US20150275465A1 - Hose Caddy for Powered Implements Mounted on Loaders - Google Patents

Hose Caddy for Powered Implements Mounted on Loaders Download PDF

Info

Publication number
US20150275465A1
US20150275465A1 US14/669,320 US201514669320A US2015275465A1 US 20150275465 A1 US20150275465 A1 US 20150275465A1 US 201514669320 A US201514669320 A US 201514669320A US 2015275465 A1 US2015275465 A1 US 2015275465A1
Authority
US
United States
Prior art keywords
hose
caddy
pivot
elongated member
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/669,320
Inventor
Joseph M. Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/669,320 priority Critical patent/US20150275465A1/en
Publication of US20150275465A1 publication Critical patent/US20150275465A1/en
Priority to US15/142,986 priority patent/US9927048B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/962Mounting of implements directly on tools already attached to the machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • E02F3/402Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors
    • E02F3/404Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors comprising two parts movable relative to each other, e.g. for gripping

Definitions

  • This invention relates generally to attachments for skid steer loaders, and other loaders having hydraulic power available, and more particularly, to a loader bucket having a bunk defacer mounted therein for defacing forage bunkers and removing the collected forage material.
  • Skid steer loaders are well knows ground working machines that have hydraulically driven wheels that are fixed for rotation relative to the frame of the machine. Steering is accomplished by controlling the rotation of the wheels on opposite sides of the machine such that a differential in rotational speeds will result in a turning of the machine.
  • the skid steer loader has a centrally positioned operator compartment mounted on the frame with an engine typically located behind the operator.
  • a pair of boom arms is pivotally supported on the frame for vertical movement on opposite sides of the operator compartment. These boom arms are connected together forwardly of the operator compartment with an attachment plate through which various attachments can be mounted to the boom arms.
  • Skid steer loaders are manufactured in many sizes for use in a variety of operations from cleaning chicken houses to moving materials from one location to another. Because of the versatility of skid steer loaders many attachments have been devised for mounting on the boom arms forwardly of the operator to accomplish the desired operation for the skid steer loader.
  • One simple such attachment is a loader bucket that has a mechanism along the rearward wall to permit connection with the attachment plate and is then operable to scoop materials, such as feed for animals, with the forward movement of the machine and to elevate those materials by vertically moving the boom arms. Hydraulic cylinders controllable by the operator allow the bucket to rotate about a pivot axis to tip the bucket in order for the materials to spill out of the bucket.
  • U.S. Pat. No. 4,157,164 granted to Arnold Helm, et al on Jun. 5, 1979, a self-propelled forage harvesting machine is equipped with a bunk defacer rotor supported on the distal end of boom arms to disintegrate the face of compacted silage material for feeding into the forage harvesting machine.
  • U.S. Pat. No. 3,335,888 issued on Aug. 15, 1967, to Henry Kugler, discloses a silage loader in the form of a belt conveyor that includes teeth that deface the front surface of compacted silage in a bunker, and loads the disintegrated silage into a loader bucket mounted on a tractor.
  • the conveyor belt is hydraulic driven and is positionably supported on the loader bucket.
  • a bunk defacer is pivotally mounted on the boom arms of a tractor-mounted bucket loader and is operable to be moved vertically to disintegrate compacted silage material and load the disintegrated material into the loader bucket beneath the bunk defacer apparatus.
  • the bunk defacer is hydraulically driven from the tractor's hydraulic system and is provided with a separate hydraulic lift system to cause pivotal movement thereof.
  • the bunk defacer rotor dislodges silage material that is collected in a lower collection bucket and is elevated and transported rearwardly by the belt conveyor.
  • the bunk defacer rotor is supported on a frame assembly that includes a four bar linkage that not only moves the rotor vertically, but also extends the rotor longitudinally.
  • the loader bucket would be attachable to a skid steer loader or any other loader apparatus providing an auxiliary supply of hydraulic fluid under pressure.
  • bunk defacing apparatus can be stowed in a retracted configuration within the confines of a loader bucket so that the loader bucket can be utilized to convey material.
  • the bunk defacing apparatus includes a powered rotor mounted on pivot arms that are operable to extend the rotor outwardly away from the loader bucket to detach forage material from a compacted base of forage material.
  • the loader bucket is configured to retract the bunk defacing apparatus into housing boxes arranged to receive the pivot linkage assembly.
  • pivot linkage assembly if formed with cover plates that close the housing boxes when the pivot linkage assembly is retracted and received within the housing boxes.
  • cover plates restrict the entry of silage material collected into the loader bucket into the housing boxes after the bunk defacing apparatus has been retracted into its inoperative position.
  • the rear sides of the housing boxes are opened to facilitate the removal of silage material that might collect in the housing boxes so that any silage material that might enter into the housing boxes will fall out when the loader bucket is tilted backward and raised through manipulation of the hydraulic cylinders controlling the orientation of the loader bucket.
  • the loader bucket is reinforced to resist the operational forces associated with the defacing of a bunker of compacted silage material.
  • the rotor is powered through a hydraulic motor mounted internally of the rotor and operable to cause a rotation of the rotor when a flow of hydraulic fluid under pressure is provided to the hydraulic motor.
  • the hydraulic motor is capable of selectively rotating the bunk defacing rotor in opposite directions to enhance the operation of the bunk defacing apparatus in dislodging silage from a compacted bunker of silage material.
  • hydraulic cylinders operatively connected to the pivot linkage is operable to move the powered rotor of the bunk defacing apparatus between a contracted, stored inoperative position and an extended operative position in which the rotor is positioned outwardly of the loader bucket.
  • the bunk defacing apparatus can be extended into its operative positioned, powered to allow the rotating toothed rotor to dislodge silage material from a compacted bunker of silage material, and then retracted into its inoperative position to allow the loader bucket to scoop and convey the dislodged silage material.
  • the loader bucket is provided with open fencing material to permit the operator to observe the operation of the bunk defacing apparatus while providing safety from falling dislodged silage material.
  • the hose caddy is formed with an enlarged head and/or a clamping device as a mechanism for holding the hydraulic conduits to direct the conduits into a hollow body that permits passage of the hydraulic conduits through the hollow body for use on the loader bucket.
  • hose caddy is pivotally connected to the loader bucket.
  • the hose caddy is biased to return to a position next to the loader bucket or other implement or attachment carried on the boom arms of the loader.
  • the hose caddy defines a fixed length of hydraulic conduit between the hose caddy and source of hydraulic fluid carried on the loader so that the fixed length of hydraulic conduit causes the hose caddy to pivot away from the loader bucket or other attachment connected to the hydraulic conduits as the loader bucket or other attachment is pivoted relative to the boom arms.
  • the bias mechanism can be provided by a spring apparatus that physically or hydraulically provides a mechanism to maintain constant pressure or tensioning.
  • the hose caddy can be utilized to control the positioning of hydraulic conduits, pneumatic conduits and electrical wiring that provides a power source to the loader bucket or other apparatus connected to the boom arms.
  • hose caddy minimizes damage to hydraulic hoses associated with the operative movement of a loader bucket.
  • a hose caddy that is pivotally mounted on an attachment, such as a loader bucket or other powered implement or attachment, connected to the boom arms of a loader.
  • the hose caddy is formed with a hose retention member that passes hydraulic or pneumatic conduits, and/or electrical wiring, through the hollow hose retention member for connection to the powered implement.
  • a spring biasing mechanism returns the hose caddy toward the implement as the implement is pivoted back toward the boom arms.
  • a bunk defacing apparatus is also disclosed to facilitate the operation of dislodging and collecting silage material from a compacted bunker of silage material.
  • a toothed rotor is supported on a pivot linkage that can be collapsed into housing boxes formed on the interior of the loader bucket.
  • FIG. 1 is a front elevational view of a combination bunk defacer and loader bucket incorporating the principles of the instant invention, the bunk defacer and loader bucket being mounted on a skid steer loader to provide mobility and operative power to the bunk defacer and the loader bucket, the bunk defacer being retracted into the inoperative position;
  • FIG. 2 is left, front perspective view of the bunk defacer and loader bucket combination shown in FIG. 1 ;
  • FIG. 3 is a left, front perspective view of the combination bunk defacer and loader bucket shown in FIG. 2 , but with the bunk defacer being fully extended into the operative position with the loader bucket being oriented in a generally horizontal orientation;
  • FIG. 4 is a left side elevational view of the combination bunk defacer and loader bucket with the bunk defacing apparatus extended into the operative position and the loader bucket being raised to a maximum height orientation;
  • FIG. 5 is an enlarged rear elevational view of the housing box within the right side of the cavity of the loader bucket to house one of the hydraulic cylinders for moving the bunk defacer between the operative and inoperative positions;
  • FIG. 6 is an enlarged, partial front perspective view of the housing box within the left side of the cavity of the loader bucket to house one of the hydraulic cylinders for moving the bunk defacer between the operative and inoperative positions;
  • FIG. 7 is an enlarged, partial side elevational view of the pivotal mounting of the right mounting arm for the bunk defacer rotor showing the passage of the hydraulic hoses through an opening formed in the right side wall of the loader bucket and into the interior of the right mounting arm to provide a source of hydraulic fluid under pressure to the hydraulic motor supported internally within the right end of the rotor mounted on the distal end of the right mounting arm;
  • FIG. 8 is an enlarged partial left, rear perspective view of the loader bucket having a hose caddy incorporating the principles of the instant invention pivotally mounted thereto with the loader bucket in a generally horizontal orientation;
  • FIG. 9 is a left side elevational view of the loader bucket having a hose caddy pivotally mounted thereto with the loader bucket tipped forwardly beyond the generally horizontal position depicted in FIG. 9 ;
  • FIG. 10 is a left, rear perspective view of the loader bucket having a hose caddy pivotally mounted thereto with the loader bucket tipped completely forwardly into a dumping orientation;
  • FIG. 11 is an exploded view showing the component parts of a second embodiment of the hose caddy.
  • FIG. 12 is an enlarged detail view of the pivotal connection of the hose caddy with a loader bucket showing the spring bias mechanism.
  • any left and right references are used as a matter of convenience and are determined by standing at the rear of the loader bucket attachment, such as from the orientation from the operator compartment of the skid steer loader, and facing the forward direction, the normal direction of travel of the skid steer loader, with the combination bunk defacer and loader bucket attachment mounted on the forward end of the skid steer loader.
  • the principles of the instant invention are not limited to a skid steer loader and that the combination bunk defacer and loader bucket attachment could be mounted onto any prime mover that supplies a source of hydraulic power for connection to the hydraulic cylinders and hydraulic motor, such as a tractor, as will be described in greater detail below.
  • the preferred embodiment is the mounting of the combination bunk defacer and loader bucket combination as an attachment onto a skid steer loader, which is what is described herein and shown in the drawings.
  • the skid steer loader 1 is formed with a pair of boom arms 2 that extend to a mounting plate 3 interconnecting the forward ends of the two boom arms 2 .
  • the boom arms 2 are vertically movable through manipulation of the first hydraulic cylinders 4 that are anchored on the frame of the skid steer loader 1 and attached to the respective boom arms 2 .
  • a second pair of hydraulic cylinders 5 interconnects the boom arms and the mounting plate 3 to power the tipping movement of the mounting plate 3 and anything attached thereto.
  • the skid steer loader 1 has at least two hydraulic ports 6 that detachably connect hydraulic hoses for the connection of attachments to the mounting plate 3 that need auxiliary hydraulic power for operation. More typically, the skid steer loader 1 will have several auxiliary hydraulic ports 6 .
  • the combination bunk defacer and bucket loader attachment 10 has as a base member a loader bucket 11 formed with a back wall 12 , opposing side walls 13 and a floor 16 terminating in a front edge 17 .
  • the back wall 12 is provided with a conventional mounting mechanism (not shown) on the rearward side of the back wall 12 that is cooperable with the mounting plate 3 on the skid steer loader 1 in a known manner.
  • the loader bucket 11 establishes a cavity between the floor 16 , the side walls 13 and the back wall 12 into which a supply of material, such as dislodged silage material, can be loaded.
  • the loader bucket 11 is formed with an outwardly flared forward edge 14 on both opposing side walls 13 to strengthen the side walls of the loader bucket 11 for the operational support of the bunk defacer 20 , as will be described in greater detail below.
  • the outwardly flared forward edges 14 of the side walls 13 merge into a corresponding downwardly flared front edge 17 of the floor of the bucket 11 .
  • the outward displacement of the forward edge 14 is sufficient to protect structure located outboard of the bucket side walls 13 and rearwardly of the forward edges 14 , as will also be described in greater detail below.
  • the bunk defacer 20 is formed as a transversely extending rotor 22 with teeth 23 mounted on the periphery thereof to engage and dislodge compacted silage material from the front face of a silage bunker.
  • the rotor 22 is mounted on a linkage assembly 25 that is housed on the interior of the loader bucket 11 along the interior sides of the opposing side walls 13 . Therefore, the transverse width of the rotor 22 is slightly less than the transverse width of the loader bucket 11 as the rotor 22 and linkage 25 are stored within the confines of the loader bucket 11 .
  • the rotor 22 is mounted at the distal ends of a pair of opposing mounting arms 24 pivotally connected at a pivot 19 mounted to the opposing side walls 13 near the intersection of the forward edge 14 of the side walls 13 and the front edge 17 of the floor 16 .
  • the linkage assembly 25 is positioned adjacent each opposing side wall 13 and includes a first link 26 pivotally supported on a box 29 mounted on the upper rear interior sides of the respective side walls 13 , near the intersection of the forward edge 14 of the side walls 13 and the back wall 12 .
  • a second link 27 pivotally interconnects the forward end of each corresponding first link 26 and the corresponding mounting arm 24 to define three pivot points, i.e. the pivotal connection between the first link 26 and the box 29 , the pivotal connection between the first and second links 26 , 27 , and the pivotal connection between the second link 27 and the mounting arm 24 , which in turn is pivotally mounted by pivot 19 on the side walls 13 of the loader bucket 11 .
  • Hydraulic cylinders 28 are anchored on the loader bucket and connect, respectively, to the corresponding first link 26 to induce a pivotal movement of the first link 26 .
  • the hydraulic cylinders 28 are housed inside of the box 29 formed on the back wall 12 and corresponding side wall 13 to protect the hydraulic cylinder 28 from damage from the engagement with the collected silage material.
  • the hydraulic cylinders 28 are operable to cause pivotal movement of the bunk defacing rotor 22 from a retracted inoperative position, as is depicted in FIGS. 1 and 2 , and an extended operative position, as is depicted in FIGS. 3 and 4 .
  • the extension of the hydraulic cylinders 28 moves the first links 26 in an upward pivotal movement, which pulls the second link 27 upwardly with the first link 26 and, thus, causes a pivotal movement of the mounting arms 24 outwardly from the retracted inoperative position. Since the mounting arms 24 are of fixed length and pivotally mounted at the pivot 19 at the lower, forward position on the side walls 13 , the mounting arms 24 will move the rotor 22 forwardly relative to the bucket 11 .
  • first and second links 26 , 27 are such that when the hydraulic cylinders 28 are fully extended, the mounting arms 24 have rotated through sufficient rotation to locate the rotor 22 below the level of the front edge 17 of the loader bucket 11 , as can be seen best in FIGS. 3 and 4 .
  • the first links 26 are provided with a plate 26 a that closes off the front face of the housing box 29 when the hydraulic cylinders 28 are retracted and the linkage assembly 25 pulls the rotor 22 into the retracted, inoperative position.
  • These plates 26 a limit the movement of any recovered silage material within the loader bucket 11 from entering the box 29 and contaminating the operation of the hydraulic cylinders 28 .
  • the rotor 22 When in the fully extended position as shown in FIGS. 3 and 4 , the rotor 22 is movable vertically through manipulation of the hydraulic cylinders 4 that control the movement of the boom arms 3 , while some pivotal movement of the rotor 22 relative to the loader bucket 11 can be accomplished through manipulation of the hydraulic cylinders 5 controlling the movement of the mounting plate 3 . In this manner, the position of the rotor 22 can be controlled by the operator along the generally vertical face of the compacted silage in the silage bunker.
  • the rotation of the rotor 22 is accomplished by a hydraulic motor 21 mounted internally of the right end of the bunk defacing rotor 22 supported on the right mounting arm 24 and drivingly connected directly to the rotor 22 .
  • This hydraulic motor 21 is operable in reversible directions simply through the manipulation of the conventional hydraulic controls within the skid steer loader 1 .
  • the bunk defacing rotor 22 is selectively rotatable in either direction to facilitate the dislodging of the compacted silage in the bunker.
  • the teeth 23 Upon rotation of the rotor 22 , the teeth 23 will disintegrate and dislodge the compacted silage material which will fall by gravity to the bottom of the bunker, as will be described in greater detail below.
  • the hydraulically operated devices on the attachment 10 are powered from the auxiliary hydraulic system of the skid steer loader 1 by connecting hydraulic hoses 40 to the auxiliary ports 6 .
  • the hydraulic cylinders 28 and the hydraulic motor 21 can have separate hydraulic hoses supplying hydraulic fluid under pressure, which are separately controlled as desired.
  • the hydraulic system can include a hydraulic valve (not shown) that can be shuttled between supplying fluid to the cylinders 28 and the motor 21 in an alternative manner, as the motor 21 and the cylinders 28 do not require simultaneous operation.
  • the attachment 10 is provided with a hose caddy 30 preferably formed with a channel member 31 having a hollow hose retention member 32 mounted thereon to control the positioning of the hydraulic hoses 40 .
  • the hydraulic hoses 40 are directed into the hollow hose retention member 32 so that the hoses 40 can pass through the interior of the hose retention member 32 from the top to the bottom thereof.
  • the hose retention member 32 has a bend in the lower portion thereof to direct the exiting of the hydraulic hoses 40 toward the center of the implement 10 mounted on the boom arms 2 . This configuration enables the channel 31 to be pivotally connected to the implement 10 , as described in greater detail below, while directing the hydraulic hoses 40 away from the pivot mechanism 35 .
  • the upper portion of the hose caddy 30 can be formed with an enlarged head member 33 , or alternatively a hose clamp 34 , that secures the hoses 40 and gradually deflects the curving of the hydraulic hoses 40 into the hollow hose retention member 32 from the auxiliary ports 6 .
  • hose caddy 30 can be utilized with hydraulic hoses, pneumatic hoses, or electrical wiring that provide a source of power to the implement 10 , such as a loader bucket 11 , that would be attached to the distal end of the boom arms 2 of the loader 1 .
  • the channel 31 is pivotally mounted on the back wall 12 of the loader bucket 11 and is oriented in a generally vertical position.
  • the pivotal connection between the hose caddy channel 31 and the back wall 12 is spring-loaded to urge the channel 31 toward the back wall 12 .
  • the components of the hinge assembly 35 can best be seen in the exploded view of FIG. 11 and in the enlarged detail view of FIG. 12 .
  • the mounting bracket 39 is affixed to the rear corner of the implement 10 , such as by welding.
  • the mounting bracket is formed with two concentric bayonet slots 39 a that have an enlarged head portion.
  • the bolts used to connect the hinge bracket 38 to the mounting bracket 39 are inserted through the corresponding holes in the hinge bracket 38 and then aligned with the enlarged head portions of the bayonet slots 39 a.
  • the hinge bracket 38 is then rotated so that the bolts pass along the bayonet slots 39 a and the bolts tightened to secure the hinge bracket 38 to the mounting bracket 39 .
  • the connection between the hinge bracket 38 and the mounting bracket 39 can be loosened and adjusted so that the hose caddy 30 is oriented in whatever manner is desired.
  • a pivot shaft 36 passes through the corresponding holes in the hinge bracket 38 and the channel 31 to pivotally connect the channel 31 to the back of the implement 10 .
  • a biasing spring 37 is mounted on the pivot shaft 36 to urge the channel 31 toward the implement 10 .
  • the spring 37 can be secured to the pivot shaft 36 by a spring retention bolt 36 a.
  • the spring 37 can be compressed to exert a greater spring force by the rotation of the pivot shaft 36 , which is then secured to the hinge bracket 38 by the tension setting bolt 37 a.
  • the routing of hydraulic hoses 40 for the hydraulic motor 21 on the attachment 10 can be accomplished by passing the hoses 40 from the hose caddy 30 into a hollow transverse channel frame member along the rearward side of the back wall 12 and then along the outside of the right side wall 13 through a hollow frame member 15 .
  • the hoses 40 can be passed into the interior of the bucket 11 and then up through the interior of the right mounting arm 24 to exit the right mounting arm 24 adjacent the hydraulic motor 21 located internally of the rotor 22 .
  • the hydraulic hoses 40 for the powering of the hydraulic motor 21 can be safely routed to the remotely positioned hydraulic motor 21 without fear of damage from the loading operation of the loader bucket to remove dislodged silage material.
  • the loader bucket 11 is also formed with open fencing 18 across the top of and above the back wall 12 to allow the operator seated in the skid steer loader operator compartment to have an open view of the interior of the bucket 11 to monitor the operation of the loading thereof.
  • the back wall 12 is formed with a fence 24 a mounted at the top portion of the back wall 12 where the rotor is positioned when in the retracted inoperative position, which enables the operator to have safety from dislodged silage material while maintaining the ability to observe the operation of the rotor 22 in defacing the compacted silage material.
  • the attachment 10 is mounted on the prime mover, such as on the mounting plate 3 of a skid steer loader 1 , and transported to the silage bunker.
  • the hydraulic cylinders 28 can be extended to push on the linkage assembly 25 and move the bunk defacing rotor 22 from the retracted, inoperative position shown in FIGS. 1 and 2 toward the extended, operative position shown in FIGS. 3 and 4 . Since the rotor 22 , when fully extended, is located below the level of the front edge 17 of the loader bucket 11 , the bucket 11 should be raised accordingly to prevent the rotor 22 from impacting the ground or the floor of the silage trench.
  • the loader hydraulics can then be manipulated to raise the boom arms 2 an appropriate amount to locate the rotor 22 at the top of the bunker of compacted silage material.
  • the loader can be positioned to allow the rotor to engage the front face of the compacted silage and the hydraulic motor 28 can be operated to cause rotation of the rotor 22 in either direction as needed to dislodge the compacted silage material.
  • Movement of the hydraulic cylinders 4 , 5 can keep the rotor engaged appropriately with the silage material as the rotor teeth 23 disintegrate and dislodge the silage material, which falls by gravity to the bottom of the silage trench.
  • the hydraulic motor 21 is stopped and the hydraulic cylinders 28 are retracted to collapse the linkage assembly 25 , which in turn draws the rotor 22 into the retracted, inoperative position against the upper part of the back wall 12 .
  • This retraction of the hydraulic cylinders 28 pulls the first links 26 downwardly to re-position the plates 26 a on the first links 26 against the housing boxes 29 to close the boxes 29 and trap the hydraulic cylinders 28 inside.
  • the loader bucket 11 can then be used to scoop up the dislodged silage material from the bottom of the silage bunker and transport the collected material to a remote place to feed animals.
  • housing boxes 29 are open through the back wall 12 of the loader bucket 11 so that any silage material that might enter into the housing boxes 29 will fall out when the bucket 11 is tilted backward and raised through manipulation of the hydraulic cylinders 4 , 5 .
  • the mounting of the bunk defacer 20 internally of the loader bucket 11 and the use of the hydraulic cylinder 28 which is also mounted and operable internally of the loader bucket 11 requires the structure of the loader bucket 11 to resist a lot of operational forces.
  • the outwardly flared forward edge 14 of the bucket side walls 13 and the flared forward edge 17 of the floor 16 of the loader bucket 11 provide structural rigidity to resist these operational forces.
  • the outwardly flared forward edges 14 provide structure along the front edge of the loader bucket 11 that other operative structures can be mounted on the outside surface of the side walls 13 and still be protected behind the outwardly flared forward edges 14 .
  • one such structure is the pivot structure 19 for the pivotal mounting of the mounting arms 24 . If oversized bearings are required to provide proper operation of the pivot 19 , the outwardly flared forward edge 14 will shield any protruding bearing structure for the pivot 19 .
  • Another example is the external channel 15 on the right side wall 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A hose caddy is pivotally mounted on an attachment, such as a loader bucket or other powered implement or attachment, connected to the boom arms of a loader. The hose caddy is formed with a hose retention member that passes hydraulic or pneumatic conduits, and/or electrical wiring, through the hollow hose retention member for connection to the powered implement. A mechanism for securing the conduits or wiring and directs the conduits into the hollow hose retention member. A spring biasing mechanism returns the hose caddy toward the implement as the implement is pivoted back toward the boom arms. A bunk defacing apparatus is also disclosed to facilitate the operation of dislodging and collecting silage material from a compacted bunker of silage material. A powered toothed rotor is supported on a pivot linkage that can be collapsed into housing boxes formed on the interior of the loader bucket.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims domestic priority on U.S. Provisional Patent Application Ser. No. 61/971,027, filed on Mar. 27, 2014, the content of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to attachments for skid steer loaders, and other loaders having hydraulic power available, and more particularly, to a loader bucket having a bunk defacer mounted therein for defacing forage bunkers and removing the collected forage material.
  • BACKGROUND OF THE INVENTION
  • Skid steer loaders are well knows ground working machines that have hydraulically driven wheels that are fixed for rotation relative to the frame of the machine. Steering is accomplished by controlling the rotation of the wheels on opposite sides of the machine such that a differential in rotational speeds will result in a turning of the machine. The skid steer loader has a centrally positioned operator compartment mounted on the frame with an engine typically located behind the operator. A pair of boom arms is pivotally supported on the frame for vertical movement on opposite sides of the operator compartment. These boom arms are connected together forwardly of the operator compartment with an attachment plate through which various attachments can be mounted to the boom arms.
  • Skid steer loaders are manufactured in many sizes for use in a variety of operations from cleaning chicken houses to moving materials from one location to another. Because of the versatility of skid steer loaders many attachments have been devised for mounting on the boom arms forwardly of the operator to accomplish the desired operation for the skid steer loader. One simple such attachment is a loader bucket that has a mechanism along the rearward wall to permit connection with the attachment plate and is then operable to scoop materials, such as feed for animals, with the forward movement of the machine and to elevate those materials by vertically moving the boom arms. Hydraulic cylinders controllable by the operator allow the bucket to rotate about a pivot axis to tip the bucket in order for the materials to spill out of the bucket.
  • Devices for defacing and removing compacted silage material placed into bunkers are known in the art. In U.S. Pat. No. 6,841,322 granted on Nov. 9, 2004, to Kenneth Slabey, a bunk defacer is mounted on a skid steer loader and is hydraulically powered from the auxiliary hydraulic system of the skid steer loader. The bunk defacer is mounted on the boom arms of the skid steer loader and is movable vertically by moving the boom arms. In an earlier U.S. Pat. No. 5,495,987 granted on Mar. 5, 1996, to Kenneth Slabey, this bunk defacer is shown mounted to the boom arms and cooperable with a loader bucket to load a quantity of the forage material into the bucket for transport away from the silage bunker.
  • In U.S. Pat. No. 4,157,164, granted to Arnold Helm, et al on Jun. 5, 1979, a self-propelled forage harvesting machine is equipped with a bunk defacer rotor supported on the distal end of boom arms to disintegrate the face of compacted silage material for feeding into the forage harvesting machine. U.S. Pat. No. 3,335,888, issued on Aug. 15, 1967, to Henry Kugler, discloses a silage loader in the form of a belt conveyor that includes teeth that deface the front surface of compacted silage in a bunker, and loads the disintegrated silage into a loader bucket mounted on a tractor. The conveyor belt is hydraulic driven and is positionably supported on the loader bucket.
  • In U.S. Pat. No. 3,779,408, issued to Louis Ivie on Dec. 18, 1973, a bunk defacer is pivotally mounted on the boom arms of a tractor-mounted bucket loader and is operable to be moved vertically to disintegrate compacted silage material and load the disintegrated material into the loader bucket beneath the bunk defacer apparatus. The bunk defacer is hydraulically driven from the tractor's hydraulic system and is provided with a separate hydraulic lift system to cause pivotal movement thereof. The bunk defacer apparatus in U.S. Pat. No. 3,847,266, granted on Nov. 12, 1974, to Celbert Cox, is pivotally mounted on top of a belt conveyor mechanism such that the bunk defacer rotor dislodges silage material that is collected in a lower collection bucket and is elevated and transported rearwardly by the belt conveyor. The bunk defacer rotor is supported on a frame assembly that includes a four bar linkage that not only moves the rotor vertically, but also extends the rotor longitudinally.
  • It would be desirable to provide a combination loader bucket and bunk defacing apparatus in which the bunk defacer could be retracted into the confines of the loader bucket when not being utilized to dislodge compacted silage material from the front face of a silage bunker. Preferably, the loader bucket would be attachable to a skid steer loader or any other loader apparatus providing an auxiliary supply of hydraulic fluid under pressure.
  • SUMMARY OF THE INVENTION
  • It is an object of this invention to overcome the disadvantages of the prior art by providing a bunk defacing apparatus that is carried in a loader bucket.
  • It is another object of this invention to provide a bunk defacing apparatus that is retractable into the confines of a loader bucket when not in use.
  • It is an advantage of this invention that the bunk defacing apparatus can be stowed in a retracted configuration within the confines of a loader bucket so that the loader bucket can be utilized to convey material.
  • It is a feature of this invention that the bunk defacing apparatus includes a powered rotor mounted on pivot arms that are operable to extend the rotor outwardly away from the loader bucket to detach forage material from a compacted base of forage material.
  • It is another feature of this invention that the loader bucket is configured to retract the bunk defacing apparatus into housing boxes arranged to receive the pivot linkage assembly.
  • It is still another feature of this invention that the pivot linkage assembly if formed with cover plates that close the housing boxes when the pivot linkage assembly is retracted and received within the housing boxes.
  • It is another advantage of this invention that the cover plates restrict the entry of silage material collected into the loader bucket into the housing boxes after the bunk defacing apparatus has been retracted into its inoperative position.
  • It is yet another feature of this invention that the rear sides of the housing boxes are opened to facilitate the removal of silage material that might collect in the housing boxes so that any silage material that might enter into the housing boxes will fall out when the loader bucket is tilted backward and raised through manipulation of the hydraulic cylinders controlling the orientation of the loader bucket.
  • It is still another feature of this invention that the loader bucket is reinforced to resist the operational forces associated with the defacing of a bunker of compacted silage material.
  • It is another feature of this invention that the rotor is powered through a hydraulic motor mounted internally of the rotor and operable to cause a rotation of the rotor when a flow of hydraulic fluid under pressure is provided to the hydraulic motor.
  • It is still another advantage of this invention that the internal mounting of the hydraulic motor within the rotor permits the lateral width of the rotor to be just a little smaller than the width of the loader bucket into which the bunk defacing apparatus is mounted.
  • It is yet another advantage of this invention that the hydraulic motor is capable of selectively rotating the bunk defacing rotor in opposite directions to enhance the operation of the bunk defacing apparatus in dislodging silage from a compacted bunker of silage material.
  • It is still another object of this invention to provide a combination bunk defacing apparatus and loader bucket that is mountable to and operable by a skid steer loader.
  • It is another feature of this invention that hydraulic cylinders operatively connected to the pivot linkage is operable to move the powered rotor of the bunk defacing apparatus between a contracted, stored inoperative position and an extended operative position in which the rotor is positioned outwardly of the loader bucket.
  • It is another advantage of this invention that the bunk defacing apparatus can be extended into its operative positioned, powered to allow the rotating toothed rotor to dislodge silage material from a compacted bunker of silage material, and then retracted into its inoperative position to allow the loader bucket to scoop and convey the dislodged silage material.
  • It is a further feature of this invention that the loader bucket is provided with open fencing material to permit the operator to observe the operation of the bunk defacing apparatus while providing safety from falling dislodged silage material.
  • It is a further advantage of this invention that the normal hydraulic controls for the operation of the loader bucket for tilt and elevation can be utilized to provide the same control functions for the powered rotor of the bunk defacing apparatus.
  • It is yet another object of this invention to provide a hose caddy apparatus that controls the positioning of hydraulic hoses providing a supply of hydraulic fluid under pressure from a prime mover to the hydraulic components on the bunk defacing apparatus.
  • It is a further feature of this invention that the hose caddy is formed with an enlarged head and/or a clamping device as a mechanism for holding the hydraulic conduits to direct the conduits into a hollow body that permits passage of the hydraulic conduits through the hollow body for use on the loader bucket.
  • It is a further advantage of this invention that the enlarged head enables a controlled bending of the hydraulic hoses into the hollow interior of the hose caddy.
  • It is still a further feature of this invention that the hose caddy is pivotally connected to the loader bucket.
  • It is yet another feature of this invention that the hose caddy is biased to return to a position next to the loader bucket or other implement or attachment carried on the boom arms of the loader.
  • It is still another advantage of this invention that the hose caddy defines a fixed length of hydraulic conduit between the hose caddy and source of hydraulic fluid carried on the loader so that the fixed length of hydraulic conduit causes the hose caddy to pivot away from the loader bucket or other attachment connected to the hydraulic conduits as the loader bucket or other attachment is pivoted relative to the boom arms.
  • It is yet another advantage of this invention that the spring bias on the hose caddy causes the hose caddy to pivot toward the loader bucket or other attachment.
  • It is still a further advantage of this invention that a fixed length of hydraulic hose extending between the source of hydraulic fluid on the prime mover and the enlarged head causes the hose caddy to pivot relative to the loader bucket when the loader bucket is pivotally manipulated relative to the boom arms on which the loader bucket is mounted.
  • It is a further object of this invention to provide a bias mechanism that maintains constant pressure or tension on the hose caddy arm relative to the loader bucket or other attachment connected to the boom arms.
  • It is a further feature of this invention that the bias mechanism can be provided by a spring apparatus that physically or hydraulically provides a mechanism to maintain constant pressure or tensioning.
  • It is another feature of this invention that the hose caddy can be utilized to control the positioning of hydraulic conduits, pneumatic conduits and electrical wiring that provides a power source to the loader bucket or other apparatus connected to the boom arms.
  • It is yet a further advantage of this invention that the hose caddy minimizes damage to hydraulic hoses associated with the operative movement of a loader bucket.
  • It is a further object of this invention to provide a combination loader bucket and bunk defacing apparatus, which is durable in construction, inexpensive of manufacture, carefree of maintenance, facile in assemblage, and simple and effective in use.
  • These and other objects, features and advantages are accomplished according to the instant invention by providing a hose caddy that is pivotally mounted on an attachment, such as a loader bucket or other powered implement or attachment, connected to the boom arms of a loader. The hose caddy is formed with a hose retention member that passes hydraulic or pneumatic conduits, and/or electrical wiring, through the hollow hose retention member for connection to the powered implement. A mechanism for securing the conduits or wiring and directs the conduits into the hollow hose retention member. A spring biasing mechanism returns the hose caddy toward the implement as the implement is pivoted back toward the boom arms. A bunk defacing apparatus is also disclosed to facilitate the operation of dislodging and collecting silage material from a compacted bunker of silage material. A toothed rotor is supported on a pivot linkage that can be collapsed into housing boxes formed on the interior of the loader bucket.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The advantages of this invention will become apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:
  • FIG. 1 is a front elevational view of a combination bunk defacer and loader bucket incorporating the principles of the instant invention, the bunk defacer and loader bucket being mounted on a skid steer loader to provide mobility and operative power to the bunk defacer and the loader bucket, the bunk defacer being retracted into the inoperative position;
  • FIG. 2 is left, front perspective view of the bunk defacer and loader bucket combination shown in FIG. 1;
  • FIG. 3 is a left, front perspective view of the combination bunk defacer and loader bucket shown in FIG. 2, but with the bunk defacer being fully extended into the operative position with the loader bucket being oriented in a generally horizontal orientation;
  • FIG. 4 is a left side elevational view of the combination bunk defacer and loader bucket with the bunk defacing apparatus extended into the operative position and the loader bucket being raised to a maximum height orientation;
  • FIG. 5 is an enlarged rear elevational view of the housing box within the right side of the cavity of the loader bucket to house one of the hydraulic cylinders for moving the bunk defacer between the operative and inoperative positions;
  • FIG. 6 is an enlarged, partial front perspective view of the housing box within the left side of the cavity of the loader bucket to house one of the hydraulic cylinders for moving the bunk defacer between the operative and inoperative positions;
  • FIG. 7 is an enlarged, partial side elevational view of the pivotal mounting of the right mounting arm for the bunk defacer rotor showing the passage of the hydraulic hoses through an opening formed in the right side wall of the loader bucket and into the interior of the right mounting arm to provide a source of hydraulic fluid under pressure to the hydraulic motor supported internally within the right end of the rotor mounted on the distal end of the right mounting arm;
  • FIG. 8 is an enlarged partial left, rear perspective view of the loader bucket having a hose caddy incorporating the principles of the instant invention pivotally mounted thereto with the loader bucket in a generally horizontal orientation;
  • FIG. 9 is a left side elevational view of the loader bucket having a hose caddy pivotally mounted thereto with the loader bucket tipped forwardly beyond the generally horizontal position depicted in FIG. 9;
  • FIG. 10 is a left, rear perspective view of the loader bucket having a hose caddy pivotally mounted thereto with the loader bucket tipped completely forwardly into a dumping orientation;
  • FIG. 11 is an exploded view showing the component parts of a second embodiment of the hose caddy; and
  • FIG. 12 is an enlarged detail view of the pivotal connection of the hose caddy with a loader bucket showing the spring bias mechanism.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to the drawings, the structural components of a combination bunk defacer and loader bucket attachment incorporating the principles of the instant invention can best be seen. Any left and right references are used as a matter of convenience and are determined by standing at the rear of the loader bucket attachment, such as from the orientation from the operator compartment of the skid steer loader, and facing the forward direction, the normal direction of travel of the skid steer loader, with the combination bunk defacer and loader bucket attachment mounted on the forward end of the skid steer loader. One skilled in the art will understand that the principles of the instant invention are not limited to a skid steer loader and that the combination bunk defacer and loader bucket attachment could be mounted onto any prime mover that supplies a source of hydraulic power for connection to the hydraulic cylinders and hydraulic motor, such as a tractor, as will be described in greater detail below. However, the preferred embodiment is the mounting of the combination bunk defacer and loader bucket combination as an attachment onto a skid steer loader, which is what is described herein and shown in the drawings.
  • Looking now to the drawings, the skid steer loader 1 is formed with a pair of boom arms 2 that extend to a mounting plate 3 interconnecting the forward ends of the two boom arms 2. The boom arms 2 are vertically movable through manipulation of the first hydraulic cylinders 4 that are anchored on the frame of the skid steer loader 1 and attached to the respective boom arms 2. A second pair of hydraulic cylinders 5 interconnects the boom arms and the mounting plate 3 to power the tipping movement of the mounting plate 3 and anything attached thereto. The skid steer loader 1 has at least two hydraulic ports 6 that detachably connect hydraulic hoses for the connection of attachments to the mounting plate 3 that need auxiliary hydraulic power for operation. More typically, the skid steer loader 1 will have several auxiliary hydraulic ports 6.
  • The combination bunk defacer and bucket loader attachment 10 has as a base member a loader bucket 11 formed with a back wall 12, opposing side walls 13 and a floor 16 terminating in a front edge 17. The back wall 12 is provided with a conventional mounting mechanism (not shown) on the rearward side of the back wall 12 that is cooperable with the mounting plate 3 on the skid steer loader 1 in a known manner. The loader bucket 11 establishes a cavity between the floor 16, the side walls 13 and the back wall 12 into which a supply of material, such as dislodged silage material, can be loaded.
  • The loader bucket 11 is formed with an outwardly flared forward edge 14 on both opposing side walls 13 to strengthen the side walls of the loader bucket 11 for the operational support of the bunk defacer 20, as will be described in greater detail below. The outwardly flared forward edges 14 of the side walls 13 merge into a corresponding downwardly flared front edge 17 of the floor of the bucket 11. The outward displacement of the forward edge 14 is sufficient to protect structure located outboard of the bucket side walls 13 and rearwardly of the forward edges 14, as will also be described in greater detail below.
  • The bunk defacer 20 is formed as a transversely extending rotor 22 with teeth 23 mounted on the periphery thereof to engage and dislodge compacted silage material from the front face of a silage bunker. The rotor 22 is mounted on a linkage assembly 25 that is housed on the interior of the loader bucket 11 along the interior sides of the opposing side walls 13. Therefore, the transverse width of the rotor 22 is slightly less than the transverse width of the loader bucket 11 as the rotor 22 and linkage 25 are stored within the confines of the loader bucket 11. The rotor 22 is mounted at the distal ends of a pair of opposing mounting arms 24 pivotally connected at a pivot 19 mounted to the opposing side walls 13 near the intersection of the forward edge 14 of the side walls 13 and the front edge 17 of the floor 16.
  • The linkage assembly 25 is positioned adjacent each opposing side wall 13 and includes a first link 26 pivotally supported on a box 29 mounted on the upper rear interior sides of the respective side walls 13, near the intersection of the forward edge 14 of the side walls 13 and the back wall 12. A second link 27 pivotally interconnects the forward end of each corresponding first link 26 and the corresponding mounting arm 24 to define three pivot points, i.e. the pivotal connection between the first link 26 and the box 29, the pivotal connection between the first and second links 26, 27, and the pivotal connection between the second link 27 and the mounting arm 24, which in turn is pivotally mounted by pivot 19 on the side walls 13 of the loader bucket 11. Hydraulic cylinders 28 are anchored on the loader bucket and connect, respectively, to the corresponding first link 26 to induce a pivotal movement of the first link 26. The hydraulic cylinders 28 are housed inside of the box 29 formed on the back wall 12 and corresponding side wall 13 to protect the hydraulic cylinder 28 from damage from the engagement with the collected silage material.
  • The hydraulic cylinders 28 are operable to cause pivotal movement of the bunk defacing rotor 22 from a retracted inoperative position, as is depicted in FIGS. 1 and 2, and an extended operative position, as is depicted in FIGS. 3 and 4. The extension of the hydraulic cylinders 28 moves the first links 26 in an upward pivotal movement, which pulls the second link 27 upwardly with the first link 26 and, thus, causes a pivotal movement of the mounting arms 24 outwardly from the retracted inoperative position. Since the mounting arms 24 are of fixed length and pivotally mounted at the pivot 19 at the lower, forward position on the side walls 13, the mounting arms 24 will move the rotor 22 forwardly relative to the bucket 11.
  • The lengths of the first and second links 26, 27 are such that when the hydraulic cylinders 28 are fully extended, the mounting arms 24 have rotated through sufficient rotation to locate the rotor 22 below the level of the front edge 17 of the loader bucket 11, as can be seen best in FIGS. 3 and 4. With reference to FIGS. 1-3 and 6, the first links 26 are provided with a plate 26 a that closes off the front face of the housing box 29 when the hydraulic cylinders 28 are retracted and the linkage assembly 25 pulls the rotor 22 into the retracted, inoperative position. These plates 26 a limit the movement of any recovered silage material within the loader bucket 11 from entering the box 29 and contaminating the operation of the hydraulic cylinders 28.
  • When in the fully extended position as shown in FIGS. 3 and 4, the rotor 22 is movable vertically through manipulation of the hydraulic cylinders 4 that control the movement of the boom arms 3, while some pivotal movement of the rotor 22 relative to the loader bucket 11 can be accomplished through manipulation of the hydraulic cylinders 5 controlling the movement of the mounting plate 3. In this manner, the position of the rotor 22 can be controlled by the operator along the generally vertical face of the compacted silage in the silage bunker.
  • The rotation of the rotor 22 is accomplished by a hydraulic motor 21 mounted internally of the right end of the bunk defacing rotor 22 supported on the right mounting arm 24 and drivingly connected directly to the rotor 22. This hydraulic motor 21 is operable in reversible directions simply through the manipulation of the conventional hydraulic controls within the skid steer loader 1. Accordingly, the bunk defacing rotor 22 is selectively rotatable in either direction to facilitate the dislodging of the compacted silage in the bunker. Upon rotation of the rotor 22, the teeth 23 will disintegrate and dislodge the compacted silage material which will fall by gravity to the bottom of the bunker, as will be described in greater detail below.
  • The hydraulically operated devices on the attachment 10 are powered from the auxiliary hydraulic system of the skid steer loader 1 by connecting hydraulic hoses 40 to the auxiliary ports 6. For skid steer loaders 1 having multiple auxiliary ports 6, the hydraulic cylinders 28 and the hydraulic motor 21 can have separate hydraulic hoses supplying hydraulic fluid under pressure, which are separately controlled as desired. For tractors or loaders having only one set of auxiliary ports 6, the hydraulic system can include a hydraulic valve (not shown) that can be shuttled between supplying fluid to the cylinders 28 and the motor 21 in an alternative manner, as the motor 21 and the cylinders 28 do not require simultaneous operation.
  • To handle the hydraulic hoses 40, the attachment 10 is provided with a hose caddy 30 preferably formed with a channel member 31 having a hollow hose retention member 32 mounted thereon to control the positioning of the hydraulic hoses 40. The hydraulic hoses 40 are directed into the hollow hose retention member 32 so that the hoses 40 can pass through the interior of the hose retention member 32 from the top to the bottom thereof. One skilled in the art will note that the hose retention member 32 has a bend in the lower portion thereof to direct the exiting of the hydraulic hoses 40 toward the center of the implement 10 mounted on the boom arms 2. This configuration enables the channel 31 to be pivotally connected to the implement 10, as described in greater detail below, while directing the hydraulic hoses 40 away from the pivot mechanism 35.
  • The upper portion of the hose caddy 30 can be formed with an enlarged head member 33, or alternatively a hose clamp 34, that secures the hoses 40 and gradually deflects the curving of the hydraulic hoses 40 into the hollow hose retention member 32 from the auxiliary ports 6. One skilled in the art will recognize that the hose caddy 30 can be utilized with hydraulic hoses, pneumatic hoses, or electrical wiring that provide a source of power to the implement 10, such as a loader bucket 11, that would be attached to the distal end of the boom arms 2 of the loader 1.
  • The channel 31 is pivotally mounted on the back wall 12 of the loader bucket 11 and is oriented in a generally vertical position. The pivotal connection between the hose caddy channel 31 and the back wall 12 is spring-loaded to urge the channel 31 toward the back wall 12. The components of the hinge assembly 35 can best be seen in the exploded view of FIG. 11 and in the enlarged detail view of FIG. 12. The mounting bracket 39 is affixed to the rear corner of the implement 10, such as by welding. The mounting bracket is formed with two concentric bayonet slots 39 a that have an enlarged head portion. The bolts used to connect the hinge bracket 38 to the mounting bracket 39 are inserted through the corresponding holes in the hinge bracket 38 and then aligned with the enlarged head portions of the bayonet slots 39 a. The hinge bracket 38 is then rotated so that the bolts pass along the bayonet slots 39 a and the bolts tightened to secure the hinge bracket 38 to the mounting bracket 39. The connection between the hinge bracket 38 and the mounting bracket 39 can be loosened and adjusted so that the hose caddy 30 is oriented in whatever manner is desired.
  • A pivot shaft 36 passes through the corresponding holes in the hinge bracket 38 and the channel 31 to pivotally connect the channel 31 to the back of the implement 10. A biasing spring 37 is mounted on the pivot shaft 36 to urge the channel 31 toward the implement 10. The spring 37 can be secured to the pivot shaft 36 by a spring retention bolt 36 a. The spring 37 can be compressed to exert a greater spring force by the rotation of the pivot shaft 36, which is then secured to the hinge bracket 38 by the tension setting bolt 37 a. Once the appropriate spring force is established, the rotation of the hinge bracket 38 with the pivoted implement 10 (i.e. pivoted relative to the boom arms 2) causes the spring 37 to compress. This compression draws the hose caddy 30 back toward the implement 10 when the implement 10 is returned to its starting position, such as is depicted in FIG. 8.
  • With the distance between the hose engagement member, i.e. the enlarged head 33 or the hose clamp 34, and the auxiliary ports 6 being fixed due to the fixed length of the hydraulic hoses 40 extending between the hose engagement member and the auxiliary ports 6, the vertical movement of the boom arms 2 or the forward tilting of the mounting plate 3 will result in the pivotal movement of the channel 31 relative to the loader bucket 11, keeping the channel 31 generally vertically upright, as is shown in FIGS. 9 and 10. When the bucket 11 returns to a home position, the biasing spring 37 retracts the channel 31 back toward the back wall 12. As a result, the hydraulic hoses 40 are not moved against the boom arms 2 or against the hydraulic cylinders 4, 5 or against the attachment 10, which would otherwise cause the hoses 40 to rub and wear accordingly.
  • The routing of hydraulic hoses 40 for the hydraulic motor 21 on the attachment 10 can be accomplished by passing the hoses 40 from the hose caddy 30 into a hollow transverse channel frame member along the rearward side of the back wall 12 and then along the outside of the right side wall 13 through a hollow frame member 15. By forming an opening through the right side wall 13, the hoses 40 can be passed into the interior of the bucket 11 and then up through the interior of the right mounting arm 24 to exit the right mounting arm 24 adjacent the hydraulic motor 21 located internally of the rotor 22. In this manner, the hydraulic hoses 40 for the powering of the hydraulic motor 21 can be safely routed to the remotely positioned hydraulic motor 21 without fear of damage from the loading operation of the loader bucket to remove dislodged silage material.
  • The loader bucket 11 is also formed with open fencing 18 across the top of and above the back wall 12 to allow the operator seated in the skid steer loader operator compartment to have an open view of the interior of the bucket 11 to monitor the operation of the loading thereof. Also, the back wall 12 is formed with a fence 24 a mounted at the top portion of the back wall 12 where the rotor is positioned when in the retracted inoperative position, which enables the operator to have safety from dislodged silage material while maintaining the ability to observe the operation of the rotor 22 in defacing the compacted silage material.
  • In operation, the attachment 10 is mounted on the prime mover, such as on the mounting plate 3 of a skid steer loader 1, and transported to the silage bunker. The hydraulic cylinders 28 can be extended to push on the linkage assembly 25 and move the bunk defacing rotor 22 from the retracted, inoperative position shown in FIGS. 1 and 2 toward the extended, operative position shown in FIGS. 3 and 4. Since the rotor 22, when fully extended, is located below the level of the front edge 17 of the loader bucket 11, the bucket 11 should be raised accordingly to prevent the rotor 22 from impacting the ground or the floor of the silage trench. The loader hydraulics can then be manipulated to raise the boom arms 2 an appropriate amount to locate the rotor 22 at the top of the bunker of compacted silage material. The loader can be positioned to allow the rotor to engage the front face of the compacted silage and the hydraulic motor 28 can be operated to cause rotation of the rotor 22 in either direction as needed to dislodge the compacted silage material. Movement of the hydraulic cylinders 4, 5 can keep the rotor engaged appropriately with the silage material as the rotor teeth 23 disintegrate and dislodge the silage material, which falls by gravity to the bottom of the silage trench.
  • Once sufficient amounts of silage material has been dislodged from the bunker, the hydraulic motor 21 is stopped and the hydraulic cylinders 28 are retracted to collapse the linkage assembly 25, which in turn draws the rotor 22 into the retracted, inoperative position against the upper part of the back wall 12. This retraction of the hydraulic cylinders 28 pulls the first links 26 downwardly to re-position the plates 26 a on the first links 26 against the housing boxes 29 to close the boxes 29 and trap the hydraulic cylinders 28 inside. The loader bucket 11 can then be used to scoop up the dislodged silage material from the bottom of the silage bunker and transport the collected material to a remote place to feed animals. One skilled in the art will note that the housing boxes 29 are open through the back wall 12 of the loader bucket 11 so that any silage material that might enter into the housing boxes 29 will fall out when the bucket 11 is tilted backward and raised through manipulation of the hydraulic cylinders 4, 5.
  • One skilled in the art will recognize that the mounting of the bunk defacer 20 internally of the loader bucket 11 and the use of the hydraulic cylinder 28 which is also mounted and operable internally of the loader bucket 11 requires the structure of the loader bucket 11 to resist a lot of operational forces. As a result, the outwardly flared forward edge 14 of the bucket side walls 13 and the flared forward edge 17 of the floor 16 of the loader bucket 11 provide structural rigidity to resist these operational forces. In addition, the outwardly flared forward edges 14 provide structure along the front edge of the loader bucket 11 that other operative structures can be mounted on the outside surface of the side walls 13 and still be protected behind the outwardly flared forward edges 14. For example, one such structure is the pivot structure 19 for the pivotal mounting of the mounting arms 24. If oversized bearings are required to provide proper operation of the pivot 19, the outwardly flared forward edge 14 will shield any protruding bearing structure for the pivot 19. Another example is the external channel 15 on the right side wall 13.
  • It will be understood that changes in the details, materials, steps and arrangements of parts which have been described and illustrated to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure within the principles and scope of the invention. The foregoing description illustrates the preferred embodiment of the invention; however, concepts, as based upon the description, may be employed in other embodiments without departing from the scope of the invention.

Claims (20)

Having thus described the invention, what is claimed is:
1. A hose caddy for use in conjunction with an attachment mounted on distal ends of forwardly projecting boom arms of a prime mover, said attachment having a powered component connected by conduits or wiring to said a corresponding source of power carried by said prime mover, comprising:
an elongated member having a lower pivot end and an upper distal end, said lower pivot end being pivotally connected by a pivot pin to said attachment, said upper distal end including an interior cavity and terminating in an engagement member that directs said conduits or wiring onto said interior cavity of said elongated member to be carried thereby, said conduits or wiring separating from said elongated member at a fixed point spaced from said pivot pin.
2. The hose caddy of claim 1 wherein said elongated member is formed with a tubular member defining said interior cavity and being mounted on a C-channel forming said lower pivot end, said conduits or wiring exiting said elongated member at an opening in said tubular member offset from said pivot.
3. The hose caddy of claim 2 wherein said conduits or wiring establish a fixed distance between said source of power and said engagement member, thereby forcing said elongated member to pivot relative to said attachment when said attachment is moved relative to said boom arms of said prime mover.
4. The hose caddy of claim 3 wherein said engagement member is an enlarged head defining a curved path for the positioning of said conduits or wiring into said interior cavity of said tubular member.
5. The hose caddy of claim 3 wherein said engagement member is a hose clamp affixed to the upper distal end of said elongated member.
6. The hose caddy of claim 3 wherein said hose caddy has a spring bias urging the pivotal movement of said elongated member toward said attachment.
7. The hose caddy of claim 6 wherein said spring bias is provided by a coil spring mounted on said pivot bolt.
8. The hose caddy of claim 7 wherein said spring bias is adjustable by rotation of said pivot bolt to compress said coil spring, a tension setting bolt engaging said pivot pin to secure the position thereof.
9. A hose caddy for use in conjunction with an implement mounted on distal ends of forwardly projecting boom arms of a prime mover, said implement having a hydraulically driven component connected by hydraulic conduits to said a source of hydraulic fluid under pressure carried by said prime mover, comprising:
an elongated member having a lower end and an upper end, said lower end being pivotally connected at a pivot to said implement, said upper end terminating in a hose engagement member that directs said hydraulic conduits onto said elongated member to be carried thereby, said hydraulic conduits separating from said elongated member at a fixed point spaced from said pivot.
10. The hose caddy of claim 9 wherein said elongated member is formed with an interior cavity, said hose engagement member directing said hydraulic conduits into said interior cavity, said hydraulic conduits exiting said elongated member at an opening therein offset from said pivot.
11. The hose caddy of claim 10 wherein said hydraulic conduits establish a fixed distance between said source of hydraulic fluid under pressure and said hose engagement member, thereby forcing said elongated member to pivot relative to said implement when said implement is moved relative to said boom arms of said prime mover.
12. The hose caddy of claim 11 wherein said hose engagement member is an enlarged head defining a curved path for the positioning of said hydraulic conduits into said interior cavity of said elongated member.
13. The hose caddy of claim 11 wherein said hose engagement member is a hose clamp affixed to the upper end of said elongated member.
14. The hose caddy of claim 11 wherein said hose caddy has a spring bias urging the pivotal movement of said linear member toward said implement.
15. The hose caddy of claim 14 wherein said spring bias is provided by a coil spring mounted on a pivot bolt defining the pivot for said elongated member.
16. A method of supporting hoses or wiring for an attachment to a prime mover carrying a corresponding source of power for operative connection to said hoses or wiring, comprising the steps of:
pivotally mounting a hose caddy on a pivot pin, said hose caddy having an elongated member formed with an internal cavity and terminating in an engagement member;
engaging said hoses or wiring with said engagement member to direct said hoses or wiring from said engagement member into said internal cavity, said hoses or wiring defining a fixed distance between said engagement member and said source of power so that said hose caddy maintains a fixed orientation relative to said prime mover as said attachment is pivotally moved relative to said prime mover;
exiting said hoses or wiring from said elongated member at an opening offset from said pivot pin;
biasing said hose caddy toward said attachment so that said hose caddy will maintain said fixed orientation as said attachment is pivotally moved relative to said prime mover.
17. The method of claim 16 wherein said biasing step is provided by a coil spring mounted on said pivot pin.
18. The method of claim 17 wherein said engagement member clamps the hoses or wiring into a fixed position on said engagement member.
19. The method of claim 17 wherein said elongated member is formed as a tubular member defining said interior cavity, said tubular member being mounted on a C-channel carrying said pivot pin, said tubular member being bent relative to said C-channel to position said opening at an offset location relative to said pivot pin.
20. The method of claim 17 wherein the biasing force exerted by said spring is adjustable by rotation of said pivot pin, the rotated position of said pivot pin being retained by a tension setting bolt engaged with said pivot pin.
US14/669,320 2014-03-27 2015-03-26 Hose Caddy for Powered Implements Mounted on Loaders Abandoned US20150275465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/669,320 US20150275465A1 (en) 2014-03-27 2015-03-26 Hose Caddy for Powered Implements Mounted on Loaders
US15/142,986 US9927048B2 (en) 2014-03-27 2016-04-29 Hose caddy for powered implements mounted on loaders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461971027P 2014-03-27 2014-03-27
US14/669,320 US20150275465A1 (en) 2014-03-27 2015-03-26 Hose Caddy for Powered Implements Mounted on Loaders

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/142,986 Continuation-In-Part US9927048B2 (en) 2014-03-27 2016-04-29 Hose caddy for powered implements mounted on loaders

Publications (1)

Publication Number Publication Date
US20150275465A1 true US20150275465A1 (en) 2015-10-01

Family

ID=54189538

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/669,320 Abandoned US20150275465A1 (en) 2014-03-27 2015-03-26 Hose Caddy for Powered Implements Mounted on Loaders

Country Status (1)

Country Link
US (1) US20150275465A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672384A (en) * 2016-01-18 2016-06-15 广西大学 Small electric-drive multi-freedom-degree controllable mechanism type single bucket excavator
US9879802B2 (en) * 2008-08-06 2018-01-30 Thomas James Getts Hose and cable management system
WO2018045375A1 (en) * 2016-09-02 2018-03-08 Clark Equipment Company Utility whisker broom
CN114411856A (en) * 2022-01-19 2022-04-29 肖瑛 Ditch silt cleaning device for hydraulic engineering

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034874A (en) * 1973-10-19 1977-07-12 International Harvester Company Hose supporting linkage
US4798511A (en) * 1986-12-23 1989-01-17 Deere & Company Method and apparatus for attaching a loader to a tractor
US6336280B1 (en) * 2000-06-29 2002-01-08 Mississippi State University Self-propelled rotary excavator
US20050017528A1 (en) * 2001-11-26 2005-01-27 Tommy Ekman Device for mounting of a turnable implement
US20080110650A1 (en) * 2006-10-27 2008-05-15 Martin Kevin L Machine, hydraulic system and method for providing hydraulic power
US20140112749A1 (en) * 2012-10-19 2014-04-24 Harnischfeger Technologies, Inc. Conduit support system
US20140224941A1 (en) * 2013-02-14 2014-08-14 Deere & Company Line guide for working vehicle implement
US20140227071A1 (en) * 2013-02-11 2014-08-14 Harnischfeger Technologies, Inc. Conduit support structure for an industrial machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034874A (en) * 1973-10-19 1977-07-12 International Harvester Company Hose supporting linkage
US4798511A (en) * 1986-12-23 1989-01-17 Deere & Company Method and apparatus for attaching a loader to a tractor
US6336280B1 (en) * 2000-06-29 2002-01-08 Mississippi State University Self-propelled rotary excavator
US20050017528A1 (en) * 2001-11-26 2005-01-27 Tommy Ekman Device for mounting of a turnable implement
US20080110650A1 (en) * 2006-10-27 2008-05-15 Martin Kevin L Machine, hydraulic system and method for providing hydraulic power
US20140112749A1 (en) * 2012-10-19 2014-04-24 Harnischfeger Technologies, Inc. Conduit support system
US20140227071A1 (en) * 2013-02-11 2014-08-14 Harnischfeger Technologies, Inc. Conduit support structure for an industrial machine
US20140224941A1 (en) * 2013-02-14 2014-08-14 Deere & Company Line guide for working vehicle implement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879802B2 (en) * 2008-08-06 2018-01-30 Thomas James Getts Hose and cable management system
CN105672384A (en) * 2016-01-18 2016-06-15 广西大学 Small electric-drive multi-freedom-degree controllable mechanism type single bucket excavator
WO2018045375A1 (en) * 2016-09-02 2018-03-08 Clark Equipment Company Utility whisker broom
CN109642412A (en) * 2016-09-02 2019-04-16 克拉克设备公司 Multipurpose must shape broom
US10941532B2 (en) 2016-09-02 2021-03-09 Clark Equipment Company Utility whisker broom
CN114411856A (en) * 2022-01-19 2022-04-29 肖瑛 Ditch silt cleaning device for hydraulic engineering

Similar Documents

Publication Publication Date Title
US6997667B2 (en) Material handling apparatus and method for operating
US7552579B2 (en) Agricultural working machine header support between transport and working positions
US20150275465A1 (en) Hose Caddy for Powered Implements Mounted on Loaders
US7429159B2 (en) End loader bucket attachment
US7367368B2 (en) Tree trimmer
US9927048B2 (en) Hose caddy for powered implements mounted on loaders
US7214026B2 (en) Easy maintenance and/or service utility vehicle with extendable utility boom
US7600480B2 (en) Tree spade for ATV
US20130031739A1 (en) Grain vacuum attachment for unloading grain bags
JP4824988B2 (en) Combine weeding equipment
US6182385B1 (en) Rock and material loading system
KR102496021B1 (en) Working machinery attachment for Multi-purpose Utility vehicle
US11180899B2 (en) Electric grapple for compact tractors with loader
US6702034B2 (en) Rock picker
US9622410B2 (en) Material collection parking system
KR101720956B1 (en) Bucket device mounted in tractor rear
US3672133A (en) Conveyor attachment for a combine
US5025720A (en) Tri-fold cotton tromper
US20030205395A1 (en) Hydraulic arm and attachments for tractors
JP5056170B2 (en) Combine grain discharging device
JP2887912B2 (en) Combine harvester attachment / detachment device
JP2006061120A (en) Opening and closing device of reaping part in combine harvester
JP2008295357A5 (en)
JP2005143323A (en) Combine harvester
JPH11129945A (en) Trailer for self-traveling vehicle, and attachment fitting device for self-traveling vehicle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION