a) electing one of the driving lines as a detection line for detecting capacitance characteristic; (b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance; and (c) detecting capacitance characteristic between the detection line and the ground.
  • In accordance with a preferred embodiment of the present invention, the driving circuit is at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
  • By using the technology of the method for detecting a touch display panel provided in accordance with the present invention, the unwanted capacitance characteristics can be eliminated such that the sensing characteristic of the data lines and/or the driving lines can be identified. In addition, because only the step of inputting identical detection voltage waves is needed to access the accurate detected result, the method provided in the present invention is quite simple and highly applicable.
  • The embodiments adopted in the present invention would be further discussed by using the following paragraph and the figures for a better understanding.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a first schematic view of the touch display panel in accordance with a first preferred embodiment of the present invention;
  • FIG. 1A is a second schematic view of the touch display panel in accordance with the first preferred embodiment of the present invention;
  • FIG. 2 is a flow chart showing the method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention;
  • FIG. 3 is a schematic view of the touch display panel in accordance with a second preferred embodiment of the present invention;
  • FIG. 4 is a flow chart showing the method for detecting the touch display panel in accordance with the second preferred embodiment of the present invention;
  • FIG. 5 is a schematic view of the touch display panel in accordance with a third preferred embodiment of the present invention;
  • FIG. 6 is a flow chart showing the method for detecting the touch display panel in accordance with the third preferred embodiment of the present invention;
  • FIG. 7 is a schematic view of the touch display panel in accordance with a fourth preferred embodiment of the present invention; and
  • FIG. 8 is a flow chart showing the method for detecting the touch display panel in accordance with the fourth preferred embodiment of the present invention;
  • DETAILED DESCRIPTION OF THE INVENTION
  • There are various embodiments of the method for detecting a touch display panel provided in accordance with the present invention, which are not repeated hereby. Only four preferred embodiments are mentioned in the following paragraph as an example.
  • Please refer to FIG. 1 and FIG. 1A, wherein FIG. 1 is a first schematic view of the touch display panel in accordance with a first preferred embodiment of the present invention and FIG. 1A is a second schematic view of the touch display panel in accordance with the first preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with an embodiment of the present invention is applied to a touch display panel 1, such as a STN LCD panel. The touch display panel 1 is electrically coupled to a driving circuit 2 and includes a plurality of conductive lines 11 (only one of them is labeled in the figure). These conductive lines 11 are composed of a plurality of data lines 111, 111 a, 111 b and a plurality of driving lines 112, 112 a, 112 b. These data lines 111, 111 a, 111 b are arrayed on the touch display panel 1 along a first direction D1 (or X direction in the figure). The driving lines 112, 112 a, 112 b are arrayed on the touch display panel 1 along a second direction D2 (or Y direction in the figure) so as to cross the plurality of data lines 111, 111 a, 111 b.
  • There exists one first capacitance module 4, 4 a, or 4 b located between the data line 111, 111 a, or 111 b and the corresponded ground 3, 3 a, or 3 b. The number of such first capacitance module can be plural in accordance with another embodiment of the present invention. There exists one second capacitance module 4 c, 4 d, 4 e located between the driving line 112, 112 a, 112 b and the corresponded ground 3 c, 3 d, 3 e. The number of such second capacitance module 4 c, 4 d, 4 e can be plural in accordance with another embodiment of the present invention. There exists at least one first capacitance 5, 5 a, 5 b, 5 c, 5 d, 5 e, 5 f, 5 g, 5 h located between the data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b.
  • The data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b are well known in the art, and the other conductive lines on the touch display panel capable of conducting electrical signal are within the scope of the present invention.
  • The data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b are electrically coupled to the driving circuit 2, which can be at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit. For example, if the driving circuit 2 includes the data line driving circuit and the driving line driving circuit, the data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b are electrically coupled to the data line driving circuit and the driving line driving circuit respectively; if the driving circuit 2 is the capacitive touch sensing circuit, all the data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b are electrically coupled to the capacitive touch sensing circuit.
  • In addition, these grounds 3-3 e can be a relative ground or an absolute ground, and these grounds 3-3 e can be a single grounded end or a plurality of different grounded ones, which depends on the need of circuit design in practice.
  • It should be noted that the first capacitance module 4, 4 a, 4 b in the present embodiment is defined as the equivalent capacitance between the data line 111, 111 a, 111 b and the ground of the driving circuit 2 or of the touch display panel 1. For example, there might be self capacitance, stray capacitance, coupling capacitance or capacitance from the other functional circuits located on the electrically connection path between the data lines 111, 111 a, 111 b and the driving circuit 2, and the combination of at least one of the above mentioned capacitances can be equivalent to a capacitance value corresponding to the first capacitance module 4, 4 a, 4 b defined in the present embodiment. The definition of the second capacitance module 4 c, 4 d, 4 e is identical to the first capacitance module 4, 4 a, 4 b and thus is not repeated here.
  • Moreover, in the present embodiment, the first capacitance 5-5 h is defined as equivalent to the coupling capacitance and the stray capacitance between the data lines 111, 111 a, 111 b and the driving lines 112, 112 a, 112 b. That is, there might be coupling capacitances and stray capacitances existed between each of the data lines 111, 111 a, 111 b and each of the driving lines 112, 112 a, 112 b crossing the data lines 111, 111 a, 111 b, and the capacitance equivalent to the coupling capacitance and the stray capacitance is defined as the first capacitance 5-5 h (the first capacitance 5 is corresponding to the data line 111 and the driving line 112, the first capacitance 5 a is corresponding to the data line 111 a and the driving line 112, and so on).
  • For a better understanding the present invention, please refer to FIG. 1A and FIG. 2, wherein FIG. 2 is a flow chart showing the method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the present invention is utilized for detecting capacitance characteristics of the touch display panel in contact with a conductor (not shown). The conductor can be a touch pen or a finger. The capacitance characteristics can be such as charging and discharging time of the capacitor, which can be illustrated by a waveform, and charge storage capacity. The method for detecting the touch display panel in accordance with the first preferred embodiment of the present invention comprises the steps of:
  • Step S101: electing one of the conductive lines as a detection line for detecting capacitance characteristic; and
  • Step S102: inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • As the process begins, the step S101 is executed to elect one of the conductive lines as a detection line for detecting capacitance characteristic. When doing the detection, the touch sensing circuit (not shown) is used for electing the detection line among the conductive lines. In accordance with the first preferred embodiment of the present invention, the data line 111 a is elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • After the step S101, the step S102 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance so as to detect capacitance characteristic between the detection line and the ground separately. A detecting circuit, such as the touch sensing circuit, is utilized for inputting the detection voltage wave 100 to the data line 111 a. The waveform of the detection voltage wave can be a periodic voltage wave or a single one. In the present embodiment, the periodic voltage wave is preferred but only one period of the wave is shown to simplify the figure. Because of the influence of capacitance characteristic of the first capacitances 5 a, 5 d, 5 g, capacitance characteristic of the first capacitance module 4 a cannot be separately detected when merely inputting the detection voltage wave to the data line 111 a. Thus, in accordance with the present embodiment, the detection voltage wave is also inputted to the driving lines 112, 112 a, 112 b which cross the data line 111 a to eliminate capacitance characteristic of the first capacitances 5 a, 5 d, 5 g. Since the two ends of the first capacitances 5 a, 5 d, 5 g are provided with identical voltage waves, there would be no charging and discharging effect and the capacitance characteristic of the first capacitances 5 a, 5 d, 5 g can be eliminated.
  • Because the capacitance characteristic of the first capacitances 5 a, 5 d, 5 g are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected and recorded directly by using the touch sensing circuit.
  • In addition, please refer to FIG. 3, which is a schematic view of the touch display panel in accordance with a second preferred embodiment of the present invention. As shown, in compared with the first preferred embodiment, the driving lines 112, 112 a, 112 b of the present embodiment, which are arrayed along the second direction D2 to cross the data lines 111, 111 a, 111 b, have a plurality of crossing nodes A, B, C, D, E, F, G, H, I, and there exist a second capacitance 6 between the data line 111 a and the crossing node F and a second capacitance 6 a between the data line 111 a and the crossing node I. Similar to the definition of the first capacitance 5-5 h, the second capacitances 6, 6 a are defined as the equivalent capacitances of the coupling capacitance and the stray capacitance between the data line 111 a and the crossing node F as well as the crossing node I respectively, which is not repeated here.
  • For a better understanding the present invention, please refer to both FIG. 3 and FIG. 4, wherein FIG. 4 is a flow chart showing the method for detecting the touch display panel in accordance with the second preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the second preferred embodiment of the present invention comprises the steps of:
  • Step 5201: electing one of the conductive lines as a detection line for detecting capacitance characteristic; and
  • Step S202: inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to the crossing nodes and the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • As the process begins, the step S201 is executed to elect one of the conductive lines as a detection line for detecting capacitance characteristic. In accordance with the second preferred embodiment of the present invention, the data line 111 a is also elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • After the step S201, the step S202 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the crossing nodes and the conductive lines which cross the detection line to eliminate capacitance characteristics of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristics of the first capacitances 5 a, 5 d, 5 g and the second capacitances 6, 6 a, capacitance characteristic of the first capacitance module 4 a cannot be separately detected when merely inputting the detection voltage wave 100 to the data line 111 a. Thus, in accordance with the present embodiment, the detection voltage wave 100 is also inputted to the driving lines 112, 112 a, 112 b which cross the data line 111 a and the crossing nodes F, Ito eliminate capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the second capacitances 6, 6 a. Since the two ends of the first capacitances 5 a, 5 d, 5 g and the second capacitances 6, 6 a are provided with identical voltage waves, there would be no charging and discharging effect and the capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the second capacitances 6, 6 a can be eliminated.
  • Because the capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the second capacitances 6, 6 a are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected directly by using the touch sensing circuit.
  • In addition, please refer to FIG. 5, which is a schematic view of the touch display panel in accordance with a third preferred embodiment of the present invention. As shown, in compared with the first preferred embodiment, the present embodiment has a third capacitance 7 between the data line 111 and data line 111 a and a third capacitance 7 a between the data line 111 a and the data line 111 b. Similar to the definition of the first capacitance 5-5 h, the third capacitances 7, 7 a are defined as the equivalent capacitances of the coupling capacitance and the stray capacitance between the data line 111 and the data line 111 a as well as the data line 111 a and the data line 111 b respectively. The other portion of the present embodiment is identical to the first preferred embodiment and thus is not repeated here.
  • For a better understanding the present invention, please refer to both FIG. 5 and FIG. 6, wherein FIG. 6 is a flow chart showing the method for detecting the touch display panel in accordance with the third preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the third preferred embodiment of the present invention comprises the steps of:
  • Step S301: electing one of the data lines of the conductive lines as a detection line for detecting capacitance characteristic; and
  • Step S302: inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the third capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • As the process begins, the step S301 is executed to elect one of the data lines of the conductive lines as a detection line for detecting capacitance characteristic. In accordance with the third preferred embodiment of the present invention, the data line 111 a is elected as the detection line for detecting capacitive characteristic of the first capacitance module 4 a.
  • After the step S301, the step S302 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the third capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the third capacitances 7, 7 a, capacitance characteristic of the first capacitance module 4 a cannot be separately detected when merely inputting the detection voltage wave 100 to the data line 111 a. Thus, in accordance with the present embodiment, the detection voltage wave 100 is also inputted to the driving lines 112, 112 a, 112 b which cross the data line 111 a and the data lines 111, 111 b adjacent to the data line 111 a to eliminate capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the third capacitances 7, 7 a.
  • Because the capacitance characteristic of the first capacitances 5 a, 5 d, 5 g and the third capacitances 7, 7 a are eliminated, capacitance characteristic of the first capacitance module 4 a between the data line 111 a and the ground 3 a can be detected directly by using the touch sensing circuit.
  • In addition, please refer to FIG. 7, which is a schematic view of the touch display panel in accordance with a fourth preferred embodiment of the present invention. As shown, in compared with the first preferred embodiment, the present embodiment has a fourth capacitance 8 between the driving line 112 and driving line 112 a and a fourth capacitance 8 a between the driving line 112 a and the driving line 112 b. Similar to the definition of the first capacitance 5-5 h, the fourth capacitances 8, 8 a are defined as the equivalent capacitances of coupling capacitance and stray capacitance between the driving line 112 and the driving line 112 a as well as the driving line 112 a and the driving line 112 b respectively. The other portion of the present embodiment is identical to the first preferred embodiment and thus is not repeated here.
  • For a better understanding the present invention, please refer to both FIG. 7 and FIG. 8, wherein FIG. 8 is a flow chart showing the method for detecting the touch display panel in accordance with the fourth preferred embodiment of the present invention. As shown, the method for detecting a touch display panel provided in accordance with the fourth preferred embodiment of the present invention comprises the steps of:
  • Step S401: electing one of the driving lines of the conductive lines as a detection line for detecting capacitance characteristic; and
  • Step S402: inputting a detection voltage wave to the detection line and inputting the identical detection voltage wave to driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the fourth capacitance so as to detect capacitance characteristic between the detection line and the ground.
  • As the process begins, the step S401 is executed to elect one of the driving lines of the conductive lines as a detection line for detecting capacitance characteristic. In accordance with the fourth preferred embodiment of the present invention, the driving line 112 a is elected as the detection line for detecting capacitive characteristic of the second capacitance module 4 d.
  • After the step S401, the step S402 is executed to input a detection voltage wave to the detection line and input the identical detection voltage wave to the driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the fourth capacitance so as to detect capacitance characteristic between the detection line and the ground separately. Because of the influence of capacitance characteristic of the first capacitances 5 c, 5 d, 5 e and the fourth capacitances 8, 8 a, capacitance characteristic of the second capacitance module 4 d cannot be separately detected when merely inputting the detection voltage wave 100 to the driving line 112 a. Thus, in accordance with the present embodiment, the detection voltage wave 100 is also inputted to the data lines 111, 111 a, 111 b which cross the driving line 112 a and the driving lines 112, 112 b adjacent to the driving line 112 a to eliminate capacitance characteristic of the first capacitances 5 c, 5 d, 5 e and the fourth capacitances 8, 8 a.
  • Because the capacitance characteristic of the first capacitances 5 c, 5 d, 5 e and the fourth capacitances 8, 8 a are eliminated, capacitance characteristic of the second capacitance module 4 d between the data line 112 a and the ground 3 d can be detected directly by using the touch sensing circuit.
  • In conclusion, by using the technology of the method for detecting a touch display panel provided in accordance with the present invention, the unwanted capacitance characteristics can be eliminated such that the desired capacitance characteristic of the data lines and/or the driving lines can be identified. In addition, because only the step of inputting identical detection voltage waves is needed to access the accurate detected result, the method provided in the present invention is quite simple and highly applicable in practice.
  • The detail description of the aforementioned preferred embodiments is for clarifying the feature and the spirit of the present invention. The present invention should not be limited by any of the exemplary embodiments described herein, but should be defined only in accordance with the following claims and their equivalents. Specifically, those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiments as a basis for designing or modifying other structures for carrying out the same purposes of the present invention without departing from the scope of the invention as defined by the appended claims.

Claims (7)

What is claimed is:
1. A method for detecting a touch display panel by detecting capacitance characteristics of the touch display panel, wherein the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, and at least one first capacitance between the data lines and the driving lines, and the method comprising:
(a) electing one of the conductive lines as a detection line for detecting capacitance characteristic; and
(b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the conductive lines which cross the detection line to eliminate capacitance characteristic of the first capacitance so as to detect capacitance characteristic between the detection line and the ground.
2. The method for detecting a touch display panel of claim 1, wherein the driving circuit is at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
3. The method for detecting a touch display panel of claim 1, wherein the driving lines, which are arrayed on the touch display panel along a second direction to cross the data lines, have a plurality of crossing nodes, and when at least one second capacitance is formed between the detection line and the crossing nodes, and the step (b) further comprises a step (b0) of inputting the detection voltage wave to the crossing nodes to eliminate capacitance characteristic of the second capacitance.
4. A method for detecting a touch display panel by detecting capacitance characteristics of the touch display panel, wherein the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the data lines, and the method comprising:
(a) electing one of the data lines as a detection line for detecting capacitance characteristic; and
(b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the data lines adjacent to the detection line and the driving lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground.
5. The method for detecting a touch display panel of claim 4, wherein the driving circuit is at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
6. A method for detecting a touch display panel by detecting capacitance characteristics of the touch display panel, wherein the touch display panel is electrically coupled to a driving circuit and includes a plurality of conductive lines which are composed of a plurality of data lines arrayed on the touch display panel along a first direction and a plurality of driving lines arrayed on the touch display panel along a second direction to cross the plurality of data lines with at least one first capacitance module between the data lines and a ground, at least one second capacitance module between the driving lines and the ground, at least one first capacitance between the data lines and the driving lines, and at least one second capacitance between the driving lines, and the method comprising:
(a) electing one of the driving lines as a detection line for detecting capacitance characteristic; and
(b) inputting a detection voltage wave to the detection line and inputting the detection voltage wave to the driving lines adjacent to the detection line and the data lines which cross the detection line to eliminate capacitance characteristic of the first capacitance and the second capacitance so as to detect capacitance characteristic between the detection line and the ground.
7. The method for detecting a touch display panel of claim 6, wherein the driving circuit is at least one of a data line driving circuit, a driving line driving circuit, and a capacitive touch sensing circuit.
US14/685,741 2014-04-15 2015-04-14 Method for detecting touch display panel Abandoned US20150293628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103113710A TWI536237B (en) 2014-04-15 2014-04-15 Method for detecting touch display panel
TW103113710 2014-04-15

Publications (1)

Publication Number Publication Date
US20150293628A1 true US20150293628A1 (en) 2015-10-15

Family

ID=54265076

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/685,741 Abandoned US20150293628A1 (en) 2014-04-15 2015-04-14 Method for detecting touch display panel

Country Status (2)

Country Link
US (1) US20150293628A1 (en)
TW (1) TWI536237B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202105140A (en) 2019-07-15 2021-02-01 聯陽半導體股份有限公司 30076 新竹科學工業園區創新一路13號3樓 Touch pad driving device and touch driving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050214A1 (en) * 2010-08-24 2012-03-01 Viktor Kremin Reducing water influence on a touch-sensing device
US20130285971A1 (en) * 2012-04-30 2013-10-31 John Greer Elias Wide dynamic range capacitive sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050214A1 (en) * 2010-08-24 2012-03-01 Viktor Kremin Reducing water influence on a touch-sensing device
US20130285971A1 (en) * 2012-04-30 2013-10-31 John Greer Elias Wide dynamic range capacitive sensing

Also Published As

Publication number Publication date
TW201539287A (en) 2015-10-16
TWI536237B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103425365B (en) Display device
US9977527B2 (en) Touch sensing device and method for driving the same
US9939938B2 (en) Display panel with touch detecting and display device
US10146359B2 (en) Common electrode auto-compensation method
US9256309B2 (en) Display device including integrated touch panel
US9195353B2 (en) Touch controllers, methods thereof, and devices having the touch controllers
US10545619B2 (en) Device and method for detecting capacitive touch signal
US9046954B2 (en) Display device integrated with touch screen and method of driving the same
US8432170B1 (en) Integrated capacitance model circuit
JP6698324B2 (en) Display device and input device
US20180046298A1 (en) Touch display panel
US20110084918A1 (en) Touch Detection Method and Touch Detection Device and Touch Display Device
US10488963B2 (en) In-cell touch display apparatus with pressure detection function
CN104679365A (en) Touch sensing system
US9760198B2 (en) Touch control unit, array substrate, display device, and touch control method
CN104777950A (en) Touch screen and related touch sensing control circuit
US20150054777A1 (en) Position sensing method of touch panel and integrated circuit
KR101808462B1 (en) Display device and input device
US20150293628A1 (en) Method for detecting touch display panel
CN104808877A (en) Active array of capacitive touch panel and associated capacitive touch panel
CN103676388A (en) Array substrate, display panel, display method of display panel and display device
KR101427627B1 (en) Touch panel input apparatus and touch panel input detection method thereof
CN105021913A (en) Touch control display panel detection method
TW201415335A (en) Touch-control display device and its driving method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRA CHIP INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEH, CHIOU-LING;JUAN, SHIH-HSIN;REEL/FRAME:035404/0389

Effective date: 20150316

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION